WO2008009773A1 - Morphometric image analysis device for establishing feeding strategies for use in aquaculture - Google Patents

Morphometric image analysis device for establishing feeding strategies for use in aquaculture Download PDF

Info

Publication number
WO2008009773A1
WO2008009773A1 PCT/ES2007/070125 ES2007070125W WO2008009773A1 WO 2008009773 A1 WO2008009773 A1 WO 2008009773A1 ES 2007070125 W ES2007070125 W ES 2007070125W WO 2008009773 A1 WO2008009773 A1 WO 2008009773A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
jpg
individual
growth
individuals
Prior art date
Application number
PCT/ES2007/070125
Other languages
Spanish (es)
French (fr)
Inventor
Juan Antonio Rielo Zurita
Jaume PEREZ SÁNCHEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2008009773A1 publication Critical patent/WO2008009773A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/80Feeding devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/90Sorting, grading, counting or marking live aquatic animals, e.g. sex determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30128Food products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention falls within the sector of Zootechnics and specifically in Aquaculture. It is a device that, based on images of fish made by video or photo cameras, allows to establish a feeding strategy in a fish farm.
  • Fish are animals that grow continuously throughout their life, unlike mammals that reach their maximum size at maturity. The growth of the fish despite being continuous is not always done at the same rate, the growth rate being greater in its youth. In addition, this growth is carried out at more or less discrete pulses. Fish farming is developed taking advantage of precisely the period of the fish's life where growth is fastest, in the first years of its life, usually in the juvenile period before reaching sexual maturity. Currently, the control of the production in a fish farm - especially those located in floating cages in the sea - is carried out by periodic sampling of a part of the population. This implies fishing from a vessel to be able to sample and obtain data (weight and length) of the population under study. Sometimes, in order to minimize manipulation, the weighing is done in groups.
  • the present invention is a device, which in addition to obtaining the weight and size, offers information on the ability to grow and fatten the fish, allowing decisions on the feeding strategy.
  • the object of the present invention is to provide a device that allows assessing their nutritional status and their growth potential for design a feeding strategy without removing it from its natural habitat.
  • This device consists of the following elements: housing, transparent transverse tubes, light source, diffuser screen, photodetectors, video cameras and hardware (figure 1).
  • the photodetectors After submerging the device in the pond or cage with, at least, the transparent tubes under water, the photodetectors are activated at the passage of the fish and, when the cameras are shot, their images are collected and sent to a computer system. The images obtained are downloaded and processed for marking the points that appear in Figure 5 and their coordinates are processed by the software to establish the distances between the points.
  • a growth reference model Prior to the use of the device object of the invention, a growth reference model must be constructed for the species under study. This must be done using a sufficiently large group of individuals in whom the measures described above are taken, using the device object of the invention.
  • the designed model includes the multifactor linear equations obtained through principal component analysis based on the covariation of the deviations of each measurement with respect to the model measurements. Subsequently, in the study of the nutritional status and growth potential of a specific population, the team calculates the distances between the points measured in the images obtained from each individual and solves the system of linear equations applied to the deviations resulting from the comparison of all the measures taken with those of the reference model.
  • the software includes equations for predicting the growth of fish and bibliographic data of weight of the species in question, the The device allows, through allometric equations, to evaluate the nutritional status and growth potential of a specific individual.
  • the information output classifies the animals into 4 groups, allowing the aquaculturist to make the most appropriate feeding decision and in automatic systems to allow the computer system to handle the feeding management autonomously.
  • the object of the present invention is to provide a device that, in addition to providing static information of individuals (weight and height), allows assessing their nutritional status and their growth potential to design a feeding strategy without removing it from its natural habitat
  • This device consists of the following elements: housing, transparent transverse tubes, light source, diffuser screen, photodetectors, video cameras and hardware (figure 1).
  • the housing (1) can have different shapes that allow hydrodynamic stability against sea currents and waves.
  • the basic form would be spherical, due to its similarity to the buoys that surround the fish farms since it does not scare the fish.
  • This housing is crossed by one or more transparent tubes (4) through which the fish pass. Inside the housing and above the tubes there is a light source (2) and, between it and the tubes, a diffusing screen (3).
  • the photodetectors (6) are located in the lower part of the housing and below the transparent tubes. Laterally and in contact with the transparent tubes are placed as many video or photographic cameras (5) as tubes.
  • the device is submerged in the pond or cage by an anchor or allowed to float semi-submerged with at least the transparent tubes under water thanks to the ballasting system. Photodetectors are activated at the passage of fish, and photographic cameras whose images are collected and sent to a computer system are fired.
  • the "interface" system can be of type wireless In the event that the camera allowed to work with infrared, the light source would only act as an attractant for the fish.
  • the images are downloaded, in a computer system, and processed for marking the points that appear in Figure 5.
  • the calculations are made on direct images not on alterations of fields formed by radiation beams (visible or infrared or magnetic).
  • An operator marks the points established in Figure 5 and their coordinates are processed by the software to establish the distances between the points.
  • the distance data taken includes all possible relationships of the points with each other, that is, the distances of all the points, and each of them, with all the others are taken.
  • a growth reference model for the species under study must be constructed prior to the use of the device object of the invention in the assessment of the nutritional status and potential growth of a specific fish population. This must be done using a sufficiently large group of individuals in whom the measures described above are taken, using the device object of the invention.
  • the growth reference model thus obtained, considers the development of the different physiognomic characteristics of the fish in relation to its size, since it is necessary to compare individuals of the same size with each other to know the way in which each species develops its characters along of growth, and therefore, to be able to build its reference model.
  • the designed model includes the multifactor linear equations obtained through principal component analysis based on the covariation of the deviations of each measurement.
  • the team calculates the distances between the points measured in the images obtained from each individual and solves the system of linear equations applied to the deviations resulting from the comparison of all the measures taken with those of the reference model.
  • the device offers the scores in a three-dimensional Cartesian space, that is, with three coordinate axes.
  • the information is offered in two flat graphics. In the first, graph 1, the scores of the first two equations are collected, and in the second, graph 2, the scores of the first and third equations are represented.
  • each animal species undergoes a series of physiognomic changes during its growth and in the passage from young individual to adult.
  • the software includes growth prediction equations based on photoperiod and temperature, while so far the predictions were made only based on temperature, and gives information about the growth potential of each individual.
  • the device obtains the so-called condition factor (K), which is a measure of the fattening state, and which is calculated as the ratio between the weight and the cube length
  • condition factor (K) is a measure of the fattening state
  • the information output classifies the animals into 4 groups, allowing the aquaculturist to make the most appropriate feeding decision and, in automatic systems, allowing the computer system to handle the feeding management autonomously.
  • each animal is obtained: length, estimated weight, estimated condition factor (K) and expected length.
  • the groups and subgroups are as follows:
  • Group I fish classified in quadrant I of figure 1: Fish to which the intake should be reduced.
  • Subgroup II + (Fish classified in quadrant Il of figure 1 and in positive ordinates of figure 2): Maintain intake.
  • Subgroup II- (Fish classified in quadrant Il of figure 1 and in negative ordinates of figure 2): Increase intake. • Group III (Fish classified in quadrant III of figure 1). Fish to which the intake should be increased.
  • Subgroup IV + (positive ordinates of Figure 2): Decrease Subgroup IV - (negative ordinates in Figure 2): Maintain
  • Another object of the present invention consists of a procedure that allows the use of the device object of the invention in the design of feeding strategies characterized by the following steps:
  • Another object is the use of the device to determine the food intake needs of farmed or wild fish species.
  • Figure 1 Side view (profile). Components: 1-housing; 2-light sources; 3- diffuser screen; 4-transparent tubes; 5-cameras; 6-photoelectric receivers; 7-anchor system.
  • Figure 2 Front view (elevation).
  • Figure 3 Top view (floor).
  • Figure 4 All views.
  • Figure 5 Points used in the images for the study of measurements.
  • Example 1 Diagnosis of the feeding status of a population of sea bream in industrial cultivation in floating cages.
  • Example 2 Diagnosis of the feeding status of gilthead populations in industrial cultivation in ponds excavated on land and in cages.
  • the problem was the poor feed efficiency in the last phase of the crop in one of the industrial fattening facilities. Underwent the animals to the diagnosis of the device and, on this occasion, the fish were classified, those of the farm 1, within group I, as fish to which the ration should be reduced; and those of farms 2 and 3 in the fourth quadrant as animals to which the ration must be maintained or decreased. That is to say, the problem was the excessive intake of food in the farm 1, which was precisely the one that used ponds dug in the ground.
  • Example 3 Monitoring of fish subjected to a period of fasting in the laboratory.
  • group IV - seed to maintain the food supply
  • group IV + decrease the food supply

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Processing (AREA)

Abstract

The invention relates to a device which can be used to establish a feeding strategy at a fish farm by evaluating nutritional states and determining growth potential. Prior to the assessment of a specific population, the device can be used to develop a reference growth model for the species in question, for which purpose the device establishes allometric relationships between the data obtained from the images and analyses and processes same using multivariate statistical analysis techniques.

Description

TITULO TITLE
DISPOSITIVO DE ANÁLISIS MORFOMETRICO DE IMÁGENES PARA DESARROLLAR ESTRATEGIAS DE ALIMENTACIÓN EN ACUICULTURAMORPHOMETRIC IMAGE ANALYSIS DEVICE FOR DEVELOPING FOOD STRATEGIES IN AQUACULTURE
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
La presente invención se encuadra en el sector de Ia Zootecnia y en concreto en Acuicultura. Es un dispositivo que, en base a imágenes de peces realizadas mediante cámaras de video o fotografía, permite establecer una estrategia de alimentación en una explotación piscícola.The present invention falls within the sector of Zootechnics and specifically in Aquaculture. It is a device that, based on images of fish made by video or photo cameras, allows to establish a feeding strategy in a fish farm.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Los peces son animales que crecen continuamente a Io largo de su vida, al contrario que los mamíferos que alcanzan su talla máxima en Ia madurez. El crecimiento de los peces a pesar de ser continuo no se hace siempre al mismo ritmo, siendo Ia velocidad de crecimiento mayor en su juventud. Además, este crecimiento se realiza a pulsos más o menos discretos. La piscicultura se desarrolla aprovechando precisamente el período de Ia vida del pez donde el crecimiento es más rápido, en los primeros años de su vida, normalmente en el período juvenil antes de alcanzar Ia madurez sexual. Actualmente, el control de Ia producción en una piscifactoría -en especial en aquellas que se ubican en jaulas flotantes en el mar- se realiza mediante muéstreos periódicos de una parte de Ia población. Esto implica Ia pesca desde una embarcación para poder realizar el muestreo y obtener datos (peso y longitud) de Ia población objeto de estudio. En ocasiones, con el fin de minimizar Ia manipulación, Ia pesada se realiza en grupos. Tanto uno como otro, tienen el gran inconveniente de someter a toda Ia población de peces a un stress enorme, Io que implica Ia pérdida casi segura de un día de alimentación y de un mal aprovechamiento metabólico del alimento durante uno o dos días más, incluso de situar a los animales en estados de debilidad inmunológica Io que les hace, en ese período, más susceptibles de contraer enfermedades de tipo infeccioso. Otra forma de clasificar los peces por tamaños es hacerlos pasar por ranuras de distintos calibres. Tal es el caso de los aparatos ofrecidos por Ia empresa FAIVRE.Fish are animals that grow continuously throughout their life, unlike mammals that reach their maximum size at maturity. The growth of the fish despite being continuous is not always done at the same rate, the growth rate being greater in its youth. In addition, this growth is carried out at more or less discrete pulses. Fish farming is developed taking advantage of precisely the period of the fish's life where growth is fastest, in the first years of its life, usually in the juvenile period before reaching sexual maturity. Currently, the control of the production in a fish farm - especially those located in floating cages in the sea - is carried out by periodic sampling of a part of the population. This implies fishing from a vessel to be able to sample and obtain data (weight and length) of the population under study. Sometimes, in order to minimize manipulation, the weighing is done in groups. Both one and the other, have the great disadvantage of subjecting the entire population of fish to enormous stress, which implies the almost certain loss of a day of feeding and a poor metabolic use of the food for one or two days, even of placing the animals in states of immunological weakness which makes them, in that period, more susceptible to contracting infectious diseases. Another way to classify fish by size is to pass them through slots of different sizes. Such is the case of the devices offered by the company FAIVRE.
Más novedoso es el empleo de artilugios de telemetría tipo sonar o vídeo, infrarrojos, células fotoeléctricas para medir los animales, y a partir de regresiones se determina el peso aproximado del individuo. Algunas patentes (UK Patente application GB 2 2001 772 "An opto-electronic method for determining by length-measurement the quality of cultured fish and a device for implement the method") establecen métodos para determinar Ia calidad de los peces cultivados mediante medidas indirectas de Ia longitud utilizando células fotorreceptoras y del estado gonadal mediante ultrasonidos. En estos dispositivos los peces son clasificados cuando pasan por un tubo traslúcido e interrumpen los haces de luz desde una fuente luminosa a una serie de fotodetectores colocados a Io largo del tubo, a Ia vez que se realiza una ecografía de las gónadas. Estos aparatos están diseñados para trabajar con salmónidos. En el caso de Ia dorada, no se obtendría información fiable sobre el estado gonadal pues es durante Ia fase juvenil cuando se comienzan a desarrollar las mismas. En todos los procedimientos citados anteriormente, los datos obtenidos son valores estáticos que no dan información del potencial de crecimiento o engorde, sólo dan peso y longitud, que no son datos suficientes para determinar dicho potencial. A Io sumo, en individuos obesos, se podrá decir que han comido suficiente. Pero Ia obesidad puede ser en ocasiones un freno para el crecimiento. La presente invención es un dispositivo, que además de obtener el peso y tamaño, ofrece información sobre Ia capacidad de crecimiento y engorde de los peces, permitiendo tomar decisiones sobre Ia estrategia de alimentación.More novel is the use of sonar or video telemetry gadgets, infrared, photoelectric cells to measure animals, and the approximate weight of the individual is determined from regressions. Some patents (UK Patent application GB 2 2001 772 "An opto-electronic method for determining by length-measurement the quality of cultured fish and a device for implement the method") establish methods for determining the quality of farmed fish by indirect measures of Ia length using photoreceptor cells and gonadal state by ultrasound. In these devices the fish are classified when they pass through a translucent tube and interrupt the light beams from a light source to a series of photodetectors placed along the tube, while an ultrasound of the gonads is performed. These devices are designed to work with salmonids. In the case of the golden one, reliable information on the gonadal state would not be obtained since it is during the juvenile phase when they begin to develop them. In all the procedures mentioned above, the data obtained are static values that do not give information on growth or fattening potential, they only give weight and length, which are not sufficient data to determine said potential. At best, in obese individuals, it can be said that they have eaten enough. But obesity can sometimes be a brake on growth. The present invention is a device, which in addition to obtaining the weight and size, offers information on the ability to grow and fatten the fish, allowing decisions on the feeding strategy.
DESCRIPCIÓN DE LA INVENCIÓN Descripción breveDESCRIPTION OF THE INVENTION Brief Description
El objeto de Ia presente invención es proporcionar un dispositivo que permite evaluar el estado nutricional de los mismos y su potencial de crecimiento para diseñar una estrategia de alimentación sin necesidad de extraerlo de su habitat natural.The object of the present invention is to provide a device that allows assessing their nutritional status and their growth potential for design a feeding strategy without removing it from its natural habitat.
Este dispositivo está constituido por los siguientes elementos: carcasa, tubos transversales transparentes, fuente de luz, pantalla difusora, fotodetectores, cámaras de vídeo y hardware (figura 1 ).This device consists of the following elements: housing, transparent transverse tubes, light source, diffuser screen, photodetectors, video cameras and hardware (figure 1).
Tras sumergir el dispositivo en el estanque o jaula con, al menos, los tubos transparentes bajo el agua, los fotodetectores se activan al paso de los peces y, al dispararse las cámaras fotográficas, sus imágenes son recogidas y enviadas a un sistema informático. Las imágenes obtenidas son descargadas y procesadas para el marcado de los puntos que aparecen en Ia figura 5 y sus coordenadas son procesadas por el software para establecer las distancias entre los puntos. Previamente a Ia utilización del dispositivo objeto de Ia invención se debe construir un modelo de referencia de crecimiento para Ia especie objeto de estudio. Esto se debe hacer utilizando un grupo suficientemente amplio de individuos en los que se toman las medidas anteriormente descritas, utilizando el dispositivo objeto de Ia invención. El equipo calcula las distancias entre los puntos medidos en las imágenes obtenidas de cada individuo para cada medida del pez, y construye modelos basados en Ia ecuación general de Ia alometría del tipo "Y=aXb". El modelo diseñado incluye las ecuaciones lineales multifactoriales obtenidas mediante análisis de componentes principales basados en Ia covariación de las desviaciones de cada medida respecto de las medidas del modelo. Posteriormente, en el estudio del estado nutricional y potencial de crecimiento de una población concreta, el equipo calcula las distancias entre los puntos medidos en las imágenes obtenidas de cada individuo y resuelve el sistema de ecuaciones lineales aplicadas a las desviaciones resultantes de Ia comparación de todas las medidas tomadas con las del modelo de referencia. Del análisis de componentes principales se obtienen varias puntuaciones de cada pez, donde cada una de ellas explica cómo se desarrollan los principales caracteres fisonómicos del pez durante su crecimiento. Dado que el software incluye unas ecuaciones de predicción del crecimiento de los peces y datos bibliográficos de peso de Ia especie en cuestión, el dispositivo permite, a través de las ecuaciones alométricas, evaluar el estado nutricional y potencial de crecimiento de un individuo concreto. La salida de información clasifica a los animales en 4 grupos, permitiendo al acuicultor tomar Ia decisión de alimentación más apropiada y en sistemas automáticos permitir que el sistema informático se ocupe de Ia gestión de Ia alimentación de modo autónomo.After submerging the device in the pond or cage with, at least, the transparent tubes under water, the photodetectors are activated at the passage of the fish and, when the cameras are shot, their images are collected and sent to a computer system. The images obtained are downloaded and processed for marking the points that appear in Figure 5 and their coordinates are processed by the software to establish the distances between the points. Prior to the use of the device object of the invention, a growth reference model must be constructed for the species under study. This must be done using a sufficiently large group of individuals in whom the measures described above are taken, using the device object of the invention. The team calculates the distances between the points measured in the images obtained from each individual for each measurement of the fish, and builds models based on the general equation of the allometry of the type "Y = aX b ". The designed model includes the multifactor linear equations obtained through principal component analysis based on the covariation of the deviations of each measurement with respect to the model measurements. Subsequently, in the study of the nutritional status and growth potential of a specific population, the team calculates the distances between the points measured in the images obtained from each individual and solves the system of linear equations applied to the deviations resulting from the comparison of all the measures taken with those of the reference model. From the analysis of main components, several scores of each fish are obtained, where each one explains how the main physiognomic characters of the fish develop during their growth. Since the software includes equations for predicting the growth of fish and bibliographic data of weight of the species in question, the The device allows, through allometric equations, to evaluate the nutritional status and growth potential of a specific individual. The information output classifies the animals into 4 groups, allowing the aquaculturist to make the most appropriate feeding decision and in automatic systems to allow the computer system to handle the feeding management autonomously.
Descripción detalladaDetailed description
El objeto de Ia presente invención es proporcionar un dispositivo que, además de proporcionar información estática de los individuos (peso y talla), permita evaluar el estado nutricional de los mismos y su potencial de crecimiento para diseñar una estrategia de alimentación sin necesidad de extraerlo de su habitat natural. Este dispositivo está constituido por los siguientes elementos: carcasa, tubos transversales transparentes, fuente de luz, pantalla difusora, fotodetectores, cámaras de vídeo y hardware (figura 1 ).The object of the present invention is to provide a device that, in addition to providing static information of individuals (weight and height), allows assessing their nutritional status and their growth potential to design a feeding strategy without removing it from its natural habitat This device consists of the following elements: housing, transparent transverse tubes, light source, diffuser screen, photodetectors, video cameras and hardware (figure 1).
La carcasa (1 ) puede tener distintas formas que Ie permitan estabilidad hidrodinámica frente a las corrientes marinas y oleaje. La forma básica sería esférica, por su similitud a las boyas que rodean las piscifactorías ya que no asusta a los peces.The housing (1) can have different shapes that allow hydrodynamic stability against sea currents and waves. The basic form would be spherical, due to its similarity to the buoys that surround the fish farms since it does not scare the fish.
Se trata de un receptáculo cerrado estanco que en su interior contiene el resto de estructuras. Esta carcasa está atravesada por uno o más tubos (4) transparentes por donde pasan los peces. Dentro de Ia carcasa y por encima de los tubos hay una fuente de luz (2) y, entre ésta y los tubos, una pantalla difusora (3). En Ia parte inferior de Ia carcasa y por debajo de los tubos transparentes están situados los fotodetectores (6). Lateralmente y en contacto con los tubos transparentes se sitúan tantas cámaras de video o fotográficas (5) como tubos. El dispositivo se sumerge en el estanque o jaula mediante un anclaje o se deja flotar semisumergido con, al menos, los tubos transparentes bajo el agua gracias al sistema de lastrado. Los fotodetectores se activan al paso de los peces, y se disparan las cámaras fotográficas cuyas imágenes son recogidas y enviadas a un sistema informático. El sistema "interface" puede ser de tipo inalámbrico. En el caso de que Ia cámara permitiera trabajar con infrarrojos, Ia fuente de luz sólo actuaría como atrayente para los peces. Las imágenes son descargadas, en un sistema informático, y procesadas para el marcado de los puntos que aparecen en Ia figura 5. Los cálculos se hacen sobre imágenes directas no sobre alteraciones de campos formados por haces de radiaciones (visibles o infrarrojas o magnéticas). Un operador marca los puntos establecidos en Ia figura 5 y sus coordenadas son procesadas por el software para establecer las distancias entre los puntos. Los datos de distancias tomados incluyen todas las posibles relaciones de los puntos entre sí, es decir, se toman las distancias de todos los puntos, y cada uno de ellos, con todos los demás.It is a sealed enclosure that contains the rest of the structures inside. This housing is crossed by one or more transparent tubes (4) through which the fish pass. Inside the housing and above the tubes there is a light source (2) and, between it and the tubes, a diffusing screen (3). The photodetectors (6) are located in the lower part of the housing and below the transparent tubes. Laterally and in contact with the transparent tubes are placed as many video or photographic cameras (5) as tubes. The device is submerged in the pond or cage by an anchor or allowed to float semi-submerged with at least the transparent tubes under water thanks to the ballasting system. Photodetectors are activated at the passage of fish, and photographic cameras whose images are collected and sent to a computer system are fired. The "interface" system can be of type wireless In the event that the camera allowed to work with infrared, the light source would only act as an attractant for the fish. The images are downloaded, in a computer system, and processed for marking the points that appear in Figure 5. The calculations are made on direct images not on alterations of fields formed by radiation beams (visible or infrared or magnetic). An operator marks the points established in Figure 5 and their coordinates are processed by the software to establish the distances between the points. The distance data taken includes all possible relationships of the points with each other, that is, the distances of all the points, and each of them, with all the others are taken.
Previamente a Ia utilización del dispositivo objeto de Ia invención en Ia evaluación del estado nutricional y potencial crecimiento de una población piscícola concreta se debe construir un modelo de referencia de crecimiento para Ia especie objeto de estudio. Esto se debe hacer utilizando un grupo suficientemente amplio de individuos en los que se toman las medidas anteriormente descritas, utilizando el dispositivo objeto de Ia invención. Llegado a este punto, el equipo calcula las distancias entre los puntos medidos en las imágenes obtenidas de cada individuo para cada medida del pez, sobre Ia ecuación general de Ia alometría del tipo "Y=aXb" en su forma logarítmica (Ln Y0= Ln a + b Ln X0+ ε), donde Y0 y X0 es Ia distancia entre dos puntos concretos medidos en el pez (ver figura 5), a y b son parámetros fijos (ver tabla 1 ), y tras normalizar los valores de ε para cada medida y para cada individuo, se construye el modelo de referencia de Ia especie objeto de estudio. El modelo de referencia de crecimiento así obtenido, considera el desarrollo de los diferentes caracteres fisonómicos del pez en relación a su talla, ya que es necesario comparar individuos del mismo tamaño entre sí para conocer Ia forma en que cada especie desarrolla sus caracteres a Io largo del crecimiento, y por tanto, para poder construir su modelo de referencia. El modelo diseñado incluye las ecuaciones lineales multifactoriales obtenidas mediante análisis de componentes principales basados en Ia covariación de las desviaciones de cada medida. En el estudio del estado nutricional y potencial de crecimiento de una población concreta, el equipo calcula las distancias entre los puntos medidos en las imágenes obtenidas de cada individuo y resuelve el sistema de ecuaciones lineales aplicadas a las desviaciones resultantes de Ia comparación de todas las medidas tomadas con las del modelo de referencia. Del análisis de componentes principales se obtienen 3 puntuaciones de cada pez, una por cada ecuación multivariante obtenida, los coeficientes obtenidos en el caso del estudio de Ia dorada son los que aparecen en Ia tabla 1. Es decir, el análisis estadístico sintetiza toda Ia información obtenida y Ia presenta en tres grupos ("ejes" de Ia tablai), donde cada uno de ellos explica cómo se desarrollan los principales caracteres fisonómicos del pez durante su crecimiento:Prior to the use of the device object of the invention in the assessment of the nutritional status and potential growth of a specific fish population, a growth reference model for the species under study must be constructed. This must be done using a sufficiently large group of individuals in whom the measures described above are taken, using the device object of the invention. At this point, the team calculates the distances between the points measured in the images obtained from each individual for each measurement of the fish, on the general equation of the allometry of the type "Y = aX b " in its logarithmic form (Ln Y 0 = Ln a + b Ln X 0+ ε ), where Y 0 and X 0 is the distance between two specific points measured in the fish (see figure 5), a and b are fixed parameters (see table 1), and after normalizing the values of ε for each measure and for each individual, the reference model of the species under study is constructed. The growth reference model thus obtained, considers the development of the different physiognomic characteristics of the fish in relation to its size, since it is necessary to compare individuals of the same size with each other to know the way in which each species develops its characters along of growth, and therefore, to be able to build its reference model. The designed model includes the multifactor linear equations obtained through principal component analysis based on the covariation of the deviations of each measurement. In the study of the nutritional status and growth potential of a specific population, the team calculates the distances between the points measured in the images obtained from each individual and solves the system of linear equations applied to the deviations resulting from the comparison of all the measures taken with those of the reference model. From the analysis of main components, 3 scores of each fish are obtained, one for each multivariate equation obtained, the coefficients obtained in the case of the study of the gilthead are those that appear in table 1. That is, the statistical analysis synthesizes all the information obtained and presents in three groups ("axes" of the tablai), where each of them explains how the main physiognomic characters of the fish develop during their growth:
- El eje 1 , da información sobre evolución del tamaño del tronco del pez- Axis 1, gives information on evolution of the size of the trunk of the fish
- El eje 2, da información sobre las alturas cefálica y caudal- Axis 2, gives information on the cephalic and caudal heights
- El eje 3, da información del tamaño de Ia mitad anterior del pedúnculo caudal- Axis 3, gives information on the size of the anterior half of the caudal peduncle
TABLA 1TABLE 1
Figure imgf000008_0001
El dispositivo ofrece las puntuaciones en un espacio cartesiano de tres dimensiones, es decir, con tres ejes de coordenadas. Para una visualización comprensible se ofrece Ia información en dos gráficos planos. En el primero, gráfica 1 , se recogen las puntuaciones de las dos primeras ecuaciones, y en el segundo, gráfica 2, se representan las puntuaciones de Ia primera y tercera ecuación.
Figure imgf000008_0001
The device offers the scores in a three-dimensional Cartesian space, that is, with three coordinate axes. For an understandable visualization the information is offered in two flat graphics. In the first, graph 1, the scores of the first two equations are collected, and in the second, graph 2, the scores of the first and third equations are represented.
Figure imgf000009_0001
Figure imgf000009_0001
-0,50 0,00 0,50 1,00 1,50-0.50 0.00 0.50 1.00 1.50
Gráfica 1 Figure 1
Cuadrante IQuadrant I
Cuadrante I
Figure imgf000010_0001
Quadrant I
Figure imgf000010_0001
-0,50 0,00 0,50 1,00 1,50-0.50 0.00 0.50 1.00 1.50
Gráfica 2Figure 2
Cada especie animal sufre una serie de cambios fisonómicos durante su crecimiento y en el paso de individuo joven a adulto. Al tomar un individuo y observar sus caracteres externos, dependiendo de si todos esos cambios se han sucedido ya o no, y observando el modelo de referencia de su misma especie, se puede saber si el individuo debe todavía completar su desarrollo, es decir, su crecimiento. Sobre estas premisas, el software incluye unas ecuaciones de predicción del crecimiento basadas en fotoperiodo y temperatura, mientras que hasta ahora las predicciones eran hechas sólo en base a temperatura, y da información sobre el potencial de crecimiento de cada individuo. Por otra parte, mediante Ia comparación con datos bibliográficos de peso incluidos en el software, el dispositivo obtiene el denominado factor de condición (K), que es una medida del estado de engorde, y que se calcula como el cociente entre el peso y Ia longitud al cubo. De esta forma, el dispositivo permite, a través de las ecuaciones alométricas, evaluar el estado nutricional y potencial de crecimiento de un individuo concreto. La salida de información clasifica a los animales en 4 grupos, permitiendo al acuicultor tomar Ia decisión de alimentación más apropiada y, en sistemas automáticos, permitiendo que el sistema informático se ocupe de Ia gestión de Ia alimentación de modo autónomo. Además, se obtiene de cada animal: longitud, peso estimado, factor de condición estimado (K) y longitud esperada. Los grupos y subgrupos son los siguientes:Each animal species undergoes a series of physiognomic changes during its growth and in the passage from young individual to adult. By taking an individual and observing their external characteristics, depending on whether all these changes have already happened or not, and observing the reference model of the same species, it is possible to know if the individual must still complete his development, that is, his increase. On these premises, the software includes growth prediction equations based on photoperiod and temperature, while so far the predictions were made only based on temperature, and gives information about the growth potential of each individual. On the other hand, by means of the comparison with bibliographic data of weight included in the software, the device obtains the so-called condition factor (K), which is a measure of the fattening state, and which is calculated as the ratio between the weight and the cube length In this way, the device allows, through allometric equations, to evaluate the nutritional status and growth potential of a specific individual. The information output classifies the animals into 4 groups, allowing the aquaculturist to make the most appropriate feeding decision and, in automatic systems, allowing the computer system to handle the feeding management autonomously. In addition, each animal is obtained: length, estimated weight, estimated condition factor (K) and expected length. The groups and subgroups are as follows:
• Grupo I (peces clasificados en el cuadrante I de Ia gráfica 1 ): Peces a los que hay que reducir Ia ingesta.• Group I (fish classified in quadrant I of figure 1): Fish to which the intake should be reduced.
• Grupo Il (peces clasificados en el cuadrante Il de Ia gráfica 1 ). Peces a los que hay que mantener o aumentar su ingesta.• Group Il (fish classified in quadrant Il of figure 1). Fish that have to maintain or increase their intake.
Subgrupo II+ (Peces clasificados en el cuadrante Il de Ia gráfica 1 y en ordenadas positivas de Ia gráfica 2): Mantener Ia ingesta. Subgrupo II- (Peces clasificados en cuadrante Il de Ia gráfica 1 y en ordenadas negativas de Ia gráfica 2): Aumentar Ia ingesta. • Grupo III (Peces clasificados en el cuadrante III de Ia gráfica 1 ). Peces a los que hay que aumentar Ia ingesta.Subgroup II + (Fish classified in quadrant Il of figure 1 and in positive ordinates of figure 2): Maintain intake. Subgroup II- (Fish classified in quadrant Il of figure 1 and in negative ordinates of figure 2): Increase intake. • Group III (Fish classified in quadrant III of figure 1). Fish to which the intake should be increased.
• Grupo IV (Peces clasificados en el cuadrante IV de Ia gráfica 1 ). Peces a los que hay que mantener o disminuir su ingesta• Group IV (Fish classified in quadrant IV of Figure 1). Fish that have to maintain or decrease their intake
Subgrupo IV+ (ordenadas positivas de Ia gráfica 2): Disminuir Subgrupo IV - (ordenadas negativas en Ia gráfica 2): MantenerSubgroup IV + (positive ordinates of Figure 2): Decrease Subgroup IV - (negative ordinates in Figure 2): Maintain
De esta manera, otro objeto de Ia presente invención consiste en un procedimiento que permite Ia utilización del dispositivo objeto de Ia invención en el diseño de estrategias de alimentación caracterizado por los siguientes pasos:Thus, another object of the present invention consists of a procedure that allows the use of the device object of the invention in the design of feeding strategies characterized by the following steps:
1. Toma de imágenes de un gran número de individuos abarcando todo el rango de tamaños posible.1. Take pictures of a large number of individuals covering the full range of sizes possible.
2. Toma de las medidas entre puntos concretos de cada individuo.2. Taking measures between individual points of each individual.
3. Determinación de una ecuación alométrica (variación de Ia medida de un carácter concreto respecto de Ia medida de un carácter tomado como referencia) para cada medida. 4. Análisis factorial, mediante el estudio de componentes principales, para obtener ecuaciones de puntuación que constituyen un modelo de referencia.3. Determination of an allometric equation (variation of the measure of a specific character with respect to the measure of a character taken as a reference) for each measure. 4. Factor analysis, through the study of main components, to obtain scoring equations that constitute a reference model.
5. Cálculo de las desviaciones individuales respecto del valor teórico en cada ecuación alométrica, para todos los individuos.5. Calculation of individual deviations from the theoretical value in each allometric equation, for all individuals.
6. Análisis de una muestra mediante los pasos 1 , 2 y 5 y aplicación a las ecuaciones obtenidas en el punto 4 para obtener las puntuaciones de cada individuo.6. Analysis of a sample using steps 1, 2 and 5 and application to the equations obtained in point 4 to obtain the scores of each individual.
7. En función de estas puntuaciones se determina Ia necesidad de aumentar, disminuir o mantener Ia ingesta de los individuos de una población en cultivo industrial o de anticipar el comportamiento de un individuo salvaje respecto de sus necesidades de captura de alimento.7. Based on these scores, the need to increase, decrease or maintain the intake of the individuals of an industrial crop population or to anticipate the behavior of a wild individual regarding their food capture needs is determined.
8. Diagnóstico del estado medio de Ia población con los datos obtenidos en los pasos anteriores. 9. Propuesta de las decisiones a tomar.8. Diagnosis of the average state of the population with the data obtained in the previous steps. 9. Proposal of the decisions to be taken.
Otro objeto es el uso del dispositivo para determinar las necesidades de ingesta de alimento de especies piscícolas en cultivo o salvajes.Another object is the use of the device to determine the food intake needs of farmed or wild fish species.
DESCRIPCIONES DE LAS FIGURASDESCRIPTIONS OF THE FIGURES
Figura 1 : Vista lateral (perfil). Componentes: 1-carcasa; 2-fuentes de luz; 3- pantalla difusora; 4-tubos transparentes; 5-cámaras; 6-receptores fotoeléctricos; 7-sistema de anclaje. Figura 2: Vista frontal (alzado). Figura 3: Vista superior (planta). Figura 4: Todas las vistas. Figura 5: Puntos utilizados en las imágenes para el estudio de medidas. EJ EMPLOS DE REALIZACIÓN DE LA INVENCIÓNFigure 1: Side view (profile). Components: 1-housing; 2-light sources; 3- diffuser screen; 4-transparent tubes; 5-cameras; 6-photoelectric receivers; 7-anchor system. Figure 2: Front view (elevation). Figure 3: Top view (floor). Figure 4: All views. Figure 5: Points used in the images for the study of measurements. EXAMPLES OF EMBODIMENT OF THE INVENTION
Ejemplo 1 - Diagnóstico del estado de alimentación de una población de dorada en cultivo industrial en jaulas flotantes.Example 1 - Diagnosis of the feeding status of a population of sea bream in industrial cultivation in floating cages.
En una piscifactoría dedicada al cultivo de Ia dorada en jaulas flotantes en el mar donde se constata el poco crecimiento de un grupo de doradas, se sometió una muestra de Ia población de 60 animales al diagnóstico del presente dispositivo obteniéndose los valores expuestos en Ia siguiente tabla y fueron clasificados mayoritariamente dentro del grupo 3 como animales que estaban recibiendo escaso alimento. Cuando se les aumento Ia ración compensaron el retraso de crecimiento. In a fish farm dedicated to the cultivation of gilthead sea bream in floating cages in the sea where the low growth of a group of gilthead breams is observed, a sample of the population of 60 animals was submitted to the diagnosis of this device, obtaining the values shown in the following table and they were classified mostly in group 3 as animals that were receiving little food. When the ration was increased, they compensated for the growth retardation.
Peso (g) Talla (cm) K Peces muestreados Peso estimado (g) Cuadrante de clasificaciónWeight (g) Size (cm) K Sampled fish Estimated weight (g) Classification quadrant
67,6 14,1 2,41151161 pez 1 70,9696215 Il67.6 14.1 2.41151161 fish 1 70.9696215 Il
91,7 15,5 2,46248867 pez 2 97,1328199 IV91.7 15.5 2.46248867 fish 2 97.1328199 IV
78 14,3 2,66738983 pez 3 75,572919 IV78 14.3 2,66738983 fish 3 75.572919 IV
108,9 16 2,65869141 pez 4 106,241665 IV108.9 16 2,65869141 fish 4 106,241665 IV
95,2 15,2 2,71085435 pez 5 94,1587063 Il95.2 15.2 2,71085435 fish 5 94,1587063 Il
82,8 14,7 2,60662366 pez 6 83,5429603 III82.8 14.7 2.60662366 fish 6 83.5429603 III
91,7 15,8 2,3248668 pez 7 96,5164287 III91.7 15.8 2.3248668 fish 7 96.5164287 III
77,8 14,7 2,44921885 pez 8 77,4847264 III77.8 14.7 2,44921885 fish 8 77.4847264 III
77 14,5 2,52572881 pez 9 73,8563803 IV77 14.5 2,52572881 fish 9 73,8563803 IV
105,2 15,8 2,66713181 pez 10 108,594049 III105.2 15.8 2,66713181 fish 10 108.594049 III
125,6 16,9 2,60213321 pez 11 126,51305 III125.6 16.9 2.60213321 fish 11 126.51305 III
97,6 15,8 2,47444928 pez 12 103,627592 III97.6 15.8 2.47444928 fish 12 103.627592 III
112 16,6 2,4484642 pez 13 108,304352 III112 16.6 2,4484642 fish 13 108,304352 III
70,8 14,7 2,22885211 pez 14 71,8235645 III70.8 14.7 2.22885211 fish 14 71.8235645 III
112 16,4 2,53913901 pez 15 112,528277 IV112 16.4 2,53913901 fish 15 112,528277 IV
102 15,2 2,90448681 pez 16 92,288613 IV102 15.2 2,90448681 fish 16 92,288613 IV
90,2 15,8 2,28683735 pez 17 91,8758937 III90.2 15.8 2.28683735 fish 17 91.8758937 III
92,5 15,3 2,58266121 pez 18 85,304123 III92.5 15.3 2.58266121 fish 18 85,304123 III
99,3 15,3 2,77252171 pez 19 103,882561 III99.3 15.3 2.77252171 fish 19 103.882561 III
91,6 15,3 2,55753262 pez 20 90,8743367 III91.6 15.3 2.55753262 fish 20 90.8743367 III
98,2 15,6 2,58665015 pez 21 93,7553393 Il98.2 15.6 2.58665015 fish 21 93.7553393 Il
100 15,5 2,68537478 pez 22 103,817717 IV100 15.5 2,68537478 fish 22 103,817717 IV
85,6 15,2 2,43749089 pez 23 85,0881758 III85.6 15.2 2,43749089 fish 23 85,0881758 III
84,5 15 2,5037037 pez 24 85,8067934 III84.5 15 2.5037037 fish 24 85.8067934 III
97,1 15,8 2,4617728 pez 25 95,8608373 IV97.1 15.8 2.4617288 fish 25 95.8608373 IV
92,3 15,6 2,43124041 pez 26 99,4514126 IV92.3 15.6 2.43124041 fish 26 99.4514126 IV
103 15,6 2,71308518 pez 27 100,356567 III103 15.6 2.71308518 fish 27 100.356567 III
84 15,2 2,39193031 pez 28 87,2354217 IV84 15.2 2.39193031 fish 28 87.2354217 IV
80 14,5 2,62413383 pez 29 80,0137073 III80 14.5 2,62413383 fish 29 80,0137073 III
90,2 15,9 2,24396028 pez 30 91,1098468 III90.2 15.9 2.24396028 fish 30 91,1098468 III
77,4 14,2 2,70318599 pez 31 73,1458328 III77.4 14.2 2.70318599 fish 31 73.1458328 III
102 15,9 2,53751606 pez 32 101,172999 I102 15.9 2.53751606 fish 32 101.172999 I
100,8 16 2,4609375 pez 33 98,2922091 III100.8 16 2,4609375 fish 33 98,2922091 III
88 15 2,60740741 pez 34 90,4654417 III88 15 2,60740741 fish 34 90,4654417 III
94,8 15,6 2,49709199 pez 35 96,3933262 IV94.8 15.6 2.49709199 fish 35 96.3933262 IV
90,3 15 2,67555556 pez 36 89,7551375 III90.3 15 2,67555556 fish 36 89,7551375 III
87 15 2,57777778 pez 37 87,7406078 Il87 15 2,57777778 fish 37 87,7406078 Il
98 15,8 2,48459047 pez 38 97,5679271 III98 15.8 2.48459047 fish 38 97.5679271 III
90,2 15,5 2,42220805 pez 39 90,7463004 III90.2 15.5 2,42220805 fish 39 90,7463004 III
86,1 15 2,55111111 pez 40 86,6451977 III86.1 15 2.55111111 fish 40 86.6451977 III
116 16,8 2,44641507 pez 41 122,14739 IV
Figure imgf000015_0001
var 1
116 16.8 2.44641507 fish 41 122.14739 IV
Figure imgf000015_0001
var 1
y fueron clasificadas dentro del grupo 3 como animales que estaban recibiendo escaso alimento. Cuando se les aumento Ia ración compensaron el retraso de crecimiento.and were classified within group 3 as animals that were receiving little food. When the ration was increased, they compensated for the growth retardation.
La mayor parte de los peces se sitúan dentro del tercer cuadrante, Io que está indicando que necesitamos aumentar Ia ingesta de Ia población aunque algunos animales estén encuadrados en los grupos Il y IV, es decir en condiciones dudosas, y sólo un pez se sitúa en el cuadrante I, que quiere decir que ha sido alimentado suficientemente. En conclusión debemos aumentar Ia ingesta de los animales.Most of the fish are located within the third quadrant, which is indicating that we need to increase the intake of the population although some animals are framed in groups Il and IV, that is to say in doubtful conditions, and only one fish is placed in Quadrant I, which means that it has been fed sufficiently. In conclusion we must increase the intake of animals.
Los hermanos de esos peces, que nosotros habíamos mantenido en el laboratorio con alimentación controlada a saciedad estaban clasificados, el 80% en el cuadrante I y el resto en el cuadrante IVThe brothers of these fish, which we had kept in the laboratory with satiety controlled feeding were classified, 80% in quadrant I and the rest in quadrant IV
Ejemplo 2: Diagnóstico del estado de alimentación de poblaciones de dorada en cultivo industrial en estanques excavados en tierra y en jaulas. En este caso Ia problemática era Ia mala eficacia de los piensos en Ia última fase del cultivo en una de las instalaciones de engorde industrial. Se sometió los animales al diagnóstico del dispositivo y, en esta ocasión, los peces fueron clasificados, los de Ia granja 1 , dentro del grupo I, como peces a los que hay que reducir Ia ración; y los de las granjas 2 y 3 en el cuarto cuadrante como animales a los que hay que mantener o disminuir Ia ración. Es decir que el problema era Ia excesiva ingesta de alimento en Ia granja 1 , que era precisamente Ia que utilizaba estanques excavados en tierra. Posiblemente en Ia granjas 2 y 3 también se estuviese suministrando alimento en exceso pero se compensaría Ia ingesta por Ia pérdida de pienso a través de las redes de las jaulas, por eso, siendo correcta Ia ingesta el suministro era excesivo de ahí Ia deficiente conversión de los piensos. En estos dos últimos caso Io que se debería realizar es cambiar Ia estrategia de alimentación aumentando el número de tomas menos abundantes o mejorar Ia distribución de pienso dentro de las jaulas.Example 2: Diagnosis of the feeding status of gilthead populations in industrial cultivation in ponds excavated on land and in cages. In this case, the problem was the poor feed efficiency in the last phase of the crop in one of the industrial fattening facilities. Underwent the animals to the diagnosis of the device and, on this occasion, the fish were classified, those of the farm 1, within group I, as fish to which the ration should be reduced; and those of farms 2 and 3 in the fourth quadrant as animals to which the ration must be maintained or decreased. That is to say, the problem was the excessive intake of food in the farm 1, which was precisely the one that used ponds dug in the ground. Possibly, in farms 2 and 3, excess food was also being supplied but the intake would be compensated for the loss of feed through the cage nets, therefore, being correct the intake was excessive hence the poor conversion of the feed In these last two cases, what should be done is to change the feeding strategy by increasing the number of less abundant intakes or improving the distribution of feed within the cages.
Figure imgf000016_0001
Figure imgf000016_0001
-3,00 -2,00 -1 ,00 0,00 1 ,00 2,00 c.p.1-3.00 -2.00 -1, 00 0.00 1, 00 2.00 c.p.1
Granja 1
Figure imgf000016_0002
Farm 1
Figure imgf000016_0002
0 Granja 20 Farm 2
Δ Granja 3 En este caso hemos eludido representar Ia estimación de pesos dado el excesivo número de datos, que no clarificarían el ejemplo.Δ Farm 3 In this case we have avoided representing the estimate of weights given the excessive number of data, which would not clarify the example.
Ejemplo 3: Seguimiento de peces sometidos a un período de ayuno en el laboratorio.Example 3: Monitoring of fish subjected to a period of fasting in the laboratory.
Un grupo de 70 peces, doradas, que estaban alimentadas según tablas comerciales de racionamiento, fueron clasificadas por el dispositivo entre los grupos I y IV+. Después de un período de ayuno de 15 días (los peces movilizan lentamente las reservas porque necesitan muy poca energía en el medio acuático) se volvieron a someter a Ia clasificación del dispositivo y, en esta ocasión, estos mismos peces se clasificaron entre el grupo IV- (necesidad de mantener el suministro de alimento) y en el grupo IV+ (disminuir el suministro de alimento). La correcta interpretación del resultado debe considerar que se parte de una situación de sobrealimentación, muy usual en acuicultura industrial, y que tras el ayuno, se aprecia un desplazamiento de Ia situación de los animales desde Ia sobrealimentación hacia Ia situación correcta de alimentación.A group of 70 goldfish, which were fed according to commercial rationing tables, were classified by the device between groups I and IV +. After a fasting period of 15 days (the fish slowly mobilize the reserves because they need very little energy in the aquatic environment) they were again subjected to the classification of the device and, on this occasion, these same fish were classified among group IV - (need to maintain the food supply) and in group IV + (decrease the food supply). The correct interpretation of the result should consider that it is based on a situation of overfeeding, very common in industrial aquaculture, and that after fasting, a displacement of the situation of the animals can be seen from the overfeeding towards the correct feeding situation.
Peces PesoFish Weight
Peso (g) Talla (cm) K Cuadrante muestreados estimado (g)Weight (g) Size (cm) K Estimated sampled quadrant (g)
Antes dei ayunoBefore fasting
334 """"""210T""""" 2778124995 ¡mgd3303.jpg ~"™3Ϊ5Í994843 fvϊ334 """"" 210T """"" 2778124995 ¡mgd3303.jpg ~ "™ 3Ϊ5Í994843 fvϊ
374 23,6 2,84534933 imgd3306.jpg 310,955438 I374 23.6 2,84534933 imgd3306.jpg 310,955438 I
347 23 2,85197666 imgd3308.jpg 315,366671 I347 23 2.85197666 imgd3308.jpg 315.366671 I
386 23,6 2,93664396 imgd3309.jpg 374,761706 I386 23.6 2,93664396 imgd3309.jpg 374,761706 I
245 21 ,2 2,57133405 imgd3311.jpg 233,349009 IV+245 21, 2 2,57133405 imgd3311.jpg 233,349009 IV +
570 26,3 3,13334063 imgd3312.jpg 516,703473 I570 26.3 3,13334063 imgd3312.jpg 516,703473 I
427 24,4 2,93939801 imgd3315.jpg 409,36337 I427 24.4 2,93939801 imgd3315.jpg 409,36337 I
399 24,2 2,81531373 imgd3316.jpg 377,553365 I399 24.2 2,81531373 imgd3316.jpg 377,553365 I
407 23,5 3,13610664 imgd3317.jpg 405,358804 I407 23.5 3,13610664 imgd3317.jpg 405,358804 I
347 22,8 2,92768895 imgd3318.jpg 348,904854 I347 22.8 2,92768895 imgd3318.jpg 348,904854 I
424 24,4 2,9187465 imgd3321.jpg 409,673231 I424 24.4 2.9187465 imgd3321.jpg 409.673231 I
392 23,7 2,94469981 imgd3322.jpg 389,69012 I392 23.7 2,94469981 imgd3322.jpg 389,69012 I
327 23,2 2,61868824 imgd3323.jpg 309,902856 I327 23.2 2,61868824 imgd3323.jpg 309,902856 I
387 24 2,79947917 imgd3324.jpg 372,397791 IV+387 24 2,79947917 imgd3324.jpg 372,397791 IV +
462 24,7 3,0658515 imgd3401.jpg 459,933215 IV+462 24.7 3,0658515 imgd3401.jpg 459,933215 IV +
363 22,7 3,10333782 imgd3403.jpg 367,255011 I363 22.7 3.10333782 imgd3403.jpg 367.255011 I
472 24,6 3,17056512 imgd3404.jpg 468,299807 IV+ 407 23,7 3,05737965 imgd3405.jpg 397,347315 IV+472 24.6 3,17056512 imgd3404.jpg 468,299807 IV + 407 23.7 3,05737965 imgd3405.jpg 397,347315 IV +
464 24,9 3,00552219 imgd3408.jpg 455,819566 I464 24.9 3.00552219 imgd3408.jpg 455.819566 I
394 24 2,85011574 imgd3409.jpg 373,439515 IV+394 24 2,85011574 imgd3409.jpg 373,439515 IV +
503 25,11 3,17707778 imgd3410.jpg 468,352394 I503 25.11 3.17707778 imgd3410.jpg 468.352394 I
415 23 3,41086546 imgd3411.jpg 383,031033 IV+415 23 3,41086546 imgd3411.jpg 383,031033 IV +
278 21,7 2,72060564 imgd3412.jpg 291,640092 IV+278 21.7 2,72060564 imgd3412.jpg 291,640092 IV +
371 23,4 2,89551846 imgd3413.jpg 366,527801 IV+371 23.4 2,89551846 imgd3413.jpg 366,527801 IV +
443 24,1 3,16484612 imgd3414.jpg 411,901331 IV+443 24.1 3.16484612 imgd3414.jpg 411,901331 IV +
329 22,9 2,73961447 imgd3415.jpg 323,468873 IV+329 22.9 2,73961447 imgd3415.jpg 323,468873 IV +
495 25,1 3,13028611 imgd3416.jpg 467,135635 IV+495 25.1 3,13028611 imgd3416.jpg 467,135635 IV +
427 23,8 3,16735691 imgd3417.jpg 410,280727 I427 23.8 3,16735691 imgd3417.jpg 410,280727 I
328 22,6 2,84150567 imgd3418.jpg 336,511717 I328 22.6 2,84150567 imgd3418.jpg 336,511717 I
498 25,3 3,07516044 imgd3419.jpg 485,046345 I498 25.3 3,07516044 imgd3419.jpg 485,046345 I
350 22,5 3,07270233 imgd3420.jpg 341,238819 IV+350 22.5 3,07270233 imgd3420.jpg 341,238819 IV +
274 23 2,2519931 imgd3421.jpg 360,108675 IV+274 23 2.2519931 imgd3421.jpg 360,108675 IV +
Después del ayunoAfter fasting
365 24,5 2,48195905 ayud3302.jpg 383,486145 I365 24.5 2.48195905 ayud3302.jpg 383,486145 I
225 21,3 2,32832557 ayud3303.jpg 226,401031 IV-225 21.3 2,32832557 ayud3303.jpg 226,401031 IV-
304 23 2,49856168 ayud3305.jpg 315,844195 IV-304 23 2,49856168 ayud3305.jpg 315,844195 IV-
300 22,9 2,49812869 ayud3306.jpg 314,794002 IV-300 22.9 2,49812869 ayud3306.jpg 314,794002 IV-
357 24 2,58246528 ayud3307.jpg 360,51767 I357 24 2,58246528 ayud3307.jpg 360,51767 I
382 23,8 2,83356051 ayud3308.jpg 421,23922 IV+382 23.8 2,83356051 ayud3308.jpg 421,23922 IV +
267 21,6 2,6494151 ayud3309.jpg 279,130032 IV+267 21.6 2,6494151 ayud3309.jpg 279,130032 IV +
387 24,7 2,56814834 ayud3311.jpg 403,313245 IV-387 24.7 2,56814834 ayud3311.jpg 403,313245 IV-
317 23 2,60540807 ayud3312.jpg 601,519005 IV-317 23 2,60540807 ayud3312.jpg 601,519005 IV-
316 23,3 2,49815465 ayud3313.jpg 336,340803 IV-316 23.3 2,49815465 ayud3313.jpg 336,340803 IV-
297 22,2 2,714548 ayud3315.jpg 312,683716 IV+-297 22.2 2,714548 ayud3315.jpg 312,683716 IV + -
399 24,8 2,61588022 ayud3316.jpg 412,93024 IV-399 24.8 2,61588022 ayud3316.jpg 412,93024 IV-
375 23,7 2,816996 ayud3317.jpg 417,400556 IV-375 23.7 2,816996 ayud3317.jpg 417,400556 IV-
514 26,6 2,73097805 ayud3318.jpg 511,025081 I514 26.6 2,73097805 ayud3318.jpg 511,025081 I
396 24,4 2,72599909 ayud3319.jpg 436,113061 IV-396 24.4 2,72599909 ayud3319.jpg 436,113061 IV-
271 21,8 2,61577154 ayud3320.jpg 297,132822 IV-271 21.8 2,61577154 ayud3320.jpg 297,132822 IV-
337 23,6 2,56385755 ayud3321.jpg 341,943365 IV-337 23.6 2.56385755 ayud3321.jpg 341.943365 IV-
351 24 2,5390625 ayud3324.jpg 376,786056 IV+351 24 2,5390625 ayud3324.jpg 376,786056 IV +
297 22,8 2,50583175 ayud3401.jpg 303,211366 IV-297 22.8 2.50583175 ayud3401.jpg 303.211366 IV-
336 23,3 2,6562657 ayud3402.jpg 298,867408 IV-336 23.3 2,6562657 ayud3402.jpg 298,867408 IV-
454 25,2 2,83696665 ayud3403.jpg 462,848993 IV-454 25.2 2,83696665 ayud3403.jpg 462,848993 IV-
364 24,5 2,47515916 ayud3404.jpg 377,806997 IV-364 24.5 2,47515916 ayud3404.jpg 377,806997 IV-
297 22,5 2,60740741 ayud3406.jpg 317,119065 I297 22.5 2,60740741 ayud3406.jpg 317,119065 I
372 23,4 2,90332309 ayud3408.jpg 378,073836 IV+372 23.4 2,90332309 ayud3408.jpg 378,073836 IV +
378 24,2 2,66713932 ayud3410.jpg 397,64307 IV+378 24.2 2,66713932 ayud3410.jpg 397,64307 IV +
427 24,6 2,86828666 ayud3411.jpg 464,575654 IV+427 24.6 2,86828666 ayud3411.jpg 464,575654 IV +
412 24,8 2,7011094 ayud3412.jpg 433,313014 IV+412 24.8 2,7011094 ayud3412.jpg 433,313014 IV +
397 24 2,87181713 ayud3413.jpg 413,578901 IV+ 259 21,9 2,46585434 ayud3414.jpg 283,59309 IV+397 24 2,87181713 ayud3413.jpg 413,578901 IV + 259 21.9 2,46585434 ayud3414.jpg 283,59309 IV +
447 24,7 2,96631087 ayud3415.jpg 466,180982 IV+447 24.7 2,96631087 ayud3415.jpg 466,180982 IV +
369 22,8 3,11330612 ayud3416.jpg 368,110928 IV-369 22.8 3,11330612 ayud3416.jpg 368,110928 IV-
450 25,3 2,77875943 ayud3418.jpg 506,327384 I450 25.3 2,77875943 ayud3418.jpg 506,327384 I
366 23,6 2,78448624 ayud3419.jpg 377,277793 IV-366 23.6 2,78448624 ayud3419.jpg 377,277793 IV-
320 22,3 2,88559508 ayud3420.jpg 329,991726 IV-320 22.3 2.88559508 ayud3420.jpg 329.991726 IV-
333 22,7 2,84686362 ayud3421 jpg 340,8584 IV-333 22.7 2,84686362 ayud3421 jpg 340,8584 IV-
296 22,3 2,66917545 ayud3422.jpg 308,421837 IV-296 22.3 2,66917545 ayud3422.jpg 308,421837 IV-
417 24,7 2,7672296 ayud3423.jpg 443,236278 IV-417 24.7 2,7672296 ayud3423.jpg 443,236278 IV-
Figure imgf000019_0001
Figure imgf000019_0001
En triángulos los animales antes del ayuno. En círculos blancos, los mismos individuos después del ayuno, que han disminuido puntuación hasta pasar desde el grupo I al grupo IV. In triangles the animals before fasting. In white circles, the same individuals after fasting, which have decreased score to pass from group I to group IV.

Claims

REIVINDICACIONES
1. Un dispositivo de análisis morfométrico de especies piscícolas marinas y continentales caracterizado porque permite diseñar estrategias de alimentación en dichas especies y hacer estudios sobre el estado nutricional con Ia siguiente estructura: a. carcasa, b. tubos transversales transparentes, c. fuente de luz, pantalla difusora, fotodetectores d. cámaras de vídeo e. interfaz estándar a un ordenador donde es procesada toda Ia información f. software específico de tratamiento de Ia información1. A morphometric analysis device for marine and continental fish species characterized in that it allows the design of feeding strategies in these species and studies on the nutritional status with the following structure: a. housing, b. transparent transverse tubes, c. light source, diffuser screen, photodetectors d. video cameras e. standard interface to a computer where all the information is processed f. specific information processing software
2. Un dispositivo, de acuerdo con Ia reivindicación 1 , caracterizado porque mide distancias entre puntos concretos de Ia imagen de los individuos y, tras definir un modelo de crecimiento de referencia, calcula las desviaciones con respecto al mismo.2. A device, according to claim 1, characterized in that it measures distances between specific points of the image of the individuals and, after defining a reference growth model, calculates the deviations with respect thereto.
3. Un dispositivo, de acuerdo con Ia reivindicaciones 1 y 2, caracterizado porque realiza un análisis multifactohal de todas las desviaciones tomadas, define el modelo de referencia de crecimiento, caracteriza el estado global del individuo y Io correlaciona con un momento en el modelo de crecimiento de referencia.3. A device, according to claims 1 and 2, characterized in that it performs a multifactohal analysis of all the deviations taken, defines the growth reference model, characterizes the overall state of the individual and correlates it with a moment in the model of reference growth.
4. Un procedimiento para el diseño de estrategias de alimentación caracterizado por los siguientes pasos: a. Toma de imágenes de un gran número de individuos abarcando todo el rango de tamaños posible. b. Toma de las medidas entre puntos concretos de cada individuo. c. Determinación de una ecuación alométrica (variación de Ia medida de un carácter concreto respecto de Ia medida de un carácter tomado como referencia) para cada medida. d. Análisis factorial, mediante el estudio de componentes principales, para obtener ecuaciones de puntuación que constituyen un modelo de referencia. e. Cálculo de las desviaciones individuales respecto del valor teórico en cada ecuación alométrica, para todos los individuos. f. Análisis de una muestra mediante los pasos a, b y e y aplicación a las ecuaciones obtenidas en el punto d para obtener las puntuaciones de cada individuo. g. Determinación, en función de estas puntuaciones, Ia necesidad de aumentar, disminuir o mantener Ia ingesta de los individuos de una población en cultivo industrial o de anticipar el comportamiento de un individuo salvaje respecto de sus necesidades de captura de alimento. h. Diagnóstico del estado medio de Ia población con los datos obtenidos en los pasos anteriores. i. Generación de Ia propuesta de las decisiones a tomar. 4. A procedure for the design of feeding strategies characterized by the following steps: a. Taking pictures of a large number of individuals covering the full range of sizes possible. b. Taking measures between specific points of each individual. C. Determination of an allometric equation (variation of the measure of a specific character with respect to the measure of a character taken as a reference) for each measure. d. Factor analysis, through the study of main components, to obtain scoring equations that constitute a reference model. and. Calculation of individual deviations from the theoretical value in each allometric equation, for all individuals. F. Analysis of a sample through the steps a, byey application to the equations obtained in point d to obtain the scores of each individual. g. Determination, based on these scores, the need to increase, decrease or maintain the intake of individuals from a population in industrial cultivation or to anticipate the behavior of a wild individual regarding their needs for food capture. h. Diagnosis of the average state of the population with the data obtained in the previous steps. i. Generation of the proposal of the decisions to be taken.
5. El uso del dispositivo caracterizado según las reivindicaciones 1 a Ia 4, para determinar las necesidades de ingesta de alimento de especies piscícolas en cultivo o salvajes. 5. The use of the device characterized according to claims 1 to 4, to determine the food intake needs of cultivated or wild fish species.
PCT/ES2007/070125 2006-07-20 2007-07-02 Morphometric image analysis device for establishing feeding strategies for use in aquaculture WO2008009773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200601932 2006-07-20
ES200601932A ES2289940B1 (en) 2006-07-20 2006-07-20 MORPHOMETRIC PICTURE ANALYSIS DEVICE FOR DEVELOPING FOOD STRATEGIES IN AQUICULTURE.

Publications (1)

Publication Number Publication Date
WO2008009773A1 true WO2008009773A1 (en) 2008-01-24

Family

ID=38956580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070125 WO2008009773A1 (en) 2006-07-20 2007-07-02 Morphometric image analysis device for establishing feeding strategies for use in aquaculture

Country Status (2)

Country Link
ES (1) ES2289940B1 (en)
WO (1) WO2008009773A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104585088A (en) * 2014-12-31 2015-05-06 中国水产科学研究院东海水产研究所 Hemifusus ternatanus food calling test device and use method thereof
JP2020134134A (en) * 2019-02-12 2020-08-31 広和株式会社 Method and system for measuring object in liquid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2440064A1 (en) * 2009-06-08 2012-04-18 Marel Iceland EHF A system and method for sorting of items prior to processing
ES2791551A1 (en) * 2019-05-03 2020-11-04 Inst Espanol De Oceanografia Ieo PROCEDURE FOR THE IDENTIFICATION AND CHARACTERIZATION OF FISH AND AUTOMATIC FEED SUPPLY SYSTEM THAT MAKES USE OF THE SAME (Machine-translation by Google Translate, not legally binding)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2203540A (en) * 1987-04-01 1988-10-19 Birtingur H F Measuring, counting & classifying fish
US5222458A (en) * 1991-12-17 1993-06-29 Her Majesty The Queen In Right Of Canada, As Represented By The Department Of Fisheries And Oceans Apparatus for monitoring moving aquatic organisms
WO1997020186A1 (en) * 1995-11-24 1997-06-05 Aquasmart Pty. Ltd. Sensor for detection and/or discrimination of objects
WO2005025309A1 (en) * 2003-08-11 2005-03-24 Kristian Lillerud Method and device for recording and determining the weight of fish

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2203540A (en) * 1987-04-01 1988-10-19 Birtingur H F Measuring, counting & classifying fish
US5222458A (en) * 1991-12-17 1993-06-29 Her Majesty The Queen In Right Of Canada, As Represented By The Department Of Fisheries And Oceans Apparatus for monitoring moving aquatic organisms
WO1997020186A1 (en) * 1995-11-24 1997-06-05 Aquasmart Pty. Ltd. Sensor for detection and/or discrimination of objects
WO2005025309A1 (en) * 2003-08-11 2005-03-24 Kristian Lillerud Method and device for recording and determining the weight of fish

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104585088A (en) * 2014-12-31 2015-05-06 中国水产科学研究院东海水产研究所 Hemifusus ternatanus food calling test device and use method thereof
JP2020134134A (en) * 2019-02-12 2020-08-31 広和株式会社 Method and system for measuring object in liquid
JP7233688B2 (en) 2019-02-12 2023-03-07 広和株式会社 Method and system for measuring substances in liquid

Also Published As

Publication number Publication date
ES2289940B1 (en) 2008-12-16
ES2289940A1 (en) 2008-02-01

Similar Documents

Publication Publication Date Title
Leis Ontogeny of behaviour in larvae of marine demersal fishes
Colin et al. Manual for the study and conservation of reef fish spawning aggregations
Youngbluth et al. Distribution, abundance, behavior and metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a Norwegian fjord
Ellertsen et al. Some biological aspects of cod larvae (Gadus morhua L.)
Mansfield et al. Oceanic habits and habitats
Jayne Swimming in constricting (Elaphe g. guttata) and nonconstricting (Nerodia fasciata pictiventris) colubrid snakes
Owen et al. Potential energy gain by whales outside of the Antarctic: prey preferences and consumption rates of migrating humpback whales (Megaptera novaeangliae)
ES2289940B1 (en) MORPHOMETRIC PICTURE ANALYSIS DEVICE FOR DEVELOPING FOOD STRATEGIES IN AQUICULTURE.
US20220004760A1 (en) Splash detection for surface splash scoring
Jamieson Landers: baited cameras and traps
Johannesen et al. Waves and currents decrease the available space in a salmon cage
Dan et al. Ontogenic change in the vertical swimming of East Asian common octopus Octopus sinensis paralarvae under different water flow conditions
Kojadinovic et al. Trophic ecology of marine birds and pelagic fishes from Reunion Island as determined by stable isotope analysis
Jongjaraunsuk et al. Weight estimation of Asian sea bass (Lates calcarifer) comparing whole body with and without fins using computer vision technique
Taparhudee et al. Application of unmanned aerial vehicle (UAV) with area image analysis of red tilapia weight estimation in river-based cage culture
Cheng et al. Distribution of juvenile American horseshoe crabs Limulus polyphemus in the Great Bay Estuary, New Hampshire, USA
Duchêne et al. Light influence on larval emission and vertical swimming in the terebellid worm Eupolymnia nebulosa (Montagu, 1818)
Irschick et al. Creating 3D models of several sea turtle species as digital voucher specimens
Taparhudee et al. Weight estimation of Nile tilapia (Oreochromis niloticus Linn.) using image analysis with and without fins and tail
JP2023512412A (en) Camera winch control for dynamic surveillance
He Swimming performance of three species of marine fish and some aspects of swimming in fishing gears
Baronio The use of a micro remotely operated vehicle as a tool for studies of shark behaviour and diver impact
Longenecker et al. Reproduction, catch, and size structure of exploited reef-fishes at Kamiali Wildlife Management Area, Papua New Guinea
Cullen et al. A brief examination of underwater video and hook-and-line gears for sampling black sea bass (Centropristis striata) simultaneously at 2 Mid-Atlantic sites off the Maryland coast
François Physical aspects of fish locomotion: an experimental study of intermittent swimming and pair interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07788701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07788701

Country of ref document: EP

Kind code of ref document: A1