WO2008001667A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2008001667A1
WO2008001667A1 PCT/JP2007/062442 JP2007062442W WO2008001667A1 WO 2008001667 A1 WO2008001667 A1 WO 2008001667A1 JP 2007062442 W JP2007062442 W JP 2007062442W WO 2008001667 A1 WO2008001667 A1 WO 2008001667A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigerant
capacity
compressor
circuit
Prior art date
Application number
PCT/JP2007/062442
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Sakae
Masaaki Takegami
Hiroto Nakajima
Iwao Shinohara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008001667A1 publication Critical patent/WO2008001667A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus provided with a supercooling circuit, and particularly to a technology for controlling the capacity of a supercooling circuit.
  • a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle is known.
  • a main cooling circuit for cooling a space to be cooled is provided with a supercooling circuit including a supercooling heat exchanger for increasing the cooling capacity.
  • a first compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe.
  • the second compressor, the second outdoor heat exchanger, the second expansion valve, and the supercooling heat exchanger are sequentially connected by the refrigerant pipe.
  • the supercooling heat exchanger of the supercooling circuit is provided between the first outdoor heat exchanger of the main refrigerant circuit and the first expansion valve. Place in high pressure liquid piping.
  • the supercooling heat exchanger is a heat exchanger that exchanges heat between refrigerants, and includes a first flow path through which the refrigerant in the main refrigerant circuit flows and a second flow path through which the refrigerant in the supercooling circuit flows.
  • the supercooling heat exchanger the high-pressure liquid refrigerant condensed in the first outdoor heat exchanger of the main refrigerant circuit and the low-pressure refrigerant in the supercooling circuit are heat-exchanged, so that the high-pressure liquid refrigerant is superfluid.
  • the degree of supercooling of the high-pressure liquid refrigerant can be increased.
  • Patent Document 1 is cited as a conventional technique for controlling the supercooling circuit in the refrigeration apparatus having the supercooling circuit.
  • the first compressor of the main refrigerant circuit is composed of a variable capacity compressor, and the operating capacity of the first compressor and the low-pressure refrigerant pressure of the main refrigerant circuit are adjusted. Based on this, on / off control of the second compressor of the supercooling circuit is performed. Specifically, the above capacity When the capacity of the variable compressor is equal to or greater than the first predetermined value and the low-pressure refrigerant pressure is equal to or greater than the predetermined value, that is, when the main refrigerant circuit is in a cooling overload state, the second compressor of the supercooling circuit is to start. On the other hand, when the capacity of the variable capacity compressor becomes equal to or lower than a second predetermined value lower than the first predetermined value, the second compressor of the supercooling circuit stops.
  • the start / stop control is performed when the second compressor of the supercooling circuit starts when the main refrigerant circuit is in a cooling overload state, and does not enter the cooling overload state. Is configured to stop.
  • Patent Document 1 Japanese Patent No. 3376844
  • the main refrigerant circuit is in an overload state. Otherwise, the supercooling circuit will not start. That is, the supercooling circuit is merely configured as an auxiliary unit only to compensate for the lack of cooling capacity of the main refrigerant circuit.
  • the main refrigerant circuit is at a higher pressure than normal due to a rise in outside air temperature, and the input to the variable capacity compressor of the main refrigerant circuit becomes excessive, resulting in a decrease in the coefficient of performance. Even in the running operation, if the low-pressure refrigerant pressure in the main refrigerant circuit is maintained, the second compressor of the supercooling circuit of the refrigeration apparatus in Patent Document 1 does not start.
  • the present invention has been made in view of power, and an object of the present invention is to provide a refrigeration apparatus including a supercooling circuit for increasing the cooling capacity, in which the refrigeration apparatus is not in an overload state.
  • the other is to improve the coefficient of performance of the refrigeration system by actively operating the compressor of the supercooling circuit.
  • the first invention provides a variable capacity first compressor (2), a first condenser (6), a supercooling heat exchanger (8), a first expansion mechanism (10), and a first evaporator ( 12) are connected in sequence to perform a refrigeration cycle, a main refrigerant circuit (lb), a second compressor (20), a second condenser (24), a second expansion mechanism (26), and the above supercooling heat exchanger (8) are connected in order to perform a refrigeration cycle (la) and the first compression It assumes a refrigeration system equipped with a first capacity adjusting means capable of adjusting the capacity of the machine (2).
  • the second compressor (20) includes a variable capacity compressor (20), and the main refrigerant circuit
  • first high pressure refrigerant pressure detecting means (5) for detecting the high pressure refrigerant pressure of (lb)
  • second high pressure refrigerant pressure detecting means (23) for detecting the high pressure refrigerant pressure of the supercooling circuit (la)
  • a second capacity adjusting means capable of adjusting the capacity of the second compressor (20), and controlling the first capacity adjusting means and the second capacity adjusting means to control the main refrigerant circuit (lb). It is characterized by comprising high-pressure equivalent control means (32) for bringing the high-pressure refrigerant pressure value close to the high-pressure refrigerant pressure value of the supercooling circuit (la).
  • the high-pressure equivalent control means (32) can reduce the capacity of the first compressor (2) with the high-pressure refrigerant pressure of the supercooling circuit (la) as a target value.
  • the high-pressure equivalent control means (32) can increase the capacity of the second compressor (20) with the high-pressure refrigerant pressure in the main refrigerant circuit (lb) as a target value. Thereby, the high-pressure refrigerant pressure values of the main refrigerant circuit (lb) and the supercooling circuit (la) can be made closer.
  • the cooling capacity of the main refrigerant circuit (lb) when both of the high-pressure refrigerant pressure values approach the capacity of the first compressor (2) decreases, so that the main refrigerant circuit ( The amount of refrigerant flowing into the first evaporator (12) of lb) decreases, and the cooling capacity of the main refrigerant circuit (lb) decreases.
  • the capacity of the second compressor (20) increases, the supercooling capacity in the supercooling heat exchanger (8) of the main refrigerant circuit (1 b) increases, and the main refrigerant circuit (lb ), The degree of supercooling of the refrigerant flowing through it increases. This expansion of the degree of supercooling increases the cooling capacity of the main refrigerant circuit (lb).
  • a second invention comprises, in the first invention, an outlet liquid temperature detecting means (9) for detecting a refrigerant outlet liquid temperature on the main refrigerant circuit (lb) side of the supercooling heat exchanger (8).
  • the high-pressure equivalent control means (32) increases the capacity of the second compressor (20) by controlling the second capacity adjusting means if the refrigerant outlet liquid temperature is higher than a predetermined value, If it is lower than the value, the second capacity adjusting means is controlled to reduce the capacity of the second compressor (20).
  • the set value at the refrigerant outlet liquid temperature of the main refrigerant circuit (lb), which is obtained only by the high pressure refrigerant pressure value of the main refrigerant circuit (lb), is used as a target value, and
  • the first control unit of the stage (32) can control the capacity of the second compressor (20).
  • a third invention is the first or second invention, comprising suction refrigerant pressure detection means (28) for detecting the suction refrigerant pressure of the second compressor (20), wherein the high-pressure equivalent control means (32) controls the second capacity adjusting means to increase the capacity of the second compressor (20) if the suction refrigerant pressure is higher than a predetermined value, and if the suction refrigerant pressure is lower than the predetermined value, It is characterized by comprising a second control unit that controls the adjusting means to reduce the capacity of the second compressor (20).
  • the suction of the second compressor (20) includes only the high-pressure refrigerant pressure value of the main refrigerant circuit (lb) and the set value of the refrigerant outlet liquid temperature of the main refrigerant circuit (lb).
  • the second controller of the high-pressure equivalent control means (32) can control the capacity of the second compressor (20) using the set value for the refrigerant pressure as a target value.
  • a fourth invention is the four inventions according to any one of the first to third powers, further comprising an evaporation temperature detecting means (11) for detecting an evaporation temperature of the main refrigerant circuit (lb), wherein the high-pressure equivalent control means (32) If the evaporation temperature is lower than a predetermined value, the first capacity adjustment means is controlled to reduce the capacity of the first compressor (2), and if higher than the predetermined value, the first capacity adjustment is performed.
  • a third control unit that increases the capacity of the first compressor (2) by controlling the means is provided.
  • the high-pressure equivalent control means (32) using as a target a set value at the evaporation temperature of the main refrigerant circuit (lb), which is not only the high-pressure refrigerant pressure value of the supercooling circuit (la).
  • the third control unit can control the capacity of the first compressor (2).
  • the supercooling circuit (la) by performing the high-pressure equivalent control, the supercooling circuit (la) until the high-pressure refrigerant pressure of the supercooling circuit (la) approaches the high-pressure refrigerant pressure of the main refrigerant circuit (lb).
  • the second compressor (20) of a) can be operated.
  • the main refrigerant circuit (lb) and the supercooling circuit (la) can be shared.
  • the sharing of the cooling load the decrease in the cooling capacity of the main refrigerant circuit (lb) due to the decrease in the capacity of the first compressor (2) It becomes a configuration to compensate for the increase in cooling capacity due to the increase in capacity.
  • the increase in the electric input due to the increase in the capacity of the second compressor (20) is the decrease in the electric input of the first compressor (2) due to the decrease in the cooling capacity of the main refrigerant circuit (lb). Smaller than. This is because the coefficient of performance of the supercooling circuit (la) is larger than the coefficient of performance of the main refrigerant circuit (lb).
  • the reason why the coefficient of performance of the supercooling circuit (la) is larger than that of the main refrigerant circuit (lb) is that, for example, when the set temperature of the cooling target space is -30 ° C, the main refrigerant circuit (lb) The evaporation saturation temperature is around 140 ° C, the evaporation saturation temperature of the supercooling circuit (la) is around 0 ° C, and the low-pressure refrigerant pressure in the supercooling circuit (la) is high.
  • the cooling operation is not performed only by the main refrigerant circuit (lb) having a small coefficient of performance.
  • the cooling operation is shared by the main refrigerant circuit (lb) and the supercooling circuit (la) having a large coefficient of performance. By performing this, the total coefficient of performance of the refrigeration apparatus can be improved.
  • the first controller of the high-pressure equivalent control can limit an increase in capacity in the second compressor (20).
  • the reason for limiting the increase in the capacity of the second compressor (20) is that when the capacity of the second compressor (20) is increased, the high-pressure refrigerant pressure in the supercooling circuit (la) increases. This is because the supercooling capacity of the supercooling heat exchanger (8) is increased and the refrigerant outlet liquid temperature of the supercooling heat exchanger (8) of the main refrigerant circuit (lb) is also lowered.
  • the high-pressure equivalent means increases the capacity of the second compressor (20) by using only the high-pressure refrigerant pressure of the main refrigerant circuit (lb) as a target value, depending on conditions, It is conceivable that the above-mentioned refrigerant outlet liquid temperature is excessively lower than necessary. Therefore, in order to prevent the refrigerant outlet liquid temperature from dropping too much, the first control unit limits the increase in capacity of the second compressor (20).
  • the second controller of the high pressure equivalent control can limit an increase in capacity in the second compressor (20).
  • the reason for limiting the increase in the capacity of the second compressor (20) is that when the capacity of the second compressor (20) is increased, the high-pressure refrigerant pressure in the supercooling circuit (la) increases. ,Up This is because the suction refrigerant pressure of the second compressor (20) also decreases.
  • the high pressure equivalent means increases the capacity of the second compressor (20) with only the high pressure refrigerant pressure of the main refrigerant circuit (lb) as a target value as in the first invention
  • the suction refrigerant pressure is too low. Therefore, in order to prevent the suction refrigerant pressure from dropping too much, the second control unit limits the increase in capacity of the second compressor (20).
  • the third controller of the high pressure equivalent control has a capacity of the first compressor (2) based on the evaporation temperature.
  • the reduction can be limited.
  • the reason for limiting the capacity reduction of the first compressor (2) is that when the capacity of the first compressor (2) is decreased, the cooling capacity of the main refrigerant circuit (lb) decreases and the cooling capacity of the first compressor (2) decreases. This is because the target space is insufficiently cooled.
  • the high-pressure equivalent means when the high-pressure equivalent means reduces the capacity of the first compressor (2) by using only the high-pressure refrigerant pressure of the supercooling circuit (la) as a target value, depending on the conditions, It is conceivable that the evaporation temperature is too high. Therefore, in order to prevent the intake refrigerant pressure from rising excessively, the three control units limit the decrease in the capacity of the first compressor (2). As a result, the high-pressure equivalent control means (32) can perform high-pressure equivalent control while maintaining the cooling capacity of the main refrigerant circuit (lb).
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a control flow diagram of the refrigeration apparatus according to the embodiment.
  • FIG. 3 is a table showing the relationship between the condensation temperature of the main refrigerant circuit and the subcooling circuit and the coefficient of performance of the refrigeration apparatus.
  • Second variable capacity compressor (second compressor)
  • Second high-pressure refrigerant pressure sensor (second high-pressure refrigerant pressure detection means)
  • Second low-pressure refrigerant pressure sensor (intake refrigerant pressure detection means)
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to this embodiment.
  • This refrigeration apparatus is for cooling a space to be cooled (for example, a freezing room).
  • the refrigeration apparatus includes a main refrigerant circuit (lb) for cooling the space to be cooled, and a supercooling heat exchanger (8) for cooling the refrigerant (high-pressure liquid refrigerant) flowing through the main refrigerant circuit (lb). And a supercooling circuit (la).
  • the refrigerating apparatus is provided with a controller (high pressure equivalent control means) (32) for controlling the operation of the main refrigerant circuit (lb) and the supercooling circuit (la).
  • the main refrigerant circuit (lb) includes a first variable capacity compressor (first compressor) (2), a first outdoor heat exchanger (first condenser) (6), and the supercooling heat exchanger ( 8) and the first expansion valve (first expansion mechanism) (10) and the indoor heat exchanger (first evaporator) (12) are connected in order by refrigerant piping so that a vapor compression refrigeration cycle is performed. It is composed.
  • An inverter (not shown) is connected to the first variable capacity compressor (2).
  • the inverter supplies current to the first variable capacity compressor (2) and supplies the current.
  • the flow frequency can be changed. That is, the capacity of the first variable capacity compressor (2) can be freely changed within a certain range by the inverter.
  • the first suction refrigerant pipe (15) is connected to the suction side of the first variable displacement compressor (2), and the first discharge refrigerant pipe (3) is connected to the discharge side.
  • the first suction refrigerant pipe (15) is provided with a first suction temperature sensor (17) and a first low-pressure refrigerant pressure sensor (16).
  • the first discharge refrigerant pipe (3) is provided with a first discharge temperature sensor (4) and a first high-pressure refrigerant pressure sensor (first high-pressure refrigerant pressure detection means) (5).
  • the first discharge refrigerant pipe (3) connects the first variable capacity compressor (2) and the first outdoor heat exchanger (6).
  • the first outdoor heat exchanger (6) is a cross-fin type fin-and-tube heat exchanger, and in the vicinity of the first outdoor heat exchanger (6) One blower fan (6a) and a first outside air temperature sensor (6b) are provided. Although not shown, in the first outdoor heat exchanger (6), the heat transfer tubes are arranged in a plurality of paths, and a large number of aluminum fins are installed perpendicular to the heat transfer tubes.
  • the first high-pressure liquid refrigerant pipe (7) connecting the first outdoor heat exchanger (6) and the first expansion valve (10) is provided with the supercooling heat exchanger (8). Yes.
  • the supercooling heat exchanger (8) is composed of a plate fin type heat exchanger, and the first and second flow paths (8a, 8b) are provided in the pre-fin type heat exchanger. Is formed.
  • the refrigerant circulating in the main refrigerant circuit (lb) flows through the first flow path (8a), and the refrigerant circulating through the supercooling circuit (la) flows through the second flow path (8b).
  • the refrigerant exchanges heat to cool the refrigerant flowing on the main refrigerant circuit (lb) side.
  • a refrigerant outlet liquid temperature sensor (9) (outlet liquid temperature detecting means) for measuring the temperature of the outlet side of the supercooling heat exchanger (8) for the refrigerant flowing through the main refrigerant circuit (1b) side is provided.
  • the refrigerant pipe for connecting the supercooling heat exchanger (8) and the first expansion valve (10) of the main refrigerant circuit (lb) is provided.
  • the first expansion valve (10) is an electric expansion valve whose opening degree can be adjusted, and the opening degree can be appropriately changed by an electric signal.
  • the indoor heat exchanger (12) is a cross-fin type fin-and-tube heat exchanger. Although not shown, the heat transfer tubes are arranged in a plurality of paths, and a number of aluminum fins are installed perpendicular to the heat transfer tubes.
  • the An evaporation temperature sensor (evaporation temperature detecting means) (11) is provided on the inlet side of the indoor heat exchanger (12), and a third blower fan (12a) is provided near the indoor heat exchanger (12). ) And an indoor temperature sensor (12b).
  • the indoor heat exchanger (12) and the first variable capacity compressor (2) are connected by the first suction refrigerant pipe (15).
  • the main refrigerant circuit (lb) is provided with a liquid injection pipe (18), and one end of the liquid injection pipe (18) is connected to the first outdoor heat exchanger (6) and the excess refrigerant. Connected to the first high-pressure liquid refrigerant pipe (7) between the cooling heat exchanger (8) and the other end between the indoor heat exchanger (12) and the first variable capacity compressor (2). It is connected to the first suction refrigerant pipe (15).
  • the liquid injection pipe (18) is provided with a pressure reducing valve (19) for reducing the pressure of the refrigerant flowing through the liquid injection pipe (18).
  • the supercooling circuit (la) consists of a second variable capacity compressor (20), a second outdoor heat exchanger (second condenser) (24), and a second expansion valve (second expansion mechanism) (26). And the supercooling heat exchanger (8) are sequentially connected by a refrigerant pipe so as to perform a vapor compression refrigeration cycle.
  • the second variable capacity compressor (20) is connected to an inverter (not shown).
  • the capacity of the second variable capacity compressor (20) can be freely changed within a certain range.
  • a second suction refrigerant pipe (30) is connected to the suction side of the second variable capacity compressor (20), and a second discharge refrigerant pipe (21) is connected to the discharge side.
  • the second suction refrigerant pipe (30) is provided with a second suction temperature sensor (29) and a second low-pressure refrigerant pressure sensor (suction refrigerant pressure detection means) (28).
  • the second discharge refrigerant pipe (21) is provided with a second discharge temperature sensor (22) and a second high-pressure refrigerant pressure sensor (second high-pressure refrigerant pressure detection means) (23).
  • the second discharge refrigerant pipe (21) connects the second variable capacity compressor (20) and the second outdoor heat exchanger (24).
  • the second outdoor heat exchanger (24) is a cross-fin type fin-and-tube heat exchanger similar to the first outdoor heat exchanger (6) of the main refrigerant circuit (lb). In the vicinity of the second outdoor heat exchanger (24), a second blower fan (21 ⁇ 2) and a second outside air temperature sensor (24b) are provided. Although not shown, the second outdoor heat exchanger (24) has a plurality of heat transfer tubes. It is arranged in several passes, and a large number of aluminum fins are installed perpendicular to the heat transfer tubes. The second outdoor heat exchanger (24) and the second expansion valve (26) are connected by a second high-pressure liquid refrigerant pipe (25).
  • the second expansion valve (26) is an electric expansion valve whose opening degree can be adjusted, and the opening degree can be appropriately changed by an electric signal.
  • the second expansion valve (26) and the supercooling heat exchanger (8) are connected by a second low-pressure refrigerant pipe (27).
  • the supercooling heat exchanger (8) is composed of a plate fin type heat exchanger, and the second channel (8b) in the plate fin type heat exchanger has a second channel (8b). 2 Low pressure refrigerant pipe (27) is connected.
  • the controller (32) includes a refrigerant outlet liquid temperature sensor (9), an evaporation temperature sensor (11), a first high-pressure refrigerant pressure sensor (5), and a second high-pressure refrigerant pressure sensor (23) provided in the refrigeration apparatus.
  • the high-pressure equivalent control operation of the first variable capacity compressor (2) and the second variable capacity compressor (20) is performed. Yes.
  • the operation of the refrigeration apparatus of this embodiment will be described. First, the cooling operation of the main refrigerant circuit (lb) and the supercooling circuit (la) will be described, and then the high-pressure equivalent control operation in the main refrigerant circuit (lb) and the supercooling circuit (la) will be described.
  • the refrigerant circulates in the circuit using the first outdoor heat exchanger (6) as a condenser and the indoor heat exchanger (12) as an evaporator.
  • the opening of the expansion valve (10) is adjusted to perform the vapor compression refrigeration cycle. Further, the opening degree of the pressure reducing valve (19) of the liquid injection pipe (18) is adjusted according to the operating state.
  • the supercooled high-pressure liquid refrigerant flows into the first expansion valve (10).
  • the high-pressure liquid refrigerant that has flowed into the first expansion valve (10) is reduced in pressure when passing through the first expansion valve (10), becomes a low-pressure liquid refrigerant, and flows into the indoor heat exchanger (12).
  • the low-pressure liquid coolant flowing into the indoor heat exchanger (12) absorbs heat from the air in the space to be cooled when passing through the indoor heat exchanger (12).
  • the low-pressure liquid refrigerant that has absorbed heat from the air in the space to be cooled evaporates into a low-pressure gas refrigerant and flows out of the indoor heat exchanger (12).
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger (12) passes through the first suction refrigerant pipe (15) and flows into the first variable capacity compressor (2).
  • the low-pressure gas refrigerant that has flowed into the first variable capacity compressor (2) is compressed to become high-pressure gas refrigerant, and is discharged from the first variable capacity compressor (2) again.
  • the refrigerant circulates in the main refrigerant circuit (lb) to cool the space to be cooled.
  • the refrigerant circulates in the circuit using the second outdoor heat exchanger (24) as a condenser and the supercooling heat exchanger (8) as an evaporator.
  • the opening degree of the expansion valve (26) is adjusted to perform the vapor compression refrigeration cycle.
  • the high-pressure liquid refrigerant flows out of the second outdoor heat exchanger (24) and flows into the second expansion valve (26).
  • the high-pressure liquid refrigerant flowing into the second expansion valve (26) is reduced in pressure when passing through the second expansion valve (26) to become a low-pressure liquid refrigerant, and the second flow of the supercooling heat exchanger (8).
  • the low-pressure liquid refrigerant flowing into the second flow path of the supercooling heat exchanger (8) flows through the first flow path when passing through the second flow path of the supercooling heat exchanger (8). Absorbs heat from the high-pressure liquid refrigerant in the main refrigerant circuit (lb).
  • the low-pressure liquid refrigerant in the second flow path that has absorbed heat from the high-pressure liquid refrigerant in the first flow path evaporates to become a low-pressure gas refrigerant and flows out of the supercooling heat exchanger (8).
  • the low-pressure gas refrigerant that has flowed out of the supercooling heat exchanger (8) passes through the second suction refrigerant pipe (30) and passes through the second possible refrigerant. It flows into the variable capacity compressor (20).
  • the low-pressure gas refrigerant flowing into the second variable capacity compressor (20) is compressed to become high-pressure gas refrigerant, and is discharged from the second variable capacity compressor (20) again.
  • the refrigerant circulates in the supercooling circuit (la), and the high-pressure liquid coolant in the main refrigerant circuit (lb) is cooled.
  • the high pressure equivalent control means that the main refrigerant circuit (lb) and the supercooling circuit are controlled by performing capacity control by increasing / decreasing the operating frequency of the first and second variable capacity compressors (2, 20). This is a control that adjusts the high-pressure refrigerant pressure with (la) to equalize both high-pressure refrigerant pressures.
  • step ST1 the first outside air temperature sensor
  • the high-pressure refrigerant pressure P1 detected by the first high-pressure refrigerant pressure sensor (5) in the main refrigerant circuit (lb) is detected by the second high-pressure refrigerant pressure sensor (23) in the supercooling circuit (la). Determine whether pressure is greater than P2.
  • step ST8 If the high-pressure refrigerant pressure P1 is less than or equal to the high-pressure refrigerant pressure P2, the process proceeds to the normal control in step ST8 and returns to step 1 again without performing high-pressure equivalent control. On the other hand, when the high-pressure refrigerant pressure P1 is higher than the high-pressure refrigerant pressure P2, the process proceeds to step ST2.
  • the supercooling heat exchanger (8) has a supercooling capacity that is not increased so that the supercooling heat exchanger (8) and the second variable capacity compressor (20) do not malfunction. I have to.
  • step ST3 the frequency of the second variable capacity compressor (20) decreases.
  • the supercooling capacity of the supercooling heat exchanger (8) decreases, so that the refrigerant outlet liquid temperature T1 and the low pressure refrigerant pressure P3 rise, and the freezing puncture of the supercooling heat exchanger (8) occurs.
  • the high-pressure refrigerant pressure PS in the supercooling circuit (la) is lowered, and the process proceeds to step ST5.
  • step ST4 the frequency of the second variable capacity compressor (20) is increased.
  • the supercooling capacity of the supercooling heat exchanger (8) increases, so that the refrigerant outlet liquid temperature T1 and the low pressure refrigerant pressure P3 drop while the high pressure refrigerant pressure of the supercooling circuit (la) is reduced. While PS increases, go to step ST5.
  • step ST6 the frequency of the first variable capacity compressor (2) is increased.
  • the cooling capacity of the indoor heat exchanger (12) is increased, so that the evaporation temperature Te is lowered, while the high-pressure refrigerant pressure P1 of the main refrigerant circuit (lb) is increased, while the step is repeated.
  • step ST7 the frequency of the first variable capacity compressor (2) decreases. This thus, the cooling capacity of the indoor heat exchanger (12) is reduced, so that the evaporation temperature Te is increased while the high-pressure refrigerant pressure P1 of the main refrigerant circuit (lb) is decreased, but the process returns to step ST1. Return.
  • the high-pressure equivalent control operation is performed by repeating the above operation.
  • the refrigeration apparatus performs the high-pressure equivalent control operation until the high-pressure refrigerant pressure in the supercooling circuit (la) approaches the high-pressure refrigerant pressure in the main refrigerant circuit (lb).
  • the second compressor (20) in the supercooling circuit (la) can be actively operated. As a result, even if the main refrigerant circuit (lb) is not overloaded, the second compressor (20) of the supercooling circuit (la) can be operated. As a result, the cooling load of the refrigeration apparatus can be reduced. It can be shared by the main refrigerant circuit (lb) and the supercooling circuit (la).
  • the coefficient of performance of the refrigeration apparatus can be improved by sharing the cooling load of the refrigeration apparatus between the main refrigerant circuit (lb) and the subcooling circuit (la).
  • the reason why the coefficient of performance is improved will be described with reference to FIG. 3 showing the refrigeration cycle simulation results of the main refrigerant circuit (lb) and the supercooling circuit (la) of the present embodiment.
  • the evaporation temperature in the indoor heat exchanger (12) of the main refrigerant circuit (lb) is -40 ° C
  • the supercooling heat exchanger (8) of the supercooling circuit (la) is The evaporating temperature is 0 ° C
  • the cooling capacity of the refrigeration system is constant at 25.2 Kw
  • the condensation temperature of the main refrigerant circuit (lb) and subcooling circuit (la) is changed. The effect of coefficient of performance due to changes was investigated.
  • A is the case where the cooling operation of the refrigeration apparatus is performed only in the main refrigerant circuit (lb), and B and C are the cases where the main refrigerant circuit (lb) and the supercooling circuit (la) are performed. It is.
  • A is the condensation temperature of the main refrigerant circuit (lb) is 50 ° C
  • B is the condensation temperature of the main refrigerant circuit (lb) and the subcooling circuit (la) is 47 ° C and 42 ° C, respectively.
  • the condensation temperature of the refrigerant circuit (lb) and supercooling circuit (la) is 45 ° C.
  • the cooling operation is not performed only with the main refrigerant circuit (lb) having a small coefficient of performance.
  • the high-pressure equivalent control operation is performed with the main refrigerant circuit (lb) and the supercooling circuit (la) having a large coefficient of performance.
  • the performance coefficient of the refrigeration apparatus can be improved by doing so.
  • the main refrigerant circuit (lb) may be a refrigerant circuit that performs a two-stage compression refrigeration cycle, and a plurality of the indoor heat exchangers (12) are installed in parallel. Moyore.
  • the supercooling heat exchanger (8) may be a double pipe type or a shell and tube type heat exchanger that does not need to be a plate type heat exchanger.
  • the present invention relates to a refrigeration apparatus including a supercooling circuit, and is particularly useful for a capacity control technique for the supercooling circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A refrigeration device having a super cooling circuit (1a) for enhancing cooling ability and a main refrigerant circuit (1b) for cooling a target cooling space. Even if the refrigeration device is not in an overloaded condition, high pressure equivalent control in which the pressure of a high pressure refrigerant in the main refrigerant circuit (1b) and the pressure of a high pressure refrigerant in the super cooling circuit (1a) are brought closer to each other is performed in order to improve the performance coefficient of the refrigeration device. Such control is performed by operating a second variable displacement compressor (20) for controlling the super cooling ability of the super cooling circuit (1a).

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、過冷却回路を備えた冷凍装置に関し、特に、過冷却回路の能力制御技 術に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a refrigeration apparatus provided with a supercooling circuit, and particularly to a technology for controlling the capacity of a supercooling circuit.
背景技術  Background art
[0002] 従来より、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られてい る。この冷凍装置の中には、冷却対象空間を冷却するための主冷媒回路に、冷却能 力を増大させるための過冷却熱交換器を備えた過冷却回路が付設されているものが ある。  Conventionally, a refrigeration apparatus including a refrigerant circuit that performs a vapor compression refrigeration cycle is known. In some of these refrigeration apparatuses, a main cooling circuit for cooling a space to be cooled is provided with a supercooling circuit including a supercooling heat exchanger for increasing the cooling capacity.
[0003] 具体的に、上記冷凍装置の主冷媒回路は、第 1圧縮機と第 1室外熱交換器と第 1 膨張弁と室内熱交換器とが順に冷媒配管で接続されている。一方、過冷却回路は、 第 2圧縮機と第 2室外熱交換器と第 2膨張弁と上記過冷却熱交換器とが順に冷媒配 管で接続されている。そして、主冷媒回路に過冷却回路を付設する際には、上記過 冷却回路の過冷却熱交換器を上記主冷媒回路の第 1室外熱交換器と第 1膨張弁と の間に設けられた高圧液配管に配置する。上記過冷却熱交換器は冷媒同士を熱交 換させる熱交換器で、上記主冷媒回路の冷媒が流れる第 1流路と上記過冷却回路 の冷媒が流れる第 2流路とを備えている。これにより、上記過冷却熱交換器において 、主冷媒回路の第 1室外熱交換器で凝縮した高圧液冷媒と、過冷却回路の低圧冷 媒とを熱交換させることで、上記高圧液冷媒を過冷却し、該高圧液冷媒の過冷却度 を大きくすることができる。そして、この高圧液冷媒の過冷却度を大きくすることで、上 記主冷媒回路の冷却能力を増大させることができる。このような上記過冷却回路を備 えた冷凍装置において、該過冷却回路を制御するための従来技術として、特許文献 1が挙げられる。  [0003] Specifically, in the main refrigerant circuit of the refrigeration apparatus, a first compressor, a first outdoor heat exchanger, a first expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe. On the other hand, in the supercooling circuit, the second compressor, the second outdoor heat exchanger, the second expansion valve, and the supercooling heat exchanger are sequentially connected by the refrigerant pipe. When the supercooling circuit is attached to the main refrigerant circuit, the supercooling heat exchanger of the supercooling circuit is provided between the first outdoor heat exchanger of the main refrigerant circuit and the first expansion valve. Place in high pressure liquid piping. The supercooling heat exchanger is a heat exchanger that exchanges heat between refrigerants, and includes a first flow path through which the refrigerant in the main refrigerant circuit flows and a second flow path through which the refrigerant in the supercooling circuit flows. As a result, in the supercooling heat exchanger, the high-pressure liquid refrigerant condensed in the first outdoor heat exchanger of the main refrigerant circuit and the low-pressure refrigerant in the supercooling circuit are heat-exchanged, so that the high-pressure liquid refrigerant is superfluid. By cooling, the degree of supercooling of the high-pressure liquid refrigerant can be increased. And by increasing the degree of supercooling of the high-pressure liquid refrigerant, the cooling capacity of the main refrigerant circuit can be increased. Patent Document 1 is cited as a conventional technique for controlling the supercooling circuit in the refrigeration apparatus having the supercooling circuit.
[0004] この特許文献 1の冷凍装置では、該主冷媒回路の第 1圧縮機が容量可変型圧縮 機で構成されており、該第 1圧縮機の運転容量及び主冷媒回路の低圧冷媒圧力に 基づいて、上記過冷却回路の第 2圧縮機の発停制御を行う。具体的には、上記容量 可変型圧縮機の容量が第 1所定値以上でありかつ上記低圧冷媒圧力が所定値以上 の場合、つまり主冷媒回路が冷却過負荷状態にある場合に、上記過冷却回路の第 2 圧縮機が起動する。一方、上記容量可変型圧縮機の容量が第 1所定値より低い第 2 所定値以下となった場合に、上記過冷却回路の第 2圧縮機が停止する。 [0004] In the refrigeration apparatus of Patent Document 1, the first compressor of the main refrigerant circuit is composed of a variable capacity compressor, and the operating capacity of the first compressor and the low-pressure refrigerant pressure of the main refrigerant circuit are adjusted. Based on this, on / off control of the second compressor of the supercooling circuit is performed. Specifically, the above capacity When the capacity of the variable compressor is equal to or greater than the first predetermined value and the low-pressure refrigerant pressure is equal to or greater than the predetermined value, that is, when the main refrigerant circuit is in a cooling overload state, the second compressor of the supercooling circuit is to start. On the other hand, when the capacity of the variable capacity compressor becomes equal to or lower than a second predetermined value lower than the first predetermined value, the second compressor of the supercooling circuit stops.
[0005] つまり、上記発停制御は、主冷媒回路が冷却過負荷状態となった場合に過冷却回 路の第 2圧縮機が起動し、冷却過負荷状態とならない場合には第 2圧縮機が停止す るように構成されている。 [0005] That is, the start / stop control is performed when the second compressor of the supercooling circuit starts when the main refrigerant circuit is in a cooling overload state, and does not enter the cooling overload state. Is configured to stop.
特許文献 1:特許第 3376844号公報  Patent Document 1: Japanese Patent No. 3376844
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力、しながら、特許文献 1の冷凍装置では、上記過冷却回路を利用して上記主冷 媒回路の過負荷状態は回避することができるものの、主冷媒回路が過負荷状態とな らなければ過冷却回路は起動しなレ、。つまり、上記過冷却回路は、該主冷媒回路の 冷却能力不足を補うためだけの補助的なユニットとして構成されているに過ぎない。 例えば、上記冷凍装置の運転が、外気温度の上昇により該主冷媒回路が通常より高 い高圧冷媒圧力であって、主冷媒回路の容量可変型圧縮機への入力が過大となり 成績係数が低下している運転であっても、上記主冷媒回路の低圧冷媒圧力が維持 されている場合には、特許文献 1における冷凍装置の過冷却回路の第 2圧縮機は起 動しない。 However, in the refrigeration apparatus disclosed in Patent Document 1, although the overload state of the main refrigerant circuit can be avoided by using the overcooling circuit, the main refrigerant circuit is in an overload state. Otherwise, the supercooling circuit will not start. That is, the supercooling circuit is merely configured as an auxiliary unit only to compensate for the lack of cooling capacity of the main refrigerant circuit. For example, in the operation of the refrigeration system, the main refrigerant circuit is at a higher pressure than normal due to a rise in outside air temperature, and the input to the variable capacity compressor of the main refrigerant circuit becomes excessive, resulting in a decrease in the coefficient of performance. Even in the running operation, if the low-pressure refrigerant pressure in the main refrigerant circuit is maintained, the second compressor of the supercooling circuit of the refrigeration apparatus in Patent Document 1 does not start.
[0007] 本発明は、力かる点に鑑みてなされたものであり、その目的は、冷却能力を増加さ せるための過冷却回路を備えた冷凍装置において、冷凍装置が過負荷状態でなく ても、上記過冷却回路の圧縮機を積極的に運転させることにより、冷凍装置の成績 係数を向上させることである。  [0007] The present invention has been made in view of power, and an object of the present invention is to provide a refrigeration apparatus including a supercooling circuit for increasing the cooling capacity, in which the refrigeration apparatus is not in an overload state. The other is to improve the coefficient of performance of the refrigeration system by actively operating the compressor of the supercooling circuit.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の発明は、可変容量の第 1圧縮機 (2)と第 1凝縮器 (6)と過冷却熱交換器 (8)と 第 1膨張機構(10)と第 1蒸発器 (12)とが順に接続されて冷凍サイクルを行う主冷媒 回路(lb)と、第 2圧縮機 (20)と第 2凝縮器 (24)と第 2膨張機構 (26)と上記過冷却熱 交換器 (8)とが順に接続されて冷凍サイクルを行う過冷却回路(la)と、上記第 1圧縮 機 (2)の容量を調整可能な第 1容量調整手段とを備えた冷凍装置を前提としている。 [0008] The first invention provides a variable capacity first compressor (2), a first condenser (6), a supercooling heat exchanger (8), a first expansion mechanism (10), and a first evaporator ( 12) are connected in sequence to perform a refrigeration cycle, a main refrigerant circuit (lb), a second compressor (20), a second condenser (24), a second expansion mechanism (26), and the above supercooling heat exchanger (8) are connected in order to perform a refrigeration cycle (la) and the first compression It assumes a refrigeration system equipped with a first capacity adjusting means capable of adjusting the capacity of the machine (2).
[0009] そして、上記第 2圧縮機 (20)が可変容量圧縮機 (20)で構成され、上記主冷媒回路 [0009] The second compressor (20) includes a variable capacity compressor (20), and the main refrigerant circuit
(lb)の高圧冷媒圧力を検知する第 1高圧冷媒圧力検知手段 (5)と、上記過冷却回 路(la)の高圧冷媒圧力を検知する第 2高圧冷媒圧力検知手段 (23)と、上記第 2圧 縮機 (20)の容量を調整可能な第 2容量調整手段とを備え、上記第 1容量調整手段と 上記第 2容量調整手段とを制御して、上記主冷媒回路(lb)の高圧冷媒圧力値と、上 記過冷却回路(la)の高圧冷媒圧力値とを近づける高圧等価制御手段 (32)を備えて レ、ることを特徴としている。  first high pressure refrigerant pressure detecting means (5) for detecting the high pressure refrigerant pressure of (lb), second high pressure refrigerant pressure detecting means (23) for detecting the high pressure refrigerant pressure of the supercooling circuit (la), and the above A second capacity adjusting means capable of adjusting the capacity of the second compressor (20), and controlling the first capacity adjusting means and the second capacity adjusting means to control the main refrigerant circuit (lb). It is characterized by comprising high-pressure equivalent control means (32) for bringing the high-pressure refrigerant pressure value close to the high-pressure refrigerant pressure value of the supercooling circuit (la).
[0010] 第 1の発明では、上記過冷却回路(la)の高圧冷媒圧力を目標値として、上記高圧 等価制御手段 (32)が第 1圧縮機 (2)の容量を減少させることができる一方、上記主 冷媒回路(lb)の高圧冷媒圧力を目標値として、上記高圧等価制御手段 (32)が第 2 圧縮機(20)の容量を増加させることができる。これにより、上記主冷媒回路(lb)と上 記過冷却回路(la)との高圧冷媒圧力値を近づけることができる。 [0010] In the first invention, the high-pressure equivalent control means (32) can reduce the capacity of the first compressor (2) with the high-pressure refrigerant pressure of the supercooling circuit (la) as a target value. The high-pressure equivalent control means (32) can increase the capacity of the second compressor (20) with the high-pressure refrigerant pressure in the main refrigerant circuit (lb) as a target value. Thereby, the high-pressure refrigerant pressure values of the main refrigerant circuit (lb) and the supercooling circuit (la) can be made closer.
[0011] ここで、両方の上記高圧冷媒圧力値が近づく際の主冷媒回路(lb)の冷却能力に ついては、上記第 1圧縮機 (2)の容量が減少することにより、上記主冷媒回路(lb)の 第 1蒸発器(12)に流入する冷媒量は減少して、該主冷媒回路(lb)の冷却能力は減 少する。一方、上記第 2圧縮機 (20)の容量が増加することにより、上記主冷媒回路(1 b)の過冷却熱交換器 (8)における過冷却能力は増加して、該主冷媒回路(lb)を流 れる冷媒の過冷却度は大きくなる。この過冷却度の拡大により、主冷媒回路(lb)の 冷却能力は増加する。 [0011] Here, regarding the cooling capacity of the main refrigerant circuit (lb) when both of the high-pressure refrigerant pressure values approach, the capacity of the first compressor (2) decreases, so that the main refrigerant circuit ( The amount of refrigerant flowing into the first evaporator (12) of lb) decreases, and the cooling capacity of the main refrigerant circuit (lb) decreases. On the other hand, as the capacity of the second compressor (20) increases, the supercooling capacity in the supercooling heat exchanger (8) of the main refrigerant circuit (1 b) increases, and the main refrigerant circuit (lb ), The degree of supercooling of the refrigerant flowing through it increases. This expansion of the degree of supercooling increases the cooling capacity of the main refrigerant circuit (lb).
[0012] 第 2の発明は、第 1の発明において、上記過冷却熱交換器 (8)の主冷媒回路(lb) 側の冷媒出口液温度を検知する出口液温度検知手段 (9)を備え、上記高圧等価制 御手段 (32)は、上記冷媒出口液温度が所定値より高ければ、上記第 2容量調整手 段を制御して上記第 2圧縮機 (20)の容量を増加させ、所定値より低ければ、上記第 2容量調整手段を制御して上記第 2圧縮機 (20)の容量を減少させる第 1制御部を備 えていること特徴としている。  [0012] A second invention comprises, in the first invention, an outlet liquid temperature detecting means (9) for detecting a refrigerant outlet liquid temperature on the main refrigerant circuit (lb) side of the supercooling heat exchanger (8). The high-pressure equivalent control means (32) increases the capacity of the second compressor (20) by controlling the second capacity adjusting means if the refrigerant outlet liquid temperature is higher than a predetermined value, If it is lower than the value, the second capacity adjusting means is controlled to reduce the capacity of the second compressor (20).
[0013] 第 2の発明では、上記主冷媒回路(lb)の高圧冷媒圧力値だけでなぐ上記主冷媒 回路(lb)の冷媒出口液温度における設定値を目標値として、上記高圧等価制御手 段 (32)の第 1制御部が上記第 2圧縮機 (20)の容量を制御することができる。 [0013] In the second invention, the set value at the refrigerant outlet liquid temperature of the main refrigerant circuit (lb), which is obtained only by the high pressure refrigerant pressure value of the main refrigerant circuit (lb), is used as a target value, and The first control unit of the stage (32) can control the capacity of the second compressor (20).
[0014] 第 3の発明は、第 1または第 2の発明において、上記第 2圧縮機 (20)の吸入冷媒圧 カを検知する吸入冷媒圧力検出手段 (28)を備え、上記高圧等価制御手段 (32)は、 上記吸入冷媒圧力が所定値より高ければ、上記第 2容量調整手段を制御して上記 第 2圧縮機 (20)の容量を増加させ、所定値より低ければ、上記第 2容量調整手段を 制御して上記第 2圧縮機(20)の容量を減少させる第 2制御部を備えていること特徴と している。 [0014] A third invention is the first or second invention, comprising suction refrigerant pressure detection means (28) for detecting the suction refrigerant pressure of the second compressor (20), wherein the high-pressure equivalent control means (32) controls the second capacity adjusting means to increase the capacity of the second compressor (20) if the suction refrigerant pressure is higher than a predetermined value, and if the suction refrigerant pressure is lower than the predetermined value, It is characterized by comprising a second control unit that controls the adjusting means to reduce the capacity of the second compressor (20).
[0015] 第 3の発明では、上記主冷媒回路(lb)の高圧冷媒圧力値や上記主冷媒回路(lb) の冷媒出口液温度の設定値だけでなぐ上記第 2圧縮機 (20)の吸入冷媒圧力にお ける設定値を目標値として、上記高圧等価制御手段 (32)の第 2制御部が上記第 2圧 縮機(20)の容量を制御することができる。  [0015] In the third invention, the suction of the second compressor (20) includes only the high-pressure refrigerant pressure value of the main refrigerant circuit (lb) and the set value of the refrigerant outlet liquid temperature of the main refrigerant circuit (lb). The second controller of the high-pressure equivalent control means (32) can control the capacity of the second compressor (20) using the set value for the refrigerant pressure as a target value.
[0016] 第 4の発明は、第 1から第 3の何れ力 4つの発明において、上記主冷媒回路(lb)の 蒸発温度を検知する蒸発温度検知手段(11)を備え、上記高圧等価制御手段 (32) は、上記蒸発温度が所定値より低ければ、上記第 1容量調整手段を制御して上記第 1圧縮機 (2)の容量を減少させ、所定値より高ければ、上記第 1容量調整手段を制御 して上記第 1圧縮機 (2)の容量を増加させる第 3制御部を備えていること特徴として いる。  [0016] A fourth invention is the four inventions according to any one of the first to third powers, further comprising an evaporation temperature detecting means (11) for detecting an evaporation temperature of the main refrigerant circuit (lb), wherein the high-pressure equivalent control means (32) If the evaporation temperature is lower than a predetermined value, the first capacity adjustment means is controlled to reduce the capacity of the first compressor (2), and if higher than the predetermined value, the first capacity adjustment is performed. A third control unit that increases the capacity of the first compressor (2) by controlling the means is provided.
[0017] 第 4の発明では、上記過冷却回路(la)の高圧冷媒圧力値だけでなぐ上記主冷媒 回路(lb)の蒸発温度における設定値を目標値として、上記高圧等価制御手段 (32) の第 3制御部が上記第 1圧縮機 (2)の容量を制御することができる。  [0017] In the fourth invention, the high-pressure equivalent control means (32) using as a target a set value at the evaporation temperature of the main refrigerant circuit (lb), which is not only the high-pressure refrigerant pressure value of the supercooling circuit (la). The third control unit can control the capacity of the first compressor (2).
発明の効果  The invention's effect
[0018] 本発明によれば、上記高圧等価制御を行うことにより、上記過冷却回路(la)の高圧 冷媒圧力が上記主冷媒回路(lb)の高圧冷媒圧力に近づくまで、上記過冷却回路(1 a)の第 2圧縮機(20)を運転することができる。これにより、上記主冷媒回路(lb)が過 負荷状態でなくても上記過冷却回路(la)の第 2圧縮機 (20)を稼働することができ、 結果として、上記冷凍装置の冷却負荷を主冷媒回路(lb)と過冷却回路(la)とで分 担させることが可能となる。ここで、この冷却負荷の分担に関しては、上記第 1圧縮機 (2)の容量減少による主冷媒回路(lb)の冷却能力の減少を、上記第 2圧縮機 (20) の容量増加による冷却能力の増加で補う構成となる。 [0018] According to the present invention, by performing the high-pressure equivalent control, the supercooling circuit (la) until the high-pressure refrigerant pressure of the supercooling circuit (la) approaches the high-pressure refrigerant pressure of the main refrigerant circuit (lb). 1) The second compressor (20) of a) can be operated. As a result, even if the main refrigerant circuit (lb) is not overloaded, the second compressor (20) of the supercooling circuit (la) can be operated. As a result, the cooling load of the refrigeration system can be reduced. The main refrigerant circuit (lb) and the supercooling circuit (la) can be shared. Here, regarding the sharing of the cooling load, the decrease in the cooling capacity of the main refrigerant circuit (lb) due to the decrease in the capacity of the first compressor (2) It becomes a configuration to compensate for the increase in cooling capacity due to the increase in capacity.
[0019] 又、上記第 2圧縮機 (20)の容量増加による電気入力の増加量は、主冷媒回路(lb )の冷却能力の減少に伴う第 1圧縮機 (2)の電気入力の減少量より小さい。これは、 過冷却回路(la)の成績係数が主冷媒回路(lb)の成績係数より大きいからである。こ こで、主冷媒回路(lb)より過冷却回路(la)の成績係数が大きい理由は、例えば、冷 却対象空間の設定温度が一 30°Cの場合は、主冷媒回路(lb)の蒸発飽和温度が一 40°C付近、過冷却回路(la)の蒸発飽和温度が 0°C付近となり、該過冷却回路(la) の低圧冷媒圧力が高い。この低圧状態を維持しながら高圧等価制御を行えば、両者 の高圧冷媒圧力が同値となった場合、高低圧差の小さい過冷却回路(la)の成績係 数の方が主冷媒回路(lb)に比べて大きくなるからである。  [0019] The increase in the electric input due to the increase in the capacity of the second compressor (20) is the decrease in the electric input of the first compressor (2) due to the decrease in the cooling capacity of the main refrigerant circuit (lb). Smaller than. This is because the coefficient of performance of the supercooling circuit (la) is larger than the coefficient of performance of the main refrigerant circuit (lb). Here, the reason why the coefficient of performance of the supercooling circuit (la) is larger than that of the main refrigerant circuit (lb) is that, for example, when the set temperature of the cooling target space is -30 ° C, the main refrigerant circuit (lb) The evaporation saturation temperature is around 140 ° C, the evaporation saturation temperature of the supercooling circuit (la) is around 0 ° C, and the low-pressure refrigerant pressure in the supercooling circuit (la) is high. If high-pressure equivalent control is performed while maintaining this low-pressure state, when both high-pressure refrigerant pressures have the same value, the performance coefficient of the supercooling circuit (la) with a small high-low-pressure difference is greater in the main refrigerant circuit (lb). It is because it becomes large compared.
[0020] 以上により、成績係数の小さい主冷媒回路(lb)のみで冷却運転を行うのではなぐ 該主冷媒回路(lb)と成績係数の大きい過冷却回路(la)とで分担して冷却運転を行 うことにより、上記冷凍装置のトータルの成績係数を向上させることができる。  [0020] As described above, the cooling operation is not performed only by the main refrigerant circuit (lb) having a small coefficient of performance. The cooling operation is shared by the main refrigerant circuit (lb) and the supercooling circuit (la) having a large coefficient of performance. By performing this, the total coefficient of performance of the refrigeration apparatus can be improved.
[0021] また、上記第 2の発明によれば、上記高圧等価制御中において、上記高圧等価制 御の第 1制御部が上記第 2圧縮機 (20)における容量の増加を制限することができる 。ここで、上記第 2圧縮機 (20)の容量増加を制限する理由は、上記第 2圧縮機 (20) の容量を増加させると、上記過冷却回路(la)の高圧冷媒圧力が上がると同時に、上 記過冷却熱交換器 (8)の過冷却能力を増加させて主冷媒回路(lb)の過冷却熱交換 器 (8)の冷媒出口液温度も下がってしまうからである。つまり、第 1の発明のように、上 記高圧等価手段が上記主冷媒回路(lb)の高圧冷媒圧力だけを目標値として上記 第 2圧縮機 (20)の容量を増加させた場合、条件によっては上記冷媒出口液温度が 必要以上に下力 Sり過ぎることが考えられる。そこで、この冷媒出口液温度の下がりす ぎを防止するために、上記 1制御部が上記第 2圧縮機(20)における容量の増加を制 限する。  [0021] Further, according to the second invention, during the high-pressure equivalent control, the first controller of the high-pressure equivalent control can limit an increase in capacity in the second compressor (20). . Here, the reason for limiting the increase in the capacity of the second compressor (20) is that when the capacity of the second compressor (20) is increased, the high-pressure refrigerant pressure in the supercooling circuit (la) increases. This is because the supercooling capacity of the supercooling heat exchanger (8) is increased and the refrigerant outlet liquid temperature of the supercooling heat exchanger (8) of the main refrigerant circuit (lb) is also lowered. That is, as in the first invention, when the high-pressure equivalent means increases the capacity of the second compressor (20) by using only the high-pressure refrigerant pressure of the main refrigerant circuit (lb) as a target value, depending on conditions, It is conceivable that the above-mentioned refrigerant outlet liquid temperature is excessively lower than necessary. Therefore, in order to prevent the refrigerant outlet liquid temperature from dropping too much, the first control unit limits the increase in capacity of the second compressor (20).
[0022] また、上記第 3の発明によれば、上記高圧等価制御中において、上記高圧等価制 御の第 2制御部が上記第 2圧縮機(20)における容量の増加を制限することができる 。ここで、上記第 2圧縮機 (20)の容量増加を制限する理由は、上記第 2圧縮機 (20) の容量を増加させると、上記過冷却回路(la)の高圧冷媒圧力が上がると同時に、上 記第 2圧縮機 (20)の吸入冷媒圧力も下がってしまうからである。つまり、第 1の発明の ように、上記高圧等価手段が上記主冷媒回路(lb)の高圧冷媒圧力だけを目標値と して上記第 2圧縮機 (20)の容量を増加させた場合、条件によっては上記吸入冷媒圧 力が必要以上に下がり過ぎることが考えられる。そこで、この吸入冷媒圧力の下がり すぎを防止するために、上記 2制御部が上記第 2圧縮機(20)における容量の増加を 制限する。 [0022] Further, according to the third aspect of the invention, during the high pressure equivalent control, the second controller of the high pressure equivalent control can limit an increase in capacity in the second compressor (20). . Here, the reason for limiting the increase in the capacity of the second compressor (20) is that when the capacity of the second compressor (20) is increased, the high-pressure refrigerant pressure in the supercooling circuit (la) increases. ,Up This is because the suction refrigerant pressure of the second compressor (20) also decreases. That is, when the high pressure equivalent means increases the capacity of the second compressor (20) with only the high pressure refrigerant pressure of the main refrigerant circuit (lb) as a target value as in the first invention, Depending on the situation, it is conceivable that the suction refrigerant pressure is too low. Therefore, in order to prevent the suction refrigerant pressure from dropping too much, the second control unit limits the increase in capacity of the second compressor (20).
[0023] また、上記第 4の発明によれば、上記高圧等価制御中において、上記高圧等価制 御の第 3制御部が、上記蒸発温度に基いて上記第 1圧縮機(2)における容量の減少 を制限することができる。ここで、上記第 1圧縮機 (2)の容量減少を制限する理由は、 上記第 1圧縮機 (2)の容量を減少させると、主冷媒回路(lb)の冷却能力が減少して 上記冷却対象空間の冷却不足が起こってしまうからである。つまり、第 1の発明のよう に、上記高圧等価手段が上記過冷却回路(la)の高圧冷媒圧力だけを目標値として 上記第 1圧縮機 (2)の容量を減少させた場合、条件によっては上記蒸発温度が必要 以上に上力 Sり過ぎることが考えられる。そこで、この吸入冷媒圧力の上がりすぎを防 止するために、上記 3制御部が上記第 1圧縮機 (2)における容量の減少を制限する。 これにより、上記高圧等価制御手段(32)が、主冷媒回路(lb)の冷却能力を保ちつ つ、高圧等価制御を行うことができる。  [0023] Further, according to the fourth aspect of the invention, during the high pressure equivalent control, the third controller of the high pressure equivalent control has a capacity of the first compressor (2) based on the evaporation temperature. The reduction can be limited. Here, the reason for limiting the capacity reduction of the first compressor (2) is that when the capacity of the first compressor (2) is decreased, the cooling capacity of the main refrigerant circuit (lb) decreases and the cooling capacity of the first compressor (2) decreases. This is because the target space is insufficiently cooled. That is, as in the first invention, when the high-pressure equivalent means reduces the capacity of the first compressor (2) by using only the high-pressure refrigerant pressure of the supercooling circuit (la) as a target value, depending on the conditions, It is conceivable that the evaporation temperature is too high. Therefore, in order to prevent the intake refrigerant pressure from rising excessively, the three control units limit the decrease in the capacity of the first compressor (2). As a result, the high-pressure equivalent control means (32) can perform high-pressure equivalent control while maintaining the cooling capacity of the main refrigerant circuit (lb).
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]図 1は、実施形態に係る冷凍装置の冷媒回路図である。  FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment.
[図 2]図 2は、実施形態に係る冷凍装置の制御フロー図である。  FIG. 2 is a control flow diagram of the refrigeration apparatus according to the embodiment.
[図 3]図 3は、主冷媒回路及び過冷却回路の凝縮温度と冷凍装置の成績係数との関 係を示す表である。  FIG. 3 is a table showing the relationship between the condensation temperature of the main refrigerant circuit and the subcooling circuit and the coefficient of performance of the refrigeration apparatus.
符号の説明  Explanation of symbols
[0025] 1 冷凍装置 [0025] 1 Refrigeration equipment
la 過冷却回路  la Supercooling circuit
lb 主冷媒回路  lb Main refrigerant circuit
2 第 1可変容量型圧縮機 (第 1圧縮機)  2 First variable capacity compressor (first compressor)
5 第 1高圧冷媒圧力センサ (第 1高圧冷媒圧力検知手段) 6 室外熱交換器 (第 1凝縮器) 5 First high-pressure refrigerant pressure sensor (first high-pressure refrigerant pressure detection means) 6 Outdoor heat exchanger (first condenser)
8 過冷却熱交換器  8 Supercooling heat exchanger
9 冷媒出口液温度センサ(出口液温度検知手段)  9 Refrigerant outlet liquid temperature sensor (outlet liquid temperature detection means)
10 第 1膨張弁 (第 1膨張機構)  10 1st expansion valve (1st expansion mechanism)
11 蒸発温度センサ (蒸発温度検知手段)  11 Evaporation temperature sensor (Evaporation temperature detection means)
12 室内熱交換器 (第 1蒸発器)  12 Indoor heat exchanger (first evaporator)
20 第 2可変容量型圧縮機 (第 2圧縮機)  20 Second variable capacity compressor (second compressor)
23 第 2高圧冷媒圧力センサ (第 2高圧冷媒圧力検知手段)  23 Second high-pressure refrigerant pressure sensor (second high-pressure refrigerant pressure detection means)
24 第 2室外熱交換器 (第 2凝縮器)  24 Second outdoor heat exchanger (second condenser)
26 第 2膨張弁 (第 2膨張機構)  26 Second expansion valve (second expansion mechanism)
28 第 2低圧冷媒圧力センサ(吸入冷媒圧力検知手段)  28 Second low-pressure refrigerant pressure sensor (intake refrigerant pressure detection means)
32 コントローラ(高圧等価制御手段)  32 Controller (High-pressure equivalent control means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0027] 冷凍装置の構成  [0027] Configuration of refrigeration apparatus
図 1は、この実施形態に係る冷凍装置の冷媒回路図である。この冷凍装置は、冷却 対象空間(例えば、冷凍室)を冷却するためのものである。上記冷凍装置は、冷却対 象空間を冷却するための主冷媒回路(lb)と、該主冷媒回路(lb)を流れる冷媒 (高圧 液冷媒)を冷却するための過冷却熱交換器 (8)を有する過冷却回路(la)とを備えて いる。又、上記冷凍装置には、上記主冷媒回路(lb)及び過冷却回路(la)の運転を 制御するためコントローラ(高圧等価制御手段) (32)が設置されてレ、る。  FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus according to this embodiment. This refrigeration apparatus is for cooling a space to be cooled (for example, a freezing room). The refrigeration apparatus includes a main refrigerant circuit (lb) for cooling the space to be cooled, and a supercooling heat exchanger (8) for cooling the refrigerant (high-pressure liquid refrigerant) flowing through the main refrigerant circuit (lb). And a supercooling circuit (la). The refrigerating apparatus is provided with a controller (high pressure equivalent control means) (32) for controlling the operation of the main refrigerant circuit (lb) and the supercooling circuit (la).
[0028] 〈主冷媒回路〉  <Main refrigerant circuit>
上記主冷媒回路(lb)は、第 1可変容量型圧縮機 (第 1圧縮機)(2)と第 1室外熱交 換器 (第 1凝縮器)(6)と上記過冷却熱交換器 (8)と第 1膨張弁 (第 1膨張機構) (10) と室内熱交換器 (第 1蒸発器)(12)とが順に冷媒配管で接続されて、蒸気圧縮式冷 凍サイクルを行うように構成されてレ、る。  The main refrigerant circuit (lb) includes a first variable capacity compressor (first compressor) (2), a first outdoor heat exchanger (first condenser) (6), and the supercooling heat exchanger ( 8) and the first expansion valve (first expansion mechanism) (10) and the indoor heat exchanger (first evaporator) (12) are connected in order by refrigerant piping so that a vapor compression refrigeration cycle is performed. It is composed.
[0029] 上記第 1可変容量型圧縮機 (2)には、図示しなレ、インバータが接続されている。上 記インバータは、上記第 1可変容量型圧縮機 (2)に電流を供給するとともに、その電 流の周波数を変化することが可能に構成されている。つまり、上記第 1可変容量型圧 縮機 (2)の容量は、上記インバータにより、ある範囲内で自在に変更することが可能 となっている。一方、上記第 1可変容量型圧縮機 (2)の吸入側には第 1吸入冷媒配 管(15)力 吐出側には第 1吐出冷媒配管(3)がそれぞれ接続されている。上記第 1 吸入冷媒配管(15)には第 1吸入温度センサ(17)と第 1低圧冷媒圧力センサ(16)と が設けられている。又、上記第 1吐出冷媒配管(3)には、第 1吐出温度センサ (4)と第 1高圧冷媒圧力センサ (第 1高圧冷媒圧力検知手段)(5)とが設けられている。そして 、該第 1吐出冷媒配管 (3)は上記第 1可変容量型圧縮機 (2)と第 1室外熱交換器 (6) とを接続している。 [0029] An inverter (not shown) is connected to the first variable capacity compressor (2). The inverter supplies current to the first variable capacity compressor (2) and supplies the current. The flow frequency can be changed. That is, the capacity of the first variable capacity compressor (2) can be freely changed within a certain range by the inverter. On the other hand, the first suction refrigerant pipe (15) is connected to the suction side of the first variable displacement compressor (2), and the first discharge refrigerant pipe (3) is connected to the discharge side. The first suction refrigerant pipe (15) is provided with a first suction temperature sensor (17) and a first low-pressure refrigerant pressure sensor (16). The first discharge refrigerant pipe (3) is provided with a first discharge temperature sensor (4) and a first high-pressure refrigerant pressure sensor (first high-pressure refrigerant pressure detection means) (5). The first discharge refrigerant pipe (3) connects the first variable capacity compressor (2) and the first outdoor heat exchanger (6).
[0030] 上記第 1室外熱交換器 (6)は、クロスフィン式のフィン'アンド 'チューブ型熱交換器 で構成されており、該第 1室外熱交換器 (6)の近傍には、第 1送風ファン (6a)と第 1外 気温度センサ(6b)とが設けられている。又、示していないが、上記第 1室外熱交換器 (6)は、伝熱管が複数パスに配列されており、該伝熱管と直交して多数のアルミフィン が設置されている。そして、上記第 1室外熱交換器 (6)と第 1膨張弁(10)とを接続す る第 1高圧液冷媒配管(7)には、上記過冷却熱交換器 (8)が設けられている。  [0030] The first outdoor heat exchanger (6) is a cross-fin type fin-and-tube heat exchanger, and in the vicinity of the first outdoor heat exchanger (6) One blower fan (6a) and a first outside air temperature sensor (6b) are provided. Although not shown, in the first outdoor heat exchanger (6), the heat transfer tubes are arranged in a plurality of paths, and a large number of aluminum fins are installed perpendicular to the heat transfer tubes. The first high-pressure liquid refrigerant pipe (7) connecting the first outdoor heat exchanger (6) and the first expansion valve (10) is provided with the supercooling heat exchanger (8). Yes.
[0031] 上記過冷却熱交換器 (8)は、プレートフィン型熱交換器で構成されており、該プレ 一トフイン型熱交換器内には第 1、第 2流路 (8a,8b)が形成されている。上記第 1流路 (8a)には上記主冷媒回路(lb)を循環する冷媒が流れ、上記第 2流路 (8b)には過冷 却回路(la)を循環する冷媒が流れている。そして、この冷媒同士が熱交換を行うこと により、上記主冷媒回路(lb)側を流れる冷媒は冷却される。又、上記主冷媒回路(1 b)側を流れる冷媒の過冷却熱交換器 (8)の出口側の温度を測定するための冷媒出 口液温度センサ (9) (出口液温度検知手段)が、上記主冷媒回路(lb)の過冷却熱交 換器 (8)と第 1膨張弁(10)とを接続する冷媒配管に設けられている。  [0031] The supercooling heat exchanger (8) is composed of a plate fin type heat exchanger, and the first and second flow paths (8a, 8b) are provided in the pre-fin type heat exchanger. Is formed. The refrigerant circulating in the main refrigerant circuit (lb) flows through the first flow path (8a), and the refrigerant circulating through the supercooling circuit (la) flows through the second flow path (8b). The refrigerant exchanges heat to cool the refrigerant flowing on the main refrigerant circuit (lb) side. In addition, a refrigerant outlet liquid temperature sensor (9) (outlet liquid temperature detecting means) for measuring the temperature of the outlet side of the supercooling heat exchanger (8) for the refrigerant flowing through the main refrigerant circuit (1b) side is provided. The refrigerant pipe for connecting the supercooling heat exchanger (8) and the first expansion valve (10) of the main refrigerant circuit (lb) is provided.
[0032] 上記第 1膨張弁(10)は、開度が調節可能な電動膨張弁であり、その開度は適宜、 電気信号によって変更可能に構成されている。  [0032] The first expansion valve (10) is an electric expansion valve whose opening degree can be adjusted, and the opening degree can be appropriately changed by an electric signal.
[0033] 上記室内熱交換器(12)は、上記第 1室外熱交換器 (6)と同様に、クロスフィン式の フィン'アンド 'チューブ型熱交換器で構成されている。図示していないが、伝熱管が 複数パスに配列されており、該伝熱管と直交して多数のアルミフィンが設置されてい る。又、上記室内熱交換器(12)の入口側には蒸発温度センサ (蒸発温度検知手段) (11)が設けられ、該室内熱交換器(12)の近傍には、第 3送風ファン(12a)と室内温 度センサ(12b)とが設けられている。そして、上記室内熱交換器(12)と上記第 1可変 容量型圧縮機 (2)とは上記第 1吸入冷媒配管(15)で接続されてレ、る。 [0033] Similar to the first outdoor heat exchanger (6), the indoor heat exchanger (12) is a cross-fin type fin-and-tube heat exchanger. Although not shown, the heat transfer tubes are arranged in a plurality of paths, and a number of aluminum fins are installed perpendicular to the heat transfer tubes. The An evaporation temperature sensor (evaporation temperature detecting means) (11) is provided on the inlet side of the indoor heat exchanger (12), and a third blower fan (12a) is provided near the indoor heat exchanger (12). ) And an indoor temperature sensor (12b). The indoor heat exchanger (12) and the first variable capacity compressor (2) are connected by the first suction refrigerant pipe (15).
[0034] 上記主冷媒回路(lb)には、液インジェクション配管(18)が設けられており、該液ィ ンジェクシヨン配管(18)の一端は、上記第 1室外熱交換器 (6)と上記過冷却熱交換 器 (8)との間の第 1高圧液冷媒配管 (7)に接続され、他端は、上記室内熱交換器 (12 )と上記第 1可変容量型圧縮機 (2)との間の上記第 1吸入冷媒配管(15)に接続され ている。そして、上記液インジェクション配管(18)には、該液インジェクション配管(18 )を流れる冷媒を減圧するための減圧弁(19)が設置されている。  [0034] The main refrigerant circuit (lb) is provided with a liquid injection pipe (18), and one end of the liquid injection pipe (18) is connected to the first outdoor heat exchanger (6) and the excess refrigerant. Connected to the first high-pressure liquid refrigerant pipe (7) between the cooling heat exchanger (8) and the other end between the indoor heat exchanger (12) and the first variable capacity compressor (2). It is connected to the first suction refrigerant pipe (15). The liquid injection pipe (18) is provided with a pressure reducing valve (19) for reducing the pressure of the refrigerant flowing through the liquid injection pipe (18).
[0035] 〈過冷却回路〉  <Supercooling circuit>
上記過冷却回路(la)は、第 2可変容量型圧縮機 (20)と第 2室外熱交換器 (第 2凝 縮器)(24)と第 2膨張弁 (第 2膨張機構)(26)と上記過冷却熱交換器 (8)とが順に冷 媒配管で接続されて、蒸気圧縮式冷凍サイクルを行うように構成されている。  The supercooling circuit (la) consists of a second variable capacity compressor (20), a second outdoor heat exchanger (second condenser) (24), and a second expansion valve (second expansion mechanism) (26). And the supercooling heat exchanger (8) are sequentially connected by a refrigerant pipe so as to perform a vapor compression refrigeration cycle.
[0036] 上記第 2可変容量型圧縮機 (20)は、上記主冷媒回路(lb)の第 1可変容量型圧縮 機 (2)と同様に、図示しないインバータが接続され、該インバータにより、上記第 2可 変容量型圧縮機(20)の容量はある範囲内で自在に変更することが可能となっている 。一方、上記第 2可変容量型圧縮機 (20)の吸入側には第 2吸入冷媒配管(30)が、 吐出側には第 2吐出冷媒配管(21)がそれぞれ接続されている。上記第 2吸入冷媒 配管(30)には第 2吸入温度センサ (29)と第 2低圧冷媒圧力センサ(吸入冷媒圧力検 出手段)(28)とが設けられている。又、上記第 2吐出冷媒配管(21)には、第 2吐出温 度センサ (22)と第 2高圧冷媒圧力センサ (第 2高圧冷媒圧力検知手段) (23)とが設 けられている。そして、該第 2吐出冷媒配管 (21)は上記第 2可変容量型圧縮機 (20) と第 2室外熱交換器 (24)とを接続してレ、る。  [0036] Similar to the first variable capacity compressor (2) of the main refrigerant circuit (lb), the second variable capacity compressor (20) is connected to an inverter (not shown). The capacity of the second variable capacity compressor (20) can be freely changed within a certain range. On the other hand, a second suction refrigerant pipe (30) is connected to the suction side of the second variable capacity compressor (20), and a second discharge refrigerant pipe (21) is connected to the discharge side. The second suction refrigerant pipe (30) is provided with a second suction temperature sensor (29) and a second low-pressure refrigerant pressure sensor (suction refrigerant pressure detection means) (28). The second discharge refrigerant pipe (21) is provided with a second discharge temperature sensor (22) and a second high-pressure refrigerant pressure sensor (second high-pressure refrigerant pressure detection means) (23). The second discharge refrigerant pipe (21) connects the second variable capacity compressor (20) and the second outdoor heat exchanger (24).
[0037] 上記第 2室外熱交換器 (24)は、上記主冷媒回路 (lb)の第 1室外熱交換器 (6)と同 様に、クロスフィン式のフィン'アンド'チューブ型熱交換器で構成されており、該第 2 室外熱交換器 (24)の近傍には、第 2送風ファン (2½)と第 2外気温度センサ(24b)と が設けられている。又、示していないが、上記第 2室外熱交換器 (24)は、伝熱管が複 数パスに配列されており、該伝熱管と直交して多数のアルミフィンが設置されている。 そして、上記第 2室外熱交換器 (24)と第 2膨張弁 (26)とは第 2高圧液冷媒配管 (25) により接続されている。 [0037] The second outdoor heat exchanger (24) is a cross-fin type fin-and-tube heat exchanger similar to the first outdoor heat exchanger (6) of the main refrigerant circuit (lb). In the vicinity of the second outdoor heat exchanger (24), a second blower fan (2½) and a second outside air temperature sensor (24b) are provided. Although not shown, the second outdoor heat exchanger (24) has a plurality of heat transfer tubes. It is arranged in several passes, and a large number of aluminum fins are installed perpendicular to the heat transfer tubes. The second outdoor heat exchanger (24) and the second expansion valve (26) are connected by a second high-pressure liquid refrigerant pipe (25).
[0038] 上記第 2膨張弁(26)は、開度が調節可能な電動膨張弁であり、その開度は適宜、 電気信号によって変更可能に構成されている。そして、上記第 2膨張弁 (26)と上記 過冷却熱交換器 (8)とは第 2低圧冷媒配管 (27)により接続されている。  [0038] The second expansion valve (26) is an electric expansion valve whose opening degree can be adjusted, and the opening degree can be appropriately changed by an electric signal. The second expansion valve (26) and the supercooling heat exchanger (8) are connected by a second low-pressure refrigerant pipe (27).
[0039] 上記過冷却熱交換器 (8)は、上述のように、プレートフィン型熱交換器で構成され ており、該プレートフィン型熱交換器内の第 2流路 (8b)には第 2低圧冷媒配管(27) が接続されている。  [0039] As described above, the supercooling heat exchanger (8) is composed of a plate fin type heat exchanger, and the second channel (8b) in the plate fin type heat exchanger has a second channel (8b). 2 Low pressure refrigerant pipe (27) is connected.
[0040] 〈コントローラ〉  [0040] <Controller>
上記コントローラ(32)は、上記冷凍装置に設けられた冷媒出口液温度センサ(9)と 蒸発温度センサ(11)と第 1高圧冷媒圧力センサ (5)と第 2高圧冷媒圧力センサ (23) と第 2低圧冷媒圧力センサ (28)からの検出信号に応じて、第 1可変容量型圧縮機 (2 )及び第 2可変容量型圧縮機 (20)の高圧等価制御運転を行うように構成されている。  The controller (32) includes a refrigerant outlet liquid temperature sensor (9), an evaporation temperature sensor (11), a first high-pressure refrigerant pressure sensor (5), and a second high-pressure refrigerant pressure sensor (23) provided in the refrigeration apparatus. In response to the detection signal from the second low-pressure refrigerant pressure sensor (28), the high-pressure equivalent control operation of the first variable capacity compressor (2) and the second variable capacity compressor (20) is performed. Yes.
[0041] 冷凍装置の運転動作  [0041] Operation of refrigeration equipment
本実施形態の冷凍装置の運転動作について説明する。先ず上記主冷媒回路(lb) 及び上記過冷却回路(la)の冷却運転について説明し、次に上記主冷媒回路(lb)と 上記過冷却回路(la)とにおける高圧等価制御運転について説明する。  The operation of the refrigeration apparatus of this embodiment will be described. First, the cooling operation of the main refrigerant circuit (lb) and the supercooling circuit (la) will be described, and then the high-pressure equivalent control operation in the main refrigerant circuit (lb) and the supercooling circuit (la) will be described.
[0042] 〈主冷媒回路の冷却運転〉  <Cooling operation of main refrigerant circuit>
この主冷媒回路(lb)の冷却運転では、第 1室外熱交換器 (6)を凝縮器、室内熱交 換器(12)を蒸発器として回路内を冷媒が循環する一方、適宜、第 1膨張弁(10)の開 度が調整されて蒸気圧縮式冷凍サイクルが行われる。又、運転状態により、上記液ィ ンジヱクシヨン配管(18)の減圧弁(19)の開度が調整される。  In the cooling operation of the main refrigerant circuit (lb), the refrigerant circulates in the circuit using the first outdoor heat exchanger (6) as a condenser and the indoor heat exchanger (12) as an evaporator. The opening of the expansion valve (10) is adjusted to perform the vapor compression refrigeration cycle. Further, the opening degree of the pressure reducing valve (19) of the liquid injection pipe (18) is adjusted according to the operating state.
[0043] 上記第 1可変容量型圧縮機 (2)が起動すると、該第 1可変容量型圧縮機 (2)の吐 出側から第 1吐出冷媒配管(3)を通って高圧ガス冷媒が吐出される。吐出された高 圧ガス冷媒は、第 1室外熱交換器 (6)へ流入するともに、該第 1室外熱交換器 (6)内 で、外気に放熱し、凝縮して高圧液冷媒となる。上記高圧液冷媒となった冷媒は第 1 室外熱交換器 (6)を流出して、上記過冷却熱交換器 (8)の第 1流路 (8a)を通過する 際に、過冷却されて該過冷却熱交換器 (8)を流出する。 [0043] When the first variable displacement compressor (2) is started, high-pressure gas refrigerant is discharged from the discharge side of the first variable displacement compressor (2) through the first discharge refrigerant pipe (3). Is done. The discharged high-pressure gas refrigerant flows into the first outdoor heat exchanger (6), radiates heat to the outside air in the first outdoor heat exchanger (6), and condenses to become high-pressure liquid refrigerant. The refrigerant that has become the high-pressure liquid refrigerant flows out of the first outdoor heat exchanger (6) and passes through the first flow path (8a) of the supercooling heat exchanger (8). At this time, it is supercooled and flows out of the supercooling heat exchanger (8).
[0044] 過冷却された高圧液冷媒は、上記第 1膨張弁(10)に流入する。該第 1膨張弁(10) に流入した高圧液冷媒は、該第 1膨張弁(10)を通過する際に減圧されて低圧液冷 媒となり、室内熱交換器(12)に流入する。該室内熱交換器(12)に流入した低圧液冷 媒は、該室内熱交換器(12)を通過する際に冷却対象空間内の空気から吸熱する。 冷却対象空間内の空気から吸熱した低圧液冷媒は、蒸発して低圧ガス冷媒となって 、室内熱交換器(12)を流出する。該室内熱交換器(12)を流出した低圧ガス冷媒は、 第 1吸入冷媒配管(15)を通過して、第 1可変容量型圧縮機 (2)へ流入する。第 1可 変容量型圧縮機 (2)に流入した低圧ガス冷媒は、圧縮されて高圧ガス冷媒となって 再び第 1可変容量型圧縮機 (2)から吐出される。  [0044] The supercooled high-pressure liquid refrigerant flows into the first expansion valve (10). The high-pressure liquid refrigerant that has flowed into the first expansion valve (10) is reduced in pressure when passing through the first expansion valve (10), becomes a low-pressure liquid refrigerant, and flows into the indoor heat exchanger (12). The low-pressure liquid coolant flowing into the indoor heat exchanger (12) absorbs heat from the air in the space to be cooled when passing through the indoor heat exchanger (12). The low-pressure liquid refrigerant that has absorbed heat from the air in the space to be cooled evaporates into a low-pressure gas refrigerant and flows out of the indoor heat exchanger (12). The low-pressure gas refrigerant that has flowed out of the indoor heat exchanger (12) passes through the first suction refrigerant pipe (15) and flows into the first variable capacity compressor (2). The low-pressure gas refrigerant that has flowed into the first variable capacity compressor (2) is compressed to become high-pressure gas refrigerant, and is discharged from the first variable capacity compressor (2) again.
[0045] 以上のように、冷媒が主冷媒回路(lb)内を循環して冷却対象空間内が冷却される  [0045] As described above, the refrigerant circulates in the main refrigerant circuit (lb) to cool the space to be cooled.
[0046] 〈過冷却回路の冷却運転〉 <Cooling operation of supercooling circuit>
この過冷却回路(la)の冷却運転では、第 2室外熱交換器 (24)を凝縮器、過冷却 熱交換器 (8)を蒸発器として回路内を冷媒が循環する一方、適宜、第 2膨張弁 (26) の開度が調整されて蒸気圧縮式冷凍サイクルが行われる。  In the cooling operation of the supercooling circuit (la), the refrigerant circulates in the circuit using the second outdoor heat exchanger (24) as a condenser and the supercooling heat exchanger (8) as an evaporator. The opening degree of the expansion valve (26) is adjusted to perform the vapor compression refrigeration cycle.
[0047] 上記第 2可変容量型圧縮機 (20)が起動すると、該第 2可変容量型圧縮機 (20)の 吐出側から第 2吐出冷媒配管(21)を通って高圧ガス冷媒が吐出される。吐出された 高圧ガス冷媒は、第 2室外熱交換器 (24)へ流入するともに該第 2室外熱交換器 (24) 内で外気に放熱し、凝縮して高圧液冷媒となる。  When the second variable capacity compressor (20) is started, high pressure gas refrigerant is discharged from the discharge side of the second variable capacity compressor (20) through the second discharge refrigerant pipe (21). The The discharged high-pressure gas refrigerant flows into the second outdoor heat exchanger (24) and radiates heat to the outside air in the second outdoor heat exchanger (24), and condenses to become a high-pressure liquid refrigerant.
[0048] 上記高圧液冷媒は、第 2室外熱交換器 (24)を流出して上記第 2膨張弁 (26)に流 入する。該第 2膨張弁 (26)に流入した高圧液冷媒は、該第 2膨張弁 (26)を通過する 際に減圧されて低圧液冷媒となり、上記過冷却熱交換器 (8)の第 2流路に流入する 。該過冷却熱交換器 (8)の第 2流路に流入した低圧液冷媒は、該過冷却熱交換器( 8)の第 2流路を通過する際に、上記第 1流路内を流れる主冷媒回路(lb)の高圧液 冷媒から吸熱する。上記第 1流路の高圧液冷媒から吸熱した上記第 2流路の低圧液 冷媒は、蒸発して低圧ガス冷媒となって、過冷却熱交換器 (8)を流出する。該過冷却 熱交換器 (8)を流出した低圧ガス冷媒は、第 2吸入冷媒配管(30)を通過して、第 2可 変容量型圧縮機 (20)へ流入する。第 2可変容量型圧縮機 (20)に流入した低圧ガス 冷媒は、圧縮されて高圧ガス冷媒となって再び第 2可変容量型圧縮機 (20)から吐出 される。 [0048] The high-pressure liquid refrigerant flows out of the second outdoor heat exchanger (24) and flows into the second expansion valve (26). The high-pressure liquid refrigerant flowing into the second expansion valve (26) is reduced in pressure when passing through the second expansion valve (26) to become a low-pressure liquid refrigerant, and the second flow of the supercooling heat exchanger (8). Into the road. The low-pressure liquid refrigerant flowing into the second flow path of the supercooling heat exchanger (8) flows through the first flow path when passing through the second flow path of the supercooling heat exchanger (8). Absorbs heat from the high-pressure liquid refrigerant in the main refrigerant circuit (lb). The low-pressure liquid refrigerant in the second flow path that has absorbed heat from the high-pressure liquid refrigerant in the first flow path evaporates to become a low-pressure gas refrigerant and flows out of the supercooling heat exchanger (8). The low-pressure gas refrigerant that has flowed out of the supercooling heat exchanger (8) passes through the second suction refrigerant pipe (30) and passes through the second possible refrigerant. It flows into the variable capacity compressor (20). The low-pressure gas refrigerant flowing into the second variable capacity compressor (20) is compressed to become high-pressure gas refrigerant, and is discharged from the second variable capacity compressor (20) again.
[0049] 以上のように、冷媒が過冷却回路(la)内を循環して主冷媒回路(lb)の高圧液冷 媒が冷却される。  As described above, the refrigerant circulates in the supercooling circuit (la), and the high-pressure liquid coolant in the main refrigerant circuit (lb) is cooled.
[0050] 〈高圧等価制御運転〉  [0050] <High pressure equivalent control operation>
次に、上記主冷媒回路(lb)と上記過冷却回路(la)とにおける高圧等価制御の動 作について、図 2の制御フローに基づき説明する。ここで、上記高圧等価制御とは、 第 1及び第 2可変容量型圧縮機 (2,20)の運転周波数を増減させて容量制御を行うこ とにより、主冷媒回路(lb)と過冷却回路(la)との高圧冷媒圧力を調整して、両者の 高圧冷媒圧力を等価させる制御のことである。  Next, the operation of high-pressure equivalent control in the main refrigerant circuit (lb) and the supercooling circuit (la) will be described based on the control flow in FIG. Here, the high pressure equivalent control means that the main refrigerant circuit (lb) and the supercooling circuit are controlled by performing capacity control by increasing / decreasing the operating frequency of the first and second variable capacity compressors (2, 20). This is a control that adjusts the high-pressure refrigerant pressure with (la) to equalize both high-pressure refrigerant pressures.
[0051] 冷凍装置の冷却運転が開始されると、ステップ ST1では、上記第 1外気温度センサ  [0051] When the cooling operation of the refrigeration apparatus is started, in step ST1, the first outside air temperature sensor
(6b)で検出される外気温度 Taが所定値 XI (例えば、 X1 = 20°C)より大きく且つ上 記第 1可変容量型圧縮機 (2)の周波数が上記第 1可変容量型圧縮機 (2)の最高周 波数の 50%以上の場合、若しくは、第 1可変容量型圧縮機 (2)の周波数が該第 1可 変容量型圧縮機 (2)の最高周波数の 90%以上の場合に、上記主冷媒回路(lb)の 第 1高圧冷媒圧力センサ (5)より検出される高圧冷媒圧力 P1が上記過冷却回路(la )の第 2高圧冷媒圧力センサ (23)より検出される高圧冷媒圧力 P2より大きレ、か否か を判定する。上記高圧冷媒圧力 P1が上記高圧冷媒圧力 P2以下の場合にはステツ プ ST8の通常制御に移り、高圧等価制御を行うことなく再びステップ 1に戻る。一方、 上記高圧冷媒圧力 P1が上記高圧冷媒圧力 P2より大きい場合には、ステップ ST2に 移る。  The outside air temperature Ta detected in (6b) is larger than a predetermined value XI (for example, X1 = 20 ° C), and the frequency of the first variable displacement compressor (2) is the first variable displacement compressor ( 2) When the frequency is 50% or more of the maximum frequency, or when the frequency of the first variable displacement compressor (2) is 90% or more of the maximum frequency of the first variable displacement compressor (2) The high-pressure refrigerant pressure P1 detected by the first high-pressure refrigerant pressure sensor (5) in the main refrigerant circuit (lb) is detected by the second high-pressure refrigerant pressure sensor (23) in the supercooling circuit (la). Determine whether pressure is greater than P2. If the high-pressure refrigerant pressure P1 is less than or equal to the high-pressure refrigerant pressure P2, the process proceeds to the normal control in step ST8 and returns to step 1 again without performing high-pressure equivalent control. On the other hand, when the high-pressure refrigerant pressure P1 is higher than the high-pressure refrigerant pressure P2, the process proceeds to step ST2.
[0052] ステップ ST2では、上記主冷媒回路(lb)の冷媒出口液温度センサ(9)で検知され る冷媒出口液温度 T1が所定値 X2 (例えば、 X2 = 0°C)より高レ、か、或いは上記過冷 却回路(la)の第 2低圧冷媒圧力センサ (28)で検知される吸入冷媒圧力 PSが所定 値 X3 (例えば、 X3 = 0. 15MPa)より高いか否かを判定する。ここでは、上記過冷却 熱交換器 (8)の過冷却能力が大きくなり過ぎて、該過冷却熱交換器 (8)や上記第 2可 変容量型圧縮機(20)に不具合が起きないようにしている。つまり、上記冷媒出口液 温度 Tlが所定値 X2 = 0°C以下、或いは上記低圧冷媒圧力値 PSが所定値 X3 = 0. 15MPa以下の時には、前者において上記過冷却熱交換器 (8)が凍結パンクを起こ す場合があり、後者において上記第 2可変容量型圧縮機 (20)の圧縮比が上昇して 吐出冷媒温度が過上昇する場合があると判断してステップ ST3に移る。一方、上記 冷媒出口液温度 T1が所定値 X2 = 0°Cより高レ、、或いは上記低圧冷媒圧力値 P3が 所定値 X3 = 0. 15MPaより高い時には、上記過冷却熱交換器 (8)が凍結パンク又 は上記第 2可変容量型圧縮機 (20)の吐出冷媒温度が過上昇するおそれはないと判 断してステップ ST4に移る。 [0052] In step ST2, the refrigerant outlet liquid temperature T1 detected by the refrigerant outlet liquid temperature sensor (9) of the main refrigerant circuit (lb) is higher than a predetermined value X2 (for example, X2 = 0 ° C). Alternatively, it is determined whether or not the suction refrigerant pressure PS detected by the second low-pressure refrigerant pressure sensor (28) of the supercooling circuit (la) is higher than a predetermined value X3 (for example, X3 = 0.15 MPa). Here, the supercooling heat exchanger (8) has a supercooling capacity that is not increased so that the supercooling heat exchanger (8) and the second variable capacity compressor (20) do not malfunction. I have to. That is, the refrigerant outlet liquid When the temperature Tl is the predetermined value X2 = 0 ° C or less, or the low-pressure refrigerant pressure value PS is the predetermined value X3 = 0.15 MPa or less, the subcooling heat exchanger (8) may cause freezing puncture in the former. In the latter case, it is determined that the compression ratio of the second variable capacity compressor (20) may increase and the discharged refrigerant temperature may excessively increase, and the process proceeds to step ST3. On the other hand, when the refrigerant outlet liquid temperature T1 is higher than the predetermined value X2 = 0 ° C or the low pressure refrigerant pressure value P3 is higher than the predetermined value X3 = 0.15 MPa, the supercooling heat exchanger (8) It is determined that there is no possibility that the temperature of the refrigerant discharged from the freezing puncture or the second variable capacity compressor (20) will rise excessively, and the routine goes to Step ST4.
[0053] ステップ ST3では、上記第 2可変容量型圧縮機(20)の周波数が減少する。これに より、上記過冷却熱交換器 (8)の過冷却能力が減少するので、上記冷媒出口液温度 T1及び上記低圧冷媒圧力 P3が上昇し、該過冷却熱交換器 (8)の凍結パンクや上 記第 2可変容量型圧縮機(20)の吐出冷媒温度の過上昇が回避される一方、上記過 冷却回路(la)の高圧冷媒圧力 PSは低くなりながら、ステップ ST5に移る。  [0053] In step ST3, the frequency of the second variable capacity compressor (20) decreases. As a result, the supercooling capacity of the supercooling heat exchanger (8) decreases, so that the refrigerant outlet liquid temperature T1 and the low pressure refrigerant pressure P3 rise, and the freezing puncture of the supercooling heat exchanger (8) occurs. While the excessive increase in the refrigerant temperature discharged from the second variable capacity compressor (20) is avoided, the high-pressure refrigerant pressure PS in the supercooling circuit (la) is lowered, and the process proceeds to step ST5.
[0054] ステップ ST4では、上記第 2可変容量型圧縮機(20)の周波数が増加する。これに より、上記過冷却熱交換器 (8)の過冷却能力が増加するので、上記冷媒出口液温度 T1及び上記低圧冷媒圧力 P3が降下する一方、上記過冷却回路(la)の高圧冷媒圧 力 PSは高くなりながら、ステップ ST5に移る。  [0054] In step ST4, the frequency of the second variable capacity compressor (20) is increased. As a result, the supercooling capacity of the supercooling heat exchanger (8) increases, so that the refrigerant outlet liquid temperature T1 and the low pressure refrigerant pressure P3 drop while the high pressure refrigerant pressure of the supercooling circuit (la) is reduced. While PS increases, go to step ST5.
[0055] ステップ ST5では、上記主冷媒回路(lb)に設けられた蒸発温度センサ(11)で検出 される蒸発温度 Teが冷却対象空間における冷却設定温度 X4に α (例えば α = 10) を減じた値より低いか否かを判定する。つまり、上記蒸発温度 Teが上記冷却対象空 間を冷却設定温度 X4まで冷却可能な温度であるか否かを判定する。具体的には、 上記蒸発温度 Teが上記冷却設定温度 X4にひを減じた値より低い場合にはステップ ST7に移り、低くない場合には、ステップ ST6へ移る。  [0055] In step ST5, the evaporation temperature Te detected by the evaporation temperature sensor (11) provided in the main refrigerant circuit (lb) subtracts α (eg, α = 10) from the cooling set temperature X4 in the cooling target space. It is determined whether it is lower than the value. That is, it is determined whether or not the evaporation temperature Te is a temperature at which the cooling target space can be cooled to the cooling set temperature X4. Specifically, if the evaporation temperature Te is lower than the value obtained by subtracting the cooling set temperature X4, the process proceeds to step ST7, and if not lower, the process proceeds to step ST6.
[0056] ステップ ST6では、上記第 1可変容量型圧縮機(2)の周波数が増加する。これによ り、上記室内熱交換器(12)の冷却能力が増加するので、上記蒸発温度 Teは低くな る一方、上記主冷媒回路(lb)の高圧冷媒圧力 P1は高くなりながら、再びステップ ST 1に戻る。  [0056] In step ST6, the frequency of the first variable capacity compressor (2) is increased. As a result, the cooling capacity of the indoor heat exchanger (12) is increased, so that the evaporation temperature Te is lowered, while the high-pressure refrigerant pressure P1 of the main refrigerant circuit (lb) is increased, while the step is repeated. Return to ST 1.
[0057] ステップ ST7では、上記第 1可変容量型圧縮機(2)の周波数が減少する。これによ り、上記室内熱交換器(12)の冷却能力が減少するので、上記蒸発温度 Teは高くな る一方、上記主冷媒回路(lb)の高圧冷媒圧力 P1は低くなりながら、再びステップ ST 1に戻る。 [0057] In step ST7, the frequency of the first variable capacity compressor (2) decreases. This Thus, the cooling capacity of the indoor heat exchanger (12) is reduced, so that the evaporation temperature Te is increased while the high-pressure refrigerant pressure P1 of the main refrigerant circuit (lb) is decreased, but the process returns to step ST1. Return.
[0058] 以上の動作を繰り返して、高圧等価制御運転が行われる。  [0058] The high-pressure equivalent control operation is performed by repeating the above operation.
[0059] 一実施形態の効果一  [0059] Effect of One Embodiment
本実施形態によれば、上記冷凍装置が上記高圧等価制御運転を行うことにより、 上記過冷却回路(la)の高圧冷媒圧力が上記主冷媒回路(lb)の高圧冷媒圧力に近 づくまで、上記過冷却回路(la)の第 2圧縮機 (20)を積極的に運転することができる。 これにより、上記主冷媒回路(lb)が過負荷状態でなくても上記過冷却回路(la)の第 2圧縮機 (20)を稼働することができ、結果として、上記冷凍装置の冷却負荷を主冷媒 回路(lb)と過冷却回路(la)とで分担することができる。  According to this embodiment, the refrigeration apparatus performs the high-pressure equivalent control operation until the high-pressure refrigerant pressure in the supercooling circuit (la) approaches the high-pressure refrigerant pressure in the main refrigerant circuit (lb). The second compressor (20) in the supercooling circuit (la) can be actively operated. As a result, even if the main refrigerant circuit (lb) is not overloaded, the second compressor (20) of the supercooling circuit (la) can be operated. As a result, the cooling load of the refrigeration apparatus can be reduced. It can be shared by the main refrigerant circuit (lb) and the supercooling circuit (la).
[0060] 又、本実施形態では、上記冷凍装置の冷却負荷を主冷媒回路(lb)と過冷却回路( la)とで分担させることにより、上記冷凍装置の成績係数を向上させることができる。こ こで、この成績係数が向上する理由について、本実施形態の主冷媒回路(lb)及び 過冷却回路(la)の冷凍サイクルシミュレーション結果を示した図 3に基づいて説明す る。  In the present embodiment, the coefficient of performance of the refrigeration apparatus can be improved by sharing the cooling load of the refrigeration apparatus between the main refrigerant circuit (lb) and the subcooling circuit (la). Here, the reason why the coefficient of performance is improved will be described with reference to FIG. 3 showing the refrigeration cycle simulation results of the main refrigerant circuit (lb) and the supercooling circuit (la) of the present embodiment.
[0061] 上記冷凍サイクルシミュレーションは、上記主冷媒回路(lb)の室内熱交換器(12) における蒸発温度を— 40°C、上記過冷却回路(la)の過冷却熱交換器 (8)における 蒸発温度を 0°C、及び上記冷凍装置の冷却能力を 25. 2Kwで一定条件とし、主冷 媒回路(lb)及び過冷却回路(la)の凝縮温度を変化させて行い、上記凝縮温度の 変化による成績係数の影響について調べた。  [0061] In the refrigeration cycle simulation, the evaporation temperature in the indoor heat exchanger (12) of the main refrigerant circuit (lb) is -40 ° C, and the supercooling heat exchanger (8) of the supercooling circuit (la) is The evaporating temperature is 0 ° C, the cooling capacity of the refrigeration system is constant at 25.2 Kw, and the condensation temperature of the main refrigerant circuit (lb) and subcooling circuit (la) is changed. The effect of coefficient of performance due to changes was investigated.
[0062] 図 3における Aは冷凍装置の冷却運転を主冷媒回路(lb)のみで行った場合であり 、 B及び Cは主冷媒回路(lb)と過冷却回路(la)とで行った場合である。又、 Aは主冷 媒回路(lb)の凝縮温度が 50°C、 Bは主冷媒回路(lb)及び過冷却回路(la)の凝縮 温度がそれぞれ 47°C及び 42°C、 Cは主冷媒回路(lb)及び過冷却回路(la)の凝縮 温度が 45°Cである。  [0062] In Fig. 3, A is the case where the cooling operation of the refrigeration apparatus is performed only in the main refrigerant circuit (lb), and B and C are the cases where the main refrigerant circuit (lb) and the supercooling circuit (la) are performed. It is. A is the condensation temperature of the main refrigerant circuit (lb) is 50 ° C, B is the condensation temperature of the main refrigerant circuit (lb) and the subcooling circuit (la) is 47 ° C and 42 ° C, respectively. The condensation temperature of the refrigerant circuit (lb) and supercooling circuit (la) is 45 ° C.
[0063] A、 B、 Cのそれぞれにつレ、て冷凍装置の成績係数を比較した場合、 Aに比べて B 及び Cの方が成績係数が大きい。これは、上記主冷媒回路(lb)のみで冷却運転を 行うより、主冷媒回路(lb)と過冷却回路(la)とで冷却運転を行うほうが成績係数が大 きいことを示している。又、 B及び Cについて比較した場合、 Cの方が成績係数が大き レ、。これは、主冷媒回路(lb)及び過冷却回路(la)の凝縮温度を同じ値にしたほうが 成績係数が大きいことを示している。さらに、 A B、 Cのそれぞれについて主冷媒回 路(lb)と過冷却回路(la)との成績係数を比較した場合、全てにおいて過冷却回路( la)の成績係数が上回ってレ、る。 [0063] When comparing the coefficient of performance of the refrigeration unit for each of A, B, and C, B and C have a larger coefficient of performance than A. This is a cooling operation only with the main refrigerant circuit (lb). This shows that the coefficient of performance is larger when the cooling operation is performed in the main refrigerant circuit (lb) and the subcooling circuit (la). In addition, when comparing B and C, the coefficient of performance is higher for C. This indicates that the coefficient of performance is larger when the condensing temperatures of the main refrigerant circuit (lb) and the subcooling circuit (la) are set to the same value. Furthermore, when the coefficient of performance of the main refrigerant circuit (lb) and the subcooling circuit (la) is compared for each of AB and C, the coefficient of performance of the subcooling circuit (la) exceeds all.
[0064] 以上から、成績係数の小さい主冷媒回路(lb)のみで冷却運転を行うのではなぐ 該主冷媒回路(lb)と成績係数の大きい過冷却回路(la)とで高圧等価制御運転を行 うほうが、上記冷凍装置の成績係数を向上させることができる。  [0064] From the above, the cooling operation is not performed only with the main refrigerant circuit (lb) having a small coefficient of performance. The high-pressure equivalent control operation is performed with the main refrigerant circuit (lb) and the supercooling circuit (la) having a large coefficient of performance. The performance coefficient of the refrigeration apparatus can be improved by doing so.
[0065] 《その他の実施形態》  [0065] << Other Embodiments >>
上記実施形態については、以下のような構成としてもよい。  About the said embodiment, it is good also as the following structures.
[0066] 例えば、主冷媒回路(lb)は二段圧縮式冷凍サイクルを行う冷媒回路であってもよ レ、し、上記室内熱交換器(12)が並列に複数台設置されてレ、てもよレ、。  [0066] For example, the main refrigerant circuit (lb) may be a refrigerant circuit that performs a two-stage compression refrigeration cycle, and a plurality of the indoor heat exchangers (12) are installed in parallel. Moyore.
[0067] 又、上記過冷却熱交換器 (8)はプレート式熱交換器で構成される必要はなぐ二重 管式やシェルアンドチューブ型熱交換器で構成されてもよい。  [0067] Further, the supercooling heat exchanger (8) may be a double pipe type or a shell and tube type heat exchanger that does not need to be a plate type heat exchanger.
[0068] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0068] The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0069] 以上説明したように、本発明は、過冷却回路を備えた冷凍装置に関し、特に、過冷 却回路の能力制御技術について有用である。 [0069] As described above, the present invention relates to a refrigeration apparatus including a supercooling circuit, and is particularly useful for a capacity control technique for the supercooling circuit.

Claims

請求の範囲 The scope of the claims
[1] 可変容量の第 1圧縮機 (2)と第 1凝縮器 (6)と過冷却熱交換器 (8)と第 1膨張機構( 10)と第 1蒸発器(12)とが順に接続されて冷凍サイクルを行う主冷媒回路(lb)と、第 2圧縮機 (20)と第 2凝縮器 (24)と第 2膨張機構 (26)と上記過冷却熱交換器 (8)とが 順に接続されて冷凍サイクルを行う過冷却回路(la)と、上記第 1圧縮機 (2)の容量を 調整可能な第 1容量調整手段とを備えた冷凍装置であって、  [1] Variable capacity first compressor (2), first condenser (6), supercooling heat exchanger (8), first expansion mechanism (10) and first evaporator (12) connected in sequence The main refrigerant circuit (lb) that performs the refrigeration cycle, the second compressor (20), the second condenser (24), the second expansion mechanism (26), and the supercooling heat exchanger (8) are sequentially arranged. A refrigeration apparatus comprising a supercooling circuit (la) connected to perform a refrigeration cycle, and first capacity adjusting means capable of adjusting the capacity of the first compressor (2),
上記第 2圧縮機 (20)が可変容量圧縮機 (20)で構成され、  The second compressor (20) comprises a variable capacity compressor (20),
上記主冷媒回路(lb)の高圧冷媒圧力を検知する第 1高圧冷媒圧力検知手段 (5) と、上記過冷却回路(la)の高圧冷媒圧力を検知する第 2高圧冷媒圧力検知手段 (2 3)と、上記第 2圧縮機 (20)の容量を調整可能な第 2容量調整手段とを備え、 上記第 1容量調整手段と上記第 2容量調整手段とを制御して、上記主冷媒回路(1 b)の高圧冷媒圧力値と、上記過冷却回路(la)の高圧冷媒圧力値とを近づける高圧 等価制御手段 (32)を備えてレ、ることを特徴とする冷凍装置。  First high-pressure refrigerant pressure detection means (5) for detecting the high-pressure refrigerant pressure in the main refrigerant circuit (lb), and second high-pressure refrigerant pressure detection means (2 3) for detecting the high-pressure refrigerant pressure in the supercooling circuit (la). ) And second capacity adjusting means capable of adjusting the capacity of the second compressor (20), and controlling the first capacity adjusting means and the second capacity adjusting means to control the main refrigerant circuit ( 1) A refrigeration apparatus comprising high-pressure equivalent control means (32) for bringing the high-pressure refrigerant pressure value of b) close to the high-pressure refrigerant pressure value of the supercooling circuit (la).
[2] 請求項 1において、 [2] In claim 1,
上記過冷却熱交換器 (8)の主冷媒回路(lb)側の冷媒出口液温度を検知する出口 液温度検知手段 (9)を備え、  An outlet liquid temperature detecting means (9) for detecting the refrigerant outlet liquid temperature on the main refrigerant circuit (lb) side of the supercooling heat exchanger (8),
上記高圧等価制御手段(32)は、上記冷媒出口液温度が所定値より高ければ、上 記第 2容量調整手段を制御して上記第 2圧縮機 (20)の容量を増加させ、所定値より 低ければ、上記第 2容量調整手段を制御して上記第 2圧縮機 (20)の容量を減少させ る第 1制御部を備えていること特徴とする冷凍装置。  If the refrigerant outlet liquid temperature is higher than a predetermined value, the high-pressure equivalent control means (32) controls the second capacity adjusting means to increase the capacity of the second compressor (20), and from the predetermined value A refrigeration apparatus comprising a first control unit that controls the second capacity adjusting means to reduce the capacity of the second compressor (20) if it is low.
[3] 請求項 1において、 [3] In claim 1,
上記第 2圧縮機 (20)の吸入冷媒圧力を検知する吸入冷媒圧力検出手段 (28)を備 上記高圧等価制御手段 (32)は、上記吸入冷媒圧力が所定値より高ければ、上記 第 2容量調整手段を制御して上記第 2圧縮機 (20)の容量を増加させ、所定値より低 ければ、上記第 2容量調整手段を制御して上記第 2圧縮機 (20)の容量を減少させる 第 2制御部を備えてレ、ること特徴とする冷凍装置。  Provided is an intake refrigerant pressure detection means (28) for detecting the intake refrigerant pressure of the second compressor (20) .The high pressure equivalent control means (32) is configured to provide the second capacity if the intake refrigerant pressure is higher than a predetermined value. The capacity of the second compressor (20) is increased by controlling the adjusting means, and if it is lower than a predetermined value, the capacity of the second compressor (20) is decreased by controlling the second capacity adjusting means. A refrigeration apparatus comprising a second control unit.
[4] 請求項 1において、 上記主冷媒回路(lb)の蒸発温度を検知する蒸発温度検知手段(11)を備え、 上記高圧等価制御手段 (32)は、上記蒸発温度が所定値より低ければ、上記第 1容 量調整手段を制御して上記第 1圧縮機 (2)の容量を減少させ、所定値より高ければ、 上記第 1容量調整手段を制御して上記第 1圧縮機 (2)の容量を増加させる第 3制御 部を備えてレ、ること特徴とする冷凍装置。 [4] In claim 1, Evaporation temperature detection means (11) for detecting the evaporation temperature of the main refrigerant circuit (lb) is provided, and the high pressure equivalent control means (32) is configured to adjust the first capacity adjustment means if the evaporation temperature is lower than a predetermined value. To control the first capacity adjusting means to increase the capacity of the first compressor (2) if the capacity of the first compressor (2) is higher than a predetermined value. A refrigeration apparatus comprising a portion.
PCT/JP2007/062442 2006-06-30 2007-06-20 Refrigeration device WO2008001667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006182145A JP4096984B2 (en) 2006-06-30 2006-06-30 Refrigeration equipment
JP2006-182145 2006-06-30

Publications (1)

Publication Number Publication Date
WO2008001667A1 true WO2008001667A1 (en) 2008-01-03

Family

ID=38845434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062442 WO2008001667A1 (en) 2006-06-30 2007-06-20 Refrigeration device

Country Status (3)

Country Link
JP (1) JP4096984B2 (en)
TW (1) TW200817643A (en)
WO (1) WO2008001667A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041374A3 (en) * 2009-09-30 2011-07-14 Thermo Fisher Scientific (Asheville) Llc Cascade refrigeration system having at least one variable speed compressor
JP2020056538A (en) * 2018-10-02 2020-04-09 ダイキン工業株式会社 Refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228661B2 (en) * 2008-07-17 2013-07-03 ダイキン工業株式会社 Refrigeration equipment
JP5585003B2 (en) * 2009-05-27 2014-09-10 三洋電機株式会社 Refrigeration equipment
CN101832691B (en) * 2010-04-12 2012-08-22 大连三洋压缩机有限公司 Air-cooled immersion type refrigerating plant and control method of refrigerating plant
US9239174B2 (en) * 2011-02-17 2016-01-19 Rocky Research Cascade floating intermediate temperature heat pump system
TWI568984B (en) * 2011-09-09 2017-02-01 Topre Corp Gas - liquid heat exchange type refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148572U (en) * 1982-03-30 1983-10-05 三菱電機株式会社 Refrigeration equipment
JPH11182953A (en) * 1997-12-22 1999-07-06 Daikin Ind Ltd Refrigerator
JP2007232245A (en) * 2006-02-28 2007-09-13 Mitsubishi Electric Corp Refrigerating system and its operation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148572U (en) * 1982-03-30 1983-10-05 三菱電機株式会社 Refrigeration equipment
JPH11182953A (en) * 1997-12-22 1999-07-06 Daikin Ind Ltd Refrigerator
JP2007232245A (en) * 2006-02-28 2007-09-13 Mitsubishi Electric Corp Refrigerating system and its operation method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041374A3 (en) * 2009-09-30 2011-07-14 Thermo Fisher Scientific (Asheville) Llc Cascade refrigeration system having at least one variable speed compressor
US8011191B2 (en) 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US9835360B2 (en) 2009-09-30 2017-12-05 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
EP3351872A1 (en) * 2009-09-30 2018-07-25 Thermo Fisher Scientific (Asheville) LLC Refrigeration system having a variable speed compressor
US10072876B2 (en) 2009-09-30 2018-09-11 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US10816243B2 (en) 2009-09-30 2020-10-27 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
US10845097B2 (en) 2009-09-30 2020-11-24 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
JP2020056538A (en) * 2018-10-02 2020-04-09 ダイキン工業株式会社 Refrigeration cycle device
WO2020071294A1 (en) * 2018-10-02 2020-04-09 ダイキン工業株式会社 Refrigeration cycle device
CN112840163A (en) * 2018-10-02 2021-05-25 大金工业株式会社 Refrigeration cycle device
JP7193706B2 (en) 2018-10-02 2022-12-21 ダイキン工業株式会社 refrigeration cycle equipment
CN112840163B (en) * 2018-10-02 2023-02-28 大金工业株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
TW200817643A (en) 2008-04-16
JP4096984B2 (en) 2008-06-04
JP2008008593A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
US8353173B2 (en) Refrigerating cycle apparatus and operation control method therefor
JP5984914B2 (en) Air conditioner
JP3925545B2 (en) Refrigeration equipment
JP5241872B2 (en) Refrigeration cycle equipment
US8047011B2 (en) Refrigeration system
WO2006013938A1 (en) Freezing apparatus
JP2009270748A (en) Refrigerating device
WO2008001667A1 (en) Refrigeration device
JP2007240025A (en) Refrigerating device
WO2015125219A1 (en) Air conditioning device
WO2007102345A1 (en) Refrigeration device
US11112151B2 (en) Heat source unit for refrigeration apparatus including a heat-source-side heat exchanger having a heat exchange region of variable size
JP2007051841A (en) Refrigeration cycle device
JP2008039233A (en) Refrigerating device
WO2019021464A1 (en) Air conditioning device
JP4902585B2 (en) Air conditioner
JP6336066B2 (en) Air conditioner
US20220252317A1 (en) A heat pump
JP2004116978A (en) Controller for multi-room air conditioner
KR100688166B1 (en) Air conditioner
JP2004144351A (en) Control method of multi-room type air conditioner
KR100403017B1 (en) An inverter cooling device and process of heat pump
JP2003302111A (en) Air conditioner
JP2002228284A (en) Refrigerating machine
US20240133602A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767280

Country of ref document: EP

Kind code of ref document: A1