WO2008013051A1 - Work tool - Google Patents

Work tool Download PDF

Info

Publication number
WO2008013051A1
WO2008013051A1 PCT/JP2007/063696 JP2007063696W WO2008013051A1 WO 2008013051 A1 WO2008013051 A1 WO 2008013051A1 JP 2007063696 W JP2007063696 W JP 2007063696W WO 2008013051 A1 WO2008013051 A1 WO 2008013051A1
Authority
WO
WIPO (PCT)
Prior art keywords
trigger
drive motor
work tool
control mode
trigger action
Prior art date
Application number
PCT/JP2007/063696
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Watanabe
Takeshi Nishimiya
Original Assignee
Makita Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corporation filed Critical Makita Corporation
Publication of WO2008013051A1 publication Critical patent/WO2008013051A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • B24B23/028Angle tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to a work tool construction technique.
  • Patent Document 1 discloses an electric grinder configured to drive a rotating turret for performing grinding and grinding operations by an electric drive motor.
  • this electric grinder when the operator operates a rotation speed setting knob provided on the upper part of the grinder body, the setting rotation speed of the drive motor is made variable, thereby controlling the rotation of the rotating turret. Is adopted! Speak.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-262295
  • the present invention has been made in view of the above-described points, and is effective for smoothing a machining operation in a working tool in which a tip tool for performing a machining operation on a workpiece is driven by a drive motor. It is an issue to provide a new technology.
  • a work tool includes at least a main body, a tip tool, a drive motor, a hand grip, a trigger, and a control unit.
  • the tip tool of the present invention is configured as a tool that is disposed at the tool tip of the main body portion and performs a processing operation of a workpiece, and is used for various operations such as polishing, polishing ij, and cutting.
  • the drive motor of the present invention is housed in the main body, and is configured as a motor that drives the tip tool by supplying power.
  • a mechanism for transmitting the rotational force of the drive motor to the tip tool is appropriately disposed between the drive motor and the tip tool.
  • the “power source” here, a battery power source mounted on the tool body or an external power source connected to the drive motor through a power cord is used.
  • the handgrip of the present invention is provided in the main body and is configured as a handgrip that is gripped by an operator when using a tool, that is, a part to which the gripping force (grip force) of the worker is applied.
  • the on-position force that is in the activated state is biased toward the off-position that is in the deactivated state, and the off-position force can be pulled to the on position by one or more fingers of the operator holding the handgrip.
  • control unit of the present invention controls the drive motor to the operating state by pulling the trigger to the on position, and creates the drive motor by operating the trigger to return to the off position.
  • control unit of the present invention has a function which makes the setting regarding the operation mode of a work tool variable according to the operation mode of the trigger by the operator's finger holding the hand grip.
  • the setting related to the working mode of the work tool the setting related to the operating mode in the operating state of the drive motor or the irradiation device that irradiates the work material
  • the setting relating to the operating mode of the irradiation apparatus corresponds to this.
  • settings related to the operation mode in the operating state of the drive motor typically, the rotational speed (rotational speed) and rotational direction of the drive motor in the active state, and the normal rotational speed when the drive motor starts up. It is possible to appropriately set the soft start operation time that gradually increases to the maximum, the timing that defines the upper limit of the current value that is applied to the drive motor, and the timing that the drive motor is energized.
  • the operator operates the trigger without changing the work posture in the work posture while holding the handgrip, and in the operating state of the drive motor. It is possible to change the setting relating to the operation mode, and thus it is possible to achieve a smooth machining operation.
  • the operation mode of the trigger is defined by pulling the trigger to the on position again after the trigger is operated to return the on position force to the off position, or the trigger is turned to the off position force on position. It is preferable to include a predetermined trigger action defined by returning to the off position again after the pull operation.
  • the control unit sets the rotational speed of the drive motor every time the predetermined trigger action is performed within a predetermined time as a setting relating to the operation mode in the operation state of the drive motor.
  • the configuration has a control mode for switching the setting. That is, in this control mode, the rotational speed setting of the drive motor is switched according to the time required for a predetermined trigger action.
  • control mode typically, settings such as a setting in which the rotational speed of the drive motor is increased stepwise or alternatively to a high rotation side, or a setting that gradually or alternatively decreases to a low rotation side are appropriately adopted. can do. According to such a configuration, it is possible to perform control for switching the rotational speed setting of the drive motor to a desired state according to the time required for a predetermined trigger action.
  • the control unit switches the rotation speed setting of the drive motor according to the number of repetitions of the trigger action within a predetermined time with respect to the predetermined trigger action.
  • the control mode is used. As this control mode, typically, as the number of repetitions of the trigger action increases, the drive motor rotation speed is increased stepwise, or the drive motor corresponding to the number of repetitions of the trigger action is increased. Settings such as alternatively selecting the number of revolutions can be adopted as appropriate. According to such a configuration, it is possible to perform control for switching the rotational speed setting of the drive motor to a desired state in accordance with the number of repetitions of a predetermined trigger action within a predetermined time.
  • the control unit has a control mode for switching the rotational speed setting of the drive motor in accordance with the operation speed of the predetermined trigger action. It is made.
  • this control mode typically, when a switch with sliding resistance is used as a trigger and the operation speed of the trigger action is relatively fast (sliding resistance changes with time), the rotational speed of the drive motor When the operation speed of the trigger function is relatively slow (the time variation of the sliding resistance is small), the drive motor speed is gradually reduced to the low speed side.
  • a work tool capable of controlling the setting of the rotational speed of the drive motor to a desired state according to the operation speed of a predetermined trigger action.
  • the control unit gradually increases the rotational speed to the normal rotational speed when the drive motor is started each time the predetermined trigger action is performed within a predetermined time.
  • the control mode is configured to switch the soft start operation time. As this control mode, typically, when the time required for the trigger action is relatively short, the soft start operation time is changed, and when the time required for the trigger action is relatively long, the soft start operation is performed. Settings that maintain time, settings that selectively select the soft start operation time corresponding to the time required for the trigger action, and the like can be appropriately employed. According to such a configuration, it is possible to perform control for switching the soft start operation time of the drive motor to a desired state according to the time required for a predetermined trigger action.
  • the control unit includes a current limiter capable of defining an upper limit of a current value energized to the drive motor, and the predetermined trigger action is performed within a predetermined time.
  • a control mode for switching the operation of the current limiter.
  • the current limiter typically, when the time required for the trigger action is relatively short, the current limiter switches between the activated state and the non-activated state, and the time required for the trigger action is relative. If the current limiter is long, the setting to maintain the current limiter's operating state or inactive state, or the setting to selectively select the upper limit of the current value corresponding to the time required for the trigger action should be adopted as appropriate. Can do. According to such a configuration, the current limiter is activated according to the time required for a predetermined trigger action. Control to switch to a desired state is possible.
  • the control unit includes a lock-on mechanism capable of maintaining the energized state of the drive motor, and according to the number of repetitions of the predetermined trigger action within a predetermined time.
  • a control mode for switching the operation of the lock-on mechanism is provided.
  • a setting for setting the lock-on mechanism in an activated state or a non-activated state according to the number of times the trigger action is repeated can be appropriately employed. According to such a configuration, it is possible to control the operation of the lock-on mechanism to a desired state according to the number of repetitions of a predetermined trigger action within a predetermined time.
  • the work tool according to a further embodiment of the present invention further includes an irradiation device that irradiates the workpiece.
  • the “irradiation device” here includes a wide range of devices that emit light toward the workpiece, and typically includes not only LEDs, lamps and fluorescent lamps that illuminate the workpiece, but also rounds. Lasers used to align black lines on workpieces in saws and other work tools are used as irradiation devices.
  • the control unit makes the setting relating to the operation mode of at least one of the drive motor and the irradiation device variable according to the operation mode of the trigger by the finger of the operator holding the handgrip. It is supposed to be configured. Typically, the timing for switching the irradiation device between the irradiation state and the non-irradiation state, the illuminance (degree of brightness) of the irradiation device, and the like can be appropriately set. According to such a configuration, the operator operates the trigger without changing the work posture while holding the hand grip, and operates at least the drive motor and the irradiation device in the operation state of the drive motor. The setting relating to one of the operation modes can be changed, so that the machining operation can be smoothly performed.
  • the control unit irradiates the irradiation device every time the predetermined trigger action is performed within a predetermined time as a setting relating to the operation mode of the irradiation device.
  • the control mode is switched between a state and a non-irradiation state.
  • this control mode typically, when the time required for the trigger action is relatively short, the irradiation apparatus switches between the irradiation state and the non-irradiation state, and the trigger action is performed.
  • FIG. 1 shows the appearance of an electric grinder 100 that is an embodiment of a work tool according to the present invention.
  • the electric grinder 100 of the present embodiment is mainly composed of a tool main body 110, a main grip 120, a front grip 130, a drive motor 140, a drive mechanism 150, and a tip tool 160.
  • the tool main body 110 is configured to accommodate various electric system parts and mechanical system parts related to driving of the tip tool 160, including the drive motor 140 and the drive mechanism 150, in the housing 112.
  • the drive motor 140 is connected to the tip tool 160 via the drive mechanism 150 and is operated by power supply from an external power source (AC power source 210 described later), and the tip tool 160 is rotationally driven in the operating state. Is done.
  • the drive motor 140 corresponds to “a drive motor that drives the tip tool by power supply” in the present invention. It is also possible to adopt a configuration in which the drive motor 140 is operated by a notch power source mounted on the tool body.
  • the tool main body 110 referred to here constitutes the “main body” in the present invention.
  • the tool body 110 and the main grip 120 or the front grip 130 may be combined to be called a “main part”.
  • the main grip 120 is configured as a handle (also referred to as “main handle” or “rear handle”) provided on the rear side (right side in Fig. 1) of the housing 112 of the tool body 110. It is done.
  • the main grip 120 constitutes a portion to which the operator's gripping force (grip strength) extends, and this main grip 120 force corresponds to the “node grip” in the present invention.
  • the main grip 120 is typically gripped by an operator's dominant hand, and includes a trigger 122 for operating the drive motor 140 under the grip.
  • the trigger 122 is normally biased to an off position where the drive motor 140 is deactivated, and the operator force holding the main grip 120 overcomes the biasing force.
  • the trigger switch 122a described later is turned on and the operation of the drive motor 140 is started.
  • the trigger 122 returns to the off position with respect to the drive motor 140, and the trigger switch 122a described later is turned off, and the drive motor 140 operation is stopped.
  • the trigger 122 here corresponds to a “trigger” in the present invention.
  • the front grip 130 is configured as a nodule (also referred to as “auxiliary handle” or “front handle”) provided on the front side (left side in FIG. 1) of the tool main body 110.
  • the front drip 130 is configured to extend from the left front portion of the tool main body 110 in the left-right direction of the tool.
  • the front grip 130 is typically gripped by a hand opposite to the operator's dominant hand.
  • the tip tool 160 is configured as a rotating member that is rotationally driven when the rotational force of the driving motor 140 is transmitted through the driving mechanism 150, and specifically, a grinding stone, a cutting stone, a multi-purpose tool, and the like.
  • a disk, a flexible grindstone, a diamond wheel, a sanding disk, a wire brush, or the like is appropriately used.
  • the tip tool 160 here is the tool main body 110.
  • FIG. 2 shows a control circuit 151 constituting the drive mechanism 150 of the present embodiment.
  • the control circuit 151 mainly includes an AC power source 152, a control unit (controller) 153, a switch detection unit 154, a setting display unit 155, and a motor drive unit 156. It is made.
  • the control unit 153 is typically configured by a CPU (arithmetic processing unit), an input / output device, a storage device, a peripheral device, and the like.
  • the control unit 153 corresponds to the “control unit” in the present invention.
  • the switch detection unit 154 has a function of detecting the operation of the trigger switch 122a accompanying the operation of the trigger (trigger 122 in FIG. 1) and outputting the detection signal to the control unit 153.
  • the setting display unit 155 is configured as a digital or analog display means.
  • the motor drive unit 156 is configured using a semiconductor switch and has a function capable of controlling the power supplied to the drive motor 140.
  • the control unit 153 Based on the input signal from the switch detection unit 154, the control unit 153 outputs a control signal for the drive motor 140 to the motor drive unit 156, while the display signal of the contents related to the control is mechanically or triggered by the trigger operation. Outputs to the setting display unit 155 in conjunction with the electrical type.
  • the rotation speed of the drive motor 140 is controlled to a predetermined setting, and the contents of the setting are displayed on the setting display unit 155.
  • the trigger action is performed by pulling the trigger 122 back to the on position after the trigger 122 is turned back to the off position (hereinafter also referred to as “first trigger action”). It is assumed that the rotational speed setting of the drive motor 140 is switched according to the above.
  • first trigger action refers to FIGS. 3 to 7 for the control modes A to E of the drive motor 140.
  • FIGS. 3 to 7 Each of the control modes shown in FIGS. 3 to 7 is indicated by the relationship between the operation mode related to the first trigger action of the trigger 122 by the operator and the rotational speed setting of the drive motor 140.
  • the drive motor 140 has the upper limit number of rotations with the second and third rotation numbers sandwiched from the first rotation number that is the lower limit number of rotations with respect to the rotation number setting. Up to 4 speeds, total 4 speeds.
  • the set rotational speed of the drive motor 140 is stepwise between the first rotational speed and the fourth rotational speed. Changed (also called “shift”). Specifically, as shown in FIG. 3, a timer (not shown) is activated on the condition that the SW ON force is also switched to SW OFF, and counts a predetermined time ⁇ tO set in advance. Each time the operator performs the first trigger action of the trigger 122 within a predetermined time ⁇ ⁇ ⁇ until the rotation speed of the drive motor 140 reaches the fourth rotation speed that is the upper limit rotation speed, The set number of revolutions increases by one step up to the fourth number of revolutions.
  • the set rotational speed of the drive motor 140 reaches the fourth rotational speed, every time the operator performs the first trigger action of the trigger 122 within the predetermined time ⁇ , the set rotational speed of the drive motor 140 is set.
  • the number 4th rotational force also decreases to the 1st rotational speed step by step.
  • the rotation speed setting of the drive motor 140 is switched according to the time required for the first trigger action of the trigger 122, and when the first trigger action is repeated, the first rotation speed force
  • the step of increasing the rotational speed up to the fourth rotational speed and the step of decreasing the rotational speed setting of the fourth rotational speed to the first rotational speed are sequentially repeated.
  • this control mode A if the first trigger action of the trigger 122 is not performed within the predetermined time ⁇ , the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting. Is done.
  • This control mode ⁇ corresponds to “a control mode in which the rotation speed setting of the drive motor is switched every time the trigger action is performed within a predetermined time”.
  • the number of rotations of the drive motor 140 depends on the trigger action in which the trigger 122 is pulled back to the off position after the trigger 122 is pulled to the on position. It is also possible to adopt a control mode that switches settings. [0029] (Control mode B)
  • the set rotational speed of the drive motor 140 is linked to the first rotational speed and the fourth rotational speed in conjunction with the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 4, the timer counts a predetermined time ⁇ tO on the condition that the switch is switched from SW on to SW off. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, if the operator performs the first trigger action of the trigger 122 within the predetermined time ⁇ , the set rotational speed of the drive motor 140 is reached. However, the 1st rotational force also increases step by step up to the 4th rotational frequency.
  • the set rotational speed of the drive motor 140 reaches the fourth rotational speed
  • the set rotational speed of the drive motor 140 is set. Decreases to the 4th rotation speed and the 1st rotation speed, and then increases to the 1st rotation speed and the 4th rotation speed again. That is, in this control mode ⁇ , when the first trigger action of the trigger 122 is repeated, the step of increasing the rotational speed from the first rotational speed force to the fourth rotational speed is repeated.
  • this control mode ⁇ when the first trigger action of the trigger 122 is not performed within the predetermined time ⁇ , the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting.
  • This control mode ⁇ corresponds to “a control mode in which the rotational speed setting of the drive motor is switched every time the trigger action is performed within a predetermined time”.
  • the rotational speed of the drive motor 140 is set according to the trigger action that the trigger 122 is pulled back to the off position after the off position force is also pulled to the on position. It is also possible to adopt a control mode for switching between.
  • the set rotational speed of the drive motor 140 is stepped between the first rotational speed and the fourth rotational speed. Be changed. Specifically, as shown in FIG. 5, the timer counts a predetermined time ⁇ tO on the condition that the switch is switched from SW on to SW off. Then, until the set rotation speed of the drive motor 140 reaches the fourth rotation speed, if the operator repeats the first trigger action of the trigger 122 twice within the predetermined time ⁇ , the set rotation speed of the drive motor 140 is reached. Number 1 is also the first rotational force Increases by 1 step to 2 rpm.
  • the set rotational speed of the drive motor 140 increases by one step to the third rotational speed as well.
  • the set rotational speed of the drive motor 140 is increased by one step to the fourth rotational speed.
  • the operator performs the set rotational speed of the drive motor 140 once within the predetermined time ⁇ so that the set rotational speed of the drive motor 140 becomes the fourth rotational speed.
  • the first rotation force increases to the fourth rotation speed again in one step according to the number of repetitions of the first trigger function.
  • the rotation speed of the drive motor 140 is set to any one of the first to fourth rotation speeds according to the number of repetitions of the first trigger action of the trigger 122 within a predetermined time. It will be.
  • the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting.
  • This control mode C corresponds to “a control mode in which the rotational speed setting of the drive motor is switched according to the number of repetitions of the trigger action within a predetermined time”.
  • the rotation speed of the drive motor 140 is set according to the trigger action that is triggered again when the trigger 122 is pulled to the off position and then to the off position.
  • a switching control mode can also be adopted.
  • the set rotational speed of the drive motor 140 is set between the first rotational speed and the fourth rotational speed in conjunction with the operation time required for the first trigger action of the trigger 122. It is changed step by step. Specifically, as shown in FIG. 6, when the time required for the first trigger action of the trigger 122 performed by the operator (hereinafter referred to as “SW off time”) is relatively short, for example, in FIG. In the case of Atl, the set rotational speed of the drive motor 140 increases by one step. On the other hand, when the time required for the first trigger action of the trigger 122 performed by the operator is relatively long, for example, when it is At 2 in FIG. 6, the set rotational speed of the drive motor 140 decreases.
  • this control mode D the force for increasing the set rotational speed of the drive motor 140 based on the time required for the first trigger action of the trigger 122, or The key to be lowered will be determined.
  • a predetermined time is set in advance and the trigger is
  • the set speed of the drive motor 140 is increased by one step, and the time required for the first trigger action of the trigger 122 is preset. If it is longer than the set time (At2), the set rotational speed of the drive motor 140 is decreased by one step.
  • the rotational speed setting of the drive motor 140 is maintained or reset to the initial setting.
  • This control mode D corresponds to “a control mode in which the rotational speed setting of the drive motor is switched every time the trigger action is performed within a predetermined time”.
  • the rotation speed of the drive motor 140 is set according to the trigger action that the trigger 122 is pulled back to the off position after the off position force is pulled to the on position. It is also possible to adopt a control mode for switching between.
  • the set rotational speed of the drive motor 140 is linked to the first rotational speed and the fourth rotational speed in conjunction with the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 7, when the time required for the first trigger action of the trigger 122 performed by the operator is the first time Atl, the rotation speed of the drive motor 140 is the first speed. When the rotation speed is set and the second time At2 is longer than the first time Atl, the rotation speed of the drive motor 140 is set to the second rotation speed.
  • the rotation speed of the drive motor 140 is set to the third rotation speed
  • the third time When the fourth time At4 is longer than At3, the rotation speed of the drive motor 140 is set to the fourth rotation speed.
  • the rotational speed of the drive motor 140 is selectively or alternatively set to one of the first to fourth rotational speeds. Will be.
  • this control mode ⁇ if the first trigger action of the trigger 122 is not performed within a predetermined time, the rotational speed setting of the drive motor 140 is maintained or reset to the initial setting.
  • This control mode ⁇ indicates that“ every time the trigger action is performed within a predetermined time, This corresponds to a “control mode for switching the rotational speed setting of the motor”.
  • the rotational speed of the drive motor 140 is set according to the trigger action that the trigger 122 is pulled back to the off position after the off position force is also pulled to the on position. It is also possible to adopt a control mode for switching between.
  • the rotational speed setting of the drive motor 140 is switched according to the switch sliding resistance at the time of the first trigger action of the trigger 122.
  • a control circuit of a different form control circuit 251 shown in FIG. 8 different from the control circuit 151 shown in FIG.
  • a trigger switch 222a with sliding resistance is adopted as a trigger switch associated with the operation of the trigger (trigger 122 in FIG. 1) instead of the trigger switch 122a shown in FIG.
  • the switch sliding resistance at the time of the first trigger action of the trigger 122 is detected.
  • the other components in the control circuit 251 are the same as those in the control circuit 151 shown in FIG.
  • control modes F to J of the drive motor 140 will be described with reference to FIGS. 9 to 13.
  • Each of the control modes shown in FIGS. 9 to 13 is indicated by the relationship between the sliding resistance in the first trigger action of the trigger 122 2 by the operator and the set rotational speed of the drive motor 140.
  • the sliding resistance value in the first trigger action of the trigger 122 is detected by the above-described trigger switch 22 2a.
  • the drive motor 140 is set in four stages in total from the first rotation speed that is the lower limit rotation speed to the fourth rotation speed that is the upper limit rotation speed with respect to the rotation speed setting. Have a number of turns.
  • control mode F corresponds to a “control mode for switching the rotational speed setting of the drive motor in accordance with the operation speed of the trigger action”.
  • the rotation speed of the drive motor 140 is changed according to the trigger action in which the trigger 122 is pulled back to the off position after the trigger 122 is pulled to the on position.
  • a control mode for switching the setting can also be adopted.
  • the set rotational speed of the drive motor 140 is set to the first rotational speed and the fourth rotational speed in conjunction with the detection of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed step by step (also referred to as “shift”) between the rotation numbers. Specifically, as shown in FIG. 9, a timer (not shown) is activated on the condition that the switch has been switched from SW ON to SW OFF, and counts a preset predetermined time ⁇ tO. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the specified sliding resistance value (lOOkQ in Fig. 9) in the first trigger action of the trigger 122 is detected within a predetermined time ⁇ ⁇ .
  • the set rotational speed of the drive motor 140 increases by one step up to the fourth rotational speed.
  • the rotational speed setting up step from the rotational speed to the fourth rotational speed and the rotational speed setting down step to the fourth rotational speed force to the first rotational speed are sequentially repeated.
  • the set number of rotations of the drive motor 140 is linked to the detection of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed stepwise between the first and fourth rotation speeds. Specifically, as shown in FIG. 10, the timer counts a predetermined time ⁇ tO on condition that the switch is switched from SW on to SW off. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the drive motor 140 is detected each time the specified sliding resistance value in the first trigger action of the trigger 122 is detected within the predetermined time ⁇ ⁇ ⁇ . With the set speed of 140, the first speed force is also increased step by step up to the fourth speed.
  • the setting speed of the drive motor 140 is the fourth speed. Force Decreases by 3 steps to the first rotation speed, then increases again by 1 step to the first rotation speed force to the 4th rotation speed. That is, in this control mode G, when the rotational speed setting of the drive motor 140 is switched according to the operation speed of the first trigger action of the trigger 122, and the first trigger action of the trigger 122 is repeated, the first trigger action is repeated. As for the rotational speed force, the rotational speed setting increase step up to the fourth rotational speed is repeated.
  • the set rotational speed of the drive motor 140 is set to the first rotational speed and the fourth rotational speed in conjunction with the number of detections of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 11, the timer counts a predetermined time ⁇ tO on the condition that the switch is switched from SW on to SW off. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the specified sliding resistance value in the first trigger action of the trigger 122 is repeated twice within a predetermined time ⁇ tO. In this case, the set rotational speed of the drive motor 140 is increased by one step from the first rotational speed to the second rotational speed.
  • the set rotational speed of the drive motor 140 is the second rotational speed force, the third rotational speed.
  • the set rotational speed of the drive motor 140 becomes the third rotational speed. From 1 to 4th speed.
  • the specified sliding resistance value in the first trigger action is detected once within a predetermined time ⁇ tO to drive the motor.
  • the first rotational force is again decreased according to the number of detections of the specified sliding resistance value in the first trigger action.
  • the number of revolutions increases by one step up to the fourth number of revolutions. That is, in this control mode ⁇ , the rotational speed setting of the drive motor 140 is switched according to the operation speed of the first trigger function of the trigger 122, and the specified sliding resistance value in the first trigger action of the trigger 122 is changed. Based on the detected number of times, the rotational speed of the drive motor 140 is selectively or alternatively set to one of the first to fourth rotational speeds.
  • Control mode I In the control mode ⁇ of the second embodiment, the set rotational speed of the drive motor 140 is set to the first rotational speed and the fourth rotational speed in conjunction with the change time of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 12, when the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122 is relatively short, for example, when it is Atl in FIG. The set speed of drive motor 140 increases by one level. On the other hand, when the time required to change the specified sliding resistance value in the first trigger action of the trigger 122 is relatively long, for example, when it is At2 in FIG.
  • the set rotational speed of the drive motor 140 is one step. Descend. That is, in this control mode D, the number of rotations of the drive motor 140 is increased according to the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122, that is, the operation speed of the first trigger action. Whether it is raised or lowered is set.
  • the set rotational speed of the drive motor 140 is linked to the change time of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed stepwise between the first and fourth rotation speeds. Specifically, as shown in FIG. 13, when the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122 is the first time Atl, the rotational speed of the drive motor 140 is When the first rotation speed is set and the second time At2 is longer than the first time Atl, the rotation speed of the drive motor 140 is set to the second rotation speed.
  • the rotation speed of the drive motor 140 is set to the third rotation speed.
  • the rotation speed of the drive motor 140 is one of the first to fourth rotation speeds based on the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122. It will be set selectively or alternatively.
  • the first trigger action of the trigger 122 or the trigger 1 In response to a trigger action (also referred to as “second trigger action”) in which the motor 22 is pulled back from the off position to the on position and then back to the off position, the number of rotations of the drive motor 140 It is assumed that the setting other than is switched.
  • a trigger action also referred to as “second trigger action”
  • the number of rotations of the drive motor 140 It is assumed that the setting other than is switched.
  • the third embodiment will be described with reference to the control mode K to 0 force of the driving motor 140 and FIGS.
  • the soft start operation time of the drive motor 140 is set to be changed in conjunction with the first trigger action mode of the trigger 122. Specifically, every time the first trigger action of the trigger 122 is performed within a predetermined time, the set value of the soft start operation time is switched. That is, as shown in FIG. 14, when the time required for the first trigger action of the trigger 122 performed by the operator is relatively short, for example, when it is Atl in FIG. 14, the soft start operation of the drive motor 140 is performed. The time setting is switched between T1 and T2 (> T1). In addition, when the time required for the first trigger action of the trigger 122 performed by the operator is relatively long, for example, at At 2 in FIG.
  • the setting value of the soft start operation time of the drive motor 140 is Set to the same value as the previous soft start operation time setting.
  • the setting value of the soft start operation time is stored in a memory or the like and held.
  • the “soft start operation” here is an operation that gradually increases the rotation speed to the normal rotation speed when the drive motor 140 starts up, and the time until the operation is completed is defined as the “soft start operation time”. It is done.
  • the control mode K when the first trigger action of the trigger 122 is not performed within a predetermined time, the setting of the soft start operation time is maintained or reset to the initial setting.
  • This control mode K corresponds to “a control mode in which the soft start operation time for gradually increasing the rotation speed to the normal rotation speed when the drive motor is started every time the trigger action is performed within a predetermined time”.
  • a control mode that switches the setting of the soft start operation time of the drive motor 140 in accordance with the second trigger action of the trigger 122 can be adopted.
  • the driving is performed in conjunction with the switch operation mode of the trigger 122.
  • the operation mode of the current limiter of the dynamic motor 140 is set to be changed. Specifically, every time the second trigger action of the trigger 122 is performed within a predetermined time, the operation mode of the current limiter is switched between the operation state and the operation release state. That is, as shown in FIG. 15, when the time required for the second trigger action of the trigger 122 is relatively short, for example, when it is Atl in FIG. 15, the current limiter of the drive motor 140 is activated. When the time is relatively long, for example, when At 2 in FIG. 15, the current limiter of the drive motor 140 is either in the activated state or the deactivated state. Control to maintain.
  • the electric limiter used in this control mode L has a function of feedback-controlling the actual current so that the current supplied to the drive motor 140 does not exceed a preset predetermined current value in its operating state.
  • the operation mode of the current limiter is maintained or reset to the initial setting.
  • This control mode L corresponds to “a control mode in which the operation of the current limiter is switched every time the trigger action is performed within a predetermined time”.
  • a control mode in which the operating mode of the current limiter is switched in accordance with the first trigger action of the trigger 122 can be adopted.
  • the light operation mode is set to be changed in conjunction with the switch operation mode of the trigger 122. Specifically, every time the second trigger action of the trigger 122 is performed within a predetermined time, the operation mode of the light is switched between the operation state and the operation release state (non-operation state). That is, as shown in FIG. 16, when the time required for the second trigger action of the trigger 122 is relatively short, the light is switched between the activated state and the deactivated state, and the time is relatively long. In addition, control is performed to maintain the light in either the activated state or the deactivated state.
  • the operation mode of the light is maintained or reset to the initial setting.
  • the light used in this control mode M is configured as a means for irradiating the tip tool 160 or workpiece when the tool is used.
  • the lighting time and lighting intensity (brightness)
  • the light, laser, and fluorescent lamp here constitute an “irradiation device” in the present invention.
  • This control mode M is “whenever the trigger action is performed within a predetermined time, the irradiation device is in an irradiation state and a non-irradiation state. Corresponds to a “control mode for switching between” and “. As an example of changing this control mode M, a control mode in which the operation mode of the light is switched in accordance with the first trigger action of the trigger 122 can also be adopted.
  • the operating state of the drive motor 140 is locked (also referred to as “lock on”) in conjunction with the switch operation mode of the trigger 122, and the lock on state of the drive motor 140 is It is set to be unlocked (also called “lock-off”).
  • the drive motor 140 is switched between a lock-on state and a lock-off state according to the number of repetitions of the second trigger action of the trigger 122 within a predetermined time. That is, as shown in FIG. 17, by repeating the second trigger action of the trigger 122 twice within a preset predetermined time ⁇ , the subsequent operation state of the drive motor 140 is locked. Thereafter, the lock-on state of the drive motor 140 is released by performing the second trigger action of the trigger 122 once within a predetermined time ⁇ ⁇ set in advance.
  • This control mode ⁇ corresponds to “a control mode in which the operation of the lock-on mechanism is switched according to the number of repetitions of the trigger action within a predetermined time”.
  • a control mode is adopted in which the drive motor 140 is switched between the lock-on state and the lock-off state in accordance with the first trigger action of the trigger 122 described above.
  • the operating state of the drive motor 140 is locked (locked on) in conjunction with the switch operation mode of the trigger 122, and the drive motor
  • the 140 lock-on status is set to unlock (lock-off).
  • the second trigger action of trigger 122 is repeated within a predetermined time.
  • the drive motor 140 is switched between a lock-on state and a lock-off state. That is, as shown in FIG. 18, the second trigger action of the trigger 122 is repeated twice within a preset predetermined time ⁇ ⁇ ⁇ , thereby locking the subsequent operating state of the drive motor 140. Thereafter, when a predetermined time set in advance elapses, the lock-on state of the drive motor 140 is automatically released.
  • This control mode ⁇ corresponds to “a control mode in which the operation of the lock-on mechanism is switched according to the number of repetitions of the trigger action within a predetermined time”.
  • a control mode is adopted in which the drive motor 140 is switched between the lock-on state and the lock-off state in accordance with the first trigger action of the trigger 122 described above.
  • the fourth embodiment is a case where the first embodiment and the third embodiment are combined.
  • the control mode ⁇ of the drive motor 140 will be described with reference to FIG.
  • the control mode ⁇ in the fourth embodiment is a control mode in which a control mode similar to the control mode ⁇ in the first embodiment is combined with a control mode similar to the control mode M in the third embodiment.
  • the rotation speed of the drive motor 140 is changed stepwise between the first rotation speed and the fourth rotation speed.
  • the operation mode of the light that irradiates the workpiece is changed.
  • At 9 is used as the specified time of the second trigger action of the trigger 122, and the rotation speed of the drive motor 140 is changed.
  • the write operation force S matches the light setting, that is, when the switch action by the trigger 122 and the write operation are linked, it is described.
  • the second trigger action increases the rotational speed of the drive motor 140 stepwise. Control for increasing the set rotational speed of the drive motor 140 step by step. In addition, when the time required for the second trigger action of the trigger 122 is equal to or greater than AtlO, it is determined that the second trigger action is an operation for decreasing the rotation speed of the drive motor 140 step by step. Then, control is performed to decrease the set rotational speed of the drive motor 140 step by step.
  • control mode P As an example of changing the control mode P, the control mode for switching the rotational speed setting of the drive motor 140 in accordance with the second trigger action of the trigger 122 or the first trigger action of the trigger 122 is described. Therefore, it is possible to adopt a control mode that switches the operation mode of the light.
  • the set value is held while the trigger 122 pulling operation is released, and the next time the trigger 122 pulling operation is performed, the previous time. It is possible to configure to work according to the set value.
  • the set value can be reset when the time during which the pulling operation of the trigger 122 is released exceeds a certain time. In the first to fourth embodiments, the set value can be reset when the pull operation of the trigger 122 is released.
  • the setting display unit 155 displays and outputs a set value.
  • the setting display unit 155 described above can be an LED, lamp, display, or the like whose output mode is variable. More specific configurations include a configuration in which the number of LEDs and lamps indicating the set value are turned on or blinking, and a configuration in which information indicating the set value is displayed using colors, letters, numbers, symbols, and the like.
  • a speaker whose output mode is variable can be used.
  • the switching prevention mode can be set by performing a specific operation of the trigger 122 or an operation member different from the trigger 122.
  • the operator operates the trigger 122 while holding the main grip 120 without changing the work posture, and drives the drive motor. It is possible to change the setting relating to the operating mode in the 140 operating states and the setting relating to the operating mode in the operating state of the light, thereby making it possible to facilitate the machining operation.
  • an electric grinder used for polishing work or grinding work has been described as an example of a work tool, but the present invention is not limited to an electric grinder.
  • the present invention can be applied to various work tools having a configuration in which a tool can be set in a plurality of drive modes.
  • a configuration in which the tip tool is driven by a rechargeable or drive motor driven by an AC power supply can be employed.
  • FIG. 1 is a diagram showing an external appearance of an electric grinder 100 that is an embodiment of a work tool according to the present invention.
  • FIG. 2 is a diagram showing a control circuit 151 constituting the drive mechanism 150 of the present embodiment.
  • FIG. 3 is a diagram showing control relating to control mode A of the first embodiment.
  • FIG. 4 is a diagram showing control relating to control mode B of the first embodiment.
  • FIG. 5 is a diagram showing control relating to control mode C of the first embodiment.
  • FIG. 6 is a diagram showing control relating to control mode D of the first embodiment.
  • Fig. 7 is a diagram showing control relating to a control mode ⁇ in the first embodiment.
  • FIG. 8 is a diagram showing another form of control circuit 251 constituting drive mechanism 150 of the present embodiment.
  • FIG. 9 is a diagram showing control related to a control mode F of the second embodiment.
  • FIG. 10 is a diagram illustrating control related to a control mode G according to the second embodiment.
  • Fig. 11 is a diagram showing control relating to a control mode ⁇ in the second embodiment.
  • FIG. 12 is a diagram showing control related to control mode I of the second embodiment.
  • FIG. 13 is a diagram showing control relating to a control mode J of the second embodiment.
  • FIG. 14 is a diagram showing control relating to a control mode K of the third embodiment.
  • FIG. 15 is a diagram showing control relating to a control mode L of the third embodiment.
  • FIG. 16 is a diagram showing control relating to a control mode M of the third embodiment.
  • FIG. 17 is a diagram showing control relating to a control mode N of the third embodiment.
  • FIG. 18 is a diagram showing control relating to a control mode O of the third embodiment.
  • FIG. 19 is a diagram showing control relating to a control mode P of the fourth embodiment. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sewing Machines And Sewing (AREA)
  • Portable Power Tools In General (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

[PROBLEMS] A technique effective for smoothing work of a work tool in which a tip tool for processing a workpiece material is driven by a drive motor. [MEANS FOR SOLVING PROBLEMS] In an electric grinder (100), a work mode in an operating state of the drive motor (140) can be set by a predetermined trigger action of a trigger (122) at a main grip (120).

Description

明 細 書  Specification
作業工具  Work tools
技術分野  Technical field
[0001] 本発明は、作業工具の構築技術に関するものである。  The present invention relates to a work tool construction technique.
背景技術  Background art
[0002] 従来、例えば下記特許文献 1には、研磨研削作業を行う回転砲石が電動式の駆動 モータによって駆動される構成の電動グラインダが開示されている。この電動グライン ダでは、グラインダ本体の上部に設けられた回転数設定つまみを作業者が操作する ことによって、駆動モータの設定回転数が可変とされ、これによつて回転砲石の回転 が制御される構成が採用されて!ヽる。  Conventionally, for example, Patent Document 1 below discloses an electric grinder configured to drive a rotating turret for performing grinding and grinding operations by an electric drive motor. In this electric grinder, when the operator operates a rotation speed setting knob provided on the upper part of the grinder body, the setting rotation speed of the drive motor is made variable, thereby controlling the rotation of the rotating turret. Is adopted! Speak.
特許文献 1:特開平 2— 262953号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-262295
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、この種の作業工具にあっては、被加工材の種類や先端工具による作業形 態に応じて、作業途中などにおいて先端工具の回転を調節する操作を行うことが想 定される。このような場合に、上記特許文献 1に記載の電動グラインダを用いると、作 業者は回転数設定つまみの操作に際し、工具本体の所定の把持部を把持していた 手指を一旦把持部カゝら離した後に回転数設定つまみを操作し、再び把持部を把持し た上で作業を遂行することとなり、作業途中において作業姿勢を変えることが必要と される。そこで、この種の作業工具の設計に際しては、作業者が作業途中などにおい て作業姿勢を変えることなぐ所望の設定を円滑に行うことが可能な構成が要請され る。 [0003] By the way, in this type of work tool, it is assumed that the operation of adjusting the rotation of the tip tool during the work or the like is performed according to the type of workpiece and the work state of the tip tool. The In such a case, when the electric grinder described in Patent Document 1 is used, when operating the rotation speed setting knob, the worker once holds the finger holding the predetermined holding part of the tool body once. After the release, the rotation speed setting knob is operated, and the work is performed after gripping the grip part again, and it is necessary to change the work posture during the work. Therefore, when designing this type of work tool, a configuration is required that allows the operator to smoothly perform desired settings without changing the work posture during work.
本発明は、上記の点に鑑みてなされたものであり、被加工材の加工作業を遂行す る先端工具が駆動モータによって駆動される作業工具において、加工作業の円滑ィ匕 を図るのに有効な技術を提供することを課題とする。  The present invention has been made in view of the above-described points, and is effective for smoothing a machining operation in a working tool in which a tip tool for performing a machining operation on a workpiece is driven by a drive motor. It is an issue to provide a new technology.
課題を解決するための手段  Means for solving the problem
[0004] 上記課題を達成するため、各請求項記載の発明が構成される。 [0005] 本発明に係る作業工具は、本体部、先端工具、駆動モータ、ハンドグリップ、トリガ 及び制御部を少なくとも備える。 [0004] In order to achieve the above object, the invention described in each claim is configured. [0005] A work tool according to the present invention includes at least a main body, a tip tool, a drive motor, a hand grip, a trigger, and a control unit.
本発明の先端工具は、本体部の工具先端に配設されて、被加工材の加工作業を 遂行する工具として構成され、研磨、研肖 ij、切断等、各種の作業に用いられる。 本発明の駆動モータは、本体部内に収容され、電源供給によって先端工具を駆動 するモータとして構成される。この駆動モータと先端工具との間には、駆動モータの 回転力を先端工具に伝達するための機構が適宜配設される。ここでいう「電源」として は、工具本体に搭載されるノ ッテリ電源や、電源コードを通じて駆動モータに接続さ れる外部電源などが用いられる。  The tip tool of the present invention is configured as a tool that is disposed at the tool tip of the main body portion and performs a processing operation of a workpiece, and is used for various operations such as polishing, polishing ij, and cutting. The drive motor of the present invention is housed in the main body, and is configured as a motor that drives the tip tool by supplying power. A mechanism for transmitting the rotational force of the drive motor to the tip tool is appropriately disposed between the drive motor and the tip tool. As the “power source” here, a battery power source mounted on the tool body or an external power source connected to the drive motor through a power cord is used.
本発明のハンドグリップは、本体部に設けられ、工具使用時に作業者によって把持 されるハンドグリップ、すなわち作業者の把持力 (握力)が及ぶ部位として構成される 本発明のトリガは、駆動モータが作動状態とされるオン位置力 作動解除状態とさ れるオフ位置に向けて付勢されており、ハンドグリップを把持した作業者の 1または複 数の指によってオフ位置力もオン位置へと引き操作が可能とされたトリガとして構成さ れる。  The handgrip of the present invention is provided in the main body and is configured as a handgrip that is gripped by an operator when using a tool, that is, a part to which the gripping force (grip force) of the worker is applied. The on-position force that is in the activated state is biased toward the off-position that is in the deactivated state, and the off-position force can be pulled to the on position by one or more fingers of the operator holding the handgrip. Configured as an enabled trigger.
[0006] 特に、本発明の制御部は、トリガがオン位置へと引き操作されることで駆動モータを 作動状態に制御し、トリガが前記オフ位置へと戻し操作されることで駆動モータを作 動解除状態に制御する一方、ハンドグリップを把持した作業者の指によるトリガの操 作態様に応じて、作業工具の作動態様に関する設定を可変とする機能を有する。作 業工具の作動態様に関する設定としては、具体的には、駆動モータの作動状態にお ける作動態様に関する設定、あるいは被加工材に向けて照射される照射装置を有す る場合には、当該照射装置の作動態様に関する設定がこれに該当する。また駆動モ ータの作動状態における作動態様に関する設定として、典型的には、作動状態にあ る駆動モータの回転数(回転速度)や回転方向、駆動モータの起動時に回転数を通 常回転数まで徐々に上げるソフトスタート動作時間、駆動モータに通電される電流値 の上限を規定するタイミング、駆動モータの通電状態を維持するタイミングなどを適 宜設定することができる。 本発明に係る作業工具のこのような構成によれば、作業者はハンドグリップを把持 した状態のまま作業姿勢で、当該作業姿勢を変えることなくそのままトリガを操作して 、駆動モータの作動状態における作動態様に関する設定を変更することができ、以 つて加工作業の円滑ィ匕を図ることが可能となる。 In particular, the control unit of the present invention controls the drive motor to the operating state by pulling the trigger to the on position, and creates the drive motor by operating the trigger to return to the off position. While controlling to a movement release state, it has a function which makes the setting regarding the operation mode of a work tool variable according to the operation mode of the trigger by the operator's finger holding the hand grip. Specifically, regarding the setting related to the working mode of the work tool, the setting related to the operating mode in the operating state of the drive motor or the irradiation device that irradiates the work material The setting relating to the operating mode of the irradiation apparatus corresponds to this. Also, as settings related to the operation mode in the operating state of the drive motor, typically, the rotational speed (rotational speed) and rotational direction of the drive motor in the active state, and the normal rotational speed when the drive motor starts up. It is possible to appropriately set the soft start operation time that gradually increases to the maximum, the timing that defines the upper limit of the current value that is applied to the drive motor, and the timing that the drive motor is energized. According to such a configuration of the work tool according to the present invention, the operator operates the trigger without changing the work posture in the work posture while holding the handgrip, and in the operating state of the drive motor. It is possible to change the setting relating to the operation mode, and thus it is possible to achieve a smooth machining operation.
[0007] トリガの操作態様としては、トリガがオン位置力もオフ位置へと戻し操作された後に、 再びオン位置へと引き操作されることで定義され、または、トリガがオフ位置力 オン 位置へと引き操作された後に、再びオフ位置へと戻し操作されることで定義される所 定のトリガアクションを含むようにするのが好ましい。そして本発明の更なる形態の作 業工具では、制御部は、駆動モータの作動状態における作動態様に関する設定とし て、上記所定のトリガアクションが所定時間内に行われるたびに、駆動モータの回転 数設定を切り換える制御モードを有する構成とされる。すなわち、この制御モードで は、所定のトリガアクションに要する時間に応じて、駆動モータの回転数設定が切り 換わることとなる。この制御モードとして、典型的には、駆動モータの回転数が高回転 側へと段階的或いは択一的に上がる設定や、低回転側へと段階的或いは択一的に 下がる設定などを適宜採用することができる。このような構成によれば、所定のトリガ アクションに要する時間に応じて、駆動モータの回転数設定を所望の状態に切り換 える制御が可能とされる。  [0007] The operation mode of the trigger is defined by pulling the trigger to the on position again after the trigger is operated to return the on position force to the off position, or the trigger is turned to the off position force on position. It is preferable to include a predetermined trigger action defined by returning to the off position again after the pull operation. In the work tool according to a further embodiment of the present invention, the control unit sets the rotational speed of the drive motor every time the predetermined trigger action is performed within a predetermined time as a setting relating to the operation mode in the operation state of the drive motor. The configuration has a control mode for switching the setting. That is, in this control mode, the rotational speed setting of the drive motor is switched according to the time required for a predetermined trigger action. As the control mode, typically, settings such as a setting in which the rotational speed of the drive motor is increased stepwise or alternatively to a high rotation side, or a setting that gradually or alternatively decreases to a low rotation side are appropriately adopted. can do. According to such a configuration, it is possible to perform control for switching the rotational speed setting of the drive motor to a desired state according to the time required for a predetermined trigger action.
[0008] また、本発明の更なる形態の作業工具では、制御部は、上記所定のトリガアクション に関し、当該トリガアクションの所定時間内における繰り返し回数に応じて、駆動モー タの回転数設定を切り換える制御モードを有する構成とされる。この制御モードとして 、典型的には、当該トリガアクションの繰り返し回数が増えるにつれて、駆動モータの 回転数が高回転側へと段階的に上がる設定や、当該トリガアクションの繰り返し回数 に対応した駆動モータの回転数を択一的に選択する設定などを適宜採用することが できる。このような構成によれば、所定のトリガアクションの所定時間内の繰り返し回 数に応じて、駆動モータの回転数設定を所望の状態に切り換える制御が可能とされ る。  [0008] Further, in the work tool according to a further aspect of the present invention, the control unit switches the rotation speed setting of the drive motor according to the number of repetitions of the trigger action within a predetermined time with respect to the predetermined trigger action. The control mode is used. As this control mode, typically, as the number of repetitions of the trigger action increases, the drive motor rotation speed is increased stepwise, or the drive motor corresponding to the number of repetitions of the trigger action is increased. Settings such as alternatively selecting the number of revolutions can be adopted as appropriate. According to such a configuration, it is possible to perform control for switching the rotational speed setting of the drive motor to a desired state in accordance with the number of repetitions of a predetermined trigger action within a predetermined time.
[0009] また、本発明の更なる形態の作業工具では、制御部は、上記所定のトリガアクション の操作速度に応じて、駆動モータの回転数設定を切り換える制御モードを有する構 成とされる。この制御モードとして、典型的には、トリガとして摺動抵抗付きスィッチを 用い、当該トリガアクションの操作速度が相対的に速い (摺動抵抗の時間変化が大き い)場合に、駆動モータの回転数が高回転側へと段階的に上がり、当該トリガァクショ ンの操作速度が相対的に遅 ヽ (摺動抵抗の時間変化が小さ 、)場合に、駆動モータ の回転数が低回転側へと段階的に下がる設定や、当該トリガアクションの操作速度( 摺動抵抗の時間変化)に対応した駆動モータの回転数を択一的に選択する設定な どを適宜採用することができる。このような構成によれば、所定のトリガアクションの操 作速度に応じて、駆動モータの回転数設定を所望の状態に切り換える制御が可能と された作業工具が提供される。 [0009] Further, in the work tool according to a further aspect of the present invention, the control unit has a control mode for switching the rotational speed setting of the drive motor in accordance with the operation speed of the predetermined trigger action. It is made. As this control mode, typically, when a switch with sliding resistance is used as a trigger and the operation speed of the trigger action is relatively fast (sliding resistance changes with time), the rotational speed of the drive motor When the operation speed of the trigger function is relatively slow (the time variation of the sliding resistance is small), the drive motor speed is gradually reduced to the low speed side. For example, it is possible to appropriately adopt a setting for selecting the rotational speed of the drive motor corresponding to the operation speed of the trigger action (time change of sliding resistance). According to such a configuration, there is provided a work tool capable of controlling the setting of the rotational speed of the drive motor to a desired state according to the operation speed of a predetermined trigger action.
[0010] また、本発明の更なる形態の作業工具では、制御部は、上記所定のトリガアクション が所定時間内に行われるたびに、駆動モータの起動時に回転数を通常回転数まで 徐々に上げるソフトスタート動作時間を切り換える制御モードを有する構成とされる。 この制御モードとして、典型的には、当該トリガアクションに要する時間が相対的に短 い場合に、ソフトスタート動作時間が変更され、当該トリガアクションに要する時間が 相対的に長い場合に、ソフトスタート動作時間が維持される設定や、当該トリガァクシ ヨンに要する時間に対応したソフトスタート動作時間を択一的に選択する設定などを 適宜採用することができる。このような構成によれば、所定のトリガアクションに要する 時間に応じて、駆動モータのソフトスタート動作時間を所望の状態に切り換える制御 が可能とされる。  [0010] Further, in the work tool according to a further aspect of the present invention, the control unit gradually increases the rotational speed to the normal rotational speed when the drive motor is started each time the predetermined trigger action is performed within a predetermined time. The control mode is configured to switch the soft start operation time. As this control mode, typically, when the time required for the trigger action is relatively short, the soft start operation time is changed, and when the time required for the trigger action is relatively long, the soft start operation is performed. Settings that maintain time, settings that selectively select the soft start operation time corresponding to the time required for the trigger action, and the like can be appropriately employed. According to such a configuration, it is possible to perform control for switching the soft start operation time of the drive motor to a desired state according to the time required for a predetermined trigger action.
[0011] また、本発明の更なる形態の作業工具では、制御部は、駆動モータに通電される 電流値の上限を規定可能な電流リミッタを備えるとともに、上記所定のトリガアクション が所定時間内に行われるたびに、電流リミッタの作動を切り換える制御モードを有す る構成とされる。この制御モードとして、典型的には、当該トリガアクションに要する時 間が相対的に短い場合に、電流リミッタが作動状態と非作動状態との間で切り換り、 当該トリガアクションに要する時間が相対的に長い場合に、電流リミッタの作動状態 或いは非作動状態が維持される設定や、当該トリガアクションに要する時間に対応し た電流値の上限を択一的に選択する設定などを適宜採用することができる。このよう な構成によれば、所定のトリガアクションに要する時間に応じて、電流リミッタの作動を 所望の状態に切り換える制御が可能とされる。 [0011] In the work tool according to a further aspect of the present invention, the control unit includes a current limiter capable of defining an upper limit of a current value energized to the drive motor, and the predetermined trigger action is performed within a predetermined time. Each time it is performed, it has a control mode for switching the operation of the current limiter. As this control mode, typically, when the time required for the trigger action is relatively short, the current limiter switches between the activated state and the non-activated state, and the time required for the trigger action is relative. If the current limiter is long, the setting to maintain the current limiter's operating state or inactive state, or the setting to selectively select the upper limit of the current value corresponding to the time required for the trigger action should be adopted as appropriate. Can do. According to such a configuration, the current limiter is activated according to the time required for a predetermined trigger action. Control to switch to a desired state is possible.
[0012] また、本発明の更なる形態の作業工具では、制御部は、駆動モータの通電状態を 維持可能なロックオン機構を備えるとともに、上記所定のトリガアクションの所定時間 内における繰り返し回数に応じて、ロックオン機構の作動を切り換える制御モードを 有する構成とされる。この制御モードとして、典型的には、当該トリガアクションの繰り 返し回数に対応して、ロックオン機構を作動状態或いは非作動状態とする設定など を適宜採用することができる。このような構成によれば、所定のトリガアクションの所定 時間内の繰り返し回数に応じて、ロックオン機構の作動を所望の状態に切り換える制 御が可能とされる。  [0012] In the work tool according to a further aspect of the present invention, the control unit includes a lock-on mechanism capable of maintaining the energized state of the drive motor, and according to the number of repetitions of the predetermined trigger action within a predetermined time. Thus, a control mode for switching the operation of the lock-on mechanism is provided. As this control mode, typically, a setting for setting the lock-on mechanism in an activated state or a non-activated state according to the number of times the trigger action is repeated can be appropriately employed. According to such a configuration, it is possible to control the operation of the lock-on mechanism to a desired state according to the number of repetitions of a predetermined trigger action within a predetermined time.
[0013] また、本発明の更なる形態の作業工具は、被加工材に向けて照射される照射装置 を更に備える。ここでいう「照射装置」には、被加工材に向けて光が発せられる装置を 広く包含され、典型的には、被加工材を照らす照明としての LED、ランプや蛍光灯 のみならず、丸鋸等の作業工具において被加工材の墨線合わせに用いるレーザー などが照射装置として用いられる。  [0013] Further, the work tool according to a further embodiment of the present invention further includes an irradiation device that irradiates the workpiece. The “irradiation device” here includes a wide range of devices that emit light toward the workpiece, and typically includes not only LEDs, lamps and fluorescent lamps that illuminate the workpiece, but also rounds. Lasers used to align black lines on workpieces in saws and other work tools are used as irradiation devices.
[0014] そして、この作業工具では、制御部は、ハンドグリップを把持した作業者の指による トリガの操作態様に応じて、駆動モータ及び前記照射装置の少なくとも一方の作動 態様に関する設定を可変とする構成とされる。典型的には、照射装置を照射状態と 非照射状態との間で切り換えるタイミング、照射装置の照度(明るさの度合い)などを 適宜設定することができる。このような構成によれば、作業者はハンドグリップを把持 した状態のまま作業姿勢で、当該作業姿勢を変えることなくそのままトリガを操作して 、駆動モータの作動状態における駆動モータ及び照射装置の少なくとも一方の作動 態様に関する設定を変更することができ、以つて加工作業の円滑ィ匕を図ることが可能 となる。  [0014] In this work tool, the control unit makes the setting relating to the operation mode of at least one of the drive motor and the irradiation device variable according to the operation mode of the trigger by the finger of the operator holding the handgrip. It is supposed to be configured. Typically, the timing for switching the irradiation device between the irradiation state and the non-irradiation state, the illuminance (degree of brightness) of the irradiation device, and the like can be appropriately set. According to such a configuration, the operator operates the trigger without changing the work posture while holding the hand grip, and operates at least the drive motor and the irradiation device in the operation state of the drive motor. The setting relating to one of the operation modes can be changed, so that the machining operation can be smoothly performed.
[0015] また、本発明の更なる形態の作業工具では、制御部は、照射装置の作動態様に関 する設定として、上記所定のトリガアクションが所定時間内に行われるたびに、照射 装置を照射状態と非照射状態との間で切り換える制御モードを有する構成とされる。 この制御モードとして、典型的には、当該トリガアクションに要する時間が相対的に短 い場合に、照射装置が照射状態と非照射状態との間で切り換り、当該トリガアクション に要する時間が相対的に長い場合に、照射装置の照射状態或いは非照射状態が 維持される設定を採用することができる。このような構成によれば、トリガによる所定の トリガアクションに要する時間に応じて、照射装置の作動を所望の状態に切り換える 制御が可能とされた作業工具が提供される。 [0015] Further, in the work tool according to a further aspect of the present invention, the control unit irradiates the irradiation device every time the predetermined trigger action is performed within a predetermined time as a setting relating to the operation mode of the irradiation device. The control mode is switched between a state and a non-irradiation state. As this control mode, typically, when the time required for the trigger action is relatively short, the irradiation apparatus switches between the irradiation state and the non-irradiation state, and the trigger action is performed. When the time required for the irradiation is relatively long, it is possible to adopt a setting in which the irradiation state or non-irradiation state of the irradiation apparatus is maintained. According to such a configuration, it is possible to provide a work tool that can be controlled to switch the operation of the irradiation device to a desired state according to the time required for a predetermined trigger action by the trigger.
発明の効果  The invention's effect
[0016] 以上のように、本発明によれば、被加工材の加工作業を遂行する先端工具が駆動 モータによって駆動される作業工具において、特に、所定のトリガアクションによって 、駆動モータの作動状態における駆動モータの作動態様や、照射装置の作動態様 に関する設定を行うことが可能とされた構成を採用することによって、作業者はハンド グリップを把持した状態のまま作業姿勢を変えることなく所望の設定を行うことができ 、以つて加工作業の円滑ィ匕を図ることが可能となった。  [0016] As described above, according to the present invention, in a work tool in which a tip tool that performs a machining operation on a workpiece is driven by a drive motor, in particular, in a working state of the drive motor by a predetermined trigger action. By adopting a configuration that enables settings related to the drive motor operation mode and irradiation device operation mode, the operator can set the desired settings without changing the work posture while holding the hand grip. As a result, it has become possible to achieve smooth processing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の「作業工具」の一実施の形態を図面に基づいて説明する。本実施 の形態では、作業工具の一例として、被加工材の研磨作業や研削作業に用いられる 電動グラインダについて説明する。この電動グラインダは、「ディスクグラインダ」或い は「ディスクサンダ」とも称呼される。  Hereinafter, an embodiment of a “work tool” of the present invention will be described with reference to the drawings. In the present embodiment, as an example of a work tool, an electric grinder used for polishing and grinding work materials will be described. This electric grinder is also referred to as “disc grinder” or “disc sander”.
[0018] 本発明にかかる作業工具の一実施の形態である電動グラインダ 100の外観が図 1 に示される。図 1に示すように、本実施の形態の電動グラインダ 100は、工具本体部 1 10、メイングリップ 120、フロントグリップ 130、駆動モータ 140、駆動機構 150、先端 工具 160を主体に構成される。  FIG. 1 shows the appearance of an electric grinder 100 that is an embodiment of a work tool according to the present invention. As shown in FIG. 1, the electric grinder 100 of the present embodiment is mainly composed of a tool main body 110, a main grip 120, a front grip 130, a drive motor 140, a drive mechanism 150, and a tip tool 160.
[0019] 工具本体部 110は、ハウジング 112内に、駆動モータ 140や駆動機構 150をはじ め、先端工具 160の駆動に関する種々の電気系部品や機械系部品を収容する構成 とされる。駆動モータ 140は、駆動機構 150を介して先端工具 160に接続されており 、外部電源 (後述する交流電源 210)の電源供給により作動し、その作動状態におい て先端工具 160を回転駆動する構成とされる。この駆動モータ 140が、本発明にお いて「電源供給によって先端工具を駆動する駆動モータ」に相当する。この駆動モー タ 140が、工具本体に搭載されるノ ッテリ電源によって作動する構成を採用すること もできる。また、ここでいう工具本体部 110が本発明における「本体部」を構成してい る。この工具本体部 110とメイングリップ 120ないしフロントグリップ 130をあわせて「本 体部」ということもできる。 [0019] The tool main body 110 is configured to accommodate various electric system parts and mechanical system parts related to driving of the tip tool 160, including the drive motor 140 and the drive mechanism 150, in the housing 112. The drive motor 140 is connected to the tip tool 160 via the drive mechanism 150 and is operated by power supply from an external power source (AC power source 210 described later), and the tip tool 160 is rotationally driven in the operating state. Is done. The drive motor 140 corresponds to “a drive motor that drives the tip tool by power supply” in the present invention. It is also possible to adopt a configuration in which the drive motor 140 is operated by a notch power source mounted on the tool body. Further, the tool main body 110 referred to here constitutes the “main body” in the present invention. The The tool body 110 and the main grip 120 or the front grip 130 may be combined to be called a “main part”.
[0020] メイングリップ 120は、工具本体部 110のハウジング 112の工具後方側(図 1中の右 側)に設けられたノヽンドル (「主ノヽンドル」或いは「後部ハンドル」とも ヽぅ)として構成さ れる。メイングリップ 120は、作業者の把持力(握力)が及ぶ部位を構成しており、この メイングリップ 120力 本発明における「ノヽンドグリップ」〖こ相当する。このメイングリップ 120は、典型的には作業者の利き手によって把持され、グリップ下部に駆動モータ 1 40を作動させるためのトリガ 122を備える。  [0020] The main grip 120 is configured as a handle (also referred to as "main handle" or "rear handle") provided on the rear side (right side in Fig. 1) of the housing 112 of the tool body 110. It is done. The main grip 120 constitutes a portion to which the operator's gripping force (grip strength) extends, and this main grip 120 force corresponds to the “node grip” in the present invention. The main grip 120 is typically gripped by an operator's dominant hand, and includes a trigger 122 for operating the drive motor 140 under the grip.
[0021] このトリガ 122は、通常時には駆動モータ 140が非作動状態とされるオフ位置へと 付勢されており、メイングリップ 120を把持した作業者力 このトリガ 122を当該付勢 力に打ち勝って駆動モータ 140が作動状態とされるオン位置へと指で引き操作する ことによって、後述するトリガスィッチ 122aがオン状態となり駆動モータ 140の作動が 開始される。反対に、指によるトリガ 122の引き操作を解除する (戻し操作する)ことに よって、トリガ 122が駆動モータ 140に関するオフ位置へと復帰するとともに、後述す るトリガスィッチ 122aがオフ状態となり、駆動モータ 140の作動が停止される。ここで いうトリガ 122が、本発明における「トリガ」に相当する。なお、詳細については後述す るが、本実施の形態では、特に作業者によるこのトリガ 122の操作態様に応じて、駆 動モータ 140の作動態様に関する設定がなされる構成や、ランプ (照射装置)の作動 態様に関する設定がなされる構成を採用している。  [0021] The trigger 122 is normally biased to an off position where the drive motor 140 is deactivated, and the operator force holding the main grip 120 overcomes the biasing force. By pulling with a finger to the on position where the drive motor 140 is in the activated state, the trigger switch 122a described later is turned on and the operation of the drive motor 140 is started. Conversely, by releasing (returning) the pulling operation of the trigger 122 by the finger, the trigger 122 returns to the off position with respect to the drive motor 140, and the trigger switch 122a described later is turned off, and the drive motor 140 operation is stopped. The trigger 122 here corresponds to a “trigger” in the present invention. Although details will be described later, in the present embodiment, a configuration in which the operation mode of the drive motor 140 is set according to the operation mode of the trigger 122 by the operator, or a lamp (irradiation device) A configuration is adopted in which settings related to the operation mode are made.
[0022] フロントグリップ 130は、工具本体部 110の前側(図 1中の左側)に設けられたノヽンド ル(「補助ハンドル」或 、は「前部ハンドル」とも 、う)として構成される。このフロントダリ ップ 130は、工具本体部 110の左前部から工具左右方向に延在する構成とされる。 このフロントグリップ 130は、典型的には作業者の利き手とは反対の手によって把持 される。  The front grip 130 is configured as a nodule (also referred to as “auxiliary handle” or “front handle”) provided on the front side (left side in FIG. 1) of the tool main body 110. The front drip 130 is configured to extend from the left front portion of the tool main body 110 in the left-right direction of the tool. The front grip 130 is typically gripped by a hand opposite to the operator's dominant hand.
[0023] 先端工具 160は、駆動モータ 140の回転力が駆動機構 150を介して伝達されるこ とによって回転駆動される回転部材として構成され、具体的には研削砲石、切断砲 石、マルチディスク、フレキシブル砥石、ダイアモンドホイール、サンデイングディスク 、ワイヤブラシなどが適宜用いられる。ここでいう先端工具 160は、工具本体部 110の 先端領域に配設された先端工具であって、本発明における「先端工具」に相当する。 なお、電動グラインダ 100の作動原理自体は、周知の技術事項に属するため、その 詳細な構成や作用の説明は、便宜上省略する。 [0023] The tip tool 160 is configured as a rotating member that is rotationally driven when the rotational force of the driving motor 140 is transmitted through the driving mechanism 150, and specifically, a grinding stone, a cutting stone, a multi-purpose tool, and the like. A disk, a flexible grindstone, a diamond wheel, a sanding disk, a wire brush, or the like is appropriately used. The tip tool 160 here is the tool main body 110. A tip tool disposed in the tip region, which corresponds to the “tip tool” in the present invention. Since the operating principle of the electric grinder 100 belongs to a well-known technical matter, the detailed description of the configuration and operation thereof is omitted for the sake of convenience.
[0024] 上記駆動モータ 140の制御システムに関しては、図 2が参照される。この図 2には、 本実施の形態の駆動機構 150を構成する制御回路 151が示される。  Regarding the control system of the drive motor 140, FIG. 2 is referred to. FIG. 2 shows a control circuit 151 constituting the drive mechanism 150 of the present embodiment.
[0025] 図 2に示すように、本実施の形態の制御回路 151は、交流電源 152、制御部(コント ローラ) 153、スィッチ検出部 154、設定表示部 155、モータ駆動部 156を主体に構 成されている。制御部 153は、典型的には CPU (演算処理装置)、入出力装置、記 憶装置、周辺装置等によって構成される。この制御部 153が、本発明における「制御 部」に相当する。スィッチ検出部 154は、トリガ(図 1中のトリガ 122)の操作に伴うトリ ガスイッチ 122aの動作を検出して、当該検出信号を制御部 153に対し出力する機 能を有する。設定表示部 155は、デジタル式或いはアナログ式の表示手段として構 成される。モータ駆動部 156は、半導体スィッチを用いて構成され、駆動モータ 140 に供給する電力を制御可能な機能を有する。制御部 153は、スィッチ検出部 154〖こ より入力信号に基づいて、モータ駆動部 156に対し駆動モータ 140の制御信号を出 力する一方、当該制御に関する内容の表示信号をトリガ動作に機械的或いは電気 式に連動して設定表示部 155に対し出力する。これにより、作業者によるトリガ 122の 操作態様に基づいて、駆動モータ 140の回転数が所定の設定に制御されるとともに 、当該設定の内容が設定表示部 155にて表示されることとなる。  As shown in FIG. 2, the control circuit 151 according to the present embodiment mainly includes an AC power source 152, a control unit (controller) 153, a switch detection unit 154, a setting display unit 155, and a motor drive unit 156. It is made. The control unit 153 is typically configured by a CPU (arithmetic processing unit), an input / output device, a storage device, a peripheral device, and the like. The control unit 153 corresponds to the “control unit” in the present invention. The switch detection unit 154 has a function of detecting the operation of the trigger switch 122a accompanying the operation of the trigger (trigger 122 in FIG. 1) and outputting the detection signal to the control unit 153. The setting display unit 155 is configured as a digital or analog display means. The motor drive unit 156 is configured using a semiconductor switch and has a function capable of controlling the power supplied to the drive motor 140. Based on the input signal from the switch detection unit 154, the control unit 153 outputs a control signal for the drive motor 140 to the motor drive unit 156, while the display signal of the contents related to the control is mechanically or triggered by the trigger operation. Outputs to the setting display unit 155 in conjunction with the electrical type. Thus, based on the operation mode of the trigger 122 by the operator, the rotation speed of the drive motor 140 is controlled to a predetermined setting, and the contents of the setting are displayed on the setting display unit 155.
[0026] 以下、作業者によるトリガ 122の操作態様と、制御対象の作動態様に関する設定と の関係について説明する。本実施の形態では、当該関係については、第 1〜第 4の 実施の形態に大別される。なお、第 1〜第 4の実施の形態において、制御対象の作 動態様に関する設定は、前述の制御部 153が主体として遂行する。  [0026] The relationship between the operation mode of the trigger 122 by the operator and the setting related to the operation mode of the control target will be described below. In the present embodiment, the relationship is roughly divided into first to fourth embodiments. In the first to fourth embodiments, the setting related to the operation mode of the control target is performed mainly by the control unit 153 described above.
[0027] [第 1実施の形態]  [0027] [First embodiment]
まず、第 1実施の形態は、トリガ 122がオン位置力もオフ位置へと戻し操作された後 に、再びオン位置へと引き操作されるトリガアクション (以下、「第 1のトリガアクション」 ともいう)に応じて、駆動モータ 140の回転数設定を切り換える場合とされる。この第 1 実施の形態に関しては、駆動モータ 140の制御モード A〜E力 図 3〜図 7を参照し つつ説明される。図 3〜図 7に示す各制御モードは、作業者によるトリガ 122の第 1の トリガアクションに関する操作態様と、駆動モータ 140の回転数設定との関係によって 示されている。また、制御モード A〜Eにおいては、駆動モータ 140は、回転数設定 に関し、下限回転数である第 1の回転数から、第 2及び第 3の回転数を挟んで、上限 回転数である第 4の回転数までの計 4段階の設定回転数を有する。 First, according to the first embodiment, the trigger action is performed by pulling the trigger 122 back to the on position after the trigger 122 is turned back to the off position (hereinafter also referred to as “first trigger action”). It is assumed that the rotational speed setting of the drive motor 140 is switched according to the above. For this first embodiment, refer to FIGS. 3 to 7 for the control modes A to E of the drive motor 140. Explained. Each of the control modes shown in FIGS. 3 to 7 is indicated by the relationship between the operation mode related to the first trigger action of the trigger 122 by the operator and the rotational speed setting of the drive motor 140. In addition, in the control modes A to E, the drive motor 140 has the upper limit number of rotations with the second and third rotation numbers sandwiched from the first rotation number that is the lower limit number of rotations with respect to the rotation number setting. Up to 4 speeds, total 4 speeds.
(制御モード A) (Control mode A)
第 1実施の形態の制御モード Aでは、トリガ 122の第 1のトリガアクションに連動して 、駆動モータ 140の設定回転数が第 1の回転数と第 4の回転数との間で段階的に変 更(「変速」ともいう)される。具体的には、図 3に示すように、 SWオン力も SWオフに 切り換つたことを条件にしてタイマ(図示省略)が作動し、予め設定された所定時間 Δ tOをカウントする。そして、駆動モータ 140の回転数が上限回転数である第 4の回転 数に達するまでは、作業者が所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションを 行うたびに、駆動モータ 140の設定回転数が第 1の回転数力も第 4の回転数まで 1段 階ずつ上昇する。また、駆動モータ 140の設定回転数が一旦第 4の回転数に達した 後は、作業者が所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションを行うたびに、 駆動モータ 140の設定回転数が第 4の回転数力も第 1の回転数まで 1段階ずつ下降 する。すなわち、この制御モード Αでは、トリガ 122の第 1のトリガアクションに要する 時間に応じて駆動モータ 140の回転数設定が切り換わり、また第 1のトリガアクション が繰り返されると、第 1の回転数力ゝら第 4の回転数までの回転数設定上昇ステップと、 第 4の回転数力ゝら第 1の回転数までの回転数設定下降ステップが順次繰り返されるこ ととなる。一方、この制御モード Aにおいて、所定時間 Δ ΐ 内にトリガ 122の第 1のトリ ガアクションが行われない場合には、駆動モータ 140の回転数設定が維持される、或 いは初期設定にリセットされる。  In the control mode A of the first embodiment, in conjunction with the first trigger action of the trigger 122, the set rotational speed of the drive motor 140 is stepwise between the first rotational speed and the fourth rotational speed. Changed (also called “shift”). Specifically, as shown in FIG. 3, a timer (not shown) is activated on the condition that the SW ON force is also switched to SW OFF, and counts a predetermined time ΔtO set in advance. Each time the operator performs the first trigger action of the trigger 122 within a predetermined time Δ ま で until the rotation speed of the drive motor 140 reaches the fourth rotation speed that is the upper limit rotation speed, The set number of revolutions increases by one step up to the fourth number of revolutions. In addition, once the set rotational speed of the drive motor 140 reaches the fourth rotational speed, every time the operator performs the first trigger action of the trigger 122 within the predetermined time Δΐ, the set rotational speed of the drive motor 140 is set. The number 4th rotational force also decreases to the 1st rotational speed step by step. In other words, in this control mode Α, the rotation speed setting of the drive motor 140 is switched according to the time required for the first trigger action of the trigger 122, and when the first trigger action is repeated, the first rotation speed force In addition, the step of increasing the rotational speed up to the fourth rotational speed and the step of decreasing the rotational speed setting of the fourth rotational speed to the first rotational speed are sequentially repeated. On the other hand, in this control mode A, if the first trigger action of the trigger 122 is not performed within the predetermined time Δΐ, the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting. Is done.
この制御モード Αは、「トリガアクションが所定時間内に行われるたびに、駆動モータ の回転数設定を切り換える制御モード」に相当する。なお、この制御モード Aの変更 例として、トリガ 122がオフ位置カゝらオン位置へと引き操作された後に、再びオフ位置 へと戻し操作されるトリガアクションに応じて、駆動モータ 140の回転数設定を切り換 える制御モードを採用することもできる。 [0029] (制御モード B) This control mode 相当 corresponds to “a control mode in which the rotation speed setting of the drive motor is switched every time the trigger action is performed within a predetermined time”. As an example of changing this control mode A, the number of rotations of the drive motor 140 depends on the trigger action in which the trigger 122 is pulled back to the off position after the trigger 122 is pulled to the on position. It is also possible to adopt a control mode that switches settings. [0029] (Control mode B)
第 1実施の形態の制御モード Bでは、制御モード Aの場合と同様に、トリガ 122の第 1のトリガアクションに連動して、駆動モータ 140の設定回転数が第 1の回転数と第 4 の回転数との間で段階的に変更される。具体的には、図 4に示すように、 SWオンか ら SWオフに切り換つたことを条件にしてタイマが所定時間 Δ tOをカウントする。そし て、駆動モータ 140の設定回転数が第 4の回転数に達するまでは、作業者が所定時 間 Δ ΐ 内にトリガ 122の第 1のトリガアクションを行うと、駆動モータ 140の設定回転 数が第 1の回転数力も第 4の回転数まで 1段階ずつ上昇する。また、駆動モータ 140 の設定回転数が一旦第 4の回転数に達した後は、作業者が所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションを行うと、駆動モータ 140の設定回転数が第 4の回転数 力 第 1の回転数まで 3段階下降した後、再び第 1の回転数力 第 4の回転数まで 1 段階ずつ上昇する。すなわち、この制御モード Βでは、トリガ 122の第 1のトリガァクシ ヨンが繰り返されると、第 1の回転数力ゝら第 4の回転数までの回転数設定上昇ステップ が繰り返されることとなる。一方、この制御モード Βにおいて、所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションが行われない場合には、駆動モータ 140の回転数設定 が維持される、或いは初期設定にリセットされる。  In the control mode B of the first embodiment, as in the case of the control mode A, the set rotational speed of the drive motor 140 is linked to the first rotational speed and the fourth rotational speed in conjunction with the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 4, the timer counts a predetermined time ΔtO on the condition that the switch is switched from SW on to SW off. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, if the operator performs the first trigger action of the trigger 122 within the predetermined time Δΐ, the set rotational speed of the drive motor 140 is reached. However, the 1st rotational force also increases step by step up to the 4th rotational frequency. In addition, once the set rotational speed of the drive motor 140 reaches the fourth rotational speed, if the operator performs the first trigger action of the trigger 122 within the predetermined time Δΐ, the set rotational speed of the drive motor 140 is set. Decreases to the 4th rotation speed and the 1st rotation speed, and then increases to the 1st rotation speed and the 4th rotation speed again. That is, in this control mode と, when the first trigger action of the trigger 122 is repeated, the step of increasing the rotational speed from the first rotational speed force to the fourth rotational speed is repeated. On the other hand, in this control mode Β, when the first trigger action of the trigger 122 is not performed within the predetermined time Δΐ, the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting.
この制御モード Βは、「当該トリガアクションが所定時間内に行われるたびに、駆動 モータの回転数設定を切り換える制御モード」に相当する。なお、この制御モード Β の変更例として、トリガ 122がオフ位置力もオン位置へと引き操作された後に、再びォ フ位置へと戻し操作されるトリガアクションに応じて、駆動モータ 140の回転数設定を 切り換える制御モードを採用することもできる。  This control mode 相当 corresponds to “a control mode in which the rotational speed setting of the drive motor is switched every time the trigger action is performed within a predetermined time”. As an example of changing this control mode Β, the rotational speed of the drive motor 140 is set according to the trigger action that the trigger 122 is pulled back to the off position after the off position force is also pulled to the on position. It is also possible to adopt a control mode for switching between.
[0030] (制御モード C) [0030] (Control mode C)
第 1実施の形態の制御モード Cでは、トリガ 122の第 1のトリガアクションに連動して 、駆動モータ 140の設定回転数が第 1の回転数と第 4の回転数との間で段階的に変 更される。具体的には、図 5に示すように、 SWオンから SWオフに切り換つたことを条 件にしてタイマが所定時間 Δ tOをカウントする。そして、駆動モータ 140の設定回転 数が第 4の回転数に達するまでは、作業者が所定時間 Δ ΐ 内にトリガ 122の第 1のト リガアクションを 2回繰り返すと、駆動モータ 140の設定回転数が第 1の回転数力も第 2の回転数へと 1段階上昇する。同様に、作業者が所定時間 A tO内に当該第 1のトリ ガアクションを 3回繰り返すと、駆動モータ 140の設定回転数が第 2の回転数力も第 3 の回転数へと 1段階上昇し、作業者が所定時間 Δ ΐ 内に当該第 1のトリガアクション を 4回繰り返すと、駆動モータ 140の設定回転数が第 3の回転数力も第 4の回転数へ と 1段階上昇する。また、駆動モータ 140の設定回転数が一旦第 4の回転数に達した 後は、作業者が所定時間 Δ ΐ 内に 1回行うことによって、駆動モータ 140の設定回転 数が第 4の回転数力も第 1の回転数へと 3段階下降した後、当該第 1のトリガァクショ ンの繰り返し回数に応じて、再び第 1の回転数力 第 4の回転数まで 1段階ずつ上昇 する。すなわち、この制御モード Cでは、トリガ 122の第 1のトリガアクションの所定時 間内における繰り返し回数に応じて、駆動モータ 140の回転数が第 1〜第 4の回転 数のいずれかに設定されることとなる。一方、この制御モード Cにおいて、所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションが行われない場合には、駆動モータ 140 の回転数設定が維持される、或いは初期設定にリセットされる。 In the control mode C of the first embodiment, in conjunction with the first trigger action of the trigger 122, the set rotational speed of the drive motor 140 is stepped between the first rotational speed and the fourth rotational speed. Be changed. Specifically, as shown in FIG. 5, the timer counts a predetermined time ΔtO on the condition that the switch is switched from SW on to SW off. Then, until the set rotation speed of the drive motor 140 reaches the fourth rotation speed, if the operator repeats the first trigger action of the trigger 122 twice within the predetermined time Δΐ, the set rotation speed of the drive motor 140 is reached. Number 1 is also the first rotational force Increases by 1 step to 2 rpm. Similarly, when the worker repeats the first trigger action three times within the predetermined time AtO, the set rotational speed of the drive motor 140 increases by one step to the third rotational speed as well. When the operator repeats the first trigger action four times within the predetermined time Δΐ, the set rotational speed of the drive motor 140 is increased by one step to the fourth rotational speed. In addition, once the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the operator performs the set rotational speed of the drive motor 140 once within the predetermined time Δΐ so that the set rotational speed of the drive motor 140 becomes the fourth rotational speed. After the force decreases to the first rotation speed in three steps, the first rotation force increases to the fourth rotation speed again in one step according to the number of repetitions of the first trigger function. That is, in this control mode C, the rotation speed of the drive motor 140 is set to any one of the first to fourth rotation speeds according to the number of repetitions of the first trigger action of the trigger 122 within a predetermined time. It will be. On the other hand, in the control mode C, when the first trigger action of the trigger 122 is not performed within the predetermined time Δΐ, the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting.
この制御モード Cは、「当該トリガアクションの所定時間内における繰り返し回数に 応じて、駆動モータの回転数設定を切り換える制御モード」に相当する。なお、この 制御モード Cの変更例として、トリガ 122がオフ位置力 オン位置へと引き操作された 後に、再びオフ位置へと戻し操作されるトリガアクションに応じて、駆動モータ 140の 回転数設定を切り換える制御モードを採用することもできる。  This control mode C corresponds to “a control mode in which the rotational speed setting of the drive motor is switched according to the number of repetitions of the trigger action within a predetermined time”. As an example of changing this control mode C, the rotation speed of the drive motor 140 is set according to the trigger action that is triggered again when the trigger 122 is pulled to the off position and then to the off position. A switching control mode can also be adopted.
(制御モード D) (Control mode D)
第 1実施の形態の制御モード Dでは、トリガ 122の第 1のトリガアクションに要する操 作時間に連動して、駆動モータ 140の設定回転数が第 1の回転数と第 4の回転数と の間で段階的に変更される。具体的には、図 6に示すように、作業者が行うトリガ 122 の第 1のトリガアクションに要する時間(以下、「SWオフ時間」に相当)が相対的に短 い場合、例えば図 6中の A tlである場合に、駆動モータ 140の設定回転数が 1段階 上昇する。一方、作業者が行うトリガ 122の第 1のトリガアクションに要する時間が相 対的に長い場合、例えば図 6中の A t2である場合に、駆動モータ 140の設定回転数 力 段階下降する。すなわち、この制御モード Dでは、トリガ 122の第 1のトリガァクショ ンに要する時間に基づいて、駆動モータ 140の設定回転数を上昇させる力、或いは 下降させるカゝが定まることとなる。実質的には、予め所定時間を設定したうえで、トリガIn the control mode D of the first embodiment, the set rotational speed of the drive motor 140 is set between the first rotational speed and the fourth rotational speed in conjunction with the operation time required for the first trigger action of the trigger 122. It is changed step by step. Specifically, as shown in FIG. 6, when the time required for the first trigger action of the trigger 122 performed by the operator (hereinafter referred to as “SW off time”) is relatively short, for example, in FIG. In the case of Atl, the set rotational speed of the drive motor 140 increases by one step. On the other hand, when the time required for the first trigger action of the trigger 122 performed by the operator is relatively long, for example, when it is At 2 in FIG. 6, the set rotational speed of the drive motor 140 decreases. That is, in this control mode D, the force for increasing the set rotational speed of the drive motor 140 based on the time required for the first trigger action of the trigger 122, or The key to be lowered will be determined. In effect, a predetermined time is set in advance and the trigger is
122の第 1のトリガアクションに要する時間が所定時間よりも短い場合(Atlの場合) に、駆動モータ 140の設定回転数を 1段階上昇させ、トリガ 122の第 1のトリガァクショ ンに要する時間が予め設定された所定時間よりも長い場合( At2の場合)に、駆動モ ータ 140の設定回転数を 1段階下降させる。一方、所定時間内にトリガ 122の第 1の トリガアクションが行われない場合には、駆動モータ 140の回転数設定が維持される 、或いは初期設定にリセットされる。 When the time required for the first trigger action of 122 is shorter than the predetermined time (in the case of Atl), the set speed of the drive motor 140 is increased by one step, and the time required for the first trigger action of the trigger 122 is preset. If it is longer than the set time (At2), the set rotational speed of the drive motor 140 is decreased by one step. On the other hand, when the first trigger action of the trigger 122 is not performed within a predetermined time, the rotational speed setting of the drive motor 140 is maintained or reset to the initial setting.
この制御モード Dは、「当該トリガアクションが所定時間内に行われるたびに、駆動 モータの回転数設定を切り換える制御モード」に相当する。なお、この制御モード D の変更例として、トリガ 122がオフ位置力もオン位置へと引き操作された後に、再びォ フ位置へと戻し操作されるトリガアクションに応じて、駆動モータ 140の回転数設定を 切り換える制御モードを採用することもできる。  This control mode D corresponds to “a control mode in which the rotational speed setting of the drive motor is switched every time the trigger action is performed within a predetermined time”. As an example of changing this control mode D, the rotation speed of the drive motor 140 is set according to the trigger action that the trigger 122 is pulled back to the off position after the off position force is pulled to the on position. It is also possible to adopt a control mode for switching between.
(制御モード Έ) (Control mode Έ)
第 1実施の形態の制御モード Έでは、制御モード Dの場合と同様に、トリガ 122の第 1のトリガアクションに連動して、駆動モータ 140の設定回転数が第 1の回転数と第 4 の回転数との間で段階的に変更される。具体的には、図 7に示すように、作業者が行 うトリガ 122の第 1のトリガアクションに要する時間が第 1の時間 Atlである場合に、駆 動モータ 140の回転数が第 1の回転数に設定され、また第 1の時間 Atlよりも長い第 2の時間 At2である場合に、駆動モータ 140の回転数が第 2の回転数に設定される 。同様に、作業者が行うトリガ 122の第 1のトリガアクションに要する時間が第 3の時間 At3である場合に、駆動モータ 140の回転数が第 3の回転数に設定され、また第 3 の時間 At3よりも長い第 4の時間 At4である場合に、駆動モータ 140の回転数が第 4の回転数に設定される。すなわち、この制御モード Έでは、トリガ 122の第 1のトリガ アクションに要する時間に基づいて、駆動モータ 140の回転数が第 1〜第 4の回転数 のいずれかに選択的ないし択一的に設定されることとなる。一方、この制御モード Έ において、所定時間内にトリガ 122の第 1のトリガアクションが行われない場合には、 駆動モータ 140の回転数設定が維持される、或いは初期設定にリセットされる。 この制御モード Έは、「当該トリガアクションが所定時間内に行われるたびに、駆動 モータの回転数設定を切り換える制御モード」に相当する。なお、この制御モード Έ の変更例として、トリガ 122がオフ位置力もオン位置へと引き操作された後に、再びォ フ位置へと戻し操作されるトリガアクションに応じて、駆動モータ 140の回転数設定を 切り換える制御モードを採用することもできる。 In the control mode の of the first embodiment, as in the case of the control mode D, the set rotational speed of the drive motor 140 is linked to the first rotational speed and the fourth rotational speed in conjunction with the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 7, when the time required for the first trigger action of the trigger 122 performed by the operator is the first time Atl, the rotation speed of the drive motor 140 is the first speed. When the rotation speed is set and the second time At2 is longer than the first time Atl, the rotation speed of the drive motor 140 is set to the second rotation speed. Similarly, when the time required for the first trigger action of the trigger 122 performed by the operator is the third time At3, the rotation speed of the drive motor 140 is set to the third rotation speed, and the third time When the fourth time At4 is longer than At3, the rotation speed of the drive motor 140 is set to the fourth rotation speed. In other words, in this control mode Έ, based on the time required for the first trigger action of the trigger 122, the rotational speed of the drive motor 140 is selectively or alternatively set to one of the first to fourth rotational speeds. Will be. On the other hand, in this control mode 場合, if the first trigger action of the trigger 122 is not performed within a predetermined time, the rotational speed setting of the drive motor 140 is maintained or reset to the initial setting. This control mode 「indicates that“ every time the trigger action is performed within a predetermined time, This corresponds to a “control mode for switching the rotational speed setting of the motor”. As an example of changing this control mode Έ, the rotational speed of the drive motor 140 is set according to the trigger action that the trigger 122 is pulled back to the off position after the off position force is also pulled to the on position. It is also possible to adopt a control mode for switching between.
[0033] [第 2実施の形態]  [0033] [Second Embodiment]
次に、第 2実施の形態は、トリガ 122の第 1のトリガアクションの際のスィッチ摺動抵 抗に応じて、駆動モータ 140の回転数設定を切り換える場合とされる。この第 2実施 の形態に関しては、図 2に示す制御回路 151とは異なる別の形態の制御回路 (図 8に 示す制御回路 251)を用いるのが好ましい。図 8に示す制御回路 251では、トリガ(図 1中のトリガ 122)の操作に伴うトリガスィッチとして、図 1に示すトリガスィッチ 122aに かえて摺動抵抗付きのトリガスィッチ 222aが採用されている。このトリガスィッチ 222a によって、トリガ 122の第 1のトリガアクションの際のスィッチ摺動抵抗が検出されること となる。なお、この制御回路 251におけるその他の構成要素に関しては、図 2に示す 制御回路 151と同様とされる。  Next, in the second embodiment, the rotational speed setting of the drive motor 140 is switched according to the switch sliding resistance at the time of the first trigger action of the trigger 122. Regarding the second embodiment, it is preferable to use a control circuit of a different form (control circuit 251 shown in FIG. 8) different from the control circuit 151 shown in FIG. In the control circuit 251 shown in FIG. 8, a trigger switch 222a with sliding resistance is adopted as a trigger switch associated with the operation of the trigger (trigger 122 in FIG. 1) instead of the trigger switch 122a shown in FIG. By this trigger switch 222a, the switch sliding resistance at the time of the first trigger action of the trigger 122 is detected. The other components in the control circuit 251 are the same as those in the control circuit 151 shown in FIG.
[0034] この第 2実施の形態に関しては、駆動モータ 140の制御モード F〜Jが、図 9〜図 13 を参照しつつ説明される。図 9〜図 13に示す各制御モードは、作業者によるトリガ 12 2の第 1のトリガアクションにおける摺動抵抗と、駆動モータ 140の設定回転数との関 係によって示されている。なお、制御モード F〜Jにおいては、前述のトリガスィッチ 22 2aによってトリガ 122の第 1のトリガアクションにおける摺動抵抗値が検出される。また 、制御モード F〜Jにおいては、駆動モータ 140は、回転数設定に関し、下限回転数 である第 1の回転数から、上限回転数である第 4の回転数までの計 4段階の設定回 転数を有する。一方、所定時間内にトリガ 122の第 1のトリガアクションが行われない 場合には、駆動モータ 140の回転数設定が維持される、或いは初期設定にリセットさ れる。これら制御モード F〜Jの各々は、いずれも「当該トリガアクションの操作速度に 応じて、駆動モータの回転数設定を切り換える制御モード」に相当する。なお、この 制御モード F〜Jの変更例として、トリガ 122がオフ位置力もオン位置へと引き操作さ れた後に、再びオフ位置へと戻し操作されるトリガアクションに応じて駆動モータ 140 の回転数設定を切り換える制御モードを採用することもできる。 [0035] (制御モード F) Regarding the second embodiment, the control modes F to J of the drive motor 140 will be described with reference to FIGS. 9 to 13. Each of the control modes shown in FIGS. 9 to 13 is indicated by the relationship between the sliding resistance in the first trigger action of the trigger 122 2 by the operator and the set rotational speed of the drive motor 140. In the control modes F to J, the sliding resistance value in the first trigger action of the trigger 122 is detected by the above-described trigger switch 22 2a. In addition, in the control modes F to J, the drive motor 140 is set in four stages in total from the first rotation speed that is the lower limit rotation speed to the fourth rotation speed that is the upper limit rotation speed with respect to the rotation speed setting. Have a number of turns. On the other hand, when the first trigger action of the trigger 122 is not performed within the predetermined time, the rotation speed setting of the drive motor 140 is maintained or reset to the initial setting. Each of these control modes F to J corresponds to a “control mode for switching the rotational speed setting of the drive motor in accordance with the operation speed of the trigger action”. As an example of changing the control modes F to J, the rotation speed of the drive motor 140 is changed according to the trigger action in which the trigger 122 is pulled back to the off position after the trigger 122 is pulled to the on position. A control mode for switching the setting can also be adopted. [0035] (Control mode F)
第 2実施の形態の制御モード Fでは、トリガ 122の第 1のトリガアクション時の規定摺 動抵抗の検出に連動して、駆動モータ 140の設定回転数が第 1の回転数と第 4の回 転数との間で段階的に変更(「変速」ともいう)される。具体的には、図 9に示すように、 SWオンカゝら SWオフに切り換つたことを条件にしてタイマ(図示省略)が作動し、予め 設定された所定時間 Δ tOをカウントする。そして、駆動モータ 140の設定回転数が第 4の回転数に達するまでは、所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションに おける規定の摺動抵抗値(図 9では lOOkQ )を検出するたびに、駆動モータ 140の 設定回転数が第 1の回転数力も第 4の回転数まで 1段階ずつ上昇する。また、駆動 モータ 140の設定回転数がー且第 4の回転数に達した後は、所定時間 Δ ΐ 内にトリ ガ 122の第 1のトリガアクションにおける規定の摺動抵抗値を検出するたびに、駆動 モータ 140の設定回転数が第 4の回転数力も第 1の回転数まで 1段階ずつ下降する 。すなわち、この制御モード Fでは、トリガ 122の第 1のトリガアクションの操作速度に 応じて駆動モータ 140の回転数設定が切り換わり、またトリガ 122の第 1のトリガァクシ ヨンが繰り返されると、第 1の回転数力ゝら第 4の回転数までの回転数設定上昇ステップ と、第 4の回転数力 第 1の回転数までの回転数設定下降ステップが順次繰り返され ることとなる。  In the control mode F of the second embodiment, the set rotational speed of the drive motor 140 is set to the first rotational speed and the fourth rotational speed in conjunction with the detection of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed step by step (also referred to as “shift”) between the rotation numbers. Specifically, as shown in FIG. 9, a timer (not shown) is activated on the condition that the switch has been switched from SW ON to SW OFF, and counts a preset predetermined time ΔtO. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the specified sliding resistance value (lOOkQ in Fig. 9) in the first trigger action of the trigger 122 is detected within a predetermined time Δ ΐ. Each time, the set rotational speed of the drive motor 140 increases by one step up to the fourth rotational speed. In addition, after the set rotational speed of the drive motor 140 reaches the fourth rotational speed, every time the specified sliding resistance value in the first trigger action of the trigger 122 is detected within a predetermined time Δΐ. Then, the set rotational speed of the drive motor 140 is lowered step by step to the first rotational speed. That is, in this control mode F, when the rotation speed setting of the drive motor 140 is switched according to the operation speed of the first trigger action of the trigger 122, and the first trigger action of the trigger 122 is repeated, the first trigger action is repeated. The rotational speed setting up step from the rotational speed to the fourth rotational speed and the rotational speed setting down step to the fourth rotational speed force to the first rotational speed are sequentially repeated.
[0036] (制御モード G)  [0036] (Control mode G)
第 2実施の形態の制御モード Gでは、制御モード Fの場合と同様に、トリガ 122の第 1のトリガアクション時の規定摺動抵抗の検出に連動して、駆動モータ 140の設定回 転数が第 1の回転数と第 4の回転数との間で段階的に変更される。具体的には、図 1 0に示すように、 SWオンから SWオフに切り換つたことを条件にしてタイマが所定時間 Δ tOをカウントする。そして、駆動モータ 140の設定回転数が第 4の回転数に達する までは、所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションにおける規定の摺動抵 抗値を検出するたびに、駆動モータ 140の設定回転数が第 1の回転数力も第 4の回 転数まで 1段階ずつ上昇する。また、駆動モータ 140の設定回転数が一旦第 4の回 転数に達した後は、所定時間 Δ ΐ 内にトリガ 122の第 1のトリガアクションにおける規 定の摺動抵抗値を検出するたびに、駆動モータ 140の設定回転数が第 4の回転数 力 第 1の回転数まで 3段階下降した後、再び第 1の回転数力 第 4の回転数まで 1 段階ずつ上昇する。すなわち、この制御モード Gでは、トリガ 122の第 1のトリガァクシ ヨンの操作速度に応じて駆動モータ 140の回転数設定が切り換わり、またトリガ 122 の第 1のトリガアクションが繰り返されると、第 1の回転数力も第 4の回転数までの回転 数設定上昇ステップが繰り返されることとなる。 In the control mode G of the second embodiment, as in the case of the control mode F, the set number of rotations of the drive motor 140 is linked to the detection of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed stepwise between the first and fourth rotation speeds. Specifically, as shown in FIG. 10, the timer counts a predetermined time ΔtO on condition that the switch is switched from SW on to SW off. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the drive motor 140 is detected each time the specified sliding resistance value in the first trigger action of the trigger 122 is detected within the predetermined time Δ 駆 動. With the set speed of 140, the first speed force is also increased step by step up to the fourth speed. In addition, once the set rotational speed of the drive motor 140 reaches the fourth rotational speed, every time the specified sliding resistance value in the first trigger action of the trigger 122 is detected within a predetermined time Δΐ. The setting speed of the drive motor 140 is the fourth speed. Force Decreases by 3 steps to the first rotation speed, then increases again by 1 step to the first rotation speed force to the 4th rotation speed. That is, in this control mode G, when the rotational speed setting of the drive motor 140 is switched according to the operation speed of the first trigger action of the trigger 122, and the first trigger action of the trigger 122 is repeated, the first trigger action is repeated. As for the rotational speed force, the rotational speed setting increase step up to the fourth rotational speed is repeated.
[0037] (制御モード H)  [0037] (Control mode H)
第 2実施の形態の制御モード Hでは、トリガ 122の第 1のトリガアクション時の規定摺 動抵抗の検出回数に連動して、駆動モータ 140の設定回転数が第 1の回転数と第 4 の回転数との間で段階的に変更される。具体的には、図 11に示すように、 SWオンか ら SWオフに切り換つたことを条件にしてタイマが所定時間 Δ tOをカウントする。そし て、駆動モータ 140の設定回転数が第 4の回転数に達するまでは、トリガ 122の第 1 のトリガアクションにおける規定の摺動抵抗値を予め設定された所定時間 Δ tO内に 2 回繰り返して検出すると、駆動モータ 140の設定回転数が第 1の回転数力も第 2の回 転数へと 1段階上昇する。同様に、当該第 1のトリガアクションにおける規定の摺動抵 抗値を所定時間 Δ tO内に 3回繰り返して検出すると、駆動モータ 140の設定回転数 が第 2の回転数力 第 3の回転数へと 1段階上昇し、当該第 1のトリガアクションにお ける規定の摺動抵抗値を所定時間 Δ tO内に 4回繰り返して検出すると、駆動モータ 1 40の設定回転数が第 3の回転数から第 4の回転数へと 1段階上昇する。また、駆動 モータ 140の設定回転数が一旦第 4の回転数に達した後は、当該第 1のトリガァクシ ヨンにおける規定の摺動抵抗値を所定時間 Δ tO内に 1回検出することによって、駆動 モータ 140の設定回転数が第 4の回転数力も第 1の回転数へと 3段階下降しした後、 当該第 1のトリガアクションにおける規定の摺動抵抗値の検出回数に応じて、再び第 1の回転数力も第 4の回転数まで 1段階ずつ上昇する。すなわち、この制御モード Ή では、トリガ 122の第 1のトリガァクションの操作速度に応じて駆動モータ 140の回転 数設定が切り換わり、またトリガ 122の第 1のトリガアクションにおける規定の摺動抵抗 値の検出回数に基づいて、駆動モータ 140の回転数が第 1〜第 4の回転数のいず れかに選択的ないし択一的に設定されることとなる。  In the control mode H of the second embodiment, the set rotational speed of the drive motor 140 is set to the first rotational speed and the fourth rotational speed in conjunction with the number of detections of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 11, the timer counts a predetermined time ΔtO on the condition that the switch is switched from SW on to SW off. Then, until the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the specified sliding resistance value in the first trigger action of the trigger 122 is repeated twice within a predetermined time ΔtO. In this case, the set rotational speed of the drive motor 140 is increased by one step from the first rotational speed to the second rotational speed. Similarly, when the specified sliding resistance value in the first trigger action is detected three times within a predetermined time ΔtO, the set rotational speed of the drive motor 140 is the second rotational speed force, the third rotational speed. When the specified sliding resistance value in the first trigger action is detected four times within the predetermined time ΔtO, the set rotational speed of the drive motor 140 becomes the third rotational speed. From 1 to 4th speed. In addition, once the set rotational speed of the drive motor 140 reaches the fourth rotational speed, the specified sliding resistance value in the first trigger action is detected once within a predetermined time ΔtO to drive the motor. After the set rotational speed of the motor 140 has decreased to the first rotational speed by three steps, the first rotational force is again decreased according to the number of detections of the specified sliding resistance value in the first trigger action. The number of revolutions increases by one step up to the fourth number of revolutions. That is, in this control mode Ή, the rotational speed setting of the drive motor 140 is switched according to the operation speed of the first trigger function of the trigger 122, and the specified sliding resistance value in the first trigger action of the trigger 122 is changed. Based on the detected number of times, the rotational speed of the drive motor 140 is selectively or alternatively set to one of the first to fourth rotational speeds.
[0038] (制御モード I) 第 2実施の形態の制御モード Ίでは、トリガ 122の第 1のトリガアクション時の規定摺 動抵抗の変化時間に連動して、駆動モータ 140の設定回転数が第 1の回転数と第 4 の回転数との間で段階的に変更される。具体的には、図 12に示すように、トリガ 122 の第 1のトリガアクションにおいて規定の摺動抵抗値の変化に要する時間が相対的 に短い場合、例えば図 12中の Atlである場合に、駆動モータ 140の設定回転数が 1段階上昇する。一方、トリガ 122の第 1のトリガアクションにおいて規定の摺動抵抗 値の変化に要する時間が相対的に長い場合、例えば図 12中の At2である場合に、 駆動モータ 140の設定回転数が 1段階下降する。すなわち、この制御モード Dでは、 トリガ 122の第 1のトリガアクションにおいて規定の摺動抵抗値の変化に要する時間、 すなわち第 1のトリガアクションの操作速度に応じて、駆動モータ 140の回転数を上 昇させるか、或いは下降させるかが設定されることとなる。 [0038] (Control mode I) In the control mode の of the second embodiment, the set rotational speed of the drive motor 140 is set to the first rotational speed and the fourth rotational speed in conjunction with the change time of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed step by step between the rotation speeds. Specifically, as shown in FIG. 12, when the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122 is relatively short, for example, when it is Atl in FIG. The set speed of drive motor 140 increases by one level. On the other hand, when the time required to change the specified sliding resistance value in the first trigger action of the trigger 122 is relatively long, for example, when it is At2 in FIG. 12, the set rotational speed of the drive motor 140 is one step. Descend. That is, in this control mode D, the number of rotations of the drive motor 140 is increased according to the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122, that is, the operation speed of the first trigger action. Whether it is raised or lowered is set.
[0039] (制御モード J) [0039] (Control mode J)
第 2実施の形態の制御モード Jでは、制御モード Iの場合と同様に、トリガ 122の第 1 のトリガアクション時の規定摺動抵抗の変化時間に連動して、駆動モータ 140の設定 回転数が第 1の回転数と第 4の回転数との間で段階的に変更される。具体的には、 図 13に示すように、トリガ 122の第 1のトリガアクションにおいて規定の摺動抵抗値の 変化に要する時間が第 1の時間 Atlである場合に、駆動モータ 140の回転数が第 1 の回転数に設定され、また第 1の時間 Atlよりも長い第 2の時間 At2である場合に、 駆動モータ 140の回転数が第 2の回転数に設定される。同様に、トリガ 122の第 1のト リガアクションにおいて規定の摺動抵抗値の変化に要する時間が第 3の時間 Δ t3で ある場合に、駆動モータ 140の回転数が第 3の回転数に設定され、また第 3の時間 At3よりも長い第 4の時間 At4である場合に、駆動モータ 140の回転数が第 4の回 転数に設定される。すなわち、この制御モード Ίでは、トリガ 122の第 1のトリガァクショ ンにおいて規定の摺動抵抗値の変化に要する時間に基づいて、駆動モータ 140の 回転数が第 1〜第 4の回転数のいずれかに選択的ないし択一的に設定されることと なる。  In the control mode J of the second embodiment, as in the case of the control mode I, the set rotational speed of the drive motor 140 is linked to the change time of the specified sliding resistance at the time of the first trigger action of the trigger 122. It is changed stepwise between the first and fourth rotation speeds. Specifically, as shown in FIG. 13, when the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122 is the first time Atl, the rotational speed of the drive motor 140 is When the first rotation speed is set and the second time At2 is longer than the first time Atl, the rotation speed of the drive motor 140 is set to the second rotation speed. Similarly, when the time required to change the specified sliding resistance value in the first trigger action of the trigger 122 is the third time Δt3, the rotation speed of the drive motor 140 is set to the third rotation speed. In the case where the fourth time At4 is longer than the third time At3, the rotation speed of the drive motor 140 is set to the fourth rotation speed. That is, in this control mode Ί, the rotation speed of the drive motor 140 is one of the first to fourth rotation speeds based on the time required for the change of the specified sliding resistance value in the first trigger action of the trigger 122. It will be set selectively or alternatively.
[0040] [第 3実施の形態]  [0040] [Third embodiment]
次に、第 3実施の形態は、トリガ 122の前述の第 1のトリガアクション、或いはトリガ 1 22がオフ位置カゝらオン位置へと引き操作された後に、再びオフ位置へと戻し操作さ れるトリガアクション(「第 2のトリガアクション」ともいう)に応じて、駆動モータ 140の回 転数以外の設定を切り換える場合とされる。この第 3実施の形態に関しては、駆動モ ータ 140の制御モード K〜0力 図 14〜図 18を参照しつつ説明される。 Next, in the third embodiment, the first trigger action of the trigger 122 or the trigger 1 In response to a trigger action (also referred to as “second trigger action”) in which the motor 22 is pulled back from the off position to the on position and then back to the off position, the number of rotations of the drive motor 140 It is assumed that the setting other than is switched. The third embodiment will be described with reference to the control mode K to 0 force of the driving motor 140 and FIGS.
[0041] (制御モード Κ) [0041] (Control mode Κ)
第 3実施の形態の制御モード Κでは、トリガ 122の第 1のトリガアクションの態様に連 動して、駆動モータ 140のソフトスタート動作時間が変更されるように設定されている 。具体的には、トリガ 122の第 1のトリガアクションが所定時間内に行われるたびに、ソ フトスタート動作時間の設定値を切り換える。すなわち、図 14に示すように、作業者 が行うトリガ 122の第 1のトリガアクションに要する時間が相対的に短い場合、例えば 図 14中の A tlである場合に、駆動モータ 140のソフトスタート動作時間の設定が T1 と T2 ( >T1)との間で切り換えられる。また、作業者が行うトリガ 122の第 1のトリガァク シヨンに要する時間が相対的に長い場合、例えば図 14中の A t2である場合に、駆 動モータ 140のソフトスタート動作時間の設定値を、前回のソフトスタート動作時間の 設定値と同じにする。なお、この設定に関しては、ソフトスタート動作時間の設定値を メモリ等に記憶させて保持する構成を採用するのが好ましい。ここでいう「ソフトスター ト動作」とは、駆動モータ 140の起動時に回転数を通常回転数まで徐々に上げる動 作であり、当該動作が完了するまでの時間が「ソフトスタート動作時間」として規定さ れる。一方、この制御モード Kにおいて、所定時間内にトリガ 122の第 1のトリガァクシ ヨンが行われない場合には、ソフトスタート動作時間の設定が維持される、或いは初 期設定にリセットされる。  In the control mode の of the third embodiment, the soft start operation time of the drive motor 140 is set to be changed in conjunction with the first trigger action mode of the trigger 122. Specifically, every time the first trigger action of the trigger 122 is performed within a predetermined time, the set value of the soft start operation time is switched. That is, as shown in FIG. 14, when the time required for the first trigger action of the trigger 122 performed by the operator is relatively short, for example, when it is Atl in FIG. 14, the soft start operation of the drive motor 140 is performed. The time setting is switched between T1 and T2 (> T1). In addition, when the time required for the first trigger action of the trigger 122 performed by the operator is relatively long, for example, at At 2 in FIG. 14, the setting value of the soft start operation time of the drive motor 140 is Set to the same value as the previous soft start operation time setting. For this setting, it is preferable to adopt a configuration in which the setting value of the soft start operation time is stored in a memory or the like and held. The “soft start operation” here is an operation that gradually increases the rotation speed to the normal rotation speed when the drive motor 140 starts up, and the time until the operation is completed is defined as the “soft start operation time”. It is done. On the other hand, in the control mode K, when the first trigger action of the trigger 122 is not performed within a predetermined time, the setting of the soft start operation time is maintained or reset to the initial setting.
この制御モード Kは、「当該トリガアクションが所定時間内に行われるたびに、駆動 モータの起動時に回転数を通常回転数まで徐々に上げるソフトスタート動作時間を 切り換える制御モード」に相当する。なお、この制御モード Kの変更例として、トリガ 1 22の第 2のトリガアクションに応じて、駆動モータ 140のソフトスタート動作時間の設 定を切り換える制御モードを採用することもできる。  This control mode K corresponds to “a control mode in which the soft start operation time for gradually increasing the rotation speed to the normal rotation speed when the drive motor is started every time the trigger action is performed within a predetermined time”. As an example of changing the control mode K, a control mode that switches the setting of the soft start operation time of the drive motor 140 in accordance with the second trigger action of the trigger 122 can be adopted.
[0042] (制御モード L) [0042] (Control mode L)
第 3実施の形態の制御モード Lでは、トリガ 122のスィッチ操作態様に連動して、駆 動モータ 140の電流リミッタの作動態様が変更されるように設定されている。具体的 には、トリガ 122の第 2のトリガアクションが所定時間内に行われるたびに、電流リミツ タの作動態様を作動状態と作動解除状態との間で切り換える。すなわち、図 15に示 すように、トリガ 122の第 2のトリガアクションに要する時間が相対的に短い場合、例え ば図 15中の A tlである場合に、駆動モータ 140の電流リミッタを作動状態と作動解 除状態とに切り換え、また当該時間が相対的に長い場合、例えば図 15中の A t2で ある場合に、駆動モータ 140の電流リミッタを作動状態或いは作動解除状態のいず れかに維持する制御を行う。この制御モード Lで用いる電動リミッタは、その作動状態 において、駆動モータ 140に通電される電流が予め設定された所定電流値をこえな いように、実際の電流をフィードバック制御する機能を有する。一方、この制御モード Lにおいて、所定時間内にトリガ 122の第 2のトリガアクションが行われない場合には 、電流リミッタの作動態様が維持される、或いは初期設定にリセットされる。 In the control mode L of the third embodiment, the driving is performed in conjunction with the switch operation mode of the trigger 122. The operation mode of the current limiter of the dynamic motor 140 is set to be changed. Specifically, every time the second trigger action of the trigger 122 is performed within a predetermined time, the operation mode of the current limiter is switched between the operation state and the operation release state. That is, as shown in FIG. 15, when the time required for the second trigger action of the trigger 122 is relatively short, for example, when it is Atl in FIG. 15, the current limiter of the drive motor 140 is activated. When the time is relatively long, for example, when At 2 in FIG. 15, the current limiter of the drive motor 140 is either in the activated state or the deactivated state. Control to maintain. The electric limiter used in this control mode L has a function of feedback-controlling the actual current so that the current supplied to the drive motor 140 does not exceed a preset predetermined current value in its operating state. On the other hand, in the control mode L, when the second trigger action of the trigger 122 is not performed within a predetermined time, the operation mode of the current limiter is maintained or reset to the initial setting.
この制御モード Lは、「当該トリガアクションが所定時間内に行われるたびに、電流リ ミッタの作動を切り換える制御モード」に相当する。なお、この制御モード Lの変更例 として、トリガ 122の前述の第 1のトリガアクションに応じて、電流リミッタの作動態様を 切り換える制御モードを採用することもできる。  This control mode L corresponds to “a control mode in which the operation of the current limiter is switched every time the trigger action is performed within a predetermined time”. As an example of changing the control mode L, a control mode in which the operating mode of the current limiter is switched in accordance with the first trigger action of the trigger 122 can be adopted.
(制御モード M) (Control mode M)
第 3実施の形態の制御モード Mでは、トリガ 122のスィッチ操作態様に連動して、ラ イトの作動態様が変更されるように設定されている。具体的には、トリガ 122の第 2のト リガアクションが所定時間内に行われるたびに、ライトの作動態様を作動状態と作動 解除状態 (非作動状態)との間で切り換える。すなわち、図 16に示すように、トリガ 12 2の第 2のトリガアクションに要する時間が相対的に短い場合に、ライトを作動状態と 作動解除状態とに切り換え、また当該時間が相対的に長い場合に、ライトを作動状 態或いは作動解除状態のいずれかに維持する制御を行う。一方、この制御モード M において、所定時間内にトリガ 122の第 2のトリガアクションが行われない場合には、 ライトの作動態様が維持される、或いは初期設定にリセットされる。この制御モード M で用いるライトは、工具使用時に先端工具 160或いは被加工材を照射する手段とし て構成される。また、ライトのオンオフ動作以外に、点灯時間や点灯強度(明るさ)な どを制御する構成、更にはライト以外に、丸鋸等の作業工具において被加工材の墨 線合わせに用いるレーザーや蛍光灯の作動態様を制御する構成を採用することもで きる。ここでいうライト、レーザー、蛍光灯が、本発明における「照射装置」を構成する この制御モード Mは、「当該トリガアクションが所定時間内に行われるたびに、照射 装置を照射状態と非照射状態との間で切り換える制御モード」に相当する。なお、こ の制御モード Mの変更例として、トリガ 122の前述の第 1のトリガアクションに応じて、 ライトの作動態様を切り換える制御モードを採用することもできる。 In the control mode M of the third embodiment, the light operation mode is set to be changed in conjunction with the switch operation mode of the trigger 122. Specifically, every time the second trigger action of the trigger 122 is performed within a predetermined time, the operation mode of the light is switched between the operation state and the operation release state (non-operation state). That is, as shown in FIG. 16, when the time required for the second trigger action of the trigger 122 is relatively short, the light is switched between the activated state and the deactivated state, and the time is relatively long. In addition, control is performed to maintain the light in either the activated state or the deactivated state. On the other hand, in the control mode M, when the second trigger action of the trigger 122 is not performed within a predetermined time, the operation mode of the light is maintained or reset to the initial setting. The light used in this control mode M is configured as a means for irradiating the tip tool 160 or workpiece when the tool is used. In addition to the light on / off operation, the lighting time and lighting intensity (brightness) In addition to the light control structure, it is also possible to adopt a structure for controlling the operation mode of a laser or a fluorescent lamp used for inking the work material in a work tool such as a circular saw. The light, laser, and fluorescent lamp here constitute an “irradiation device” in the present invention. This control mode M is “whenever the trigger action is performed within a predetermined time, the irradiation device is in an irradiation state and a non-irradiation state. Corresponds to a “control mode for switching between” and “. As an example of changing this control mode M, a control mode in which the operation mode of the light is switched in accordance with the first trigger action of the trigger 122 can also be adopted.
[0044] (制御モード N) [0044] (Control mode N)
第 3実施の形態の制御モード Nでは、トリガ 122のスィッチ操作態様に連動して、駆 動モータ 140の作動状態がロックされ(「ロックオン」ともいう)、また駆動モータ 140の ロックオン状態がロック解除される(「ロックオフ」とも 、う)ように設定されて 、る。具体 的には、トリガ 122の第 2のトリガアクションの所定時間内における繰り返し回数に応じ て、駆動モータ 140をロックオン状態とロックオフ状態との間で切り換える。すなわち、 図 17に示すように、予め設定された所定時間 Δ ΐ 内にトリガ 122の第 2のトリガァクシ ヨンを 2回繰り返すことで、その後の駆動モータ 140の作動状態がロックされる。その 後、予め設定された所定時間 Δ ΐ 内にトリガ 122の第 2のトリガアクションを 1回行うこ とで、駆動モータ 140のロックオン状態が解除される。  In the control mode N of the third embodiment, the operating state of the drive motor 140 is locked (also referred to as “lock on”) in conjunction with the switch operation mode of the trigger 122, and the lock on state of the drive motor 140 is It is set to be unlocked (also called “lock-off”). Specifically, the drive motor 140 is switched between a lock-on state and a lock-off state according to the number of repetitions of the second trigger action of the trigger 122 within a predetermined time. That is, as shown in FIG. 17, by repeating the second trigger action of the trigger 122 twice within a preset predetermined time Δΐ, the subsequent operation state of the drive motor 140 is locked. Thereafter, the lock-on state of the drive motor 140 is released by performing the second trigger action of the trigger 122 once within a predetermined time Δ Δ set in advance.
この制御モード Νは、「当該トリガアクションの所定時間内における繰り返し回数に 応じて、ロックオン機構の作動を切り換える制御モード」に相当する。なお、この制御 モード Νの変更例として、トリガ 122の前述の第 1のトリガアクションに応じて、駆動モ ータ 140をロックオン状態とロックオフ状態との間で切り換える制御モードを採用する ことちでさる。  This control mode 相当 corresponds to “a control mode in which the operation of the lock-on mechanism is switched according to the number of repetitions of the trigger action within a predetermined time”. As an example of changing this control mode Ν, a control mode is adopted in which the drive motor 140 is switched between the lock-on state and the lock-off state in accordance with the first trigger action of the trigger 122 described above. In
[0045] (制御モード Ο) [0045] (Control mode Ο)
第 3実施の形態の制御モード Οでは、制御モード Νの場合と同様に、トリガ 122のス イッチ操作態様に連動して、駆動モータ 140の作動状態がロックされ (ロックオン)、ま た駆動モータ 140のロックオン状態がロック解除される(ロックオフ)ように設定されて いる。具体的には、トリガ 122の第 2のトリガアクションの所定時間内における繰り返し 回数に応じて、駆動モータ 140をロックオン状態とロックオフ状態との間で切り換える 。すなわち、図 18に示すように、予め設定された所定時間 Δ ΐ 内にトリガ 122の第 2 のトリガアクションを 2回繰り返すことで、その後の駆動モータ 140の作動状態がロック される。その後、予め設定された規定時間が経過すると、自動的に駆動モータ 140の ロックオン状態が解除される。 In the control mode の of the third embodiment, as in the case of the control mode Ν, the operating state of the drive motor 140 is locked (locked on) in conjunction with the switch operation mode of the trigger 122, and the drive motor The 140 lock-on status is set to unlock (lock-off). Specifically, the second trigger action of trigger 122 is repeated within a predetermined time. Depending on the number of times, the drive motor 140 is switched between a lock-on state and a lock-off state. That is, as shown in FIG. 18, the second trigger action of the trigger 122 is repeated twice within a preset predetermined time Δ 予 め, thereby locking the subsequent operating state of the drive motor 140. Thereafter, when a predetermined time set in advance elapses, the lock-on state of the drive motor 140 is automatically released.
この制御モード Οは、「当該トリガアクションの所定時間内における繰り返し回数に 応じて、ロックオン機構の作動を切り換える制御モード」に相当する。なお、この制御 モード Οの変更例として、トリガ 122の前述の第 1のトリガアクションに応じて、駆動モ ータ 140をロックオン状態とロックオフ状態との間で切り換える制御モードを採用する ことちでさる。  This control mode 相当 corresponds to “a control mode in which the operation of the lock-on mechanism is switched according to the number of repetitions of the trigger action within a predetermined time”. As an example of changing this control mode Ο, a control mode is adopted in which the drive motor 140 is switched between the lock-on state and the lock-off state in accordance with the first trigger action of the trigger 122 described above. In
[0046] [第 4実施の形態]  [0046] [Fourth embodiment]
次に、第 4実施の形態は、第 1実施の形態と第 3実施の形態を組み合わせた場合と される。この第 4実施の形態に関しては、駆動モータ 140の制御モード Ρが、図 19を 参照しつつ説明される。  Next, the fourth embodiment is a case where the first embodiment and the third embodiment are combined. Regarding the fourth embodiment, the control mode の of the drive motor 140 will be described with reference to FIG.
[0047] (制御モード Ρ)  [0047] (Control mode Ρ)
第 4実施の形態の制御モード Ρは、第 1実施の形態の制御モード Αに類似の制御モ ードと、第 3実施の形態の制御モード Mに類似の制御モードを組み合わせた制御モ ードとされ、トリガ 122のスィッチ操作態様に連動して、駆動モータ 140の回転数が第 1の回転数と第 4の回転数との間で段階的に変更され、また工具使用時に先端工具 160或いは被加工材を照射するライトの作動態様が変更される。  The control mode Ρ in the fourth embodiment is a control mode in which a control mode similar to the control mode の in the first embodiment is combined with a control mode similar to the control mode M in the third embodiment. In conjunction with the switch operation mode of the trigger 122, the rotation speed of the drive motor 140 is changed stepwise between the first rotation speed and the fourth rotation speed. The operation mode of the light that irradiates the workpiece is changed.
[0048] 具体的には、図 19に示すように、ライトのオンオフ動作に関しては、トリガ 122の第 2 のトリガアクションの規定時間として A t9を用い、駆動モータ 140の回転数変更に関 しては、トリガ 122の第 2のトリガアクションの規定時間として A t9及び A tlO ( > A t9 )を用いる。そして、トリガ 122の第 2のトリガアクションに要する時間が A t9以下の場 合に、当該第 2のトリガアクションはライトのスィッチのオンオフ切り換えのための操作 であると判定して、ライトのスィッチのオンオフ切り換え制御を行う。なお、図 19に示 す形態では、ライト動作力 Sライト設定と合致する場合、すなわちトリガ 122によるスイツ チアクシヨンとライト動作とが連動して ヽな 、場合にっ 、て記載して 、る。 [0049] また、トリガ 122の第 2のトリガアクションに要する時間が A t9よりも大きく A tlOよりも 小さい場合に、当該第 2のトリガアクションは駆動モータ 140の回転数を段階的に上 昇させるための操作であると判定して、駆動モータ 140の設定回転数を段階的に上 昇させる制御を行う。また、トリガ 122の第 2のトリガアクションに要する時間が A tlO 以上の場合に、当該第 2のトリガアクションは駆動モータ 140の回転数を段階的に下 降させるための操作であると判定して、駆動モータ 140の設定回転数を段階的に下 降させる制御を行う。 Specifically, as shown in FIG. 19, regarding the light on / off operation, At 9 is used as the specified time of the second trigger action of the trigger 122, and the rotation speed of the drive motor 140 is changed. Uses A t9 and A tlO (> A t9) as the prescribed times for the second trigger action of trigger 122. If the time required for the second trigger action of the trigger 122 is equal to or less than At9, it is determined that the second trigger action is an operation for switching the light switch on and off, and the light switch Performs on / off switching control. In the form shown in FIG. 19, when the write operation force S matches the light setting, that is, when the switch action by the trigger 122 and the write operation are linked, it is described. [0049] When the time required for the second trigger action of the trigger 122 is larger than At9 and smaller than AtlO, the second trigger action increases the rotational speed of the drive motor 140 stepwise. Control for increasing the set rotational speed of the drive motor 140 step by step. In addition, when the time required for the second trigger action of the trigger 122 is equal to or greater than AtlO, it is determined that the second trigger action is an operation for decreasing the rotation speed of the drive motor 140 step by step. Then, control is performed to decrease the set rotational speed of the drive motor 140 step by step.
なお、この制御モード Pの変更例として、トリガ 122の前述の第 2のトリガアクションに 応じて、駆動モータ 140の回転数設定を切り換える制御モードや、トリガ 122の前述 の第 1のトリガアクションに応じて、ライトの作動態様を切り換える制御モードを採用す ることちでさる。  As an example of changing the control mode P, the control mode for switching the rotational speed setting of the drive motor 140 in accordance with the second trigger action of the trigger 122 or the first trigger action of the trigger 122 is described. Therefore, it is possible to adopt a control mode that switches the operation mode of the light.
[0050] なお、上記第 1〜第 4の実施形態において、トリガ 122の引き操作を解除している間 も、設定された値を保持し、次回にトリガ 122の引き操作を行ったときには、前回の設 定値によって作業を行うように構成することが可能である。  [0050] In the first to fourth embodiments, the set value is held while the trigger 122 pulling operation is released, and the next time the trigger 122 pulling operation is performed, the previous time. It is possible to configure to work according to the set value.
また、上記第 1〜第 4の実施形態において、トリガ 122の引き操作を解除している時 間が一定時間以上経過した場合には、設定値をリセットすることが可能である。また、 上記第 1〜第 4の実施形態において、トリガ 122の引き操作が解除された時点で設定 値をリセットすることが可能である。  Further, in the first to fourth embodiments, the set value can be reset when the time during which the pulling operation of the trigger 122 is released exceeds a certain time. In the first to fourth embodiments, the set value can be reset when the pull operation of the trigger 122 is released.
また、上記第 1〜第 4の実施形態において、設定表示部 155に設定値を表示出力 や音出力する構成を採用するのが好ましい。設定値を表示出力する構成に関しては 、前述の設定表示部 155として、出力態様が可変とされた LED、ランプ、表示器など を用いることができる。より具体的な構成としては、設定値を示す数の LEDやランプ を点灯ないし点滅させる構成や、設定値を示す情報を、色、文字、数字、記号などに より表示する構成が挙げられる。一方、設定値を音出力する構成に関しては、出力態 様が可変とされたスピーカーなどを用いることができる。より具体的な構成としては、 設定値を示す情報を、ブザー音や音声などにより出力する構成が挙げられる。  In the first to fourth embodiments, it is preferable to adopt a configuration in which the setting display unit 155 displays and outputs a set value. Regarding the configuration for displaying and outputting the set value, the setting display unit 155 described above can be an LED, lamp, display, or the like whose output mode is variable. More specific configurations include a configuration in which the number of LEDs and lamps indicating the set value are turned on or blinking, and a configuration in which information indicating the set value is displayed using colors, letters, numbers, symbols, and the like. On the other hand, with respect to the configuration for outputting the set value as a sound, a speaker whose output mode is variable can be used. As a more specific configuration, there is a configuration in which information indicating a set value is output by a buzzer sound or voice.
また、上記第 1〜第 4の実施形態においては、各制御モードに加えて、駆動モータ 140等に関する設定の切り換え自体を防止する切り換え防止モードを設けることもで きる。この場合、トリガ 122或いはトリガ 122とは別の操作部材の特定の操作が行われ ることによって当該切り換え防止モードに設定されるように構成することができる。 In the first to fourth embodiments, in addition to each control mode, it is possible to provide a switching prevention mode for preventing the setting switching itself for the drive motor 140 and the like. wear. In this case, the switching prevention mode can be set by performing a specific operation of the trigger 122 or an operation member different from the trigger 122.
[0051] 以上のように、本実施の形態によれば、作業者はメイングリップ 120を把持した状態 のまま作業姿勢で、当該作業姿勢を変えることなくそのままトリガ 122を操作して、駆 動モータ 140の作動状態における作動態様に関する設定や、ライトの作動状態にお ける作動態様に関する設定を変更することができ、以つて加工作業の円滑化を図る ことが可能となる。  [0051] As described above, according to the present embodiment, the operator operates the trigger 122 while holding the main grip 120 without changing the work posture, and drives the drive motor. It is possible to change the setting relating to the operating mode in the 140 operating states and the setting relating to the operating mode in the operating state of the light, thereby making it possible to facilitate the machining operation.
[0052] (他の実施の形態)  [0052] (Another embodiment)
なお、本発明は上記実施の形態のみに限定されるものではなぐ本実施の形態に 基づいた種々の応用例や変更例を想到することができる。例えば、本実施の形態を 応用した以下の形態を実施することもできる。  It should be noted that the present invention is not limited to the above-described embodiment, and various application examples and modification examples based on the present embodiment can be conceived. For example, the following embodiments to which this embodiment is applied can be implemented.
[0053] 上述した本実施の形態では、作業工具の一例として研磨作業や研削作業に用いら れる電動グラインダを例にとって説明しているが、本発明は、電動グラインダに限定さ れるものではなぐ先端工具を複数の駆動態様に設定可能な構成の各種の作業ェ 具に対し適用され得る。この際、先端工具の駆動方式に関しては、充電式或いは交 流電源により駆動される駆動モータによって先端工具が駆動される構成を採用する ことができる。  In the present embodiment described above, an electric grinder used for polishing work or grinding work has been described as an example of a work tool, but the present invention is not limited to an electric grinder. The present invention can be applied to various work tools having a configuration in which a tool can be set in a plurality of drive modes. At this time, regarding the driving method of the tip tool, a configuration in which the tip tool is driven by a rechargeable or drive motor driven by an AC power supply can be employed.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1]本発明にかかる作業工具の一実施の形態である電動グラインダ 100の外観を 示す図である。  FIG. 1 is a diagram showing an external appearance of an electric grinder 100 that is an embodiment of a work tool according to the present invention.
[図 2]本実施の形態の駆動機構 150を構成する制御回路 151を示す図である。  FIG. 2 is a diagram showing a control circuit 151 constituting the drive mechanism 150 of the present embodiment.
[図 3]第 1実施の形態の制御モード Aに関する制御を示す図である。  FIG. 3 is a diagram showing control relating to control mode A of the first embodiment.
[図 4]第 1実施の形態の制御モード Bに関する制御を示す図である。  FIG. 4 is a diagram showing control relating to control mode B of the first embodiment.
[図 5]第 1実施の形態の制御モード Cに関する制御を示す図である。  FIG. 5 is a diagram showing control relating to control mode C of the first embodiment.
[図 6]第 1実施の形態の制御モード Dに関する制御を示す図である。  FIG. 6 is a diagram showing control relating to control mode D of the first embodiment.
[図 7]第 1実施の形態の制御モード Έに関する制御を示す図である。  [Fig. 7] Fig. 7 is a diagram showing control relating to a control mode の in the first embodiment.
[図 8]本実施の形態の駆動機構 150を構成する別の形態の制御回路 251を示す図 である。 [図 9]第 2実施の形態の制御モード Fに関する制御を示す図である。 FIG. 8 is a diagram showing another form of control circuit 251 constituting drive mechanism 150 of the present embodiment. FIG. 9 is a diagram showing control related to a control mode F of the second embodiment.
[図 10]第 2実施の形態の制御モード Gに関する制御を示す図である。 FIG. 10 is a diagram illustrating control related to a control mode G according to the second embodiment.
[図 11]第 2実施の形態の制御モード Ήに関する制御を示す図である。 [Fig. 11] Fig. 11 is a diagram showing control relating to a control mode の in the second embodiment.
[図 12]第 2実施の形態の制御モード Iに関する制御を示す図である。 FIG. 12 is a diagram showing control related to control mode I of the second embodiment.
[図 13]第 2実施の形態の制御モード Jに関する制御を示す図である。 FIG. 13 is a diagram showing control relating to a control mode J of the second embodiment.
[図 14]第 3実施の形態の制御モード Kに関する制御を示す図である。 FIG. 14 is a diagram showing control relating to a control mode K of the third embodiment.
[図 15]第 3実施の形態の制御モード Lに関する制御を示す図である。 FIG. 15 is a diagram showing control relating to a control mode L of the third embodiment.
[図 16]第 3実施の形態の制御モード Mに関する制御を示す図である。 FIG. 16 is a diagram showing control relating to a control mode M of the third embodiment.
[図 17]第 3実施の形態の制御モード Nに関する制御を示す図である。 FIG. 17 is a diagram showing control relating to a control mode N of the third embodiment.
[図 18]第 3実施の形態の制御モード Oに関する制御を示す図である。 FIG. 18 is a diagram showing control relating to a control mode O of the third embodiment.
[図 19]第 4実施の形態の制御モード Pに関する制御を示す図である。 符号の説明 FIG. 19 is a diagram showing control relating to a control mode P of the fourth embodiment. Explanation of symbols
100 電動グラインダ (作業工具) 100 Electric grinder (Work tool)
110 工具本体部 110 Tool body
112 ハウジング 112 housing
120 メイングリップ 120 Main grip
122 トリガ 122 trigger
122a トリガスィッチ 122a Trigasic
130 フロントグリップ 130 Front grip
140 駆動モータ 140 Drive motor
150 駆動機構 150 Drive mechanism
151 制御回路 151 Control circuit
152 交流電源 152 AC power supply
153 制御部(コントローラ) 153 Controller (Controller)
154 スィッチ検出部 154 Switch detector
155 設定表示部 155 Setting display section
156 モータ駆動部 156 Motor drive
160 先端工具 222a トリガスィッチ 251 制御回路 160 Tip tool 222a Trigger Switch 251 Control Circuit

Claims

請求の範囲 The scope of the claims
[1] 本体部と、  [1] The main body,
前記本体部の工具先端に配設され、被加工材の加工作業を遂行する先端工具と、 前記本体部内に収容され、電源供給によって前記先端工具を駆動する駆動モータ と、  A tip tool disposed at the tool tip of the main body and performing a machining operation of a workpiece; a drive motor housed in the main body and driving the tip tool by power supply;
前記本体部に設けられ、工具使用時に作業者によって把持されるハンドグリップと  A hand grip provided on the main body and gripped by an operator when using the tool;
前記駆動モータが作動状態とされるオン位置力 作動解除状態とされるオフ位置 に向けて付勢されており、前記ハンドグリップを把持した作業者の指によって前記ォ フ位置力 前記オン位置へと引き操作が可能とされたトリガと、 The driving motor is biased toward the on position force that is in the activated state and the off position that is in the deactivated state, and the off position force is moved to the on position by the operator's finger holding the hand grip. A trigger that can be pulled,
前記トリガが前記オン位置へと引き操作されることで前記駆動モータを作動状態に 制御し、前記トリガが前記オフ位置へと戻し操作されることで前記駆動モータを作動 解除状態に制御する一方、前記ハンドグリップを把持した作業者の指による前記トリ ガの操作態様に応じて、作業工具の作動態様に関する設定を可変とする制御部と、 を備える構成であることを特徴とする作業工具。  While the trigger is pulled to the on position, the drive motor is controlled to be in an operating state, and when the trigger is returned to the off position, the drive motor is controlled to be in an unlocked state, A work tool comprising: a control unit configured to change a setting relating to an operation mode of the work tool according to an operation mode of the trigger by an operator's finger holding the hand grip.
[2] 請求項 1に記載の作業工具であって、  [2] The work tool according to claim 1,
前記制御部は、前記作業工具の作動態様に関する設定として、前記駆動モータの 作動状態における作動態様に関する設定を可変とする作業工具。  The said control part is a work tool which makes variable the setting regarding the operating mode in the operating state of the said drive motor as a setting regarding the operating mode of the said working tool.
[3] 請求項 1または 2に記載の作業工具であって、 [3] The work tool according to claim 1 or 2,
前記トリガの操作態様は、前記トリガが前記オン位置から前記オフ位置へと戻し操 作された後に再び前記オン位置へと引き操作されることで定義され、または前記トリ ガが前記オフ位置から前記オン位置へと引き操作された後に、再び前記オフ位置へ と戻し操作されることで定義される所定のトリガアクションを含むことを特徴とする作業 工具。  The operation mode of the trigger is defined by pulling the trigger back to the on position after the trigger is returned from the on position to the off position, or the trigger is moved from the off position to the off position. A work tool comprising a predetermined trigger action defined by being pulled back to the off position after being pulled to the on position.
[4] 請求項 3に記載の作業工具であって、  [4] The work tool according to claim 3,
前記制御部は、前記所定のトリガアクションが所定時間内に行われるたびに、前記 駆動モータの回転数設定を切り換える制御モードを有することを特徴とする作業ェ 具。 The work tool according to claim 1, wherein the control unit has a control mode for switching a rotational speed setting of the drive motor every time the predetermined trigger action is performed within a predetermined time.
[5] 請求項 3に記載の作業工具であって、 [5] The work tool according to claim 3,
前記制御部は、前記所定のトリガアクションの、所定時間内における繰り返し回数 に応じて、前記駆動モータの回転数設定を切り換える制御モードを有することを特徴 とする作業工具。  The work tool having a control mode in which the rotational speed setting of the drive motor is switched according to the number of repetitions of the predetermined trigger action within a predetermined time.
[6] 請求項 3に記載の作業工具であって、 [6] The work tool according to claim 3,
前記制御部は、前記所定のトリガアクションの操作速度に応じて、前記駆動モータ の回転数設定を切り換える制御モードを有することを特徴とする作業工具。  The control tool has a control mode for switching a rotational speed setting of the drive motor according to an operation speed of the predetermined trigger action.
[7] 請求項 3に記載の作業工具であって、 [7] The work tool according to claim 3,
前記制御部は、前記所定のトリガアクションが所定時間内に行われるたびに、前記 駆動モータの起動時に回転数を通常回転数まで徐々に上げるソフトスタート動作時 間を切り換える制御モードを有することを特徴とする作業工具。  The control unit has a control mode for switching a soft start operation time for gradually increasing the rotation speed to a normal rotation speed when the drive motor is started each time the predetermined trigger action is performed within a predetermined time. Work tool.
[8] 請求項 3に記載の作業工具であって、 [8] The work tool according to claim 3,
前記制御部は、前記駆動モータに通電される電流値の上限を規定可能な電流リミ ッタを備えるとともに、前記所定のトリガアクションが所定時間内に行われるたびに、 前記電流リミッタの作動を切り換える制御モードを有することを特徴とする作業工具。  The control unit includes a current limiter capable of defining an upper limit of a current value supplied to the drive motor, and switches the operation of the current limiter every time the predetermined trigger action is performed within a predetermined time. A work tool having a control mode.
[9] 請求項 3に記載の作業工具であって、 [9] The work tool according to claim 3,
前記制御部は、前記駆動モータの通電状態を維持可能なロックオン機構を備える とともに、前記所定のトリガアクションの、所定時間内における繰り返し回数に応じて、 前記ロックオン機構の作動を切り換える制御モードを有することを特徴とする作業ェ 具。  The control unit includes a lock-on mechanism capable of maintaining the energized state of the drive motor, and a control mode for switching the operation of the lock-on mechanism according to the number of repetitions of the predetermined trigger action within a predetermined time. A work tool characterized by having.
[10] 請求項 1に記載の作業工具であって、  [10] The work tool according to claim 1,
更に、被加工材に向けて照射される照射装置を備え、  Furthermore, an irradiation device for irradiating the workpiece is provided,
前記制御部は、前記作業工具の作動態様に関する設定として、前記照射装置の 作動態様に関する設定を可変とする作業工具。  The said control part is a work tool which makes variable the setting regarding the operation aspect of the said irradiation apparatus as a setting regarding the operation aspect of the said work tool.
[11] 請求項 10または 11に記載の作動工具であって、 [11] The working tool according to claim 10 or 11,
前記制御部は、前記所定のトリガアクションが所定時間内に行われるたびに、前記 照射装置を照射状態と非照射状態との間で切り換える制御モードを有することを特 徴とする作業工具。 請求項 1から 11までのいずれかに記載の作動工具であって、電動式グラインダとし て定義される作業工具。 The work tool characterized in that the control unit has a control mode in which the irradiation device is switched between an irradiation state and a non-irradiation state each time the predetermined trigger action is performed within a predetermined time. 12. The working tool according to claim 1, wherein the working tool is defined as an electric grinder.
PCT/JP2007/063696 2006-07-25 2007-07-09 Work tool WO2008013051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006202599A JP2008023694A (en) 2006-07-25 2006-07-25 Working tool
JP2006-202599 2006-07-25

Publications (1)

Publication Number Publication Date
WO2008013051A1 true WO2008013051A1 (en) 2008-01-31

Family

ID=38981365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063696 WO2008013051A1 (en) 2006-07-25 2007-07-09 Work tool

Country Status (2)

Country Link
JP (1) JP2008023694A (en)
WO (1) WO2008013051A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515871A (en) * 2012-05-04 2015-06-04 フェルコ・モーション・ソシエテ・アノニム Hand-held power tool
JP2017024122A (en) * 2015-07-23 2017-02-02 リョービ株式会社 Hand-held electric tool
JP2017217731A (en) * 2016-06-08 2017-12-14 リョービ株式会社 Electric tool
CN110948347A (en) * 2019-11-25 2020-04-03 宁波耀升工具实业有限公司 Angle grinder
WO2023210258A1 (en) * 2022-04-28 2023-11-02 工機ホールディングス株式会社 Work machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914167B2 (en) 2008-08-01 2011-03-29 3M Innovative Properties Company Surface modifying apparatus having illumination system and method thereof
JP5605751B2 (en) * 2010-06-30 2014-10-15 日立工機株式会社 Portable cutting machine
JP5891431B2 (en) * 2011-08-22 2016-03-23 パナソニックIpマネジメント株式会社 Transmission
CH705743A2 (en) 2011-11-14 2013-05-15 Illinois Tool Works Strapper.
CH705744A2 (en) 2011-11-14 2013-05-15 Illinois Tool Works Strapper.
JP5924492B2 (en) 2012-07-11 2016-05-25 日立工機株式会社 Tabletop cutting machine
JP5695166B2 (en) * 2013-11-19 2015-04-01 株式会社マキタ Power tools
JP7026305B2 (en) * 2017-09-29 2022-02-28 マックス株式会社 Electric tool
EP3560657A1 (en) 2018-04-27 2019-10-30 3M Innovative Properties Company Surface modifying apparatus with light source for illumination of the workpiece surface
JP7259573B2 (en) * 2019-06-14 2023-04-18 工機ホールディングス株式会社 Electric tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379278U (en) * 1989-12-06 1991-08-13
JPH0549283U (en) * 1991-12-03 1993-06-29 株式会社フジタ Power tool with lighting means
JPH0567472U (en) * 1992-08-06 1993-09-07 日本電気精器株式会社 Electric screwdriver
JPH1015844A (en) * 1996-07-04 1998-01-20 Janome Sewing Mach Co Ltd Motor-driven nut runner
JP2001025982A (en) * 1999-07-13 2001-01-30 Makita Corp Power tool with lighting system improved in operability, and its use
JP2002160180A (en) * 2000-11-22 2002-06-04 Makita Corp Power tool with operation mode switching function
JP2003211371A (en) * 2002-01-17 2003-07-29 Nidec Shibaura Corp Power tool
JP2004181549A (en) * 2002-11-29 2004-07-02 Matsushita Electric Works Ltd Power tool
JP2004297957A (en) * 2003-03-27 2004-10-21 Hitachi Koki Co Ltd Overload protective circuit for power tool with change gear
JP2005052908A (en) * 2003-08-07 2005-03-03 Makita Corp Power tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336779A (en) * 1995-06-09 1996-12-24 Hitachi Koki Co Ltd Power tool control device
JPH09263290A (en) * 1996-03-27 1997-10-07 Seiko Epson Corp Motor-driven bicycle
JP2003159669A (en) * 2001-11-22 2003-06-03 Ryobi Ltd Power tool
JP4523377B2 (en) * 2004-10-19 2010-08-11 株式会社マキタ Power tool switch mechanism

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379278U (en) * 1989-12-06 1991-08-13
JPH0549283U (en) * 1991-12-03 1993-06-29 株式会社フジタ Power tool with lighting means
JPH0567472U (en) * 1992-08-06 1993-09-07 日本電気精器株式会社 Electric screwdriver
JPH1015844A (en) * 1996-07-04 1998-01-20 Janome Sewing Mach Co Ltd Motor-driven nut runner
JP2001025982A (en) * 1999-07-13 2001-01-30 Makita Corp Power tool with lighting system improved in operability, and its use
JP2002160180A (en) * 2000-11-22 2002-06-04 Makita Corp Power tool with operation mode switching function
JP2003211371A (en) * 2002-01-17 2003-07-29 Nidec Shibaura Corp Power tool
JP2004181549A (en) * 2002-11-29 2004-07-02 Matsushita Electric Works Ltd Power tool
JP2004297957A (en) * 2003-03-27 2004-10-21 Hitachi Koki Co Ltd Overload protective circuit for power tool with change gear
JP2005052908A (en) * 2003-08-07 2005-03-03 Makita Corp Power tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515871A (en) * 2012-05-04 2015-06-04 フェルコ・モーション・ソシエテ・アノニム Hand-held power tool
US9872440B2 (en) 2012-05-04 2018-01-23 Felco Motion Sa Handheld power tool
JP2017024122A (en) * 2015-07-23 2017-02-02 リョービ株式会社 Hand-held electric tool
JP2017217731A (en) * 2016-06-08 2017-12-14 リョービ株式会社 Electric tool
CN110948347A (en) * 2019-11-25 2020-04-03 宁波耀升工具实业有限公司 Angle grinder
WO2023210258A1 (en) * 2022-04-28 2023-11-02 工機ホールディングス株式会社 Work machine

Also Published As

Publication number Publication date
JP2008023694A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2008013051A1 (en) Work tool
JP6090576B2 (en) Electric tool
US7274866B2 (en) Power tool and method for controlling a power tool
EP2835223B1 (en) Fastener driving power tool
JP2005066785A (en) Power tool
US7318485B2 (en) Method of Controlling the direction of rotation of a power tool
JP6024470B2 (en) Electric tool
JP2006231510A (en) Hammer drill
EP3031582B1 (en) Power tool
JP5829019B2 (en) Electric tool
JP3916872B2 (en) Electric tool
EP3135438B1 (en) Electric power tool
GB2420843A (en) Hand machine tool comprising a rotatable handle for controlling the speed of a motor
US20170133965A1 (en) Electric working machine
JP7086624B2 (en) Electric tool
JP6764255B2 (en) Electric work machine
CN104795795B (en) A kind of electric tool
CN111902242B (en) Switch and switching logic for a machine tool
JP2009160744A (en) Table saw
JP2010012547A (en) Power tool
JP2003260675A (en) Switch of power tool
JP2008023645A (en) Power tool
JP2020032504A (en) Electric power tool
JP4337532B2 (en) Electric tool
JP2015535753A (en) Method and apparatus for operating a hand-held tool having a tangential impact mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790517

Country of ref document: EP

Kind code of ref document: A1