WO2008001857A1 - Spatial audio signal reproducing device and spatial audio signal reproducing method - Google Patents

Spatial audio signal reproducing device and spatial audio signal reproducing method Download PDF

Info

Publication number
WO2008001857A1
WO2008001857A1 PCT/JP2007/063022 JP2007063022W WO2008001857A1 WO 2008001857 A1 WO2008001857 A1 WO 2008001857A1 JP 2007063022 W JP2007063022 W JP 2007063022W WO 2008001857 A1 WO2008001857 A1 WO 2008001857A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
audio signal
reproduction
speaker
signal
Prior art date
Application number
PCT/JP2007/063022
Other languages
French (fr)
Japanese (ja)
Inventor
Itaru Kaneko
Original Assignee
Toa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corporation filed Critical Toa Corporation
Priority to JP2008522627A priority Critical patent/JP5543106B2/en
Publication of WO2008001857A1 publication Critical patent/WO2008001857A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation

Definitions

  • the present invention relates to a spatial audio signal reproduction device and a spatial audio signal reproduction method for generating a speaker signal for approximately reproducing a spatial shape of a sound waveform in consideration of interference between speaker sounds and reflected sound.
  • “Spatial audio signal” refers to a signal that has been processed in order to reproduce the actual performance sound, reflecting the spatial shape within a certain space.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-236404
  • the first factor is interference of a plurality of speaker sounds.
  • the performance sound 53 radiated from one trumpet 51 spreads in a spherical shape, and almost the same waveform can be observed at any point in space.
  • the sound of trumpet 51 is recorded and stereo
  • sounds 54 having waveforms close to each other are radiated from the two speaker forces. Then, the sound of both speakers interferes at the listening position, and the waveform of the performance sound of the trumpet is deformed.
  • the second factor is sound reflection in the room. Sound is usually reflected with a reflectivity of 50% to 90% depending on the wall, ceiling, and floor. For this reason, when sound is reproduced from a single speaker in a rectangular parallelepiped room, the reflected sound of six-surface power can be heard at the same time. Usually, the listener can feel the spaciousness of the performance space by this reflected sound, and thus get a sense of reality. However, the reflected sound in the reproduction space is further added to the reproduced sound in the room. As a result, the listener can feel an unnatural feeling.
  • the present invention provides a spatial audio signal reproduction device and a spatial audio signal reproduction method that generate speaker sound that enables a listener to obtain a natural presence compared to conventional reproduction devices. Is an issue.
  • a spatial audio signal reproduction device provides a spatial audio signal for reproducing a sound collection space audio signal in a sound collection space within a certain region near a predetermined position in the reproduction space.
  • a reproduction device for obtaining reproduction space information related to the reproduction space, the reproduction space information including at least the information related to reflection in the reproduction space and information about a speaker position installed in the reproduction space.
  • information acquisition means Based on the reproduction space information, information acquisition means, transfer function generation means for generating a transfer function that takes an input signal to the speaker as an input and outputs a reproduction space audio signal at a predetermined position in the reproduction space; and Based on the sound collection space audio signal and the transfer function, the difference between the reproduction space audio signal and the sound collection space audio signal is small.
  • a loudspeaker input signal generating means for generating an input signal to the speaker so that, Ru with a (claim 1).
  • an input signal to the speaker can be generated based on the information regarding the reflection in the reproduction space and the information on the speaker position.
  • the spatial audio signal reproduction device may further include listening position information acquisition means for acquiring listening position information relating to a listening position in the reproduction space, and the predetermined position in the reproduction space may be set as the listening position. (Claim 2). According to the powerful configuration, listening Corresponding to the position, an input signal to the speaker can be generated.
  • the listening position information is acquired every moment in the listening position information acquiring means, and the listening position information acquired every moment in the transfer function generating means.
  • the transfer function may be generated every moment based on the position information, and the speaker input signal generation unit may generate an input signal to the speaker based on the generated transfer function. Claim 3). According to the configuration, even if the listening position changes, an input signal to the speaker is generated in response to the change.
  • an acoustic signal acquisition unit that acquires acoustic signals at a plurality of positions surrounding an arbitrary reference position in the sound collection space, and an acoustic signal acquired by the acoustic signal acquisition unit
  • a reference position space audio signal calculating means for calculating a reference position space audio signal in a fixed region near the reference position based on the signal, and further comprising the reference position space audio signal as the sound collection space audio signal.
  • the listening position information acquisition unit may acquire listening position information related to the listening position in the playback space using a multi-view video stereoscopic recognition device. But (claim 5). According to the powerful configuration, the listening position can be grasped three-dimensionally.
  • the reproduction space information acquisition unit may acquire information related to reflection in the reproduction space using an acoustic room reflection measurement device (claim). Section 6). According to the powerful configuration, it is possible to acquire information related to reflection in the reproduction space without a video camera.
  • a charging unit that transmits a payment completion signal when the charging operation is completed, and a charging that determines whether or not charging has been performed based on the payment completion signal.
  • Confirmation means and when the charge confirmation means determines that the charge is not performed, the operation of the speaker input signal generation means is stopped, and the reproduction space information is obtained from the reproduction space information acquisition means.
  • the input signal to the speaker is sent from the speaker input signal generating means to the speaker via the Internet, and the settlement completion signal is sent from the charging means to the charging confirmation means via the Internet. ⁇ (Claim 7).
  • a spatial audio signal reproduction method for reproducing a sound collection space audio signal in a sound collection space within a certain region near a predetermined position in the reproduction space.
  • a spatial audio signal reproduction method for reproducing reproduction space information relating to the reproduction space, the reproduction space information including at least the information relating to reflection in the reproduction space and information about a speaker position installed in the reproduction space.
  • a spatial information acquisition step, and a transfer function generation step for generating a transfer function based on the reproduction space information and using an input signal to the speaker as an input and outputting a reproduction space audio signal at a predetermined position in the reproduction space; and Based on the sound collection space audio signal and the transfer function, the difference between the reproduction space audio signal and the sound collection space audio signal is A speaker input signal generation step for generating an input signal to the speaker so as to be reduced (claim 8).
  • the spatial audio signal reproduction device of the present invention it is possible to generate a speaker signal in consideration of interference between speaker sounds and reflected sound. Therefore, it is possible to provide a spatial audio signal reproduction device and a spatial audio signal reproduction method that generate speaker sounds that enable the listener to obtain a natural sense of reality compared to conventional reproduction methods.
  • FIG. 1 is a configuration diagram of a spatial audio signal reproduction device according to the present embodiment.
  • FIG. 2 is a diagram of an upward force of a microphone array for acquiring an acoustic signal that is useful in the present embodiment.
  • FIG. 3 is a schematic diagram of a reproduction space that is useful for this embodiment.
  • FIG. 4 is a conceptual diagram comparing the case where the reference position space audio signal according to the present embodiment is not saved and the case where it is saved.
  • FIG. 5 is a plan view of a microphone for acquiring an acoustic signal that is effective in another embodiment.
  • FIG. 6 is a diagram for explaining the principle of an acoustic indoor reflection device according to another embodiment.
  • FIG. 7 is a diagram illustrating the principle of an acoustic room interior reflection device according to another embodiment.
  • FIG. 8 is a diagram showing an example of a speaker that works on the present embodiment.
  • FIG. 9 is a diagram showing a state of sound wave propagation in the speaker of FIG.
  • FIG. 10 is a configuration diagram of a spatial audio signal reproduction device according to another embodiment.
  • FIG. 11 A diagram showing a state of interference between speaker sounds, which is effective in the prior art.
  • FIG. 1 is a configuration diagram of the spatial audio signal reproduction device 1.
  • the spatial audio signal reproduction apparatus 1 includes an acoustic signal acquisition means 2, a reference position space audio signal calculation means 3, a reproduction space information acquisition means 4, a listening position information acquisition means 5, and a transfer function generation. Means 6 and speaker signal generation means 7 are provided. Each means is described in detail below.
  • the acoustic signal acquisition unit 2 is a unit that acquires the acoustic signal 9 in the sound collection space.
  • the “acoustic signal” refers to a signal generated in space by the performance sound of a musical instrument or the voice of a person!
  • the performance sound (acoustic signal) 9 in the performance space (sound collection space) 20 is acquired.
  • a microphone array 21 is used as means for acquiring performance sound (acoustic signal) 9.
  • FIG. 2 shows the microphone array 21 in the performance space (sound collection space) 20 as viewed from above.
  • the diameter L1 of the microphone array 21 is not limited to 30 cm, and any size can be used as long as the reference position space audio signal (performance waveform) 10 can be accurately calculated by the reference position space audio signal calculation means 3 described later. There may be.
  • the performance sound 9 acquired by each microphone 22 is stored or used as pressure data.
  • the performance space 20 on the wall or ceiling Reflected sound is also acquired. If the reflected sound in the performance space 20 can be accurately reproduced, the listener can obtain a natural sense of presence.
  • the reason why the microphone array 21 includes a plurality of microphones 22 is that the spatial shape of the sound wave, for example, the traveling directions of various wave fronts constituting the sound wave, is more accurate than using a single microphone 22. This is because it can be calculated well.
  • the reference position space audio signal calculation means 3 sets an arbitrary point in the performance space 20 as a reference position 20a, and a performance waveform (reference position space audio signal, sound collection in a certain area near the reference position 20a.
  • (Spatial audio signal) 10 is calculated.
  • the spatial shape of the sound wave in the region inside the microphone array 21 is calculated.
  • the performance waveform 10 near the reference position 20a in the microphone array 21 in the performance space 20 is calculated from the pressure data of the performance sound 9 acquired by the microphone mouthphone array 21 by the Kirchhoff integration formula. By using Kirchhoff's integral formula, the pressure (spatial waveform) at all points in the closed phase can be obtained by determining the pressure and flow velocity at each point on the closed surface.
  • Equation 1 r is the position vector
  • p (r) is the pressure at the position r
  • r is the position vector representing the point on the flat surface S
  • i is the imaginary unit
  • R is the distance from r to r.
  • r represents an arbitrary point in the closed phase to be integrated at a certain point.
  • r represents an internal region surrounded by the microphone array 21. Therefore, Formula 1 shows that the atmospheric pressure at all points in the inner region surrounded by the microphone array 21, that is, the spatial shape of the sound wave, can also calculate the surrounding pressure and velocity force.
  • the target for generating the speaker signal is to bring it close to the reference performance waveform within the fixed area obtained here.
  • the reproduction space information acquisition means 4 is a means for acquiring information (reproduction space information) 11 regarding the room (reproduction space) 23 in which the sound waveform is reproduced.
  • information 11 on the three-dimensional shape of the room and the position of the speaker is acquired.
  • FIG. 3 is a diagram schematically showing the reproduction space according to the present embodiment.
  • the three-dimensional shape of the room (reproduction space) 23 and the position of the speech force 24 are recognized three-dimensionally using the two video cameras 25. Is performed by the system.
  • This recognition system is a known system, for example, a stereo labeling camera (registered trademark) manufactured by Cybers. If the three-dimensional shape of the room (reproduction space) 23 can be recognized, the reflection direction of the speaker sound can be estimated. Further, if the position of the speaker 24 can be recognized, the interference state between the speaker sounds can be estimated.
  • the listening position information acquisition means 5 is means for acquiring listening position information 12.
  • the position of the listener's head (listening position) 30 (see FIG. 3) is instantly recognized by the two video cameras 25 used in the reproduction space recognition means 4 described above.
  • the position 30 of the listener's head can be recognized three-dimensionally.
  • the video camera 25 it is possible to detect the position 30 of the listener's head by using an optical sensor V. By recognizing the listening position 30, it is possible to estimate the state of interference between the speaker sound and the reflected sound at the listening position 30.
  • the transfer function generation means 6 is a means for generating a transfer function 13 that receives the speaker input signal 14 and outputs a reproduction waveform (reproduction spatial audio signal) at the listening position 30.
  • This reproduced waveform is a sound in which a plurality of speaker sounds and reflected sounds are overlapped.
  • the input signal is x
  • the reproduced sound at the listening position 30 is y
  • the transfer function is H
  • these relations are as shown in Equation 2.
  • the transfer function 13 is generated by simulating the propagation of sound in the reproduction space (room) 23. There are various methods for simulating the propagation of sound.
  • the sound of a speaker is a perfect point sound source (sound radiated in a single-point force spherical shape), it can be obtained by simple calculation. .
  • Pose's Modeler registered trademark
  • Pose's Modeler is an example of existing advanced simulation software that can perform more advanced simulations to obtain characteristics that are closer to reality.
  • the shape and size of the reproduction space obtained by the reproduction space information acquisition means 4 and the position of the speaker (reproduction space information 11), and the listening position (listening position information 12) obtained by the listening position information acquisition means 5 are used.
  • the transfer function 13 is generated. Since the listening position (listening position information 12) changes every moment, the transfer function 13 is also generated every moment accordingly.
  • the transfer function is expressed by Equation 3.
  • the number of rows in the H time period is determined by how many points on the reproduction space 23 the transfer function is included in H, and the number of columns is determined by the number of spinning forces.
  • the transfer function 13 of the playback waveform at each arbitrary point in the playback space 23 can be expressed.
  • the speaker input signal generation means 7 is a speaker input signal that causes the reproduction waveform (reproduction space audio signal) at the listening position 30 to be closest to the performance waveform (reference position space audio signal) 10 at the reference position 20a. Is a means of generating 14. If the difference between the playback waveform at the listening position 30 and the performance waveform at the reference position 20a is E, then the playback waveform at the listening position 30 is y, and the performance waveform force 3 ⁇ 4 at the reference position 20a is Can be expressed. When E 2 approaches 0, the reproduced waveform at the listening position 30 and the performance waveform at the reference position 20a become closer.
  • Equation 5 Substituting Equation 2 into Equation 4 gives Equation 5. From this equation 5, the speaker input signal X that minimizes E 2 is obtained.
  • the speaker input signal X is obtained using the least square method.
  • the transfer function 13 can be obtained by the transfer function generation means 6 and the performance waveform 10 in the space including the reference position 20a can be obtained by the reference position space audio signal calculation means 3.
  • H becomes 3 X 2D, and H can be expressed as Equation 6.
  • u is three-dimensional, u can be expressed as Equation 7.
  • Equation 8 is obtained. Substituting each value into Equation 7 gives the speaker input signal X.
  • the performance waveform (reference position space audio signal) 10 near the reference position 20a of the performance space (sound collecting space) 20 may be stored once by the storage means 15, or the speaker input signal is generated as it is. You may make it send to the means 7.
  • FIG. 4 is a conceptual diagram comparing the case where the performance waveform (reference position space audio signal) 10 is not saved with the case where it is saved. As shown in Fig. 4 (a), if the performance waveform (reference position space audio signal) 10 in the sound collection space 20 is sent to the reproduction space 23 (speaker input signal generation means 7) without being saved, it is collected. It is possible to enjoy the performance in real time in the playback space 23 away from the sound space 20. On the other hand, as shown in Fig.
  • the performance waveform (reference position space audio signal) 10 in the sound collection space 20 is saved by the storage means 15, the performance waveform (reference frequency) in the playback space 23 even after the performance. (Position space audio signal) 10 can be reproduced.
  • the performance waveform (reference position spatial audio signal) 10 instead of storing the performance waveform (reference position spatial audio signal) 10 by the storage means 15, the performance sound (acoustic signal) 9 may be stored by the storage means 15. In this case, it is necessary to calculate the performance waveform (reference position space audio signal) 10 during reproduction in the reproduction space 23.
  • the spatial audio signal reproduction device 1 has been described.
  • a spatial waveform (performance waveform) of sound waves is acquired, and a reproduction waveform that is as close as possible to the performance waveform can be generated at the listening position 30 while considering the state of the reproduction space. . Therefore, according to the spatial audio signal reproduction device that is useful in this embodiment, If this is the case, the listener can obtain a natural sense of reality compared to the conventional reproduction method.
  • the transfer function is not necessarily obtained based on the listening position. There is no need.
  • the transfer function may be calculated using the center position (predetermined position) of the reproduction space instead of the audience position. That is, a transfer function may be calculated in which the input signal to the speaker is input and the reproduction space audio signal is output at the center position (predetermined position) of the reproduction space. According to the powerful configuration, an input signal to the speaker can be generated with a simpler configuration.
  • FIG. 5 is a view showing the arrangement of the microphones 26, where (a) is a plan view and (b) is a side view.
  • L2 60 cm
  • each microphone 26 obtains pressure data.
  • the calculation method uses the Kirchhoff integration formula shown in Equation 1 above.
  • the listener's head position 30 must be within the circumference of the microphone. Otherwise, the reproduced sound at the listening position 30 cannot be calculated accurately.
  • the transfer function H can be calculated by substituting into Equation 2 and performing reverse calculation.
  • a reflection measuring device may be used.
  • An acoustic room reflection measurement device is a device that adds a microphone to each of a plurality of speakers used for reproduction, and uses these to measure and estimate the room shape and reflection characteristics.
  • the transmission characteristics between the listening position and the speaker are two: a sound that directly reaches the listening position from a force, that is, a transmission characteristic that corresponds to the direct sound, and a transmission characteristic that corresponds to a reflected wave from each wall in the room, that is, an indirect sound. Component power also becomes.
  • the sound can be estimated only for the positional relationship between the speaker and the listening position, regardless of the shape of the room. Indirect sound can be calculated from the shape of the room, the reflectance, the listening position in the room, and the speaker position. Therefore, if the approximate shape of the room and the reflection characteristics of each wall, floor, and ceiling are acquired as data, the necessary transfer characteristics can be calculated. Therefore, the acoustic indoor reflection measurement device uses the fact that the room is usually close to a rectangular parallelepiped, and estimates the position and reflection characteristics of each wall using a fixed spin force and several microphones.
  • FIG. 6 is a diagram schematically showing the state of impulse response propagation from the first speaker 28 to the second speaker 29 in a rectangular parallelepiped room.
  • the impulse response from the first speaker 28 to the second speaker 29 includes many impulse-shaped peaks (hereinafter referred to as peak components) having different delay times depending on the path.
  • t (n, m, 0) is the shortest delay component from the peak power to the mth speaker, and the delay time (n, m, l), ..., t (n, m, 8).
  • FIG. 7 shows the peak components of the impulse response from the first speaker 28 to the second speaker 29, where the horizontal axis represents the delay time and the vertical axis represents the magnitude of the peak component.
  • the shortest delay time t (1,2,0) is considered to be the delay time of the sound directly propagated between the speakers.
  • the peak component with the shortest delay time is considered to be reflected from the wall.
  • 8 x 7 56 t (n, m, 0) are obtained, and half of them are the reverse propagation of the same speaker pair and the same delay time.
  • the distance between each pair of speakers can be calculated back from 28 independent delay times.
  • the relative arrangement of the speakers can be calculated with high probability and high accuracy.
  • the path of the reflected wave from the wall is t (l, 2, l)
  • X sound velocity 0.01
  • X sound velocity about 3 m.
  • the speaker it is desirable to arrange the speaker so that the reflected sound becomes smaller than the speaker sound. This is because the reflected sound may not be completely erased. For example, it is desirable to place the speaker near the listening position. When the path from the sound reflected to the wall to reach the listening position is four times that of the direct sound, the reflected sound is attenuated to 1/16 of the direct sound pressure.
  • FIG. 8 is a diagram showing an embodiment of a speaker.
  • the speaker 33 may be suspended from the ceiling 31 by a support column 32, and the columnar speaker 33 may be equipped with a number of drivers 34 around it.
  • FIG. 9 is a diagram illustrating the propagation state of the sound wave 35 in a state where the polarity, amplitude, and delay time are adjusted to the multiple drivers 34 of the speaker 33 of FIG. 8 and different signals are input thereto.
  • a certain direction (direction A, B) is set so that the sound wave 35 is not emitted. Can be adjusted. If the direction in which no sound is emitted is placed on the wall side, the reflected sound can be reduced. However, in this case, it is necessary to consider the above characteristics of the speaker when calculating the transfer function.
  • each configuration is made up of a value-added server 41 in which the service provider has installed the spatial audio signal playback device 1 described above and a playback client device 42 used by a service user interconnected by the Internet 45. You may make it divide.
  • FIG. 10 is a diagram showing the relationship between the value-added value server 41 and the playback client device 42. Since the configuration shown in Fig. 10 has many similarities to the configuration shown in Fig. 1 already described, each means will be briefly described here.
  • the value-added server 41 includes an acoustic signal acquisition unit 2, a reference position space audio signal calculation unit 3, a transfer function generation unit 6, a speaker input signal generation unit 7, and a billing confirmation unit 14 And.
  • the reproduction client device 42 includes reproduction space information acquisition means 4, listening point position information acquisition means 5, a speaker 8, and a billing means 43.
  • the acoustic signal acquisition means 2 on the value-added server 41 side acquires the acoustic signal (performance sound) 9 in the performance space (sound collection space) 20, and calculates the reference position space audio signal based on this.
  • the means 3 calculates a reference position space audio signal (a performance waveform near the reference position 20a) 10.
  • the reproduction space information acquisition means 4 and the listening point position information acquisition means 5 on the reproduction client device 42 side respectively receive the reproduction space information 11 and the listening point position information 12 on the value added server 41 side via the Internet 45.
  • the transfer function generation means 6 of The transfer function generation means 6 calculates a transfer function 13 based on the reproduction space information 11 and the listening point position information 12.
  • the speaker input signal generation means 7 on the value-added server 41 side generates the speaker input signal 14 based on the reference position spatial audio signal 10 and the transfer function 13, and the playback client device 42 side via the Internet 45 Sent to speaker 8.
  • the operation so far is the same as that described in the above embodiment except that signals are exchanged via the Internet.
  • a payment completion signal 46 is sent via the Internet 45. If this payment completion signal 46 is not confirmed by the charge confirmation means 44 on the value added server 41 side, the speaker input signal 14 does not operate.
  • the permission signal 47 is sent to the billing confirmation means 44 force S speaker input signal generation means 7, and this permission signal 47 is received by the speaker input signal generation means 7.
  • the speaker input signal 14 is sent to the playback client device 42 side.
  • the billing unit 43 collects and confirms the price according to the playback piece, the number of playbacks, and the playback time, and controls the function of the value-added server 41 to operate only when charging is performed correctly. It is obvious that such a billing means 43 is realized by pay broadcasting or the like and can be easily realized.
  • the confirmation signal of whether or not the billing has been normally performed can be safely transmitted by a normal PKI (public key infrastructure), and the value-added server 41 can be controlled to operate only when a genuine billing signal is given. It is clear.
  • the conventional recording / playback method has a drawback that it is always possible to make an illegal copy by recording the output as it is. For example, if the playback sound from a speaker was recorded as it was, a copy could be created.
  • the spatial audio signal reproduction device according to the present embodiment is operated via the Internet, a “specific reproduction” is performed. If it is played back with high quality only in the ⁇ environment '' and ⁇ specific listening position '', there is a characteristic that even if it is simply recorded and played, the same service quality can be obtained. Can not. Therefore, unauthorized copying can be prevented.
  • the present invention it is possible to generate a speech force signal in consideration of interference between speaker sounds and reflected sound at the listening position. Therefore, it is useful for the audio technical field, especially in the spatial audio signal reproduction technical field.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

A spatial audio signal reproducing device for generating a loudspeaker sound to giving the listener a natural sense of presence compared with conventional reproducing methods. The spatial audio signal reproducing device (1) comprises reproduction space information acquiring means (4) for acquiring reproduction space information (11) on a preproduction space (23), transfer function generating means (6) for generating, from the reproduction space information (11), a transfer function (13) whose input is the input signal (14) inputted into a loudspeaker (8) and whose output is a reproduction space audio signal in a predetermined position of the reproduction space (23), and loudspeaker input signal generating means (7) for generating the input signal (14) inputted into the loudspeaker (8) in such a way that the difference between the reproduction space audio signal and the sound collection space audio signal (10) decreases by using the sound collection space audio signal (10) and the transfer function (13).

Description

明 細 書  Specification
空間オーディオ信号再生装置及び空間オーディオ信号再生方法 技術分野  Spatial audio signal reproduction apparatus and spatial audio signal reproduction method
[0001] 本発明は、スピーカ音同士の干渉や反射音を考慮して、音波形の空間形状を近似 的に再生するためのスピーカ信号を生成する空間オーディオ信号再生装置及び空 間オーディオ信号再生方法に関する。なお、「空間オーディオ信号」とは、一定空間 内の空間形状を反映して、実際の演奏音により近い再生を行うために処理を施した 信号を言う。  [0001] The present invention relates to a spatial audio signal reproduction device and a spatial audio signal reproduction method for generating a speaker signal for approximately reproducing a spatial shape of a sound waveform in consideration of interference between speaker sounds and reflected sound. About. “Spatial audio signal” refers to a signal that has been processed in order to reproduce the actual performance sound, reflecting the spatial shape within a certain space.
背景技術  Background art
[0002] 従来から、複数のスピーカを用いた再生装置や再生方法が提案されている。一般 に、より多くのチャンネル数を用いることで、より良好な臨場感が得られるとされており 、これまでもモノラルから 2チャンネルステレオへ、ステレオから 5.1チャンネルステレオ へ、そして 7.1チャンネルサラウンド、 7.2チャンネルサラウンドへとオーディオフォーマ ットのチャンネル数が増える傾向にある(例えば、特許文献 1参照)。また最近ではさ らに豊かな臨場感を得るために 22.2チャンネルサラウンド方式や 20チャンネルサラウ ンド方式などが提案されて 、る。  Conventionally, a reproducing apparatus and a reproducing method using a plurality of speakers have been proposed. In general, using a larger number of channels is said to give a better sense of reality, so far, from mono to 2-channel stereo, from stereo to 5.1-channel stereo, and 7.1-channel surround, 7.2-channel The number of audio format channels tends to increase toward surround (see, for example, Patent Document 1). Recently, 22.2 channel surround system and 20 channel surround system have been proposed to obtain a richer sense of reality.
特許文献 1:特開 2005— 236404公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-236404
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところが、チャンネル数を増やしたとしても、従来の再生方法では、再生音と実際の 演奏音とには依然として大きな差が残ったままとなる。例えば、聴取位置が比較的近 い場合、ピアノやギターの実際の演奏音と再生音とを聞き比べると、いずれの音が実 際の演奏音であるかの判断は容易に行うことができる。これは、主に 2つの要因によ つて生じる。 [0003] However, even if the number of channels is increased, the conventional playback method still leaves a large difference between the playback sound and the actual performance sound. For example, when the listening position is relatively close, it is easy to determine which sound is the actual performance sound by comparing the actual performance sound of the piano or guitar with the reproduced sound. This is mainly due to two factors.
[0004] 第 1の要因は、複数のスピーカ音の干渉である。例えば、図 11 (a)に示すように、 1 つのトランペット 51から放射される演奏音 53は球面状に広がり、空間上のどの点でも ほぼ同じ波形を観測することができる。一方、トランペット 51の音を録音してステレオ 方式のように 2つのスピーカ 52を用いて再生すると、図 11 (b)〖こ示すように、 2つのス ピー力から互いに近い波形の音 54が放射される。そうすると、聴取位置においては両 スピーカの音が干渉し、トランペットの演奏音の波形が変形してしまうのである。 [0004] The first factor is interference of a plurality of speaker sounds. For example, as shown in FIG. 11 (a), the performance sound 53 radiated from one trumpet 51 spreads in a spherical shape, and almost the same waveform can be observed at any point in space. On the other hand, the sound of trumpet 51 is recorded and stereo When playback is performed using two speakers 52 as in the method, as shown in FIG. 11 (b), sounds 54 having waveforms close to each other are radiated from the two speaker forces. Then, the sound of both speakers interferes at the listening position, and the waveform of the performance sound of the trumpet is deformed.
[0005] 第 2の要因は、室内における音の反射である。通常、音は壁面や天井、床面によつ て 50%〜90%の反射率で反射する。このため、直方体形状の室内で 1つのスピーカか ら音を再生した場合、 6面力もの反射音も同時に聞くことになる。通常、聴取者は、こ の反射音により演奏空間の広さを感じ、ひいては臨場感を得ることができる。ところが 、上記室内における再生音には、さらに再生空間における反射音が付加される。そ の結果、聴取者は不自然な臨場感をおぼえるのである。  [0005] The second factor is sound reflection in the room. Sound is usually reflected with a reflectivity of 50% to 90% depending on the wall, ceiling, and floor. For this reason, when sound is reproduced from a single speaker in a rectangular parallelepiped room, the reflected sound of six-surface power can be heard at the same time. Usually, the listener can feel the spaciousness of the performance space by this reflected sound, and thus get a sense of reality. However, the reflected sound in the reproduction space is further added to the reproduced sound in the room. As a result, the listener can feel an unnatural feeling.
[0006] そこで本願発明は、従来の再生装置に比べ、聴取者が自然な臨場感を得ることが できるようなスピーカ音を発生させる空間オーディオ信号再生装置及び空間オーディ ォ信号再生方法を提供することを課題とする。  [0006] Accordingly, the present invention provides a spatial audio signal reproduction device and a spatial audio signal reproduction method that generate speaker sound that enables a listener to obtain a natural presence compared to conventional reproduction devices. Is an issue.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため、本願発明に係る空間オーディオ信号再生装置は、集音 空間における集音空間オーディオ信号を、再生空間の所定位置近傍の一定領域内 において再現するための空間オーディオ信号再生装置であって、該再生空間に関 する再生空間情報であって、該再生空間における反射に関する該情報と再生空間 に設置されたスピーカ位置の情報とを少なくとも含む再生空間情報を取得する再生 空間情報取得手段と、該再生空間情報に基づいて、該スピーカへの入力信号を入 力とし該再生空間の所定位置における再生空間オーディオ信号を出力とする伝達 関数を生成する伝達関数生成手段と、該集音空間オーディオ信号と該伝達関数とに 基づ 、て、該再生空間オーディオ信号と該集音空間オーディオ信号との差が小さく なるように該スピーカへの入力信号を生成するスピーカ入力信号生成手段と、を備え る(請求項 1)。力かる構成によれば、再生空間における反射に関する情報とスピーカ 位置の情報に基づいてスピーカへの入力信号を生成することができる。  In order to solve the above problems, a spatial audio signal reproduction device according to the present invention provides a spatial audio signal for reproducing a sound collection space audio signal in a sound collection space within a certain region near a predetermined position in the reproduction space. A reproduction device for obtaining reproduction space information related to the reproduction space, the reproduction space information including at least the information related to reflection in the reproduction space and information about a speaker position installed in the reproduction space. Based on the reproduction space information, information acquisition means, transfer function generation means for generating a transfer function that takes an input signal to the speaker as an input and outputs a reproduction space audio signal at a predetermined position in the reproduction space; and Based on the sound collection space audio signal and the transfer function, the difference between the reproduction space audio signal and the sound collection space audio signal is small. A loudspeaker input signal generating means for generating an input signal to the speaker so that, Ru with a (claim 1). According to the powerful configuration, an input signal to the speaker can be generated based on the information regarding the reflection in the reproduction space and the information on the speaker position.
[0008] また、上記空間オーディオ信号再生装置において、該再生空間における聴取位置 に関する聴取位置情報を取得する聴取位置情報取得手段をさらに備え、該再生空 間の該所定位置を該聴取位置としてもよい(請求項 2)。力かる構成によれば、聴取 位置に対応して、スピーカへの入力信号を生成することができる。 [0008] The spatial audio signal reproduction device may further include listening position information acquisition means for acquiring listening position information relating to a listening position in the reproduction space, and the predetermined position in the reproduction space may be set as the listening position. (Claim 2). According to the powerful configuration, listening Corresponding to the position, an input signal to the speaker can be generated.
[0009] また、上記空間オーディオ信号再生装置にお 、て、該聴取位置情報取得手段に おいて、該聴取位置情報が刻々と取得され、該伝達関数生成手段において、刻々と 取得される該聴取位置情報に基づいて、該伝達関数が刻々と生成され、該スピーカ 入力信号生成手段において、刻々と生成される該伝達関数に基づいて、スピーカへ の入力信号が生成されるようにしてもよい (請求項 3)。力かる構成によれば、聴取位 置が変化した場合であっても、その変化に対応してスピーカへの入力信号が生成さ れる。  [0009] Further, in the spatial audio signal reproduction device, the listening position information is acquired every moment in the listening position information acquiring means, and the listening position information acquired every moment in the transfer function generating means. The transfer function may be generated every moment based on the position information, and the speaker input signal generation unit may generate an input signal to the speaker based on the generated transfer function. Claim 3). According to the configuration, even if the listening position changes, an input signal to the speaker is generated in response to the change.
[0010] また、上記空間オーディオ信号再生装置において、該集音空間において任意の基 準位置を取り囲む複数の位置で音響信号を取得する音響信号取得手段と、該音響 信号取得手段で取得された音響信号に基づき、該基準位置近傍の一定領域内にお ける基準位置空間オーディオ信号を算出する基準位置空間オーディオ信号算出手 段と、をさらに備え、該基準位置空間オーディオ信号を該集音空間オーディオ信号と してもよい (請求項 4)。力かる構成によれば、集音空間オーディオ信号を正確に取得 することができる。  [0010] Further, in the spatial audio signal reproduction device, an acoustic signal acquisition unit that acquires acoustic signals at a plurality of positions surrounding an arbitrary reference position in the sound collection space, and an acoustic signal acquired by the acoustic signal acquisition unit A reference position space audio signal calculating means for calculating a reference position space audio signal in a fixed region near the reference position based on the signal, and further comprising the reference position space audio signal as the sound collection space audio signal. (Claim 4). According to the powerful configuration, the sound collection space audio signal can be accurately acquired.
[0011] また、上記空間オーディオ信号再生装置において、該聴取位置情報取得手段に おいて、多視点ビデオ立体認識装置を用いて、該再生空間における聴取位置に関 する聴取位置情報が取得されるようにしてもょ 、 (請求項 5)。力かる構成によれば、 聴取位置を三次元的に把握することができる。  [0011] Further, in the spatial audio signal reproduction device, the listening position information acquisition unit may acquire listening position information related to the listening position in the playback space using a multi-view video stereoscopic recognition device. But (claim 5). According to the powerful configuration, the listening position can be grasped three-dimensionally.
[0012] また、上記空間オーディオ信号再生装置において、再生空間情報取得手段にお いて、音響的室内反射測定装置を用いて、該再生空間における反射に関する情報 が取得されるようにしてもよい(請求項 6)。力かる構成によれば、ビデオカメラがなくと も再生空間における反射に関する情報を取得することができる。  [0012] Further, in the spatial audio signal reproduction device, the reproduction space information acquisition unit may acquire information related to reflection in the reproduction space using an acoustic room reflection measurement device (claim). Section 6). According to the powerful configuration, it is possible to acquire information related to reflection in the reproduction space without a video camera.
[0013] また、上記空間オーディオ信号再生装置において、課金操作が終了すると決済完 了信号を送信する課金手段と、該決済完了信号に基づ!ヽて課金が行われたか否か を判断する課金確認手段と、をさらに備え、該課金確認手段は、課金が行われてい ないと判断した場合、該スピーカ入力信号生成手段の動作を停止させ、該再生空間 情報は、該再生空間情報取得手段から該伝達関数生成手段へインターネットを介し て送られ、該スピーカへの入力信号は、該スピーカ入力信号生成手段から該スピー 力へインターネットを介して送られ、該決済完了信号は、該課金手段から該課金確認 手段へインターネットを介して送られるようにしてもょ ヽ (請求項 7)。 [0013] Further, in the spatial audio signal reproduction device, a charging unit that transmits a payment completion signal when the charging operation is completed, and a charging that determines whether or not charging has been performed based on the payment completion signal. Confirmation means, and when the charge confirmation means determines that the charge is not performed, the operation of the speaker input signal generation means is stopped, and the reproduction space information is obtained from the reproduction space information acquisition means. Via the Internet to the transfer function generating means The input signal to the speaker is sent from the speaker input signal generating means to the speaker via the Internet, and the settlement completion signal is sent from the charging means to the charging confirmation means via the Internet.請求 (Claim 7).
[0014] 力かる構成によれば、スピーカ入力信号生成手段等と再生空間とが遠離している 場合であっても、課金操作が行われることにより、インターネットを介してスピーカへの 入力信号をスピーカへ送ることができる。 [0014] According to the configuration, even when the speaker input signal generating means and the reproduction space are far away from each other, the charging operation is performed, so that the input signal to the speaker is transmitted via the Internet. Can be sent to.
[0015] さらに、上記課題を解決するため、本願発明に係る空間オーディオ信号再生方法 は、集音空間における集音空間オーディオ信号を、再生空間の所定位置近傍の一 定領域内において再現するための空間オーディオ信号再生方法であって、該再生 空間に関する再生空間情報であって、該再生空間における反射に関する該情報と 再生空間に設置されたスピーカ位置の情報とを少なくとも含む再生空間情報を取得 する再生空間情報取得工程と、該再生空間情報に基づいて、該スピーカへの入力 信号を入力とし該再生空間の所定位置における再生空間オーディオ信号を出力と する伝達関数を生成する伝達関数生成工程と、該集音空間オーディオ信号と該伝 達関数とに基づいて、該再生空間オーディオ信号と該集音空間オーディオ信号との 差が小さくなるように該スピーカへの入力信号を生成するスピーカ入力信号生成ェ 程と、を備える (請求項 8)。 [0015] Furthermore, in order to solve the above-described problem, a spatial audio signal reproduction method according to the present invention is for reproducing a sound collection space audio signal in a sound collection space within a certain region near a predetermined position in the reproduction space. A spatial audio signal reproduction method for reproducing reproduction space information relating to the reproduction space, the reproduction space information including at least the information relating to reflection in the reproduction space and information about a speaker position installed in the reproduction space. A spatial information acquisition step, and a transfer function generation step for generating a transfer function based on the reproduction space information and using an input signal to the speaker as an input and outputting a reproduction space audio signal at a predetermined position in the reproduction space; and Based on the sound collection space audio signal and the transfer function, the difference between the reproduction space audio signal and the sound collection space audio signal is A speaker input signal generation step for generating an input signal to the speaker so as to be reduced (claim 8).
発明の効果  The invention's effect
[0016] 本願発明にかかる空間オーディオ信号再生装置によれば、スピーカ音同士の干渉 や反射音を考慮したスピーカ信号を生成することができる。よって、従来の再生方法 に比べ、聴取者が自然な臨場感を得ることができるようなスピーカ音を発生させる空 間オーディオ信号再生装置及び空間オーディオ信号再生方法を提供することができ る。  [0016] According to the spatial audio signal reproduction device of the present invention, it is possible to generate a speaker signal in consideration of interference between speaker sounds and reflected sound. Therefore, it is possible to provide a spatial audio signal reproduction device and a spatial audio signal reproduction method that generate speaker sounds that enable the listener to obtain a natural sense of reality compared to conventional reproduction methods.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本実施形態にかかる空間オーディオ信号再生装置の構成図である。 FIG. 1 is a configuration diagram of a spatial audio signal reproduction device according to the present embodiment.
[図 2]本実施形態に力かる音響信号取得用のマイクロホンアレイを上方力 見た図で ある。  FIG. 2 is a diagram of an upward force of a microphone array for acquiring an acoustic signal that is useful in the present embodiment.
[図 3]本実施形態に力かる再生空間の模式図である。 [図 4]本実施形態にかかる基準位置空間オーディオ信号を保存しない場合と保存す る場合とを対比した概念図である。 FIG. 3 is a schematic diagram of a reproduction space that is useful for this embodiment. FIG. 4 is a conceptual diagram comparing the case where the reference position space audio signal according to the present embodiment is not saved and the case where it is saved.
[図 5]他の実施形態に力かる音響信号取得用のマイクロホンの平面図である。  FIG. 5 is a plan view of a microphone for acquiring an acoustic signal that is effective in another embodiment.
[図 6]他の実施形態にかかる音響的室内反射装置の原理を説明した図である。  FIG. 6 is a diagram for explaining the principle of an acoustic indoor reflection device according to another embodiment.
[図 7]他の実施形態にかかる音響的室内反射装置の原理を説明した図である。  FIG. 7 is a diagram illustrating the principle of an acoustic room interior reflection device according to another embodiment.
[図 8]本実施形態に力かるスピーカの例を表わした図である。  FIG. 8 is a diagram showing an example of a speaker that works on the present embodiment.
[図 9]図 8のスピーカの音波の伝播状態を示した図である。  9 is a diagram showing a state of sound wave propagation in the speaker of FIG.
[図 10]他の実施形態にかかる空間オーディオ信号再生装置の構成図である。  FIG. 10 is a configuration diagram of a spatial audio signal reproduction device according to another embodiment.
[図 11]従来技術に力かるスピーカ音同士の干渉状態を表わした図である。  [FIG. 11] A diagram showing a state of interference between speaker sounds, which is effective in the prior art.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本願発明にかかる空間オーディオ信号再生装置を実施するための最良の実施形 態について、図を参照しつつ以下に説明する。  [0018] The best mode for carrying out the spatial audio signal reproduction device according to the present invention will be described below with reference to the drawings.
[0019] 図 1は、空間オーディオ信号再生装置 1の構成図である。図 1に示すように、空間ォ 一ディォ信号再生装置 1は、音響信号取得手段 2、基準位置空間オーディオ信号算 出手段 3、再生空間情報取得手段 4、聴取位置情報取得手段 5、伝達関数生成手段 6、及びスピーカ信号生成手段 7を有している。各手段について、以下に詳細に説明 する。  FIG. 1 is a configuration diagram of the spatial audio signal reproduction device 1. As shown in FIG. 1, the spatial audio signal reproduction apparatus 1 includes an acoustic signal acquisition means 2, a reference position space audio signal calculation means 3, a reproduction space information acquisition means 4, a listening position information acquisition means 5, and a transfer function generation. Means 6 and speaker signal generation means 7 are provided. Each means is described in detail below.
[0020] 音響信号取得手段 2は、集音空間において音響信号 9を取得する手段である。ここ で「音響信号」とは、楽器の演奏音や人の声等によって空間に発生する信号を!、う。 本実施形態にお!、ては、演奏空間 (集音空間) 20における演奏音 (音響信号) 9を取 得する。具体的には、演奏音 (音響信号) 9の取得手段としてマイクロホンアレイ 21を 使用する。図 2は、演奏空間 (集音空間) 20におけるマイクロホンアレイ 21を上方から 見た図である。図 2に示すように、マイクロホンアレイ 21は 8本のマイクロホン 22から成 り、各マイクロホン 22が直径 Ll = 30cmの円周上に水平に配置されている。ただし、マ イク口ホンアレイ 21の直径 L1は 30cmに限られず、後述の基準位置空間オーディオ信 号算出手段 3で精度良く基準位置空間オーディオ信号 (演奏波形) 10を算出できれ ばどのような寸法であっても良い。各マイクロホン 22が取得した演奏音 9は、圧力デー タとして保存又は利用される。この演奏音 9の取得の際、演奏空間 20の壁や天井での 反射音も取得される。この演奏空間 20における反射音を厳密に再現できれば、聴取 者は自然な臨場感を得ることができる。なお、マイクロホンアレイ 21が複数のマイクロ ホン 22を含んでいる理由は、 1本のマイクロホン 22を使用するよりも、音波の空間的な 形状、例えば音波を構成するさまざまな波面の進行方向などを精度よく算出できるた めである。 The acoustic signal acquisition unit 2 is a unit that acquires the acoustic signal 9 in the sound collection space. Here, the “acoustic signal” refers to a signal generated in space by the performance sound of a musical instrument or the voice of a person! In this embodiment, the performance sound (acoustic signal) 9 in the performance space (sound collection space) 20 is acquired. Specifically, a microphone array 21 is used as means for acquiring performance sound (acoustic signal) 9. FIG. 2 shows the microphone array 21 in the performance space (sound collection space) 20 as viewed from above. As shown in FIG. 2, the microphone array 21 includes eight microphones 22, and each microphone 22 is horizontally arranged on a circumference having a diameter Ll = 30 cm. However, the diameter L1 of the microphone array 21 is not limited to 30 cm, and any size can be used as long as the reference position space audio signal (performance waveform) 10 can be accurately calculated by the reference position space audio signal calculation means 3 described later. There may be. The performance sound 9 acquired by each microphone 22 is stored or used as pressure data. When the performance sound 9 is acquired, the performance space 20 on the wall or ceiling Reflected sound is also acquired. If the reflected sound in the performance space 20 can be accurately reproduced, the listener can obtain a natural sense of presence. The reason why the microphone array 21 includes a plurality of microphones 22 is that the spatial shape of the sound wave, for example, the traveling directions of various wave fronts constituting the sound wave, is more accurate than using a single microphone 22. This is because it can be calculated well.
[0021] 基準位置空間オーディオ信号算出手段 3は、演奏空間 20の任意の点を基準位置 2 0aとし、この基準位置 20a近傍の一定領域内における演奏波形 (基準位置空間ォー ディォ信号、集音空間オーディオ信号) 10を算出する手段である。本実施形態では、 上記のマイクロホンアレイ 21内部の領域における、音波の空間形状を算出する。演奏 空間 20におけるマイクロホンアレイ 21内の基準位置 20a近傍の演奏波形 10は、マイク 口ホンアレイ 21により取得した演奏音 9の圧力データから、キルヒホッフの積分公式に よって算出する。キルヒホッフの積分公式を用いれば、閉曲面の各点における圧力と 流速が決定することにより、閉局面内のすべての点における圧力(空間波形)を求め ることができる。本実施形態においては、閉曲面の各点における圧力と流速の全ては 決定していないが、気圧と流速は水平方向でのみ変化し、全ての音の音源はある程 度遠方にあると仮定すれば、円周上の 8点の圧力のみ力 近似的に計算をすること ができる。そして、内部の領域の音波の空間形状を十分な精度で算出することができ る。ここで、キルヒホッフの積分公式を数式 1に示す。 rは位置ベクトル、 p(r)は位置 rに おける気圧、 rは平曲面 S上の点を表わす位置ベクトル、 iは虚数単位、 Rは rから rま での距離である。ここで rはある一点ではなぐ積分する閉局面内の任意の 1点をあら わし、本発明の場合はマイクロホンアレイ 21で囲われた内部の領域を表す。したがつ て数式 1はマイクロホンアレイ 21で囲われた内部の領域のすべての点における気圧、 すなわち音波の空間形状が周囲の圧力と速度力も算出できることを表している。そし て、ここで求められた一定領域内で基準となる演奏波形に近づけることが、スピーカ 信号を生成する際の目標となる。  [0021] The reference position space audio signal calculation means 3 sets an arbitrary point in the performance space 20 as a reference position 20a, and a performance waveform (reference position space audio signal, sound collection in a certain area near the reference position 20a. (Spatial audio signal) 10 is calculated. In the present embodiment, the spatial shape of the sound wave in the region inside the microphone array 21 is calculated. The performance waveform 10 near the reference position 20a in the microphone array 21 in the performance space 20 is calculated from the pressure data of the performance sound 9 acquired by the microphone mouthphone array 21 by the Kirchhoff integration formula. By using Kirchhoff's integral formula, the pressure (spatial waveform) at all points in the closed phase can be obtained by determining the pressure and flow velocity at each point on the closed surface. In the present embodiment, not all of the pressure and flow velocity at each point of the closed curved surface are determined, but it is assumed that the atmospheric pressure and the flow velocity change only in the horizontal direction, and that all sound sources are far away. For example, only 8 pressure points on the circumference can be calculated approximately. Then, the spatial shape of the sound wave in the inner region can be calculated with sufficient accuracy. Here, Kirchhoff's integral formula is shown in Equation 1. r is the position vector, p (r) is the pressure at the position r, r is the position vector representing the point on the flat surface S, i is the imaginary unit, and R is the distance from r to r. Here, r represents an arbitrary point in the closed phase to be integrated at a certain point. In the present invention, r represents an internal region surrounded by the microphone array 21. Therefore, Formula 1 shows that the atmospheric pressure at all points in the inner region surrounded by the microphone array 21, that is, the spatial shape of the sound wave, can also calculate the surrounding pressure and velocity force. The target for generating the speaker signal is to bring it close to the reference performance waveform within the fixed area obtained here.
[0022] [数 1] [0022] [Equation 1]
3p、 . e'3p, .e '
Figure imgf000008_0001
dn i [0023] 再生空間情報取得手段 4は、音波形が再生される部屋 (再生空間) 23に関する情 報 (再生空間情報) 11を取得する手段である。本実施形態では、部屋の立体形状及 びスピーカの位置の情報 11を取得する。図 3は、本実施形態にかかる再生空間を模 式的に表わした図である。図 3に示すように、部屋 (再生空間) 23の立体形状及びス ピー力 24の位置の認識は、 2台のビデオカメラ 25を用い、部屋 (再生空間) 23の形状 等を立体的に認識するシステムにより行われる。この認識システムは既知のシステム であり、例えばサイバース社のステレオラベリングカメラ(登録商標)がある。部屋 (再 生空間) 23の立体形状を認識できれば、スピーカ音の反射方向を推定することができ る。また、スピーカ 24の位置が認識できれば、スピーカ音同士の干渉状況を推定する ことができる。
Figure imgf000008_0001
dn i The reproduction space information acquisition means 4 is a means for acquiring information (reproduction space information) 11 regarding the room (reproduction space) 23 in which the sound waveform is reproduced. In the present embodiment, information 11 on the three-dimensional shape of the room and the position of the speaker is acquired. FIG. 3 is a diagram schematically showing the reproduction space according to the present embodiment. As shown in Fig. 3, the three-dimensional shape of the room (reproduction space) 23 and the position of the speech force 24 are recognized three-dimensionally using the two video cameras 25. Is performed by the system. This recognition system is a known system, for example, a stereo labeling camera (registered trademark) manufactured by Cybers. If the three-dimensional shape of the room (reproduction space) 23 can be recognized, the reflection direction of the speaker sound can be estimated. Further, if the position of the speaker 24 can be recognized, the interference state between the speaker sounds can be estimated.
[0024] 聴取位置情報取得手段 5は、聴取位置の情報 12を取得する手段である。本実施形 態では、上述の再生空間認識手段 4で用いた 2台のビデオカメラ 25によって、聴取者 の頭の位置 (聴取位置) 30 (図 3参照)を刻々と認識する。上記同様、複数のビデオ力 メラ 25を用いれば、聴取者の頭の位置 30が立体的に認識することができる。また、ビ デォカメラ 25に代えて、光センサーを用 V、て聴取者の頭の位置 30を検知しても良 、。 聴取位置 30を認識することにより、聴取位置 30におけるスピーカ音や反射音の干渉 状況を推定することができる。  The listening position information acquisition means 5 is means for acquiring listening position information 12. In the present embodiment, the position of the listener's head (listening position) 30 (see FIG. 3) is instantly recognized by the two video cameras 25 used in the reproduction space recognition means 4 described above. Similarly to the above, if a plurality of video power cameras 25 are used, the position 30 of the listener's head can be recognized three-dimensionally. Also, instead of the video camera 25, it is possible to detect the position 30 of the listener's head by using an optical sensor V. By recognizing the listening position 30, it is possible to estimate the state of interference between the speaker sound and the reflected sound at the listening position 30.
[0025] 伝達関数生成手段 6は、スピーカ入力信号 14を入力とし、聴取位置 30における再 生波形 (再生空間オーディオ信号)を出力とするような伝達関数 13を生成する手段で ある。この再生波形は、複数のスピーカ音や反射音が重複した状態の音である。スピ 一力入力信号を x、聴取位置 30における再生音を y、伝達関数を Hとすると、これらの 関係は数式 2のようになる。本実施形態では再生空間 (部屋) 23における音の伝播を シミュレーションすることにより伝達関数 13を生成する。音の伝播をシミュレーションす る方法には様々な方法があるが、たとえばスピーカ力もの音を完全な点音源 (1点力 球面状に放射される音)と仮定すると簡単な計算で求めることができる。また、より実 際に近い特性を求めるにはより高度なシミュレーションを行うこともできる、既存のより 高度なシミュレーションソフトとして、例えばポーズ社のモデラ一(登録商標)がある。 このシミュレーションの方法に再生空間情報取得手段 4よって得られた再生空間の形 状寸法及びスピーカの位置 (再生空間情報 11)と、聴取位置情報取得手段 5によって 得られた聴取位置 (聴取位置情報 12)とが自動入力され、伝達関数 13が生成される。 なお、聴取位置 (聴取位置情報 12)は刻々変化するため、これに対応して伝達関数 1 3も刻々と生成される。 [0025] The transfer function generation means 6 is a means for generating a transfer function 13 that receives the speaker input signal 14 and outputs a reproduction waveform (reproduction spatial audio signal) at the listening position 30. This reproduced waveform is a sound in which a plurality of speaker sounds and reflected sounds are overlapped. Assuming that the input signal is x, the reproduced sound at the listening position 30 is y, and the transfer function is H, these relations are as shown in Equation 2. In this embodiment, the transfer function 13 is generated by simulating the propagation of sound in the reproduction space (room) 23. There are various methods for simulating the propagation of sound. For example, assuming that the sound of a speaker is a perfect point sound source (sound radiated in a single-point force spherical shape), it can be obtained by simple calculation. . In addition, for example, Pose's Modeler (registered trademark) is an example of existing advanced simulation software that can perform more advanced simulations to obtain characteristics that are closer to reality. In this simulation method, the shape and size of the reproduction space obtained by the reproduction space information acquisition means 4 and the position of the speaker (reproduction space information 11), and the listening position (listening position information 12) obtained by the listening position information acquisition means 5 are used. ) Are automatically input, and the transfer function 13 is generated. Since the listening position (listening position information 12) changes every moment, the transfer function 13 is also generated every moment accordingly.
[0026] [数 2] y = Hx (数式 2 ) [0026] [Equation 2] y = Hx (Formula 2)
[0027] なお、スピーカが 1つで、再生空間上のある 1点の波形のみを上記簡単なシミュレ一 シヨンで求める場合には伝達関数は数式 3で表される。 Hの時限のうち行の数は、再 生空間 23上の何個の点への伝達関数を Hに含めるかによつて決まり、列の数はスピ 一力の数によって決まる。 Hの行数を任意に増やすことにより、再生空間 23中の任意 の各点における再生波形の伝達関数 13を表すことができる。 [0027] When only one speaker waveform in the reproduction space is obtained by the above simple simulation with one speaker, the transfer function is expressed by Equation 3. The number of rows in the H time period is determined by how many points on the reproduction space 23 the transfer function is included in H, and the number of columns is determined by the number of spinning forces. By arbitrarily increasing the number of rows of H, the transfer function 13 of the playback waveform at each arbitrary point in the playback space 23 can be expressed.
[0028] [数 3] e-i2x !v (数式 3 ) [0028] [Equation 3] e- i2x! V (Formula 3)
[0029] スピーカ入力信号生成手段 7は、聴取位置 30における再生波形 (再生空間オーデ ィォ信号)が基準位置 20aにおける演奏波形 (基準位置空間オーディオ信号) 10に最 も近くなるようなスピーカ入力信号 14を生成する手段である。聴取位置 30における再 生波形と基準位置 20aにおける演奏波形との差を Eとすると、聴取位置 30における再 生波形が y、基準位置 20aにおける演奏波形力 ¾であれば、これらは数式 4のように表 わすことができる。 E2が 0に近づけば、聴取位置 30における再生波形と基準位置 20a における演奏波形とが近づくことになる。 [0029] The speaker input signal generation means 7 is a speaker input signal that causes the reproduction waveform (reproduction space audio signal) at the listening position 30 to be closest to the performance waveform (reference position space audio signal) 10 at the reference position 20a. Is a means of generating 14. If the difference between the playback waveform at the listening position 30 and the performance waveform at the reference position 20a is E, then the playback waveform at the listening position 30 is y, and the performance waveform force ¾ at the reference position 20a is Can be expressed. When E 2 approaches 0, the reproduced waveform at the listening position 30 and the performance waveform at the reference position 20a become closer.
[0030] [数 4] E2 (数式 4 ) [0030] [Equation 4] E 2 (Formula 4)
[0031] この数式 4に上記の数式 2を代入すると、数式 5になる。この数式 5から E2が最小に なるスピーカ入力信号 Xを求める。 [0031] Substituting Equation 2 into Equation 4 gives Equation 5. From this equation 5, the speaker input signal X that minimizes E 2 is obtained.
[0032] [数 5] [0032] [Equation 5]
E2
Figure imgf000011_0001
(数式 5 )
E 2
Figure imgf000011_0001
(Formula 5)
[0033] 本実施形態では、スピーカ入力信号 Xは最小二乗法を用いて求める。なお、既に述 ベたように、伝達関数 13は伝達関数生成手段 6により得ることができ、基準位置 20aを 含む空間における演奏波形 10は基準位置空間オーディオ信号算出手段 3により得る ことができる。具体的には、スピーカが 2つで、再生空間中の 3点において再生波形 の誤差を評価するのであれば、 Hが 3 X 2次元となり、 Hは数式 6のように表すことが できる。また、 uが 3次元の場合には、 uは数式 7のように表わすことができる。そうする と、最小二乗法によりスピーカ入力信号 Xを展開すると数式 8のようになる。数式 7に 各値を代入するとスピーカ入力信号 Xが求まる。このスピーカ入力信号をスピーカに 入力すると、スピーカが配置されている再生空間の条件下で、聴取位置 30において 基準位置 20aにおける演奏音に最も近い音が発生する。なお、スピーカ力 本で、再 生空間中の参照する点が 10個の場合には、同様の計算を Hを 10行 8列として実行す ればよい。 In the present embodiment, the speaker input signal X is obtained using the least square method. As already described, the transfer function 13 can be obtained by the transfer function generation means 6 and the performance waveform 10 in the space including the reference position 20a can be obtained by the reference position space audio signal calculation means 3. Specifically, if there are two speakers and the error of the playback waveform is evaluated at three points in the playback space, H becomes 3 X 2D, and H can be expressed as Equation 6. If u is three-dimensional, u can be expressed as Equation 7. Then, when the speaker input signal X is expanded by the least square method, Equation 8 is obtained. Substituting each value into Equation 7 gives the speaker input signal X. When this speaker input signal is input to the speaker, a sound closest to the performance sound at the reference position 20a is generated at the listening position 30 under the condition of the reproduction space where the speaker is arranged. If there are 10 reference points in the reproduction space in the speaker power book, the same calculation can be executed with H as 10 rows and 8 columns.
[0034] [数 6]  [0034] [Equation 6]
W:= [[Λ〃, hi 2\ [ 2/, h22 [h3!, 32]] (数式 6 ) W: = [[Λ〃, hi 2 \ [2 /, h22 [h3 !, 32]] (Formula 6 )
[0035] [数 7] u = [ul, uZ a3] (数式 7 ) [0035] [Equation 7] u = [ul, uZ a3] (Formula 7)
[0036] [数 8] [0036] [Equation 8]
X = X =
8 ) 8)
[0037] また、演奏空間 (集音空間) 20の基準位置 20a近傍の演奏波形 (基準位置空間ォー ディォ信号) 10は、保存手段 15で一端保存してもよいし、そのままスピーカ入力信号 生成手段 7へ送るようにしてもよい。図 4は、演奏波形 (基準位置空間オーディオ信号 ) 10を保存しない場合と保存する場合とを対比した概念図である。図 4 (a)に示すよう に、集音空間 20における演奏波形 (基準位置空間オーディオ信号) 10を、保存せず に再生空間 23 (スピーカ入力信号生成手段 7)に送るようにすれば、集音空間 20から 離れた再生空間 23においてリアルタイムで演奏を楽しむことができる。一方、図 4 (b) に示すように、集音空間 20における演奏波形 (基準位置空間オーディオ信号) 10を 保存手段 15で保存すれば、演奏後であっても再生空間 23において演奏波形 (基準 位置空間オーディオ信号) 10を再現することができる。なお、演奏波形 (基準位置空 間オーディオ信号) 10を保存手段 15で保存するのではなぐ演奏音 (音響信号) 9を 保存手段 15で保存するようにしてもよい。この場合、再生空間 23における再生時に演 奏波形 (基準位置空間オーディオ信号) 10を算出する必要がある。 [0037] Further, the performance waveform (reference position space audio signal) 10 near the reference position 20a of the performance space (sound collecting space) 20 may be stored once by the storage means 15, or the speaker input signal is generated as it is. You may make it send to the means 7. FIG. 4 is a conceptual diagram comparing the case where the performance waveform (reference position space audio signal) 10 is not saved with the case where it is saved. As shown in Fig. 4 (a), if the performance waveform (reference position space audio signal) 10 in the sound collection space 20 is sent to the reproduction space 23 (speaker input signal generation means 7) without being saved, it is collected. It is possible to enjoy the performance in real time in the playback space 23 away from the sound space 20. On the other hand, as shown in Fig. 4 (b), if the performance waveform (reference position space audio signal) 10 in the sound collection space 20 is saved by the storage means 15, the performance waveform (reference frequency) in the playback space 23 even after the performance. (Position space audio signal) 10 can be reproduced. Instead of storing the performance waveform (reference position spatial audio signal) 10 by the storage means 15, the performance sound (acoustic signal) 9 may be stored by the storage means 15. In this case, it is necessary to calculate the performance waveform (reference position space audio signal) 10 during reproduction in the reproduction space 23.
[0038] 以上、本願発明の一実施形態たる空間オーディオ信号再生装置 1について説明し た。本実施例では、音波の空間的な形状 (演奏波形)を取得し、再生空間の状況を 考慮しながら、聴取位置 30において演奏波形に限りなく近くなるような再生波形を生 成することができる。よって、本実施形態に力かる空間オーディオ信号再生装置によ れば、従来の再生方法に比べ、聴取者は自然な臨場感を得ることができる。 In the foregoing, the spatial audio signal reproduction device 1 according to an embodiment of the present invention has been described. In this embodiment, a spatial waveform (performance waveform) of sound waves is acquired, and a reproduction waveform that is as close as possible to the performance waveform can be generated at the listening position 30 while considering the state of the reproduction space. . Therefore, according to the spatial audio signal reproduction device that is useful in this embodiment, If this is the case, the listener can obtain a natural sense of reality compared to the conventional reproduction method.
[0039] 以上では、聴取位置情報取得手段 5によって取得した聴取位置 (聴取位置情報 12 )と、再生空間情報取得手段 4によって取得した再生空間の形状寸法及びスピーカ の位置 (再生空間情報 11)とに基づいて、スピーカへの入力信号を入力とし聴取位置 における再生空間オーディオ信号を出力とする伝達関数を算出する場合について 説明したが、必ずしも聴取位置を取得し、これに基づいて伝達関数を算出する必要 はない。例えば、聴衆位置の代りに再生空間の中心位置 (所定位置)を用いて伝達 関数を算出しても良い。つまり、スピーカへの入力信号を入力とし再生空間の中心位 置 (所定位置)における再生空間オーディオ信号を出力とする伝達関数を算出する ようにしてもよい。力かる構成によれば、より単純な構成でスピーカへの入力信号を生 成することができる。  In the above, the listening position (listening position information 12) acquired by the listening position information acquisition means 5, the shape and dimensions of the reproduction space acquired by the reproduction space information acquisition means 4, and the position of the speaker (reproduction space information 11) Based on the above, the explanation has been given on the calculation of the transfer function with the input signal to the speaker as the input and the playback spatial audio signal at the listening position as the output. However, the transfer function is not necessarily obtained based on the listening position. There is no need. For example, the transfer function may be calculated using the center position (predetermined position) of the reproduction space instead of the audience position. That is, a transfer function may be calculated in which the input signal to the speaker is input and the reproduction space audio signal is output at the center position (predetermined position) of the reproduction space. According to the powerful configuration, an input signal to the speaker can be generated with a simpler configuration.
[0040] また、以上では、伝達関数をシミュレーションによって求めた力 これに代えてマイク 口ホンによる計測によって求めてもよい。図 5は、マイクロホン 26の配置を示した図で あり、(a)は平面図であって、(b)は側面図である。図 5に示すように、直径 L2 = 60cm 程度の円周上に 8点マイクロホン 26を配置して、各マイクロホン 26が圧力データを取 得する。この圧力データを用いて、聴取者の頭の位置 30における再生音を算出する 。算出方法は、前述した数式 1に示すキルヒホッフの積分公式を利用する。なお、聴 取者の頭の位置 30はマイクロホンの円周内になければならない。さもなければ、聴取 位置 30における再生音を正確に算出することができなくなるからである。また、この測 定に用いるスピーカ信号は計算の入力データとして使用できるため、数式 2に代入し て逆算すれば、伝達関数 Hを算出することができる。  [0040] Further, in the above, the force obtained by simulation of the transfer function may be obtained by measurement using a microphone. FIG. 5 is a view showing the arrangement of the microphones 26, where (a) is a plan view and (b) is a side view. As shown in FIG. 5, eight-point microphones 26 are arranged on a circumference having a diameter L2 = 60 cm, and each microphone 26 obtains pressure data. Using this pressure data, the reproduced sound at the position 30 of the listener's head is calculated. The calculation method uses the Kirchhoff integration formula shown in Equation 1 above. The listener's head position 30 must be within the circumference of the microphone. Otherwise, the reproduced sound at the listening position 30 cannot be calculated accurately. In addition, since the speaker signal used for this measurement can be used as input data for calculation, the transfer function H can be calculated by substituting into Equation 2 and performing reverse calculation.
[0041] また、以上では、再生空間情報取得手段として、部屋の立体形状及びスピーカ位 置の認識を 2台のビデオカメラと認識システムを用いて行う場合にっ ヽて説明したが 、音響的室内反射測定装置を用いても良い。音響的室内反射測定装置とは、再生 に利用する複数のスピーカにそれぞれマイクロホン付加し、これらを利用し室内形状 と反射特性を測定、推測する装置である。聴取位置とスピーカ間の伝達特性はスピ 一力から聴取位置に直接到達する音、すなわち直接音に相当する伝達特性と、室内 の各壁からの反射波、すなわち間接音に相当する伝達特性の 2成分力もなる。直接 音は、部屋の形状によらず、スピーカと聴取位置の位置関係のみ力 推定することが できる。また間接音は、室内の形状、反射率、室内における聴取位置とスピーカ位置 により算出できる。したがって部屋のおおよその形状と各壁面、床面、天井の反射特 性をデータとして取得すれば、必要な伝達特性を算出することができる。そこで、音 響的室内反射測定装置では室内が通常直方体に近いことを利用し、固定されたスピ 一力と数個のマイクロホンによって、各壁面位置および反射特性を推定する。 [0041] In the above description, the case where the three-dimensional shape of the room and the speaker position are recognized using two video cameras and a recognition system as the reproduction space information acquisition means has been described. A reflection measuring device may be used. An acoustic room reflection measurement device is a device that adds a microphone to each of a plurality of speakers used for reproduction, and uses these to measure and estimate the room shape and reflection characteristics. The transmission characteristics between the listening position and the speaker are two: a sound that directly reaches the listening position from a force, that is, a transmission characteristic that corresponds to the direct sound, and a transmission characteristic that corresponds to a reflected wave from each wall in the room, that is, an indirect sound. Component power also becomes. Directly The sound can be estimated only for the positional relationship between the speaker and the listening position, regardless of the shape of the room. Indirect sound can be calculated from the shape of the room, the reflectance, the listening position in the room, and the speaker position. Therefore, if the approximate shape of the room and the reflection characteristics of each wall, floor, and ceiling are acquired as data, the necessary transfer characteristics can be calculated. Therefore, the acoustic indoor reflection measurement device uses the fact that the room is usually close to a rectangular parallelepiped, and estimates the position and reflection characteristics of each wall using a fixed spin force and several microphones.
具体的にはいくつかの方法が考えられるが、以下では最も単純な方法を説明する。 ここでは 8個のスピーカを用い、 8個のスピーカそれぞれマイクロホンが備わって!/、るも のとする。そして各スピーカから試験信号を出力し、別のスピーカに内臓されたマイク 口ホンで受音し、インパルスレスポンスを算出する。図 6は、直方体の室内における第 1スピーカ 28から第 2スピーカ 29へのインパルスレスポンスの伝播の様子を模式的に 示した図である。図 6に示すように、第 1スピーカ 28から第 2スピーカ 29へのインパルス レスポンスは、その経路によって異なる遅延時間を持ったインパルス形状のピーク (以 下ピーク成分と呼ぶ)が多数含まれる。ここで、第 ピー力から第 mスピーカへのピ ーク成分の中で、最も遅延時間の短いものを t(n,m,0)とし、以下遅延時間の短い方か ら遅延時間 (n,m,l)、 · · ·、 t(n,m,8)とする。図 7は、第 1スピーカ 28から第 2スピーカ 2 9へのインパルスレスポンスの各ピーク成分を示したものであって、横軸が遅延時間 で縦軸がピーク成分の大きさを表わしている。図 7中、最も短い遅延時間 t (1,2,0)は 各スピーカ間で直接伝播した音の遅延時間であると考えられる。そしてそれ以外のピ ーク成分は、遅延時間の最も短いピーク成分が壁に反射したものと考えられる。そう すると、 8個のスピーカを用いると、 8 X 7 =56通りの t(n,m,0)が求まり、このうち半分は 同じスピーカ対の逆方向の伝播であり同じ遅延時間である。独立な 28通りの遅延時 間から、それぞれのスピーカ対の距離を逆算することができる。これにより高い確率で 高い精度でスピーカの相対的な配置を算出することができる。また、その他の最短で ない遅延時間からは、スピーカと壁、天井、床との位置関係を推測するのに用いるこ とができる。たとえば t(l,2,0)が 6.6msで、 t(l,2, l)が 10msであれば、第 1スピーカ 28から 第 2スピーカまでの直線距離が音の速度 X 0.0066=約 2mで、最も近 、壁からの反射 波の経路が t(l,2, l) X音の速度 =0.01 X音の速度 =約 3mであることになる。そして、直 接音以外の反射波に起因する遅延時間は 8 X 56/2 = 224通り得られると期待できる ので、これらをすベて用いれば、天井、壁、床とスピーカの位置関係を推定できる。こ のうち多くの遅延時間はノイズ等によりはっきりしないことが考えられる力 大部分の 遅延時間が得られれば目的は十分達成される。 Specifically, several methods can be considered, but the simplest method will be described below. Here, eight speakers are used, and each of the eight speakers is equipped with a microphone! Then, test signals are output from each speaker, received by a microphone connected to another speaker, and the impulse response is calculated. FIG. 6 is a diagram schematically showing the state of impulse response propagation from the first speaker 28 to the second speaker 29 in a rectangular parallelepiped room. As shown in FIG. 6, the impulse response from the first speaker 28 to the second speaker 29 includes many impulse-shaped peaks (hereinafter referred to as peak components) having different delay times depending on the path. Here, t (n, m, 0) is the shortest delay component from the peak power to the mth speaker, and the delay time (n, m, l), ..., t (n, m, 8). FIG. 7 shows the peak components of the impulse response from the first speaker 28 to the second speaker 29, where the horizontal axis represents the delay time and the vertical axis represents the magnitude of the peak component. In Fig. 7, the shortest delay time t (1,2,0) is considered to be the delay time of the sound directly propagated between the speakers. For the other peak components, the peak component with the shortest delay time is considered to be reflected from the wall. Then, if 8 speakers are used, 8 x 7 = 56 t (n, m, 0) are obtained, and half of them are the reverse propagation of the same speaker pair and the same delay time. The distance between each pair of speakers can be calculated back from 28 independent delay times. As a result, the relative arrangement of the speakers can be calculated with high probability and high accuracy. In addition, it can be used to estimate the positional relationship between the speaker and the wall, ceiling, or floor from other non-shortest delay times. For example, if t (l, 2,0) is 6.6 ms and t (l, 2, l) is 10 ms, the linear distance from the first speaker 28 to the second speaker is the sound speed X 0.0066 = about 2 m. Most recently, the path of the reflected wave from the wall is t (l, 2, l) X sound velocity = 0.01 X sound velocity = about 3 m. And straight Since it can be expected that 8 X 56/2 = 224 delay times due to reflected waves other than the contact sound can be obtained, it is possible to estimate the positional relationship between the ceiling, wall, floor and speaker. Of these, many delay times are considered to be unclear due to noise, etc. If most of the delay times are obtained, the objective is sufficiently achieved.
[0043] なお、本実施形態にかかる空間オーディオ信号再生装置 1によって再生する場合、 スピーカ音に対して反射音が小さくなるようにスピーカを配置するのが望まし 、。反射 音を完全に消去できない場合もあるからである。例えば、スピーカは聴取位置の近傍 に配置するのが望ましい。音が壁に反射して聴取位置に届くまでの経路が直接音の 4倍になると、反射音は直接音の 1/16の音圧にまで減衰される。  [0043] It should be noted that in the case of reproduction by the spatial audio signal reproduction device 1 according to the present embodiment, it is desirable to arrange the speaker so that the reflected sound becomes smaller than the speaker sound. This is because the reflected sound may not be completely erased. For example, it is desirable to place the speaker near the listening position. When the path from the sound reflected to the wall to reach the listening position is four times that of the direct sound, the reflected sound is attenuated to 1/16 of the direct sound pressure.
[0044] また、図 8はスピーカの一実施形態を示した図である。図 8に示すように、スピーカ 3 3を天井 31から支柱部分 32で懸垂し、円柱状のスピーカ 33が周囲に多数のドライバ 3 4を装着するようにしてもょ 、。図 9は図 8のスピーカ 33の多数のドライバ 34にそれぞれ 極性、振幅、遅延時間を調整し、それらが異なる信号を入力した状態の音波 35の伝 播状態を示した図である。図 9に示すように、各ドライバ 34に極性、振幅、遅延を目的 に合わせて調整した信号を入力すると、一定方向 (A、 Bの方向)を音波 35が放射さ れない領域となるように調整することができる。音が放射されない方向を壁側に配置 すれば、反射音を低減することができる。ただし、この場合は、伝達関数を算出の際 にスピーカの上記特性を考慮する必要がある。  FIG. 8 is a diagram showing an embodiment of a speaker. As shown in FIG. 8, the speaker 33 may be suspended from the ceiling 31 by a support column 32, and the columnar speaker 33 may be equipped with a number of drivers 34 around it. FIG. 9 is a diagram illustrating the propagation state of the sound wave 35 in a state where the polarity, amplitude, and delay time are adjusted to the multiple drivers 34 of the speaker 33 of FIG. 8 and different signals are input thereto. As shown in Fig. 9, when a signal adjusted for the purpose of polarity, amplitude, and delay is input to each driver 34, a certain direction (direction A, B) is set so that the sound wave 35 is not emitted. Can be adjusted. If the direction in which no sound is emitted is placed on the wall side, the reflected sound can be reduced. However, in this case, it is necessary to consider the above characteristics of the speaker when calculating the transfer function.
[0045] また、以上で説明した空間オーディオ信号再生装置 1をサービス提供者が設置した 付加価値サーバー 41と、インターネット 45によって相互接続されたサービス利用者が 使用する再生クライアント装置 42とに各構成を分けるようにしても良い。図 10は、付カロ 価値サーバー 41と再生クライアント装置 42との関係を示した図である。図 10に示す構 成は、既に説明した図 1の構成と重複する点が多いため、ここでは簡単に各手段に ついて説明する。図 10に示すように、付加価値サーバー 41は、音響信号取得手段 2 と、基準位置空間オーディオ信号算出手段 3と、伝達関数生成手段 6と、スピーカ入 力信号生成手段 7と、課金確認手段 14とを備えている。一方、再生クライアント装置 42 は、再生空間情報取得手段 4と、聴取点位置情報取得手段 5と、スピーカ 8と、課金手 段 43とを備えている。 [0046] 付加価値サーバー 41側の音響信号取得手段 2は、演奏空間 (集音空間) 20におけ る音響信号 (演奏音) 9を取得し、これに基づ ヽて基準位置空間オーディオ信号算出 手段 3は、基準位置空間オーディオ信号 (基準位置 20a近傍の演奏波形) 10を算出す る。一方、再生クライアント装置 42側の再生空間情報取得手段 4及び聴取点位置情 報取得手段 5によりそれぞれ取得した再生空間情報 11と聴取点位置情報 12がインタ 一ネット 45を介して付加価値サーバー 41側の伝達関数生成手段 6に送られる。伝達 関数生成手段 6は、再生空間情報 11と聴取点位置情報 12に基づいて伝達関数 13を 算出する。付加価値サーバー 41側のスピーカ入力信号生成手段 7は、基準位置空 間オーディオ信号 10と伝達関数 13とに基づいてスピーカ入力信号 14を生成し、イン ターネット 45を介して再生クライアント装置 42側のスピーカ 8に送られる。ここまでの動 作は、インターネットを介して信号をやりとりする以外は、上記の実施例で説明したも のと同じである。ただし、再生クライアント装置 42側の課金手段 43で課金操作を行つ た後は、インターネット 45を介して決済完了信号 46が送られる。この決済完了信号 46 が付加価値サーバー 41側の課金確認手段 44で確認されなければ、スピーカ入力信 号 14は作動しな 、。決済完了信号 46が課金確認手段 44によって確認された場合は 、課金確認手段 44力 Sスピーカ入力信号生成手段 7に許可信号 47を送り、この許可信 号 47をスピーカ入力信号生成手段 7が受け取った時点でスピーカ入力信号 14が再生 クライアント装置 42側に送られる。課金手段 43は、再生曲目、再生回数、再生時間に 応じて代金の徴収とその確認を実行し、課金が正しく行われた場合にのみ付加価値 サーバー 41の機能を動作するよう制御する。このような課金手段 43は有料放送等で 実現しており容易に実現できることは明らかである。また課金が正常に行われた否か の確認信号も、通常の PKI (公開鍵基盤)によって安全に伝送でき、真正な課金信号 が与えられた場合にのみ付加価値サーバー 41を動作させるよう制御できることも、明 らかである。 [0045] Further, each configuration is made up of a value-added server 41 in which the service provider has installed the spatial audio signal playback device 1 described above and a playback client device 42 used by a service user interconnected by the Internet 45. You may make it divide. FIG. 10 is a diagram showing the relationship between the value-added value server 41 and the playback client device 42. Since the configuration shown in Fig. 10 has many similarities to the configuration shown in Fig. 1 already described, each means will be briefly described here. As shown in FIG. 10, the value-added server 41 includes an acoustic signal acquisition unit 2, a reference position space audio signal calculation unit 3, a transfer function generation unit 6, a speaker input signal generation unit 7, and a billing confirmation unit 14 And. On the other hand, the reproduction client device 42 includes reproduction space information acquisition means 4, listening point position information acquisition means 5, a speaker 8, and a billing means 43. [0046] The acoustic signal acquisition means 2 on the value-added server 41 side acquires the acoustic signal (performance sound) 9 in the performance space (sound collection space) 20, and calculates the reference position space audio signal based on this. The means 3 calculates a reference position space audio signal (a performance waveform near the reference position 20a) 10. On the other hand, the reproduction space information acquisition means 4 and the listening point position information acquisition means 5 on the reproduction client device 42 side respectively receive the reproduction space information 11 and the listening point position information 12 on the value added server 41 side via the Internet 45. To the transfer function generation means 6 of The transfer function generation means 6 calculates a transfer function 13 based on the reproduction space information 11 and the listening point position information 12. The speaker input signal generation means 7 on the value-added server 41 side generates the speaker input signal 14 based on the reference position spatial audio signal 10 and the transfer function 13, and the playback client device 42 side via the Internet 45 Sent to speaker 8. The operation so far is the same as that described in the above embodiment except that signals are exchanged via the Internet. However, after the charging means 43 on the playback client device 42 side performs the charging operation, a payment completion signal 46 is sent via the Internet 45. If this payment completion signal 46 is not confirmed by the charge confirmation means 44 on the value added server 41 side, the speaker input signal 14 does not operate. When the payment completion signal 46 is confirmed by the billing confirmation means 44, the permission signal 47 is sent to the billing confirmation means 44 force S speaker input signal generation means 7, and this permission signal 47 is received by the speaker input signal generation means 7. At that time, the speaker input signal 14 is sent to the playback client device 42 side. The billing unit 43 collects and confirms the price according to the playback piece, the number of playbacks, and the playback time, and controls the function of the value-added server 41 to operate only when charging is performed correctly. It is obvious that such a billing means 43 is realized by pay broadcasting or the like and can be easily realized. In addition, the confirmation signal of whether or not the billing has been normally performed can be safely transmitted by a normal PKI (public key infrastructure), and the value-added server 41 can be controlled to operate only when a genuine billing signal is given. It is clear.
[0047] 従来の録音再生方式では、出力をそのまま録音することで不正なコピーを作ること が常に可能であるという欠点があった。例えば、スピーカからの再生音をそのまま録 音すればコピーを作成することができた。ところが、上記のように、本実施形態にかか る空間オーディオ信号再生装置をインターネットを介して運用すれば、「特定の再生 環境」かつ「特定の試聴位置」にお 、てのみ高品質で再生されると!/、う特徴があるた め、単純に録音し、再生をしても、同等のサービス品質を得ることができない。よって 、不正なコピーを防止することができる。 [0047] The conventional recording / playback method has a drawback that it is always possible to make an illegal copy by recording the output as it is. For example, if the playback sound from a speaker was recorded as it was, a copy could be created. However, as described above, if the spatial audio signal reproduction device according to the present embodiment is operated via the Internet, a “specific reproduction” is performed. If it is played back with high quality only in the `` environment '' and `` specific listening position '', there is a characteristic that even if it is simply recorded and played, the same service quality can be obtained. Can not. Therefore, unauthorized copying can be prevented.
[0048] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。  [0048] From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of the structure and Z or function thereof can be substantially changed without departing from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0049] 本発明によれば、聴取位置にお ヽてスピーカ音同士の干渉や反射音を考慮してス ピー力信号を生成することができる。よって、オーディオの技術分野にとって、特に空 間オーディオ信号の再生技術分野において有益である。  [0049] According to the present invention, it is possible to generate a speech force signal in consideration of interference between speaker sounds and reflected sound at the listening position. Therefore, it is useful for the audio technical field, especially in the spatial audio signal reproduction technical field.

Claims

請求の範囲 The scope of the claims
[1] 集音空間における集音空間オーディオ信号を、再生空間の所定位置近傍の一定 領域内において再現するための空間オーディオ信号再生装置であって、  [1] A spatial audio signal reproduction device for reproducing a sound collection space audio signal in a sound collection space within a certain region near a predetermined position in a reproduction space,
該再生空間に関する再生空間情報であ て、'該再生空間における反射に関する 該情報と再生空間に設置されたスピーカ位置の情報とを少なくとも含む再生空間情 報を取得する再生空間情報取得手段と、  Reproduction space information acquisition means for acquiring reproduction space information relating to the reproduction space, the reproduction space information including at least the information relating to reflection in the reproduction space and information on a speaker position installed in the reproduction space;
該再生空間情報に基づいて、該スピーカへの入力信号を入力とし該再生空間の所 定位置における再生空間オーディオ信号を出力とする伝達関数を生成する伝達関 数生成手段と、  Transfer function generating means for generating a transfer function based on the reproduction space information and having an input signal to the speaker as an input and an output of a reproduction space audio signal at a predetermined position in the reproduction space;
該集音空間オーディオ信号と該伝達関数とに基づいて、該再生空間オーディオ信 号と該集音空間オーディオ信号との差が小さくなるように該スピーカへの入力信号を 生成するスピーカ入力信号生成手段と、を備える空間オーディオ信号再生装置。  Speaker input signal generation means for generating an input signal to the speaker based on the sound collection space audio signal and the transfer function so that a difference between the reproduction space audio signal and the sound collection space audio signal is reduced. And a spatial audio signal reproduction device.
[2] 該再生空間における聴取位置に関する聴取位置情報を取得する聴取位置情報取 得手段をさらに備え、該再生空間の該所定位置は該聴取位置である、請求項 1に記 載の空間オーディオ信号再生装置。 [2] The spatial audio signal according to claim 1, further comprising listening position information acquisition means for acquiring listening position information relating to a listening position in the reproduction space, wherein the predetermined position in the reproduction space is the listening position. Playback device.
[3] 該聰取位置情報取得手段にぉレ、て、該聴取位置情報が刻々と取得され、 [3] The listening position information acquisition means acquires the listening position information every moment,
該伝達関数生成手段において、刻々と取得される該聴取位置情報に基づいて、該 伝達関数が刻々と生成され、  In the transfer function generating means, based on the listening position information acquired every moment, the transfer function is generated every moment,
該スピーカ入力信号生成手段において、刻々と生成される該伝達関数に基づいて 、スピーカへの入力信号が生成される、請求項 2に記載の空間オーディオ信号再生 装置。  3. The spatial audio signal reproduction device according to claim 2, wherein the speaker input signal generation means generates an input signal to the speaker based on the transfer function generated every moment.
[4] 該集音空間において任意の基準位置を取り囲む複数の位置で音響信号を取得す る音響信号取得手段と、  [4] acoustic signal acquisition means for acquiring acoustic signals at a plurality of positions surrounding an arbitrary reference position in the sound collection space;
該音響信号取得手段で取得された音響信号に基づき、該基準位置近傍の一定領 域内における基準位置空間オーディオ信号を算出する基準位置空間オーディオ信 号算出手段と、をさらに備え、  Reference position space audio signal calculation means for calculating a reference position space audio signal in a certain region near the reference position based on the sound signal acquired by the sound signal acquisition means;
該基準位置空間オーディオ信号が、該集音空間オーディオ信号である、請求項 1 乃至 3のうちいずれか一の項に記載の空間オーディオ信号再生装置。  The spatial audio signal reproduction device according to any one of claims 1 to 3, wherein the reference position spatial audio signal is the sound collection spatial audio signal.
訂正された用弒 (規則 91) Corrected urn (Rule 91)
[5] 該聴取位置情報取得手段にお!、て、多視点ビデオ立体認識装置を用いて、該再 生空間における聴取位置に関する聴取位置情報が取得される、請求項 2乃至 4のう ちいずれか一の項に記載の空間オーディオ信号再生装置。 [5] The listening position information relating to the listening position in the reproduction space is acquired by the listening position information acquisition means using a multi-view video stereoscopic recognition device. The spatial audio signal reproducing device according to any one of the above items.
[6] 再生空間情報取得手段において、音響的室内反射測定装置を用いて、該再生空 間における反射に関する情報が取得される、請求項 1乃至 5のうちいずれか一の項 に記載の空間オーディオ信号再生装置。 [6] The spatial audio according to any one of claims 1 to 5, wherein the reproduction space information acquisition means acquires information related to reflection in the reproduction space using an acoustic room reflection measurement device. Signal reproduction device.
[7] 課金操作が終了すると決済完了信号を送信する課金手段と、 [7] Billing means for transmitting a payment completion signal when the billing operation is completed;
該決済完了信号に基づいて課金が行われたか否かを判断する課金確認手段と、 をさらに備え、  Charging confirmation means for determining whether or not charging has been performed based on the settlement completion signal; and
該課金確認手段は、課金が行われていないと判断した場合、該スピーカ入力信号 生成手段の動作を停止させ、  If it is determined that charging has not been performed, the charging confirmation unit stops the operation of the speaker input signal generation unit,
該再生空間情報は、該再生空間情報取得手段から該伝達関数生成手段へインタ 一ネットを介して送られ、  The reproduction space information is sent from the reproduction space information acquisition means to the transfer function generation means via the Internet,
該スピーカへの入力信号は、該スピーカ入力信号生成手段から該スピーカヘイン ターネットを介して送られ、  An input signal to the speaker is sent from the speaker input signal generating means via the speaker Internet,
該決済完了信号は、該課金手段カも該課金確認手段へインターネットを介して送 られる、請求項 1乃至 6のうちいずれか一の項に記載の空間オーディオ信号再生装 置。  The spatial audio signal reproduction device according to any one of claims 1 to 6, wherein the settlement completion signal is also sent to the billing confirmation unit via the Internet.
[8] 集音空間における集音空間オーディオ信号を、再生空間の所定位置近傍の一定 領域内において再現するための空間オーディオ信号再生方法であって、  [8] A spatial audio signal reproduction method for reproducing a sound collection space audio signal in a sound collection space within a certain region near a predetermined position in a reproduction space,
該再生空間に関する再生空間情報であって、該再生空間における反射に関する 該情報と再生空間に設置されたスピーカ位置の情報とを少なくとも含む再生空間情 報を取得する再生空間情報取得工程と、  A reproduction space information acquisition step for acquiring reproduction space information relating to the reproduction space, the reproduction space information including at least the information relating to reflection in the reproduction space and information on a speaker position installed in the reproduction space;
該再生空間情報に基づいて、該スピーカへの入力信号を入力とし該再生空間の所 定位置における再生空間オーディオ信号を出力とする伝達関数を生成する伝達関 数生成工程と、  A transfer function generation step of generating a transfer function based on the playback space information and having an input signal to the speaker as an input and an output of a playback space audio signal at a predetermined position in the playback space;
該集音空間オーディオ信号と該伝達関数とに基づ 、て、該再生空間オーディオ信 号と該集音空間オーディオ信号との差が小さくなるように該スピーカへの入力信号を 生成するスピーカ入力信号生成工程と、を備える空間オーディオ信号再生方法。 Based on the sound collection space audio signal and the transfer function, the input signal to the speaker is reduced so that the difference between the reproduction space audio signal and the sound collection space audio signal is reduced. A spatial audio signal reproduction method comprising: a speaker input signal generation step of generating.
PCT/JP2007/063022 2006-06-30 2007-06-28 Spatial audio signal reproducing device and spatial audio signal reproducing method WO2008001857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522627A JP5543106B2 (en) 2006-06-30 2007-06-28 Spatial audio signal reproduction apparatus and spatial audio signal reproduction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006181029 2006-06-30
JP2006-181029 2006-06-30

Publications (1)

Publication Number Publication Date
WO2008001857A1 true WO2008001857A1 (en) 2008-01-03

Family

ID=38845621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063022 WO2008001857A1 (en) 2006-06-30 2007-06-28 Spatial audio signal reproducing device and spatial audio signal reproducing method

Country Status (2)

Country Link
JP (1) JP5543106B2 (en)
WO (1) WO2008001857A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7823662B2 (en) 2007-06-20 2010-11-02 New Era Petroleum, Llc. Hydrocarbon recovery drill string apparatus, subterranean hydrocarbon recovery drilling methods, and subterranean hydrocarbon recovery methods
JP2011250049A (en) * 2010-05-26 2011-12-08 Nippon Hoso Kyokai <Nhk> Live atmosphere estimation device and program for the same
WO2011154377A1 (en) * 2010-06-07 2011-12-15 Arcelik Anonim Sirketi A television comprising a sound projector
JP2013138307A (en) * 2011-12-28 2013-07-11 Yamaha Corp Sound field controller and sound field control method
JP2013157843A (en) * 2012-01-31 2013-08-15 Yamaha Corp Sound field controller
JP2017034441A (en) * 2015-07-31 2017-02-09 日本電信電話株式会社 Sound field reproduction apparatus and method thereof
JP2017034442A (en) * 2015-07-31 2017-02-09 日本電信電話株式会社 Sound field reproduction apparatus and method thereof
WO2017047133A1 (en) * 2015-09-18 2017-03-23 株式会社ディーアンドエムホールディングス Computer-readable program, audio controller, and wireless audio system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451700A (en) * 1990-06-19 1992-02-20 Yamaha Corp Acoustic space reproducing method and device and medium for recording sound
JP2000299900A (en) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp Audio reproducing device
JP2001054200A (en) * 1999-08-04 2001-02-23 Mitsubishi Electric Inf Technol Center America Inc Sound delivery adjustment system and method to loudspeaker
JP2003150157A (en) * 2001-11-08 2003-05-23 Nec Soft Ltd System and method for providing virtual music lesson room
JP2005167612A (en) * 2003-12-02 2005-06-23 Sony Corp Sound field reproducing apparatus and sound field space reproducing system
JP2006065100A (en) * 2004-08-27 2006-03-09 Sony Corp Play back device and play back system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08221081A (en) * 1994-12-16 1996-08-30 Takenaka Komuten Co Ltd Sound transmission device
JPH08272380A (en) * 1995-03-30 1996-10-18 Taimuuea:Kk Method and device for reproducing virtual three-dimensional spatial sound
JP4465870B2 (en) * 2000-12-11 2010-05-26 ソニー株式会社 Audio signal processing device
DE10328335B4 (en) * 2003-06-24 2005-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wavefield syntactic device and method for driving an array of loud speakers
US7643640B2 (en) * 2004-10-13 2010-01-05 Bose Corporation System and method for designing sound systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451700A (en) * 1990-06-19 1992-02-20 Yamaha Corp Acoustic space reproducing method and device and medium for recording sound
JP2000299900A (en) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp Audio reproducing device
JP2001054200A (en) * 1999-08-04 2001-02-23 Mitsubishi Electric Inf Technol Center America Inc Sound delivery adjustment system and method to loudspeaker
JP2003150157A (en) * 2001-11-08 2003-05-23 Nec Soft Ltd System and method for providing virtual music lesson room
JP2005167612A (en) * 2003-12-02 2005-06-23 Sony Corp Sound field reproducing apparatus and sound field space reproducing system
JP2006065100A (en) * 2004-08-27 2006-03-09 Sony Corp Play back device and play back system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7823662B2 (en) 2007-06-20 2010-11-02 New Era Petroleum, Llc. Hydrocarbon recovery drill string apparatus, subterranean hydrocarbon recovery drilling methods, and subterranean hydrocarbon recovery methods
JP2011250049A (en) * 2010-05-26 2011-12-08 Nippon Hoso Kyokai <Nhk> Live atmosphere estimation device and program for the same
WO2011154377A1 (en) * 2010-06-07 2011-12-15 Arcelik Anonim Sirketi A television comprising a sound projector
JP2013138307A (en) * 2011-12-28 2013-07-11 Yamaha Corp Sound field controller and sound field control method
JP2013157843A (en) * 2012-01-31 2013-08-15 Yamaha Corp Sound field controller
JP2017034441A (en) * 2015-07-31 2017-02-09 日本電信電話株式会社 Sound field reproduction apparatus and method thereof
JP2017034442A (en) * 2015-07-31 2017-02-09 日本電信電話株式会社 Sound field reproduction apparatus and method thereof
WO2017047133A1 (en) * 2015-09-18 2017-03-23 株式会社ディーアンドエムホールディングス Computer-readable program, audio controller, and wireless audio system
US10310806B2 (en) 2015-09-18 2019-06-04 D&M Holdings, Inc. Computer-readable program, audio controller, and wireless audio system

Also Published As

Publication number Publication date
JP5543106B2 (en) 2014-07-09
JPWO2008001857A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5543106B2 (en) Spatial audio signal reproduction apparatus and spatial audio signal reproduction method
US7636448B2 (en) System and method for generating sound events
JP5728094B2 (en) Sound acquisition by extracting geometric information from direction of arrival estimation
CN1901760B (en) Acoustic field measuring device and acoustic field measuring method
JP5024792B2 (en) Omnidirectional frequency directional acoustic device
JP4819823B2 (en) Acoustic system driving apparatus, driving method, and acoustic system
US7994412B2 (en) Sound system and method for creating a sound event based on a modeled sound field
JP5533248B2 (en) Audio signal processing apparatus and audio signal processing method
KR101764175B1 (en) Method and apparatus for reproducing stereophonic sound
JP2569872B2 (en) Sound field control device
JP2009512364A (en) Virtual audio simulation
US20130028424A1 (en) Method and apparatus for processing audio signal
JPH08272380A (en) Method and device for reproducing virtual three-dimensional spatial sound
US9100767B2 (en) Converter and method for converting an audio signal
GB2397736A (en) Visualization of spatialized audio
JP2007333813A (en) Electronic piano apparatus, sound field synthesizing method of electronic piano and sound field synthesizing program for electronic piano
KR20180018464A (en) 3d moving image playing method, 3d sound reproducing method, 3d moving image playing system and 3d sound reproducing system
US6925426B1 (en) Process for high fidelity sound recording and reproduction of musical sound
JP2003323179A (en) Method and instrument for measuring impulse response, and method and device for reproducing sound field
de Vries et al. Auralization of sound fields by wave field synthesis
Song et al. Psychoacoustic evaluation of multichannel reproduced sounds using binaural synthesis and spherical beamforming
JP6105861B2 (en) Sound processing apparatus and sound processing method
JP6670259B2 (en) Sound reproduction device
WO2022176417A1 (en) Information processing device, information processing method, and program
McCormack Parametric reproduction of microphone array recordings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008522627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767815

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)