WO2008016134A1 - Method for predicting prognosis of rheumatoid arthritis patients - Google Patents

Method for predicting prognosis of rheumatoid arthritis patients Download PDF

Info

Publication number
WO2008016134A1
WO2008016134A1 PCT/JP2007/065238 JP2007065238W WO2008016134A1 WO 2008016134 A1 WO2008016134 A1 WO 2008016134A1 JP 2007065238 W JP2007065238 W JP 2007065238W WO 2008016134 A1 WO2008016134 A1 WO 2008016134A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
treatment
rheumatoid arthritis
prognosis
piianp
Prior art date
Application number
PCT/JP2007/065238
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiro Nishimoto
Jun Hashimoto
Original Assignee
Norihiro Nishimoto
Jun Hashimoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norihiro Nishimoto, Jun Hashimoto filed Critical Norihiro Nishimoto
Priority to JP2008527799A priority Critical patent/JP5330829B2/en
Publication of WO2008016134A1 publication Critical patent/WO2008016134A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • G01N2800/101Diffuse connective tissue disease, e.g. Sjögren, Wegener's granulomatosis
    • G01N2800/102Arthritis; Rheumatoid arthritis, i.e. inflammation of peripheral joints

Definitions

  • the present invention relates to a method for predicting the prognosis of treatment of rheumatoid arthritis using the amount of PIIANP in a subject who has been treated for rheumatoid arthritis.
  • Cartilage has a cartilage interstitium and has voids for receiving chondrocytes.
  • the physiological characteristics of cartilage are those of the matrix, including collagen, elastin and acidic mucus polysaccharides.
  • Collagen and elastin are flexible substances, and the hardness of the intercellular substances in cartilage is due to the combined proteodalycan.
  • Chondrocytes mainly produce collagen (type II collagen).
  • Typell collagen is synthesized as a procollagen molecule containing N- and C-propeptides ( ⁇ ⁇ ⁇ ⁇ and PIICP, respectively) at each end.
  • procollagens produced by RNA splicing TypellA procollagen is a molecule that contains a cysteine-rich globular domain encoded by exon 2 in sputum.
  • Rheumatoid arthritis which is chronic in rheumatoid arthritis, is a systemic chronic disease in which abnormal proliferation of connective tissues such as synovial tissue is observed in the joints.
  • connective tissues such as synovial tissue
  • the synovial cells are proliferated prominently, the formation of a multilayered structure due to abnormal synovial cell proliferation (pannus formation), Infiltration, angiogenesis into synovial cells, and infiltration of inflammatory cells such as lymphocytes and macrophages are observed.
  • rheumatoid arthritis which is chronic in rheumatoid arthritis.
  • -1, IL_8, TNF-a, TGF- ⁇ , FGF, PDGF, and other site force-in or growth factors are detected.
  • IL-1 and TNF ⁇ are considered to be potent synovial growth factors (Non-patent Documents 1 to 3), and synovial cells produce IL-6 by stimulation with IL-1 and TNF. (Non-Patent Document 4).
  • anti-IL-6 antibody is useful as a therapeutic agent for rheumatoid arthritis (Patent Document 1).
  • Anti-IL-6 receptor It has also been reported that antibodies are useful as therapeutic agents for rheumatoid arthritis (Patent Document 2).
  • Patent Literature l WO96 / 11020
  • Patent Document 2 JP-A-8208514
  • Non-Patent Document 1 Thornton et al., Clin. Exp. Immunol. 86: 79-86, 1991
  • Non-Patent Document 2 Lafyatis et al., J. Immunol. 143: 1142-1148, 1989
  • Non-Patent Document 3 Gitter et al., Immunology 66: 196-200, 1989
  • Non-Patent Document 4 Ito et al., Arthritis Rheum. 35: 1197-1201, 1992
  • Non-Patent Document 5 Patrick G. et al., ARTHRITIS & RHEUMATISM 46 (10), 2002, pp 261
  • Non-Patent Document 6 Rousseau J. C. et al., OsteoArthritis and Cartilage (2004) 12, 440-44 7
  • Non-Patent Document 7 Rousseau J. C. et al., ARTHRITIS & RHEUMATISM 43 (9), 2000
  • Non-Patent Document 8 K.A. Elsaid, CO. Chichester, Clinica Chimica Acta 365 (2006) 68-7 7
  • the present invention has been made in view of such a situation, and an object thereof is to predict the prognosis of treatment of rheumatoid arthritis using the amount of PIIANP as an index in a subject who has undergone rheumatoid arthritis treatment. It is to provide a method.
  • MRA Tocilizumab: anti-IL-6 receptor antibody, W092 / 19759
  • RA rheumatoid arthritis
  • PIIAN P cartilage metabolic markers
  • JSN Joint space narrowing
  • the 12-week change in MMP-3 correlates with the 52-week change in JSN and erosion, while the two biochemical markers show changes independent of each other.
  • the present invention provides the following [1] to [; 12].
  • a method for predicting a prognosis for treatment of rheumatoid arthritis in a subject who has undergone rheumatoid arthritis treatment comprising the following steps (a) to (c): (a) Subject power Sample collection process
  • Rheumatoid arthritis treatment is IL-1 inhibitor, IL-6 inhibitor, TNF-a inhibitor, IL-15 inhibitor
  • Rheumatoid arthritis treatment is anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-TNF-a antibody, anti-C
  • a kit for predicting the prognosis of treatment for rheumatoid arthritis comprising a reagent for measuring the amount of PIIANP.
  • the present inventors have found that it is possible to predict the prognosis of RA patients due to the treatment by measuring the amount of soot in the treatment of RA and examining the change over time in the early stage of the treatment.
  • the present invention is based on these findings.
  • the present invention relates to a method for predicting a prognosis for treatment of rheumatoid arthritis in a subject who has undergone rheumatoid arthritis treatment.
  • the treatment of rheumatoid arthritis includes treatment by administration of an anti-rheumatic agent, anti-cytokine therapy, a drug for CD20 effective for malignant lymphoma, an antibiotic, an immunosuppressant, hyperlipidemia Administration of therapeutic agents for cerebral dysfunction, therapeutic agents for multiple myeloma, etc., or treatment by hematopoietic stem cell transplantation.
  • the anti-rheumatic drug includes all drugs used for the treatment of rheumatoid arthritis.
  • DM ARDs disease-modifying anti-rheumatic drugs
  • IL-1 inhibitors IL-1 signaling
  • low molecular weight compounds having such action including anakinra
  • STAT-3 inhibitors IL-6 vaccines
  • IL-6 fusion proteins IL-6 inhibitors
  • IL-6 inhibitors IL- 6 drugs that inhibit signal transduction, such as low molecular weight compounds having such actions, including anti-IL-6 receptor antibodies (such as tocilizumab) and anti-IL-6 antibodies
  • TNF-a inhibitors including Drugs that inhibit TNF-a signaling include, for example, low molecular weight compounds having such effects, chimeric anti-TNF- ⁇ monoclonal antibody, infliximab, TNFR2-IgGFc fusion protein, etanercebut, human anti-TNF- ⁇ Monochroma Antibodies include adalimumab, other certolizumab pegol, Golim umab, etc.), IL-15 inhibitors (including drugs that inhibit IL-15 signaling
  • Treatment includes administration of an IL-1 inhibitor, an IL-6 inhibitor, a TNF- ⁇ inhibitor, an IL-15 inhibitor, or an IL-17 inhibitor. Treatment with methotrexate, anti-CD20 antibody and CTLA4-Ig fusion protein is also preferred! /.
  • rheumatoid arthritis includes early rheumatoid arthritis.
  • ACR American College of Rheumatology
  • diagnosis of early rheumatoid arthritis within 1 year of onset The purpose of this study is to use the early diagnostic criteria of the Japan College of Rheumatology.
  • treatment prognosis for rheumatoid arthritis preferably indicates a joint destruction prognosis, but the joint destruction prognosis includes a functional prognosis, a life prognosis, a quality of life (QOL) life, Since it is deeply involved in pain prognosis, according to the present invention, it is useful for prediction of all of these listed treatment prognoses.
  • QOL quality of life
  • “predicting the prognosis of treatment” refers to predicting whether or not the prognosis of rheumatoid arthritis is improved by treatment. Specifically, whether the prognosis of rheumatoid arthritis has a good prognosis, life prognosis, quality of life, pain prognosis, joint destruction prognosis, etc., preferably joint prognosis is good. Further, in the present invention, “predicting the prognosis of treatment” can be rephrased as “inspecting whether or not the prognosis of rheumatism is improved by treatment”.
  • the diagnosis of the disease is usually performed by a doctor (including those who have received instructions from the doctor; the same shall apply hereinafter), and the data regarding the prognosis of rheumatoid arthritis obtained by the present invention is Force that is useful for diagnosis by the method
  • the method of the present invention may be such that a person other than a doctor collects and presents data useful for diagnosis by a doctor.
  • “predicting the treatment prognosis” can be rephrased as “indicating the treatment prognosis for a predetermined period in the patient treatment plan from the start of rheumatoid arthritis treatment”.
  • the measurement result of the biochemical marker at 12 weeks after the treatment shows that it is possible to predict the treatment prognosis about one year after the start of the treatment (52 weeks).
  • the progress of joint destruction can be evaluated by the method described in Examples. Specifically, X-ray parity (Sharp score), transition of cartilage metabolic markers, correlation between X-ray changes and changes in bone and cartilage-related metabolic markers, multiple The progress of joint destruction is evaluated by analysis.
  • the evaluation based on the sharp score described in the examples is used as one standard.
  • the sharp score is calculated by the sum of the erosion score (Example, Table 2) and the joint-space narrowing score (JSN score), ERA column, 3 ⁇ 43). (Examples, Table 1). If the sharp score decreases, the progression of joint destruction in rheumatoid arthritis is suppressed, and it is judged that the prognosis for treatment of rheumatoid arthritis is good.
  • the method of the present invention includes a step of collecting a subject force sample.
  • Samples collected from the subject include, but are not limited to, plasma, serum, urine, or joint fluid. Preferred are plasma and serum, and more preferred is serum.
  • the step of collecting a sample from the subject of the present invention is also referred to as a step of providing a sample collected from the subject.
  • the method of the present invention includes a step of measuring the amount of a cartilage metabolism marker in a collected sample.
  • cartilage metabolism markers include matrix metaprotease 3 ( ⁇ -3) and ⁇ ⁇ .
  • ⁇ -3 is produced from cells such as synovial cells and chondrocytes, and is involved in remodeling of extracellular collagen fibers and destruction of cartilage collagen by activating other extracellular matrix protease family (MMPs) I think that. MMP-3 is thought to represent an inflammatory condition of the synovium.
  • Acupuncture is a propeptide corresponding to the N-terminal part of type IIA procollagen produced during the synthesis of type II collagen (Fig. 1).
  • the most preferred marker for cartilage metabolism of the present invention is PIIANP.
  • the amount of PIIANP can be measured by a known method.
  • the amount of PIIANP can be measured by ELISA, for example, U.S. Pat.No. 5,780,240, the aforementioned non-patent document 2, and Methods in Molecular medicine, Vol. 101 (Cartilage and Osteoarthritis, vol. 2: Structure and In vivo Analysis ), pp.25-38, 2004, edited by F. De Ceuninck et al. It can be measured by a method according to this.
  • the method of the present invention includes a step of predicting a treatment prognosis of rheumatoid arthritis in a subject using a cartilage metabolism marker as an index.
  • a cartilage metabolism marker as an index.
  • the cartilage metabolism marker is PIIANP
  • the rate of change of PIIANP concentration in serum decreases by 1 to 90%, preferably 5 to 80%, more preferably 10 to 50% In this case, the prognosis can be predicted to be good.
  • the change in the amount of cartilage metabolism marker compared to before the start of treatment occurs early after the start of rheumatoid arthritis treatment.
  • Early after initiation refers to within 52 weeks after the start of treatment, preferably within 48, 36, 24, 12 weeks, more preferably within 12, 6, 1 week.
  • the amount of cartilage metabolism marker of the present invention is preferably measured by collecting a sample from a subject over time. Measurement over time refers to measurement according to a chronological order, for example, subjects on the first or second day of treatment, or on weeks 1, 6, 12, 24, 36, 48, 52, etc. A sample is taken from and the amount of cartilage metabolism marker is measured.
  • a more accurate prediction of joint fracture prognosis can be achieved by combining JSN prognosis prediction by measuring PIIANP amount and prognosis prediction of JSN and erosion by measuring MMP-3 amount. Is possible. In addition, measurements of other markers such as CRP may be combined with these measurements.
  • the rheumatoid arthritis treatment of the present invention preferably includes treatment by administration of an IL-1 inhibitor, an IL-6 inhibitor, a TNF-a inhibitor, or an IL-15 inhibitor.
  • the IL-1 inhibitor, IL-6 inhibitor, TNF-a inhibitor, IL-15 inhibitor, or IL-17 inhibitor used for the treatment of rheumatoid arthritis of the present invention is IL-1, respectively.
  • Antibodies that inhibit IL-6, TNF-a, IL-15 or IL-17 signaling are preferred.
  • antibodies that inhibit IL-1, IL-6, TNF-a, IL-15, or IL-17 signaling include anti-HI-1 antibody, anti-HI-1 receptor antibody, anti-HI-1 antibody, HI HL-6 antibody, anti-HI HL-6 receptor antibody, anti-human TNF- ⁇ antibody, anti Examples include human TNF- ⁇ receptor antibody, anti-human HL-15 antibody, anti-human HL-15 receptor antibody, anti-human HL-17 antibody or anti-human HL-17 receptor antibody.
  • an antibody that inhibits IL-1, IL-6, TNF-a, IL_15, or IL-17 signaling can be obtained as a polyclonal or monoclonal antibody using known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Mammal-derived monoclonal antibodies include those produced in hyperpridoma and those produced in a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody specifically binds to HI-1, IL-6, TNF-a, IL-15, IL-17 or their receptors, and suppresses the function of these site forces.
  • Antibodies that inhibit IL-1, IL-6, TNF-a, IL-15, or IL-17 signaling are not particularly limited as long as they bind to the protein, mouse antibodies, rat antibodies, Usagi antibody, Hedge antibody, human antibody and the like can be used as appropriate.
  • recombinant antibodies artificially modified for the purpose of reducing the heterologous antigenicity to humans such as chimeric antibodies, humanized antibodies, and the like can also be used. These modified antibodies can be produced using known methods.
  • the chimeric antibody is a mammal other than a human, for example, an antibody comprising a heavy chain and a light chain variable region of a mouse antibody and a heavy chain and a light chain constant region of a human antibody.
  • the DNA can be obtained by ligating DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it.
  • a humanized antibody is also called a reshaped human antibody, and a complementarity determining region (CDR) of a mammal other than a human, eg, a mouse rod, is complemented with a human antibody. It is transplanted to the sex-determining region, and its general gene recombination technique is also known. Specifically, several DNA sequences designed to link mouse antibody CDRs and human antibody framework regions (FR) with overlapping portions at the ends are prepared. The oligonucleotide is synthesized from the oligonucleotide by PCR. The obtained DNA is obtained by ligating with DNA encoding a human antibody constant region, and then incorporating it into an expression vector, which is introduced into a host and produced.
  • CDR complementarity determining region
  • the human antibody FR is selected such that the complementarity determining region forms a favorable antigen-binding site. If necessary, amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site.
  • human lymphocytes are sensitized with a desired antigen or cells expressing the desired antigen in vitro, and the sensitized lymphocytes are fused with human myeloma cells such as U266, and the desired human antibody having activity to bind to the antigen.
  • a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen.
  • a technique for obtaining a human antibody by panning using a human antibody library is also known.
  • variable region of a human antibody can be expressed as a single-chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
  • scFv single-chain antibody
  • the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined. If the DNA sequence of scFv that binds to the antigen is clarified, an appropriate expression vector having the sequence can be prepared and a human antibody can be obtained.
  • the antibody used in the present invention may be a conjugated antibody bound to various molecules such as polyethylene glycol (PEG), radioactive substance, and toxin! /.
  • PEG polyethylene glycol
  • Such a conjugated antibody can be obtained by chemically modifying the obtained antibody.
  • Antibody modification methods have already been established in this field.
  • the “antibody” in the present invention includes these conjugated antibodies.
  • Examples of antibodies in the present invention include low molecular weight antibodies.
  • the low molecular weight antibody is not particularly limited as long as it includes an antibody fragment lacking a part of a full length antibody (whole antibody such as whole IgG) and has an ability to bind to an antigen.
  • the antibody fragment of the present invention is not particularly limited as long as it is a part of a full-length antibody, but it is particularly preferable that VH includes a heavy chain variable region (VH) or a light chain variable region (VL). It is a fragment containing both VL.
  • Specific examples of the antibody fragment include Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), and the like.
  • the antibody is treated with an enzyme such as papain or pepsin to produce an antibody fragment, or A gene encoding these antibody fragments may be constructed, introduced into an expression vector, and then expressed in an appropriate host cell.
  • the most preferred treatment for rheumatoid arthritis according to the present invention includes treatment by administration of an IL-6 inhibitor.
  • Examples of the IL-6 inhibitor of the present invention include anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-gpl30 antibody, IL-6 variant, soluble IL-6 receptor variant or IL-6 or Examples include IL-6 receptor partial peptides and low molecular weight substances exhibiting similar activities, but are not particularly limited.
  • the IL-6 inhibitor of the present invention is preferably an antibody that recognizes IL-6 receptor.
  • the origin of the antibody in the present invention is not particularly limited, but is preferably derived from a mammal, more preferably a human-derived antibody.
  • the anti-IL-6 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Mammal-derived monoclonal antibodies include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody binds to IL-6, thereby inhibiting the binding of IL-6 to the IL-6 receptor and blocking the intracellular transmission of IL-6 biological activity.
  • An anti-IL-6 antibody-producing hybridoma can be basically produced using a known technique as follows. That is, using IL-6 as a sensitizing antigen and immunizing it according to the usual immunization method, the obtained immune cells are fused with known parental cells by the usual cell fusion method, and by the usual screening method, It can be produced by screening monoclonal antibody-producing cells.
  • the anti-IL-6 antibody can be prepared as follows.
  • HI-6 used as a sensitizing antigen for antibody acquisition is Eur. J. Biochem (1987) 168, 543-550, J. Im munol. (1988) 140, 1534-1541, or by using the IL-6 gene / amino acid sequence disclosed in Agr. Biol. Chem. (1990) 54, 2685-2688.
  • the target IL-6 protein is known from the host cell or culture supernatant.
  • the purified IL-6 protein can be used as a sensitizing antigen.
  • a fusion protein of IL-6 protein and other proteins can be used as a sensitizing antigen.
  • the anti-IL-6 receptor antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Monoclonal antibodies derived from mammals include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody binds to the IL-6 receptor, thereby blocking the binding of IL-6 to the IL-6 receptor and blocking the transmission of IL-6 biological activity into the cell.
  • Examples of such antibodies include MR16-1 antibody (Tamura, T. et al. Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928), PM-l antibody (Hirata, Y et al., J. Immunol. (1989) 143, 2 900-2906), AUK12-20 antibody, AUK64-7 antibody or AUK146-15 antibody (International Patent Application Publication No. WO 92-19759) .
  • PM-1 antibody is exemplified as a preferred monoclonal antibody against HL-6 receptor
  • MR16-1 antibody is exemplified as a preferred monoclonal antibody against mouse IL-6 receptor. It is done.
  • An anti-IL-6 receptor monoclonal antibody-producing hybridoma can be basically produced using a known technique as follows. That is, IL-6 receptor is used as a sensitizing antigen and immunized according to a normal immunization method, and the resulting immune cells are fused with a known parent cell by a normal cell fusion method. Thus, a monoclonal antibody-producing cell can be screened.
  • the anti-IL-6 receptor antibody can be prepared as follows.
  • the human HL-6 receptor used as a sensitizing antigen for obtaining an antibody is disclosed in European Patent Application Publication No. EP 3 25474, and the mouse IL-6 receptor is disclosed in Japanese Patent Application Publication No. JP-A 3-155795. Obtained by using the prepared IL-6 receptor gene / amino acid sequence.
  • IL-6 receptor protein is expressed on the cell membrane and separated from the cell membrane (soluble IL-6 receptor) (Yasukawa,. Et al., J. Biochem. (1990) 108, 673-676). Soluble IL-6 receptor antibody binds to the cell membrane!
  • IL-6 receptor protein any IL-6 receptor may be used as long as it can be used as a sensitizing antigen for producing the anti-IL-6 receptor antibody used in the present invention.
  • the target IL-6 receptor is obtained from the host cell or the culture supernatant.
  • the protein may be purified by a known method, and this purified IL-6 receptor protein may be used as a sensitizing antigen.
  • cells expressing IL-6 receptor or fusion proteins of IL-6 receptor protein and other proteins may be used as sensitizing antigens.
  • the anti-gpl30 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • the anti-gpl30 antibody used in the present invention is particularly preferably a mammal-derived monoclonal antibody.
  • Mammal-derived monoclonal antibodies include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody binds to gpl30, thereby inhibiting the binding of IL-6 / IL-6 receptor complex to gpl30 and blocking the transmission of IL-6 biological activity into the cell.
  • Examples of such antibodies include the 8 ⁇ 64 antibody (Japanese Patent Laid-Open No. 3_219894), the 4811 antibody and the 2 ⁇ 3 ⁇ 4 antibody (US 5571513), the B-S12 antibody and the B-P8 antibody (Japanese Patent Laid-Open No. 8-291199). .
  • An anti-gpl30 monoclonal antibody-producing hybridoma can be basically produced using a known technique as follows. That is, gpl30 is used as a sensitizing antigen and immunized according to the usual immunization method. The obtained immune cells are fused with known parental cells by the usual cell fusion method, and then monoclonal by the usual screening method. It can be produced by screening antibody-producing cells.
  • a monoclonal antibody can be prepared as follows.
  • gpl30 used as a sensitizing antigen for antibody acquisition is disclosed in European Patent Application Publication No. EP 411946.
  • the target gpl30 protein is obtained from the host cell or culture supernatant by a known method.
  • the purified gpl30 receptor protein may be purified and used as a sensitizing antigen.
  • gp130-expressing cells or a fusion protein of gpl30 protein and other proteins may be used as a sensitizing antigen.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but it is generally preferable to select in consideration of the compatibility with the parent cell used for cell fusion.
  • Rodent animals such as mice, rats, hamsters and the like are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal.
  • the sensitized antigen is diluted to an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, etc., and suspended, and then mixed with an appropriate amount of a normal adjuvant, for example, Freund's complete adjuvant, if necessary.
  • a normal adjuvant for example, Freund's complete adjuvant
  • an appropriate carrier can be used during immunization with the sensitizing antigen.
  • immune cells are removed from the mammal and subjected to cell fusion.
  • Preferred immune cells that are subjected to cell fusion include spleen cells.
  • Mammalian myeloma cells as other parental cells to be fused with the immune cells have already been known in various cell lines such as P3X63Ag8.653 (Kearney, JF et al. J. Imm nol. 1979) 123, 1548-1550), P3X63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-l (Kohler. G. and Milstein, C. Eur. J. Immunol. 19 76) 6, 511-519), MPC-11 (Margulies. DH et al., Cell (1976) 8, 405-415), SP2 / 0 (Shulman, M.
  • the cell fusion between the immune cell and the myeloma cell is basically performed by a known method, for example, The method can be carried out according to the method of Lucyutain et al. (Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46).
  • the cell fusion is performed, for example, in a normal culture medium in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ), or the like is used as the fusion promoter, and an auxiliary agent such as dimethyl sulfoxide can be added and used to enhance the fusion efficiency as desired.
  • the usage ratio of immune cells and myeloma cells is preferably, for example, 1 to 10 times as many immune cells as the myeloma cells.
  • the culture medium used for the cell fusion for example, RPMI1640 culture medium suitable for the growth of the myeloma cell line, MEM culture medium, and other normal culture liquids used for this type of cell culture can be used.
  • serum supplements such as fetal calf serum (FCS) can be used in combination.
  • a predetermined amount of the immune cells and myeloma cells are mixed well in the culture solution and pre-warmed to about 37 ° C, for example, an average molecular weight of about 1000 to 6000.
  • PEG solution is usually added at a concentration of 30-60% (w / v) and mixed to form the desired fused cell (nobridoma).
  • cell fusion agents and the like unfavorable for the growth of hypridoma can be removed by repeating the operation of adding an appropriate culture solution successively, centrifuging and removing the supernatant.
  • the Hypridoma is selected by culturing in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Culturing with the HAT medium is continued for a period of time, usually several days to several weeks, sufficient for the cells (non-fusion cells) other than the desired hyperpridoma to die. The usual limiting dilution method is then used to screen and clone hybridomas producing the desired antibody.
  • a normal selective culture solution for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Culturing with the HAT medium is continued for a period of time, usually several days to several weeks, sufficient for the cells (non-fusion cells) other than the desired hyperpridoma to die.
  • the usual limiting dilution method is then used to screen and clone hybridomas producing the desired antibody.
  • human lymphocytes are sensitized in vitro with a desired antigen protein or antigen-expressing cells, and sensitized B lymphocytes are human myeloma. It is also possible to obtain a desired human antibody having a binding activity to a desired antigen or an antigen-expressing cell by fusing with a cell such as U266 (see Japanese Patent Publication No. 1-59878). In addition, antigens or antigen-expressing cells are administered to transgenic animals with a repertoire of human antibody genes. Then, a desired human antibody may be obtained according to the method described above (International Patent Application Publication No. wo
  • the hybridoma producing the monoclonal antibody produced in this manner can be subcultured in a normal culture solution, and can be stored for a long time in liquid nitrogen.
  • the hyperidoma is cultured according to a normal method and obtained as a culture supernatant thereof, or the hyperidoma is administered to a mammal compatible therewith.
  • the method of growing and obtaining ascites is adopted.
  • the former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
  • an anti-IL-6 receptor antibody-producing hybridoma can be performed by the method disclosed in JP-A-3-139293.
  • PM-1 antibody-producing hybridoma is injected into the abdominal cavity of BALB mice to obtain ascites, and PM-1 antibody is purified from this ascites, or this hybridoma is treated with an appropriate medium such as 10% urine fetal serum.
  • an appropriate medium such as 10% urine fetal serum.
  • an antibody gene is cloned from a hybridoma, incorporated into an appropriate vector, introduced into a host, and produced using a gene recombination technique.
  • a gene recombination technique See, for example, Borrebaeck CA. and Larrick JW THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990).
  • mRNA encoding the variable (V) region of the antibody is isolated from cells producing the antibody of interest, such as cells or hybridomas. Isolation of mRNA is performed by a known method such as guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299), AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159) etc. to prepare total RNA, and mRNA is prepared using mRNA Purification Kit (Pharmacia). In addition, it is possible to prepare mRNA directly by using QuickPrep mRNA Purification Kit (Pharmacia).
  • cDNA of the antibody V region is synthesized from the obtained mRNA using reverse transcriptase.
  • cDNA synthesis (by using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit, etc.)
  • 5'_Ampli FINDER RACE it (Clontech) and PCR are used for cDNA synthesis and amplification.
  • 5'-RACE method Frohman, MA et al., Proc. Natl. A cad. Sci. USA (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res.
  • the DNA fragment of interest can be purified from the obtained PCR product and ligated with vector DNA, and a recombinant vector can be prepared from this and introduced into E. coli, etc.
  • the colony is selected to prepare a desired recombinant vector, and the base sequence of the target DNA is confirmed by a known method such as the deoxy method.
  • DNA encoding the V region of the target antibody is obtained, it is ligated with DNA encoding the desired antibody constant region (C region) and incorporated into an expression vector.
  • DNA encoding the V region of the antibody may be incorporated into an expression vector containing DNA of the antibody C region.
  • the antibody gene is incorporated into an expression vector so as to be expressed under the control of an expression control region, for example, an enhancer or a promoter, as described below.
  • an expression control region for example, an enhancer or a promoter, as described below.
  • the host cell is transformed with this expression vector and the antibody is expressed with the force S.
  • a genetically engineered antibody such as a chimeric antibody, a humanized antibody, a human (human) antibodies can be used.
  • modified antibodies can be manufactured using known methods with the power S.
  • the chimeric antibody is produced by ligating the DNA encoding the antibody V region obtained as described above with the DNA encoding the human antibody C region, incorporating it into an expression vector, introducing it into a host, and producing it.
  • a humanized antibody is also called a reshaped human antibody or a humanized antibody, and a complementarity determining region (CDR) of a mammal other than a human, eg, a mouse antibody, is converted into a complementarity determining region of a human antibody. It is transplanted and its general genetic recombination technique is also known! /, (See European Patent Application Publication No. EP 125023, International Patent Application Publication No. WO 92-19759).
  • a DNA sequence designed to link a CDR of a mouse antibody and a framework region (FR) of a human antibody has an overlapping portion at the end. It is synthesized from several prepared oligonucleotides by PCR. The obtained DNA is obtained by ligating with the DNA encoding the human antibody C region, then incorporating it into an expression vector, introducing it into a host and producing it (European Patent Application Publication Number EP 239400, International Patent Application Publication Number). See WO 92-19759).
  • the complementarity determining region forms a favorable antigen binding site is selected. If necessary, the amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity-determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato,. Et al., Cancer Res. (1993) 53, 851-856).
  • the human antibody C region is used for the chimeric antibody and the humanized antibody.
  • Examples of the human antibody C region include C ⁇ , and for example, C ⁇ 1, C ⁇ 2, C ⁇ 3, or C ⁇ 4 can be used.
  • the human antibody C region may be modified in order to improve the stability of the antibody or its production.
  • the chimeric antibody is composed of a variable region of a non-human mammal-derived antibody and a C region derived from a human antibody, and the humanized antibody is a complementarity determining region of a non-human mammal-derived antibody and a framework region derived from a human antibody. It is useful as an antibody for use in the present invention because it consists of the C region and C region and has reduced antigenicity in the human body.
  • a preferred specific example of the humanized antibody used in the present invention is a humanized PM-1 antibody (see International Patent Application Publication No. WO 92-19759).
  • a technique for obtaining human antibodies by panning using a human antibody library is also known.
  • a variable region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
  • the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined. The power to do S. If the DNA sequence of scFv that binds to the antigen is clarified, an appropriate expression vector can be prepared from the sequence and a human antibody can be obtained.
  • the antibody gene constructed as described above can be expressed and obtained by a known method.
  • it can be expressed by a commonly used useful promoter, an antibody gene to be expressed, a DNA having a poly A signal operably linked to the 3 ′ downstream thereof, or a vector containing the same.
  • a promoter / enhancer it is possible to make a human cytomeculowinores ij phase promoter / enhancer (numan cytomegalovirus imme diate early promoter / enhancer).
  • promoters / enhancers that can be used for expression of the antibodies used in the present invention include retroviruses, polioviruses, adenoviruses, and simian viruses 40 (SV40).
  • a promoter / enhancer derived from a mammalian cell such as human longon factor 1 ⁇ (HEF1 ⁇ ) may be used.
  • the method of Mulligan et al. (Mulligan, RC et al., Nature (1979) 277, 108-114) and the HEF1 a-mouth motor / enhancer are used.
  • it can be easily carried out according to the method of Mizushima et al. (Mizushima, S. and Nagata, S. Nucleic Acids Res. (1990) 18, 5322).
  • the antibody gene to be expressed can be expressed by functionally binding it.
  • examples of the promoter include lacZ promoter and araB promoter.
  • the method of Ward et al. Ward, ES et al., Nature (1989) 341, 5 44-546; Ward, ES et al. FASEB J. (1992) 6, 2422-2427
  • the araB promoter When the araB promoter is used, the method of Better et al. (Better, M. et al. Science (1988) 240, 1041-1043) may be followed.
  • a pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379-4383) may be used when it is produced in the periplasm of E. coli. After isolating the antibody produced in the periplasm, the structure of the antibody is Used in refold (see, for example, WO96 / 30394).
  • the vector may include an aminoglycoside phosphotransferase (APH) gene, a thymidine kinase (TK) gene, an E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, a dihydrofolate reductase (dhfr) gene, and the like as selectable markers.
  • APH aminoglycoside phosphotransferase
  • TK thymidine kinase
  • Ecogpt E. coli xanthine guanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • any production system can be used.
  • Production systems for antibody production include in vitro and in vivo production systems.
  • In vitro production systems include production systems that use eukaryotic cells and production systems that use prokaryotic cells.
  • Animal cells include (1) mammalian cells such as CHO, COS, myeloma, BH (baby hamster kidney), HeLa, Vero, etc., (2) amphibian cells such as Xenopus oocytes, or ( 3) Insect cells such as si9, si21, and Tn5 are known.
  • mammalian cells such as CHO, COS, myeloma, BH (baby hamster kidney), HeLa, Vero, etc.
  • amphibian cells such as Xenopus oocytes, or ( 3) Insect cells such as si9, si21, and Tn5 are known.
  • plant cells cells derived from Nicotiana tabacum are known, and these may be cultured in callus.
  • yeasts such as Saccharomyces spp., For example, Saccharomyces cerevisiae, filamentous spiders such as Aspergillus, such as Aspergill us niger, are known. It has been.
  • prokaryotic cells When prokaryotic cells are used, there are production systems using bacterial cells.
  • Known bacterial cells include E. coli and Bacillus subtilis.
  • An antibody can be obtained by introducing a desired antibody gene into these cells by transformation, and culturing the transformed cells in vitro. Culture is performed according to a known method. For example, DMEM, MEM, RPMI1640, IMDM can be used as the culture medium, and serum supplements such as fetal calf serum (FCS) can be used in combination. Alternatively, antibodies may be produced in vivo by transferring cells into which the antibody gene has been introduced to the abdominal cavity of animals.
  • in vivo production systems include production systems using animals and production systems using plants. Is mentioned. When animals are used, there are production systems using mammals and insects. As mammals, goats, pigs, hidges, mice, mice, etc. can be used (Vic ki Glaser, SPECTRUM Biotechnology Applications, 1993). As insects, it is possible to use silkworms. When using a plant, for example, tobacco can be used.
  • An antibody gene is introduced into these animals or plants to produce and recover the antibodies in the body of the animals or plants.
  • an antibody gene is inserted in the middle of a gene encoding a protein inherently produced in milk such as goat / 3 casein to prepare a fusion gene.
  • a DNA fragment containing the fusion gene into which the antibody gene is inserted is injected into a goat embryo, and the embryo is introduced into a female goat.
  • the desired antibody is obtained from the milk produced by the transgene goat born from the goat that received the embryo or its progeny.
  • hormones may be used as appropriate in the transgenic dog (Ebert, .M. Et al., Bio / Technology ( 1994) 12, 699-702).
  • a silkworm When a silkworm is used, a silkworm is infected with a baculovirus inserted with the target antibody gene, and a desired antibody is obtained from the body fluid of this silkworm (Maeda, S. et al., Nature (1985) 315 592-594). Furthermore, when tobacco is used, the target antibody gene is inserted into a plant expression vector, such as pMON530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens. This bacterium is infected with tobacco, for example Nicotiana tabacum, and the desired antibody is obtained from the leaves of this tobacco (Julian, K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138) .
  • DNAs encoding the antibody heavy chain (H chain) or light chain (L chain) are separately incorporated into an expression vector. May be transformed simultaneously, or the host may be transformed by incorporating DNA encoding the H and L chains into a single expression vector (see International Patent Application Publication No. WO 94-11523). ).
  • the antibody used in the present invention may be an antibody fragment or a modified product thereof as long as it can be suitably used in the present invention.
  • antibody fragments include Fab, F (ab ′) 2, Fv, or single chain Fv (scFv) in which H chain and L chain Fv are linked by an appropriate linker.
  • an antibody fragment is produced by treating an antibody with an enzyme such as papain or pepsin.
  • an enzyme such as papain or pepsin.
  • construct genes encoding these antibody fragments introduce them into expression vectors, and express them in appropriate host cells (for example, Co, MS et al., J. Immunol. (19 94) 152, 2968—2976, Better, M. & Horwitz, AH Methods in Enzymology (1989) 17 8, 476-496, Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-496, Lamoyi, ⁇ , Methods in Enzymology (1989) 121, 652-663, Rousseaux, J. et al ⁇ , Methods in Enzymology (1989) 121, 663-66, Bird, RE et al., TIBTECH (1991) 9, 132- 137).
  • scFv is obtained by linking the H chain V region and L chain V region of an antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. USA (1988). 85, 5879-5883).
  • the H chain V region and the L chain V region in scFv may be derived from! /, which is described as the above antibody.
  • the peptide linker that links the V regions for example, any single chain peptide consisting of amino acid residues 12-19 is used.
  • the scFv-encoding DNA is composed of a DNA encoding the H chain or H chain V region of the antibody, and a DNA encoding the L chain or L chain V region, and the sequence of these sequences.
  • a portion of the DNA encoding the desired amino acid sequence is amplified by PCR using a primer pair that defines both ends of the DNA, and then a DNA encoding a portion of the peptide linker and both ends thereof are respectively H chain, Obtained by combining and amplifying primer pairs that are defined so as to be linked to the L chain.
  • an expression vector containing them and a host transformed with the expression vector can be obtained according to a conventional method. Can be used to obtain scFv according to conventional methods.
  • antibody fragments can be produced by the host by obtaining and expressing the gene in the same manner as described above.
  • antibody as used in the present invention encompasses these antibody fragments.
  • a modified antibody an antibody bound to various molecules such as polyethylene glycol (PEG) can also be used.
  • the “antibody” referred to in the present invention includes these modified antibodies. In order to obtain such a modified antibody, it can be obtained by chemically modifying the obtained antibody. These methods are already established in this field! / [0100]
  • the antibody produced and expressed as described above can be separated from the host inside and outside the cell and purified to homogeneity. Separation and purification of the antibody used in the present invention can be performed by affinity chromatography. Examples of the column used for affinity chromatography include a protein A column and a protein G column. Examples of the carrier used for the protein A column include HyperD, POROS, S-mark harose F.F. In addition, the separation and purification methods used for ordinary proteins are not limited in any way.
  • the antibody used in the present invention can be separated and purified.
  • chromatography include ion exchange chromatography, hydrophobic chromatography, gel filtration, and the like. These chromatographies (also known as HPLC (High Performance Liquid Chromatography)) can be applied and protected. Alternatively, reverse phase HPLC may be used.
  • the concentration of the antibody obtained above can be measured by measuring absorbance, ELISA, or the like.
  • absorbance after appropriately diluting with PBS (-), measure absorbance at 280 nm and calculate lmg / ml as 1.350D.
  • ELISA it is possible to measure as follows. That is, add goat anti-HgG (TAG) 100 1 diluted to l ⁇ g / ml with 0.1 M bicarbonate buffer ( ⁇ 9 ⁇ 6) to a 96-well plate (Nunc) at 4 ° C. ⁇ Incubate and immobilize antibody. After blocking, an appropriately diluted antibody or a sample containing the antibody used in the present invention, or Hi HGG (manufactured by CAPPEL) 100 II 1 as a sample is added, and incubated at room temperature for 1 hour.
  • TAG goat anti-HgG
  • the IL-6 variant used in the present invention is a substance that has binding activity to the IL-6 receptor and does not transmit IL-6 biological activity. That is, IL-6 variant binds to IL-6 receptor competitively with UL-6, but does not transmit IL-6 biological activity. Block transmission.
  • IL-6 variants are produced by introducing mutations by substituting amino acid residues in the amino acid sequence of IL-6.
  • the origin of IL-6, which is a variant of IL-6, is not limited, but human IL-6 is preferable in consideration of antigenicity.
  • the amino acid sequence of IL-6 can be determined using a known molecular modeling program such as W HATIF (Vriend et al., J. Mol. Graphics (1990) 8, 52-56). This is done by predicting the next structure and evaluating the effect on the total number of amino acid residues to be substituted. After determining the appropriate replacement amino acid residue, by introducing a mutation that replaces the amino acid by the usual PCR method, using a vector containing the base sequence encoding the HL-6 gene as a saddle type, A gene encoding the IL-6 variant is obtained. This can be incorporated into an appropriate expression vector as necessary, and an IL-6 variant can be obtained according to the expression, production and purification methods of the recombinant antibody.
  • W HATIF Wide et al., J. Mol. Graphics (1990) 8, 52-56
  • IL-6 variants include Brakenhoif et al., J. Biol. Chem. (1994) 269, 86-93.
  • the IL-6 partial peptide or IL-6 receptor partial peptide used in the present invention has a binding activity to IL-6 receptor or IL-6, respectively, and the biological activity of IL-6 It is a substance that does not transmit activity! That is, IL-6 partial peptide or IL-6 receptor partial peptide binds to IL-6 receptor or IL-6 and captures these to specifically bind IL-6 to IL-6 receptor. Obstruct it. As a result, IL-6 does not transmit the biological activity of IL-6, thus blocking IL-6 signaling.
  • the IL-6 partial peptide or IL-6 receptor partial peptide is a part of the region involved in the binding between IL-6 and IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor. Alternatively, it is a peptide consisting of all amino acids. Such peptides usually consist of 10 to 80, preferably 20 to 50, more preferably 20 to 40 amino acid residues.
  • IL-6 partial peptide or IL-6 receptor partial peptide specifies the region involved in the binding of IL-6 to IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor A part or all of the amino acid sequence is generally known, for example, genetic engineering techniques or peptide synthesis. It can be produced by a synthesis method.
  • a DNA sequence encoding a desired peptide is incorporated into an expression vector, and expression of the recombinant antibody is performed. It can be obtained according to production and purification methods.
  • a method usually used in peptide synthesis for example, a solid phase synthesis method or a liquid phase synthesis method may be used. it can.
  • a deprotection reaction and a cleavage reaction from the peptide chain support are performed.
  • hydrogen fluoride or trifluoromethanesulfonic acid can usually be used for the Boc method
  • TFA can be used for the Fmoc method.
  • Boc method for example, the protected peptide resin is treated in the presence of anisole in hydrogen fluoride.
  • the peptide is recovered by removing the protecting group and cleaving from the support. This is freeze-dried to obtain a crude peptide.
  • the deprotection reaction and the cleavage reaction from the peptide chain support can be performed in TFA by the same operation as described above.
  • the obtained crude peptide can be separated and purified by applying it to HPLC.
  • a water-acetonitrile solvent usually used for protein purification may be used under optimum conditions.
  • the fraction corresponding to the peak of the obtained chromatographic profile is collected and lyophilized.
  • the peptide fraction thus purified is analyzed for molecular weight analysis, amino acid composition analysis, or amino acid sequence analysis by mass spectrum analysis. Identify by analysis.
  • IL-6 partial peptide and the IL-6 receptor partial peptide are disclosed in JP-A-2-188600, JP-A-7-324097, JP-A-8-311098 and US Pat. No. US5210075.
  • the antibody used in the present invention may be a conjugated antibody bound to various molecules such as polyethylene glycol (PEG), radioactive substances, and toxins! /.
  • PEG polyethylene glycol
  • Such a conjugated antibody can be obtained by chemically modifying the obtained antibody.
  • Antibody modification methods have already been established in this field.
  • the “antibody” in the present invention includes these conjugated antibodies.
  • the present invention relates to a detection reagent for predicting a prognosis of treatment in rheumatoid arthritis, including a reagent for measuring a cartilage metabolism marker.
  • detection reagents may include those used in the above-described cartilage metabolism marker measurement step.
  • an antibody, a staining solution, and the like that are required for measuring the amount of drought that is a cartilage substitution marker can be mentioned.
  • kits for predicting the prognosis of treatment in rheumatoid arthritis treatment which contains a reagent for measuring a cartilage metabolism marker.
  • a kit for predicting the prognosis of treatment in rheumatoid arthritis treatment which contains a reagent for measuring a cartilage metabolism marker.
  • Such a kit may contain the detection reagent described above, distilled water, salt, buffer solution, protein stabilizer, preservative and the like.
  • a reagent for ELISA it is possible to combine a chromogenic substrate for detecting an enzyme label and a washing solution for washing the solid phase.
  • instructions for explaining the measurement operation can be attached to the kit.
  • FIG. 1 is a schematic diagram showing the fragmentation of PIIANP and PIICP in cartilage formation.
  • FIG. 2 is a diagram showing a joint region of a hand whose Erosion score was measured.
  • FIG. 3 is a diagram showing a joint region of a hand whose JSN score was measured.
  • FIG. 4 is a view showing a joint region of a foot where an Erosi 0n score and a JSN score were measured.
  • FIG. 5 is a diagram showing the results of X-ray evaluation (total shear score) of joint destruction at baseline, weeks 28 and 52.
  • FIG. 6 is a graph showing the results of X-ray evaluation (Erosion score) of joint destruction at baseline, weeks 28 and 52.
  • FIG. 7 is a graph showing the results of X-ray evaluation (JSN score) of joint destruction at baseline, weeks 28 and 52.
  • FIG. 8 is a graph showing changes in the amount of soot in the T group and the C group.
  • Measurement of serum ⁇ concentration (ng / ml)
  • B Percent change from baseline in serum PIIANP concentration.
  • FIG. 9 shows changes in the amount of MMP-3 in T group and C group.
  • Measurement of serum ⁇ 3 concentration (ng / ml)
  • B Percent change (%) from baseline in serum MMP3 concentration.
  • FIG. 10 A graph showing the presence or absence of an increase in Erosion in T group and the change in MMP-3 change.
  • FIG. 11 A graph showing the presence or absence of an increase in Erosion in T group and the change in MMP-3 change rate.
  • FIG. 12 is a graph showing the presence or absence of an increase in Erosion and the change in MMP-3 change in group C.
  • FIG. 13 is a graph showing the presence or absence of an increase in JSN and the change in MMP-3 change rate in group T.
  • FIG. 14 A graph showing the presence or absence of an increase in JSN and the transition of the wrinkle change rate.
  • FIG. 15 is a diagram showing the JSN ODD ratio (95% CI) after 52 weeks by multivariable logistic regression analysis.
  • FIG. 16 A graph showing the Erosion ODD ratio (95% CI) after 52 weeks by multivariable logistic regression analysis.
  • Example 1 Correlation between prognosis of early rheumatoid arthritis treatment and changes in biochemical markers in MRA single administration group and subject group
  • Target patients (306) were selected according to the following criteria.
  • JSN Joint space narrowing
  • DAS28 score Pain (tenderness or movement pain) in joints to be observed (TJC), swollen joint pain (SJC) and ESR (erythrocyte sedimentation rate), using general evaluation by the patient (GH: general health status) (Arthritis & Rheumatism 38:44, 1995, Arthritis & Rheumatism 39:34, 1995).
  • Control 140 470. 205.1 17.3 425.4 130 1220 436. 504. ⁇ 0.001 MRA 8mg / kg 141 359. 132.6 11.2 343.7 150 1030 337. 381.
  • n the number of patients contributing to summary statistics.
  • LastOBS last observed value
  • Control 140 306. 202.6 17. 236. 31 800 272. 339. ⁇ 0.001 MRA 8mg / kg 144 121. 89.6 100. 14 505 106. 135.
  • Control 144 298. 198.3 16. 22 800 266. 331. ⁇ 0.001 MRA 8mg / k 157 106. 85.0 6. 12 548 92. 119.
  • n the number of patients contributing to summary statistics.
  • LastOBS last observed value
  • Control 140 8.7 136.1 11.5 13.4 -594 457 -14. 31.4 ⁇ 0.001 MRA 8mg / kg 140 1 93.0 141.2 11.9 —93.8 -814 289 -116.-69.4
  • n the number of patients contributing to summary statistics.
  • LastOBS last observed value
  • n the number of patients contributing to summary statistics.
  • LastOBS last observed value
  • Control 144 6.52 31.31 2.61 0.-63 03 220. 45 36 11.68 ⁇ 0.001 MRA 8mg / kg 156 -15.62 26.00 2.08 One 20 One 76 59 91. 75 -19.73 -11.51
  • n the number of patients contributing to summary statistics.
  • LastOBS last observed value
  • n the number of patients contributing to summary statistics.
  • LastOBS last observed value
  • the 52-week change in the JSN is the 12-week rate of change in the ⁇ -3 concentration ( ⁇ 0.01) and the 12-week rate of change in sputum concentration (p 0.01) were considered appropriate (Table 10 and Table 11).
  • “CE52” and “CJ52” represent the change from baseline in the 52nd week of Erosion score and JSN score, respectively.
  • “PMMP312” and “ ⁇ ANP12” represent the% change when the baseline is 100 for the 12th week of MMP-3 and ⁇ , respectively.
  • variable selection was performed in consideration of the correlation and multicollinearity between the 12-week change in biomarker and the change in erosion score and JSN score after 1 year, and multivariate regression analysis and multiple A random mouth regression analysis was performed.
  • CLMMP312 Fluctuation value of logarithmic variable of MMP-3 at 12th week
  • CLMMP312 Fluctuation value of logarithmic variable of MMP-3 at 12th week
  • CLPIIANP12 Variation value of logarithm variable of cocoon at 12th week
  • CLCRP12 Change of logarithmic variable of CRP at 12th week
  • the ODD ratio was determined by multivariate logistic regression analysis. Changes in JSN after 52 weeks are predicted by changes in MMP-3 (ODD ratio: 0.333), changes in sputum (0.377), negative CRP (0.288), and changes in MMP-3 (0.485) in Erosion ( Figures 15 and 16).
  • the rate of change in sputum concentration in the early stage of treatment correlates with the amount of change in the JSN score during the longer treatment period
  • the rate of change in MMP-3 concentration in the early stage of treatment is related to the erosion score of the longer treatment period. It shows that it correlates with the amount of change and the amount of change in JSN score. Because of this and these two biochemical markers showing changes independent of each other! /, According to the present invention, the measurement of soot amount can only be effective in predicting the prognosis of JSN. By combining JSN prognosis prediction by measurement and JSN and erosion prognosis prediction by measuring MMP-3, more accurate joint destruction prognosis can be predicted.
  • the present invention provides a method for predicting the prognosis of treatment for rheumatoid arthritis using the amount of PIIANP as an index in a subject who has undergone rheumatoid arthritis treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

In patients treated with MRA, PIIANP decreased at week 12 from the start of the treatment compared with before the treatment, and it was found that the progression of joint destruction was suppressed in such patients, specifically, there was a correlation between the change in PIIANP at week 12 and the change in JSN at week 52. From this, it was found that by measuring PIIANP in the treatment of RA and examining its change over time in the early phase of the treatment, the prognosis of RA patients by the treatment can be predicted.

Description

明 細 書  Specification
関節リウマチ患者の治療予後予測方法  Prediction method for treatment prognosis in patients with rheumatoid arthritis
技術分野  Technical field
[0001] 本発明は、関節リウマチ治療を行った被験者における、 PIIANP量を指標とした、関 節リウマチの治療予後を予測するための方法に関する。  [0001] The present invention relates to a method for predicting the prognosis of treatment of rheumatoid arthritis using the amount of PIIANP in a subject who has been treated for rheumatoid arthritis.
背景技術  Background art
[0002] 軟骨は、軟骨間質を有し、軟骨細胞を入れる空隙を有して!/、る。  [0002] Cartilage has a cartilage interstitium and has voids for receiving chondrocytes.
軟骨の生理学的特徴は、細胞間物質 (matrix)の特徴であり、コラーゲン、エラスチン 、酸性粘液多糖体を含んでいる。コラーゲンとエラスチンは柔軟な物質であり、軟骨 の細胞間物質の硬さは結合したプロテオダリカンによるものである。軟骨細胞は主に コラーゲン (type IIコラーゲン)を産生している。  The physiological characteristics of cartilage are those of the matrix, including collagen, elastin and acidic mucus polysaccharides. Collagen and elastin are flexible substances, and the hardness of the intercellular substances in cartilage is due to the combined proteodalycan. Chondrocytes mainly produce collagen (type II collagen).
[0003] Typellコラーゲンは、それぞれの末端に N-および C-プロペプチド(それぞれ ΡΠΝΡ、 PIICP)を含むプロコラーゲン分子として合成される。 RNAスプライシングにより産生さ れるプロコラーゲンのうち、 TypellAプロコラーゲンは ΡΙΙΝΡ中のェキソン 2によってコー ドされるシスティンリッチな球状ドメインを含む分子である。  [0003] Typell collagen is synthesized as a procollagen molecule containing N- and C-propeptides (そ れ ぞ れ and PIICP, respectively) at each end. Of the procollagens produced by RNA splicing, TypellA procollagen is a molecule that contains a cysteine-rich globular domain encoded by exon 2 in sputum.
[0004] 関節リウマチで慢性をとる関節リウマチは、関節内において滑膜組織などの結合組 織の異常な増殖がみられる全身性の慢性疾患である。関節リウマチで慢性をとる関 節リウマチ患者の関節では、滑膜細胞の著名な増殖、滑膜細胞の異常な増殖による 多層構造の形成 (pannus形成)、滑膜細胞の軟骨組織や骨組織への浸潤、滑膜細 胞への血管新生およびリンパ球やマクロファージといった炎症細胞の浸潤などが認 められる。関節リウマチで慢性をとる関節リウマチの発症の機序として、各種サイト力 インや成長因子の関与が報告されており、関節リウマチで慢性をとる関節リウマチ患 者の滑膜および滑膜中では、 IL-1 , IL_8、 TNF- a、 TGF- β 、 FGF、 PDGF等のサイト 力インまたは成長因子が検出される。特に IL-1、 TNF αは有力な滑膜増殖因子であ ると考えられており(非特許文献 1— 3)、また IL-1や TNFの刺激により滑膜細胞が IL- 6を産生することが示唆されている(非特許文献 4)。さらに、抗 IL-6抗体が関節リウマ チ治療剤として有用であることが報告されている(特許文献 1)。また、抗 IL-6受容体 抗体が関節リウマチ治療剤として有用であることも報告されている(特許文献 2)。 [0004] Rheumatoid arthritis, which is chronic in rheumatoid arthritis, is a systemic chronic disease in which abnormal proliferation of connective tissues such as synovial tissue is observed in the joints. In the joints of rheumatoid arthritis patients with chronic rheumatoid arthritis, the synovial cells are proliferated prominently, the formation of a multilayered structure due to abnormal synovial cell proliferation (pannus formation), Infiltration, angiogenesis into synovial cells, and infiltration of inflammatory cells such as lymphocytes and macrophages are observed. Involvement of various site force-in and growth factors has been reported as a mechanism of the onset of rheumatoid arthritis, which is chronic in rheumatoid arthritis.In patients with rheumatoid arthritis who have chronic rheumatoid arthritis, -1, IL_8, TNF-a, TGF-β, FGF, PDGF, and other site force-in or growth factors are detected. IL-1 and TNFα are considered to be potent synovial growth factors (Non-patent Documents 1 to 3), and synovial cells produce IL-6 by stimulation with IL-1 and TNF. (Non-Patent Document 4). Furthermore, it has been reported that anti-IL-6 antibody is useful as a therapeutic agent for rheumatoid arthritis (Patent Document 1). Anti-IL-6 receptor It has also been reported that antibodies are useful as therapeutic agents for rheumatoid arthritis (Patent Document 2).
[0005] これまでに、 Typellコラーゲン合成のマーカーとして、ベースライン(治療前)で OA ( 変形性関節症)の患者のプロコラーゲンタイプ ΠΑ N-プロペプチド(以下 ΡΠΑΝΡとい う)を測定したことが報告されて!/、る(非特許文献 5)。 [0005] To date, as a marker of Typell collagen synthesis, the procollagen type ΠΑ N-propeptide (hereinafter referred to as ΡΠΑΝΡ) in patients with OA (osteoarthritis) at baseline (before treatment) has been measured. Reported! /, Ru (Non-Patent Document 5).
さらに、膝の OA及び RA患者では、血清における ΡΠΑΝΡレベルが減少していること が報告されている(非特許文献 6、 7)。  Furthermore, it has been reported that the level of serum sputum is reduced in patients with knee OA and RA (Non-patent Documents 6 and 7).
[0006] しかしながら、ベースラインでの健常人コントロール群との比較において、患者群の 方が ΡΠΑΝΡレベルが低!/、ことが記載されて!/、るのみで、 RAの治療にお!/、て実際にそ の経時的推移を調べておらず、薬剤の治療効果をモニターする指標として ΡΠΑΝΡを 使用する場合には、その値が減少した方が治療効果が上がって!/、るとの推論は導き 出すことは出来ない。さらに、 PIIANPについては OAや RAの早期段階のマーカーとし て使用し得るかどうかには更なる研究が必要であると指摘されていた(非特許文献 8)[0006] However, in comparison with the healthy control group at the baseline, it was stated that the patient group had a lower vagina level! /! If you are not actually investigating the changes over time and use ΡΠΑΝΡ as an index to monitor the therapeutic effect of a drug, it is inferred that the lower the value, the better the therapeutic effect! Cannot be derived. Furthermore, it was pointed out that further research is needed to determine whether PIIANP can be used as an early stage marker for OA and RA (Non-patent Document 8).
Yes
[0007] なお、本出願の発明に関連する先行技術文献情報を以下に示す。  [0007] Prior art document information related to the invention of the present application is shown below.
特許文献 l :WO96/11020  Patent Literature l: WO96 / 11020
特許文献 2:特開平 8-208514  Patent Document 2: JP-A-8208514
非特許文献 1 : Thornton et al., Clin. Exp. Immunol. 86: 79-86, 1991  Non-Patent Document 1: Thornton et al., Clin. Exp. Immunol. 86: 79-86, 1991
非特許文献 2 : Lafyatis et al., J. Immunol. 143: 1142-1148, 1989  Non-Patent Document 2: Lafyatis et al., J. Immunol. 143: 1142-1148, 1989
非特許文献 3 : Gitter et al., Immunology 66: 196-200, 1989  Non-Patent Document 3: Gitter et al., Immunology 66: 196-200, 1989
非特許文献 4 : Ito et al., Arthritis Rheum. 35: 1197-1201, 1992  Non-Patent Document 4: Ito et al., Arthritis Rheum. 35: 1197-1201, 1992
非特許文献 5 : Patrick G. et al., ARTHRITIS & RHEUMATISM 46(10), 2002, pp 261 Non-Patent Document 5: Patrick G. et al., ARTHRITIS & RHEUMATISM 46 (10), 2002, pp 261
3-2624 3-2624
非特許文献 6 : Rousseau J. C. et al., OsteoArthritis and Cartilage (2004) 12, 440-44 7  Non-Patent Document 6: Rousseau J. C. et al., OsteoArthritis and Cartilage (2004) 12, 440-44 7
非特許文献 7 : Rousseau J. C. et al., ARTHRITIS & RHEUMATISM 43(9), 2000 非特許文献 8 : K.A. Elsaid, CO. Chichester, Clinica Chimica Acta 365 (2006) 68-7 7  Non-Patent Document 7: Rousseau J. C. et al., ARTHRITIS & RHEUMATISM 43 (9), 2000 Non-Patent Document 8: K.A. Elsaid, CO. Chichester, Clinica Chimica Acta 365 (2006) 68-7 7
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0008] 本発明は、このような状況に鑑みてなされたものであり、その目的は、関節リウマチ 治療を行った被験者における、 PIIANP量を指標とした関節リウマチの治療予後を予 測するための方法を提供することにある。  [0008] The present invention has been made in view of such a situation, and an object thereof is to predict the prognosis of treatment of rheumatoid arthritis using the amount of PIIANP as an index in a subject who has undergone rheumatoid arthritis treatment. It is to provide a method.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、上記の課題を解決するために、鋭意研究を行った。  [0009] In order to solve the above-mentioned problems, the present inventors have conducted intensive research.
MRA(Tocilizumab :抗 IL-6受容体抗体、 W092/19759)の関節リウマチ(以下 RAとも いう)に対する第 III相無作為割付群間比較試験の試験結果を解析したところ、軟骨 代謝マーカーはり具体的にはタイプ IIコラーゲン合成マーカー)として知られる PIIAN Pが、治療開始から 12週目において治療前と比較して減少しており、このような患者 は関節破壊の進行が抑制されていること、具体的には、 PIIANP量の 12週変化と関節 破壊の指標である Joint space narrowing (JSN)の 52週変化とが相関していることが見 山 れ /こ。  MRA (Tocilizumab: anti-IL-6 receptor antibody, W092 / 19759) analysis of phase III randomized controlled trials for rheumatoid arthritis (hereinafter also referred to as RA) analyzed cartilage metabolic markers PIIAN P, known as a type II collagen synthesis marker), decreased in the 12th week from the start of treatment compared to before treatment. Specifically, the 12-week change in PIIANP amount is correlated with the 52-week change in Joint space narrowing (JSN), which is an indicator of joint destruction.
[0010] これまで、 RA患者は健常人と比較して PIIANP量が低!/、と!/、う報告がなされて!/、るこ とから、技術水準に照らせば、治療が有効で関節破壊の進行が抑制される場合には PIIANP量は上昇するであろうと予測されるべきところ、今回の試験解析結果からは、 むしろ治療開始早期の PIIANP量の低下が認められると予後がよいという、技術水準 から考えれば全く逆の、知見が得られた。  [0010] To date, RA patients have lower PIIANP levels compared to healthy individuals! /, And have been reported! / If the progression of destruction is suppressed, it is expected that the PIIANP level will increase, but the results of this study analysis show that the prognosis is better if a decrease in the PIIANP level is observed at the beginning of treatment. From the technical level, the opposite knowledge was obtained.
[0011] このこと力、ら、 RAの治療において PIIANP量を測定し、その治療早期における経時 変化を調べることにより、当該治療による RA患者の予後を予測することが可能である ことを見出し、本発明を完成するに至った。  [0011] It was found that the prognosis of RA patients by this treatment can be predicted by measuring the amount of PIIANP in the treatment of RA and examining the changes over time in the early stage of the treatment. The invention has been completed.
さらに、 MMP-3の 12週変化は、 JSNの及び erosionの 52週変化と相関している一方 で、 2つの生化学マーカーが互いに独立した変化を示していることから、 PIIANP量の 測定による JSNの予後予測と、 MMP-3量の測定による JSN及び erosionの予後予測と を組み合わせることにより、より的確な関節破壊予後の予測も可能である。  In addition, the 12-week change in MMP-3 correlates with the 52-week change in JSN and erosion, while the two biochemical markers show changes independent of each other. By combining JSN and erosion prognosis prediction by measuring the amount of MMP-3, a more accurate prediction of joint destruction prognosis is possible.
[0012] 本発明は、より具体的には以下の〔1〕〜〔; 12〕を提供するものである。  [0012] More specifically, the present invention provides the following [1] to [; 12].
〔1〕 以下の工程 (a)〜(c)の工程を含む、関節リウマチ治療を行った被験者におけ る、関節リウマチの治療予後を予測するための方法。 (a)被験者力 試料を採取する工程 [1] A method for predicting a prognosis for treatment of rheumatoid arthritis in a subject who has undergone rheumatoid arthritis treatment, comprising the following steps (a) to (c): (a) Subject power Sample collection process
(b)採取した試料中のプロコラーゲン タイプ IIA N-プロペプチド(PIIANP)量を測定 する工程  (b) Measuring the amount of procollagen type IIA N-propeptide (PIIANP) in the collected sample
(c) PIIANP量を指標として、被験者における関節リウマチの治療予後を予測するェ 程  (c) The process of predicting the prognosis for treatment of rheumatoid arthritis in subjects using the amount of PIIANP as an index
〔2〕 〔1〕記載の工程 (c)において、治療開始前と比較して PIIANP量が減少した場合 に、当該治療による予後は良好であると予測する、〔1〕に記載の方法。  [2] The method according to [1], wherein, in the step (c) according to [1], when the amount of PIIANP decreases compared to before the start of treatment, the prognosis by the treatment is predicted to be good.
〔3〕 関節リウマチ治療の開始後早期において、該治療開始前と比較して PIIANP量 が減少した場合に、当該治療による予後は良好であると予測する、〔2〕に記載の方 法。 [3] The method according to [2], wherein when the amount of PIIANP is reduced at an early stage after the initiation of rheumatoid arthritis treatment, the prognosis by the treatment is predicted to be good.
〔4〕 関節リウマチの治療の予後が良好であるか否力、が、関節リウマチにおける関節 破壊の進行が抑制されるか否かにより判断される、〔2〕または〔3〕に記載の方法。 〔5〕 経時的に被験者から試料を採取し、 PIIANP量を測定することを特徴とする、 [ 1 〕に記載の方法。  [4] The method according to [2] or [3], wherein whether or not the prognosis of treatment for rheumatoid arthritis is good is determined by whether or not the progress of joint destruction in rheumatoid arthritis is suppressed. [5] The method according to [1], wherein a sample is collected from a subject over time and the amount of PIIANP is measured.
〔6〕 関節リウマチが早期関節リウマチである〔1〕〜〔5〕に記載の方法。  [6] The method according to [1] to [5], wherein the rheumatoid arthritis is early rheumatoid arthritis.
[7] 被験者から採取された試料が、血漿、血清、尿、または関節液である〔1〕に記 載の方法。  [7] The method according to [1], wherein the sample collected from the subject is plasma, serum, urine, or joint fluid.
〔8〕 関節リウマチ治療が、抗リウマチ剤の投与による治療である、〔1〕に記載の方法 [8] The method according to [1], wherein the rheumatoid arthritis treatment is treatment by administration of an anti-rheumatic agent.
Yes
〔9〕 関節リウマチ治療が、 IL-1阻害剤、 IL-6阻害剤、 TNF- a阻害剤、 IL-15阻害剤 [9] Rheumatoid arthritis treatment is IL-1 inhibitor, IL-6 inhibitor, TNF-a inhibitor, IL-15 inhibitor
、または IL-17阻害剤の投与による治療である、〔1〕に記載の方法。 Or the method according to [1], which is treatment by administration of an IL-17 inhibitor.
〔10〕 関節リウマチ治療が、 IL-1、 IL-6, TNF- a、 IL-15または IL-17のシグナル伝 達を阻害する抗体の投与による治療である、〔1〕に記載の方法。  [10] The method according to [1], wherein the rheumatoid arthritis treatment is treatment by administration of an antibody that inhibits IL-1, IL-6, TNF-a, IL-15 or IL-17 signal transmission.
[ 1 1 ] 関節リウマチ治療が、抗 IL-6抗体、抗 IL-6受容体抗体、抗 TNF- a抗体、抗 C [1 1] Rheumatoid arthritis treatment is anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-TNF-a antibody, anti-C
D20抗体、メソトレキセートまたは CTLA4-IgG融合タンパク質の投与による治療であるTreatment with administration of D20 antibody, methotrexate or CTLA4-IgG fusion protein
、〔1〕に記載の方法。 The method according to [1].
〔12〕 PIIANP量を測定するための試薬を含む、関節リウマチ治療における治療予後 を予測するためのキット。 [0013] 〔発明の実施の形態〕 [12] A kit for predicting the prognosis of treatment for rheumatoid arthritis, comprising a reagent for measuring the amount of PIIANP. [0013] [Embodiment of the Invention]
本発明者らは、 RAの治療において ΡΠΑΝΡ量を測定し、その治療早期における経時 変化を調べることにより、当該治療による RA患者の予後を予測することが可能である ことを見出した。本発明は、これらの知見に基づくものである。  The present inventors have found that it is possible to predict the prognosis of RA patients due to the treatment by measuring the amount of soot in the treatment of RA and examining the change over time in the early stage of the treatment. The present invention is based on these findings.
[0014] 本発明は、関節リウマチ治療を行った被験者における、関節リウマチの治療予後を 予測するための方法に関する。  The present invention relates to a method for predicting a prognosis for treatment of rheumatoid arthritis in a subject who has undergone rheumatoid arthritis treatment.
[0015] 本発明にお!/、て関節リウマチ治療としては、抗リウマチ剤の投与による治療、抗サイ トカイン療法、悪性リンパ腫に効果のある CD20に対する薬剤、抗生剤、免疫抑制薬、 高脂血症治療薬、多発性骨髄腫治療薬などの投与、または造血幹細胞移植による 治療等が挙げられる。本発明における、抗リウマチ剤には関節リウマチの治療に用い られるあらゆる薬剤が含まれる力 好ましくは、例えば、疾患修飾性抗リウマチ剤(DM ARDs)、 IL-1阻害剤(IL-1のシグナル伝達を阻害する薬剤が含まれ、例えば、かかる 作用を有する低分子化合物、 anakinraなどを含む)、 STAT-3阻害剤、 IL-6ワクチン、 I L-6融合タンパク、 IL-6阻害剤(IL-6のシグナル伝達を阻害する薬剤が含まれ、例え ば、かかる作用を有する低分子化合物、抗 IL-6受容体抗体(トシリズマブなど)抗 IL- 6抗体などを含む)、 TNF- a阻害剤(TNF- aのシグナル伝達を阻害する薬剤が含ま れ、例えば、かかる作用を有する低分子化合物、キメラ型抗 TNF- αモノクローナル 抗体であるインフリキシマブ、 TNFR2-IgGFc融合タンパクであるエタネルセブト、ヒト 抗 TNF- αモノクローナル抗体であるァダリムマブ、その他 certolizumab pegol、 Golim umabなどを含む)、 IL-15阻害剤 (IL-15のシグナル伝達を阻害する薬剤が含まれ、例 えば、かかる作用を有する低分子化合物、 AMG714などを含む)、 IL-17阻害剤(IL-1 7のシグナル伝達を阻害する薬剤が含まれ、例えば、かかる作用を有する低分子化 合物、受容体抗体、リガンド抗体なども含む)、抗 CD20抗体(リツキシマブなど)、 2- ぺニシルァミン誘導体、 Roxithromycin T細胞副刺激モジュレーター(CTLA4_Ig融 合タンパクであるアバタセブトなど)、 AP-1阻害剤、リポポリサッカライド結合タンパク( LBPs)、補体阻害剤(Eculizumabなど)、プロテイン(p38)キナーゼ阻害剤、リピッド A アナログ (E-5531など)、メラニンアナログなどが具体的には挙げられる。本発明の関 節リウマチ治療剤としては、特に好ましくは抗サイト力イン療法が挙げられ、具体的に は IL-1阻害剤、 IL-6阻害剤、 TNF- α阻害剤、 IL-15阻害剤、または IL-17阻害剤の 投与による治療が挙げられる。また、メトトレキセート、抗 CD20抗体、 CTLA4-Ig融合 タンパクの投与による治療も好まし!/、。 [0015] In the present invention, the treatment of rheumatoid arthritis includes treatment by administration of an anti-rheumatic agent, anti-cytokine therapy, a drug for CD20 effective for malignant lymphoma, an antibiotic, an immunosuppressant, hyperlipidemia Administration of therapeutic agents for cerebral dysfunction, therapeutic agents for multiple myeloma, etc., or treatment by hematopoietic stem cell transplantation. In the present invention, the anti-rheumatic drug includes all drugs used for the treatment of rheumatoid arthritis. Preferably, for example, disease-modifying anti-rheumatic drugs (DM ARDs), IL-1 inhibitors (IL-1 signaling) Such as low molecular weight compounds having such action, including anakinra), STAT-3 inhibitors, IL-6 vaccines, IL-6 fusion proteins, IL-6 inhibitors (IL- 6 drugs that inhibit signal transduction, such as low molecular weight compounds having such actions, including anti-IL-6 receptor antibodies (such as tocilizumab) and anti-IL-6 antibodies), TNF-a inhibitors (including Drugs that inhibit TNF-a signaling include, for example, low molecular weight compounds having such effects, chimeric anti-TNF-α monoclonal antibody, infliximab, TNFR2-IgGFc fusion protein, etanercebut, human anti-TNF-α Monochroma Antibodies include adalimumab, other certolizumab pegol, Golim umab, etc.), IL-15 inhibitors (including drugs that inhibit IL-15 signaling, such as low molecular weight compounds such as AMG714) IL-17 inhibitor (including drugs that inhibit IL-1 7 signal transduction, including low molecular weight compounds having such action, receptor antibodies, ligand antibodies, etc.), anti-CD20 antibodies (Such as rituximab), 2-penicillamine derivatives, Roxithromycin T cell costimulatory modulators (such as CTLA4_Ig fusion protein abatacebut), AP-1 inhibitors, lipopolysaccharide binding proteins (LBPs), complement inhibitors (such as Eculizumab) ), Protein (p38) kinase inhibitors, lipid A analogs (such as E-5531), melanin analogs and the like. As the rheumatoid arthritis therapeutic agent of the present invention, particularly preferred is anti-site force-in therapy, specifically Treatment includes administration of an IL-1 inhibitor, an IL-6 inhibitor, a TNF-α inhibitor, an IL-15 inhibitor, or an IL-17 inhibitor. Treatment with methotrexate, anti-CD20 antibody and CTLA4-Ig fusion protein is also preferred! /.
[0016] 本発明において関節リウマチには、早期関節リウマチが含まれる。現在、アメリカリ ゥマチ学会 (ACR)の分類基準が、関節リウマチの診断法として世界中で一般的に使 われている。しかし関節リウマチが発症してから 6週間未満の場合、この基準に基づく 疾患の確定診断は不可能であり、関節リウマチを早期に診断するために、発症 1年以 内の早期関節リウマチの診断を目的に作成された、 日本リウマチ学会の早期診断基 準が使用されている。 In the present invention, rheumatoid arthritis includes early rheumatoid arthritis. Currently, the American College of Rheumatology (ACR) classification criteria are commonly used worldwide as a diagnostic method for rheumatoid arthritis. However, if it is less than 6 weeks after the onset of rheumatoid arthritis, it is impossible to make a definitive diagnosis of the disease based on this criterion.In order to diagnose rheumatoid arthritis early, diagnosis of early rheumatoid arthritis within 1 year of onset The purpose of this study is to use the early diagnostic criteria of the Japan College of Rheumatology.
[0017] 本発明において、「関節リウマチの治療予後」には、好適には関節破壊予後のこと を示すが、関節破壊予後は、機能予後、生命予後、 QOL (クオリティ 'ォブ'ライフ)、 疼痛予後に深く関与していることから、本発明によれば、これら列挙する全ての治療 予後の予測に有用である。  [0017] In the present invention, "treatment prognosis for rheumatoid arthritis" preferably indicates a joint destruction prognosis, but the joint destruction prognosis includes a functional prognosis, a life prognosis, a quality of life (QOL) life, Since it is deeply involved in pain prognosis, according to the present invention, it is useful for prediction of all of these listed treatment prognoses.
[0018] 本発明において「治療予後を予測する」とは、治療により関節リウマチの予後が改 善されるか否かを予測することをいう。具体的には、治療によって関節リウマチの機能 予後、生命予後、 QOL、疼痛予後及び関節破壊予後などが良好であるか否かを予 測すること、好ましくは関節破壊予後が良好であるか否かを予測することが挙げられ また、本発明において、「治療予後を予測する」とは、「治療によりリウマチの予後が 改善されるか否力、を検査する」と言い換えることもできる。被験者がヒトである場合、疾 患の診断は、通常、医師(医師の指示を受けた者も含む。以下同じ。)によって行わ れ、本発明によって得られる関節リウマチの治療予後に関するデータは、医師による 診断に役立つものである力 本発明の方法は、医師以外の者が、医師による診断に 役立つデータを収集し、提示するものであってもよい。  In the present invention, “predicting the prognosis of treatment” refers to predicting whether or not the prognosis of rheumatoid arthritis is improved by treatment. Specifically, whether the prognosis of rheumatoid arthritis has a good prognosis, life prognosis, quality of life, pain prognosis, joint destruction prognosis, etc., preferably joint prognosis is good. Further, in the present invention, “predicting the prognosis of treatment” can be rephrased as “inspecting whether or not the prognosis of rheumatism is improved by treatment”. When the subject is a human, the diagnosis of the disease is usually performed by a doctor (including those who have received instructions from the doctor; the same shall apply hereinafter), and the data regarding the prognosis of rheumatoid arthritis obtained by the present invention is Force that is useful for diagnosis by the method The method of the present invention may be such that a person other than a doctor collects and presents data useful for diagnosis by a doctor.
[0019] さらに、本発明において、「治療予後を予測する」とは、「関節リウマチ治療開始から 、患者治療計画における所定の期間の治療予後を示す」と言い換えることもできる。 例えば、本願実施例では、治療後 12週目の生化学マーカーの測定結果から、治療 開始から約 1年後(52週目)の治療予後の予測が可能であることが示される。 [0020] 関節破壊の進行は、実施例に記載の方法で評価することができる。具体的には、 X 線平価 (シャープスコア、 Sharp scoreハ van der Heijde modified Sharp method)の推 移、軟骨代謝マーカーの推移、 X線変化量と骨 ·軟骨関連代謝マーカーの変化量の 相関、多重解析などにより関節破壊の進行が評価される。 Furthermore, in the present invention, “predicting the treatment prognosis” can be rephrased as “indicating the treatment prognosis for a predetermined period in the patient treatment plan from the start of rheumatoid arthritis treatment”. For example, in the Examples of the present application, the measurement result of the biochemical marker at 12 weeks after the treatment shows that it is possible to predict the treatment prognosis about one year after the start of the treatment (52 weeks). [0020] The progress of joint destruction can be evaluated by the method described in Examples. Specifically, X-ray parity (Sharp score), transition of cartilage metabolic markers, correlation between X-ray changes and changes in bone and cartilage-related metabolic markers, multiple The progress of joint destruction is evaluated by analysis.
[0021] 本発明では、関節破壊予後が良好であるか否かの判定基準として、実施例に記載 のシャープスコアによる評価を一つの目安としている。シャープスコアは、骨びらん 点数評価基準 (erosion score) (実施例、表 2)および関節裂隙狭小化点数評価基準 joint— space narrowing score; JSN score)、 施 ί列、 ¾3)による合計 、により算出さ れる(実施例、表 1)。シャープスコアが減少した場合には、関節リウマチにおける関 節破壊の進行が抑制され、関節リウマチの治療の予後が良好であると判断される。  In the present invention, as a criterion for determining whether or not the joint destruction prognosis is good, the evaluation based on the sharp score described in the examples is used as one standard. The sharp score is calculated by the sum of the erosion score (Example, Table 2) and the joint-space narrowing score (JSN score), ERA column, ¾3). (Examples, Table 1). If the sharp score decreases, the progression of joint destruction in rheumatoid arthritis is suppressed, and it is judged that the prognosis for treatment of rheumatoid arthritis is good.
[0022] 本発明の方法は、被験者力 試料を採取する工程を含む。被験者から採取する試 料は血漿、血清、尿、または関節液などが挙げられるがこれに限定されるものではな い。好適には血漿、血清であり、さらに好適には血清が挙げられる。  [0022] The method of the present invention includes a step of collecting a subject force sample. Samples collected from the subject include, but are not limited to, plasma, serum, urine, or joint fluid. Preferred are plasma and serum, and more preferred is serum.
又、本発明の被験者から試料を採取する工程は、被験者から採取された試料を提 供する工程ともいう。  The step of collecting a sample from the subject of the present invention is also referred to as a step of providing a sample collected from the subject.
[0023] 本発明の方法は、採取した試料中の軟骨代謝マーカーの量を測定する工程を含 む。軟骨代謝マーカーの例としては、マトリックスメタプロテアーゼ 3 (ΜΜΡ-3)および Ρ ΙΙΑΝΡが挙げられる。 ΜΜΡ-3は、滑膜細胞、軟骨細胞などの細胞から産生され、他の 細胞外基質蛋白分解酵素ファミリー (MMPs)を活性化することで細胞外コラーゲン繊 維のリモデリングおよび軟骨コラーゲン破壊に関与すると考えられる。 MMP-3は、滑 膜の炎症状態を表していると考えられる。また、 ΡΠΑΝΡは、タイプ IIコラーゲンの合成 過程で産生される、タイプ IIAプロコラーゲンの N末端部分に相当するプロペプチドで ある(図 1)。  [0023] The method of the present invention includes a step of measuring the amount of a cartilage metabolism marker in a collected sample. Examples of cartilage metabolism markers include matrix metaprotease 3 (ΜΜΡ-3) and Ρ ΙΙΑΝΡ. ΜΜΡ-3 is produced from cells such as synovial cells and chondrocytes, and is involved in remodeling of extracellular collagen fibers and destruction of cartilage collagen by activating other extracellular matrix protease family (MMPs) I think that. MMP-3 is thought to represent an inflammatory condition of the synovium. Acupuncture is a propeptide corresponding to the N-terminal part of type IIA procollagen produced during the synthesis of type II collagen (Fig. 1).
[0024] 本発明の軟骨代謝マーカーとして、最も好ましくは PIIANPが挙げられる。 PIIANP量 の測定は公知の方法により行うことができる。例えば、 PIIANP量の測定は、 ELISA法、 例えば、米国特許 5780240号公報、前述の非特許文献 2及び、 Methods in Molecular medicine, Vol.101 (Cartilage and Osteoarthritis, vol. 2: Structure and In vivo Anal ysis), pp.25-38, 2004, edited by F. De Ceuninck et alなどに記載の方法、またはこ れに準じた方法により測定することができる。 [0024] The most preferred marker for cartilage metabolism of the present invention is PIIANP. The amount of PIIANP can be measured by a known method. For example, the amount of PIIANP can be measured by ELISA, for example, U.S. Pat.No. 5,780,240, the aforementioned non-patent document 2, and Methods in Molecular medicine, Vol. 101 (Cartilage and Osteoarthritis, vol. 2: Structure and In vivo Analysis ), pp.25-38, 2004, edited by F. De Ceuninck et al. It can be measured by a method according to this.
[0025] 本発明の方法は、軟骨代謝マーカーを指標として、被験者における関節リウマチの 治療予後を予測する工程を含む。本発明において、治療開始前と比較して軟骨代 謝マーカー量が変化した場合に、当該治療による予後は良好であると予測すること 力できる。軟骨代謝マーカーが PIIANPである場合には、治療開始前と比較して ΡΠΑ NP量が減少した場合に、当該治療による予後は良好であると予測することができる。 具体的には、例えば、血清中における PIIANP濃度の変化率(ベースラインを 100とし た場合の%変化)が、 1〜90%、好ましくは 5〜80%、より好ましくは 10〜50%減少する場 合において、治療予後が良好であると予測できる。  [0025] The method of the present invention includes a step of predicting a treatment prognosis of rheumatoid arthritis in a subject using a cartilage metabolism marker as an index. In the present invention, when the amount of cartilage substitution marker changes compared to before the start of treatment, it can be predicted that the prognosis by the treatment is good. When the cartilage metabolism marker is PIIANP, it can be predicted that the prognosis by the treatment is good when the amount of NP is decreased compared with that before the start of treatment. Specifically, for example, the rate of change of PIIANP concentration in serum (% change when baseline is 100) decreases by 1 to 90%, preferably 5 to 80%, more preferably 10 to 50% In this case, the prognosis can be predicted to be good.
[0026] また、本発明においては、該治療開始前と比較した軟骨代謝マーカー量の変化は 、関節リウマチ治療の開始後早期において起こることが好ましい。開始後早期とは、 治療開始後 52週以内をいい、好ましくは 48、 36、 24、 12週以内、より好ましくは 12、 6、 1週以内をいう。  [0026] In the present invention, it is preferable that the change in the amount of cartilage metabolism marker compared to before the start of treatment occurs early after the start of rheumatoid arthritis treatment. Early after initiation refers to within 52 weeks after the start of treatment, preferably within 48, 36, 24, 12 weeks, more preferably within 12, 6, 1 week.
[0027] 本発明の軟骨代謝マーカー量は、経時的に被験者から試料を採取し測定されるこ とが好ましい。経時的に測定とは、時間的順序にしたがって測定されることをいい、例 えば、治療開始から 1、 2日目、または 1、 6、 12、 24、 36、 48、 52週目などに被験者から 試料を採取し軟骨代謝マーカー量を測定する。  [0027] The amount of cartilage metabolism marker of the present invention is preferably measured by collecting a sample from a subject over time. Measurement over time refers to measurement according to a chronological order, for example, subjects on the first or second day of treatment, or on weeks 1, 6, 12, 24, 36, 48, 52, etc. A sample is taken from and the amount of cartilage metabolism marker is measured.
[0028] また、本発明によれば、 PIIANP量の測定による JSNの予後予測と、 MMP-3量の測定 による JSN及び erosionの予後予測とを組み合わせることにより、より的確な関節破壊 予後の予測が可能である。さらに、これらの測定に CRPなどの他のマーカーの測定を 組み合わせてもよい。  [0028] In addition, according to the present invention, a more accurate prediction of joint fracture prognosis can be achieved by combining JSN prognosis prediction by measuring PIIANP amount and prognosis prediction of JSN and erosion by measuring MMP-3 amount. Is possible. In addition, measurements of other markers such as CRP may be combined with these measurements.
[0029] 本発明の関節リウマチ治療として、好ましくは、 IL-1阻害剤、 IL-6阻害剤、 TNF- a 阻害剤、または IL-15阻害剤の投与による治療が挙げられる。  [0029] The rheumatoid arthritis treatment of the present invention preferably includes treatment by administration of an IL-1 inhibitor, an IL-6 inhibitor, a TNF-a inhibitor, or an IL-15 inhibitor.
[0030] 本発明の関節リウマチ治療に使用される IL-1阻害剤、 IL-6阻害剤、 TNF- a阻害剤 、 IL-15阻害剤、または IL-17阻害剤としては、それぞれ IL-1、 IL-6, TNF- a , IL-15 または IL-17のシグナル伝達を阻害する抗体が好ましい。 IL-1、 IL-6, TNF- a , IL-1 5、または IL-17のシグナル伝達を阻害する抗体としては、例えば、抗ヒ HL-1抗体、抗 ヒ HL-1受容体抗体、抗ヒ HL-6抗体、抗ヒ HL-6受容体抗体、抗ヒト TNF- α抗体、抗 ヒト TNF- α受容体抗体、抗ヒ HL-15抗体、抗ヒ HL-15受容体抗体、抗ヒ HL-17抗体 または抗ヒ HL-17受容体抗体が挙げられる。 [0030] The IL-1 inhibitor, IL-6 inhibitor, TNF-a inhibitor, IL-15 inhibitor, or IL-17 inhibitor used for the treatment of rheumatoid arthritis of the present invention is IL-1, respectively. Antibodies that inhibit IL-6, TNF-a, IL-15 or IL-17 signaling are preferred. Examples of antibodies that inhibit IL-1, IL-6, TNF-a, IL-15, or IL-17 signaling include anti-HI-1 antibody, anti-HI-1 receptor antibody, anti-HI-1 antibody, HI HL-6 antibody, anti-HI HL-6 receptor antibody, anti-human TNF-α antibody, anti Examples include human TNF-α receptor antibody, anti-human HL-15 antibody, anti-human HL-15 receptor antibody, anti-human HL-17 antibody or anti-human HL-17 receptor antibody.
[0031] 本発明において IL-1、 IL-6、 TNF- a , IL_15、または IL-17のシグナル伝達を阻害 する抗体は、公知の手段を用いてポリクローナル又はモノクローナル抗体として得る こと力 Sできる。本発明で使用される抗体として、特に哺乳動物由来のモノクローナル 抗体が好ましい。哺乳動物由来のモノクローナル抗体としては、ハイプリドーマに産 生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形 質転換した宿主に産生されるものがある。この抗体はヒ HL-1、 IL-6、 TNF- a , IL-15 、 IL-17またはこれらの受容体等に特異的に結合し、これらのサイト力インの機能を抑 制する。 [0031] In the present invention, an antibody that inhibits IL-1, IL-6, TNF-a, IL_15, or IL-17 signaling can be obtained as a polyclonal or monoclonal antibody using known means. As the antibody used in the present invention, a monoclonal antibody derived from a mammal is particularly preferable. Mammal-derived monoclonal antibodies include those produced in hyperpridoma and those produced in a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody specifically binds to HI-1, IL-6, TNF-a, IL-15, IL-17 or their receptors, and suppresses the function of these site forces.
[0032] IL-1、 IL-6、 TNF- a、 IL-15,または IL-17のシグナル伝達を阻害する抗体は、該タ ンパク質と結合する限り特に制限はなぐマウス抗体、ラット抗体、ゥサギ抗体、ヒッジ 抗体、ヒト抗体等を適宜用いることができる。又、ヒトに対する異種抗原性を低下させ ること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chime ric)抗体、ヒト化(Humanized)抗体なども使用できる。これらの改変抗体は、既知の方 法を用いて製造することができる。  [0032] Antibodies that inhibit IL-1, IL-6, TNF-a, IL-15, or IL-17 signaling are not particularly limited as long as they bind to the protein, mouse antibodies, rat antibodies, Usagi antibody, Hedge antibody, human antibody and the like can be used as appropriate. In addition, recombinant antibodies artificially modified for the purpose of reducing the heterologous antigenicity to humans, such as chimeric antibodies, humanized antibodies, and the like can also be used. These modified antibodies can be produced using known methods.
[0033] キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変領域と ヒト抗体の重鎖、軽鎖の定常領域からなる抗体等であり、マウス抗体の可変領域をコ ードする DNAをヒト抗体の定常領域をコードする DNAと連結し、これを発現ベクターに 組み込んで宿主に導入し産生させることにより得ることができる。  [0033] The chimeric antibody is a mammal other than a human, for example, an antibody comprising a heavy chain and a light chain variable region of a mouse antibody and a heavy chain and a light chain constant region of a human antibody. The DNA can be obtained by ligating DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it.
[0034] ヒト化抗体は、再構成 (reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえば マウス仇体の相ネ闬性決疋領域、 CDR; complementarity determining region)をヒト抗 体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知ら れている。具体的には、マウス抗体の CDRとヒト抗体のフレームワーク領域(framewor k region ; FR)を連結するように設計した DNA配列を、末端部にオーバーラップする部 分を有するように作製した数個のオリゴヌクレオチドから PCR法により合成する。得ら れた DNAをヒト抗体定常領域をコードする DNAと連結し、次いで発現ベクターに組み 込んで、これを宿主に導入し産生させることにより得られる。 CDRを介して連結される ヒト抗体の FRは、相補性決定領域が良好な抗原結合部位を形成するものが選択され る。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成す るように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよい。 [0034] A humanized antibody is also called a reshaped human antibody, and a complementarity determining region (CDR) of a mammal other than a human, eg, a mouse rod, is complemented with a human antibody. It is transplanted to the sex-determining region, and its general gene recombination technique is also known. Specifically, several DNA sequences designed to link mouse antibody CDRs and human antibody framework regions (FR) with overlapping portions at the ends are prepared. The oligonucleotide is synthesized from the oligonucleotide by PCR. The obtained DNA is obtained by ligating with DNA encoding a human antibody constant region, and then incorporating it into an expression vector, which is introduced into a host and produced. Linked via CDR The human antibody FR is selected such that the complementarity determining region forms a favorable antigen-binding site. If necessary, amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site.
[0035] また、ヒト抗体の取得方法も知られて!/、る。例えば、ヒトリンパ球を in vitroで所望の 抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミエローマ細胞 、例えば U266と融合させ、抗原への結合活性を有する所望のヒト抗体を得ることもで きる(特公平 1-59878参照)。また、ヒト抗体遺伝子の全てのレパートリーを有するトラ ンスジヱニック動物を所望の抗原で免疫することで所望のヒト抗体を取得することがで きる。さらに、ヒト抗体ライブラリーを用いて、パンユングによりヒト抗体を取得する技術 も知られている。例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージディ スプレイ法によりファージの表面に発現させ、抗原に結合するファージを選択すること ができる。選択されたファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可 変領域をコードする DNA配列を決定することができる。抗原に結合する scFvの DNA 配列が明らかになれば、当該配列を有する適当な発現ベクターを作製し、ヒト抗体を 取得すること力 Sでさる。 [0035] Methods for obtaining human antibodies are also known! For example, human lymphocytes are sensitized with a desired antigen or cells expressing the desired antigen in vitro, and the sensitized lymphocytes are fused with human myeloma cells such as U266, and the desired human antibody having activity to bind to the antigen. (See Japanese Patent Publication No. 1-59878). Moreover, a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen. Furthermore, a technique for obtaining a human antibody by panning using a human antibody library is also known. For example, the variable region of a human antibody can be expressed as a single-chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected. By analyzing the gene of the selected phage, the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined. If the DNA sequence of scFv that binds to the antigen is clarified, an appropriate expression vector having the sequence can be prepared and a human antibody can be obtained.
[0036] 本発明に使用する抗体は、ポリエチレングリコール (PEG)、放射性物質、トキシン等 の各種分子と結合したコンジュゲート抗体でもよ!/、。このようなコンジュゲート抗体は、 得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修 飾方法はこの分野においてすでに確立されている。本発明における「抗体」にはこれ らのコンジュゲート抗体も包含される。  [0036] The antibody used in the present invention may be a conjugated antibody bound to various molecules such as polyethylene glycol (PEG), radioactive substance, and toxin! /. Such a conjugated antibody can be obtained by chemically modifying the obtained antibody. Antibody modification methods have already been established in this field. The “antibody” in the present invention includes these conjugated antibodies.
[0037] 本発明における抗体としては、低分子化抗体も挙げることができる。低分子化抗体 とは、全長抗体 (whole antibody,例えば whole IgG等)の一部分が欠損している抗体 断片を含み、抗原への結合能を有していれば特に限定されない。本発明の抗体断 片は、全長抗体の一部分であれば特に限定されないが、重鎖可変領域 (VH)又は軽 鎖可変領域 (VL)を含んでいることが好ましぐ特に好ましいのは VHと VLの両方を含 む断片である。抗体断片の具体例としては、例えば、 Fab、 Fab'、 F(ab')2、 Fv、 scFv ( シングルチェイン Fv)、などを挙げることができる。このような抗体断片を得るには、抗 体を酵素、例えば、パパイン、ペプシンなどで処理し抗体断片を生成させるか、又は 、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、 適当な宿主細胞で発現させればよい。 [0037] Examples of antibodies in the present invention include low molecular weight antibodies. The low molecular weight antibody is not particularly limited as long as it includes an antibody fragment lacking a part of a full length antibody (whole antibody such as whole IgG) and has an ability to bind to an antigen. The antibody fragment of the present invention is not particularly limited as long as it is a part of a full-length antibody, but it is particularly preferable that VH includes a heavy chain variable region (VH) or a light chain variable region (VL). It is a fragment containing both VL. Specific examples of the antibody fragment include Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), and the like. To obtain such an antibody fragment, the antibody is treated with an enzyme such as papain or pepsin to produce an antibody fragment, or A gene encoding these antibody fragments may be constructed, introduced into an expression vector, and then expressed in an appropriate host cell.
[0038] 本発明の関節リウマチ治療として最も好ましくは、 IL-6阻害剤の投与による治療が 挙げられる。 [0038] The most preferred treatment for rheumatoid arthritis according to the present invention includes treatment by administration of an IL-6 inhibitor.
本発明の IL-6阻害剤としては、例えば抗 IL-6抗体、抗 IL-6受容体抗体、抗 gpl30抗 体、 IL-6改変体、可溶性 IL-6受容体改変体あるいは IL-6又は IL-6受容体の部分ぺ プチドおよび、これらと同様の活性を示す低分子物質が挙げられるが、特に限定され るものではない。本発明の IL-6阻害剤としては、好ましくは IL-6受容体を認識する抗 体を挙げることが出来る。  Examples of the IL-6 inhibitor of the present invention include anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-gpl30 antibody, IL-6 variant, soluble IL-6 receptor variant or IL-6 or Examples include IL-6 receptor partial peptides and low molecular weight substances exhibiting similar activities, but are not particularly limited. The IL-6 inhibitor of the present invention is preferably an antibody that recognizes IL-6 receptor.
[0039] 本発明における抗体の由来は特に限定されるものではないが、好ましくは哺乳動 物由来であり、より好ましくはヒト由来の抗体を挙げることが出来る。  [0039] The origin of the antibody in the present invention is not particularly limited, but is preferably derived from a mammal, more preferably a human-derived antibody.
[0040] 本発明で使用される抗 IL-6抗体は、公知の手段を用いてポリクローナル又はモノク ローナル抗体として得ること力 Sできる。本発明で使用される抗 IL-6抗体として、特に哺 乳動物由来のモノクローナル抗体が好ましレ、。哺乳動物由来のモノクローナル抗体 としては、ハイプリドーマに産生されるもの、および遺伝子工学的手法により抗体遺 伝子を含む発現ベクターで形質転換した宿主に産生されるものがある。この抗体は I L-6と結合することにより、 IL-6の IL-6受容体への結合を阻害して IL-6の生物学的活 性の細胞内への伝達を遮断する。  [0040] The anti-IL-6 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means. As the anti-IL-6 antibody used in the present invention, a monoclonal antibody derived from a mammal is particularly preferable. Mammal-derived monoclonal antibodies include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody binds to IL-6, thereby inhibiting the binding of IL-6 to the IL-6 receptor and blocking the intracellular transmission of IL-6 biological activity.
このような抗体としては、 MH166(Matsuda, T. et al., Eur. J. Immunol. (1988) 18, 95 1-956)や SK2抗体(Sato, . et al., 第 21回 日本免疫学会総会、学術記録 (1991)21 , 166)等が挙げられる。  Examples of such antibodies include MH166 (Matsuda, T. et al., Eur. J. Immunol. (1988) 18, 95 1-956) and SK2 antibody (Sato,. Et al., 21st Japanese Society for Immunology). General meeting, academic record (1991) 21, 166).
[0041] 抗 IL-6抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにし て作製できる。すなわち、 IL-6を感作抗原として使用して、これを通常の免疫方法に したがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と 融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリー ユングすることによって作製できる。  [0041] An anti-IL-6 antibody-producing hybridoma can be basically produced using a known technique as follows. That is, using IL-6 as a sensitizing antigen and immunizing it according to the usual immunization method, the obtained immune cells are fused with known parental cells by the usual cell fusion method, and by the usual screening method, It can be produced by screening monoclonal antibody-producing cells.
[0042] 具体的には、抗 IL-6抗体を作製するには次のようにすればよい。例えば、抗体取得 の感作抗原として使用されるヒ HL-6は、 Eur. J. Biochem (1987) 168, 543-550、 J. Im munol.(1988)140, 1534-1541、あるいは Agr. Biol. Chem.(1990)54, 2685-2688に開 示された IL-6遺伝子/アミノ酸配列を用いることによって得られる。 [0042] Specifically, the anti-IL-6 antibody can be prepared as follows. For example, HI-6 used as a sensitizing antigen for antibody acquisition is Eur. J. Biochem (1987) 168, 543-550, J. Im munol. (1988) 140, 1534-1541, or by using the IL-6 gene / amino acid sequence disclosed in Agr. Biol. Chem. (1990) 54, 2685-2688.
[0043] IL-6の遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転 換させた後、その宿主細胞中又は、培養上清中から目的の IL-6蛋白質を公知の方 法で精製し、この精製 IL-6蛋白質を感作抗原として用いればよい。また、 IL-6蛋白質 と他の蛋白質との融合蛋白質を感作抗原として用いてもょレ、。  [0043] After the IL-6 gene sequence is inserted into a known expression vector system to transform an appropriate host cell, the target IL-6 protein is known from the host cell or culture supernatant. The purified IL-6 protein can be used as a sensitizing antigen. Also, a fusion protein of IL-6 protein and other proteins can be used as a sensitizing antigen.
[0044] 本発明で使用される抗 IL-6受容体抗体は、公知の手段を用いてポリクローナル又 はモノクローナル抗体として得ることができる。本発明で使用される抗 IL-6受容体抗 体として、特に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノ クローナル抗体としては、ハイプリドーマに産生されるもの、および遺伝子工学的手 法により抗体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものがあ る。この抗体は IL-6受容体と結合することにより、 IL-6の IL-6受容体への結合を阻害 して IL-6の生物学的活性の細胞内への伝達を遮断する。  [0044] The anti-IL-6 receptor antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means. As the anti-IL-6 receptor antibody used in the present invention, a monoclonal antibody derived from a mammal is particularly preferable. Monoclonal antibodies derived from mammals include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody binds to the IL-6 receptor, thereby blocking the binding of IL-6 to the IL-6 receptor and blocking the transmission of IL-6 biological activity into the cell.
[0045] このような抗体としては、 MR16-1抗体(Tamura, T. et al. Proc. Natl. Acad. Sci. US A (1993) 90, 11924-11928)、 PM-l抗体 (Hirata, Y. et al., J. Immunol. (1989) 143, 2 900-2906)、 AUK12-20抗体、 AUK64-7抗体あるいは AUK146-15抗体(国際特許出 願公開番号 WO 92-19759)などが挙げられる。これらのうちで、ヒ HL-6受容体に対す る好まし!/、モノクローナル抗体としては PM-1抗体が例示され、またマウス IL-6受容体 に対する好ましいモノクローナル抗体としては MR16-1抗体が挙げられる。  [0045] Examples of such antibodies include MR16-1 antibody (Tamura, T. et al. Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928), PM-l antibody (Hirata, Y et al., J. Immunol. (1989) 143, 2 900-2906), AUK12-20 antibody, AUK64-7 antibody or AUK146-15 antibody (International Patent Application Publication No. WO 92-19759) . Of these, PM-1 antibody is exemplified as a preferred monoclonal antibody against HL-6 receptor, and MR16-1 antibody is exemplified as a preferred monoclonal antibody against mouse IL-6 receptor. It is done.
[0046] 抗 IL-6受容体モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を 使用し、以下のようにして作製できる。すなわち、 IL-6受容体を感作抗原として使用し て、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融 合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナ ルな抗体産生細胞をスクリーニングすることによって作製できる。  [0046] An anti-IL-6 receptor monoclonal antibody-producing hybridoma can be basically produced using a known technique as follows. That is, IL-6 receptor is used as a sensitizing antigen and immunized according to a normal immunization method, and the resulting immune cells are fused with a known parent cell by a normal cell fusion method. Thus, a monoclonal antibody-producing cell can be screened.
[0047] 具体的には、抗 IL-6受容体抗体を作製するには次のようにすればよい。例えば、抗 体取得の感作抗原として使用されるヒ HL-6受容体は、欧州特許出願公開番号 EP 3 25474に、マウス IL-6受容体は日本特許出願公開番号特開平 3-155795に開示され た IL-6受容体遺伝子/アミノ酸配列を用いることによって得られる。 [0048] IL-6受容体蛋白質は、細胞膜上に発現しているものと細胞膜より離脱しているもの (可溶性 IL-6受容体) (Yasukawa, . et al., J. Biochem. (1990) 108, 673-676)との二 種類がある。可溶性 IL-6受容体抗体は細胞膜に結合して!/、る IL-6受容体の実質的 に細胞外領域から構成されており、細胞膜貫通領域あるいは細胞膜貫通領域と細胞 内領域が欠損している点で膜結合型 IL-6受容体と異なっている。 IL-6受容体蛋白質 は、本発明で用いられる抗 IL-6受容体抗体の作製の感作抗原として使用されうる限 り、いずれの IL-6受容体を使用してもよい。 [0047] Specifically, the anti-IL-6 receptor antibody can be prepared as follows. For example, the human HL-6 receptor used as a sensitizing antigen for obtaining an antibody is disclosed in European Patent Application Publication No. EP 3 25474, and the mouse IL-6 receptor is disclosed in Japanese Patent Application Publication No. JP-A 3-155795. Obtained by using the prepared IL-6 receptor gene / amino acid sequence. [0048] IL-6 receptor protein is expressed on the cell membrane and separated from the cell membrane (soluble IL-6 receptor) (Yasukawa,. Et al., J. Biochem. (1990) 108, 673-676). Soluble IL-6 receptor antibody binds to the cell membrane! /, And is composed of substantially the extracellular region of IL-6 receptor, and lacks the transmembrane region or the transmembrane region and the intracellular region. Is different from membrane-bound IL-6 receptor. As the IL-6 receptor protein, any IL-6 receptor may be used as long as it can be used as a sensitizing antigen for producing the anti-IL-6 receptor antibody used in the present invention.
[0049] IL-6受容体の遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を 形質転換させた後、その宿主細胞中又は、培養上清中から目的の IL-6受容体蛋白 質を公知の方法で精製し、この精製 IL-6受容体蛋白質を感作抗原として用いればよ い。また、 IL-6受容体を発現している細胞や IL-6受容体蛋白質と他の蛋白質との融 合蛋白質を感作抗原として用いてもょレ、。  [0049] After the gene sequence of IL-6 receptor is inserted into a known expression vector system to transform an appropriate host cell, the target IL-6 receptor is obtained from the host cell or the culture supernatant. The protein may be purified by a known method, and this purified IL-6 receptor protein may be used as a sensitizing antigen. In addition, cells expressing IL-6 receptor or fusion proteins of IL-6 receptor protein and other proteins may be used as sensitizing antigens.
[0050] 本発明で使用される抗 gpl30抗体は、公知の手段を用いてポリクローナル又はモノ クローナル抗体として得ることができる。本発明で使用される抗 gpl30抗体として、特 に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル 抗体としては、ハイプリドーマに産生されるもの、および遺伝子工学的手法により抗 体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものがある。この抗 体は gpl30と結合することにより、 IL-6/IL-6受容体複合体の gpl30への結合を阻害 して IL-6の生物学的活性の細胞内への伝達を遮断する。  [0050] The anti-gpl30 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means. The anti-gpl30 antibody used in the present invention is particularly preferably a mammal-derived monoclonal antibody. Mammal-derived monoclonal antibodies include those produced by hyperpridoma and those produced by a host transformed with an expression vector containing an antibody gene by genetic engineering techniques. This antibody binds to gpl30, thereby inhibiting the binding of IL-6 / IL-6 receptor complex to gpl30 and blocking the transmission of IL-6 biological activity into the cell.
このような抗体としては、八\ 64抗体(特開平3_219894)、4811抗体ぉょび2^¾抗体( US 5571513) B-S12抗体および B-P8抗体(特開平 8-291199)などが挙げられる。  Examples of such antibodies include the 8 \ 64 antibody (Japanese Patent Laid-Open No. 3_219894), the 4811 antibody and the 2 ^ ¾ antibody (US 5571513), the B-S12 antibody and the B-P8 antibody (Japanese Patent Laid-Open No. 8-291199). .
[0051] 抗 gpl30モノクローナル抗体産生ハイブリドーマは、基本的には公知技術を使用し 、以下のようにして作製できる。すなわち、 gpl30を感作抗原として使用して、これを通 常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって 公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナル抗体産生 細胞をスクリーニングすることによって作製できる。  [0051] An anti-gpl30 monoclonal antibody-producing hybridoma can be basically produced using a known technique as follows. That is, gpl30 is used as a sensitizing antigen and immunized according to the usual immunization method. The obtained immune cells are fused with known parental cells by the usual cell fusion method, and then monoclonal by the usual screening method. It can be produced by screening antibody-producing cells.
[0052] 具体的には、モノクローナル抗体を作製するには次のようにすればよい。例えば、 抗体取得の感作抗原として使用される gpl30は、欧州特許出願公開番号 EP 411946 に開示された gpl30遺伝子/アミノ酸配列を用いることによって得られる。 [0052] Specifically, a monoclonal antibody can be prepared as follows. For example, gpl30 used as a sensitizing antigen for antibody acquisition is disclosed in European Patent Application Publication No. EP 411946. Can be obtained by using the gpl30 gene / amino acid sequence disclosed in (1).
[0053] gpl30の遺伝子配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転 換させた後、その宿主細胞中又は、培養上清中から目的の gpl30蛋白質を公知の方 法で精製し、この精製 gpl30受容体蛋白質を感作抗原として用いればよい。また、 gp 130を発現して!/、る細胞や gpl30蛋白質と他の蛋白質との融合蛋白質を感作抗原とし て用いてもよい。 [0053] After the gene sequence of gpl30 is inserted into a known expression vector system to transform an appropriate host cell, the target gpl30 protein is obtained from the host cell or culture supernatant by a known method. The purified gpl30 receptor protein may be purified and used as a sensitizing antigen. Alternatively, gp130-expressing cells or a fusion protein of gpl30 protein and other proteins may be used as a sensitizing antigen.
[0054] 感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融 合に使用する親細胞との適合性を考慮して選択するのが好ましぐ一般的にはげつ 歯類の動物、例えば、マウス、ラット、ハムスター等が使用される。  [0054] The mammal to be immunized with the sensitizing antigen is not particularly limited, but it is generally preferable to select in consideration of the compatibility with the parent cell used for cell fusion. Rodent animals such as mice, rats, hamsters and the like are used.
[0055] 感作抗原を動物に免疫するには、公知の方法にしたがって行われる。例えば、一 般的方法として、感作抗原を哺乳動物の腹腔内又は、皮下に注射することにより行 われる。具体的には、感作抗原を PBS (Phosphate-Buffered Saline )や生理食塩水等 で適当量に希釈、懸濁したものを所望により通常のアジュバント、例えば、フロイント 完全アジュバントを適量混合し、乳化後、哺乳動物に 4-21日毎に数回投与するのが 好ましい。また、感作抗原免疫時に適当な担体を使用することができる。  [0055] Immunization of an animal with a sensitizing antigen is performed according to a known method. For example, as a general method, a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal. Specifically, the sensitized antigen is diluted to an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, etc., and suspended, and then mixed with an appropriate amount of a normal adjuvant, for example, Freund's complete adjuvant, if necessary. Preferably, it is administered to mammals several times every 4-21 days. In addition, an appropriate carrier can be used during immunization with the sensitizing antigen.
[0056] このように免疫し、血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳 動物から免疫細胞が取り出され、細胞融合に付される。細胞融合に付される好ましい 免疫細胞としては、特に脾細胞が挙げられる。  [0056] After immunizing in this manner and confirming that the desired antibody level rises in the serum, immune cells are removed from the mammal and subjected to cell fusion. Preferred immune cells that are subjected to cell fusion include spleen cells.
[0057] 前記免疫細胞と融合される他方の親細胞としての哺乳動物のミエローマ細胞は、 すでに、公知の種々の細胞株、例えば、 P3X63Ag8.653 (Kearney, J. F. et al. J. Imm nol. (1979) 123, 1548- 1550)、 P3X63Ag8U.1 (Current Topics in Microbiology and I mmunology (1978) 81, 1-7)、 NS- l (Kohler. G. and Milstein, C. Eur. J. Immunol.(19 76) 6, 511-519 )、 MPC-11 (Margulies. D. H. et al., Cell (1976) 8, 405-415 )、 SP2/ 0 (Shulman, M. et al., Nature (1978) 276, 269-270 )、 FO (de St. Groth, S. F. et al ·, J. Immunol. Methods (1980) 35, 1-21 )、 S 194 (Trowbridge, I. S. J. Exp. Med. (197 8) 148, 313-323)、 R210 (Galfre, G. et al., Nature (1979) 277, 131-133 )等が適宜 使用される。  [0057] Mammalian myeloma cells as other parental cells to be fused with the immune cells have already been known in various cell lines such as P3X63Ag8.653 (Kearney, JF et al. J. Imm nol. 1979) 123, 1548-1550), P3X63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-l (Kohler. G. and Milstein, C. Eur. J. Immunol. 19 76) 6, 511-519), MPC-11 (Margulies. DH et al., Cell (1976) 8, 405-415), SP2 / 0 (Shulman, M. et al., Nature (1978) 276, 269-270), FO (de St. Groth, SF et al ·, J. Immunol. Methods (1980) 35, 1-21), S 194 (Trowbridge, ISJ Exp. Med. (197 8) 148, 313- 323), R210 (Galfre, G. et al., Nature (1979) 277, 131-133) are used as appropriate.
[0058] 前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、たとえば、ミ ルシユタインらの方法(Kohler. G. and Milstein, C.、 Methods Enzymol. (1981) 73, 3 -46)等に準じて行うことができる。 [0058] The cell fusion between the immune cell and the myeloma cell is basically performed by a known method, for example, The method can be carried out according to the method of Lucyutain et al. (Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46).
[0059] より具体的には、前記細胞融合は例えば、細胞融合促進剤の存在下に通常の栄 養培養液中で実施される。融合促進剤としては例えば、ポリエチレングリコール (PEG )、センダイウィルス(HVJ)等が使用され、更に所望により融合効率を高めるためにジ メチルスルホキシド等の補助剤を添加使用することもできる。 [0059] More specifically, the cell fusion is performed, for example, in a normal culture medium in the presence of a cell fusion promoter. For example, polyethylene glycol (PEG), Sendai virus (HVJ), or the like is used as the fusion promoter, and an auxiliary agent such as dimethyl sulfoxide can be added and used to enhance the fusion efficiency as desired.
[0060] 免疫細胞とミエローマ細胞との使用割合は、例えば、ミエローマ細胞に対して免疫 細胞を 1〜10倍とするのが好ましい。前記細胞融合に用いる培養液としては、例えば 、前記ミエローマ細胞株の増殖に好適な RPMI1640培養液、 MEM培養液、その他、こ の種の細胞培養に用いられる通常の培養液が使用可能であり、さらに、牛胎児血清 (FCS)等の血清補液を併用することもできる。  [0060] The usage ratio of immune cells and myeloma cells is preferably, for example, 1 to 10 times as many immune cells as the myeloma cells. As the culture medium used for the cell fusion, for example, RPMI1640 culture medium suitable for the growth of the myeloma cell line, MEM culture medium, and other normal culture liquids used for this type of cell culture can be used. In addition, serum supplements such as fetal calf serum (FCS) can be used in combination.
[0061] 細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混 合し、予め、 37°C程度に加温した PEG溶液、例えば、平均分子量 1000〜6000程度の PEG溶液を通常、 30〜60% (w/v)の濃度で添加し、混合することによって目的とする 融合細胞 (ノ、イブリドーマ)が形成される。続いて、適当な培養液を逐次添加し、遠心 して上清を除去する操作を繰り返すことによりハイプリドーマの生育に好ましくない細 胞融合剤等を除去できる。  [0061] For cell fusion, a predetermined amount of the immune cells and myeloma cells are mixed well in the culture solution and pre-warmed to about 37 ° C, for example, an average molecular weight of about 1000 to 6000. PEG solution is usually added at a concentration of 30-60% (w / v) and mixed to form the desired fused cell (nobridoma). Subsequently, cell fusion agents and the like unfavorable for the growth of hypridoma can be removed by repeating the operation of adding an appropriate culture solution successively, centrifuging and removing the supernatant.
[0062] 当該ハイプリドーマは、通常の選択培養液、例えば、 HAT培養液(ヒポキサンチン、 アミノプテリンおよびチミジンを含む培養液)で培養することにより選択される。当該 H AT培養液での培養は、 目的とするハイプリドーマ以外の細胞(非融合細胞)が死滅 するのに十分な時間、通常数日〜数週間継続する。ついで、通常の限界希釈法を 実施し、 目的とする抗体を産生するハイブリドーマのスクリーニングおよびクローニン グが fiわれる。  [0062] The Hypridoma is selected by culturing in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Culturing with the HAT medium is continued for a period of time, usually several days to several weeks, sufficient for the cells (non-fusion cells) other than the desired hyperpridoma to die. The usual limiting dilution method is then used to screen and clone hybridomas producing the desired antibody.
[0063] また、ヒト以外の動物に抗原を免疫して上記ハイプリドーマを得る他に、ヒトリンパ球 を in vitroで所望の抗原蛋白質又は抗原発現細胞で感作し、感作 Bリンパ球をヒトミエ ローマ細胞、例えば U266と融合させ、所望の抗原又は抗原発現細胞への結合活性 を有する所望のヒト抗体を得ることもできる(特公平 1-59878参照)。さらに、ヒト抗体遺 伝子のレパートリーを有するトランスジエニック動物に抗原又は抗原発現細胞を投与 し、前述の方法に従い所望のヒト抗体を取得してもよい(国際特許出願公開番号 wo[0063] In addition to immunizing animals other than humans to obtain the above hyperidoma, human lymphocytes are sensitized in vitro with a desired antigen protein or antigen-expressing cells, and sensitized B lymphocytes are human myeloma. It is also possible to obtain a desired human antibody having a binding activity to a desired antigen or an antigen-expressing cell by fusing with a cell such as U266 (see Japanese Patent Publication No. 1-59878). In addition, antigens or antigen-expressing cells are administered to transgenic animals with a repertoire of human antibody genes. Then, a desired human antibody may be obtained according to the method described above (International Patent Application Publication No. wo
93/12227、 WO 92/03918、 WO 94/02602、 WO 94/25585、 WO 96/34096、 WO 96/ 33735参照)。 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 96/33735).
[0064] このようにして作製されるモノクローナル抗体を産生するハイブリドーマは、通常の 培養液中で継代培養することが可能であり、また、液体窒素中で長期保存することが 可能である。  [0064] The hybridoma producing the monoclonal antibody produced in this manner can be subcultured in a normal culture solution, and can be stored for a long time in liquid nitrogen.
[0065] 当該ハイプリドーマからモノクローナル抗体を取得するには、当該ハイプリドーマを 通常の方法にしたがい培養し、その培養上清として得る方法、あるいはハイプリドー マをこれと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法など が採用される。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の方 法は、抗体の大量生産に適している。  [0065] In order to obtain a monoclonal antibody from the hyperidoma, the hyperidoma is cultured according to a normal method and obtained as a culture supernatant thereof, or the hyperidoma is administered to a mammal compatible therewith. The method of growing and obtaining ascites is adopted. The former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
[0066] 例えば、抗 IL-6受容体抗体産生ハイブリドーマの作製は、特開平 3-139293に開示 された方法により行うことができる。 PM-1抗体産生ハイブリドーマを BALBんマウスの 腹腔内に注入して腹水を得、この腹水から PM-1抗体を精製する方法や、本ハイプリ ドーマを適当な培地、例えば、 10%ゥシ胎児血清、 5%BM-Condimed Hl (Boehringe r Mannheim製)含有 RPMI1640培地、ハイプリドーマ SFM培地(GIBCO-BRL製)、 PF ΗΜ-Π培地(GIBCO-BRL製)等で培養し、その培養上清から PM-1抗体を精製する 方法で行うことができる。  [0066] For example, the production of an anti-IL-6 receptor antibody-producing hybridoma can be performed by the method disclosed in JP-A-3-139293. PM-1 antibody-producing hybridoma is injected into the abdominal cavity of BALB mice to obtain ascites, and PM-1 antibody is purified from this ascites, or this hybridoma is treated with an appropriate medium such as 10% urine fetal serum. 5% BM-Condimed Hl (Boehringer Mannheim) -containing RPMI1640 medium, Hypridoma SFM medium (GIBCO-BRL), PF 、 -ΗΜ medium (GIBCO-BRL), etc. -1 antibody purification method.
[0067] 本発明には、モノクローナル抗体として、抗体遺伝子をハイブリドーマからクロー二 ングし、適当なベクターに組み込んで、これを宿主に導入し、遺伝子組換え技術を用 いて産生させた組換え型抗体を用いることができる(例えば、 Borrebaeck C. A. . an d Larrick J. W. THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the U nited Kingdom by MACMILLAN PUBLISHERS LTD, 1990参照)。  [0067] In the present invention, as a monoclonal antibody, an antibody gene is cloned from a hybridoma, incorporated into an appropriate vector, introduced into a host, and produced using a gene recombination technique. (See, for example, Borrebaeck CA. and Larrick JW THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990).
[0068] 具体的には、 目的とする抗体を産生する細胞、例えばノ、イブリドーマから、抗体の 可変(V)領域をコードする mRNAを単離する。 mRNAの単離は、公知の方法、例えば 、グァニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299 ) 、 AGPC法(Chomczynski, P. et al., Anal. Biochem. (1987)162, 156-159)等により全 R NAを調製し、 mRNA Purification Kit (Pharmacia製)等を使用して mRNAを調製する。 また、 QuickPrep mRNA Purification Kit (Pharmacia製)を用いることにより mRNAを直 接調製すること力できる。 [0068] Specifically, mRNA encoding the variable (V) region of the antibody is isolated from cells producing the antibody of interest, such as cells or hybridomas. Isolation of mRNA is performed by a known method such as guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299), AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159) etc. to prepare total RNA, and mRNA is prepared using mRNA Purification Kit (Pharmacia). In addition, it is possible to prepare mRNA directly by using QuickPrep mRNA Purification Kit (Pharmacia).
[0069] 得られた mRNAから逆転写酵素を用レ、て抗体 V領域の cDNAを合成する。 cDNAの 合成 (ュ、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit等を用レヽて fT うこと力 Sできる。また、 cDNAの合成および増幅を行うには 5'_Ampli FINDER RACE i t (Clontech製)および PCRを用いた 5'- RACE法(Frohman, M. A. et al., Proc. Natl. A cad. Sci. USA(1988)85, 8998- 9002 ; Belyavsky, A. et al., Nucleic Acids Res.(1989)l 7, 2919-2932)を使用することができる。得られた PCR産物から目的とする DNA断片を 精製し、ベクター DNAと連結する。さらに、これより組換えベクターを作成し、大腸菌 等に導入してコロニーを選択して所望の組換えベクターを調製する。 目的とする DNA の塩基配列を公知の方法、例えば、デォキシ法により確認する。  [0069] cDNA of the antibody V region is synthesized from the obtained mRNA using reverse transcriptase. cDNA synthesis (by using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit, etc.) In addition, 5'_Ampli FINDER RACE it (Clontech) and PCR are used for cDNA synthesis and amplification. 5'-RACE method (Frohman, MA et al., Proc. Natl. A cad. Sci. USA (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) l, 2919-2932) The DNA fragment of interest can be purified from the obtained PCR product and ligated with vector DNA, and a recombinant vector can be prepared from this and introduced into E. coli, etc. The colony is selected to prepare a desired recombinant vector, and the base sequence of the target DNA is confirmed by a known method such as the deoxy method.
[0070] 目的とする抗体の V領域をコードする DNAが得られれば、これを所望の抗体定常領 域(C領域)をコードする DNAと連結し、これを発現ベクターへ組み込む。又は、抗体 の V領域をコードする DNAを、抗体 C領域の DNAを含む発現ベクターへ組み込んで あよい。  [0070] If DNA encoding the V region of the target antibody is obtained, it is ligated with DNA encoding the desired antibody constant region (C region) and incorporated into an expression vector. Alternatively, DNA encoding the V region of the antibody may be incorporated into an expression vector containing DNA of the antibody C region.
[0071] 本発明で使用される抗体を製造するには、後述のように抗体遺伝子を発現制御領 域、例えば、ェンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに 組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させる こと力 Sでさる。  [0071] To produce the antibody used in the present invention, the antibody gene is incorporated into an expression vector so as to be expressed under the control of an expression control region, for example, an enhancer or a promoter, as described below. Next, the host cell is transformed with this expression vector and the antibody is expressed with the force S.
[0072] 本発明では、ヒトに対する異種抗原性を低下させること等を目的として人為的に改 変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗 体、ヒト (human)抗体を使用できる。これらの改変抗体は、既知の方法を用いて製造 すること力 Sでさる。  [0072] In the present invention, a genetically engineered antibody, such as a chimeric antibody, a humanized antibody, a human ( human) antibodies can be used. These modified antibodies can be manufactured using known methods with the power S.
[0073] キメラ抗体は、前記のようにして得た抗体 V領域をコードする DNAをヒト抗体 C領域 をコードする DNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させ ることにより得られる(欧州特許出願公開番号 EP 125023、国際特許出願公開番号 W 0 92-19759参照)。この既知の方法を用いて、本発明に有用なキメラ抗体を得ること ができる。 [0074] ヒト化抗体は、再構成 (reshaped)ヒト抗体またはヒト型化抗体とも称され、ヒト以外の 哺乳動物、例えばマウス抗体の相補性決定領域 (CDR)をヒト抗体の相補性決定領域 へ移植したものであり、その一般的な遺伝子組換え手法も知られて!/、る(欧州特許出 願公開番号 EP 125023、国際特許出願公開番号 WO 92-19759参照)。 [0073] The chimeric antibody is produced by ligating the DNA encoding the antibody V region obtained as described above with the DNA encoding the human antibody C region, incorporating it into an expression vector, introducing it into a host, and producing it. (See European Patent Application Publication No. EP 125023, International Patent Application Publication No. W 0 92-19759). Using this known method, a chimeric antibody useful in the present invention can be obtained. [0074] A humanized antibody is also called a reshaped human antibody or a humanized antibody, and a complementarity determining region (CDR) of a mammal other than a human, eg, a mouse antibody, is converted into a complementarity determining region of a human antibody. It is transplanted and its general genetic recombination technique is also known! /, (See European Patent Application Publication No. EP 125023, International Patent Application Publication No. WO 92-19759).
[0075] 具体的には、マウス抗体の CDRとヒト抗体のフレームワーク領域(FR; framework reg ion)を連結するように設計した DNA配列を、末端部にオーバーラップする部分を有す るように作製した数個のオリゴヌクレオチドから PCR法により合成する。得られた DNA をヒト抗体 C領域をコードする DNAと連結し、次いで発現ベクターに組み込んで、これ を宿主に導入し産生させることにより得られる(欧州特許出願公開番号 EP 239400、 国際特許出願公開番号 WO 92-19759参照)。  [0075] Specifically, a DNA sequence designed to link a CDR of a mouse antibody and a framework region (FR) of a human antibody has an overlapping portion at the end. It is synthesized from several prepared oligonucleotides by PCR. The obtained DNA is obtained by ligating with the DNA encoding the human antibody C region, then incorporating it into an expression vector, introducing it into a host and producing it (European Patent Application Publication Number EP 239400, International Patent Application Publication Number). See WO 92-19759).
[0076] CDRを介して連結されるヒト抗体の FRは、相補性決定領域が良好な抗原結合部位 を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補性決定領域が適 切な抗原結合部位を形成するように抗体の可変領域のフレームワーク領域のァミノ 酸を置換してもよい(Sato, .et al., Cancer Res. (1993) 53, 851-856)。  [0076] As the FR of a human antibody to be ligated via CDR, one in which the complementarity determining region forms a favorable antigen binding site is selected. If necessary, the amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity-determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato,. Et al., Cancer Res. (1993) 53, 851-856).
[0077] キメラ抗体、ヒト化抗体には、ヒト抗体 C領域が使用される。ヒト抗体 C領域としては、 C γが挙げられ、例えば、 C γ 1、 C γ 2、 C γ 3又は C γ 4を使用すること力 Sできる。また 、抗体又はその産生の安定性を改善するために、ヒト抗体 C領域を修飾してもよい。  [0077] The human antibody C region is used for the chimeric antibody and the humanized antibody. Examples of the human antibody C region include Cγ, and for example, Cγ1, Cγ2, Cγ3, or Cγ4 can be used. In addition, the human antibody C region may be modified in order to improve the stability of the antibody or its production.
[0078] キメラ抗体はヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来の C領域から なり、ヒト化抗体はヒト以外の哺乳動物由来抗体の相補性決定領域とヒト抗体由来の フレームワーク領域および C領域からなり、ヒト体内における抗原性が低下しているた め、本発明に使用される抗体として有用である。  [0078] The chimeric antibody is composed of a variable region of a non-human mammal-derived antibody and a C region derived from a human antibody, and the humanized antibody is a complementarity determining region of a non-human mammal-derived antibody and a framework region derived from a human antibody. It is useful as an antibody for use in the present invention because it consists of the C region and C region and has reduced antigenicity in the human body.
本発明に使用されるヒト化抗体の好ましい具体例としては、ヒト化 PM-1抗体が挙げ られる(国際特許出願公開番号 WO 92-19759参照)。  A preferred specific example of the humanized antibody used in the present invention is a humanized PM-1 antibody (see International Patent Application Publication No. WO 92-19759).
[0079] また、ヒト抗体の取得方法としては先に述べた方法のほか、ヒト抗体ライブラリーを用 いて、パンユングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可 変領域を一本鎖抗体(scFv)としてファージディスプレイ法によりファージの表面に発 現させ、抗原に結合するファージを選択することもできる。選択されたファージの遺伝 子を解析すれば、抗原に結合するヒト抗体の可変領域をコードする DNA配列を決定 すること力 Sできる。抗原に結合する scFvの DNA配列が明らかになれば、当該配列を 適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既に 周知であり、 WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/ 19172, WO 95/01438, WO 95/15388を参考にすることができる。 [0079] In addition to the above-described methods for obtaining human antibodies, a technique for obtaining human antibodies by panning using a human antibody library is also known. For example, a variable region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected. By analyzing the genes of the selected phage, the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined. The power to do S. If the DNA sequence of scFv that binds to the antigen is clarified, an appropriate expression vector can be prepared from the sequence and a human antibody can be obtained. These methods are already well known and can be referred to WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388. .
[0080] 前記のように構築した抗体遺伝子は、公知の方法により発現させ、取得することが できる。哺乳類細胞の場合、常用される有用なプロモーター、発現される抗体遺伝子 、その 3'側下流にポリ Aシグナルを機能的に結合させた DNAあるいはそれを含むベタ ターにより発現させることができる。例えばプロモーター/ェンハンサ一としては、ヒト サイトメカロウィノレス冃 ij期フロモ一ター/ェンノヽンサ一 (numan cytomegalovirus imme diate early promoter/enhancer)を举ける ^と力 さ 。  [0080] The antibody gene constructed as described above can be expressed and obtained by a known method. In the case of mammalian cells, it can be expressed by a commonly used useful promoter, an antibody gene to be expressed, a DNA having a poly A signal operably linked to the 3 ′ downstream thereof, or a vector containing the same. For example, as a promoter / enhancer, it is possible to make a human cytomeculowinores ij phase promoter / enhancer (numan cytomegalovirus imme diate early promoter / enhancer).
[0081] また、その他に本発明で使用される抗体発現に使用できるプロモーター/ェンノ、ン サ一として、レトロウイルス、ポリオ一マウィルス、アデノウイルス、シミアンウィルス 40 (S V40)等のウィルスプロモーター/ェンハンサーゃヒトェロンゲーシヨンファクター 1 α ( HEF1 α )などの哺乳類細胞由来のプロモーター/ェンハンサーを用いればよい。  [0081] Other promoters / enhancers that can be used for expression of the antibodies used in the present invention include retroviruses, polioviruses, adenoviruses, and simian viruses 40 (SV40). A promoter / enhancer derived from a mammalian cell such as human longon factor 1α (HEF1α) may be used.
[0082] 例えば、 SV40プロモーター/ェンハンサーを使用する場合、 Mulliganらの方法(Mu lligan, R. C. et al., Nature (1979) 277, 108-114)、また、 HEF1 a口モーター/ェン ハンサーを使用する場合、 Mizushimaらの方法(Mizushima, S. and Nagata, S. Nuclei c Acids Res. (1990) 18, 5322 )に従えば容易に実施することができる。  [0082] For example, when the SV40 promoter / enhancer is used, the method of Mulligan et al. (Mulligan, RC et al., Nature (1979) 277, 108-114) and the HEF1 a-mouth motor / enhancer are used. In this case, it can be easily carried out according to the method of Mizushima et al. (Mizushima, S. and Nagata, S. Nucleic Acids Res. (1990) 18, 5322).
[0083] 大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列 [0083] In the case of E. coli, a commonly used useful promoter, a signal sequence for antibody secretion
、発現させる抗体遺伝子を機能的に結合させて発現させることができる。例えばプロ モーターとしては、 lacZプロモーター、 araBプロモーターを挙げることができる。 lacZプ 口モーターを使用する場合、 Wardらの方法(Ward, E. S. et al., Nature (1989) 341, 5 44-546 ; Ward, E. S. et al. FASEB J. (1992) 6, 2422-2427 )、 araBプロモーターを使 用する場合、 Betterらの方法(Better, M. et al. Science (1988) 240, 1041-1043 )に 従えばよい。 The antibody gene to be expressed can be expressed by functionally binding it. For example, examples of the promoter include lacZ promoter and araB promoter. When using a lacZ plug motor, the method of Ward et al. (Ward, ES et al., Nature (1989) 341, 5 44-546; Ward, ES et al. FASEB J. (1992) 6, 2422-2427) When the araB promoter is used, the method of Better et al. (Better, M. et al. Science (1988) 240, 1041-1043) may be followed.
[0084] 抗体分泌のためのシグナル配列としては、大腸菌のペリブラズムに産生させる場合 、 pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379-4383)を使用す ればよい。ペリブラズムに産生された抗体を分離した後、抗体の構造を適切にリフォ 一ルド(refold)して使用する(例えば、 WO96/30394を参照)。 [0084] As a signal sequence for antibody secretion, a pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379-4383) may be used when it is produced in the periplasm of E. coli. After isolating the antibody produced in the periplasm, the structure of the antibody is Used in refold (see, for example, WO96 / 30394).
[0085] 複製起源としては、 SV40、ポリオ一マウィルス、アデノウイルス、ゥシパピローマウイ ノレス(BPV)等の由来のものを用いることができ、さらに、宿主細胞系で遺伝子コピー 数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドホスホトランスフ エラーゼ (APH)遺伝子、チミジンキナーゼ (TK)遺伝子、大腸菌キサンチングァニン ホスホリボシルトランスフェラーゼ (Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝 子等を含むことができる。 [0085] As replication origins, those derived from SV40, poliovirus, adenovirus, ushipapilloma quinores (BPV), etc. can be used, and further expressed for amplification of gene copy number in the host cell system. The vector may include an aminoglycoside phosphotransferase (APH) gene, a thymidine kinase (TK) gene, an E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, a dihydrofolate reductase (dhfr) gene, and the like as selectable markers.
[0086] 本発明で使用される抗体の製造のために、任意の産生系を使用することができる。 [0086] For production of the antibody used in the present invention, any production system can be used.
抗体製造のための産生系は、 in vitroおよび in vivoの産生系がある。 in vitroの産生 系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる Production systems for antibody production include in vitro and in vivo production systems. In vitro production systems include production systems that use eukaryotic cells and production systems that use prokaryotic cells.
Yes
[0087] 真核細胞を使用する場合、動物細胞、植物細胞、又は真菌細胞を用いる産生系が ある。動物細胞としては、(1)哺乳類細胞、例えば、 CHO、 COS、ミエローマ、 BH (bab y hamster kidney), HeLa、 Veroなど、(2)両生類細胞、例えば、アフリカッメガエル卵 母細胞、あるいは (3)昆虫細胞、例えば、 si9、 si21、 Tn5などが知られている。植物細 胞としては、ニコチアナ.タバクム (Nicotiana tabacum)由来の細胞が知られており、こ れをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Sacch aromyces)晨、例えはサッカロミセス 'セレビシェ (Saccharomyces cerevisiae)、糸状囷 、例えばァスペルギルス属(Aspergillus)属、例えばァスペルギルス'二ガー(Aspergill us niger)などが知られている。  [0087] When eukaryotic cells are used, there are production systems using animal cells, plant cells, or fungal cells. Animal cells include (1) mammalian cells such as CHO, COS, myeloma, BH (baby hamster kidney), HeLa, Vero, etc., (2) amphibian cells such as Xenopus oocytes, or ( 3) Insect cells such as si9, si21, and Tn5 are known. As plant cells, cells derived from Nicotiana tabacum are known, and these may be cultured in callus. As fungal cells, yeasts such as Saccharomyces spp., For example, Saccharomyces cerevisiae, filamentous spiders such as Aspergillus, such as Aspergill us niger, are known. It has been.
[0088] 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大 腸菌(E.coli)、枯草菌が知られている。  [0088] When prokaryotic cells are used, there are production systems using bacterial cells. Known bacterial cells include E. coli and Bacillus subtilis.
これらの細胞に、 目的とする抗体遺伝子を形質転換により導入し、形質転換された 細胞を in vitroで培養することにより抗体が得られる。培養は、公知の方法に従い行う 。例えば、培養液として、 DMEM, MEM, RPMI1640, IMDMを使用することができ、牛 胎児血清 (FCS)等の血清補液を併用することもできる。また、抗体遺伝子を導入した 細胞を動物の腹腔等へ移すことにより、 in vivoにて抗体を産生してもよい。  An antibody can be obtained by introducing a desired antibody gene into these cells by transformation, and culturing the transformed cells in vitro. Culture is performed according to a known method. For example, DMEM, MEM, RPMI1640, IMDM can be used as the culture medium, and serum supplements such as fetal calf serum (FCS) can be used in combination. Alternatively, antibodies may be produced in vivo by transferring cells into which the antibody gene has been introduced to the abdominal cavity of animals.
[0089] 一方、 in vivoの産生系としては、動物を使用する産生系や植物を使用する産生系 が挙げられる。動物を使用する場合、哺乳類動物、昆虫を用いる産生系などがある。 哺乳類動物としては、ャギ、ブタ、ヒッジ、マウス、ゥシなどを用いることができる (Vic ki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、昆虫としては、カイ コを用いること力 Sできる。植物を使用する場合、例えばタバコを用いることができる。 [0089] On the other hand, in vivo production systems include production systems using animals and production systems using plants. Is mentioned. When animals are used, there are production systems using mammals and insects. As mammals, goats, pigs, hidges, mice, mice, etc. can be used (Vic ki Glaser, SPECTRUM Biotechnology Applications, 1993). As insects, it is possible to use silkworms. When using a plant, for example, tobacco can be used.
[0090] これらの動物又は植物に抗体遺伝子を導入し、動物又は植物の体内で抗体を産 生させ、回収する。例えば、抗体遺伝子をャギ /3カゼインのような乳汁中に固有に産 生される蛋白質をコードする遺伝子の途中に揷入して融合遺伝子として調製する。 抗体遺伝子が揷入された融合遺伝子を含む DNA断片をャギの胚へ注入し、この胚 を雌のャギへ導入する。胚を受容したャギから生まれるトランスジエニックャギ又はそ の子孫が産生する乳汁から所望の抗体を得る。トランスジエニックャギから産生される 所望の抗体を含む乳汁量を増加させるために、適宜ホルモンをトランスジエニックャ ギに使用してもよい(Ebert, .M. et al. , Bio/Technology (1994) 12, 699-702 )。  [0090] An antibody gene is introduced into these animals or plants to produce and recover the antibodies in the body of the animals or plants. For example, an antibody gene is inserted in the middle of a gene encoding a protein inherently produced in milk such as goat / 3 casein to prepare a fusion gene. A DNA fragment containing the fusion gene into which the antibody gene is inserted is injected into a goat embryo, and the embryo is introduced into a female goat. The desired antibody is obtained from the milk produced by the transgene goat born from the goat that received the embryo or its progeny. To increase the amount of milk containing the desired antibody produced from the transgenic dog, hormones may be used as appropriate in the transgenic dog (Ebert, .M. Et al., Bio / Technology ( 1994) 12, 699-702).
[0091] また、カイコを用いる場合、 目的の抗体遺伝子を揷入したバキュロウィルスをカイコ に感染させ、このカイコの体液より所望の抗体を得る(Maeda, S. et al., Nature (1985) 315, 592-594)。さらに、タバコを用いる場合、 目的の抗体遺伝子を植物発現用べク ター、例えば pMON530に揷入し、このベクターを Agrobacterium tumefaciensのような バクテリアに導入する。このバクテリアをタバコ、例えば Nicotiana tabacumに感染させ 、本タバコの葉より所望の抗体を得る(Julian, K.-C. Ma et al., Eur. J. Immunol.(1994 )24, 131-138)。  [0091] When a silkworm is used, a silkworm is infected with a baculovirus inserted with the target antibody gene, and a desired antibody is obtained from the body fluid of this silkworm (Maeda, S. et al., Nature (1985) 315 592-594). Furthermore, when tobacco is used, the target antibody gene is inserted into a plant expression vector, such as pMON530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens. This bacterium is infected with tobacco, for example Nicotiana tabacum, and the desired antibody is obtained from the leaves of this tobacco (Julian, K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138) .
[0092] 上述のように in vitro又は in vivoの産生系にて抗体を産生する場合、抗体重鎖(H 鎖)又は軽鎖(L鎖)をコードする DNAを別々に発現ベクターに組み込んで宿主を同 時形質転換させてもよいし、あるいは H鎖および L鎖をコードする DNAを単一の発現 ベクターに組み込んで、宿主を形質転換させてもよい(国際特許出願公開番号 WO 94-11523参照)。  [0092] As described above, when an antibody is produced in an in vitro or in vivo production system, DNAs encoding the antibody heavy chain (H chain) or light chain (L chain) are separately incorporated into an expression vector. May be transformed simultaneously, or the host may be transformed by incorporating DNA encoding the H and L chains into a single expression vector (see International Patent Application Publication No. WO 94-11523). ).
[0093] 本発明で使用される抗体は、本発明に好適に使用され得るかぎり、抗体の断片や その修飾物であってよい。例えば、抗体の断片としては、 Fab、 F(ab')2、 Fv又は H鎖と L鎖の Fvを適当なリンカ一で連結させたシングルチェイン Fv (scFv)が挙げられる。  [0093] The antibody used in the present invention may be an antibody fragment or a modified product thereof as long as it can be suitably used in the present invention. For example, antibody fragments include Fab, F (ab ′) 2, Fv, or single chain Fv (scFv) in which H chain and L chain Fv are linked by an appropriate linker.
[0094] 具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成さ せるか、又は、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに 導入した後、適当な宿主細胞で発現させる(例えば、 Co, M.S. et al. , J. Immunol. (19 94) 152, 2968—2976、 Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 17 8, 476-496、 Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476- 496、 Lamoyi, Ε·, Methods in Enzymology (1989) 121, 652-663、 Rousseaux, J. et al ·, Methods in Enzymology (1989) 121, 663—66、 Bird, R. E. et al. , TIBTECH (1991) 9, 132-137参照)。 [0094] Specifically, an antibody fragment is produced by treating an antibody with an enzyme such as papain or pepsin. Or construct genes encoding these antibody fragments, introduce them into expression vectors, and express them in appropriate host cells (for example, Co, MS et al., J. Immunol. (19 94) 152, 2968—2976, Better, M. & Horwitz, AH Methods in Enzymology (1989) 17 8, 476-496, Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-496, Lamoyi, Ε, Methods in Enzymology (1989) 121, 652-663, Rousseaux, J. et al ·, Methods in Enzymology (1989) 121, 663-66, Bird, RE et al., TIBTECH (1991) 9, 132- 137).
[0095] scFvは、抗体の H鎖 V領域と L鎖 V領域を連結することにより得られる。この scFvにお いて、 H鎖 V領域と L鎖 V領域はリンカ一、好ましくは、ペプチドリンカ一を介して連結 される(Huston, J. S. et al.、 Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883)。 s cFvにおける H鎖 V領域および L鎖 V領域は、上記抗体として記載されたものの!/、ずれ の由来であってもよい。 V領域を連結するペプチドリンカ一としては、例えばアミノ酸 1 2-19残基からなる任意の一本鎖ペプチドが用いられる。  [0095] scFv is obtained by linking the H chain V region and L chain V region of an antibody. In this scFv, the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. USA (1988). 85, 5879-5883). The H chain V region and the L chain V region in scFv may be derived from! /, which is described as the above antibody. As the peptide linker that links the V regions, for example, any single chain peptide consisting of amino acid residues 12-19 is used.
[0096] scFvをコードする DNAは、前記抗体の H鎖又は、 H鎖 V領域をコードする DNA、およ び L鎖又は、 L鎖 V領域をコードする DNAを铸型とし、それらの配列のうちの所望のァ ミノ酸配列をコードする DNA部分を、その両端を規定するプライマー対を用いて PCR 法により増幅し、次いで、さらにペプチドリンカ一部分をコードする DNAおよびその両 端を各々 H鎖、 L鎖と連結されるように規定するプライマー対を組み合せて増幅するこ とにより得られる。  [0096] The scFv-encoding DNA is composed of a DNA encoding the H chain or H chain V region of the antibody, and a DNA encoding the L chain or L chain V region, and the sequence of these sequences. A portion of the DNA encoding the desired amino acid sequence is amplified by PCR using a primer pair that defines both ends of the DNA, and then a DNA encoding a portion of the peptide linker and both ends thereof are respectively H chain, Obtained by combining and amplifying primer pairs that are defined so as to be linked to the L chain.
[0097] また、一旦 scFvをコードする DNAが作製されれば、それらを含有する発現ベクター 、および該発現べクタ一により形質転換された宿主を常法に従って得ることができ、 また、その宿主を用いて常法に従って、 scFvを得ること力 Sできる。  [0097] Once the DNA encoding scFv is prepared, an expression vector containing them and a host transformed with the expression vector can be obtained according to a conventional method. Can be used to obtain scFv according to conventional methods.
[0098] これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主により 産生させること力 Sできる。本発明でいう「抗体」にはこれらの抗体の断片も包含される。  [0098] These antibody fragments can be produced by the host by obtaining and expressing the gene in the same manner as described above. The term “antibody” as used in the present invention encompasses these antibody fragments.
[0099] 抗体の修飾物として、ポリエチレングリコール (PEG)等の各種分子と結合した抗体を 使用することもできる。本発明でいう「抗体」にはこれらの抗体修飾物も包含される。こ のような抗体修飾物を得るには、得られた抗体に化学的な修飾を施すことによって得 ること力 Sできる。これらの方法はこの分野にお!/、てすでに確立されて!/、る。 [0100] 前記のように産生、発現された抗体は、細胞内外、宿主から分離し均一にまで精製 すること力 Sできる。本発明で使用される抗体の分離、精製はァフィ二ティークロマトグ ラフィ一により fiうこと力 Sできる。ァフィ二ティークロマトグラフィーに用いるカラムとして は、例えば、プロテイン Aカラム、プロテイン Gカラムが挙げられる。プロテイン Aカラム に用いる担体として、例えば、 HyperD, POROS、 S印 haroseF.F.等が挙げられる。そ の他、通常のタンパク質で使用されている分離、精製方法を使用すればよぐ何ら限 定されるものではない。 [0099] As a modified antibody, an antibody bound to various molecules such as polyethylene glycol (PEG) can also be used. The “antibody” referred to in the present invention includes these modified antibodies. In order to obtain such a modified antibody, it can be obtained by chemically modifying the obtained antibody. These methods are already established in this field! / [0100] The antibody produced and expressed as described above can be separated from the host inside and outside the cell and purified to homogeneity. Separation and purification of the antibody used in the present invention can be performed by affinity chromatography. Examples of the column used for affinity chromatography include a protein A column and a protein G column. Examples of the carrier used for the protein A column include HyperD, POROS, S-mark harose F.F. In addition, the separation and purification methods used for ordinary proteins are not limited in any way.
[0101] 例えば、上記ァフィ二ティークロマトグラフィー以外のクロマトグラフィー、フィルター 、限外濾過、塩析、透析等を適宜選択、組み合わせれば、本発明で使用される抗体 を分離、精製すること力できる。クロマトグラフィーとしては、例えば、イオン交換クロマ トグラフィー、疎水クロマトグラフィー、ゲルろ過等が挙げられる。これらのクロマトダラ フィー (ま HPLC (High performance liquid chromatography) ίこ適用しネ守る。ま 7こ、 ι Ϊ申目 HPLC (reverse phase HPLC)を用いてもよい。  [0101] For example, by appropriately selecting and combining chromatography, filters, ultrafiltration, salting out, dialysis and the like other than the above-mentioned affinity chromatography, the antibody used in the present invention can be separated and purified. . Examples of chromatography include ion exchange chromatography, hydrophobic chromatography, gel filtration, and the like. These chromatographies (also known as HPLC (High Performance Liquid Chromatography)) can be applied and protected. Alternatively, reverse phase HPLC may be used.
[0102] 上記で得られた抗体の濃度測定は吸光度の測定又は ELISA等により行うことができ る。すなわち、吸光度の測定による場合には、 PBS (-)で適当に希釈した後、 280nmの 吸光度を測定し、 lmg/mlを 1.350Dとして算出する。また、 ELISAによる場合は以下の ように測定すること力できる。すなわち、 0.1M重炭酸緩衝液 (ρΗ9·6)で l ^ g/mlに希 釈したャギ抗ヒ HgG(TAG製) 100 1を 96穴プレート(Nunc製)に加え、 4°Cでー晚イン キュベーシヨンし、抗体を固相化する。ブロッキングの後、適宜希釈した本発明で使 用される抗体又は抗体を含むサンプル、あるいは標品としてヒ HgG (CAPPEL製) 100 II 1を添加し、室温にて 1時間インキュベーションする。  [0102] The concentration of the antibody obtained above can be measured by measuring absorbance, ELISA, or the like. In other words, when measuring absorbance, after appropriately diluting with PBS (-), measure absorbance at 280 nm and calculate lmg / ml as 1.350D. In the case of ELISA, it is possible to measure as follows. That is, add goat anti-HgG (TAG) 100 1 diluted to l ^ g / ml with 0.1 M bicarbonate buffer (ρΗ9 · 6) to a 96-well plate (Nunc) at 4 ° C.晚 Incubate and immobilize antibody. After blocking, an appropriately diluted antibody or a sample containing the antibody used in the present invention, or Hi HGG (manufactured by CAPPEL) 100 II 1 as a sample is added, and incubated at room temperature for 1 hour.
[0103] 洗浄後、 5000倍希釈したアルカリフォスファターゼ標識抗ヒ HgG (BIO SOURCE製)  [0103] Alkaline phosphatase-labeled anti-HgG diluted 5000 times after washing (BIO SOURCE)
100 1を加え、室温にて 1時間インキュベートする。洗浄後、基質溶液を加えインキュ ベーシヨンの後、 MICROPLATE READER Model 3550 (Bio-Rad製)を用いて 405nm での吸光度を測定し、 目的の抗体の濃度を算出する。  Add 100 1 and incubate at room temperature for 1 hour. After washing, add the substrate solution, incubate, measure the absorbance at 405 nm using MICROPLATE READER Model 3550 (manufactured by Bio-Rad), and calculate the concentration of the desired antibody.
[0104] 本発明で使用される IL-6改変体は、 IL-6受容体との結合活性を有し、且つ IL-6の 生物学的活性を伝達しない物質である。即ち、 IL-6改変体は IL-6受容体に対 UL-6 と競合的に結合するが、 IL-6の生物学的活性を伝達しないため、 IL-6によるシグナ ル伝達を遮断する。 [0104] The IL-6 variant used in the present invention is a substance that has binding activity to the IL-6 receptor and does not transmit IL-6 biological activity. That is, IL-6 variant binds to IL-6 receptor competitively with UL-6, but does not transmit IL-6 biological activity. Block transmission.
[0105] IL-6改変体は、 IL-6のアミノ酸配列のアミノ酸残基を置換することにより変異を導入 して作製される。 IL-6改変体のもととなる IL-6はその由来を問わないが、抗原性等を 考慮すれば、好ましくはヒト IL-6である。  [0105] IL-6 variants are produced by introducing mutations by substituting amino acid residues in the amino acid sequence of IL-6. The origin of IL-6, which is a variant of IL-6, is not limited, but human IL-6 is preferable in consideration of antigenicity.
[0106] 具体的には、 IL-6のアミノ酸配列を公知の分子モデリングプログラム、たとえば、 W HATIF (Vriend et al., J. Mol. Graphics (1990) 8, 52-56 )を用いてその二次構造を 予測し、さらに置換されるアミノ酸残基の全体に及ぼす影響を評価することにより行わ れる。適切な置換アミノ酸残基を決定した後、ヒ HL-6遺伝子をコードする塩基配列を 含むベクターを铸型として、通常行われる PCR法によりアミノ酸が置換されるように変 異を導入することにより、 IL-6改変体をコードする遺伝子が得られる。これを必要に応 じて適当な発現ベクターに組み込み、前記組換え型抗体の発現、産生及び精製方 法に準じて IL-6改変体を得ることができる。  [0106] Specifically, the amino acid sequence of IL-6 can be determined using a known molecular modeling program such as W HATIF (Vriend et al., J. Mol. Graphics (1990) 8, 52-56). This is done by predicting the next structure and evaluating the effect on the total number of amino acid residues to be substituted. After determining the appropriate replacement amino acid residue, by introducing a mutation that replaces the amino acid by the usual PCR method, using a vector containing the base sequence encoding the HL-6 gene as a saddle type, A gene encoding the IL-6 variant is obtained. This can be incorporated into an appropriate expression vector as necessary, and an IL-6 variant can be obtained according to the expression, production and purification methods of the recombinant antibody.
[0107] IL-6改変体の具体例としては、 Brakenhoif et al., J. Biol. Chem. (1994) 269, 86-93  [0107] Specific examples of IL-6 variants include Brakenhoif et al., J. Biol. Chem. (1994) 269, 86-93.
、及び Savino et al., EMBO J. (1994) 13, 1357-1367、 WO 96-18648、 W096- 1786 9に開示されている。  And Savino et al., EMBO J. (1994) 13, 1357-1367, WO 96-18648, W096-17869.
[0108] 本発明で使用される IL-6部分ペプチド又は IL-6受容体部分ペプチドは、各々 IL-6 受容体あるいは IL-6との結合活性を有し、且つ IL-6の生物学的活性を伝達しな!/、物 質である。即ち、 IL-6部分ペプチド又は IL-6受容体部分ペプチドは IL-6受容体又は I L-6に結合し、これらを捕捉することにより IL-6の IL-6受容体への結合を特異的に阻 害する。その結果、 IL-6の生物学的活性を伝達しないため、 IL-6によるシグナル伝達 を遮断する。  [0108] The IL-6 partial peptide or IL-6 receptor partial peptide used in the present invention has a binding activity to IL-6 receptor or IL-6, respectively, and the biological activity of IL-6 It is a substance that does not transmit activity! That is, IL-6 partial peptide or IL-6 receptor partial peptide binds to IL-6 receptor or IL-6 and captures these to specifically bind IL-6 to IL-6 receptor. Obstruct it. As a result, IL-6 does not transmit the biological activity of IL-6, thus blocking IL-6 signaling.
[0109] IL-6部分ペプチド又は IL-6受容体部分ペプチドは、 IL-6又は IL-6受容体のアミノ 酸配列において IL-6と IL-6受容体との結合に係わる領域の一部又は全部のアミノ酸 酉己列からなるペプチドである。このようなペプチドは、通常 10〜80、好ましくは 20〜5 0、より好ましくは 20〜40個のアミノ酸残基からなる。  [0109] The IL-6 partial peptide or IL-6 receptor partial peptide is a part of the region involved in the binding between IL-6 and IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor. Alternatively, it is a peptide consisting of all amino acids. Such peptides usually consist of 10 to 80, preferably 20 to 50, more preferably 20 to 40 amino acid residues.
[0110] IL-6部分ペプチド又は IL-6受容体部分ペプチドは、 IL-6又は IL-6受容体のアミノ 酸配列において、 IL-6と IL-6受容体との結合に係わる領域を特定し、その一部又は 全部のアミノ酸配列を通常知られる方法、例えば遺伝子工学的手法又はペプチド合 成法により作製することカできる。 [0110] IL-6 partial peptide or IL-6 receptor partial peptide specifies the region involved in the binding of IL-6 to IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor A part or all of the amino acid sequence is generally known, for example, genetic engineering techniques or peptide synthesis. It can be produced by a synthesis method.
[0111] IL-6部分ペプチド又は IL-6受容体部分ペプチドを遺伝子工学的手法により作製す るには、所望のペプチドをコードする DNA配列を発現ベクターに組み込み、前記組 換え型抗体の発現、産生及び精製方法に準じて得ることができる。  [0111] In order to prepare an IL-6 partial peptide or IL-6 receptor partial peptide by a genetic engineering technique, a DNA sequence encoding a desired peptide is incorporated into an expression vector, and expression of the recombinant antibody is performed. It can be obtained according to production and purification methods.
[0112] IL-6部分ペプチド又は IL-6受容体部分ペプチドをペプチド合成法により作製する には、ペプチド合成において通常用いられている方法、例えば固相合成法又は液相 合成法を用いることができる。  [0112] In order to prepare an IL-6 partial peptide or IL-6 receptor partial peptide by a peptide synthesis method, a method usually used in peptide synthesis, for example, a solid phase synthesis method or a liquid phase synthesis method may be used. it can.
[0113] 具体的には、続医薬品の開発第 14巻ペプチド合成 (監修矢島治明、廣川書店、 19 91年)に記載の方法に準じて行えばよい。固相合成法としては、例えば有機溶媒に 不溶性である支持体に合成しょうとするペプチドの C末端に対応するアミノ酸を結合 させ、 α -ァミノ基及び側鎖官能基を適切な保護基で保護したアミノ酸を C末端から Ν 末端方向の順番に 1アミノ酸ずつ縮合させる反応と樹脂上に結合したアミノ酸又はぺ プチドの α -ァミノ基の該保護基を脱離させる反応を交互に繰り返すことにより、ぺプ チド鎖を伸長させる方法が用いられる。固相ペプチド合成法は、用いられる保護基の 種類により Boc法と Fmoc法に大別される。  [0113] Specifically, it may be carried out in accordance with the method described in the follow-up drug development Vol. 14, peptide synthesis (supervised by Haraaki Yajima, Yodogawa Shoten, 1991). As the solid-phase synthesis method, for example, an amino acid corresponding to the C-terminus of the peptide to be synthesized is bound to a support that is insoluble in an organic solvent, and the α-amino group and the side chain functional group are protected with an appropriate protecting group. By repeating the reaction of condensing amino acids one by one in the order from the C-terminal to the 末端 -terminal and the reaction of eliminating the protecting group of the α-amino group of the amino acid or peptide bound on the resin, A method of extending the tide chain is used. Solid phase peptide synthesis methods are broadly divided into Boc and Fmoc methods, depending on the type of protecting group used.
[0114] このようにして目的とするペプチドを合成した後、脱保護反応及びペプチド鎖の支 持体からの切断反応をする。ペプチド鎖との切断反応には、 Boc法ではフッ化水素又 はトリフルォロメタンスルホン酸を、又 Fmoc法では TFAを通常用いることができる。 Boc 法では、例えばフッ化水素中で上記保護ペプチド樹脂をァニソール存在下で処理す る。次いで、保護基の脱離と支持体からの切断をしペプチドを回収する。これを凍結 乾燥することにより、粗ペプチドが得られる。一方、 Fmoc法では、例えば TFA中で上 記と同様の操作で脱保護反応及びペプチド鎖の支持体からの切断反応を行うことが できる。  [0114] After the target peptide is synthesized in this manner, a deprotection reaction and a cleavage reaction from the peptide chain support are performed. For the cleavage reaction with the peptide chain, hydrogen fluoride or trifluoromethanesulfonic acid can usually be used for the Boc method, and TFA can be used for the Fmoc method. In the Boc method, for example, the protected peptide resin is treated in the presence of anisole in hydrogen fluoride. Next, the peptide is recovered by removing the protecting group and cleaving from the support. This is freeze-dried to obtain a crude peptide. On the other hand, in the Fmoc method, for example, the deprotection reaction and the cleavage reaction from the peptide chain support can be performed in TFA by the same operation as described above.
[0115] 得られた粗ペプチドは、 HPLCに適用することにより分離、精製すること力 Sできる。そ の溶出にあたり、蛋白質の精製に通常用いられる水-ァセトニトリル系溶媒を使用して 最適条件下で行えばよい。得られたクロマトグラフィーのプロファイルのピークに該当 する画分を分取し、これを凍結乾燥する。このようにして精製したペプチド画分につ いて、マススペクトル分析による分子量解析、アミノ酸組成分析、又はアミノ酸配列解 析等により同定する。 [0115] The obtained crude peptide can be separated and purified by applying it to HPLC. For the elution, a water-acetonitrile solvent usually used for protein purification may be used under optimum conditions. The fraction corresponding to the peak of the obtained chromatographic profile is collected and lyophilized. The peptide fraction thus purified is analyzed for molecular weight analysis, amino acid composition analysis, or amino acid sequence analysis by mass spectrum analysis. Identify by analysis.
[0116] IL-6部分ペプチド及び IL-6受容体部分ペプチドの具体例は、特開平 2-188600、特 開平 7-324097、特開平 8-311098及び米国特許公報 US5210075に開示されている。  Specific examples of the IL-6 partial peptide and the IL-6 receptor partial peptide are disclosed in JP-A-2-188600, JP-A-7-324097, JP-A-8-311098 and US Pat. No. US5210075.
[0117] 本発明に使用する抗体は、ポリエチレングリコール (PEG)、放射性物質、トキシン等 の各種分子と結合したコンジュゲート抗体でもよ!/、。このようなコンジュゲート抗体は、 得られた抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修 飾方法はこの分野においてすでに確立されている。本発明における「抗体」にはこれ らのコンジュゲート抗体も包含される。  [0117] The antibody used in the present invention may be a conjugated antibody bound to various molecules such as polyethylene glycol (PEG), radioactive substances, and toxins! /. Such a conjugated antibody can be obtained by chemically modifying the obtained antibody. Antibody modification methods have already been established in this field. The “antibody” in the present invention includes these conjugated antibodies.
[0118] 本発明は、軟骨代謝マーカーを測定するための試薬を含む、関節リウマチにおけ る治療予後を予測するための検出試薬に関する。このような検出試薬には、上記に 記載の軟骨代謝マーカーの測定工程に使用されるものを含みうる。例えば、軟骨代 謝マーカーである ΡΠΑΝΡ量の測定に必要とされる抗体、染色液等を挙げることがで きる。  [0118] The present invention relates to a detection reagent for predicting a prognosis of treatment in rheumatoid arthritis, including a reagent for measuring a cartilage metabolism marker. Such detection reagents may include those used in the above-described cartilage metabolism marker measurement step. For example, an antibody, a staining solution, and the like that are required for measuring the amount of drought that is a cartilage substitution marker can be mentioned.
さらに、上記検出試薬と、軟骨代謝マーカーの検出に用いられるその他の要素を 組み合わせることによって、関節リウマチ治療における治療予後を予測するためのキ ットとすることができる。すなわち、本発明は、軟骨代謝マーカーを測定するための試 薬を含む、関節リウマチ治療における治療予後を予測するためのキットに関する。こ のようなキットには、上記に記載の検出試薬、その他、蒸留水、塩、緩衝液、タンパク 質安定剤、保存剤等が含まれていてもよい。また、たとえば ELISA用の試薬として、酵 素標識を検出するための発色基質や、固相を洗浄するための洗浄液を組み合わせ ること力 Sできる。さらに、測定操作を説明するための指示書をキットに添付することもで きる。  Furthermore, by combining the detection reagent and other elements used for detection of cartilage metabolism markers, a kit for predicting the prognosis of treatment in rheumatoid arthritis treatment can be obtained. That is, the present invention relates to a kit for predicting the prognosis of treatment in rheumatoid arthritis treatment, which contains a reagent for measuring a cartilage metabolism marker. Such a kit may contain the detection reagent described above, distilled water, salt, buffer solution, protein stabilizer, preservative and the like. In addition, for example, as a reagent for ELISA, it is possible to combine a chromogenic substrate for detecting an enzyme label and a washing solution for washing the solid phase. In addition, instructions for explaining the measurement operation can be attached to the kit.
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書 に組み入れられる。  It should be noted that all prior art documents cited in this specification are incorporated herein by reference.
図面の簡単な説明  Brief Description of Drawings
[0119] [図 1]軟骨形成における PIIANPおよび PIICPの断片化を示す模式図である。  FIG. 1 is a schematic diagram showing the fragmentation of PIIANP and PIICP in cartilage formation.
[図 2]Erosionスコアを測定した手の関節領域を示す図である。  FIG. 2 is a diagram showing a joint region of a hand whose Erosion score was measured.
[図 3]JSNスコアを測定した手の関節領域を示す図である。 [図 4]Erosi0nスコアおよび JSNスコアを測定した足の関節領域を示す図である。 FIG. 3 is a diagram showing a joint region of a hand whose JSN score was measured. FIG. 4 is a view showing a joint region of a foot where an Erosi 0n score and a JSN score were measured.
[図 5]ベースライン、 28週および 52週目における関節破壊の X線評価(トータルシヤー プスコア)の結果を示す図である。  FIG. 5 is a diagram showing the results of X-ray evaluation (total shear score) of joint destruction at baseline, weeks 28 and 52.
[図 6]ベースライン、 28週および 52週目における関節破壊の X線評価(Erosionスコア) の結果を示す図である。  FIG. 6 is a graph showing the results of X-ray evaluation (Erosion score) of joint destruction at baseline, weeks 28 and 52.
[図 7]ベースライン、 28週および 52週目における関節破壊の X線評価(JSNスコア)の 結果を示す図である。  FIG. 7 is a graph showing the results of X-ray evaluation (JSN score) of joint destruction at baseline, weeks 28 and 52.
[図 8]T群および C群における ΡΠΑΝΡ量の変化を示す図である。 (Α)血清中の ΡΙΙΑΝΡ 濃度の測定ィ直 (ng/ml)、 (B)血清中の PIIANP濃度のベースラインからの変化率(%) を示す。  FIG. 8 is a graph showing changes in the amount of soot in the T group and the C group. (Α) Measurement of serum ΡΙΙΑΝΡ concentration (ng / ml), (B) Percent change from baseline in serum PIIANP concentration.
[図 9]T群および C群における MMP-3量の変化を示す図である。 (Α)血清中の ΜΜΡ3 濃度の測定ィ直 (ng/ml)、 (B)血清中の MMP3濃度のベースラインからの変化率(%) を示す。  FIG. 9 shows changes in the amount of MMP-3 in T group and C group. (Α) Measurement of serum ΜΜΡ3 concentration (ng / ml) (B) Percent change (%) from baseline in serum MMP3 concentration.
[図 10]T群の Erosionの増加の有無と MMP-3変化量の推移を示す図である。  [Fig. 10] A graph showing the presence or absence of an increase in Erosion in T group and the change in MMP-3 change.
[図 11]T群の Erosionの増加の有無と MMP-3変化率の推移を示す図である。  [Fig. 11] A graph showing the presence or absence of an increase in Erosion in T group and the change in MMP-3 change rate.
[図 12]C群の Erosionの増加の有無と MMP-3変化量の推移を示す図である。  FIG. 12 is a graph showing the presence or absence of an increase in Erosion and the change in MMP-3 change in group C.
[図 13]T群の JSNの増加の有無と MMP-3変化率の推移を示す図である。  FIG. 13 is a graph showing the presence or absence of an increase in JSN and the change in MMP-3 change rate in group T.
[図 14]Τ群の JSNの増加の有無と ΡΠΑΝΡ変化率の推移を示す図である。  [FIG. 14] A graph showing the presence or absence of an increase in JSN and the transition of the wrinkle change rate.
[図 15]多変数ロジスティック回帰分析による、 52週後の JSNの ODD比 (95%CI)を示す 図である。  FIG. 15 is a diagram showing the JSN ODD ratio (95% CI) after 52 weeks by multivariable logistic regression analysis.
[図 16]多変数ロジスティック回帰分析による、 52週後の Erosionの ODD比 (95%CI)を示 す図である。  [Fig. 16] A graph showing the Erosion ODD ratio (95% CI) after 52 weeks by multivariable logistic regression analysis.
実施例  Example
[0120] 以下、本発明を実施例によりさらに具体的に説明するが本発明はこれら実施例に 制限されるものではない。  [0120] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[0121] 〔実施例 1〕MRA単独投与群および対象群における、早期関節リウマチ治療予後と生 化学マーカー変化との相関 [0121] [Example 1] Correlation between prognosis of early rheumatoid arthritis treatment and changes in biochemical markers in MRA single administration group and subject group
く方法〉 ヒト化 IL-6受容体抗体である MRAによる治療を受けている、早期関節リウマチ患者 における 1年間の関節破壊の進行度を決定するために、 X線による評価を行った。ま た、軟骨組織、骨代謝および炎症に関する生化学マーカーの初期変化を調べた。 Method> To determine the degree of progression of joint destruction over a year in patients with early rheumatoid arthritis treated with MRA, a humanized IL-6 receptor antibody, an X-ray evaluation was performed. In addition, initial changes in biochemical markers related to cartilage tissue, bone metabolism and inflammation were examined.
[0122] 対象となる患者(306名)は、以下の基準で選択した。 [0122] Target patients (306) were selected according to the following criteria.
(1)罹病期間 6ヶ月以上 5年未満  (1) Disease duration 6 months or more and less than 5 years
(2)年齢 20歳以上  (2) Age 20 and over
(3)少なくとも lj以上の DMARDsある!/、は免疫抑制剤の投与で活動性を有する患者 (3) There are at least lj or more DMARDs! /, Patients who are active with the administration of immunosuppressants
(4)登録時 (治験薬投与前 2週間以内)に以下の項目を満たす患者 (4) Patients who meet the following conditions at the time of registration (within 2 weeks before study drug administration)
疼痛≥ 6関節  Pain ≥ 6 joints
炎症性腫脹≥ 6関節  Inflammatory swelling ≥ 6 joints
ESR≥30mm/hr かつ CRP≥2.0mg/dL  ESR≥30mm / hr and CRP≥2.0mg / dL
[0123] 患者を T群 (MRA単独投与群; 4週間毎に 8 mg/kg)、 C群(対象群;一般的な用法で DMARDs (disease-modifying antirheumatic drugs)剤を投与、病気の活性化に従って 生物学的製剤および biphosphonate剤を調整することを除く)に分けた。 [0123] Patients were treated with group T (MRA single administration group; 8 mg / kg every 4 weeks), group C (target group; DMARDs (disease-modifying antirheumatic drugs) in general usage, and disease activation Divided into biologics and biphosphonate preparations).
関節破壊は、ベースライン (治療剤投与前)と 28週および 52週目に、 X線評価 (シャ ープスコア、 van der Heijde modified Sharp method)によって測定した。評価基準を、 以下の表;!〜 3に、また評価を行った関節部位 (領域)を図 2〜4に示す。  Joint destruction was measured by X-ray assessment (sharp score, van der Heijde modified Sharp method) at baseline (before treatment) and at 28 and 52 weeks. The evaluation criteria are shown in the following tables;! To 3, and the joint sites (regions) where the evaluation was performed are shown in FIGS.
[0124] [表 1] [0124] [Table 1]
Figure imgf000029_0001
Figure imgf000029_0001
トータルシャープスコア(Total Sharp score)による評価(Erosionの合計 + JSNの合計) 総合点数(最大) = 160+ 120+ 120+48=448点  Evaluation by Total Sharp score (total of Erosion + total of JSN) Total score (maximum) = 160+ 120+ 120 + 48 = 448 points
[表 2] Score 0 Normal [Table 2] Score 0 Normal
Score 1 If they are discrete Score 1 If they are discrete
Score 2 2 or 3 if they are larger,depending on Score 2 2 or 3 if they are larger, depending on
the surface area of the joint involved  the surface area of the joint involved
Score 3 If the erosion is large and extends over  Score 3 If the erosion is large and extends over
the imaginary middle of the bone the imaginary middle of the bone
Score 4 Score 4
Score 5 A complete collapse of the bone 骨びらん (erosion)点数評価基準 Score 5 A complete collapse of the bone erosion score evaluation criteria
※各関節での合計点数が 5点を超えた場合は全て 5点として极ぅ  * If the total number of points in each joint exceeds 5 points, all points are 5 points.
(ただし足関節については、各関節ともに最大合計点数を 10点とする) (However, for ankle joints, each joint has a maximum total of 10 points)
[表 3] [Table 3]
Figure imgf000030_0001
Figure imgf000030_0001
関節裂隙狭小化 (joint-space narrowing;以下 JSN)点数評価基準 Joint space narrowing (JSN) score evaluation criteria
JSN:一般的に軟骨を表して!/、ると考えられてレ、る JSN: It generally represents cartilage!
また、生化学的マーカー(PIIANP、 matrix metalloproteinase 3 (MMP- 3)、 PIICP、ォ ステオカルシン、骨アルカリフォスファターゼ、 CRP等)を、ベースラインおよび治療の 12、 24、 36、 48および 52週目に測定した。 [0128] DAS28スコア:観察対象関節における疼痛 (圧痛または運動痛)関節数 (TJC)、腫脹 関節痛(SJC)ならびに ESR (erythrocyte sedimentation rate)、患者による全般評価( GH: general health status)を用いて以下の計算式により算出する(Arthritis & Rheum atism 38:44, 1995、 Arthritis & Rheumatism 39:34, 1995)。 In addition, biochemical markers (PIIANP, matrix metalloproteinase 3 (MMP-3), PIICP, osteocalcin, bone alkaline phosphatase, CRP, etc.) are measured at baseline, 24, 36, 48 and 52 weeks of treatment. did. [0128] DAS28 score: Pain (tenderness or movement pain) in joints to be observed (TJC), swollen joint pain (SJC) and ESR (erythrocyte sedimentation rate), using general evaluation by the patient (GH: general health status) (Arthritis & Rheumatism 38:44, 1995, Arthritis & Rheumatism 39:34, 1995).
28関節数に基づく修正 DAS=DAS28  28 Based on the number of joints DAS = DAS28
DAS28=0.56 TJC + 0.28 SJC + 0.7In ESR + 0.014 x GH  DAS28 = 0.56 TJC + 0.28 SJC + 0.7In ESR + 0.014 x GH
[0129] く結果〉 [0129] Results>
ベースラインでの、被検患者の平均年齢は 53歳、平均罹患期間は 2.3年であり、平 均 DAS28スコアは 6.5、トータルシャープスコアは 29.4、および CRPは 4.8mg/dLであつ た。  At baseline, patients had an average age of 53 years, an average disease duration of 2.3 years, an average DAS28 score of 6.5, a total sharp score of 29.4, and a CRP of 4.8 mg / dL.
トータルシャープスコア(図 5)、骨びらん(erosion)スコア(図 6)、関節裂隙狭小化 (J SN)スコア(図 7)の変化の測定により、 C群と比較すると T群の 1年間の関節破壊の進 行が有意に少なかった。  By measuring changes in the total sharp score (Figure 5), bone erosion score (Figure 6), and joint space narrowing (JSN) score (Figure 7) There was significantly less progress in destruction.
また、 PIIANP (表 4、 6および 8、および図 8)、 MMP-3 (表 5、 7および 9、および図 9) 、 PIICP、ォステオカルシン、骨アルカリフォスファターゼ、および CRPを含む治療 12 週目の生化学マーカーの変化は、 T群および C群間に有意な差が認められた。  In addition, 12 weeks of treatment including PIIANP (Tables 4, 6 and 8, and Figure 8), MMP-3 (Tables 5, 7 and 9, and Figure 9), PIICP, osteocalcin, bone alkaline phosphatase, and CRP. Changes in chemical markers were significantly different between T and C groups.
PIIANPおよび MMP-3それぞれについての、測定値 (ng/ml)を表 4および表 5、ベー スラインからの変化量(ng/ml)を表 6および表 7、ベースラインからの変化率(%)を表 8 および表 9に示す。  For PIIANP and MMP-3, measured values (ng / ml) are shown in Table 4 and Table 5, changes from baseline (ng / ml) are shown in Tables 6 and 7, and percentage change from baseline (%) Are shown in Table 8 and Table 9.
[0130] [表 4] [0130] [Table 4]
eget0304_fas Summary of Bone Mineral Density and Bone and Carti lage Markers [FAS] eget0304_fas Summary of Bone Mineral Density and Bone and Cartiage Markers [FAS]
Visi Actual Values Visi Actual Values
TT 95% CI P- value  TT 95% CI P- value
Mean SD SEM Med i an Min し ower - Upper (*) Mean SD SEM Med i an Min and ower-Upper (*)
S-PI IANP (NG/ML) S-PI IANP (NG / ML)
WEEK 0  WEEK 0
Contro I 145 459. 210.9 17.5 409.4 124 1431 425.2一 494.4 0.597 MRA 8mg/kg 156 447. 184.6 14.8 412.2 152 1293 418.6 - 477.0  Contro I 145 459. 210.9 17.5 409.4 124 1431 425.2 One 494.4 0.597 MRA 8mg / kg 156 447. 184.6 14.8 412.2 152 1293 418.6-477.0
WEEK 12  WEEK 12
Control 141 467. 189. 16.0 422.2 141 1254 435.5 - 498.7 く 0.001 MRA 8mg/k 152 376. 151. 12.3 346.0 115 1056 352.4 - 400.9  Control 141 467. 189. 16.0 422.2 141 1254 435.5-498.7 + 0.001 MRA 8mg / k 152 376. 151. 12.3 346.0 115 1056 352.4-400.9
WEEK 24  WEEK 24
Control 140 470. 205.1 17.3 425.4 130 1220 436. 504. <0.001 MRA 8mg/kg 141 359. 132.6 11.2 343.7 150 1030 337. 381.  Control 140 470. 205.1 17.3 425.4 130 1220 436. 504. <0.001 MRA 8mg / kg 141 359. 132.6 11.2 343.7 150 1030 337. 381.
WEEK 36  WEEK 36
Contro I 133 473. 187.6 16.3 439 161 1087 441, 505. <0.001 MRA 8mg/kg 138 358. 135.8 11.6 335. 145 1088 335. 381.  Contro I 133 473. 187.6 16.3 439 161 1087 441, 505. <0.001 MRA 8mg / kg 138 358. 135.8 11.6 335. 145 1088 335. 381.
WEEK 48  WEEK 48
Contro I 130 471. 191.3 16.8 426.0 134 1017 438. 504. <0.001 MRA 8mg/kg 135 360. 158.1 13.6 338.3 149 1420 333. 387.  Contro I 130 471. 191.3 16.8 426.0 134 1017 438. 504. <0.001 MRA 8mg / kg 135 360. 158.1 13.6 338.3 149 1420 333. 387.
WEEK 52  WEEK 52
Control 129 471. 209,2 18.4 414.4 170 1384 434. 507. <0.001 MRA 8mg/k 134 354. 131.0 11.3 323.9 154 904 331. 376.  Control 129 471. 209,2 18.4 414.4 170 1384 434. 507. <0.001 MRA 8mg / k 134 354. 131.0 11.3 323.9 154 904 331. 376.
LastOBS  LastOBS
Contro I 144 472. 215.6 18.0 413.9 142 1384 437. 508. く 0.001 MRA 8mg/k 157 359. 154.1 12.3 327.9 154 1420 334. 383.  Contro I 144 472. 215.6 18.0 413.9 142 1384 437. 508. 0.00 0.001 MRA 8mg / k 157 359. 154.1 12.3 327.9 154 1420 334. 383.
ΡΠΑΝΡの測定値(ng/ml) Measured value of sputum (ng / ml)
nは要約統計量に寄与する患者数を表す。 n represents the number of patients contributing to summary statistics.
(*)はスチューデント t検定を表す。  (*) Represents Student's t-test.
TT:試行処理(Trial Treatment)  TT: Trial treatment
LastOBS:最直前観測値  LastOBS: last observed value
(%)は、ベースライン (0を除く)および要約された期間の値を持つ患者のみを含む ースライン値による変化を表す。  (%) Represents the change by baseline value, which includes only patients with baseline (except 0) and summarized duration values.
[表 5] [Table 5]
eget0304 fas Summary of Bone Mineral Density and Bone and Cart i I age Markers [FAS] eget0304 fas Summary of Bone Mineral Density and Bone and Cart i I age Markers [FAS]
Visit ― Actual Va I u Visit ― Actual Va I u
TT 95% CI P- value  TT 95% CI P- value
Mean SD SEM Med i an Lower - Upper (*)  Mean SD SEM Med i an Lower-Upper (*)
MMP-3 (NG/ML) MMP-3 (NG / ML)
WEEK 0  WEEK 0
Control 145 408.5 233.8 19.4 334.0 59 800 370.2 ― 446.9 0.568 MRA 8mg/kg 156 393.2 232.1 18.6 330.0 61 800 356.4 - 429.9  Control 145 408.5 233.8 19.4 334.0 59 800 370.2 ― 446.9 0.568 MRA 8mg / kg 156 393.2 232.1 18.6 330.0 61 800 356.4-429.9
WEEK 12  WEEK 12
Control 142 332. 213.3 17. 299.0 44 800 297. 368.0 く 0.001 MRA 8mg/kg 152 165. 145.3 11. 122.0 18 800 142. 189.  Control 142 332. 213.3 17. 299.0 44 800 297. 368.0 + 0.001 MRA 8mg / kg 152 165. 145.3 11. 122.0 18 800 142. 189.
WEEK 24  WEEK 24
Control 140 306. 202.6 17. 236. 31 800 272. 339. <0.001 MRA 8mg/kg 144 121. 89.6 100. 14 505 106. 135.  Control 140 306. 202.6 17. 236. 31 800 272. 339. <0.001 MRA 8mg / kg 144 121. 89.6 100. 14 505 106. 135.
20 800 261. 328. <0.001
Figure imgf000033_0001
16 368 94. 119.
20 800 261. 328. <0.001
Figure imgf000033_0001
16 368 94. 119.
WEEK 48  WEEK 48
Control 131 294. 196.2 17.1 257. 22 800 260. 328. く 0.001 MRA 8mg/kg 136 104. 86.5 78. 18 499 89. 119.  Control 131 294. 196.2 17.1 257. 22 800 260. 328. 0.001 MRA 8mg / kg 136 104. 86.5 78. 18 499 89. 119.
WEEK 52  WEEK 52
Control 131 296. 195.2 17. 266. 22 800 262. 330. <0.001 MRA 8mg/kg 135 104. 88.5 74. 12 548 89. 119.  Control 131 296. 195.2 17. 266. 22 800 262. 330. <0.001 MRA 8mg / kg 135 104. 88.5 74. 12 548 89. 119.
LastOBS  LastOBS
Control 144 298. 198.3 16. 22 800 266. 331. <0.001 MRA 8mg/k 157 106. 85.0 6.
Figure imgf000033_0002
12 548 92. 119.
Control 144 298. 198.3 16. 22 800 266. 331. <0.001 MRA 8mg / k 157 106. 85.0 6.
Figure imgf000033_0002
12 548 92. 119.
MMP-3の測定値(ng/ml) Measured value of MMP-3 (ng / ml)
nは要約統計量に寄与する患者数を表す。 n represents the number of patients contributing to summary statistics.
(*)はスチューデント t検定を表す。  (*) Represents Student's t-test.
TT:試行処理(Trial Treatment)  TT: Trial treatment
LastOBS:最直前観測値  LastOBS: last observed value
(%)は、ベースライン (0を除く)および要約された期間の値を持つ患者のみを含むベ ースライン値による変化を表す。  (%) Represents the change by baseline value, including only patients with baseline (except 0) and summarized duration values.
[表 6] [Table 6]
eget0304_fas Summary of Bone Mineral Density and Bone and Carti lage Markers [FAS] eget0304_fas Summary of Bone Mineral Density and Bone and Cartiage Markers [FAS]
Visit Change From Baseに me Visit Change From Base to me
TT 95% CI P-value  TT 95% CI P-value
Mean SD SEM Median Min Max Lower一 Upper (*)  Mean SD SEM Median Min Max Lower I Upper (*)
S-PI IANP (NG/ L) S-PI IANP (NG / L)
WEEK 12  WEEK 12
Contro I 141 8.0 118.3 10.0 15.9 -545 335 -11. 27.7 く 0.001 M A 8mg/kg 151 -73.8 135.1 11.0 —61.2 -756 465 -95. ί -52.1  Contro I 141 8.0 118.3 10.0 15.9 -545 335 -11. 27.7 0.001 M A 8mg / kg 151 -73.8 135.1 11.0 —61.2 -756 465 -95. Ί -52.1
WEEK 24  WEEK 24
Control 140 8.7 136.1 11.5 13.4 -594 457 -14. 31.4 <0.001 MRA 8mg/kg 140 一 93.0 141.2 11.9 —93.8 -814 289 -116. -69.4  Control 140 8.7 136.1 11.5 13.4 -594 457 -14. 31.4 <0.001 MRA 8mg / kg 140 1 93.0 141.2 11.9 —93.8 -814 289 -116.-69.4
WEEK 36  WEEK 36
Control 133 17.1 146.8 12.7 13.8 -459 575 -8. 42.3 く 0.001 MRA 8mg/kg 137 -87.1 154.4 13.2 -81.6 -828 346 -113. -61.0  Control 133 17.1 146.8 12.7 13.8 -459 575 -8. 42.3 + 0.001 MRA 8mg / kg 137 -87.1 154.4 13.2 -81.6 -828 346 -113. -61.0
WEEK 48  WEEK 48
Control 130 16.4 146.1 12.8 3.5 -479 396 一 9. 41.7 く 0.001 MRA 8mg/kg 134 -93.7 145.4 12.6 -91.4 -847 277 -68.9  Control 130 16.4 146.1 12.8 3.5 -479 396 1 9. 41.7 + 0.001 MRA 8mg / kg 134 -93.7 145.4 12.6 -91.4 -847 277 -68.9
WEEK 52  WEEK 52
Contro I 129 16. 136.1 12.0 3.5 —426 580 39.8 <0.001 MRA 8mg/kg 133 -91. 141.6 12.3 -76.8 -847 191 -115 -67.3  Contro I 129 16. 136.1 12.0 3.5 --426 580 39.8 <0.001 MRA 8mg / kg 133 -91. 141.6 12.3 -76.8 -847 191 -115 -67.3
Contro I 144 13.5 133.2 11.1 1.2 -426 580 35.5 <0.001 MRA 8mg/k 156 -89.0 138.9 11.1 -74.9 -847 191
Figure imgf000034_0001
-67.0
Contro I 144 13.5 133.2 11.1 1.2 -426 580 35.5 <0.001 MRA 8mg / k 156 -89.0 138.9 11.1 -74.9 -847 191
Figure imgf000034_0001
-67.0
ΡΠΑΝΡのベースラインからの変化量(ng/ml) Amount of change from baseline in cocoon (ng / ml)
nは要約統計量に寄与する患者数を表す。 n represents the number of patients contributing to summary statistics.
(*)はスチューデント t検定を表す。 (*) Represents Student's t-test.
TT:試行処理(Trial Treatment) TT: Trial treatment
LastOBS:最直前観測値 LastOBS: last observed value
(%)は、ベースライン (0を除く)および要約された期間の値を持つ患者のみを含むベ ースライン値による変化を表す。  (%) Represents the change by baseline value, including only patients with baseline (except 0) and summarized duration values.
[表 7] [Table 7]
eget0304_fas Summary of Bone Mineral Density and Bone and Cart i I age Markers [FAS] eget0304_fas Summary of Bone Mineral Density and Bone and Cart i I age Markers [FAS]
Vis Change From Basel ine Vis Change From Basel ine
TT 95% CI P-value  TT 95% CI P-value
Mean SO SEM Median Min Lower一 Upper (*)  Mean SO SEM Median Min Lower I Upper (*)
MMP-3 (NG/ML) MMP-3 (NG / ML)
WEEK 12  WEEK 12
Contro I 142 -74. 176.9 14.8 -24.5 -654 265 —104. -45.3 <0.001 MRA 8mg/kg 151 -231. 224.1 18.2 -179.2 -764 364 -267. -195.4  Contro I 142 -74. 176.9 14.8 -24.5 -654 265 --104.-45.3 <0.001 MRA 8mg / kg 151 -231. 224.1 18.2 -179.2 -764 364 -267. -195.4
194.0 16.4 -46.5 -625 465 -127. -62.2 く 0.001
Figure imgf000035_0001
233.8 19.6 -239.1 -775 92 -316. -239.1
194.0 16.4 -46.5 -625 465 -127.-62.2
Figure imgf000035_0001
233.8 19.6 -239.1 -775 92 -316.-239.1
WEEK 36  WEEK 36
Contro I 133 -105. 206.5 17.9 -56.0 -638 426 -141. -70.5 く 0.001 MRA 8mg/kg 139 -290. 238.0 20.2 -269.0 -780 150 —329. 一 250.1  Contro I 133 -105. 206.5 17.9 -56.0 -638 426 -141. -70.5 + 0.001 MRA 8mg / kg 139 -290. 238.0 20.2 -269.0 -780 150 --329.
WEEK 48  WEEK 48
Control 131 -110. 213.9 18.7 -50.0 -687 451 -147. -73.3 <0.001 MRA 8mg/kg 135 -291. 243.9 21.0 -268. -781 203 -333. -250.2  Control 131 -110. 213.9 18.7 -50.0 -687 451 -147. -73.3 <0.001 MRA 8mg / kg 135 -291. 243.9 21.0 -268. -781 203 -333. -250.2
WEEK 52  WEEK 52
Contro I 131 -108. 210.6 18.4 -44.0 -684 314 -144. -71.6 <0.001 MRA 8mg/kg 134 -293. 243.6 21.0 -275.2 -780 296 -335. 一 252.1  Contro I 131 -108. 210.6 18.4 -44.0 -684 314 -144. -71.6 <0.001 MRA 8mg / kg 134 -293. 243.6 21.0 -275.2 -780 296 -335.
LastOBS  LastOBS
Control 144 —107. 205.8 17.1 -44.9 -684 314 -141. -73.2 <0.001 MRA 8mg/kg 156 -286. 242.0 19.4 - 242, 3 -780 296 -324. -248.3  Control 144 -107. 205.8 17.1 -44.9 -684 314 -141. -73.2 <0.001 MRA 8mg / kg 156 -286. 242.0 19.4-242, 3 -780 296 -324. -248.3
MMP-3のベースラインからの変化量(ng/ml) MMP-3 change from baseline (ng / ml)
nは要約統計量に寄与する患者数を表す。 n represents the number of patients contributing to summary statistics.
(*)はスチューデント t検定を表す。 (*) Represents Student's t-test.
TT:試行処理(Trial Treatment) TT: Trial treatment
LastOBS:最直前観測値 LastOBS: last observed value
(%)は、ベースライン (0を除く)および要約された期間の値を持つ患者のみを含むベ ースライン値による変化を表す。  (%) Represents the change by baseline value, including only patients with baseline (except 0) and summarized duration values.
[表 8] [Table 8]
eget0304_fas Summary of Bone ineral Density and Bone and Cartilage Markers [FAS] eget0304_fas Summary of Bone ineral Density and Bone and Cartilage Markers [FAS]
Visit Percent Change From Baseline Visit Percent Change From Baseline
TT 95% CI P-value  TT 95% CI P-value
Mean SD SEM Med i an Min Lower一 Upper (*) Mean SD SEM Med i an Min Lower I Upper (*)
S S
- 9.71 <0.001 一 -8.09  -9.71 <0.001 one -8.09
- 10.22 く 0.001 - -10.75  -10.22 to 0.001--10.75
14.90 <0.001 -9.46  14.90 <0.001 -9.46
13.65 <0.001 -11.84  13.65 <0.001 -11.84
12.84 く 0.001
Figure imgf000036_0001
-11.45
12.84 to 0.001
Figure imgf000036_0001
-11.45
LastOBS  LastOBS
Control 144 6.52 31.31 2.61 0. -63 03 220. 45 36 11.68 <0.001 MRA 8mg/kg 156 -15.62 26.00 2.08 一 20· 一 76 59 91. 75 -19.73 -11.51  Control 144 6.52 31.31 2.61 0.-63 03 220. 45 36 11.68 <0.001 MRA 8mg / kg 156 -15.62 26.00 2.08 One 20 One 76 59 91. 75 -19.73 -11.51
PIIANPのベースラインからの変化率(%) Rate of change from baseline in PIIANP (%)
nは要約統計量に寄与する患者数を表す。 n represents the number of patients contributing to summary statistics.
( はスチューデント t検定を表す。 (Represents Student t-test.
TT:試行処理(Trial Treatment) TT: Trial treatment
LastOBS:最直前観測値 LastOBS: last observed value
(%)は、ベースライン (0を除く)および要約された期間の値を持つ患者のみを含む^ ースライン値による変化を表す。  (%) Represents the change due to baseline values, including only patients with baseline (except 0) and summarized duration values.
[表 9] [Table 9]
eget0304_fas Summary of Bone ineral Density and Bone and Cart i I age Markers [FAS] eget0304_fas Summary of Bone ineral Density and Bone and Cart i I age Markers [FAS]
Percent Change From Basel ine Percent Change From Basel ine
95% CI P-value Mean SD SEM Med i an in Max Lower一 Upper (*)  95% CI P-value Mean SD SEM Med i an in Max Lower I Upper (*)
MMP-3 (%) MMP-3 (%)
WEE 12  WEE 12
Control 142 —10.18 4.04 -12.7 -18.16 ― -2.20 く 0.001 MRA 8mg/k 151 -48.51 3.00 -55.3 -54.43 - -42.59 Control 142 -10.18 4.04 -12.7 -18.16--2.20 +0.001 MRA 8mg / k 151 -48.51 3.00 -55.3 -54.43--42.59
WEEK 24 WEEK 24
Control 140 -11.40 68.10 5.76 -20.4 -92.6 614.7 -22.78 - - 0.02 <0.001 MRA 8mg/kg 143 -57.13 38.38 3.21 -69.6 -97.3 99.2 -63.47 - -50.78 Control 140 -11.40 68.10 5.76 -20.4 -92.6 614.7 -22.78--0.02 <0.001 MRA 8mg / kg 143 -57.13 38.38 3.21 -69.6 -97.3 99.2 -63.47--50.78
WEEK 36 WEEK 36
Control 133 -12.29 54.32 4.71 -16.9 -95.7 217.8 -21.61 - -2.97 く 0.001 MRA 8mg/kg 139 -59.43 41.67 3.53 -72.5 -97.6 92.4 -66.42 - -52.44 Control 133 -12.29 54.32 4.71 -16.9 -95.7 217.8 -21.61--2.97 0.001 MRA 8mg / kg 139 -59.43 41.67 3.53 -72.5 -97.6 92.4 -66.42--52.44
WEEK 48 WEEK 48
Control 131 - 14.92 49.46 4.32 -16.9 -95.3 243.8 —23.47 - -6, 37 く 0.001 MRA 8mg/kg 135 -60.14 42.92 3.69 -76.4 -97.7 130.6 -67.44 - -52.83  Control 131-14.92 49.46 4.32 -16.9 -95.3 243.8 —23.47--6, 37 0.001 MRA 8mg / kg 135 -60.14 42.92 3.69 -76.4 -97.7 130.6 -67.44--52.83
WEEK 52  WEEK 52
Control 131 -14.60 47.21 4.13 -12.8 -95.3 169.7 —22.77一 —6.44 く 0.001 MRA 8mg/k 134 -60.32 45.53 3.93 -78.9 -97.5 154.4 -68.10 - -52.54  Control 131 -14.60 47.21 4.13 -12.8 -95.3 169.7 —22.77 1 —6.44 0.001 MRA 8mg / k 134 -60.32 45.53 3.93 -78.9 -97.5 154.4 -68.10--52.54
LastOBS  LastOBS
Control 144 -14.59 46.35 3.86 -14.4 -95.3 169.7 -22.22 - -6.95 <0.001 MRA Bmg/kg 156 - 59.23 45.47 3.64 -75, 5 -97.5 154.4 -66.42 - -52.04  Control 144 -14.59 46.35 3.86 -14.4 -95.3 169.7 -22.22--6.95 <0.001 MRA Bmg / kg 156-59.23 45.47 3.64 -75, 5 -97.5 154.4 -66.42--52.04
o σ>  o σ>
MMP-3のベースラインからの変化率(%) Rate of change from baseline of MMP-3 (%)
nは要約統計量に寄与する患者数を表す。  n represents the number of patients contributing to summary statistics.
(*)はスチューデント t検定を表す。  (*) Represents Student's t-test.
TT:試行処理(Trial Treatment)  TT: Trial treatment
LastOBS:最直前観測値  LastOBS: last observed value
(%)は、ベースライン (0を除く)および要約された期間の値を持つ患者のみを含むベ ースライン による変化を表す。  (%) Represents the change from baseline (excluding 0) and baseline, including only patients with summarized duration values.
[0136] 関節破壊の X線評価の結果と、生化学マーカーの量の変化の相関について、以下 に示す。 [0136] The correlation between the results of X-ray evaluation of joint destruction and changes in the amount of biochemical markers is shown below.
T群では、 12週目の MMP-3濃度の変化率および 1年間の erosionスコアの変化量と の間の相関関係が有意であった(Spearmanの相関係数: r=0.23 ρく 0.01)。また ΜΜΡ -3濃度と ΡΠΑΝΡ濃度の 12週目における変化率は、 1年間の JSNスコアの変化量とも有 意に相関関係を示した(ΜΜΡ-3;Γ=0·28 ρく 0.01 PIIANP;r=0.25 pく 0.01)。  In group T, there was a significant correlation between the rate of change in MMP-3 concentration at week 12 and the amount of change in the erosion score for one year (Spearman correlation coefficient: r = 0.23 ρ 0.01). In addition, -3-3 concentration and the change rate of ΡΠΑΝΡ concentration at the 12th week were significantly correlated with the change in JSN score for one year (ΜΜΡ-3; Γ = 0 · 28 ρ 0.01 PIIANP; r = 0.25 p 0.01).
[0137] 更に、多変量解析を行った。その結果、 Erosionスコアの 52週変化量は、 MMP-3濃 度の変化率(ρ=0·03)で、また、 JSNの 52週変化量は、 ΜΜΡ-3濃度の 12週変化率(ρ く 0.01)および ΡΠΑΝΡ濃度の 12週変化率 (pく 0.01)で説明することが妥当であるとされ た(表 10及び表 11)。表中、「CE52」、「CJ52」は、それぞれ、 Erosionスコア及び JSNス コアの 52週目におけるベースラインからの変化量を表す。表中、「PMMP312」、「ΡΡΠ ANP 12」は、それぞれ、 MMP-3及び ΡΠΑΝΡの 12週目における、ベースラインを 100と した場合の%変化を表す。 [0137] Further, multivariate analysis was performed. As a result, the 52-week change in the Erosion score is the rate of change in the MMP-3 concentration (ρ = 0 · 03), and the 52-week change in the JSN is the 12-week rate of change in the ΜΜΡ-3 concentration (ρ 0.01) and the 12-week rate of change in sputum concentration (p 0.01) were considered appropriate (Table 10 and Table 11). In the table, “CE52” and “CJ52” represent the change from baseline in the 52nd week of Erosion score and JSN score, respectively. In the table, “PMMP312” and “ΡΡΠANP12” represent the% change when the baseline is 100 for the 12th week of MMP-3 and ΡΠΑΝΡ, respectively.
[表 10] [Table 10]
Tba ^8 織 dure  Tba ^ 8 weave dure
Itodei 1IQDEL1  Itodei 1IQDEL1
ftspaikdfiitt Variable: i  ftspaikdfiitt Variable: i
Analyst of Vaitiatm  Analyst of Vaitiatm
of e  of e
Sarce Df Sq隱 ¼JBfe F ^l&im  Sarce Df Sq 隱 ¼JBfe F ^ l & im
63.贿 0 sues 4.  63. 贿 0 sues 4.
Errar m. S3 i Ί. mm  Errar m. S3 i Ί. Mm
Corre ted Total 細.麵 7  Corre ted Total 細. 7
Hoot USE 2-76087 K 隱 β 0-0S55 Hoot USE 2-76087 K 隱 β 0-0S55
Oepandant Mean 0.fldl7» Mi R-Se 0.0451  Oepandant Mean 0.fldl7 »Mi R-Se 0.0451
£{t« f Var far«E»tw Est iaates  £ {t «f Var far« E »tw Est iaates
Standard  Standard
議 i ぐ
Figure imgf000038_0001
I
Figure imgf000038_0001
多変量解析(Erosion Score52) Multivariate analysis (Erosion Score52)
[表 11] [Table 11]
ardent: Vari^le-
Figure imgf000039_0001
of V ia oa
ardent: Vari ^ le-
Figure imgf000039_0001
of V ia oa
S i of Nfi  S i of Nfi
Source Square F V&i Pf > F  Source Square F V & i Pf> F
3 風 24733  3 Wind 24733
Error 130 im. mm  Error 130 im.mm
tere^ted Total 133 tm. n itoot USE 3.2S3B0 0.1636  tere ^ ted Total 133 tm. n itoot USE 3.2S3B0 0.1636
De findfi t Mean L5559T  De findfi t Mean L5559T
239.0fi77S  239.0fi77S
«e  «E
f araaete* Est mates  f araaete * Est mates
Varia le Df Varia le Df
tercet 1 .10?^ 0.730SS  tercet 1 .10? ^ 0.730SS
?312 1 . m 0.00814  ? 312 1 .m 0.00814
5 0. な  5 0.
: 1 0.301 ¾ m321 S  : 1 0.301 ¾ m321 S
多変量解析 OSN52)  (Multivariate analysis OSN52)
[0140] また、 12週目の MMP-3濃度の変化率 (PMMP312)と PIIANP濃度の変化率 (ΡΡΠΑΝΡ  [0140] The rate of change in MMP-3 concentration at 12 weeks (PMMP312) and the rate of change in PIIANP concentration (ΡΡΠΑΝΡ
12)は互いに独立しており、 12週目の DAS28スコア(DAS2812)とも独立していること が確認された(表 12)。  12) were independent of each other and confirmed to be independent of the 12th week DAS28 score (DAS2812) (Table 12).
[0141] 〔表 12〕 [0141] [Table 12]
PPIIANP 12と DAS2812と PMMP312の相関  Correlation of PPIIANP 12, DAS2812 and PMMP312
Spearmanの相関係数  Spearman correlation coefficient
PMMP312と DAS2812: 0.40  PMMP312 and DAS2812: 0.40
PPIIANP 12と DAS2812: 0.09  PPIIANP 12 and DAS2812: 0.09
PPIIANP 12と PMMP312: 0.14  PPIIANP 12 and PMMP312: 0.14
[0142] 〔実施例 2〕 MRA単独投与群における、関節破壊の進行と生化学マーカー変化との 相関 [0142] [Example 2] Correlation between progression of joint destruction and changes in biochemical markers in MRA alone administration group
く目的〉  Purpose>
MRA(Tocilizumab)単独治療群(T群)と DMARDs群(C群)を比較して 1年間の骨関 節破壊遅延効果の検討した試験(SAMURAI STUDY)において、 52週目で、 C群(me an 6.1; 95%CI 4.2, 8.0) (pく 0.01)と比較して、 T群が統計的に低い X線スコアの変化 を示し(mean 2.3; 95%CI 1.5, 3.2)、改善の徴候および症状を示したとの結果が得ら れた (参考文献 ARD)。 In a study (SAMURAI STUDY) in which MRA (Tocilizumab) monotherapy group (T group) was compared with DMARDs group (C group) and examined the effect of delayed bone joint destruction for one year, group C (me an 6.1; 95% CI 4.2, 8.0) (p <0.01) (Mean 2.3; 95% CI 1.5, 3.2), indicating that signs and symptoms of improvement were exhibited (reference ARD).
そこで、 SAMURAI STUDYにおいて、治療開始後早期のバイオマーカーの変化量 と 1年後の関節破壊の進行との関連を検討しさらに予測因子を検討した。  Therefore, in SAMURAI STUDY, we investigated the relationship between the amount of biomarker change early after the start of treatment and the progression of joint destruction one year later, and further investigated the predictive factors.
[0143] く方法〉 [0143] Ku Method>
T群を対象として、バイオマーカーの 12週の変化量と erosionスコア、 JSNスコアの 1年 後の変化量との相関関係と多重共線性を考慮して変数選択をし、多変量回帰分析 および多変量口ジステック回帰分析を実施した。  In the T group, variable selection was performed in consideration of the correlation and multicollinearity between the 12-week change in biomarker and the change in erosion score and JSN score after 1 year, and multivariate regression analysis and multiple A random mouth regression analysis was performed.
[0144] く結果〉 [0144] Results>
X線スコアの変化に影響を与える因子を検討したところ、 MMP-3の 12週の変化は Er osionスコアの変化に関連があった(R-square 0.086) (表 13)。  When factors affecting the change in X-ray score were examined, the 12-week change in MMP-3 was associated with a change in erosion score (R-square 0.086) (Table 13).
[表 13] ノ ラメ一ター P値  [Table 13] NORMALTER P-value
説明変数  Explanatory variable
評価  Evaluation
CLMMP312 1.63017 0.0075 重回帰分析 (骨びらん) CLMMP312 1.63017 0.0075 Multiple regression analysis (bone erosion)
CLMMP312=12週目における MMP-3の対数変数の変動値  CLMMP312 = Fluctuation value of logarithmic variable of MMP-3 at 12th week
また MMP-3、 PIIANP, CRPの 12週の変化は JSNスコアの変化に関連があった(R- quare 0.186) (表 14)。  Changes in MMP-3, PIIANP, and CRP at 12 weeks were related to changes in JSN score (R-quare 0.186) (Table 14).
[表 14] パラメーター [Table 14] parameter
説明変数 P値  Explanatory variable P value
評価  Evaluation
CLMMP312 1.65808 0.0253 CLMMP312 1.65808 0.0253
CLPIIANP12 5.65204 0.0162  CLPIIANP12 5.65204 0.0162
CLCRP12 1.13029 0.0025 重回帰分析(関節裂隙の狭小化)  CLCRP12 1.13029 0.0025 Multiple regression analysis (joint space narrowing)
CLMMP312=12週目における MMP-3の対数変数の変動値  CLMMP312 = Fluctuation value of logarithmic variable of MMP-3 at 12th week
CLPIIANP12=12週目における ΡΠΑΝΡの対数変数の変動値  CLPIIANP12 = Variation value of logarithm variable of cocoon at 12th week
CLCRP12=12週目における CRPの対数変数の変動値  CLCRP12 = Change of logarithmic variable of CRP at 12th week
[0146] Erosionスコアの変化量別に MMP-3の 12週の変化量を比較すると、 Erosionスコアの 変化量が小さい群 (Erosionスコア 52週変化量 ^ 0.5)、つまり骨破壊遅延効果がみら れた群にお!/、て、効果がみられなかった群より MMP-3 (細胞外マトリックス成分を分 解する主要なプロテアーゼ:軟骨破壊)が有意に減少した(図 10)。 MMP-3変化率で も同様であった(図 11)。一方、比較対象としている C群では T群と同様の結果はみら れなかった(図 12)。 [0146] When comparing the 12-week change in MMP-3 by the change in Erosion score, the group with a small change in Erosion score (Erosion score 52-week change ^ 0.5), that is, a bone destruction delay effect was seen. MMP-3 (a major protease that degrades extracellular matrix components: cartilage destruction) was significantly reduced compared to the group that had no effect! (Fig. 10). The same was true for the rate of change in MMP-3 (Fig. 11). On the other hand, the same results were not seen in Group C, which is the comparison target (Figure 12).
JSNスコアの変化量別に検討を実施したところ、 JSNスコアの変化量が小さい群 (JSN スコア 52週変化量 0.5)で MMP-3の有意な減少がみられた(図 13)。 ΡΠΑΝΡも同 様に変化量が小さレ、群は大きレ、群に比較して有意な減少がみられた(図 14)。  When examined according to the amount of change in the JSN score, a significant decrease in MMP-3 was observed in the group with a small amount of change in the JSN score (JSN score: 52 weeks change: 0.5) (Figure 13). Similarly, the amount of change was small in the pupa, the group was large, and the group showed a significant decrease compared to the group (Fig. 14).
多変量ロジスティック回帰分析にて ODD比を求めた。 52週後の JSNの変化は MMP- 3の変化(ODD比: 0.333)、 ΡΠΑΝΡの変化(0.377)、 CRPの陰性化(0.288)、 Erosionで は MMP-3の変化(0.485)で予測されることが示唆された(図 15および 16)。  The ODD ratio was determined by multivariate logistic regression analysis. Changes in JSN after 52 weeks are predicted by changes in MMP-3 (ODD ratio: 0.333), changes in sputum (0.377), negative CRP (0.288), and changes in MMP-3 (0.485) in Erosion (Figures 15 and 16).
[0147] 以上の結果より、治療早期の血清中における ΡΠΑΝΡ量および MMP-3量の変化は、 早期 RA患者に対する MRA単独投与による関節破壊の進行抑制効果を測定するッ ールとして有用であることが示された。また、 ΡΠΑΝΡ量および MMP-3量を関節リウマ チ治療後(例えば 12週目)に測定することにより、以後の関節破壊進行度の予測、す なわち関節リウマチの予後を予測することが可能であることが明らかとなった。また、 以上の結果は、治療早期の ΡΠΑΝΡ濃度の変化率はより長い治療期間の JSNスコアの 変化量と相関し、治療早期の MMP-3濃度の変化率はより長い治療期間の erosionス コアの変化量及び JSNスコアの変化量と相関することを示している。このことと、これら 2つの生化学マーカーが互いに独立した変化を示して!/、ることから、本発明によれば 、 ΡΠΑΝΡ量の測定が JSNの予後予測に有効であり得るだけでなぐ ΡΠΑΝΡ量の測定 による JSNの予後予測と、 MMP-3量の測定による JSN及び erosionの予後予測とを組 み合わせることにより、より的確な関節破壊予後の予測も可能である。 [0147] Based on the above results, changes in the amount of sputum and MMP-3 in the serum in the early stage of treatment should be useful as a tool for measuring the effect of inhibiting the progression of joint destruction by MRA alone in early RA patients. It has been shown. In addition, by measuring the amount of sputum and MMP-3 after rheumatoid arthritis treatment (for example, at 12 weeks), the degree of progression of joint destruction can be predicted. In other words, it became clear that the prognosis of rheumatoid arthritis can be predicted. In addition, the above results show that the rate of change in sputum concentration in the early stage of treatment correlates with the amount of change in the JSN score during the longer treatment period, and the rate of change in MMP-3 concentration in the early stage of treatment is related to the erosion score of the longer treatment period. It shows that it correlates with the amount of change and the amount of change in JSN score. Because of this and these two biochemical markers showing changes independent of each other! /, According to the present invention, the measurement of soot amount can only be effective in predicting the prognosis of JSN. By combining JSN prognosis prediction by measurement and JSN and erosion prognosis prediction by measuring MMP-3, more accurate joint destruction prognosis can be predicted.
産業上の利用可能性 Industrial applicability
本発明によって、関節リウマチ治療を行った被験者における、 PIIANP量を指標とし た関節リウマチの治療予後を予測するための方法が提供された。  The present invention provides a method for predicting the prognosis of treatment for rheumatoid arthritis using the amount of PIIANP as an index in a subject who has undergone rheumatoid arthritis treatment.
本発明の方法によって、関節リウマチの治療早期における経時変化を調べることに より、当該治療による RA患者の予後を予測することが可能となった。  According to the method of the present invention, it was possible to predict the prognosis of RA patients due to the treatment by examining the temporal change in the early treatment of rheumatoid arthritis.
さらに、 PIIANP量の経時変化を測定することによって、関節リウマチ治療剤の有効 性を判断すること、関節リウマチ治療剤に適合する患者を選別することも可能となつ た。  In addition, by measuring changes in PIIANP levels over time, it has become possible to judge the effectiveness of therapeutic agents for rheumatoid arthritis and to select patients that are suitable for the treatment of rheumatoid arthritis.

Claims

請求の範囲 The scope of the claims
[I] 以下の工程 (a)〜(c)の工程を含む、関節リウマチ治療を行った被験者における、 関節リウマチの治療予後を予測するための方法。  [I] A method for predicting a prognosis for treatment of rheumatoid arthritis in a subject who has undergone rheumatoid arthritis treatment, comprising the following steps (a) to (c):
(a)被験者力 試料を採取する工程  (a) Subject power Sample collection process
(b)採取した試料中のプロコラーゲン タイプ IIA N-プロペプチド(PIIANP)量を測定 する工程  (b) Measuring the amount of procollagen type IIA N-propeptide (PIIANP) in the collected sample
(c) PIIANP量を指標として、被験者における関節リウマチの治療予後を予測するェ 程  (c) The process of predicting the prognosis for treatment of rheumatoid arthritis in subjects using the amount of PIIANP as an index
[2] 請求項 1記載の工程 (c)において、治療開始前と比較して PIIANP量が減少した場 合に、当該治療による予後は良好であると予測する、請求項 1に記載の方法。  [2] The method according to claim 1, wherein, in the step (c) according to claim 1, when the amount of PIIANP is decreased as compared to before the start of treatment, the prognosis by the treatment is predicted to be good.
[3] 関節リウマチ治療の開始後早期にお!/、て、該治療開始前と比較して PIIANP量が減 少した場合に、当該治療による予後は良好であると予測する、請求項 2に記載の方 法。  [3] In the early stage after the start of rheumatoid arthritis treatment! /, When the amount of PIIANP decreases compared to before the start of the treatment, the prognosis by the treatment is predicted to be good. The method of description.
[4] 関節リウマチの治療の予後が良好であるか否力、が、関節リウマチにおける関節破壊 の進行が抑制されるか否かにより判断される、請求項 2または 3に記載の方法。  [4] The method according to claim 2 or 3, wherein whether or not the prognosis of treatment for rheumatoid arthritis is favorable is determined by whether or not progression of joint destruction in rheumatoid arthritis is suppressed.
[5] 経時的に被験者から試料を採取し、 PIIANP量を測定することを特徴とする、請求項  [5] The sample is collected from subjects over time, and the amount of PIIANP is measured.
1に記載の方法。  The method according to 1.
[6] 関節リウマチが早期関節リウマチである請求項 1〜5に記載の方法。  6. The method according to any one of claims 1 to 5, wherein the rheumatoid arthritis is early rheumatoid arthritis.
[7] 被験者から採取された試料が、血漿、血清、尿、または関節液である請求項 1に記 載の方法。  7. The method according to claim 1, wherein the sample collected from the subject is plasma, serum, urine, or joint fluid.
[8] 関節リウマチ治療が、抗リウマチ剤の投与による治療である、請求項 1に記載の方 法。  [8] The method according to claim 1, wherein the rheumatoid arthritis treatment is treatment by administration of an anti-rheumatic agent.
[9] 関節リウマチ治療が、 IL-1阻害剤、 IL-6阻害剤、 TNF- a阻害剤、 IL-15阻害剤、ま たは IL-17阻害剤の投与による治療である、請求項 1に記載の方法。  [9] The rheumatoid arthritis treatment is treatment by administration of an IL-1 inhibitor, an IL-6 inhibitor, a TNF-a inhibitor, an IL-15 inhibitor, or an IL-17 inhibitor. The method described in 1.
[10] 関節リウマチ治療が、 IL-1、 IL-6, TNF- a、 IL-15または IL-17のシグナル伝達を阻 害する抗体の投与による治療である、請求項 1に記載の方法。  [10] The method according to claim 1, wherein the rheumatoid arthritis treatment is treatment by administration of an antibody that inhibits IL-1, IL-6, TNF-a, IL-15 or IL-17 signaling.
[I I] 関節リウマチ治療が、抗 IL-6抗体、抗 IL-6受容体抗体、抗 TNF- a抗体、抗 CD20 抗体、メソトレキセートまたは CTLA4-IgG融合タンパク質の投与による治療である、請 求項 1に記載の方法。 [II] Rheumatoid arthritis treatment is treatment by administration of anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-TNF-a antibody, anti-CD20 antibody, methotrexate or CTLA4-IgG fusion protein. The method according to claim 1.
[12] ΡΠΑΝΡ量を測定するための試薬を含む、関節リウマチ治療における治療予後を予 測するためのキット。  [12] A kit for predicting the prognosis of treatment in rheumatoid arthritis, comprising a reagent for measuring the amount of sputum.
PCT/JP2007/065238 2006-08-04 2007-08-03 Method for predicting prognosis of rheumatoid arthritis patients WO2008016134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008527799A JP5330829B2 (en) 2006-08-04 2007-08-03 Prediction method for treatment prognosis in patients with rheumatoid arthritis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006213021 2006-08-04
JP2006-213021 2006-08-04

Publications (1)

Publication Number Publication Date
WO2008016134A1 true WO2008016134A1 (en) 2008-02-07

Family

ID=38997307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065238 WO2008016134A1 (en) 2006-08-04 2007-08-03 Method for predicting prognosis of rheumatoid arthritis patients

Country Status (2)

Country Link
JP (1) JP5330829B2 (en)
WO (1) WO2008016134A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505227A (en) * 2008-10-07 2012-03-01 ナショナル チェン クン ユニバーシティ Use of IL-20 antagonists for the treatment of rheumatoid arthritis and osteoporosis
JP2012053034A (en) * 2010-08-06 2012-03-15 Perseus Proteomics Inc Inflammatory state detection method
US8398980B2 (en) 2004-03-24 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleuken-6 receptor
US8568720B2 (en) 2007-12-27 2013-10-29 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US8580264B2 (en) 2010-11-08 2013-11-12 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody
US8709409B2 (en) 2003-04-28 2014-04-29 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis by administering an anti-IL-6 antibody and methotrexate
US8840884B2 (en) 2002-02-14 2014-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution pharmaceuticals
US9017677B2 (en) 1997-03-21 2015-04-28 Chugai Seiyaku Kabushiki Kaisha Methods of treating a disease mediated by sensitized T cells
WO2015136298A1 (en) * 2014-03-13 2015-09-17 Isis Innovation Limited Methods and system for determining the disease status of a subject
US9221904B2 (en) 2012-07-19 2015-12-29 National Cheng Kung University Treatment of osteoarthritis using IL-20 antagonists
US9255145B2 (en) 2001-04-02 2016-02-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US10168326B2 (en) 2013-07-04 2019-01-01 F. Hoffmann-La Roche Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US10501769B2 (en) 2009-10-26 2019-12-10 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI H. ET AL.: "TNF o Chushin to shita Ko-Cytokine Ryoho", INTERNAL MEDICINE, vol. 86, no. 2, 2000, pages 285 - 290, XP003019914 *
MIYASAKA N.: "RA no Ko-Cytokine Ryoho", RHEUMATOLOGY, vol. 23, no. 5, 2000, pages 478 - 483, XP003019915 *
ROUSSEAU J.-C. ET AL.: "Serum levels of type IIA procollagen amino terminal propeptide (PIIANP) are decreased in patients with knee osteoarthritis and rheumatoid arthritis", OSTEOARTHRITIS AND CARTILAGE, vol. 12, 2004, pages 440 - 447, XP003019913 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017677B2 (en) 1997-03-21 2015-04-28 Chugai Seiyaku Kabushiki Kaisha Methods of treating a disease mediated by sensitized T cells
US9255145B2 (en) 2001-04-02 2016-02-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US8840884B2 (en) 2002-02-14 2014-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution pharmaceuticals
US9051384B2 (en) 2002-02-14 2015-06-09 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution formulations
US10744201B2 (en) 2003-04-28 2020-08-18 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis with a human IL-6 receptor antibody and methotrexate
US8709409B2 (en) 2003-04-28 2014-04-29 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis by administering an anti-IL-6 antibody and methotrexate
US9902777B2 (en) 2004-03-24 2018-02-27 Chugai Seiyaku Kabushiki Kaisha Methods for producing subtypes of humanized antibody against interleukin-6 receptor
US8398980B2 (en) 2004-03-24 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleuken-6 receptor
US8734800B2 (en) 2004-03-24 2014-05-27 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleukin-6 receptor
US11767363B2 (en) 2007-12-27 2023-09-26 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US8568720B2 (en) 2007-12-27 2013-10-29 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11584798B2 (en) 2007-12-27 2023-02-21 Hoffmann-La Roche Inc. High concentration antibody-containing liquid formulation
US11359026B2 (en) 2007-12-27 2022-06-14 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11008394B2 (en) 2007-12-27 2021-05-18 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
JP2012505227A (en) * 2008-10-07 2012-03-01 ナショナル チェン クン ユニバーシティ Use of IL-20 antagonists for the treatment of rheumatoid arthritis and osteoporosis
JP2016041730A (en) * 2008-10-07 2016-03-31 ナショナル チェン クン ユニバーシティ Use of il-20 antagonists for treating rheumatoid arthritis
US10501769B2 (en) 2009-10-26 2019-12-10 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11021728B2 (en) 2009-10-26 2021-06-01 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11377678B2 (en) 2009-10-26 2022-07-05 Hoffman-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11136610B2 (en) 2009-10-26 2021-10-05 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
JP2012053034A (en) * 2010-08-06 2012-03-15 Perseus Proteomics Inc Inflammatory state detection method
US9539263B2 (en) 2010-11-08 2017-01-10 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody for treatment of systemic sclerosis
US10874677B2 (en) 2010-11-08 2020-12-29 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US9750752B2 (en) 2010-11-08 2017-09-05 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US10231981B2 (en) 2010-11-08 2019-03-19 Chugai Seiyaku Kabushiki Kaisha Subcutaneously administered anti-IL-6 receptor antibody for treatment of juvenile idiopathic arthritis
US11622969B2 (en) 2010-11-08 2023-04-11 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US11667720B1 (en) 2010-11-08 2023-06-06 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US8580264B2 (en) 2010-11-08 2013-11-12 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody
US9221904B2 (en) 2012-07-19 2015-12-29 National Cheng Kung University Treatment of osteoarthritis using IL-20 antagonists
US10168326B2 (en) 2013-07-04 2019-01-01 F. Hoffmann-La Roche Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US10761091B2 (en) 2013-07-04 2020-09-01 Hoffmann-La Roche, Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
WO2015136298A1 (en) * 2014-03-13 2015-09-17 Isis Innovation Limited Methods and system for determining the disease status of a subject

Also Published As

Publication number Publication date
JPWO2008016134A1 (en) 2009-12-24
JP5330829B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5330829B2 (en) Prediction method for treatment prognosis in patients with rheumatoid arthritis
KR100842132B1 (en) Remedies for infant chronic arthritis-relating diseases
JP4555924B2 (en) Spinal cord injury therapeutic agent containing interleukin-6 antagonist
RU2379054C2 (en) Prophylactic drug for vasculitis
AU757261B2 (en) Preventives or remedies for pancreatitis containing IL-6 antagonists as the active ingredient
US8617550B2 (en) Treatment of vasculitis with IL-6 antagonist
JPWO2002034292A1 (en) Preventive or therapeutic agent for psoriasis containing an IL-6 antagonist as an active ingredient
JPWO2002036165A1 (en) Agent for lowering blood MMP-3 concentration containing an IL-6 antagonist as an active ingredient
JP6442404B2 (en) Method for predicting treatment prognosis in patients with relapsing-remitting multiple sclerosis (RRMS), and method for determining new treatment indication
JP4799516B2 (en) A prophylactic or therapeutic agent for pancreatitis comprising an IL-6 antagonist as an active ingredient
JP7185884B2 (en) METHOD FOR PREDICTING AND DETERMINING THERAPEUTIC EFFECT OF IL-6 AND NEUTROPHIL-RELATED DISEASE
EP3957324A1 (en) Therapeutic agent for urological cancer which is characterized by being administered with il-6 inhibitor and ccr2 inhibitor in combination
WO2001002010A1 (en) Agents for ameliorating low vasopressin level
JP4987117B2 (en) A blood MMP-3 concentration reducing agent comprising an IL-6 antagonist as an active ingredient
JPH1045622A (en) Agent for treatment of chronic rheumatoid arthritis containing anti-il-8 antibody as active component
MXPA06005875A (en) Remedy for angitis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008527799

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791912

Country of ref document: EP

Kind code of ref document: A1