WO2007148553A1 - Negative-electrode active material for lithium ion secondary battery - Google Patents

Negative-electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
WO2007148553A1
WO2007148553A1 PCT/JP2007/061712 JP2007061712W WO2007148553A1 WO 2007148553 A1 WO2007148553 A1 WO 2007148553A1 JP 2007061712 W JP2007061712 W JP 2007061712W WO 2007148553 A1 WO2007148553 A1 WO 2007148553A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
graphite
lithium ion
Prior art date
Application number
PCT/JP2007/061712
Other languages
French (fr)
Japanese (ja)
Inventor
Masamitsu Katsuura
Toshiaki Sogabe
Koichi Morita
Original Assignee
Osaka Gas Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co., Ltd. filed Critical Osaka Gas Chemicals Co., Ltd.
Publication of WO2007148553A1 publication Critical patent/WO2007148553A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used as power sources for electronic devices such as mobile phones and laptop computers.
  • a lithium ion secondary battery has a configuration in which a positive electrode and a negative electrode capable of inserting and extracting lithium ions face each other, and a separator is interposed between the positive electrode and the negative electrode.
  • These positive electrode, negative electrode and separator are housed in a metal container, and a non-aqueous electrolyte is injected into the metal container.
  • Patent Document 1 discloses a carbon material having a structure in which composite particles containing at least silicon and carbon are dispersed around graphite particles.
  • silicon has a property of expanding when lithium is absorbed, and has a significantly higher expansion rate than other materials such as graphite. Therefore, when silicon is used as a part of the negative electrode active material of a lithium-ion secondary battery, if the lithium is repeatedly occluded and released by charging and discharging, the silicon itself will repeatedly expand and contract. As a result, a phenomenon in which silicon does not endure expansion and contraction and silicon becomes finer and desorbs from the carbon material. Occurs. In this case, since silicon itself has no electronic conductivity, the current collection characteristics are deteriorated, or the pulverized silicon and the non-aqueous electrolyte react to decompose the non-aqueous electrolyte. This causes a malfunction. For this reason, the negative electrode material containing silicon has a drawback in that the charge / discharge capacity decreases remarkably when charge / discharge is repeated, and sufficient cycle characteristics cannot be obtained. No. 255529
  • the present invention has been made in view of the current state of the prior art described above, and its main purpose is to provide a high charge / discharge capacity and excellent cycle characteristics in a negative electrode active material for a lithium ion secondary battery. It is to provide a novel negative electrode active material having excellent performance, and a lithium ion secondary battery using the negative electrode active material.
  • the present inventor has intensively studied to achieve the above-described object.
  • the present invention provides the following negative electrode active material for lithium ion secondary batteries and a lithium ion secondary battery using the active material.
  • At least one graphite raw material selected from the group consisting of scaly graphite and artificial graphite having a (002) plane spacing of 0.336 nm or less, and a metal capable of inserting and extracting lithium ions A granulated product obtained by pulverizing and granulating a mixture with a powder in a high-speed air stream, and a part of graphite as a raw material is pulverized to form a structure in which the graphite raw material and the pulverized product are laminated.
  • a negative electrode active material for a lithium ion secondary battery having a granulated force with a metal powder dispersed on the surface and inside thereof.
  • the above-mentioned item 1 comprising a granulated material obtained from a mixture of a graphite raw material having an average particle size of 5 to 150 ⁇ m and a metal powder having an average particle size of 0.01 to 2 ⁇ m.
  • Negative electrode active material for lithium ion secondary battery comprising a granulated material obtained from a mixture of a graphite raw material having an average particle size of 5 to 150 ⁇ m and a metal powder having an average particle size of 0.01 to 2 ⁇ m.
  • the negative electrode active material for a lithium ion secondary battery according to any one of the above items 1 to 4, comprising a granulated body obtained using natural graphite as a graphite raw material.
  • the lithium ion according to any one of the above items 1 to 5, comprising a granulated material obtained by using a raw material containing 0.3 to 40% by mass of a metal powder, wherein the total amount of the graphite raw material and the metal powder is 100% by mass.
  • the negative electrode for a lithium ion secondary battery according to any one of the above items 1 to 6, comprising a granulated material obtained by pulverizing and granulating a raw material mixture subjected to wet or dry premixing in a high-speed air stream Active material.
  • a negative electrode active material for a lithium ion secondary battery comprising a granule coated with a carbon precursor or a carbonized product thereof.
  • a lithium ion secondary battery comprising the negative electrode active material for a lithium ion secondary battery according to any one of the above items:! To 8 as a constituent element.
  • the raw material is a graphite raw material and a lithium raw material. It is used in combination with a metal powder that can occlude and release thium ions.
  • the graphite raw material at least one selected from the group consisting of scaly graphite and artificial black lead having a (002) plane spacing of 0.336 nm or less can be used.
  • the above-mentioned surface spacing is a value obtained by X diffraction method.
  • scaly graphite is divided into scaly or leafy thin scaly graphite (flaky graphite) and scaly graphite having a massive shape.
  • scaly graphite is used.
  • lump scaly graphite can be used.
  • natural graphite consisting of scaly graphite with high crystallinity is easy to form a granulated body because of its soft material, and has good ability to absorb and release calcium, and has high electric capacity, flatness at low potential. This is preferable in that it has discharge characteristics.
  • artificial graphite having a crystal plane (002) plane spacing of 0.336 nm or less can be used.
  • artificial graphite for example, graphite or quiche graphite obtained by heat-treating graphitizable carbon such as needle coatus at a temperature of about 3000 ° C. can be used.
  • These artificial graphites have a structure and structure close to that of scaly graphite.
  • the average particle size of the graphite raw material may be about 5 to about 150 ⁇ , but the preferred particle size varies depending on the target granulated particle size. For example, if the average particle size of the target granule is about 7 to 10 ⁇ , about 5 to 40 / im is appropriate, and about 7 to 30 ⁇ is preferable 10 to 10 More preferably, it is about 20 ⁇ . If the target granule has an average particle size of 20 ⁇ m, 20 to 120 ⁇ m is appropriate.
  • the average particle diameter means a particle diameter (D50) corresponding to a cumulative frequency of 50%, measured using a laser diffraction scattering method.
  • the specific surface area of the graphite material is preferably to be 0. 5 to 20 m 2 / g approximately instrument:! ⁇ And more preferably about 10 m 2 / g.
  • the specific surface area in this case is a value measured by the BET method.
  • the metal powder is not particularly limited as long as it is a metal powder capable of occluding and releasing lithium ions.
  • Specific examples of such metal powders include silicon, germanium, tin, lead, aluminum, indium, titanium, and alloys containing these.
  • the alloy may be an alloy containing a metal that does not occlude and release lithium ions in addition to the above-described alloy composed of a combination of metal components.
  • the content of the metal component in the alloy is not particularly limited, but is preferably about 50% by mass or more in order to obtain a sufficient capacity.
  • silicon is preferable in that it has a high theoretical electric capacity of 4198 mAhZg.
  • Silicon may be either a polycrystal or a single crystal.
  • the average particle diameter of the metal powder is suitably about 2 ⁇ m or less, preferably about 1 ⁇ m or less, more preferably about 0.5 ⁇ m or less.
  • the particle size of the metal powder is too large, the particle size becomes larger than the void part of the granulated body formed by graphite, so the amount of metal powder present in the void part is reduced and the cycle characteristics are reduced. I can't improve it enough.
  • the particle size is not particularly limited. With a normal pulverization method, it is possible to produce fine powders with an average particle size of about 0.01 x m, and metal powders with this size can be used effectively.
  • the above-described metal powder having a small particle diameter can be obtained by pulverization using a jet mill, a stirring tank type stirring mill (bead mill or the like), and the like.
  • a stirring tank type stirring mill (bead mill or the like) can be used to pulverize in a wet manner using an organic solvent such as isopropyl alcohol, methyl alcohol, or ethyl alcohol as a medium.
  • the mixing ratio of the graphite raw material and the metal powder is not particularly limited because the appropriate mixing ratio varies depending on the density and electric capacity of the metal powder to be used.
  • the electric capacity of the obtained granule is not limited. It is preferable to set the ratio to a value that exceeds the theoretical capacity of graphite, 372 mAh / g.
  • the total amount of the graphite raw material and the metal powder is 100% by mass, and the ratio of the metal powder is about 0.3 to 40% by mass. preferable.
  • the ratio of the metal powder is lower than this, it is difficult to obtain a discharge capacity of 372 mAhZg or more in most cases, and if it exceeds the above range, expansion and contraction of the negative electrode active material when inserting and extracting lithium increase. This is preferable because the cycle characteristics deteriorate.
  • the proportion of the powder is preferably about 0.5 to 25% by mass.
  • the graphite raw material and metal powder are collided in a high-speed air current to pulverize a part of the graphite raw material to form a structure in which the graphite raw material and the pulverized material are laminated.
  • a granulated body in which metal powder is dispersed on the surface and inside can be obtained.
  • FIG. 1 and FIG. 2 are conceptual explanatory views showing an example of a granulating apparatus that can be used for producing the granulated body of the present invention.
  • 1 is the casing of the apparatus
  • 2 is a cover after that
  • 3 is a front cover thereof
  • 4 is a rotor that is in the casing 1 and rotates at high speed
  • 5 is a predetermined interval around the outer periphery of the rotor 4.
  • a plurality of impact pins arranged in a radial pattern with a general arrangement of hammer type or blade type.
  • the 6 is a rotating shaft that rotatably supports the rotor 4 in the casing 1
  • 7 is a collision ring that is provided along the outermost raceway surface of the impact pin 5 and with a certain space around it.
  • the collision ring 7 can be an uneven type or a circumferential plane type having various shapes. The force varies depending on the size of the device.
  • the gap between the outermost raceway surface of the impact pin 5 and the collision ring 7 is preferably 0.5 to 0 mm.
  • a circulation circuit, 12 is a raw material hopper, 13 is a chute for raw material supply that connects the raw material hopper 12 and the circulation circuit 11, and 14 is an open / close valve provided in the middle of the chute.
  • the collision ring 7 has a jacket structure 18. In this case, it is possible to control the atmospheric temperature in the shock chamber 15 and the circulation circuit 11 at a constant level by flowing cooling water there.
  • the on-off valve 14 provided in the middle of the chute for supplying the raw material is closed, and the on-off valve 8 at the granule discharge port is opened.
  • the rotating shaft 6 is driven by the driving means (not shown) to rotate the rotor 4.
  • the circulation circuit 11 opens from the circulation port 16 opened to a part of the inner wall of the collision ring 7 by the fan effect based on the centrifugal force of the air flow.
  • a circulating flow of airflow returning from the opening at the center of the front cover 3 to the impact chamber 15 around the front cover 3, that is, a complete self-circulating flow is formed.
  • the amount of circulating air generated per unit time at this time is significantly larger than the total volume of the impact chamber and the circulation system, so a huge number of air circulation cycles are formed in a short time. Since the circulating air volume is proportional to the outer peripheral speed of the rotor, the air circulation cycle per unit time increases as the outer peripheral speed of the rotor increases.
  • the rotation of the rotor is preferably performed at an outer peripheral speed of 30 to about 150 m / s, more preferably about 50 to 100 m / s.
  • an abrupt air flow is generated with the rotation of the blade, and a fan effect based on the centrifugal force of the air flow forms a circulating air flow that returns from the circulation port to the rotor through the circulation path.
  • an air circulation cycle of about 700 to 800 times / minute is performed.
  • the on-off valve 14 is opened, and when the mixed powder of the graphite raw material and the metal powder is injected into the raw material hopper 12, the mixed powder enters the impact chamber 15 through the chute 13 from the raw material hopper 12. . After confirming that the mixed powder does not remain in the raw material hopper 12, the on-off valve 14 is closed.
  • the mixed powder is momentarily impacted by a large number of impact pins 5 of the rotor 4 that rotates at a high speed in the impact chamber 15, and further collides with the surrounding impact ring 7. Furthermore, impacts, compression, and shearing force are applied due to the collision of graphite raw materials. Then, accompanying the circulating flow of the airflow, it returns to the impact chamber 15 again through the circulation circuit 11 and receives the same action again. In this way, by repeatedly receiving the same action, the graphite particles, whose corners have been sequentially dropped in a process of several minutes, increase in thickness while capturing the pulverized small particles and become agglomerated. Thus, a granulated body in which the metal powder is dispersed on the surface and inside thereof is formed.
  • the on-off valve 14 is opened, and the on-off valve 8 of the granule discharge port is moved to the position indicated by the chain line to open, and the obtained granule is discharged.
  • the graphite raw material as a raw material collides in a collision area where jet air currents collide with each other, and a part thereof, in particular, a corner portion of the graphite raw material is pulverized.
  • acquires the grind
  • the formed granule has a shape close to a sphere compared to the graphite used as a raw material, and a void portion is formed between the laminated graphites inside the granule.
  • the metal powder is uniformly mixed with graphite and is dispersed on the surface and inside of the obtained granulated body.
  • the obtained granulated body is nearly spherical compared to the graphite used as a raw material, and has a higher tap density than the raw material mixture.
  • the tap density of the granulate obtained by the above method is preferably about 10% or more higher than the tap density of the raw material mixture, and more preferably about 25% or more. preferable.
  • the tap density is measured using a commercially available tap density meter (TAPDENSER KYT-4000 manufactured by Seishin Enterprise Co., Ltd.). The density at the point when the bulk density of the powder disappeared and became constant.
  • the obtained granulated body preferably has an average particle size of about 5 to 30 ⁇ , more preferably about 7 to 20 ⁇ .
  • the average particle size is preferably about 7 to 12 ⁇ m.
  • the granulated body obtained by the above-described method is laminated in a state in which it is oriented in various directions so that the graphite particles 22 overlap each other.
  • the graphite 22 is laminated in various directions, thereby forming a structure in which voids 24 and unevenness are generated from the inside of the granulated body to the surface 23.
  • the granulated body has a shape close to a sphere.
  • the negative electrode active material When used as, lithium Li can penetrate into the inside of the negative electrode active material from all directions, so that a large area in which lithium Li can penetrate / separate can be taken, and a high lithium storage capacity can be obtained.
  • the metal powder 21 is present in a large amount in the void portion 24 formed only by the surface 23 of the granulated body. For this reason, the metal powder repeatedly expands and contracts by occluding / releasing lithium, and even when the metal powder is refined by repetition of the expansion and contraction, expansion and contraction occurs inside the void portion 24. As a result, the pulverized metal powder is prevented from being detached from the granulated body having graphite power. As a result, even if the metal powder is repeatedly expanded and contracted to be miniaturized, the high charge / discharge capacity obtained by adding the metal powder with little deterioration in battery performance can be maintained for a long time.
  • the graphite raw material and the metal powder may be preliminarily mixed by a dry method or a wet method as a premixing step before the granulated body of the graphite raw material and the metal powder is produced by the above-described method.
  • a shearing crusher or a ball mill can be used.
  • a shear crusher mixes materials while applying a shearing force by rotating a blade at a high speed.
  • the mixing time is preferably several minutes to 30 minutes.
  • the metal powder when it is preferable to mix the materials using rubber balls, the metal powder is more uniformly dispersed. In this case, the mixing time is preferably about 30 minutes to 60 minutes.
  • the metal powder can also be premixed in a wet manner. That is, the preliminary mixing can be performed by dispersing the metal powder and the graphite raw material in alcohol or the like, stirring and mixing, and then evaporating the organic solvent using an evaporator or a dryer.
  • the metal powder and the graphite are in a state of being slightly hardened.
  • a compression crusher, a shear crusher, a roller mill, an impact shear mill, an agitation mill, a jet mill, a laika machine, a mortar, a mortar, and the like can be used.
  • the surface of the granule obtained by the above-described high-speed air-flow impact method may be further coated with a carbon precursor or a carbonized product thereof.
  • a carbon precursor or a carbonized product thereof By covering the surface, it is possible to cover the active sites of graphite, reduce the specific surface area, reduce the reactivity with the electrolytic solution, and suppress the decomposition of the electrolytic solution. Furthermore, by covering the surface, expansion and contraction of the metal powder can be suppressed, and detachment of the metal powder from the granulated body can also be suppressed.
  • Examples of the carbon precursor include various cellulose, polyacrylamide, polyethyleneimine, phenol resin, furan resin, epoxy resin, polyvinyl chloride, and polyvinyl alcohol in addition to coal-based or petroleum-based pitch and tar. These synthetic resins can be used.
  • the pitch may be an isotropic pitch or an anisotropic pitch. These carbon precursors can also be used in combination of two or more.
  • the method of coating the surface of the granulated body with the carbon precursor described above is not particularly limited.
  • a mixture of the carbon precursor and the granulated body at room temperature may be used to soften the carbon precursor.
  • a method of bringing the temperature to a temperature above the point, a method of mixing the carbon precursor and the granulated material at a temperature above the softening point of the carbon precursor, and immersing the granulated material in a liquid carbon precursor or a solution of the carbon precursor The method to do is applicable.
  • the method of mixing the carbon precursor and the granulated material is not particularly limited. That's fine.
  • the mixing operation of the carbon precursor and the granulated body is performed at or above the softening point of the carbon precursor used.
  • a temperature of The upper limit of the temperature is not particularly limited, but when the purpose is coating with a carbon precursor, the temperature may be set to a temperature not higher than the carbonization temperature of the carbon precursor.
  • the pressure during stirring may be any of atmospheric pressure, pressurization, and reduced pressure.
  • the ratio of the carbon precursor to the granulated body may be a ratio that provides an effect such as suppressing the decomposition of the electrolytic solution. If an excessive amount of carbon precursor is added, the granules are excessively agglomerated and are liable to adhere, which is not preferable. Usually, it is preferable to set the amount of carbon precursor to about 0.:! To about 50 parts by mass with respect to 100 parts by mass of the granulated product. ⁇ : More preferably about 15 parts by mass.
  • the viscosity is reduced by heating, or The viscosity may be adjusted by mixing with an organic solvent.
  • the organic solvent is not particularly limited, and for example, toluene, quinoline, acetone, hexane, benzene, xylene, methanolenophthalene, alcohols, coal oil, petroleum oil, and the like can be used.
  • the synthetic resin is usually used after being dissolved in an organic solvent.
  • the organic solvent is not particularly limited, and is appropriately selected from, for example, toluene, quinoline, acetone, hexane, benzene, xylene, methylnaphthalene, alcohols and the like.
  • the stirring method is not particularly limited.
  • a ribbon mixer, a screw kneader, a universal mixer, or the like can be used.
  • the stirring conditions are appropriately selected according to the viscosity of the mixture, the organic solvent to be used, and the like.
  • the viscosity of the liquid carbon precursor or carbon precursor solution is 500 Pa's or less.
  • the treatment temperature should be in the range of about 10 to 200 ° C.
  • the pressure during stirring can be under atmospheric pressure, under pressure, under reduced pressure, or even with a deviation.
  • the coated granulate is separated from the liquid carbon precursor or carbon precursor solution.
  • a separation method methods such as centrifugation, squeeze filtration, and gravity sedimentation separation may be applied as appropriate.
  • the temperature at the time of separation is not particularly limited, but it may usually be in the range of about 10 to 200 ° C.
  • a granulated body surface-coated with a carbon precursor is obtained.
  • the drying temperature is not particularly limited, but is usually about 100 to 300 ° C.
  • a thermosetting synthetic resin is used as the carbon precursor, it can be cured with the resin component remaining by drying in a temperature range higher than the curing temperature of the synthetic resin. Further, after drying, it is also possible to carry out a separate heat treatment within the temperature range of the synthetic resin to 300 ° C. to cure the synthetic resin as the coating component while leaving the resin component.
  • the coating amount by the carbon precursor is the same as in the case of mixing the granulated body and the carbon precursor. It is preferable to set the amount of carbon precursor to about 0.:! To about 50 parts by mass with respect to 100 parts by mass of the granules. It is even better to make it about a part.
  • the coating amount with the carbon precursor can be appropriately adjusted, for example, by changing the concentration of the solution containing the carbon precursor.
  • the carbon precursor may be carbonized.
  • the carbonization treatment may be performed by heat-treating the granule whose surface is coated with a carbon precursor in an inert gas stream such as nitrogen or a non-oxidizing atmosphere such as a reducing atmosphere.
  • the heat treatment temperature is preferably about 800 to 1200 ° C.
  • the carbonization temperature is preferably 1000 ° C. or lower so that the metal powder and nitrogen do not react.
  • the holding time at the highest temperature is not particularly limited and can be, for example, about several minutes to 2 hours. If the rate of temperature rise is too high, agglomeration between the granulated bodies tends to occur.
  • an economic temperature rise rate may be selected in consideration of suppressing the occurrence of agglomeration. For example, it can be about 10 to 200 ° C./hour. Even if agglomeration occurs, in most cases, it can be easily crushed by applying a light shear force.
  • the carbon precursor is pitch
  • the residual rate due to carbonization is about 50% by mass.
  • the carbon precursor is phenol resin
  • the residual ratio due to carbonization is about 50% by mass, and in the case of polybutyl alcohol, it is about 5% by mass or less.
  • the coating method with the carbon precursor or the carbonized product thereof is not limited to the above-described method.
  • a hydrocarbon such as benzene, toluene, xylene, etc. is thermally decomposed to form a thermally decomposed carbon layer.
  • the coating treatment can also be performed by chemical vapor deposition.
  • the above-mentioned granulated body made of a graphite raw material and a metal powder is useful as a negative electrode active material for a lithium ion secondary battery.
  • a lithium ion secondary battery using the negative electrode active material can be produced by a known method. That is, the above-mentioned granulated material is used as the negative electrode active material, and the positive electrode active material is MnO, LiCoO, LiNiO, LiNi Co O, LiMnO, LiMn O,
  • a known positive electrode active material such as LiFeO can be used.
  • Examples of the electrolyte include ethylene power
  • LiPF a mixed solvent of an organic solvent such as carbonate and a low boiling point solvent such as dimethyl carbonate, jetyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, and ethoxymethoxyethane.
  • Electrolyte solutes such as LiBF, LiClO, LiCF SO
  • a lithium ion secondary battery can be assembled according to a conventional method using other known battery components.
  • the negative electrode active material of the present invention contains, as an active ingredient, a metal powder capable of occluding and releasing graphite and lithium ions, and has a higher charge / discharge capacity than when graphite is used alone. It is.
  • the lithium ion secondary battery using the negative electrode active material of the present invention has a high charge / discharge capacity and excellent cycle characteristics.
  • FIG. 1 is a conceptual explanatory diagram of a negative electrode active material production apparatus of the present invention.
  • FIG. 2 is an explanatory side sectional view of the apparatus of FIG.
  • FIG. 3 is a conceptual diagram showing a schematic configuration of a negative electrode active material of the present invention.
  • FIG. 4 Scanning electron microscope (SEM) photograph of the cross section of the granulate obtained in Example 8 (a) Silicon surface analysis by energy dispersive X-ray fluorescence analysis (EDS) in the same field (b) It is drawing which shows a result.
  • SEM scanning electron microscope
  • Polycrystalline silicon powder with an average particle size of 1 ⁇ m was pulverized using a commercially available bead mill, 5 g of silicon powder (average particle size 0 ⁇ 2 / m) and natural graphite (flaky graphite) (average particle size of 10 / m 95 g of true specific gravity 2.25 and specific surface area 8.8 m 2 / g) were used as raw materials.
  • an apparatus for producing the granulated material an apparatus having the structure shown in Fig. 1 (Hybridization System NHS-1 manufactured by Nara Machinery Co., Ltd.) is used. , And mixed for 3 minutes at 8000 rpm (peripheral speed 96 m / s). This operation was repeated 5 times to obtain 500 g of a granulated body.
  • the average particle diameter of the obtained granulated body was 7.
  • the tap density was 0.77 g / cc.
  • the tap density measured after the mixture of natural graphite and silicon powder before granulation was mixed uniformly according to the method described above was 0.57 gZcc.
  • the silicon content of the negative electrode active material obtained in the above method 4. a 7 mass%, average particle diameter of 7. 5 xm, a specific surface area of 6. 7m 2 / g.
  • the battery characteristics of the lithium ion secondary battery were evaluated by the following method.
  • a water-dispersed styrene-butadiene rubber (SB) is used as a binder for the negative electrode active material.
  • a slurry containing a negative electrode active material was prepared by adding appropriate amounts of R), carboxymethylcellulose (CMC) and water and stirring.
  • this slurry was applied to a thickness of about 100 to 1 10 ⁇ on a 50 ⁇ 200 (mm) foil, dried, and then the density of the active material was 1. 5 to: 1.
  • a negative electrode plate was manufactured by pressing to 6 gZcc. This negative electrode plate was cut and divided into a size of 1 cm 2 and dried to produce a negative electrode.
  • the electrode cell was transferred from the glove box into a constant temperature bath at 25 ° C, and the lithium counter electrode, the negative electrode, and the reference electrode terminal were connected to the charging / discharging device connection cord, and evaluation measurement was performed.
  • the battery was charged at a constant current at a current density of 1. OmA / cm 2 and then switched to a constant voltage at a voltage of 10 mV for 12 hours.
  • the discharge conditions were: 1. OmA / cm 2 constant current discharge, cut-off voltage was 1.2V.
  • the discharge capacity was 464 mAh / g, and the initial efficiency was 86%.
  • the obtained granulated product had an average particle size of 6.6 ⁇ m and a tap density of 0.80 g / cc.
  • the tap density measured after uniformly mixing the mixture of natural graphite and silicon powder before granulation according to the method described above was 0.59 gZcc.
  • the average particle diameter of the negative electrode active material obtained by the above method is 7.0 ⁇ m, and the specific surface area is 8.9 m. 2 g.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 465 mAh / g, and the initial efficiency was 87%.
  • the electrolyte was 1M LiPF and ethylene carbonate (EC).
  • DEC 6 Z jetyl carbonate
  • Example 1 using 15 g of silicon powder (average particle size 0.2 xm) crushed in the same manner as in Example 1 and 85 g of natural graphite (flaky graphite) (average particle size 10 / m, true specific gravity 2.25) Using the same granule production apparatus, 500 g of a granule was obtained in the same manner as in Example 1.
  • the average particle diameter of the obtained granulated body was 7.2 / im, and the tap density was 0.88 g / cc.
  • the tap density measured after uniformly mixing the mixture of natural graphite and silicon powder before granulation according to the above-described method was 0.61 g / cc.
  • the negative electrode active material obtained by the above method has an average particle diameter of 7.5 ⁇ m and a specific surface area of 8.4 m.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 578 mAh / g, and the initial efficiency was 85%.
  • the electrolyte was 1M LiPF and ethylene carbonate (EC) Z jetyl carbon.
  • the cycle characteristics were evaluated in the same manner by changing to a non-aqueous electrolyte dissolved in a mixed solvent with a volume ratio (DEC) of 1/1 (volume ratio).
  • DEC volume ratio
  • the discharge capacity in the first cycle was 648 mAh / g
  • the value obtained by dividing the discharge capacity in the second cycle by the discharge capacity in the first cycle (percent capacity ratio) was 96%.
  • the average particle diameter of the negative electrode active material obtained by the above method was 7.7 / m, and the specific surface area was 6.8 m 2 / g.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 577 mAh / g and the initial efficiency was 85%.
  • a granulated body (500 g) was obtained in the same manner as in Example 4 except that 90 parts by mass of graphite and 10 parts by mass of silicon powder were used as raw materials.
  • the tap density of the mixture before granulation was 0.59 gZcc.
  • the average particle size of the granulation was 6.8 x m and the tap density was 0.80 g / cc.
  • the negative electrode active material obtained by the above method has an average particle diameter of 7.0 ⁇ m and a specific surface area of 8.5 m.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 620 mAh / g, and the initial efficiency was 85%.
  • a granulated body (500 g) was obtained in the same manner as in Example 4 except that 85 parts by mass of graphite and 15 parts by mass of silicon powder were used as raw materials.
  • the tap density of the mixture before granulation was 0.61 gZcc.
  • the average particle size of the granulation was 6.
  • the tap density was 0.85 g / cc.
  • the average particle diameter of the negative electrode active material obtained by the above method is 6.8 / im, and the specific surface area is 8.9m.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 670 mAh / g, and the initial efficiency was 84%.
  • Silicon powder having an average particle size of 1 ⁇ m was pulverized using a bead mill using isopropyl alcohol as a medium to obtain silicon powder having an average particle size of 0.2 ⁇ m.
  • the obtained pulverized product was in a state where silicon powder having an average particle size of 0.2 zm was dispersed in alcohol.
  • 90 parts by mass of natural graphite (flaky graphite) average particle size 20 ⁇ m, true specific gravity 2.25, specific surface area 4.5 m 2 Zg
  • the alcohol was evaporated using an evaporator.
  • the mixture of the silicon powder and natural graphite obtained by the above-described method is used as a rubber bowl. It was put into a ball mill with Nore and further mixed.
  • the average particle diameter of the negative electrode active material obtained by the above method was 16.5 ⁇ m, and the specific surface area was 4.3 mZg.
  • the discharge capacity in the first cycle was 565 mAh / g, and the initial efficiency was 90%.
  • the value obtained by dividing the discharge capacity at the second cycle by the discharge capacity at the first cycle (percent capacity ratio) is 98%, and the value obtained by dividing the discharge capacity at the 10th cycle by the discharge capacity at the first cycle. was 90%, indicating good cycle characteristics.
  • Silicon powder having an average particle size of 1 ⁇ m was pulverized using a bead mill using isopropyl alcohol as a medium to obtain silicon powder having an average particle size of 0.2 ⁇ m.
  • the obtained pulverized product was in a state where silicon powder having an average particle size of 0.2 zm was dispersed in alcohol.
  • 85 parts by mass of natural graphite (flaky graphite) average particle size of 20 ⁇ m, true specific gravity of 2.25
  • the alcohol was evaporated using an evaporator.
  • the mixture of silicon powder and natural graphite obtained by the above-described method was placed in a ball mill together with a rubber bonole and further mixed.
  • the average particle diameter of the negative electrode active material obtained by the above method was 9.3 ⁇ m, and the specific surface area was 7.2 m 2 g.
  • Fig. 4 shows the silicon of the negative electrode active material obtained in Example 8 by means of energy dispersive X-ray fluorescence analysis (EDS) in the same field of view as the scanning electron microscope (SEM) photograph (a) of the cross section.
  • SEM scanning electron microscope
  • the surface analysis (b) is shown.
  • the sample for observation was obtained by placing the negative electrode active material in an epoxy resin and polishing it, and observed the cut surface at a magnification of 4000 times.
  • Example 9 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 633 mAh / g, and the initial efficiency was 82%. [0116] Example 9
  • Silicon powder having an average particle size of 1 im was pulverized using isopropyl alcohol as a medium using a bead mill to obtain silicon powder having an average particle size of 0.2 ⁇ .
  • the obtained pulverized product was in a state where silicon powder having an average particle size of 0.2 zm was dispersed in alcohol.
  • 99 parts by mass of natural graphite (flaky graphite) average particle size 20 zm, true specific gravity 2.25 with respect to 1 part by mass of silicon was added and stirred. Thereafter, the alcohol was evaporated using an evaporator.
  • the silicon content was 0.9 mass%.
  • the average particle diameter of the negative electrode active material was 10.0 ⁇ , and the specific surface area was 4.8 m 2 / g.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 392 mAh / g, and the initial efficiency was 88%.
  • a granulated body was obtained in the same manner as in Example 9 except that 98 parts by mass of natural graphite (flaky graphite) was used with respect to 2 parts by mass of silicon.
  • the surface of the obtained granule was coated with pitch carbonized material in the same manner as in Example 9 to obtain a negative electrode active material.
  • the tap density of the mixture before granulation was 0.57 g / cc. .
  • the average particle diameter of the granulated body was 9.2 / im, and the tap density was 0.87 g / cc.
  • the silicon content was 1.8% by mass.
  • the average particle diameter of the negative electrode active material was 9.5 ⁇ , and the specific surface area was 4.2 m 2 / g.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 404 mAh / g, and the initial efficiency was 88%.
  • a granulated product was obtained in the same manner as in Example 9 except that 97 parts by mass of natural black bell (scale-like black bell) was used with respect to 3 parts by mass of silicon.
  • the surface of the obtained granulated body was coated with pitch carbonized material in the same manner as in Example 9 to obtain a negative electrode active material.
  • the tap density of the mixture before granulation was 0.58 g / cc.
  • the average particle diameter of the granulated body was 9.0 / im, and the tap density was 0.83 g / cc.
  • the silicon content was 2.7% by mass.
  • the average particle diameter of the negative electrode active material was 9.2 ⁇ , and the specific surface area was 4.6 m 2 / g.
  • Example 2 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 421 mAh / g and the initial efficiency was 88%.
  • the silicon content was 8.9 mass%.
  • the average particle diameter of the negative electrode active material was 16.
  • the specific surface area was 4.4 m 2 Zg.
  • the discharge capacity was 467 mAh / g, and the initial efficiency was 86%.
  • the value obtained by dividing the discharge capacity at the 6th cycle by the discharge capacity at the 1st cycle (percent capacity ratio) was 75%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A negative-electrode active material for lithium ion secondary battery, comprising a granulated substance obtained by subjecting a mixture of a metal powder capable of lithium ion occlusion and release and at least one graphite charge material selected from the group consisting of a flake graphite and an artificial graphite of 0.336 nm or less (002)-face interplanar spacing to pulverization in high-velocity air current and granulation, wherein part of the graphite as the charge material is pulverized so as to have a structure of laminate of the graphite charge material and pulverizate thereof in which at the surface or interior thereof, a metal powder is dispersed. This negative-electrode active material for lithium ion secondary battery is a novel active material of high performance, simultaneously realizing high charge/discharge capacity and excellent cycle characteristics.

Description

明 細 書  Specification
リチウムイオン二次電池用負極活物質  Negative electrode active material for lithium ion secondary battery
技術分野  Technical field
[0001] 本発明は、リチウムイオン二次電池用負極活物質、及びリチウムイオン二次電池に 関する。  The present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery.
背景技術  Background art
[0002] 携帯電話やノートパソコン等の電子機器用の電源として、リチウムイオン二次電池 が普及している。リチウムイオン二次電池は、リチウムイオンを吸蔵放出可能な正極と 負極とが対向し、正極と負極との間にセパレータを介在させた構成を有するものであ る。これらの正極、負極およびセパレータは金属容器内に収納され、この金属容器内 に非水電解液が注入されてレ、る。  [0002] Lithium ion secondary batteries are widely used as power sources for electronic devices such as mobile phones and laptop computers. A lithium ion secondary battery has a configuration in which a positive electrode and a negative electrode capable of inserting and extracting lithium ions face each other, and a separator is interposed between the positive electrode and the negative electrode. These positive electrode, negative electrode and separator are housed in a metal container, and a non-aqueous electrolyte is injected into the metal container.
[0003] 現在、リチウムイオン二次電池の高容量化に向けて、充放電容量 (電気容量)の高 い負極材料の開発が進められている。従来、負極活物質としては、主として黒鉛粉体 などの炭素材料が使用されている力 黒鉛の理論電気容量は 372mAh/gであり、 より高い充放電容量を得るために、種々の開発が行なわれている。  [0003] Currently, development of a negative electrode material having a high charge / discharge capacity (electric capacity) is being promoted in order to increase the capacity of a lithium ion secondary battery. Conventionally, carbon materials such as graphite powder have been mainly used as negative electrode active materials. The theoretical electric capacity of graphite is 372 mAh / g, and various developments have been carried out to obtain higher charge / discharge capacity. ing.
[0004] 例えば、黒鉛等の炭素材料と、黒鉛より高い理論電気容量を有する他の材料とを 組み合わせて使用することが試みられており、他の材料としては、充電の際に電気化 学的にリチウムと合金化するシリコン、錫、アルミニウム等が検討されている。これらの 材料の内で、シリコンは高い理論電気容量 (4198mAhZg)を有するものであり、こ れを負極材料の一部に用いたリチウムイオン二次電池が報告されている。例えば、 下記特許文献 1には、黒鉛粒子の周りに、シリコン及び炭素を少なくとも含有する複 合粒子が分散して配置された構造の炭素材料が開示されている。  [0004] For example, it has been attempted to use a carbon material such as graphite in combination with another material having a higher theoretical electric capacity than graphite. In addition, silicon, tin, aluminum and the like that are alloyed with lithium are being studied. Among these materials, silicon has a high theoretical electric capacity (4198 mAhZg), and lithium ion secondary batteries using this as part of the negative electrode material have been reported. For example, Patent Document 1 below discloses a carbon material having a structure in which composite particles containing at least silicon and carbon are dispersed around graphite particles.
[0005] し力、しながら、シリコンは、リチウムを吸収すると膨張する性質を有し、黒鉛などの他 の材料と比較して著しく高い膨張率を有するものである。従って、シリコンをリチウムィ オン二次電池の負極活物質の一部として用いた場合、充放電によってリチウムの吸 蔵及び放出を繰り返すと、シリコン自体が膨張収縮を繰り返すことになる。その結果、 膨張収縮に耐え切れずにシリコンが微細化して、炭素材料から脱離するという現象 が生じる。この場合、シリコンは、それ自体は電子導電性が無いので、集電特性を悪 ィ匕させたり、微粉化したシリコンと非水電解液とが反応して非水電解液を分解させた りするという不具合を起こす。このため、シリコンを含む負極材料は、充放電を繰り返 すと充放電容量の低下が著しく、十分なサイクル特性が得られなレ、とレ、う欠点がある 特許文献 1 :特開 2002— 255529号公報 [0005] However, silicon has a property of expanding when lithium is absorbed, and has a significantly higher expansion rate than other materials such as graphite. Therefore, when silicon is used as a part of the negative electrode active material of a lithium-ion secondary battery, if the lithium is repeatedly occluded and released by charging and discharging, the silicon itself will repeatedly expand and contract. As a result, a phenomenon in which silicon does not endure expansion and contraction and silicon becomes finer and desorbs from the carbon material. Occurs. In this case, since silicon itself has no electronic conductivity, the current collection characteristics are deteriorated, or the pulverized silicon and the non-aqueous electrolyte react to decompose the non-aqueous electrolyte. This causes a malfunction. For this reason, the negative electrode material containing silicon has a drawback in that the charge / discharge capacity decreases remarkably when charge / discharge is repeated, and sufficient cycle characteristics cannot be obtained. No. 255529
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は 、リチウムイオン二次電池用負極活物質において、高い充放電容量と優れたサイクル 特性とを兼ね備えた優れた性能を有する新規な負極活物質、及び該負極活物質を 用いたリチウムイオン二次電池を提供することである。 [0006] The present invention has been made in view of the current state of the prior art described above, and its main purpose is to provide a high charge / discharge capacity and excellent cycle characteristics in a negative electrode active material for a lithium ion secondary battery. It is to provide a novel negative electrode active material having excellent performance, and a lithium ion secondary battery using the negative electrode active material.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、黒鉛 原料とリチウムイオンを吸蔵及び放出し得る金属粉末との混合物を原料として用い、 これを高速気流中で衝突させて原料粉末を粉砕、造粒させる方法によれば、黒鉛原 料の一部が粉砕されて、黒鉛原料及びその粉碎物が凝集して積層した構造の造粒 体が形成され、金属粉末は、該造粒体の表面と内部に分散した構造となることを見 出した。そして、斯カる構造を有することによって、金属粉末がリチウムを吸蔵及び放 出することによって膨張収縮を繰り返し、微細化した場合であっても、金属粉末が該 造粒体の内部に多量に存在することによって、造粒体内部の空隙部において膨張 収縮が行われ、造粒体からの脱離が防止されることを見出した。その結果、高い充放 電容量を維持することが可能となり、優れたサイクル特性を有するものとなることを見 出し、ここに本発明を完成するに至った。  [0007] The present inventor has intensively studied to achieve the above-described object. As a result, according to the method of using a mixture of a graphite raw material and a metal powder capable of occluding and releasing lithium ions as a raw material, and colliding this in a high-speed air stream to pulverize and granulate the raw material powder, Part of the powder is pulverized to form a granulated body with a structure in which the graphite raw material and its powder are agglomerated and laminated, and the metal powder is found to have a structure dispersed on the surface and inside of the granulated body. did. Further, by having such a structure, even when the metal powder repeatedly expands and contracts by occlusion and release of lithium and is refined, a large amount of the metal powder is present inside the granulated body. By doing so, it was found that expansion and contraction were performed in the voids inside the granulated body, and detachment from the granulated body was prevented. As a result, it was possible to maintain a high charge / discharge capacity, and it was found to have excellent cycle characteristics, and the present invention was completed here.
[0008] 即ち、本発明は、下記のリチウムイオン二次電池用負極活物質、及び該活物質を 用いたリチウムイオン二次電池を提供するものである。  That is, the present invention provides the following negative electrode active material for lithium ion secondary batteries and a lithium ion secondary battery using the active material.
1. 鱗状黒鉛、及び(002)面の面間隔が 0. 336nm以下の人造黒鉛からなる群か ら選ばれた少なくとも一種の黒鉛原料と、リチウムイオンを吸蔵及び放出し得る金属 粉末との混合物を、高速気流中で粉砕、造粒して得られる造粒体であって、 原料とする黒鉛の一部が粉碎されて、黒鉛原料及びその粉砕物が積層した構造とな り、その表面及び内部に金属粉末が分散した状態の造粒体力 なるリチウムイオン二 次電池用負極活物質。 1. at least one graphite raw material selected from the group consisting of scaly graphite and artificial graphite having a (002) plane spacing of 0.336 nm or less, and a metal capable of inserting and extracting lithium ions A granulated product obtained by pulverizing and granulating a mixture with a powder in a high-speed air stream, and a part of graphite as a raw material is pulverized to form a structure in which the graphite raw material and the pulverized product are laminated. And a negative electrode active material for a lithium ion secondary battery having a granulated force with a metal powder dispersed on the surface and inside thereof.
2. 平均粒径が 5〜: 150 μ mの黒鉛原料と、平均粒径が 0. 01〜2 μ mの金属粉末 の混合物を原料として得られた造粒体からなる上記項 1に記載のリチウムイオン二次 電池用負極活物質。  2. The above-mentioned item 1, comprising a granulated material obtained from a mixture of a graphite raw material having an average particle size of 5 to 150 μm and a metal powder having an average particle size of 0.01 to 2 μm. Negative electrode active material for lithium ion secondary battery.
3. 造粒体のタップ密度が、原料混合物のタップ密度と比較して 10%以上高い値で ある上記項 1又は 2に記載のリチウムイオン二次電池用負極活物質。  3. The negative electrode active material for a lithium ion secondary battery according to item 1 or 2, wherein the tap density of the granulated body is 10% or more higher than the tap density of the raw material mixture.
4. 金属粉末としてシリコン粉末を用いて得られる造粒体からなる上記項 1〜3のい ずれかに記載のリチウムイオン二次電池用負極活物質。  4. The negative electrode active material for a lithium ion secondary battery according to any one of the above items 1 to 3, comprising a granulated body obtained using silicon powder as the metal powder.
5. 黒鉛原料として天然黒鉛を用いて得られる造粒体からなる上記項 1〜4のいず れかに記載のリチウムイオン二次電池用負極活物質。  5. The negative electrode active material for a lithium ion secondary battery according to any one of the above items 1 to 4, comprising a granulated body obtained using natural graphite as a graphite raw material.
6. 黒鉛原料と金属粉末の合計量を 100質量%として、金属粉末を 0. 3〜40質量 %含む原料を用いて得られる造粒体からなる上記項 1〜5のいずれかに記載のリチ ゥムイオン二次電池用負極活物質。  6. The lithium ion according to any one of the above items 1 to 5, comprising a granulated material obtained by using a raw material containing 0.3 to 40% by mass of a metal powder, wherein the total amount of the graphite raw material and the metal powder is 100% by mass. Negative electrode active material for um ion secondary battery.
7. 湿式又は乾式の予備混合を行った原料混合物を、高速気流中で粉砕、造粒し て得られる造粒体からなる上記項 1〜6のいずれかに記載のリチウムイオン二次電池 用負極活物質。  7. The negative electrode for a lithium ion secondary battery according to any one of the above items 1 to 6, comprising a granulated material obtained by pulverizing and granulating a raw material mixture subjected to wet or dry premixing in a high-speed air stream Active material.
8. 上記項 1〜7のいずれかに記載された造粒体の表面力 炭素前駆体又はその 炭素化物によって被覆されている造粒体からなるリチウムイオン二次電池用負極活 物質。  8. Surface force of the granule according to any one of the above items 1 to 7 A negative electrode active material for a lithium ion secondary battery comprising a granule coated with a carbon precursor or a carbonized product thereof.
9. 上記項:!〜 8のいずれかに記載されたリチウムイオン二次電池用負極活物質を 構成要素とするリチウムイオン二次電池。  9. A lithium ion secondary battery comprising the negative electrode active material for a lithium ion secondary battery according to any one of the above items:! To 8 as a constituent element.
[0009] 以下、本発明のリチウムイオン二次電池用負極活物質について、具体的に説明す る。  Hereinafter, the negative electrode active material for a lithium ion secondary battery of the present invention will be specifically described.
[0010] 成,分  [0010] completion
本発明のリチウムイオン二次電池用負極活物質では、原料としては、黒鉛原料とリ チウムイオンを吸蔵及び放出し得る金属粉末とを組み合わせて用いる。 In the negative electrode active material for a lithium ion secondary battery of the present invention, the raw material is a graphite raw material and a lithium raw material. It is used in combination with a metal powder that can occlude and release thium ions.
[0011] 黒鉛原料としては、鱗状黒鉛、及び (002)面の面間隔が 0. 336nm以下の人造黒 鉛からなる群から選ばれた少なくとも一種を用いることができる。尚、上記面間隔は、 X回折法によって求めた値である。  [0011] As the graphite raw material, at least one selected from the group consisting of scaly graphite and artificial black lead having a (002) plane spacing of 0.336 nm or less can be used. The above-mentioned surface spacing is a value obtained by X diffraction method.
[0012] これらの黒鉛原料の内で、鱗状黒鉛は、鱗状あるいは葉状で薄い鱗片状黒鉛 (フ レーク状黒鉛)と、形状が塊状である鱗状黒鉛に分けられるが、本発明では、鱗片状 黒鉛と塊状の鱗状黒鉛をいずれも用いることができる。特に、結晶性が高い鱗片状 黒鉛からなる天然黒鉛は、素材が柔らかいために、造粒体を形成し易ぐしカ リチウ ムの吸蔵及び放出能が良好で、電気容量が高く低電位で平坦の放電特性を有する 点で好ましい。  Among these graphite raw materials, scaly graphite is divided into scaly or leafy thin scaly graphite (flaky graphite) and scaly graphite having a massive shape. In the present invention, scaly graphite is used. And lump scaly graphite can be used. In particular, natural graphite consisting of scaly graphite with high crystallinity is easy to form a granulated body because of its soft material, and has good ability to absorb and release calcium, and has high electric capacity, flatness at low potential. This is preferable in that it has discharge characteristics.
[0013] また、人造黒鉛としては、結晶面(002)面の面間隔が 0. 336nm以下の人造黒鉛 を用いることができる。この様な人造黒鉛としては、例えば、ニードルコータスなどの 易黒鉛化性炭素を 3000°C前後の温度で熱処理して得られる黒鉛やキッシュ黒鉛を 用いることができる。これらの人造黒鉛は、鱗状黒鉛に近い組織や構造を有するもの である。  [0013] As the artificial graphite, artificial graphite having a crystal plane (002) plane spacing of 0.336 nm or less can be used. As such artificial graphite, for example, graphite or quiche graphite obtained by heat-treating graphitizable carbon such as needle coatus at a temperature of about 3000 ° C. can be used. These artificial graphites have a structure and structure close to that of scaly graphite.
[0014] 黒鉛原料の平均粒径は、 5〜: 150 μ ΐη程度のものを用いることができるが、 目標と する造粒体の粒径によって好ましい粒径が異なる。例えば、 目標とする造粒体の平 均粒径が 7〜10 μ ΐη程度であれば、 5〜40 /i m程度が適当であり、 7〜30 μ ΐη程度 であることが好ましぐ 10〜20 μ ΐη程度であることがより好ましい。 目標とする造粒体 の平均粒径が 20 μ mであれば、 20〜: 120 μ m程度が適当である。  [0014] The average particle size of the graphite raw material may be about 5 to about 150 μΐη, but the preferred particle size varies depending on the target granulated particle size. For example, if the average particle size of the target granule is about 7 to 10 μΐη, about 5 to 40 / im is appropriate, and about 7 to 30 μΐη is preferable 10 to 10 More preferably, it is about 20 μΐη. If the target granule has an average particle size of 20 μm, 20 to 120 μm is appropriate.
[0015] 尚、本願明細書では、平均粒径は、レーザー回折散乱法を用いて測定し、累積頻 度 50%に相当する粒径(D50)を意味する。  In the present specification, the average particle diameter means a particle diameter (D50) corresponding to a cumulative frequency of 50%, measured using a laser diffraction scattering method.
[0016] また、黒鉛原料の比表面積は、 0. 5〜20m2/g程度であることが好ましぐ:!〜 10 m2/g程度であることがより好ましい。この場合の比表面積は、 BET法によって測定 した値である。 [0016] The specific surface area of the graphite material is preferably to be 0. 5 to 20 m 2 / g approximately instrument:! ~ And more preferably about 10 m 2 / g. The specific surface area in this case is a value measured by the BET method.
[0017] 金属粉末としては、リチウムイオンを吸蔵及び放出し得る金属粉末であれば特に限 定なく使用できる。この様な金属粉末の具体例としては、シリコン、ゲルマニウム、錫、 鉛、アルミニウム、インジウム、チタン、これらを含む合金等を挙げることができる。該 合金については、上記した金属成分の組み合わせからなる合金の他、リチウムイオン を吸蔵及び放出しない金属を含む合金であっても良い。この場合、合金中の上記金 属成分の含有量は特に限定的ではないが、十分な容量を得るためには、 50質量% 程度以上であることが好ましい。 [0017] The metal powder is not particularly limited as long as it is a metal powder capable of occluding and releasing lithium ions. Specific examples of such metal powders include silicon, germanium, tin, lead, aluminum, indium, titanium, and alloys containing these. The The alloy may be an alloy containing a metal that does not occlude and release lithium ions in addition to the above-described alloy composed of a combination of metal components. In this case, the content of the metal component in the alloy is not particularly limited, but is preferably about 50% by mass or more in order to obtain a sufficient capacity.
[0018] 特に、シリコンは、 4198mAhZgという高い理論電気容量を有する点で好ましい。  In particular, silicon is preferable in that it has a high theoretical electric capacity of 4198 mAhZg.
シリコンは多結晶体、単結晶体のいずれでもよい。  Silicon may be either a polycrystal or a single crystal.
[0019] 金属粉末の平均粒径は、 2 μ m程度以下であることが適当であり、 1 μ m程度以下 であることが好ましぐ 0. 5 x m程度以下であることがより好ましい。金属粉末の粒径 が大きすぎる場合には、黒鉛によって形成される造粒体の空隙部分に対して粒径が 大きくなるので、空隙部分に存在する金属粉末の量が減少して、サイクル特性を十 分に向上させることができなレ、。金属粉末の粒径の下限値については、特に限定的 ではなぐ粒径が小さいほうが好ましい。通常の粉砕方法では、平均粒径 0. 01 x m 程度までの微粉末を製造することが可能であり、この程度の粒径の金属粉末を有効 に用いることができる。  The average particle diameter of the metal powder is suitably about 2 μm or less, preferably about 1 μm or less, more preferably about 0.5 × m or less. When the particle size of the metal powder is too large, the particle size becomes larger than the void part of the granulated body formed by graphite, so the amount of metal powder present in the void part is reduced and the cycle characteristics are reduced. I can't improve it enough. Regarding the lower limit of the particle size of the metal powder, it is preferable that the particle size is not particularly limited. With a normal pulverization method, it is possible to produce fine powders with an average particle size of about 0.01 x m, and metal powders with this size can be used effectively.
[0020] 通常、ジェットミル、攪拌槽型攪拌ミル (ビーズミル等)等を用いて粉砕を行うことによ つて、上記した粒径の小さい金属粉末を得ることが可能である。例えば、攪拌槽型攪 拌ミル(ビーズミル等)を用いて、イソプロピルアルコール、メチルアルコール、ェチル アルコール等のアルコール類などの有機溶剤を媒体として湿式で粉砕することもでき る。  [0020] Usually, the above-described metal powder having a small particle diameter can be obtained by pulverization using a jet mill, a stirring tank type stirring mill (bead mill or the like), and the like. For example, a stirring tank type stirring mill (bead mill or the like) can be used to pulverize in a wet manner using an organic solvent such as isopropyl alcohol, methyl alcohol, or ethyl alcohol as a medium.
[0021] 黒鉛原料と金属粉末の混合割合については、使用する金属粉末の密度や電気容 量によって適切な混合割合が異なるので特に限定的ではなレ、が、得られる造粒体の 電気容量が黒鉛の理論容量である 372mAh/gを上回る値となる割合とすることが 好ましレ、。通常は、黒鉛原料と金属粉末の合計量を 100質量%として、金属粉末の 割合を 0. 3〜40質量%程度とすることが好ましぐ 1. 0〜20質量%程度とすることが より好ましい。金属粉末の割合がこれを下回ると、ほとんどの場合 372mAhZg以上 の放電容量を得ることが困難であり、上記範囲を上回るとリチウムを吸蔵及び放出す る際の負極活物質の膨張及び収縮が大きくなりすぎて、サイクル特性が劣化するの で好ましくなレ、。例えば、金属粉末としてシリコン粉末を用いる場合には、シリコン粉 末の割合は 0. 5〜25質量%程度とすることが好ましい。 [0021] The mixing ratio of the graphite raw material and the metal powder is not particularly limited because the appropriate mixing ratio varies depending on the density and electric capacity of the metal powder to be used. However, the electric capacity of the obtained granule is not limited. It is preferable to set the ratio to a value that exceeds the theoretical capacity of graphite, 372 mAh / g. In general, it is preferable that the total amount of the graphite raw material and the metal powder is 100% by mass, and the ratio of the metal powder is about 0.3 to 40% by mass. preferable. If the ratio of the metal powder is lower than this, it is difficult to obtain a discharge capacity of 372 mAhZg or more in most cases, and if it exceeds the above range, expansion and contraction of the negative electrode active material when inserting and extracting lithium increase. This is preferable because the cycle characteristics deteriorate. For example, when using silicon powder as the metal powder, The proportion of the powder is preferably about 0.5 to 25% by mass.
[0022] 負極活物晳の製造方法 [0022] Method for producing negative electrode active material basket
本発明では、上記した黒鉛原料と金属粉末の混合物を高速気流中で衝突させる方 法によって、黒鉛原料の一部が粉砕されて、黒鉛原料及びその粉砕物が積層した構 造を形成し、その表面及び内部に金属粉末が分散した状態の造粒体を得ることがで きる。  In the present invention, the graphite raw material and metal powder are collided in a high-speed air current to pulverize a part of the graphite raw material to form a structure in which the graphite raw material and the pulverized material are laminated. A granulated body in which metal powder is dispersed on the surface and inside can be obtained.
[0023] 具体的な製造方法としては、例えば、特開平 6— 210152号公報に記載されている 高速気流中衝突法を採用することができる。以下、この方法について図 1及び図 2を 参照して具体的に説明する。  [0023] As a specific manufacturing method, for example, a high-speed air current collision method described in JP-A-6-210152 can be employed. Hereinafter, this method will be specifically described with reference to FIG. 1 and FIG.
[0024] 図 1及び図 2は、本発明の造粒体を製造するために使用できる造粒装置の一例を 示す概念的な説明図である。図 1及び図 2において、 1は該装置のケーシング、 2は その後カバー、 3はその前カバー、 4はケーシング 1の中にあって高速回転するロー ター、 5はローター 4の外周に所定の間隔を置いて放射状に周設された複数の衝撃 ピンであり、これは一般にハンマー型またはブレード型のものである。 6はローター 4 をケーシング 1内に回転可能に軸支持する回転軸、 7は衝撃ピン 5の最外周軌道面 に沿い、かつそれに対して一定の空間を置いて周設された衝突リングであり、該衝突 リング 7は、各種形状の凹凸型または円周平面型のものを用いることができる。装置 の大きさによっても異なる力 衝撃ピン 5の最外周軌道面と衝突リング 7のギャップは 0 . 5〜0mmであることが望ましい。 8は衝突リング 7の一部を切り欠いて設けた造粒体 排出口に密接に嵌合する開閉弁、 9は開閉弁 8の弁軸、 10は弁軸 9を介して開閉弁 8を操作するァクチユエ一ター、 19は制御器、 11は一端が衝突リング 7の内壁の一部 に開口し、他端がローター 4の中心部に位置する前カバー 3に開口して閉回路を形 成する循環回路、 12は原料ホッパー、 13は原料ホッパー 12と循環回路 11とを連結 する原料供給用のシュート、 14は該シュートの途中に設けられた開閉弁である。 15 はローター 4の外周と衝突リング 7との間に設けられた衝撃室、 16は衝突リング 7の内 壁の一部に開口する循環回路 11への循環口、 17は造粒体の排出管を各々示す。 尚、本装置は完全回分式装置であるため、該装置内の雰囲気温度は時間と共に上 昇する場合もある。上記衝突リング 7はジャケット構造 18になっているので、このような 場合はそこに冷却水を流して、衝撃室 15、循環回路 11内の雰囲気温度を一定に制 ί卸することちできる。 FIG. 1 and FIG. 2 are conceptual explanatory views showing an example of a granulating apparatus that can be used for producing the granulated body of the present invention. 1 and 2, 1 is the casing of the apparatus, 2 is a cover after that, 3 is a front cover thereof, 4 is a rotor that is in the casing 1 and rotates at high speed, and 5 is a predetermined interval around the outer periphery of the rotor 4. A plurality of impact pins arranged in a radial pattern with a general arrangement of hammer type or blade type. 6 is a rotating shaft that rotatably supports the rotor 4 in the casing 1, 7 is a collision ring that is provided along the outermost raceway surface of the impact pin 5 and with a certain space around it. The collision ring 7 can be an uneven type or a circumferential plane type having various shapes. The force varies depending on the size of the device. The gap between the outermost raceway surface of the impact pin 5 and the collision ring 7 is preferably 0.5 to 0 mm. 8 is an on-off valve that fits closely to the granule discharge port provided by cutting out a part of the collision ring 7, 9 is the valve shaft of the on-off valve 8, 10 is the on-off valve 8 operated via the valve shaft 9 19 is a controller, 11 is open at one end of the inner wall of the collision ring 7, and the other end is opened at the front cover 3 located at the center of the rotor 4 to form a closed circuit. A circulation circuit, 12 is a raw material hopper, 13 is a chute for raw material supply that connects the raw material hopper 12 and the circulation circuit 11, and 14 is an open / close valve provided in the middle of the chute. 15 is an impact chamber provided between the outer periphery of the rotor 4 and the collision ring 7, 16 is a circulation port to the circulation circuit 11 opened in a part of the inner wall of the collision ring 7, and 17 is a discharge pipe for the granulated material. Are shown respectively. In addition, since this apparatus is a complete batch type apparatus, the atmospheric temperature in the apparatus may increase with time. The collision ring 7 has a jacket structure 18. In this case, it is possible to control the atmospheric temperature in the shock chamber 15 and the circulation circuit 11 at a constant level by flowing cooling water there.
[0025] 上記した装置を用いて造粒体を製造するには、まず、原料供給用のシュートの途中 に設けられた開閉弁 14を閉の状態にし、造粒体排出口の開閉弁 8を閉鎖した状態 にしておき、駆動手段(図示せず)によって回転軸 6を駆動し、ローター 4を回転させ る。この際、衝撃ピン 5の回転に伴って、急激な空気の流れが生じ、この気流の遠心 力に基づくファン効果によって、衝突リング 7の内壁の一部に開口する循環口 16から 、循環回路 11を巡って前カバー 3の中心部の開口部から衝撃室 15に戻る気流の循 環流れ、すなわち完全な自己循環の流れが形成される。この際発生する単位時間当 りの循環風量は、衝撃室と循環系の全容積に較べ著しく多量であるため、短時間のう ちに莫大な回数の空気流循環サイクルが形成される。循環風量は、ローターの外周 速度に比例するので、単位時間当りの空気循環サイクルもローター外周速度が早く なるにつれて多くなる。  [0025] In order to produce a granulated body using the above-described apparatus, first, the on-off valve 14 provided in the middle of the chute for supplying the raw material is closed, and the on-off valve 8 at the granule discharge port is opened. In the closed state, the rotating shaft 6 is driven by the driving means (not shown) to rotate the rotor 4. At this time, an abrupt air flow is generated with the rotation of the impact pin 5, and the circulation circuit 11 opens from the circulation port 16 opened to a part of the inner wall of the collision ring 7 by the fan effect based on the centrifugal force of the air flow. A circulating flow of airflow returning from the opening at the center of the front cover 3 to the impact chamber 15 around the front cover 3, that is, a complete self-circulating flow is formed. The amount of circulating air generated per unit time at this time is significantly larger than the total volume of the impact chamber and the circulation system, so a huge number of air circulation cycles are formed in a short time. Since the circulating air volume is proportional to the outer peripheral speed of the rotor, the air circulation cycle per unit time increases as the outer peripheral speed of the rotor increases.
[0026] ローターの回転は、外周速度 30〜: 150m/s程度が好ましぐ更に好ましくは 50〜 100m/s程度で回転させる。この際、ブレードの回転に伴って、急激な空気の流れ が生じ、この気流の遠心力に基づくファン効果によって、循環口から循環経路を巡つ てローター内に戻る気流の循環流れが形成される。例えば、 700〜800回/分前後 程度の空気循環サイクルが行なわれる。  [0026] The rotation of the rotor is preferably performed at an outer peripheral speed of 30 to about 150 m / s, more preferably about 50 to 100 m / s. At this time, an abrupt air flow is generated with the rotation of the blade, and a fan effect based on the centrifugal force of the air flow forms a circulating air flow that returns from the circulation port to the rotor through the circulation path. . For example, an air circulation cycle of about 700 to 800 times / minute is performed.
[0027] 次に開閉弁 14を開き、黒鉛原料と金属粉末との混合粉体を、原料ホッパー 12に投 入すると、該混合粉体は、原料ホッパー 12からシュート 13を通り衝撃室 15に入る。 原料ホッパー 12中に該混合粉体が残っていないことを確認した後、開閉弁 14を閉じ る。  Next, the on-off valve 14 is opened, and when the mixed powder of the graphite raw material and the metal powder is injected into the raw material hopper 12, the mixed powder enters the impact chamber 15 through the chute 13 from the raw material hopper 12. . After confirming that the mixed powder does not remain in the raw material hopper 12, the on-off valve 14 is closed.
[0028] 上記混合粉体は、衝撃室 15内で高速回転するローター 4の多数の衝撃ピン 5によ つて瞬間的に打撃作用を受け、更に周辺の衝突リング 7に衝突する。更に、黒鉛原 料同士の衝突も加わって、衝撃、圧縮、せん断力を受ける。そして前記気流の循環 流れに同伴して、循環回路 11を巡って再び衝撃室 15に戻り、再度同様の作用を受 ける。このように、同じ作用を繰り返し受けることにより、数分間の処理で、順次角の部 分を落とされた黒鉛粒子が、粉砕された小粒子を捕捉しながら厚みを増して塊状とな り、その表面及び内部に金属粉末が分散した状態の造粒体が形成される。 [0028] The mixed powder is momentarily impacted by a large number of impact pins 5 of the rotor 4 that rotates at a high speed in the impact chamber 15, and further collides with the surrounding impact ring 7. Furthermore, impacts, compression, and shearing force are applied due to the collision of graphite raw materials. Then, accompanying the circulating flow of the airflow, it returns to the impact chamber 15 again through the circulation circuit 11 and receives the same action again. In this way, by repeatedly receiving the same action, the graphite particles, whose corners have been sequentially dropped in a process of several minutes, increase in thickness while capturing the pulverized small particles and become agglomerated. Thus, a granulated body in which the metal powder is dispersed on the surface and inside thereof is formed.
[0029] 上記操作が終了した後は、開閉弁 14を開くと共に、造粒体排出口の開閉弁 8を鎖 線で示す位置に移動させて開き、得られた造粒体を排出する。  [0029] After the above operation is completed, the on-off valve 14 is opened, and the on-off valve 8 of the granule discharge port is moved to the position indicated by the chain line to open, and the obtained granule is discharged.
[0030] 本発明負極活物晳  [0030] Negative electrode active material of the present invention
上記した方法によって得られる造粒体では、ジェット気流同士が衝突する衝突域に おいて、原料とする黒鉛原料が衝突して、その一部、特に、黒鉛原料の角の部分が 粉砕される。そして、角の部分を落とされた黒鉛原料が、粉砕された小粒子を捕捉し 、更に、黒鉛粒子同士が積層することによって、厚みを増して塊状となり、黒鉛の造 粒体が形成される。形成される造粒体は、原料とする黒鉛と比較すると、球形に近い 形状を有するものとなり、造粒体の内部には、積層した黒鉛の間に空隙部分が形成 される。金属粉末は、この様な造粒体の製造工程において、黒鉛と均一に混合され、 得られる造粒体の表面と内部に分散した状態となる。  In the granulated body obtained by the above-described method, the graphite raw material as a raw material collides in a collision area where jet air currents collide with each other, and a part thereof, in particular, a corner portion of the graphite raw material is pulverized. And the graphite raw material from which the corner | angular part was dropped capture | acquires the grind | pulverized small particle, Furthermore, when graphite particle | grains are laminated | stacked, it increases in thickness and becomes a lump, and the granule of graphite is formed. The formed granule has a shape close to a sphere compared to the graphite used as a raw material, and a void portion is formed between the laminated graphites inside the granule. In the manufacturing process of such a granulated body, the metal powder is uniformly mixed with graphite and is dispersed on the surface and inside of the obtained granulated body.
[0031] 得られる造粒体は、原料とした黒鉛と比較して球状に近くなつており、原料混合物と 比較してタップ密度が高くなる。通常、上記した方法で得られた造粒体のタップ密度 は、原料混合物のタップ密度と比較して 10%程度以上高い値であることが好ましぐ 25%程度以上高い値であることがより好ましい。尚、本明細書では、タップ密度は、 市販のタップ密度計((株)セイシン企業製 TAPDENSER KYT— 4000)を用レヽ て lOOccのメスシリンダに検体である粉体を入れ、容器に打撃を与え、粉体のかさ密 度の変化がなくなり、一定となった時点での密度である。  [0031] The obtained granulated body is nearly spherical compared to the graphite used as a raw material, and has a higher tap density than the raw material mixture. Usually, the tap density of the granulate obtained by the above method is preferably about 10% or more higher than the tap density of the raw material mixture, and more preferably about 25% or more. preferable. In this specification, the tap density is measured using a commercially available tap density meter (TAPDENSER KYT-4000 manufactured by Seishin Enterprise Co., Ltd.). The density at the point when the bulk density of the powder disappeared and became constant.
[0032] 得られる造粒体は、平均粒径が 5〜30 μ ΐη程度であることが好ましぐ 7〜20 μ ΐη 程度であることがより好ましい。特に、高速充放電を要する高出力タイプのリチウムィ オン二次電池で用いる負極活物質では、平均粒径が 7〜: 12 μ m程度であることが好 ましい。  [0032] The obtained granulated body preferably has an average particle size of about 5 to 30 μΐη, more preferably about 7 to 20 μΐη. In particular, for a negative electrode active material used in a high-power lithium ion secondary battery that requires high-speed charge / discharge, the average particle size is preferably about 7 to 12 μm.
[0033] 上記した方法によって得られる造粒体は、図 3に示すように、黒鉛粒子 22が重ね合 わさるように様々な方向に向いた状態で積層している。このように、黒鉛 22が様々な 方向に積層して配されることにより、造粒体の内部から表面 23にかけて空隙 24や凹 凸が生じた構造となる。また、角の部分が欠け落ちた状態の鱗状黒鉛が積み重なつ ていることにより、該造粒体は、球形に近い形状となっている。このため、負極活物質 として使用する場合に、リチウム Liがあらゆる方向から負極活物質の内部に侵入でき ることとなり、リチウム Liが侵入/離脱できる面積を広く取ることができ、高いリチウム 吸蔵容量が得られる。 [0033] As shown in FIG. 3, the granulated body obtained by the above-described method is laminated in a state in which it is oriented in various directions so that the graphite particles 22 overlap each other. As described above, the graphite 22 is laminated in various directions, thereby forming a structure in which voids 24 and unevenness are generated from the inside of the granulated body to the surface 23. In addition, since the scaly graphite in a state where corner portions are cut off is piled up, the granulated body has a shape close to a sphere. For this reason, the negative electrode active material When used as, lithium Li can penetrate into the inside of the negative electrode active material from all directions, so that a large area in which lithium Li can penetrate / separate can be taken, and a high lithium storage capacity can be obtained.
[0034] また、図 3に示すように、金属粉末 21は、該造粒体の表面 23だけでなぐ空隙部 2 4に多量に存在している。このため、リチウムを吸蔵/放出することによって、金属粉 末が膨張収縮を繰り返し、この膨張収縮の繰り返しにより該金属粉末が微細化した場 合であっても、空隙部 24の内部において膨張収縮が行われ、微細化した金属粉末 が黒鉛力 なる造粒体から脱離することが抑制される。その結果、該金属粉末が膨張 収縮を繰り返して微細化しても、電池性能の劣化は少なぐ該金属粉末を添加したこ とによって得られる高い充放電容量を長期間維持することができる。  Further, as shown in FIG. 3, the metal powder 21 is present in a large amount in the void portion 24 formed only by the surface 23 of the granulated body. For this reason, the metal powder repeatedly expands and contracts by occluding / releasing lithium, and even when the metal powder is refined by repetition of the expansion and contraction, expansion and contraction occurs inside the void portion 24. As a result, the pulverized metal powder is prevented from being detached from the granulated body having graphite power. As a result, even if the metal powder is repeatedly expanded and contracted to be miniaturized, the high charge / discharge capacity obtained by adding the metal powder with little deterioration in battery performance can be maintained for a long time.
[0035] 更に、表面 23に存在する金属粉末が脱落しても、金属粉末全体に対する割合が 少ないので、そのことにより負極活物質の伝導性を損なうことが非常に少ない。  [0035] Further, even if the metal powder present on the surface 23 falls off, the ratio of the metal powder to the whole metal powder is small, so that the conductivity of the negative electrode active material is hardly reduced.
[0036] 従って、上記した造粒体は、リチウムイオン二次電池の負極活物質として用いる場 合に、黒鉛とリチウムイオンの吸蔵及び放出能を有する金属粉末とを組合せて用いる ことによって、黒鉛を単独で用いる場合と比較して高い充放電容量を有するものとな り、更に、上記した特定構造の造粒体であることによって、充放電を繰り返した場合に も、充放電容量の低下が少なぐ優れたサイクル特性を有するものとなる。  [0036] Therefore, when the above-mentioned granulated body is used as a negative electrode active material of a lithium ion secondary battery, graphite is used by combining graphite and a metal powder capable of occluding and releasing lithium ions. Compared to the case where it is used alone, it has a high charge / discharge capacity, and further, due to the granule having the specific structure described above, even when charge / discharge is repeated, the decrease in charge / discharge capacity is small. It has excellent cycle characteristics.
[0037] 予備混合ェ禾呈  [0037] Preliminary mixing
本発明では、上記した方法によって、黒鉛原料と金属粉末の造粒体を製造する前 に、予備混合工程として、乾式又は湿式によって黒鉛原料と金属粉末を予め混合し てもよい。  In the present invention, the graphite raw material and the metal powder may be preliminarily mixed by a dry method or a wet method as a premixing step before the granulated body of the graphite raw material and the metal powder is produced by the above-described method.
[0038] 乾式で予備混合を行う場合には、例えば、せん断粗砕機やボールミルなどを用い ること力 Sできる。せん断粗砕機は、ブレードが高速回転することによりせん断力をかけ ながら材料を混合するものである。この場合、混合時間は数分〜 30分程度が好まし レ、。  [0038] When dry premixing is performed, for example, a shearing crusher or a ball mill can be used. A shear crusher mixes materials while applying a shearing force by rotating a blade at a high speed. In this case, the mixing time is preferably several minutes to 30 minutes.
[0039] また、ボールミルでは、ゴム製のボールを用いて材料の混合を行うことが好ましぐこ の場合、金属粉末がより均一に分散される。この場合、混合時間は 30分〜 60分程度 が好ましい。 [0040] また、金属粉末を湿式で予備混合することもできる。すなわち金属粉末と黒鉛原料 とをアルコール等に分散させ、撹拌混合させ、その後、蒸発器や乾燥機を用いて有 機溶剤を蒸発させることによって予備混合を行うことができる。 [0039] Also, in the ball mill, when it is preferable to mix the materials using rubber balls, the metal powder is more uniformly dispersed. In this case, the mixing time is preferably about 30 minutes to 60 minutes. [0040] The metal powder can also be premixed in a wet manner. That is, the preliminary mixing can be performed by dispersing the metal powder and the graphite raw material in alcohol or the like, stirring and mixing, and then evaporating the organic solvent using an evaporator or a dryer.
[0041] 尚、アルコール等の溶媒を蒸発させた後、金属粉末と黒鉛がやや固まった状態とな ること力 Sある。この場合には、ボールミル等を用いて固まった状態を十分にほぐすこと が好ましい。この場合、ボールミルの他に、圧縮破砕機、せん断粗砕機、ローラーミ ノレ、衝撃せん断ミル、撹拌ミル、ジェットミル、ライカイ機、乳鉢、臼等を用いることがで きる。 [0041] It should be noted that after evaporating a solvent such as alcohol, the metal powder and the graphite are in a state of being slightly hardened. In this case, it is preferable to sufficiently loosen the solidified state using a ball mill or the like. In this case, in addition to the ball mill, a compression crusher, a shear crusher, a roller mill, an impact shear mill, an agitation mill, a jet mill, a laika machine, a mortar, a mortar, and the like can be used.
[0042] この様な方法で予備混合された粉末を用いて、上記した方法で黒鉛原料と金属粉 末との造粒体を製造することによって、より均一に金属粉末が分散した造粒体を得る こと力 Sできる。  [0042] By using the powder premixed by such a method to produce a granulated body of the graphite raw material and the metal powder by the above-described method, a granulated body in which the metal powder is more uniformly dispersed can be obtained. You can get power S.
[0043]  [0043]
前述した高速気流中衝撃法によって得られる造粒体は、更に、その表面を炭素前 駆体又はその炭素化物によって被覆してもよい。表面を被覆することによって、黒鉛 の活性点を覆うと共に、比表面積を低減させることができ、電解液との反応性を低下 させて、電解液の分解を抑制することができる。更に、表面を被覆することによって、 金属粉末の膨張及び収縮を抑制することができ、該造粒体からの金属粉末の脱離も 抑制できる。  The surface of the granule obtained by the above-described high-speed air-flow impact method may be further coated with a carbon precursor or a carbonized product thereof. By covering the surface, it is possible to cover the active sites of graphite, reduce the specific surface area, reduce the reactivity with the electrolytic solution, and suppress the decomposition of the electrolytic solution. Furthermore, by covering the surface, expansion and contraction of the metal powder can be suppressed, and detachment of the metal powder from the granulated body can also be suppressed.
[0044] 炭素前駆体としては、石炭系又は石油系のピッチやタールの他に、各種セルロー ス、ポリアクリルアミド、ポリエチレンィミン、フエノール樹脂、フラン樹脂、エポキシ樹脂 、ポリ塩化ビニル、ポリビニルアルコールの各種の合成樹脂を用いることができる。ピ ツチは等方性ピッチであっても異方性ピッチであってもよい。これらの炭素前駆体は、 二種以上組み合わせて使用することもできる。  [0044] Examples of the carbon precursor include various cellulose, polyacrylamide, polyethyleneimine, phenol resin, furan resin, epoxy resin, polyvinyl chloride, and polyvinyl alcohol in addition to coal-based or petroleum-based pitch and tar. These synthetic resins can be used. The pitch may be an isotropic pitch or an anisotropic pitch. These carbon precursors can also be used in combination of two or more.
[0045] 上記した炭素前駆体によって造粒体の表面を被覆する方法については、特に限定 的ではないが、例えば、炭素前駆体と造粒体とを常温で混合したものを炭素前駆体 の軟化点以上の温度にする方法、炭素前駆体と造粒体とを炭素前駆体の軟化点以 上の温度で混合する方法、液状の炭素前駆体又は炭素前駆体の溶液中に造粒体 を浸漬する方法などを適用できる。 [0046] 炭素前駆体と造粒体を混合する方法については、特に限定はなぐ例えば、ナウタ 一ミキサ、リボンミキサー、 V型ミキサー、ロッキングミキサー、スクリュー型ニーダー、 万能ミキサーなどを使用して混合すればよい。 [0045] The method of coating the surface of the granulated body with the carbon precursor described above is not particularly limited. For example, a mixture of the carbon precursor and the granulated body at room temperature may be used to soften the carbon precursor. A method of bringing the temperature to a temperature above the point, a method of mixing the carbon precursor and the granulated material at a temperature above the softening point of the carbon precursor, and immersing the granulated material in a liquid carbon precursor or a solution of the carbon precursor The method to do is applicable. [0046] The method of mixing the carbon precursor and the granulated material is not particularly limited. That's fine.
[0047] 炭素前駆体と造粒体とを炭素前駆体の軟化点以上の温度で混合する方法の場合 、炭素前駆体と造粒体との混合操作は、使用する炭素前駆体の軟化点以上の温度 で行う。温度の上限については特に限定は無いが、炭素前駆体による被覆を目的と する場合には、該炭素前駆体の炭素化温度以下の温度とすればよい。撹拌時の圧 力は、大気圧下、加圧下、減圧下のいずれであってもよい。  [0047] In the case of the method of mixing the carbon precursor and the granulated body at a temperature equal to or higher than the softening point of the carbon precursor, the mixing operation of the carbon precursor and the granulated body is performed at or above the softening point of the carbon precursor used. At a temperature of. The upper limit of the temperature is not particularly limited, but when the purpose is coating with a carbon precursor, the temperature may be set to a temperature not higher than the carbonization temperature of the carbon precursor. The pressure during stirring may be any of atmospheric pressure, pressurization, and reduced pressure.
[0048] 造粒体に対する炭素前駆体の割合は、電解液の分解を抑制するなどの効果が得 られる割合であればよい。炭素前駆体を過剰に加えると、造粒体同士が過度に凝集 して固着しやすくなるので好ましくない。通常、造粒体 100質量部に対して、炭素前 駆体量を 0.:!〜 50質量部程度とすることが好ましぐ:!〜 20質量部程度とすることが より好ましぐ 2〜: 15質量部程度とすることが更に好ましい。  [0048] The ratio of the carbon precursor to the granulated body may be a ratio that provides an effect such as suppressing the decomposition of the electrolytic solution. If an excessive amount of carbon precursor is added, the granules are excessively agglomerated and are liable to adhere, which is not preferable. Usually, it is preferable to set the amount of carbon precursor to about 0.:! To about 50 parts by mass with respect to 100 parts by mass of the granulated product. ~: More preferably about 15 parts by mass.
[0049] 液状の炭素前駆体又は炭素前駆体の溶液中に造粒体を浸漬する方法では、例え ば、ピッチやタールを使用する場合には、加熱して粘度を低下させるか、或いは、有 機溶媒と混合して粘度を調整すればよい。有機溶媒としては特に限定されるもので はないが、例えば、トノレェン、キノリン、アセトン、へキサン、ベンゼン、キシレン、メチ ノレナフタレン、アルコール類、石炭系油、石油系油等を用いることができる。  [0049] In the method of immersing the granule in a liquid carbon precursor or a solution of the carbon precursor, for example, when pitch or tar is used, the viscosity is reduced by heating, or The viscosity may be adjusted by mixing with an organic solvent. The organic solvent is not particularly limited, and for example, toluene, quinoline, acetone, hexane, benzene, xylene, methanolenophthalene, alcohols, coal oil, petroleum oil, and the like can be used.
[0050] 合成樹脂は、通常、有機溶媒に溶解して用いられる。有機溶媒としては特に限定さ れるものではないが、例えば、トルエン、キノリン、アセトン、へキサン、ベンゼン、キシ レン、メチルナフタレン、アルコール類等から適宜選択される。  [0050] The synthetic resin is usually used after being dissolved in an organic solvent. The organic solvent is not particularly limited, and is appropriately selected from, for example, toluene, quinoline, acetone, hexane, benzene, xylene, methylnaphthalene, alcohols and the like.
[0051] 撹拌方法としては、特に限定されないが、例えば、リボンミキサー、スクリュー型ニー ダー、万能ミキサーなどを使用することができる。撹拌条件は、混合物の粘度、使用 する有機溶媒などに応じて適宜選択されるが、通常、液状の炭素前駆体又は炭素前 駆体の溶液の粘度が 500Pa' s以下になる条件とすることが好ましい。通常、処理温 度は、 10〜200°C程度の範囲とすればよぐ撹拌時の圧力は、大気圧下、加圧下、 減圧下のレ、ずれであってもよレ、。  [0051] The stirring method is not particularly limited. For example, a ribbon mixer, a screw kneader, a universal mixer, or the like can be used. The stirring conditions are appropriately selected according to the viscosity of the mixture, the organic solvent to be used, and the like. Usually, the viscosity of the liquid carbon precursor or carbon precursor solution is 500 Pa's or less. preferable. Usually, the treatment temperature should be in the range of about 10 to 200 ° C. The pressure during stirring can be under atmospheric pressure, under pressure, under reduced pressure, or even with a deviation.
[0052] 液状の炭素前駆体又は炭素前駆体の溶液中に造粒体を浸漬した後、炭素前体で 被覆された造粒体を液状の炭素前駆体又は炭素前駆体の溶液から分離する。分離 方法としては、遠心分離、圧搾濾過、重力沈降分離などの方法を適宜適用すればよ レ、。分離する際の温度は、特に限定されていないが、通常 10〜200°C程度の範囲と すればよい。 [0052] After immersing the granulated body in a liquid carbon precursor or a solution of the carbon precursor, The coated granulate is separated from the liquid carbon precursor or carbon precursor solution. As a separation method, methods such as centrifugation, squeeze filtration, and gravity sedimentation separation may be applied as appropriate. The temperature at the time of separation is not particularly limited, but it may usually be in the range of about 10 to 200 ° C.
[0053] 分離された造粒体を乾燥することによって、炭素前駆体で表面被覆された造粒体 が得られる。乾燥温度は特に限定的ではないが、通常、 100〜300°C程度とすれば よい。尚、炭素前駆体として熱硬化性の合成樹脂を使用する場合には、合成樹脂の 硬化温度より高い温度範囲で乾燥を行うことにより、樹脂成分を残したまま硬化させ ること力 Sできる。また、乾燥後に合成樹脂の硬化温度〜 300°Cの温度範囲で別途熱 処理を行い、被覆成分である合成樹脂を樹脂成分を残したまま硬化させることも可能 である。  [0053] By drying the separated granulated body, a granulated body surface-coated with a carbon precursor is obtained. The drying temperature is not particularly limited, but is usually about 100 to 300 ° C. When a thermosetting synthetic resin is used as the carbon precursor, it can be cured with the resin component remaining by drying in a temperature range higher than the curing temperature of the synthetic resin. Further, after drying, it is also possible to carry out a separate heat treatment within the temperature range of the synthetic resin to 300 ° C. to cure the synthetic resin as the coating component while leaving the resin component.
[0054] 液状の炭素前駆体又は炭素前駆体の溶液中に造粒体を浸漬する方法では、炭素 前駆体による被覆量は、該造粒体と炭素前駆体を混合する場合と同様に、造粒体 1 00質量部に対して、炭素前駆体量を 0. :!〜 50質量部程度とすることが好ましぐ 1 〜20質量部程度とすることがより好ましぐ 2〜: 15質量部程度とすることが更に好まし レ、。炭素前駆体による被覆量は、例えば、炭素前駆体を含む溶液の濃度を変化させ ることによって、適宜調整することができる。  [0054] In the method of immersing the granulated body in a liquid carbon precursor or a solution of the carbon precursor, the coating amount by the carbon precursor is the same as in the case of mixing the granulated body and the carbon precursor. It is preferable to set the amount of carbon precursor to about 0.:! To about 50 parts by mass with respect to 100 parts by mass of the granules. It is even better to make it about a part. The coating amount with the carbon precursor can be appropriately adjusted, for example, by changing the concentration of the solution containing the carbon precursor.
[0055] 上記した方法で炭素前駆体によって造粒体の表面を被覆した後、該炭素前駆体を 炭素化してもよい。炭素化処理は、炭素前駆体によって表面を被覆された造粒体を 、窒素等の不活性ガス気流中、還元雰囲気中などの非酸化性雰囲気中等で熱処理 すればよい。熱処理温度は、 800〜1200°C程度とすることが好ましい。尚、窒素ガス 雰囲気で炭素化する場合には、金属粉末と窒素が反応しないように、 1000°C以下 の炭素化温度とすることが好ましい。最高到達温度での保持時間は特に限定されず 、例えば数分〜 2時間程度とすることができる。昇温速度は、あまり速いと造粒体同士 の凝集が発生しやすくなるので、凝集の発生を抑えることを考慮しつつ経済的な昇 温速度を選択すれば良い。例えば、 10〜200°C/時間程度とすることができる。尚、 凝集が発生しても、殆どの場合は軽いせん断力をかけることによって容易に解砕する こと力 Sできる。 [0056] 上記した炭素化によって、造粒体を被覆した炭素前駆体の 1〜60質量%程度が炭 素化物として残留する。例えば、炭素前駆体がピッチである場合には、炭素化による 残留率は 50質量%程度となる。また、炭素前駆体がフエノール樹脂の場合には、炭 素化による残留率は 50質量%程度、ポリビュルアルコールの場合には、 5質量%程 度以下となる。 [0055] After the surface of the granule is coated with the carbon precursor by the method described above, the carbon precursor may be carbonized. The carbonization treatment may be performed by heat-treating the granule whose surface is coated with a carbon precursor in an inert gas stream such as nitrogen or a non-oxidizing atmosphere such as a reducing atmosphere. The heat treatment temperature is preferably about 800 to 1200 ° C. When carbonizing in a nitrogen gas atmosphere, the carbonization temperature is preferably 1000 ° C. or lower so that the metal powder and nitrogen do not react. The holding time at the highest temperature is not particularly limited and can be, for example, about several minutes to 2 hours. If the rate of temperature rise is too high, agglomeration between the granulated bodies tends to occur. Therefore, an economic temperature rise rate may be selected in consideration of suppressing the occurrence of agglomeration. For example, it can be about 10 to 200 ° C./hour. Even if agglomeration occurs, in most cases, it can be easily crushed by applying a light shear force. [0056] By the above carbonization, about 1 to 60% by mass of the carbon precursor coated with the granule remains as a carbide. For example, when the carbon precursor is pitch, the residual rate due to carbonization is about 50% by mass. In addition, when the carbon precursor is phenol resin, the residual ratio due to carbonization is about 50% by mass, and in the case of polybutyl alcohol, it is about 5% by mass or less.
[0057] 尚、炭素前駆体又はその炭素化物による被覆方法は、上記した方法に限定される ものではなく、例えば、ベンゼン、トルエン、キシレン等の炭化水素を熱分解し、熱分 解炭素層を析出させる化学蒸着法によっても被覆処理を行うことができる。  [0057] The coating method with the carbon precursor or the carbonized product thereof is not limited to the above-described method. For example, a hydrocarbon such as benzene, toluene, xylene, etc. is thermally decomposed to form a thermally decomposed carbon layer. The coating treatment can also be performed by chemical vapor deposition.
[0058] リチウムイオン二次雷池  [0058] Lithium ion secondary thunder pond
上記した黒鉛原料と金属粉末からなる造粒体は、リチウムイオン二次電池の負極活 物質として有用である。該負極活物質を用いるリチウムイオン二次電池は、公知の方 法により製造することができる。すなわち、負極活物質として、上記した造粒体を使用 し、正極活物質としては、 MnO、 LiCoO、 LiNiO、 LiNi Co O、 LiMnO、 LiMn O、  The above-mentioned granulated body made of a graphite raw material and a metal powder is useful as a negative electrode active material for a lithium ion secondary battery. A lithium ion secondary battery using the negative electrode active material can be produced by a known method. That is, the above-mentioned granulated material is used as the negative electrode active material, and the positive electrode active material is MnO, LiCoO, LiNiO, LiNi Co O, LiMnO, LiMn O,
2 2 2 1-y y 2 2 2 4 2 2 2 1-y y 2 2 2 4
LiFeOなどの公知の正極活物質を使用できる。電解液としては、例えば、エチレン力A known positive electrode active material such as LiFeO can be used. Examples of the electrolyte include ethylene power
2 2
ーボネートなどの有機溶媒や、該有機溶媒とジメチルカーボネート、ジェチルカーボ ネート、 1, 2—ジメトキシェタン、 1 , 2—ジエトキシメタン、エトキシメトキシェタンなど の低沸点溶媒との混合溶媒に、 LiPF 、 LiBF 、 LiClO、 LiCF SOなどの電解液溶質  LiPF, a mixed solvent of an organic solvent such as carbonate and a low boiling point solvent such as dimethyl carbonate, jetyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, and ethoxymethoxyethane. Electrolyte solutes such as LiBF, LiClO, LiCF SO
6 4 4 3 3  6 4 4 3 3
を溶解した溶液等を用いることができる。更にその他の公知の電池構成要素を使用 して、常法に従って、リチウムイオン二次電池を組立てることができる。  The solution etc. which melt | dissolved can be used. Furthermore, a lithium ion secondary battery can be assembled according to a conventional method using other known battery components.
発明の効果  The invention's effect
[0059] 本発明の負極活物質は、黒鉛とリチウムイオンを吸蔵及び放出し得る金属粉末を 有効成分として含むものであり、黒鉛を単独で用いる場合と比較して高い充放電容 量を有するものである。  [0059] The negative electrode active material of the present invention contains, as an active ingredient, a metal powder capable of occluding and releasing graphite and lithium ions, and has a higher charge / discharge capacity than when graphite is used alone. It is.
[0060] 更に、黒鉛原料及びその粉砕物が積層した構造を形成し、その表面及び内部に金 属粉末が分散していることによって、該金属粉末が膨張収縮を繰り返して微細化して も、電池性能の劣化は少なぐ該金属粉末を添加したことによって得られる高い充放 電容量を長期間維持することができる。  [0060] Further, even when the metal raw material is formed into a structure in which the graphite raw material and the pulverized product thereof are laminated, and the metal powder is dispersed on the surface and inside thereof, The high charge / discharge capacity obtained by adding the metal powder with little deterioration in performance can be maintained for a long time.
[0061] 更に、表面に存在する金属粉末が脱落しても、金属粉末全体に対する割合が少な レ、ので、そのことにより負極活物質の伝導性を損なうことが非常に少ない。 [0061] Furthermore, even if the metal powder existing on the surface falls off, the ratio to the whole metal powder is small. Therefore, the conductivity of the negative electrode active material is rarely impaired.
[0062] 従って、本発明の負極活物質を用いたリチウムイオン二次電池は、高い充放電容 量と優れたサイクル特性を備えたものとなる。  Accordingly, the lithium ion secondary battery using the negative electrode active material of the present invention has a high charge / discharge capacity and excellent cycle characteristics.
図面の簡単な説明  Brief Description of Drawings
[0063] [図 1]本発明の負極活物質の製造装置の概念的な説明図である。  FIG. 1 is a conceptual explanatory diagram of a negative electrode active material production apparatus of the present invention.
[図 2]図 1の装置の側断面説明図である。  2 is an explanatory side sectional view of the apparatus of FIG.
[図 3]本発明の負極活物質の概略構成を示す概念図である。  FIG. 3 is a conceptual diagram showing a schematic configuration of a negative electrode active material of the present invention.
[図 4]実施例 8で得た造粒体の断面の走査型電子顕微鏡 (SEM)写真 (a)と同一視 野におけるエネルギー分散型蛍光 X線分析 (EDS)によるシリコンの面分析 (b)結果 を示す図面である。  [Fig. 4] Scanning electron microscope (SEM) photograph of the cross section of the granulate obtained in Example 8 (a) Silicon surface analysis by energy dispersive X-ray fluorescence analysis (EDS) in the same field (b) It is drawing which shows a result.
符号の説明  Explanation of symbols
[0064] 1 造粒装置のケーシング、 [0064] 1 casing of the granulator,
2 後カバー、  2 Rear cover,
3 前カバー、  3 Front cover,
4 Π' ~々■ ~  4 Π '
5 衝撃ピン  5 Impact pin
6 回転軸、  6 rotation axis,
7 衝突リング  7 Collision ring
8 開閉弁、  8 On-off valve,
9 開閉弁の弁軸、  9 Valve shaft of on-off valve,
10 ァクチユエ一ター、  10 Actuator
11 循環回路、  11 Circulation circuit,
12 原料ホッパー、  12 raw material hopper,
13 原料供給用シュート、  13 Chute for raw material supply,
14 開閉弁、  14 On-off valve,
15 衝撃室、  15 shock chamber,
16 循環回路への循環口、  16 Circulation port to the circulation circuit,
17 造粒体の排出管 18 ジャケット 17 Granule discharge pipe 18 jacket
19 制御器  19 Controller
21 金属粉末  21 Metal powder
22 黒鉛粒子  22 Graphite particles
23 造粒体の表面  23 Granule surface
24 空隙部  24 Gap
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0065] 以下、実施例を挙げて本発明を更に詳細に説明する。 [0065] Hereinafter, the present invention will be described in more detail with reference to examples.
[0066] 実施例 1 [0066] Example 1
平均粒径 1 μ mの多結晶のシリコン粉末を市販のビーズミルを用いて粉砕したシリ コン粉末 (平均粒径 0· 2 / m) 5gと天然黒鉛 (鱗片状黒鉛)(平均粒径 10 / m、真比 重 2. 25、比表面積 8. 8m2/g) 95gを原料として用いた。造粒体の製造装置として、 図 1に示す構造を有する装置( (株)奈良機械製作所製、ハイブリダィゼーシヨン'シス テム NHS-1型)を用い、この装置に上記原料を投入して、 8000rpm (外周速度 96m /s)で 3分間混合した。この操作を 5回繰り返して行い、造粒体 500gを得た。 Polycrystalline silicon powder with an average particle size of 1 μm was pulverized using a commercially available bead mill, 5 g of silicon powder (average particle size 0 · 2 / m) and natural graphite (flaky graphite) (average particle size of 10 / m 95 g of true specific gravity 2.25 and specific surface area 8.8 m 2 / g) were used as raw materials. As an apparatus for producing the granulated material, an apparatus having the structure shown in Fig. 1 (Hybridization System NHS-1 manufactured by Nara Machinery Co., Ltd.) is used. , And mixed for 3 minutes at 8000 rpm (peripheral speed 96 m / s). This operation was repeated 5 times to obtain 500 g of a granulated body.
[0067] 得られた造粒体の平均粒径は 7. であり、タップ密度は 0. 77g/ccであった [0067] The average particle diameter of the obtained granulated body was 7. The tap density was 0.77 g / cc.
。尚、造粒前の天然黒鉛とシリコン粉末の混合物について、前述した方法に従って均 一に混合した後測定したタップ密度は 0. 57gZccであった。 . Incidentally, the tap density measured after the mixture of natural graphite and silicon powder before granulation was mixed uniformly according to the method described above was 0.57 gZcc.
[0068] 次いで、上記した方法で得た造粒体 100質量部に対して等方性ピッチを 15質量部 加え、ロッキングミキサーを用いて 1時間混合した。その後、窒素ガス雰囲気中で 900 °Cまで 15時間かけて昇温し、 900°Cで 2時間保持して、該造粒体の表面をピッチ炭 素化物により被覆して、負極活物質を得た。  [0068] Next, 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the granulated material obtained by the above-described method, and mixed for 1 hour using a rocking mixer. Thereafter, the temperature is raised to 900 ° C. over 15 hours in a nitrogen gas atmosphere, and the temperature is maintained at 900 ° C. for 2 hours. The surface of the granulated body is covered with pitch carbide to obtain a negative electrode active material. It was.
[0069] 上記方法で得られた負極活物質のシリコン含有率は、 4. 7質量%であり、平均粒 径は 7. 5 x m、比表面積は 6. 7m2/gであった。 [0069] The silicon content of the negative electrode active material obtained in the above method, 4. a 7 mass%, average particle diameter of 7. 5 xm, a specific surface area of 6. 7m 2 / g.
[0070] 電池特性の評価  [0070] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、以下の方法でリチウムイオン二次 電池の電池特性の評価を行なった。  Using the negative electrode active material obtained by the above method, the battery characteristics of the lithium ion secondary battery were evaluated by the following method.
[0071] まず、上記負極活物質にバインダとして水分散系のスチレン一ブタジエンゴム(SB R)、カルポキシメチルセルロース(CMC)および水を適量加えて攪拌することによつ て、負極活物質を含むスラリーを調製した。 First, a water-dispersed styrene-butadiene rubber (SB) is used as a binder for the negative electrode active material. A slurry containing a negative electrode active material was prepared by adding appropriate amounts of R), carboxymethylcellulose (CMC) and water and stirring.
[0072] 次いで、このスラリーを、 50x200 (mm)の ί同箔上に約 100〜1 10 μ ΐηの厚さに塗 布し、乾燥させた後、ロールプレス機で活物質の密度が 1. 5〜: 1. 6gZccになるよう にプレスして負極板を製造した。この負極板を l cm2の大きさに裁断分割して乾燥さ せて、負極を製造した。 [0072] Next, this slurry was applied to a thickness of about 100 to 1 10 μΐη on a 50 × 200 (mm) foil, dried, and then the density of the active material was 1. 5 to: 1. A negative electrode plate was manufactured by pressing to 6 gZcc. This negative electrode plate was cut and divided into a size of 1 cm 2 and dried to produce a negative electrode.
[0073] 次に、この負極を用いて、アルゴンガス雰囲気のグローブボックス内で、電極セルの 組み立てを行った。この際、 1Mの LiPFをエチレンカーボネート(EC)  [0073] Next, using this negative electrode, an electrode cell was assembled in a glove box in an argon gas atmosphere. At this time, 1M LiPF was replaced with ethylene carbonate (EC).
6 Zェチルメチ ルカーボネート (EMC) = 1/2 (体積比)の混合溶媒に溶解した非水電解液を用い て、負極が完全に浸かる量まで該電解液を注入した。  Using a nonaqueous electrolytic solution dissolved in a mixed solvent of 6Z ethyl methyl carbonate (EMC) = 1/2 (volume ratio), the electrolytic solution was injected until the negative electrode was completely immersed.
[0074] 次いで、電極セルをグローブボックスから 25°Cの恒温槽内に移し、リチウム対極、 負極、及びリファレンス極端子に充放電装置接続コードを繋いで評価測定を行った。 本測定では、電流密度 1. OmA/cm2で定電流で充電後、電圧 10mVで定電圧の 充電に切り代えて 12時間充電を行った。放電条件は、 1. OmA/cm2の定電流放電 とし、カットオフ電圧を 1 · 2Vとした。 [0074] Next, the electrode cell was transferred from the glove box into a constant temperature bath at 25 ° C, and the lithium counter electrode, the negative electrode, and the reference electrode terminal were connected to the charging / discharging device connection cord, and evaluation measurement was performed. In this measurement, the battery was charged at a constant current at a current density of 1. OmA / cm 2 and then switched to a constant voltage at a voltage of 10 mV for 12 hours. The discharge conditions were: 1. OmA / cm 2 constant current discharge, cut-off voltage was 1.2V.
[0075] 以上の電池特性評価の結果、放電容量は 464mAh/gであり、初期効率は 86 % であった。 As a result of the above battery characteristic evaluation, the discharge capacity was 464 mAh / g, and the initial efficiency was 86%.
[0076] 実施例 2 [0076] Example 2
実施例 1と同様にして粉碎したシリコン粉末 (平均粒径 0. 2 μ τη) 10gと天然黒鉛 ( 鱗片状黒鉛)(平均粒径 10 / m、真比重 2. 25) 90gを用い、実施例 1と同じ造粒体 の製造装置を用いて、実施例 1と同様の方法で造粒体 500gを得た。  Example using 10 g of silicon powder (average particle size 0.2 μτη) and 90 g of natural graphite (flaky graphite) (average particle size 10 / m, true specific gravity 2.25) as in Example 1 Using the same granule production apparatus as in Example 1, 500 g of granule was obtained in the same manner as in Example 1.
[0077] 得られた造粒体の平均粒径は 6. 6 μ mであり、タップ密度は 0. 80g/ccであった 。尚、造粒前の天然黒鉛とシリコン粉末の混合物について、前述した方法に従って均 一に混合した後測定したタップ密度は 0. 59gZccであった。  [0077] The obtained granulated product had an average particle size of 6.6 µm and a tap density of 0.80 g / cc. In addition, the tap density measured after uniformly mixing the mixture of natural graphite and silicon powder before granulation according to the method described above was 0.59 gZcc.
[0078] 次いで、上記した方法で得た造粒体 100質量部に対して等方性ピッチを 15質量部 加え、実施例 1と同様の条件で混合した後、実施例 1と同様の条件で加熱して、該造 粒体の表面をピッチ炭素化物により被覆して、負極活物質を得た。  [0078] Next, 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the granulated material obtained by the above-described method, and the mixture was mixed under the same conditions as in Example 1. By heating, the surface of the granule was coated with pitch carbonized material to obtain a negative electrode active material.
[0079] 上記方法で得られた負極活物質の平均粒径は 7. 0 μ mであり、比表面積は 8. 9m 2 gであった。 [0079] The average particle diameter of the negative electrode active material obtained by the above method is 7.0 μm, and the specific surface area is 8.9 m. 2 g.
[0080] 電池特性の評価  [0080] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 465mAh/gであり、初期効率は 87% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 465 mAh / g, and the initial efficiency was 87%.
[0081] 次いで、電解液を、 1Mの LiPFをエチレンカーボネート(EC)  [0081] Next, the electrolyte was 1M LiPF and ethylene carbonate (EC).
6 Zジェチルカーボネ ート (DEC) = 1/1 (体積比)の混合溶媒に溶解した非水電解液に変更して、同様の 方法でサイクル特性の評価試験を行った。その結果、 1サイクル目の放電容量は 60 4mAhZgであり、 2サイクル目の放電容量を 1サイクル目における放電容量で除した 値(パーセント容量比)は、 96%であった。  A cycle characteristic evaluation test was performed in the same manner by changing to a non-aqueous electrolyte dissolved in a mixed solvent of 6 Z jetyl carbonate (DEC) = 1/1 (volume ratio). As a result, the discharge capacity in the first cycle was 604 mAhZg, and the value obtained by dividing the discharge capacity in the second cycle by the discharge capacity in the first cycle (percent capacity ratio) was 96%.
[0082] 実施例 3 [0082] Example 3
実施例 1と同様にして粉砕したシリコン粉末 (平均粒径 0. 2 x m) 15gと天然黒鉛( 鱗片状黒鉛)(平均粒径 10 / m、真比重 2. 25) 85gを用い、実施例 1と同じ造粒体 の製造装置を用いて、実施例 1と同様の方法で造粒体 500gを得た。  Example 1 using 15 g of silicon powder (average particle size 0.2 xm) crushed in the same manner as in Example 1 and 85 g of natural graphite (flaky graphite) (average particle size 10 / m, true specific gravity 2.25) Using the same granule production apparatus, 500 g of a granule was obtained in the same manner as in Example 1.
[0083] 得られた造粒体の平均粒径は 7. 2 /i mであり、タップ密度は 0. 88g/ccであった[0083] The average particle diameter of the obtained granulated body was 7.2 / im, and the tap density was 0.88 g / cc.
。尚、造粒前の天然黒鉛とシリコン粉末の混合物について、前述した方法に従って均 一に混合した後測定したタップ密度は 0. 61g/ccであった。 . Incidentally, the tap density measured after uniformly mixing the mixture of natural graphite and silicon powder before granulation according to the above-described method was 0.61 g / cc.
[0084] 次いで、上記した方法で得た造粒体 100質量部に対して等方性ピッチを 15質量部 加え、実施例 1と同様の条件で混合した後、実施例 1と同様の条件で加熱して、該造 粒体の表面をピッチ炭素化物により被覆して、負極活物質を得た。得られた負極活 物質では、シリコン量は 14. 0質量%であった。 [0084] Next, 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the granulated material obtained by the above-described method, mixed under the same conditions as in Example 1, and then under the same conditions as in Example 1. By heating, the surface of the granule was coated with pitch carbonized material to obtain a negative electrode active material. In the obtained negative electrode active material, the amount of silicon was 14.0% by mass.
[0085] 上記方法で得られた負極活物質の平均粒径は 7. 5 μ mであり、比表面積は 8. 4m [0085] The negative electrode active material obtained by the above method has an average particle diameter of 7.5 μm and a specific surface area of 8.4 m.
2/gであった。 2 / g.
[0086] 雷池特性の評価 [0086] Evaluation of thunder pond characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 578mAh/gであり、初期効率は 85% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 578 mAh / g, and the initial efficiency was 85%.
[0087] 次いで、電解液を、 1Mの LiPFをエチレンカーボネート(EC) Zジェチルカーボネ ート (DEC) = 1/1 (体積比)の混合溶媒に溶解した非水電解液に変更して、同様の 方法でサイクル特性の評価試験を行った。その結果、 1サイクル目の放電容量は 64 8mAh/gであり、 2サイクル目の放電容量を 1サイクル目における放電容量で除した 値(パーセント容量比)は、 96%であった。 [0087] Next, the electrolyte was 1M LiPF and ethylene carbonate (EC) Z jetyl carbon. The cycle characteristics were evaluated in the same manner by changing to a non-aqueous electrolyte dissolved in a mixed solvent with a volume ratio (DEC) of 1/1 (volume ratio). As a result, the discharge capacity in the first cycle was 648 mAh / g, and the value obtained by dividing the discharge capacity in the second cycle by the discharge capacity in the first cycle (percent capacity ratio) was 96%.
[0088] 実施例 4 [0088] Example 4
せん断粗砕機を用いて実施例 1と同様の黒鉛 95質量部と、実施例 1と同様のシリコ ン粉末 5質量部とを予め混合した。この混合物のタップ密度は 0. 57gZccであった。  Using a shearing crusher, 95 parts by mass of graphite similar to Example 1 and 5 parts by mass of silicon powder similar to Example 1 were mixed in advance. The tap density of this mixture was 0.57 gZcc.
[0089] 得られた混合物を 100g採取し、実施例 1と同じ造粒体の製造装置を用いて、実施 例 1と同様の方法で造粒体 500gを得た。造粒体の平均粒径は 7. 5 z mであり、タツ プ密度は 0. 78g/ccであった。 [0089] 100 g of the obtained mixture was sampled, and 500 g of a granulated product was obtained in the same manner as in Example 1 using the same granulated product production apparatus as in Example 1. The average particle size of the granulated product was 7.5 zm, and the tap density was 0.78 g / cc.
[0090] 次いで、上記した方法で得た造粒体 100質量部に対して等方性ピッチを 15質量部 加え、実施例 1と同様の条件で混合した後、実施例 1と同様の条件で加熱して、該造 粒体の表面をピッチ炭素化物により被覆して、負極活物質を得た。得られた負極活 物質では、シリコン量は 4. 7質量%であった。 [0090] Next, 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the granulated material obtained by the above-described method, and the mixture was mixed under the same conditions as in Example 1. Then, under the same conditions as in Example 1. By heating, the surface of the granule was coated with pitch carbonized material to obtain a negative electrode active material. In the obtained negative electrode active material, the silicon content was 4.7% by mass.
[0091] 上記方法で得られた負極活物質の平均粒径は 7. 7 / m、比表面積は 6. 8m2/g であった。 The average particle diameter of the negative electrode active material obtained by the above method was 7.7 / m, and the specific surface area was 6.8 m 2 / g.
[0092] 電池特性の評価 [0092] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 577mAh/gであり、初期効率は 85% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 577 mAh / g and the initial efficiency was 85%.
[0093] 実施例 5 [0093] Example 5
黒鉛 90質量部とシリコン粉末 10質量部を原料として用レ、る以外は、実施例 4と同様 にして、造粒体 500gを得た。造粒処理前の混合物のタップ密度は 0. 59gZccであ つた。造粒体の平均粒径は 6. 8 x mであり、タップ密度は 0. 80g/ccであった。  A granulated body (500 g) was obtained in the same manner as in Example 4 except that 90 parts by mass of graphite and 10 parts by mass of silicon powder were used as raw materials. The tap density of the mixture before granulation was 0.59 gZcc. The average particle size of the granulation was 6.8 x m and the tap density was 0.80 g / cc.
[0094] 次いで、上記した方法で得た造粒体 100質量部に対して等方性ピッチを 15質量部 加え、実施例 1と同様の条件で混合した後、実施例 1と同様の条件で加熱して、該造 粒体の表面をピッチ炭素化物により被覆して、負極活物質を得た。得られた負極活 物質では、シリコン量は 9. 3質量%であった。 [0095] 上記方法で得られた負極活物質の平均粒径は 7. 0 μ mであり、比表面積は 8. 5m[0094] Next, 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the granulated body obtained by the above-described method, and the mixture was mixed under the same conditions as in Example 1, and then under the same conditions as in Example 1. By heating, the surface of the granule was coated with pitch carbonized material to obtain a negative electrode active material. In the obtained negative electrode active material, the silicon content was 9.3 mass%. [0095] The negative electrode active material obtained by the above method has an average particle diameter of 7.0 μm and a specific surface area of 8.5 m.
/ gであった。 / g.
[0096] 電池特性の評価 [0096] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 620mAh/gであり、初期効率は 85% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 620 mAh / g, and the initial efficiency was 85%.
[0097] 実施例 6 [0097] Example 6
黒鉛 85質量部とシリコン粉末 15質量部を原料として用レ、る以外は、実施例 4と同様 にして、造粒体 500gを得た。造粒処理前の混合物のタップ密度は 0. 61gZccであ つた。造粒体の平均粒径は 6. であり、タップ密度は 0. 85g/ccであった。  A granulated body (500 g) was obtained in the same manner as in Example 4 except that 85 parts by mass of graphite and 15 parts by mass of silicon powder were used as raw materials. The tap density of the mixture before granulation was 0.61 gZcc. The average particle size of the granulation was 6. The tap density was 0.85 g / cc.
[0098] 次いで、上記した方法で得た造粒体 100質量部に対して等方性ピッチを 15質量部 加え、実施例 1と同様の条件で混合した後、実施例 1と同様の条件で加熱して、該造 粒体の表面をピッチ炭素化物により被覆して、負極活物質を得た。得られた負極活 物質では、シリコン量は 14. 0質量%であった。  [0098] Next, 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the granulated material obtained by the above-described method, and the mixture was mixed under the same conditions as in Example 1. Then, under the same conditions as in Example 1. By heating, the surface of the granule was coated with pitch carbonized material to obtain a negative electrode active material. In the obtained negative electrode active material, the amount of silicon was 14.0% by mass.
[0099] 上記方法で得られた負極活物質の平均粒径は 6. 8 /i mであり、比表面積は 8. 9m [0099] The average particle diameter of the negative electrode active material obtained by the above method is 6.8 / im, and the specific surface area is 8.9m.
/ gであった。  / g.
[0100] 電池特性の評価 [0100] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 670mAh/gであり、初期効率は 84% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 670 mAh / g, and the initial efficiency was 84%.
[0101] 実施例 7 [0101] Example 7
平均粒径 1 μ mのシリコン粉末を、ビーズミルを用いてイソプロピールアルコールを 媒体として粉砕し、平均粒径 0. 2 x mのシリコン粉末とした。得られた粉砕物は、アル コール中に平均粒径 0. 2 z mのシリコン粉末が分散した状態であった。この分散液 に、シリコン 10質量部に対して 90質量部の天然黒鉛 (鱗片状黒鉛)(平均粒径 20 μ m、真比重 2. 25、比表面積 4. 5m2Zg)を加えて撹拌混合した。その後、蒸発器を 用いてアルコールを蒸発させた。 Silicon powder having an average particle size of 1 μm was pulverized using a bead mill using isopropyl alcohol as a medium to obtain silicon powder having an average particle size of 0.2 × m. The obtained pulverized product was in a state where silicon powder having an average particle size of 0.2 zm was dispersed in alcohol. To this dispersion, 90 parts by mass of natural graphite (flaky graphite) (average particle size 20 μm, true specific gravity 2.25, specific surface area 4.5 m 2 Zg) is added to 10 parts by mass of silicon and mixed by stirring. did. Thereafter, the alcohol was evaporated using an evaporator.
[0102] 次レ、で、上記した方法で得られたシリコン粉末と天然黒鉛の混合物をゴム製のボー ノレとともにボールミルに入れて更に混合した。 [0102] In the next stage, the mixture of the silicon powder and natural graphite obtained by the above-described method is used as a rubber bowl. It was put into a ball mill with Nore and further mixed.
[0103] 上記した方法で得られた混合物を 90g採取し、実施例 1と同一の造粒体の製造装 置を用いて 8000rpmで 3分間混合して、造粒体を得た。この操作を 95回繰り返して 行い、造粒体 8. 5kgを得た。造粒処理前の混合物のタップ密度は 0. 60gZccであ つた。造粒体の平均粒径は 16. 1 x mであり、タップ密度は 0. 93g/ccであった。  [0103] 90 g of the mixture obtained by the above method was collected and mixed at 8000 rpm for 3 minutes using the same granule production apparatus as in Example 1 to obtain a granule. This operation was repeated 95 times to obtain 8.5 kg of granulated material. The tap density of the mixture before granulation was 0.60 gZcc. The average particle size of the granulation was 16.1 x m and the tap density was 0.93 g / cc.
[0104] 次いで、得られた造粒体 100質量部に対して等方性ピッチを 30質量部加え、ナウ ターミキサを用いて 1時間混合した。その後、窒素ガス雰囲気中で 900°Cまで 15時 間かけて昇温し、 900°Cで 2時間保持して、該造粒体の表面をピッチ炭素化物により 被覆して、負極活物質を得た。得られた負極活物質では、シリコン量は 8. 7質量% であった。  [0104] Next, 30 parts by mass of an isotropic pitch was added to 100 parts by mass of the obtained granulated body, and mixed for 1 hour using a Nauta mixer. Thereafter, the temperature is raised to 900 ° C. over 15 hours in a nitrogen gas atmosphere, and the temperature is maintained at 900 ° C. for 2 hours, and the surface of the granule is covered with pitch carbonized material to obtain a negative electrode active material. It was. In the obtained negative electrode active material, the amount of silicon was 8.7% by mass.
[0105] 上記方法で得られた負極活物質の平均粒径は 16. 5 μ mであり、比表面積は 4. 3 m Z gでめつ 7こ。  [0105] The average particle diameter of the negative electrode active material obtained by the above method was 16.5 μm, and the specific surface area was 4.3 mZg.
[0106] 電池特性の評価 [0106] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用い、電解液として、 1Mの LiPFをェチレ  Using the negative electrode active material obtained by the method described above, 1M LiPF was used as the electrolyte.
6 ンカーボネート(EC) /ジェチルカーボネート(DEC) = 1/1 (体積比)の混合溶媒 に溶解した非水電解液を用レ、て、実施例 1と同様の方法で電池特性の評価試験を 行った。  Evaluation test of battery characteristics in the same manner as in Example 1 using a non-aqueous electrolyte dissolved in a mixed solvent of 6 carbonate (EC) / jetyl carbonate (DEC) = 1/1 (volume ratio) Went.
[0107] その結果、 1サイクル目の放電容量は 565mAh/gであり、初期効率は 90%であつ た。また、 2サイクル目の放電容量を 1サイクル目における放電容量で除した値 (パー セント容量比)は、 98%であり、 10サイクル目の放電容量を 1サイクル目における放 電容量で除した値は 90%であり、良好なサイクル特性を示した。  As a result, the discharge capacity in the first cycle was 565 mAh / g, and the initial efficiency was 90%. The value obtained by dividing the discharge capacity at the second cycle by the discharge capacity at the first cycle (percent capacity ratio) is 98%, and the value obtained by dividing the discharge capacity at the 10th cycle by the discharge capacity at the first cycle. Was 90%, indicating good cycle characteristics.
[0108] 実施例 8  [0108] Example 8
平均粒径 1 μ mのシリコン粉末を、ビーズミルを用いてイソプロピールアルコールを 媒体として粉砕し、平均粒径 0. 2 x mのシリコン粉末とした。得られた粉砕物は、アル コール中に平均粒径 0. 2 z mのシリコン粉末が分散した状態であった。この分散液 に、シリコン 15質量部に対して 85質量部の天然黒鉛 (鱗片状黒鉛)(平均粒径 20 μ m、真比重 2. 25)を加えて撹拌混合した。その後、蒸発器を用いてアルコールを蒸 発させた。 [0109] 次いで、上記した方法で得られたシリコン粉末と天然黒鉛の混合物をゴム製のボー ノレとともにボールミルに入れて更に混合した。 Silicon powder having an average particle size of 1 μm was pulverized using a bead mill using isopropyl alcohol as a medium to obtain silicon powder having an average particle size of 0.2 × m. The obtained pulverized product was in a state where silicon powder having an average particle size of 0.2 zm was dispersed in alcohol. To this dispersion, 85 parts by mass of natural graphite (flaky graphite) (average particle size of 20 μm, true specific gravity of 2.25) with respect to 15 parts by mass of silicon was added and mixed by stirring. Thereafter, the alcohol was evaporated using an evaporator. [0109] Next, the mixture of silicon powder and natural graphite obtained by the above-described method was placed in a ball mill together with a rubber bonole and further mixed.
[0110] 上記した方法で得られた混合物を 80g採取し、実施例 1と同一の造粒体の製造装 置を用いて 8000rpmで 3分間混合して、造粒体を得た。この操作を 96回繰り返して 行い、造粒体 7. 6kgを得た。造粒処理前の混合物のタップ密度は 0. 62gZccであ つた。造粒体の平均粒径は 9. O x mであり、タップ密度は 0. 88g/ccであった。  [0110] 80 g of the mixture obtained by the above-described method was sampled and mixed at 8000 rpm for 3 minutes using the same granule production apparatus as in Example 1 to obtain a granule. This operation was repeated 96 times to obtain 7.6 kg of granules. The tap density of the mixture before granulation was 0.62 gZcc. The average particle diameter of the granulated body was 9. O x m, and the tap density was 0.88 g / cc.
[0111] 得られた造粒体 100質量部に対して等方性ピッチを 15質量部加えてナウターミキ サを用いて 1時間混合した。その後、窒素ガス雰囲気中で 900°Cまで 15時間かけて 昇温し、 900°Cで 2時間保持して、該造粒体の表面をピッチ炭素化物により被覆した 。次いで、ピッチ炭素化物で被覆された造粒体 100質量部に対して、更に、等方性ピ ツチを 15質量部加えてナウターミキサを用いて 1時間混合し、窒素ガス雰囲気中で 9 00°Cまで 15時間かけて昇温し、 900°Cで 2時間保持して、該造粒体の表面をピッチ 炭素化物により被覆して、負極活物質を得た。得られた負極活物質では、シリコン量 は 12. 9質量0 /。であった。 [0111] 15 parts by mass of an isotropic pitch was added to 100 parts by mass of the obtained granulated material, and mixed for 1 hour using Nauter mixer. Thereafter, the temperature was raised to 900 ° C. over 15 hours in a nitrogen gas atmosphere, and the temperature was maintained at 900 ° C. for 2 hours to coat the surface of the granulated body with pitch carbonized material. Next, 15 parts by mass of isotropic pitch is added to 100 parts by mass of the granulated material coated with pitch carbonized material, and mixed for 1 hour using a Nauta mixer, and 900 ° C in a nitrogen gas atmosphere. The temperature was raised to 15 hours and held at 900 ° C. for 2 hours, and the surface of the granulated body was coated with pitch carbonized material to obtain a negative electrode active material. In the obtained negative electrode active material, the amount of silicon was 12.9 mass 0 /. Met.
[0112] 上記方法で得られた負極活物質の平均粒径は 9. 3 β mであり、比表面積は 7.2m2 gであった。 [0112] The average particle diameter of the negative electrode active material obtained by the above method was 9.3 β m, and the specific surface area was 7.2 m 2 g.
[0113] 図 4に、実施例 8で得られた負極活物質について、その断面の走査型電子顕微鏡( SEM)写真 (a)と同一視野におけるエネルギー分散型蛍光 X線分析 (EDS)によるシ リコンの面分析 (b)とを示す。観察用のサンプルは、負極活物質をエポキシ樹脂に坦 め込み、研磨することによって得られたものであり、その切断面を 4000倍の倍率で観 τ ^し 7  [0113] Fig. 4 shows the silicon of the negative electrode active material obtained in Example 8 by means of energy dispersive X-ray fluorescence analysis (EDS) in the same field of view as the scanning electron microscope (SEM) photograph (a) of the cross section. The surface analysis (b) is shown. The sample for observation was obtained by placing the negative electrode active material in an epoxy resin and polishing it, and observed the cut surface at a magnification of 4000 times.
[0114] シリコンの面分析 (b)により、シリコンが内部に分散して存在していることが分かった 。尚、最も明るい白色の領域はシリコンの濃度が、約 35質量%であり、暗くなるに従 つてシリコンの濃度が低くなつている。  [0114] Surface analysis (b) of silicon revealed that silicon was dispersed inside. The brightest white area has a silicon concentration of about 35% by mass, and the silicon concentration decreases as it darkens.
[0115] 電池特性の評価  [0115] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 633mAh/gであり、初期効率は 82% であった。 [0116] 実施例 9 Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 633 mAh / g, and the initial efficiency was 82%. [0116] Example 9
平均粒径 1 i mのシリコン粉末を、ビーズミルを用いてイソプロピールアルコールを 媒体として粉砕し、平均粒径 0. 2 μ ΐηのシリコン粉末とした。得られた粉砕物は、アル コール中に平均粒径 0. 2 z mのシリコン粉末が分散した状態であった。この分散液 に、シリコン 1質量部に対して 99質量部の天然黒鉛 (鱗片状黒鉛)(平均粒径 20 z m 、真比重 2. 25)を加えて撹拌混合した。その後、蒸発器を用いてアルコールを蒸発 させた。  Silicon powder having an average particle size of 1 im was pulverized using isopropyl alcohol as a medium using a bead mill to obtain silicon powder having an average particle size of 0.2 μΐη. The obtained pulverized product was in a state where silicon powder having an average particle size of 0.2 zm was dispersed in alcohol. To this dispersion, 99 parts by mass of natural graphite (flaky graphite) (average particle size 20 zm, true specific gravity 2.25) with respect to 1 part by mass of silicon was added and stirred. Thereafter, the alcohol was evaporated using an evaporator.
[0117] 次いで、上記した方法で得られたシリコン粉末と天然黒鉛の混合物をゴム製のボー ノレとともにボールミルに入れて更に混合した。  [0117] Next, the mixture of silicon powder and natural graphite obtained by the above-described method was placed in a ball mill together with a rubber bonole and further mixed.
[0118] 上記した方法で得られた混合物を 90g採取し、実施例 1と同一の造粒体の製造装 置を用いて 8000rpmで 3分間混合して、造粒体を得た。この操作を 20回繰り返して 行い、造粒体 1. 8kgを得た。造粒処理前の混合物のタップ密度は 0. 56gZccであ つた。造粒体の平均粒径は 9· 8 μ ΐηであり、タップ密度は 0· 90g/ccであった。 [0118] 90 g of the mixture obtained by the above-described method was collected and mixed at 8000 rpm for 3 minutes using the same granule production apparatus as in Example 1 to obtain a granule. This operation was repeated 20 times to obtain 1.8 kg of granulated material. The tap density of the mixture before granulation was 0.56 gZcc. The average particle size of the granulation was 9.8 μΐη, and the tap density was 0 · 90 g / cc.
[0119] 次いで、得られた造粒体 100質量部に対して等方性ピッチを 20質量部加え、ナウ ターミキサを用いて 1時間混合した。その後、窒素ガス雰囲気中で 900°Cまで 15時 間かけて昇温し、 900°Cで 2時間保持して、該造粒体の表面をピッチ炭素化物により 被覆して、負極活物質を得た。 [0119] Next, 20 parts by mass of an isotropic pitch was added to 100 parts by mass of the obtained granulated product, and mixed for 1 hour using a Nauta mixer. Thereafter, the temperature is raised to 900 ° C. over 15 hours in a nitrogen gas atmosphere, and the temperature is maintained at 900 ° C. for 2 hours, and the surface of the granule is covered with pitch carbonized material to obtain a negative electrode active material. It was.
[0120] 得られた負極活物質では、シリコン量は 0. 9質量%であった。負極活物質の平均 粒径は 10. 0 μ ΐηであり、比表面積は 4. 8m2/gであった。 [0120] In the obtained negative electrode active material, the silicon content was 0.9 mass%. The average particle diameter of the negative electrode active material was 10.0 μΐη, and the specific surface area was 4.8 m 2 / g.
[0121] 電池特性の評価 [0121] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 392mAh/gであり、初期効率は 88% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 392 mAh / g, and the initial efficiency was 88%.
[0122] 実施例 10 [0122] Example 10
シリコン 2質量部に対して天然黒鉛 (鱗片状黒鉛) 98質量部を用いる以外は、実施 例 9と同様にして、造粒体を得た。  A granulated body was obtained in the same manner as in Example 9 except that 98 parts by mass of natural graphite (flaky graphite) was used with respect to 2 parts by mass of silicon.
[0123] 得られた造粒体について、実施例 9と同様にして表面をピッチ炭素化物により被覆 して、負極活物質を得た。造粒処理前の混合物のタップ密度は 0. 57g/ccであった 。造粒体の平均粒径は 9. 2 /i mであり、タップ密度は 0. 87g/ccであった。 [0123] The surface of the obtained granule was coated with pitch carbonized material in the same manner as in Example 9 to obtain a negative electrode active material. The tap density of the mixture before granulation was 0.57 g / cc. . The average particle diameter of the granulated body was 9.2 / im, and the tap density was 0.87 g / cc.
[0124] 得られた負極活物質では、シリコン量は 1. 8質量%であった。負極活物質の平均 粒径は 9. 5 μ ΐηであり、比表面積は 4. 2m2/gであった。 [0124] In the obtained negative electrode active material, the silicon content was 1.8% by mass. The average particle diameter of the negative electrode active material was 9.5 μΐη, and the specific surface area was 4.2 m 2 / g.
[0125] 電池特性の評価 [0125] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 404mAh/gであり、初期効率は 88% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 404 mAh / g, and the initial efficiency was 88%.
[0126] 実施例 11 [0126] Example 11
シリコン 3質量部に対して天然黒鈴 (鱗片状黒鈴) 97質量部を用いる以外は、実施 例 9と同様にして、造粒体を得た。 A granulated product was obtained in the same manner as in Example 9 except that 97 parts by mass of natural black bell (scale-like black bell) was used with respect to 3 parts by mass of silicon.
[0127] 得られた造粒体について、実施例 9と同様にして表面をピッチ炭素化物により被覆 して、負極活物質を得た。造粒処理前の混合物のタップ密度は 0. 58g/ccであった[0127] The surface of the obtained granulated body was coated with pitch carbonized material in the same manner as in Example 9 to obtain a negative electrode active material. The tap density of the mixture before granulation was 0.58 g / cc.
。造粒体の平均粒径は 9. 0 /i mであり、タップ密度は 0. 83g/ccであった。 . The average particle diameter of the granulated body was 9.0 / im, and the tap density was 0.83 g / cc.
[0128] 得られた負極活物質では、シリコン量は 2. 7質量%であった。負極活物質の平均 粒径は 9. 2 μ ΐηであり、比表面積は 4. 6m2/gであった。 [0128] In the obtained negative electrode active material, the silicon content was 2.7% by mass. The average particle diameter of the negative electrode active material was 9.2 μΐη, and the specific surface area was 4.6 m 2 / g.
[0129] 電池特性の評価 [0129] Evaluation of battery characteristics
上記した方法で得られた負極活物質を用いて、実施例 1と同様の方法で電池特性 の評価試験を行った。その結果、放電容量は 421mAh/gであり、初期効率は 88% であった。  Using the negative electrode active material obtained by the above-described method, a battery characteristic evaluation test was performed in the same manner as in Example 1. As a result, the discharge capacity was 421 mAh / g and the initial efficiency was 88%.
[0130] 比較例 1 [0130] Comparative Example 1
市販の球形化黒鉛 (天然の鱗片状黒鉛を球形化させたもの。平均粒径 15 / m) 13. 5kgと、平均粒径 l x mの多結晶のシリコン粉末を市販のビーズミルを用いて粉砕し たシリコン粉末(平均粒径 0. 2 z m) l . 5kgとをナウターミキサに投入し 1時間混合し た。  Commercially available spheroidized graphite (natural flaky graphite spheroidized; average particle size 15 / m) 13.5 kg and polycrystalline silicon powder with average particle size lxm were ground using a commercially available bead mill Silicon powder (average particle size 0.2 zm) l. 5 kg was put into a Nauta mixer and mixed for 1 hour.
[0131] 得られた混合体 100質量部に対して等方性ピッチを 10質量部加えてナウターミキ サを用いて 1時間混合した。その後、窒素ガス雰囲気中で 900°Cまで 15時間かけて 昇温し、 900°Cで 2時間保持して、該混合体の表面をピッチ炭素化物により被覆した 。次いで、ピッチ炭素化物で被覆された混合体 100質量部に対して、更に、等方性ピ ツチを 15質量部加えてナウターミキサを用いて 1時間混合し、窒素ガス雰囲気中で 9 00°Cまで 15時間かけて昇温し、 900°Cで 2時間保持して、該混合体の表面をピッチ 炭素化物により被覆して、負極活物質を得た。 [0131] 10 parts by mass of an isotropic pitch was added to 100 parts by mass of the obtained mixture, and the mixture was mixed for 1 hour using a Nauter mixer. Thereafter, the temperature was raised to 900 ° C. over 15 hours in a nitrogen gas atmosphere, and the temperature was maintained at 900 ° C. for 2 hours to coat the surface of the mixture with pitch carbonized product. Next, with respect to 100 parts by mass of the mixture coated with pitch carbonized material, isotropic pipe Add 15 parts by mass of the mixture, mix for 1 hour using a Nauta mixer, raise the temperature to 900 ° C in a nitrogen gas atmosphere over 15 hours, hold at 900 ° C for 2 hours, and remove the surface of the mixture. A negative electrode active material was obtained by coating with pitch carbonized material.
[0132] 得られた負極活物質では、シリコン量は 8. 9質量%であった。負極活物質の平均 粒径は 16. であり、比表面積は 4. 4m2Zgであった。 [0132] In the obtained negative electrode active material, the silicon content was 8.9 mass%. The average particle diameter of the negative electrode active material was 16. The specific surface area was 4.4 m 2 Zg.
[0133] 実施例 1と同様の方法で電池特性評価を行った結果、放電容量は 467mAh/gで あり、初期効率は 86%であった。また、 6サイクル目の放電容量を 1サイクル目におけ る放電容量で除した値 (パーセント容量比)は、 75%であった。  [0133] As a result of evaluating the battery characteristics in the same manner as in Example 1, the discharge capacity was 467 mAh / g, and the initial efficiency was 86%. The value obtained by dividing the discharge capacity at the 6th cycle by the discharge capacity at the 1st cycle (percent capacity ratio) was 75%.

Claims

請求の範囲 The scope of the claims
[1] 鱗状黒鉛、及び (002)面の面間隔が 0. 336nm以下の人造黒鉛からなる群から選 ばれた少なくとも一種の黒鉛原料と、リチウムイオンを吸蔵及び放出し得る金属粉末 との混合物を、高速気流中で粉砕、造粒して得られる造粒体であって、  [1] A mixture of scaly graphite and at least one graphite raw material selected from the group consisting of artificial graphite having a (002) plane spacing of 0.336 nm or less and a metal powder capable of occluding and releasing lithium ions. A granulated body obtained by pulverization and granulation in a high-speed air stream,
原料とする黒鉛の一部が粉砕されて、黒鉛原料及びその粉砕物が積層した構造とな り、その表面及び内部に金属粉末が分散した状態の造粒体からなるリチウムイオン二 次電池用負極活物質。  A negative electrode for a lithium ion secondary battery comprising a granulated body in which a part of graphite as a raw material is pulverized to form a structure in which graphite raw materials and pulverized products thereof are laminated, and metal powder is dispersed on the surface and inside thereof. Active material.
[2] 平均粒径が 5〜: 150 μ mの黒鉛原料と、平均粒径が 0. 01〜2 μ mの金属粉末の混 合物を原料として得られた造粒体からなる請求項 1に記載のリチウムイオン二次電池 用負極活物質。  [2] A granulated product obtained by using a mixture of a graphite raw material having an average particle size of 5 to 150 μm and a metal powder having an average particle size of 0.01 to 2 μm as a raw material. The negative electrode active material for lithium ion secondary batteries as described in 2.
[3] 造粒体のタップ密度が、原料混合物のタップ密度と比較して 10%以上高い値である 請求項 1に記載のリチウムイオン二次電池用負極活物質。  [3] The negative electrode active material for a lithium ion secondary battery according to claim 1, wherein the tap density of the granulated body is 10% or more higher than the tap density of the raw material mixture.
[4] 金属粉末としてシリコン粉末を用いて得られる造粒体からなる請求項 1に記載のリチ ゥムイオン二次電池用負極活物質。 [4] The negative electrode active material for a lithium ion secondary battery according to [1], comprising a granulated body obtained by using silicon powder as the metal powder.
[5] 黒鉛原料として天然黒鉛を用いて得られる造粒体からなる請求項 1に記載のリチウム イオン二次電池用負極活物質。 [5] The negative electrode active material for a lithium ion secondary battery according to claim 1, comprising a granule obtained using natural graphite as a graphite raw material.
[6] 黒鉛原料と金属粉末の合計量を 100質量%として、金属粉末を 0. 3〜40質量%含 む原料を用いて得られる造粒体からなる請求項 1に記載のリチウムイオン二次電池 用負極活物質。 [6] The lithium ion secondary according to claim 1, comprising a granulated body obtained by using a raw material containing 0.3 to 40% by mass of the metal powder, with the total amount of the graphite raw material and the metal powder being 100% by mass. Negative electrode active material for batteries.
[7] 湿式又は乾式の予備混合を行った原料混合物を、高速気流中で粉砕、造粒して得 られる造粒体からなる請求項 1に記載のリチウムイオン二次電池用負極活物質。  7. The negative electrode active material for a lithium ion secondary battery according to claim 1, comprising a granulated material obtained by pulverizing and granulating a raw material mixture that has been wet or dry premixed in a high-speed air stream.
[8] 請求項 1に記載された造粒体の表面が、炭素前駆体又はその炭素化物によって被 覆されている造粒体からなるリチウムイオン二次電池用負極活物質。  [8] A negative electrode active material for a lithium ion secondary battery, comprising a granule in which the surface of the granule according to claim 1 is covered with a carbon precursor or a carbonized product thereof.
[9] 請求項 1に記載されたリチウムイオン二次電池用負極活物質を構成要素とするリチウ ムイオン二次電池。  [9] A lithium ion secondary battery comprising the negative electrode active material for a lithium ion secondary battery according to claim 1 as a constituent element.
[10] 請求項 8に記載されたリチウムイオン二次電池用負極活物質を構成要素とするリチウ ムイオン二次電池。  [10] A lithium ion secondary battery comprising the negative electrode active material for a lithium ion secondary battery according to claim 8 as a constituent element.
PCT/JP2007/061712 2006-06-20 2007-06-11 Negative-electrode active material for lithium ion secondary battery WO2007148553A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-170214 2006-06-20
JP2006170214 2006-06-20
JP2007-112871 2007-04-23
JP2007112871A JP2008027897A (en) 2006-06-20 2007-04-23 Anode active substance for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2007148553A1 true WO2007148553A1 (en) 2007-12-27

Family

ID=38833294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061712 WO2007148553A1 (en) 2006-06-20 2007-06-11 Negative-electrode active material for lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2008027897A (en)
WO (1) WO2007148553A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009095782A1 (en) * 2008-02-01 2009-08-06 Toyota Jidosha Kabushiki Kaisha Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
US20140227600A1 (en) * 2011-08-22 2014-08-14 Naoyoshi KACHI Composite active material for lithium secondary batteries and method for producing same
JP2015038852A (en) * 2012-09-19 2015-02-26 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, nonaqueous secondary battery negative electrode and nonaqueous secondary battery
CN106133956A (en) * 2014-03-25 2016-11-16 东曹株式会社 Lithium ion secondary battery cathode active substance and manufacture method thereof
CN108400307A (en) * 2018-03-05 2018-08-14 天津巴莫科技股份有限公司 Embedded silicon-carbon cathode material of apple shape and preparation method thereof
CN110380046A (en) * 2014-05-09 2019-10-25 株式会社半导体能源研究所 Lithium ion secondary battery and electronic device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093705B1 (en) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 Rechargeable lithium battery
JP5494343B2 (en) * 2010-08-12 2014-05-14 日立化成株式会社 Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5494344B2 (en) * 2010-08-12 2014-05-14 日立化成株式会社 Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5881943B2 (en) * 2010-12-10 2016-03-09 日立化成株式会社 Lithium secondary battery
JP5844048B2 (en) * 2011-02-01 2016-01-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN103443970A (en) * 2011-03-16 2013-12-11 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013058452A (en) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp Composite carbon material for nonaqueous secondary battery and method for manufacturing the same, negative electrode, and nonaqueous secondary battery
US9203108B2 (en) * 2011-11-14 2015-12-01 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20130056668A (en) * 2011-11-22 2013-05-30 삼성전자주식회사 Composite negative active material, method of preparing the same and lithium secondary battery comprising the same
US20160006020A1 (en) 2013-02-21 2016-01-07 Connexx System Corporation Composite active material for lithium secondary batteries and method for producing same
JP6508870B2 (en) 2013-08-14 2019-05-08 東ソー株式会社 Composite active material for lithium secondary battery and method of manufacturing the same
EP3076461B1 (en) 2013-11-27 2018-06-27 Mitsubishi Chemical Corporation Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP6391237B2 (en) * 2013-12-10 2018-09-19 三星電子株式会社Samsung Electronics Co.,Ltd. Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN103682287B (en) * 2013-12-19 2016-09-14 深圳市贝特瑞新能源材料股份有限公司 A kind of silicon-based composite anode material for Li-ion battery, preparation method and battery
JP6617403B2 (en) * 2014-03-25 2019-12-11 東ソー株式会社 Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2015146864A1 (en) * 2014-03-25 2015-10-01 東ソー株式会社 Negative electrode active material for lithium ion secondary battery, and method for producing same
EP3125338B1 (en) 2014-03-26 2019-08-21 Mitsubishi Chemical Corporation Composite graphite particles for nonaqueous secondary battery negative electrode
JP6759527B2 (en) * 2014-05-07 2020-09-23 東ソー株式会社 Negative electrode active material for lithium ion secondary batteries and its manufacturing method
JP6020533B2 (en) * 2014-10-29 2016-11-02 日立化成株式会社 Lithium ion secondary battery
CN104577084A (en) 2015-01-20 2015-04-29 深圳市贝特瑞新能源材料股份有限公司 Nano silicon composite negative electrode material for lithium ion battery, preparation method and lithium ion battery
JP2016143462A (en) * 2015-01-30 2016-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2017150311A1 (en) * 2016-02-29 2017-09-08 日本電気株式会社 Negative-electrode active material and lithium ion secondary battery using same
KR102243610B1 (en) * 2018-12-17 2021-04-27 주식회사 티씨케이 Negative active material, method for preparing the same and lithium secondary battery comprising the same
KR20240011662A (en) * 2021-02-24 2024-01-26 포커스 그래파이트 아이엔씨. Advanced cathode material containing spherical additive-reinforced graphite particles and method for manufacturing the same
CN113948675B (en) * 2021-10-18 2022-10-11 宁德新能源科技有限公司 Electrochemical device and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149927A (en) * 1998-09-10 2000-05-30 Mitsubishi Chemicals Corp Electric energy storage device
JP2001210329A (en) * 1999-11-16 2001-08-03 Mitsubishi Chemicals Corp Manufacturing method of negative electrode material for nonaqueous lithium secondary battery
JP2005243508A (en) * 2004-02-27 2005-09-08 Jfe Chemical Corp Composite graphite particles for rechargeable lithium-ion battery cathode material, negative pole and rechargeable lithium-ion battery
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149927A (en) * 1998-09-10 2000-05-30 Mitsubishi Chemicals Corp Electric energy storage device
JP2001210329A (en) * 1999-11-16 2001-08-03 Mitsubishi Chemicals Corp Manufacturing method of negative electrode material for nonaqueous lithium secondary battery
JP2005243508A (en) * 2004-02-27 2005-09-08 Jfe Chemical Corp Composite graphite particles for rechargeable lithium-ion battery cathode material, negative pole and rechargeable lithium-ion battery
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009095782A1 (en) * 2008-02-01 2009-08-06 Toyota Jidosha Kabushiki Kaisha Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
US8354194B2 (en) 2008-02-01 2013-01-15 Toyota Jidosha Kabushiki Kaisha Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
US20140227600A1 (en) * 2011-08-22 2014-08-14 Naoyoshi KACHI Composite active material for lithium secondary batteries and method for producing same
US10170751B2 (en) * 2011-08-22 2019-01-01 Connexx Systems Corporation Composite active material for lithium secondary batteries and method for producing same
JP2015038852A (en) * 2012-09-19 2015-02-26 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, nonaqueous secondary battery negative electrode and nonaqueous secondary battery
EP2899782A4 (en) * 2012-09-19 2015-09-30 Mitsubishi Chem Corp Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
CN106133956A (en) * 2014-03-25 2016-11-16 东曹株式会社 Lithium ion secondary battery cathode active substance and manufacture method thereof
CN106133956B (en) * 2014-03-25 2020-10-09 东曹株式会社 Negative electrode active material for lithium ion secondary battery and method for producing same
CN110380046A (en) * 2014-05-09 2019-10-25 株式会社半导体能源研究所 Lithium ion secondary battery and electronic device
CN108400307A (en) * 2018-03-05 2018-08-14 天津巴莫科技股份有限公司 Embedded silicon-carbon cathode material of apple shape and preparation method thereof
CN108400307B (en) * 2018-03-05 2020-07-03 天津巴莫科技股份有限公司 Apple-shaped embedded silicon-carbon negative electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP2008027897A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2007148553A1 (en) Negative-electrode active material for lithium ion secondary battery
US8753778B2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
JP6432519B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
KR101245418B1 (en) Titanium and dense lithium mixed oxide powder compound, method for producing said compound and compound-containing electrode
CN100524911C (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
EP3032616B1 (en) Method for producing composite
EP3131140B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
CN1913200B (en) Silicon carbone compound negative polar material of lithium ion battery and its preparation method
JP5227483B1 (en) Composite active material for lithium secondary battery and method for producing the same
JP6572551B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP5104025B2 (en) Non-aqueous electrolyte battery
KR101375455B1 (en) Electrode active material for rechargeable battery
KR20150058205A (en) Composite graphite particles for non-aqueous secondary cell negative electrode, negative electrode for non-aqueous secondary cell, and non-aqueous secondary cell
CN114597361A (en) Artificial graphite composite negative electrode material for lithium ion battery and preparation method and application thereof
JP6476814B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP2005149946A (en) Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP6252025B2 (en) Method for producing composite graphite particles for non-aqueous secondary battery negative electrode, and composite graphite particles for non-aqueous secondary battery negative electrode produced by the production method, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2015147123A1 (en) Non-aqueous secondary battery negative electrode composite graphite particles, non-aqueous secondary battery negative electrode active material and non-aqueous secondary battery
CN104934576A (en) Carbon-Silicon Composite, And Lithium Secondary Battery Anode And Lithium Secondary Battery Including The Same
TW201640726A (en) Composite active material for lithium secondary cell and method for manufacturing same
JP6746906B2 (en) Silicon-based particles, negative electrode active material for lithium-ion secondary battery containing the same, and methods for producing the same
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6596807B2 (en) Non-aqueous secondary battery negative electrode composite graphite particles and non-aqueous secondary battery using the same
TWI732774B (en) Anode material for lithium ion secondary battery, its manufacturing method and lithium ion secondary battery
JP2013219018A (en) Composite active material for lithium secondary battery and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745003

Country of ref document: EP

Kind code of ref document: A1