WO2007125833A1 - X-ray image picking-up device and x-ray image picking-up method - Google Patents

X-ray image picking-up device and x-ray image picking-up method Download PDF

Info

Publication number
WO2007125833A1
WO2007125833A1 PCT/JP2007/058645 JP2007058645W WO2007125833A1 WO 2007125833 A1 WO2007125833 A1 WO 2007125833A1 JP 2007058645 W JP2007058645 W JP 2007058645W WO 2007125833 A1 WO2007125833 A1 WO 2007125833A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
ray
rays
image
period
Prior art date
Application number
PCT/JP2007/058645
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Momose
Wataru Yashiro
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2007125833A1 publication Critical patent/WO2007125833A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction

Definitions

  • the present invention relates to an X-ray imaging apparatus and an X-ray imaging method for observing the internal structure of a subject with high sensitivity using the phase of X-rays.
  • X-rays Since X-rays have high penetrating power, they are widely used in medical image diagnosis, nondestructive inspection, security check, and the like as probes for seeing through the inside of an object.
  • the contrast of the X-ray fluoroscopic image depends on the difference in the X-ray attenuation rate, and the portion that strongly absorbs X-rays is rendered as X-ray shadows. X-ray absorption capacity is stronger as more elements with higher atomic numbers are included.
  • contrast is difficult for substances whose atomic numbers are small! /, Which is made up of only elements, and this is also a fundamental drawback of fluoroscopic images. Therefore, sufficient sensitivity cannot be obtained with X-ray fluoroscopic images for biological soft tissues or soft materials.
  • a general X-ray source is a type that extracts X-rays by irradiating a metal target with an electron beam or a laser.
  • the X-rays included in the spectrum include “continuous X-rays” due to bremsstrahlung and “special characteristics due to electron orbit transitions” depending on the X-ray generation principle. Sex X-ray "exists. Characteristic X-rays are monochromatic as a spectrum. Continuous X-rays contain a continuous spectrum, ie, various wavelengths (photon energies). If monochromatic X-rays are required, the characteristic X-ray part of the spectrum can be used.
  • the wavelength of the characteristic X-ray depends on the type of metal target (ie the type of element). However, for example, in medical applications, X-rays of several tens of keV are required, but targets for elements that generate characteristic X-rays, particularly in the range of 30 to 50 keV, have not been developed so much. In addition, although it is possible in principle to select and use monochromatic X-rays of arbitrary energy with continuous X-ray force, sufficient strength cannot be ensured in that case. However, the intensity problem can be greatly reduced if a spectral part with a much wider energy width than continuous X-rays can be extracted and used.
  • the general X-ray source described above emits X-rays radially. In other words, it is a corn beam. Although it is possible in principle to extract and use a parallel beam (plane wave), sufficient strength cannot be ensured.
  • Patent Document 1 an X-ray phase imaging method using an X-ray Talbot interferometer that uses two diffraction gratings. Since this method works with cone beams, it can be combined with a compact X-ray source in this respect. Further, in the technique described in Patent Document 1, it is difficult to use the continuous X-rays as it is, around the energy E and the energy width delta E, remarkably than typical energy spread ⁇ EZE ⁇ 10- 3 characteristic X-ray Wide, it functions with spectral quasi-monochromatic X-rays (X-rays with a spectral width of about ⁇ E / E ⁇ 1Z8!).
  • Patent Document 1 WO2004 / 058070
  • An object of the present invention is to provide an apparatus and method that enables X-ray imaging with high sensitivity using phase information of X-rays even when continuous X-rays are used.
  • the X-ray imaging apparatus includes an X-ray source, a first grating, a second grating, a third grating, and an X-ray image detector.
  • the X-ray source is configured to irradiate an X-ray cone beam toward the first grating.
  • the first grating is a phase type diffraction grating or an amplitude type diffraction grating.
  • the second grating is an amplitude type diffraction grating.
  • the second grating is configured to diffract the X-ray diffracted by the first grating.
  • the period of the lines in the second grating is substantially the same as the period of the periodic intensity pattern formed by the X-rays diffracted by the first grating. Furthermore, the second grating has a configuration in which a periodic intensity pattern can be formed by X-rays diffracted from the second grating.
  • the third grating is an amplitude type grating. The third grating is disposed at substantially the same position as the position where the periodic intensity pattern formed by the X-rays diffracted by the second grating is formed.
  • the period of the lines in the third grating is substantially the same as the period of the periodic intensity pattern formed by the second grating.
  • the X-ray image detector is configured to detect X-rays that pass through the third grating from the force of the periodic intensity pattern formed by the second grating.
  • a subject to be subjected to X-ray imaging is arranged at any position between the X-ray source and the third grating.
  • the X-ray cone beam is irradiated to the arranged subject.
  • the X-rays emitted from the X-ray source can be continuous X-rays.
  • the third grating can be translated along the plane of the grating and in the direction in which the periodic structure is formed. Further, the X-ray image detector may sequentially measure the intensity of X-rays transmitted through the third grating, which changes as the third grating translates. With this configuration, depending on the subject The X-ray phase shift derivative can be detected.
  • an X-ray source, a first grating, a second grating, a third grating, and an X-ray image detector are used. Furthermore, the subject is arranged at any position between the X-ray source and the third lattice.
  • the first grating is a phase type diffraction grating or an amplitude type diffraction grating.
  • the second grating is an amplitude type diffraction grating.
  • the period of the line in the second grating is substantially the same as the period of the periodic intensity pattern formed by the X-rays diffracted by the first grating.
  • the third lattice is an amplitude lattice.
  • the period of the lines in the third lattice is substantially the same as the period of the periodic intensity pattern formed by the X-rays that are diffracted by the second lattice.
  • the X-ray imaging method according to the present invention comprises the following steps:
  • the second grating is arranged at a position where a periodic intensity pattern is formed by the first grating with respect to a quasi-monochromatic X-ray having a spectrum centered on a desired energy contained in the continuous X-ray. Step, but this step may be before step (1);
  • the second grating diffracts the quasi-monochromatic X-ray diffracted by the first grating and forms a periodic intensity pattern by the quasi-monochromatic X-ray diffracted by the second grating;
  • the X-ray imaging apparatus and the X-ray imaging method of the present invention even when the X-rays from the radiation source are continuous X-rays by using the first to third gratings. It can function as an X-ray Talbot interferometer.
  • the first and second gratings generate X-rays (quasi-monochromatic X-rays) that are much wider than the monochromatic X-rays and have an energy bandwidth from the continuous X-rays, and image these images. Available to: For this reason, the energy of continuous X-rays with a wide band can be used effectively.
  • X-ray imaging devices can be put to practical use and applications can be expanded.
  • the X-ray imaging apparatus of the present embodiment includes an X-ray source 1, a first grating 3, a second grating 4, a third grating 5, and an X-ray image detector 6 (see FIG. 1). ).
  • This device is for observing the internal structure of the subject 2.
  • the subject 2 is, for example, a biological sample, a polymer material, an organic substance such as a human body, or an object including an inorganic substance such as a semiconductor device.
  • the X-ray source 1 is configured to irradiate an X-ray cone beam toward the first grating 2.
  • the cone beam is a spherical wave radiated from a point light source (hereinafter referred to as a “pseudo point light source” t ⁇ ⁇ ) having an aperture necessary for the operation of the X-ray Talbot interferometer.
  • a point light source hereinafter referred to as a “pseudo point light source” t ⁇ ⁇
  • the theoretical condition of the aperture diameter in the pseudo point light source will be described later using mathematical formulas.
  • the X-ray Talplo interferometer operates even if the X-ray emission area is linear. In that case, the conditional force on the line width exists in the same way as in the case of the opening diameter (described later). Further, such linear X-ray radiation site forces may be arranged at substantially equal intervals and substantially parallel to each other.
  • the X-ray emission site is large! You can use a conventional X-ray source and an X-ray mask that transmits only the part of the above shape.
  • the X-ray beam obtained in this way is also widely called a cone beam.
  • the first grating 3 is a phase type diffraction grating.
  • the first grating 3 is provided with a plurality of lines 31 for exerting a diffraction effect (see FIG. 2).
  • the period of line 31 is shown in FIG.
  • the first grating 3 diffracts continuous X-rays emitted from the X-ray source 1. Downstream of the first grating 3 is a periodic intensity pattern (i.e. a so-called ⁇ self-image '' (Sometimes called “self-image”). However, the position depends on the wavelength of the X-ray.
  • the line 31 is made of a material or a structure that gives a phase difference to the X-ray when the first grating 3 is a phase type.
  • the first grating 3 may be an amplitude type. In this case, the line 31 is a material that absorbs X-rays and has a structure.
  • the second grating 4 is an amplitude type diffraction grating.
  • the second grating 4 is provided with a plurality of lines 41 for exhibiting a diffractive action (see FIG. 2).
  • the period of line 41 is shown in FIG.
  • the second grating 4 When looking at quasi-monochromatic X-rays with the desired center wavelength, the second grating 4
  • the period d of the second lattice 4 is the first case
  • the period of the self-image formed by two children 3 is substantially the same. If the part where the intensity of the self-image is large coincides with the gap between the lines 41 of the second grating 4, the quasi-monochromatic X-ray having the above-noted center wavelength, which is most efficient, passes through the second grating. it can. At the same time, for X-rays with other wavelengths, since the self-images are formed in different places, the rate of passing through the second grating 4 is relatively small. Thus, the second grating 4 functions as an energy filter. At the same time, the second grating 4 is configured such that a self-image can be formed by the quasi-monochromatic X-ray diffracted from the second grating 4. Also, by adjusting the position or period d of the second grating 4, the wavelength of X-rays passing through the second grating can be adjusted to some extent.
  • the third grating 5 is an amplitude type grating.
  • the third grid 5 is provided with a plurality of lines 51 for exhibiting an absorption filter action (see FIG. 2).
  • the cycle of line 51 is indicated by d in FIG.
  • the third lattice 5 is almost the same as the position where the self-image of the second lattice 4 is formed.
  • the third grating 5 can be regarded as a spatial filter that partially transmits the self-image by the second grating 4. Period d in third lattice 5 (see Fig. 2)
  • substantially the same period means that the period is approximated to the extent that moire fringes can be formed by the self-image of the second diffraction grating 4 and the third diffraction grating 5. Also, even if both periods are completely equal, moire fringes occur if they are slightly deviated from the parallel arrangement.
  • the subject 2 and its internal structure can be detected as a moire fringe deformation approximately proportional to the angle at which the X-ray is bent by refraction by the subject 2.
  • the period of self-image by the second lattice 4 and the period d of the third lattice 5 are If they are completely equal and both are completely parallel, the detected shade will be proportional to the cosine of an amount proportional to the angle of the X-ray bent by refraction.
  • the subject 2 may be placed between the X-ray source 1 and the first grating 3 or between the first grating 3 and the second grating 4. However, in this case, since the energy filter function of the first grid 3 and the second grid 4 may be affected, the subject 2 is located between the second grid 4 and the third grid 5. desirable.
  • the set of the first lattice 3 and the second lattice 4 functions as an energy filter based on the Talbot effect (that is, a filter that also generates a quasi-monochromatic X-ray with continuous X-ray force).
  • the combination of 4 and the third grating 5 becomes a Talbot interferometer using the above quasi-monochromatic X-rays! That is, the second grating 4 is configured to contribute to both the energy filter and the Talbot interferometer.
  • the X-ray image detector 6 is configured to form a self-image with the second grating 4 and detect X-rays transmitted through the third grating 5. Since the X-ray image detector 6 itself may be the same as that conventionally used, detailed description thereof is omitted.
  • the X-ray imaging apparatus of this embodiment uses the principle of the Talbot interferometer. Therefore, the principle of the Talbot interferometer will be described below.
  • the X-ray Talbot interferometer is an interferometer using the X-ray Talbot effect.
  • the Talbot effect is as follows: ⁇ If an object with a periodic structure such as a grating is irradiated with light with high spatial coherence, it will be measured at a position where the grating force is separated by a certain distance determined by the wavelength of the light and the period of the grating. This is a phenomenon where the same intensity pattern (ie, “self-image”) as the intensity transmittance of the grating appears in the light transmitted through the grating. The position z from the lattice where the narrow self-image appears is that the lattice is of amplitude type.
  • a self-contrast image is inverted, which is also called a self-image in a broad sense. If the lattice is phase type, a periodic intensity pattern appears when m is a fraction (fractional Talbot effect). This is also called a self-image in a broad sense.
  • the term “self image” includes not only a narrow sense but also a broad sense. Note that the self-image does not appear only at the position given by Equation 1. Equation 1 gives the position where the contrast of the self-image periodic pattern is maximized. Therefore, if it is in the vicinity of the position given by Equation 1, the self-image is observed.
  • Figure 3 shows an example.
  • the spatial coherence required for the X-ray source will be mentioned.
  • a be the size (opening diameter) of the X-ray source (X-ray generating part).
  • R has the same meaning as described above.
  • the X-ray source should be small or far away from the X-ray source.
  • the X-ray generation part may be linear with a width a.
  • a plurality of such linear X-ray generators are arranged at almost equal intervals and almost in parallel.
  • the center wavelength is 0.05 nm and then there is a 5% wavelength change
  • the position of the self-image formed by the X-rays with the specified wavelength is not so different from that of the X-rays with the central wavelength. It can be said that the X-ray Talbot interferometer functions not only for monochromatic X-rays but also for quasi-monochromatic X-rays having a relatively wide energy width.
  • an X-ray Talbot interferometer and a crystal spectrometer will unnecessarily reduce the X-ray dose available for imaging. Then, except when using an X-ray source with very high parallelism and brightness, such as a synchrotron radiation source, the X-ray intensity is insufficient, and a practical apparatus configuration cannot be performed. In addition, since the synchrotron radiation source is a huge facility, there are too many obstacles to make it a practical machine, such as cost and installation space.
  • the apparatus of this embodiment performs spectroscopy suitable for an X-ray Talbot interferometer based on the same principle as that of an X-ray Talbot interferometer.
  • the Talpau interferometer described in Patent Document 1 uses two gratings.
  • three lattices are used.
  • the side force of the X-ray source 1 also has a spectroscopic function in the Talbot interferometer consisting of the first grating 3 and the second grating 4, and the second grating 4 and the third grating 5 as another Talbot interferometer. Going about it, it performs the original contrast generation function described above.
  • X-ray source 1 emits a continuous spectrum of X-rays in the shape of a cone beam.
  • the phase type first grating 3 is located at a distance R from the X-ray source 1 and the period of the grating is d. This first lattice 3
  • FIG. 3 shows the result of calculating the state of self-image generation at this time.
  • the second grating 4 amplitude diffraction grating
  • the pattern in Figure 3 changes as the X-ray wavelength changes. In other words, behind the second grating 4, more X-rays in a specific wavelength region that cause a remarkable intensity concentration at the position of the gap of the line 41 pass.
  • the distance between the first lattice 3 and the second lattice 4 is z
  • the distance between the second lattice 4 and the third lattice 5 is
  • the heart wavelength The heart wavelength.
  • a configuration example in which the first grating 3 and the second grating 4 selectively transmit X-rays having a central wavelength of 0.05 nm is as follows.
  • X-ray source Microfocus X-ray source
  • Target Tungsten, focal size: 5 ⁇
  • First grating period: d 4.31 / zm, gold line width: d / 4, gold line height: 4.9 / zm (determined to be a ⁇ -type phase diffraction grating for X-rays with a center wavelength of 0.05 nm) )
  • Second lattice Consists of a gold pattern on a silicon wafer
  • the second grating 4 can also function as the X-ray source side diffraction grating of the Talbot interferometer, and if the third grating 5 is arranged at a position where the self-image of the second grating 4 is generated. The moire fringes can be observed by the detector 6.
  • the position of the subject 2 is not particularly limited as long as it is between the X-ray source 1 and the third grating 5.
  • the position of the subject 2 is between the second grating 4 and the third grating 5.
  • the wavelength selection performance required for the Talbot interferometer is not very sharp, it is possible to place an object closer to the X-ray source than the second grating 4.
  • the subject 2 is placed between the X-ray source 1 and the first grating 3, there is a practical advantage that the work of placing the subject becomes easy.
  • the sensitivity is almost proportional to the distance between the subject 2 and the third grid 5.
  • the aperture ratio (line width Z period) of the second lattice 4 is preferably 1Z2 or more. This is because when the aperture ratio is less than 1Z2, other wavelength components increase in the transmitted X-ray and the wavelength selectivity deteriorates. For example, in the example of Fig. 3, the wavelength selectivity is improved by setting the aperture ratio to 4Z5.
  • the first and second gratings 3 and 4 generate X-rays (quasi-monochromatic X-rays) that are far wider than monochromatic X-rays and have an energy bandwidth from continuous X-rays. This can be used for imaging. For this reason, effective use of continuous X-ray energy with a wide bandwidth Can do.
  • the X-ray imaging device can be put into practical use and expanded in use.
  • the second grating 4 in the present embodiment has both the energy filter effect by the first and second gratings 3 and 4 and the Talbot interference effect by the second and third gratings 4 and 5. Since this also serves as a function, the entire apparatus can be reduced in size.
  • the third lattice is translatable along the direction in which the periodic structure of the lattice is formed on the surface of the lattice (vertical direction in FIG. 2), an X-ray It is possible to image the distribution of the angle at which the object is bent by refraction. This image corresponds to the differentiation of the X-ray phase shift by the subject. If this measurement is performed on a subject in a plurality of projection directions, acquisition of a slice image and further a three-dimensional image can be realized based on the principle of tomography.
  • Procedure 1 is based on the X-ray image detected by the X-ray image detector 6 (hereinafter referred to as the “moire fringe image”) and the “distribution image of the angle at which the X-ray is bent by the refraction effect of the subject 2” (hereinafter “ This is referred to as “phase shift differential image”.
  • Step 2 is to acquire an image representing the phase shift itself (hereinafter referred to as “phase shift image”) by integrating the phase shift differential image.
  • Step 3 is to reconstruct a solid image by tomography using phase shift images obtained in multiple projection directions.
  • a fringe scanning method is used.
  • the third lattice 5 is translated relative to the self-image of the second lattice 4.
  • the translation direction is a direction substantially along the grating surface and the periodic direction of the grating. Therefore, when tomography is performed by the apparatus of this embodiment, it is preferable that the apparatus of this embodiment further includes a moving mechanism that moves the third lattice 5.
  • the moire fringe moves as the lattice moves, and the moire fringe image is restored when the translation distance reaches one period of the lattice.
  • the fringe scanning method records the change of moire fringes in multiple images while translating the grating by an integer of one period, and obtains a phase-shift differential image ⁇ (x, y) by processing them. It is. (X, y) is a coordinate indicating the position of the pixel. Above average Moire fringe image I (x, y)
  • a (x, y) represents the contribution of contrast generated regardless of the subject due to lattice distortion, manufacturing error, and placement error. d of the third lattice 5 to translate
  • the period, z is the distance between the second lattice 4 and the third lattice 5.
  • Equation 7 if the term k> N is small enough to be ignored, choose M so that M> N + 1.
  • arc tangent calculation is performed in the extraction of the declination of Equation 8. Since the range of the arc tangent is - ⁇ to ⁇ , when the refraction by the subject is somewhat large (in the case of a moire image, when the amount of deformation of the moire fringes exceeds the interval of the moire fringes), In adjacent pixels, a jump from - ⁇ to ⁇ (or ⁇ force is also - ⁇ ) may appear. In this case, 2 ⁇ is added (or subtracted) to one of the adjacent pixels to remove the jump (called unwrapping) for the entire image.
  • FIG. 5 shows a phase shift fine image acquired by computer simulation under the conditions of the above-described embodiment.
  • Figure 6 shows the configuration of the phantom used at this time. This is a model of a phantom that is used for accuracy control of general breast cancer diagnostic equipment. It is.
  • This phantom consists of a homogeneous base material (matrix) in which an object (structure) with the composition and shape shown in Fig. 6 (b) is mixed.
  • the schematic shape of the tissue is shown in Fig. 6 (a).
  • Each organization in Fig. 6 (a) is numbered corresponding to the explanation in Fig. 6 (b).
  • Equation 9 are related.
  • X is the direction in which the diffraction grating is translated by the fringe scanning method.
  • the phase shift image ⁇ ( ⁇ , ⁇ ) is given by integrating ⁇ ( ⁇ , ⁇ ) along the X axis. This is Page 2 of Tagawa.
  • phase-shifted image ⁇ ( ⁇ , ⁇ ) has a refractive index distribution of the subject as n (x, y, z)
  • Equation 10 z (Equation 1 0).
  • the z axis is the direction in which the X-ray travels.
  • Tomography is a technique for reconstructing a 3D image of a subject from two or more projection images that can be acquired from multiple projection directions. Since the phase shift image ⁇ ( ⁇ , ⁇ ) corresponds to the projected image of ln (x, y, z), if a phase shift distribution image is obtained from multiple projection directions, a solid that represents n ( X , y, z) The image is reconstructed (step 3). Note that step 2 can be incorporated into step 3. In this case, it is realized by devising the filter function used in the tomograph reproduction algorithm.
  • step 3 An image (raw image) directly obtained by the X-ray image detector 4 of the above-described embodiment, a phase shift differentiation. Both image ⁇ (x, y) and phase shift image ⁇ ( ⁇ , ⁇ ) are fully utilized depending on the purpose of imaging. It can be done.
  • each of the embodiments described above may be integrated with other elements as devices or parts as long as they exist as functional elements, and may be integrated by a plurality of parts.
  • One element has been realized!
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an X-ray imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the apparatus shown in FIG.
  • FIG. 3 is an explanatory diagram showing an intensity distribution and an arrangement position of the second grating when an X-ray having a wavelength of 0.05 passes through the first grating.
  • FIG. 4 is a graph showing the spectral transmittance of X-rays transmitted through the first grating and the second grating of the present embodiment.
  • the vertical axis represents the transmittance at each wavelength (the X-ray intensity before transmission is 1).
  • the horizontal axis is the wavelength (unit: nm).
  • FIG. 5 is a diagram showing a phase shift differential image obtained by simulation based on the apparatus of the present embodiment.
  • FIG. 6 is an explanatory diagram showing a phantom configuration assumed in the simulation of FIG. 5.
  • FIG. 7 is a simulation of an X-ray absorption image for the phantom of FIG.

Abstract

An X—ray image picking-up device and its method are provided to use a continuous X-ray for picking up an image with a high sensitivity based on X-ray phase information. An object (2) is set in a space existing from an X-ray source (1) to a third grid (5) (e.g., a space defined between a second grid (4) and the third grid (5)). A continuous X-ray beam is irradiated from the X-ray source (1) to the first grid (3). The second grid (4) diffracts an X-ray diffracted by the first grid (3). The first and second grids (3) and (4) selectively make an X-ray with a specific band wavelength penetrate. Further, an X-ray diffracted by the second grid (4) forms its own image. The image is observed through the third grid (5). In consequence, based on the principle of Talbot interferometer, a contrast of the object is generated. An X-ray diffracted by the third grid (5) is detected by an X-ray image detector (6). With this, such a structure of the object that an absorbed contrast does not depict can be observed.

Description

明 細 書  Specification
X線撮像装置及び X線撮像方法  X-ray imaging apparatus and X-ray imaging method
技術分野  Technical field
[0001] 本発明は、 X線の位相を利用して被写体の内部構造を高感度で観察するための、 X線撮像装置及び X線撮像方法に関するものである。  The present invention relates to an X-ray imaging apparatus and an X-ray imaging method for observing the internal structure of a subject with high sensitivity using the phase of X-rays.
背景技術  Background art
[0002] X線は透過力が高いゆえに、物体内部を透視するためのプローブとして、医用画像 診断、非破壊検査、セキュリティチェックなどにおいて、広く利用されている。 X線透 視画像のコントラストは、 X線減衰率の違いによっており、 X線を強く吸収する部分は X線の影として描出される。 X線吸収能は、原子番号が大きい元素を多く含むほど強 V、。逆に原子番号が小さ!/、元素のみ力 成る物質にっ ヽてはコントラストがっきにく いことも指摘でき、これが X線透視画像の原理的欠点でもある。したがって、生体軟 部組織やソフトマテリアルなどに対しては、 X線透視画像では、十分な感度を得ること ができない。  [0002] Since X-rays have high penetrating power, they are widely used in medical image diagnosis, nondestructive inspection, security check, and the like as probes for seeing through the inside of an object. The contrast of the X-ray fluoroscopic image depends on the difference in the X-ray attenuation rate, and the portion that strongly absorbs X-rays is rendered as X-ray shadows. X-ray absorption capacity is stronger as more elements with higher atomic numbers are included. On the other hand, it can be pointed out that contrast is difficult for substances whose atomic numbers are small! /, Which is made up of only elements, and this is also a fundamental drawback of fluoroscopic images. Therefore, sufficient sensitivity cannot be obtained with X-ray fluoroscopic images for biological soft tissues or soft materials.
[0003] 一方、 X線の位相情報を利用すれば、一般的な従来の X線透視画像に比べて 3桁 以上の高感度化が実現することが知られている。 X線をあまり吸収しない軽元素から なる物質 (生体軟組織や有機材料など)の観察に適用できることから、その実用が期 待される。この X線位相情報を利用した高感度撮像法の研究は、 1990年代前半から 興った分野である力 通常は高度な X線源が必要となるために、現実的にはその実 用は進んでいない。すなわち、これまでの研究の主流においては、単色平面波の X 線を使う X線光学系を使用しており、これは、極めて高い輝度の X線源の使用を前提 としている。このような X線源として実際上利用できるものとしては、巨大なシンクロトロ ン放射光施設の他には考えがたい。このことは、 X線の位相情報を用いた撮像法の 実用を検討する場合に、大きな障害になっている。  [0003] On the other hand, it is known that using X-ray phase information can achieve a sensitivity higher by 3 digits or more than a general conventional X-ray fluoroscopic image. Since it can be applied to observation of substances consisting of light elements that do not absorb X-rays very much (biological soft tissues, organic materials, etc.), its practical use is expected. Research on high-sensitivity imaging using this X-ray phase information is a field that has emerged since the first half of the 1990s. Usually, advanced X-ray sources are required. Not in. In other words, the mainstream of research so far uses an X-ray optical system that uses monochromatic plane wave X-rays, which is premised on the use of extremely high-intensity X-ray sources. In addition to the huge synchrotron radiation facility, it is difficult to imagine what can actually be used as such an X-ray source. This is a major obstacle when considering the practical use of imaging methods using X-ray phase information.
[0004] 一般的な X線源は金属ターゲットに電子線やレーザーを照射して X線を取り出すタ イブのものである。このような X線源を用いた場合、そのスペクトルに含まれる X線に は、 X線の発生原理に応じて、制動放射による「連続 X線」と電子軌道遷移による「特 性 X線」とが存在する。特性 X線は、スペクトルとして単色である力 連続 X線は、連続 的なスペクトル、すなわち様々な波長(光子エネルギー)を含む。単色 X線が必要な 場合は、スペクトルにおける特性 X線の部分を利用することが考えられる。特性 X線の 波長は、金属ターゲットの種類 (すなわち元素の種類)によって決まる。しかしながら、 例えば医療応用では、数十 keVの X線が必要となるのに対し、それに適した、特に 30 〜50keVの範囲で特性 X線を発生する元素のターゲットはあまり開発されていない。 また、任意のエネルギーの単色 X線を連続 X線力 選び出して使用することは原理的 に可能であるが、その場合は十分な強度を確保することができない。ただし、連続 X 線から単色 X線よりもはるかに広いエネルギー幅を持つスペクトル部分を取り出して 使えれば、強度の問題は大幅に軽減される。 [0004] A general X-ray source is a type that extracts X-rays by irradiating a metal target with an electron beam or a laser. When such an X-ray source is used, the X-rays included in the spectrum include “continuous X-rays” due to bremsstrahlung and “special characteristics due to electron orbit transitions” depending on the X-ray generation principle. Sex X-ray "exists. Characteristic X-rays are monochromatic as a spectrum. Continuous X-rays contain a continuous spectrum, ie, various wavelengths (photon energies). If monochromatic X-rays are required, the characteristic X-ray part of the spectrum can be used. The wavelength of the characteristic X-ray depends on the type of metal target (ie the type of element). However, for example, in medical applications, X-rays of several tens of keV are required, but targets for elements that generate characteristic X-rays, particularly in the range of 30 to 50 keV, have not been developed so much. In addition, although it is possible in principle to select and use monochromatic X-rays of arbitrary energy with continuous X-ray force, sufficient strength cannot be ensured in that case. However, the intensity problem can be greatly reduced if a spectral part with a much wider energy width than continuous X-rays can be extracted and used.
[0005] また、上で述べた一般的 X線源は、放射状に X線を放出する。すなわち、コーンビ ームとなっている。これから平行ビーム (平面波)を取り出して利用することは原理的に 可能であるが、やはり十分な強度を確保することができない。  [0005] The general X-ray source described above emits X-rays radially. In other words, it is a corn beam. Although it is possible in principle to extract and use a parallel beam (plane wave), sufficient strength cannot be ensured.
[0006] このように、単色平面波を要求する手法を上記の一般的 X線源と組み合わせても、 X線の利用効率が極めて悪くなり、実質的な撮像時間内での撮像は難しぐ広いバ ンド幅を持つコーンビーム X線で機能する位相利用撮像法が望まれる。これが実現 すれば、シンクロトロン放射光以外のコンパクト X線源を用いた装置化が期待される。  [0006] As described above, even when a method that requires a monochromatic plane wave is combined with the above-described general X-ray source, the X-ray utilization efficiency is extremely deteriorated, and imaging within a substantial imaging time is difficult. A phase-based imaging method that works with cone-beam X-rays with a window width is desired. If this is realized, an apparatus using a compact X-ray source other than synchrotron radiation is expected.
[0007] 本発明の発明者は、既に、 2枚の回折格子を使う X線タルボ干渉計による X線位相 撮像法を提案している(下記特許文献 1)。この方式は、コーンビームで機能するので 、この点においてコンパクト X線源との組み合わせが可能である。また、特許文献 1に 記載の技術では、連続 X線をそのまま使うことは難しいが、中心エネルギー Eおよび エネルギー幅 Δ Eとして、特性 X線の一般的エネルギー幅 Δ EZE〜10— 3よりは格段 に広 、スペクトルの準単色 X線 ( Δ E/E< 1Z8程度のスペクトル幅を持つ X線を!ヽ う)で機能する。すなわち、連続 X線力も上記の準単色 X線を取り出すことができれば 、比較的効率よく連続 X線源を利用する X線タルボ干渉計が実現でき、すなわち、コ ンパクト X線源との融合が大いに期待できると考えられる。 [0007] The inventor of the present invention has already proposed an X-ray phase imaging method using an X-ray Talbot interferometer that uses two diffraction gratings (Patent Document 1 below). Since this method works with cone beams, it can be combined with a compact X-ray source in this respect. Further, in the technique described in Patent Document 1, it is difficult to use the continuous X-rays as it is, around the energy E and the energy width delta E, remarkably than typical energy spread Δ EZE~10- 3 characteristic X-ray Wide, it functions with spectral quasi-monochromatic X-rays (X-rays with a spectral width of about Δ E / E <1Z8!). That is, if continuous X-ray force can also extract the quasi-monochromatic X-ray described above, an X-ray Talbot interferometer that uses a continuous X-ray source can be realized relatively efficiently, that is, fusion with a compact X-ray source is greatly achieved. It can be expected.
特許文献 1: WO2004/058070号公報  Patent Document 1: WO2004 / 058070
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0008] 本発明は、前記した事情に鑑みてなされたものである。本発明は、連続 X線を用い た場合でも、 X線の位相情報を利用して、高感度な X線撮像が可能になる装置及び 方法を提供することを目的として!/ヽる。  The present invention has been made in view of the above circumstances. An object of the present invention is to provide an apparatus and method that enables X-ray imaging with high sensitivity using phase information of X-rays even when continuous X-rays are used.
課題を解決するための手段  Means for solving the problem
[0009] 本発明に係る X線撮像装置は、 X線源と、第一格子と、第二格子と、第三格子と、 X 線画像検出器とを備えている。前記 X線源は、前記第一格子に向けて X線のコーン ビームを照射する構成となっている。前記第一格子は、位相型回折格子あるいは振 幅型回折格子となっている。前記第二格子は、振幅型回折格子となっている。前記 第二格子は、前記第一格子で回折された前記 X線を回折する構成となっている。前 記第二格子におけるラインの周期は、前記第一格子で回折された前記 X線によって 形成される周期的強度パターンの周期と実質的に同じとされている。さらに、前記第 二格子は、この第二格子を回折した X線によって周期的強度パターンを形成できる 構成となっている。前記第三格子は、振幅型格子となっている。前記第三格子は、前 記第二格子で回折された前記 X線によって形成される周期的強度パターンが形成さ れる位置とほぼ同じ位置に配置されている。前記第三格子におけるラインの周期は、 前記第二格子によって形成される前記周期的強度パターンの周期とほぼ同じとされ ている。前記 X線画像検出器は、前記第二格子によって形成される前記周期的強度 ノターンのな力から前記第三格子を透過する X線を検出する構成となっている。  The X-ray imaging apparatus according to the present invention includes an X-ray source, a first grating, a second grating, a third grating, and an X-ray image detector. The X-ray source is configured to irradiate an X-ray cone beam toward the first grating. The first grating is a phase type diffraction grating or an amplitude type diffraction grating. The second grating is an amplitude type diffraction grating. The second grating is configured to diffract the X-ray diffracted by the first grating. The period of the lines in the second grating is substantially the same as the period of the periodic intensity pattern formed by the X-rays diffracted by the first grating. Furthermore, the second grating has a configuration in which a periodic intensity pattern can be formed by X-rays diffracted from the second grating. The third grating is an amplitude type grating. The third grating is disposed at substantially the same position as the position where the periodic intensity pattern formed by the X-rays diffracted by the second grating is formed. The period of the lines in the third grating is substantially the same as the period of the periodic intensity pattern formed by the second grating. The X-ray image detector is configured to detect X-rays that pass through the third grating from the force of the periodic intensity pattern formed by the second grating.
[0010] この装置にぉ ヽては、 X線撮像の対象となる被写体が、前記 X線源と前記第三格子 の間におけるいずれかの位置に配置される。配置された被写体に対して、前記 X線 のコーンビームが照射される。 In this apparatus, a subject to be subjected to X-ray imaging is arranged at any position between the X-ray source and the third grating. The X-ray cone beam is irradiated to the arranged subject.
[0011] 本発明に係る X線撮像装置においては、前記 X線源カゝら照射される前記 X線を、連 続 X線とすることができる。  [0011] In the X-ray imaging apparatus according to the present invention, the X-rays emitted from the X-ray source can be continuous X-rays.
[0012] 本発明に係る X線撮像装置では、前記第三格子を、格子の面に沿って且つ周期構 造が形成される方向に沿って並進可能とすることができる。また、前記 X線画像検出 器を、前記第三格子が並進することによって変化する、前記第三格子を透過した X線 の強度を順次計測するものとすることができる。この構成により、被写体によってもた らされる X線位相シフトの微分を検出することができる。 In the X-ray imaging apparatus according to the present invention, the third grating can be translated along the plane of the grating and in the direction in which the periodic structure is formed. Further, the X-ray image detector may sequentially measure the intensity of X-rays transmitted through the third grating, which changes as the third grating translates. With this configuration, depending on the subject The X-ray phase shift derivative can be detected.
[0013] 本発明に係る X線撮像方法においては、 X線源と、第一格子と、第二格子と、第三 格子と、 X線画像検出器とを用いる。さらに、被写体を、前記 X線源と前記第三格子と の間のいずれかの位置に配置する。前記第一格子は、位相型回折格子あるいは振 幅型回折格子となっている。前記第二格子は、振幅型回折格子となっている。前記 第二格子におけるラインの周期は、前記第一格子で回折される X線によって形成さ れる周期的強度パターンの周期と実質的に同じとされている。前記第三格子は、振 幅型格子となっている。前記第三格子におけるラインの周期は、前記第二格子で回 折される前記 X線によって形成される周期的強度パターンの周期とほぼ同じとされて いる。 In the X-ray imaging method according to the present invention, an X-ray source, a first grating, a second grating, a third grating, and an X-ray image detector are used. Furthermore, the subject is arranged at any position between the X-ray source and the third lattice. The first grating is a phase type diffraction grating or an amplitude type diffraction grating. The second grating is an amplitude type diffraction grating. The period of the line in the second grating is substantially the same as the period of the periodic intensity pattern formed by the X-rays diffracted by the first grating. The third lattice is an amplitude lattice. The period of the lines in the third lattice is substantially the same as the period of the periodic intensity pattern formed by the X-rays that are diffracted by the second lattice.
[0014] さらに、本発明に係る X線撮像方法は、以下のステップを備える:  [0014] Furthermore, the X-ray imaging method according to the present invention comprises the following steps:
(1)前記第一格子に向けて、連続 X線を含むコーンビームを照射するステップ; (1) irradiating a cone beam including continuous X-rays toward the first grating;
(2)前記連続 X線に含まれる所望のエネルギーを中心に持つスペクトルの準単色 X 線に対して、前記第一格子によって周期的強度パターンが形成される位置に、前記 第二格子を配置するステップ、ただし、このステップは、前記ステップ(1)の前であつ ても良い; (2) The second grating is arranged at a position where a periodic intensity pattern is formed by the first grating with respect to a quasi-monochromatic X-ray having a spectrum centered on a desired energy contained in the continuous X-ray. Step, but this step may be before step (1);
(3)前記第二格子が、前記第一格子で回折された前記準単色 X線を回折し、この第 二格子を回折した前記準単色 X線によって周期的強度パターンを形成するステップ; (3) the second grating diffracts the quasi-monochromatic X-ray diffracted by the first grating and forms a periodic intensity pattern by the quasi-monochromatic X-ray diffracted by the second grating;
(4)前記第三格子を、前記第二格子の前記周期的強度パターンが形成される位置 に配置するステップ、ただし、このステップは、前記ステップ(1)又は(3)の前であつ ても良い; (4) A step of placing the third grating at a position where the periodic intensity pattern of the second grating is formed, provided that this step is performed even before step (1) or (3). Good;
(5)前期第二格子によって形成される前期周期的強度パターンのなかから、前記第 三格子を透過する X線を検出するステップ。  (5) A step of detecting X-rays transmitted through the third grating from the periodical intensity pattern formed by the second grating.
発明の効果  The invention's effect
[0015] 本発明に係る X線撮像装置及び X線撮像方法によれば、第一〜第三の三枚の格 子を用いることにより、線源からの X線が連続 X線である場合でも、 X線タルボ干渉計 として機能させることができる。  [0015] According to the X-ray imaging apparatus and the X-ray imaging method of the present invention, even when the X-rays from the radiation source are continuous X-rays by using the first to third gratings. It can function as an X-ray Talbot interferometer.
[0016] また、本発明では、連続 X線を用いた場合でも、 X線の位相情報を利用した、高感 度な X線撮像が可能になる。 [0016] In the present invention, even when continuous X-rays are used, high-sensitivity using X-ray phase information is used. X-ray imaging is possible.
[0017] さらに、本発明では、第一及び第二の格子により、連続 X線から、単色 X線より格段 に広 、エネルギーバンド幅の X線 (準単色 X線)を生成し、これを撮像に利用できる。 このため、広い帯域を持つ連続 X線のエネルギーを有効に利用することができる。ま た、使用できる X線源を多様ィ匕できるので、 X線撮像装置の実用化や用途拡大を図 ることがでさる。 [0017] Further, in the present invention, the first and second gratings generate X-rays (quasi-monochromatic X-rays) that are much wider than the monochromatic X-rays and have an energy bandwidth from the continuous X-rays, and image these images. Available to: For this reason, the energy of continuous X-rays with a wide band can be used effectively. In addition, since various X-ray sources can be used, X-ray imaging devices can be put to practical use and applications can be expanded.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] (実施形態の構成)  [0018] (Configuration of Embodiment)
以下、本発明の一実施形態に係る X線撮像装置を、添付の図面を参照して説明す る。本実施形態の X線撮像装置は、 X線源 1と、第一格子 3と、第二格子 4と、第三格 子 5と、 X線画像検出器 6とを備えている(図 1参照)。この装置は、被写体 2の内部構 造を観察するためのものである。被写体 2としては、例えば、生物試料、ポリマー材料 、人体のような有機物、半導体デバイスのような無機物を含む物体である。  Hereinafter, an X-ray imaging apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. The X-ray imaging apparatus of the present embodiment includes an X-ray source 1, a first grating 3, a second grating 4, a third grating 5, and an X-ray image detector 6 (see FIG. 1). ). This device is for observing the internal structure of the subject 2. The subject 2 is, for example, a biological sample, a polymer material, an organic substance such as a human body, or an object including an inorganic substance such as a semiconductor device.
[0019] X線源 1は、第一格子 2に向けて X線のコーンビームを照射する構成となっている。  The X-ray source 1 is configured to irradiate an X-ray cone beam toward the first grating 2.
ここで、 X線としては、連続 X線が用いられる。また、コーンビームは、 X線タルボ干渉 計の動作に必要な開口径を持つ点光源 (以下これを「疑似点光源」 t ヽぅ)から放射 される球面波とする。疑似点光源における開口径の理論的な条件については、後に おいて、数式を用いて説明する。なお、 X線を放射する領域が線状であっても X線タ ルポ干渉計は動作する。その場合は、線幅に対する条件力 上記開口径の場合と同 様に存在する(後述)。さらに、そのような線状の X線放射部位力 ほぼ等間隔にかつ 互いにほぼ平行に並んだものであってもよい。実効的に、そのような X線源を得るた めに、 X線放射部位が大き!、従来の X線源と上記の形状の部分のみを透過させる X 線マスクとを用いてもょ 、。このようにして得られる X線ビームも広くコーンビームと呼  Here, continuous X-rays are used as X-rays. The cone beam is a spherical wave radiated from a point light source (hereinafter referred to as a “pseudo point light source” t ヽ ぅ) having an aperture necessary for the operation of the X-ray Talbot interferometer. The theoretical condition of the aperture diameter in the pseudo point light source will be described later using mathematical formulas. Note that the X-ray Talplo interferometer operates even if the X-ray emission area is linear. In that case, the conditional force on the line width exists in the same way as in the case of the opening diameter (described later). Further, such linear X-ray radiation site forces may be arranged at substantially equal intervals and substantially parallel to each other. To obtain such an X-ray source effectively, the X-ray emission site is large! You can use a conventional X-ray source and an X-ray mask that transmits only the part of the above shape. The X-ray beam obtained in this way is also widely called a cone beam.
[0020] 第一格子 3は、位相型回折格子となっている。第一格子 3は、回折作用を発揮する ための複数のライン 31を備えている(図 2参照)。ライン 31の周期を、図 2において符 号 dで示す。第一格子 3は、 X線源 1から放射された連続 X線を回折するものである。 第一格子 3の下流には周期的強度パターン (すなわち、いわゆる「自己像」であり、以 下において「自己像」と呼ぶことがある)が現れる。ただし、その位置は X線の波長に よって異なる。ライン 31は、第一格子 3が位相型である場合、 X線に位相差を与える 材料ないし構成となっている。また、第一格子 3は振幅型でもよい。この場合、ライン 3 1は、 X線を吸収する材料な 、し構成となって 、る。 [0020] The first grating 3 is a phase type diffraction grating. The first grating 3 is provided with a plurality of lines 31 for exerting a diffraction effect (see FIG. 2). The period of line 31 is shown in FIG. The first grating 3 diffracts continuous X-rays emitted from the X-ray source 1. Downstream of the first grating 3 is a periodic intensity pattern (i.e. a so-called `` self-image '' (Sometimes called “self-image”). However, the position depends on the wavelength of the X-ray. The line 31 is made of a material or a structure that gives a phase difference to the X-ray when the first grating 3 is a phase type. The first grating 3 may be an amplitude type. In this case, the line 31 is a material that absorbs X-rays and has a structure.
[0021] 第二格子 4は、振幅型回折格子となっている。第二格子 4は、回折作用を発揮する ための複数のライン 41を備えている(図 2参照)。ライン 41の周期を、図 2において符 号 dで示す。第二格子 4は、所望の中心波長を持つ準単色 X線に注目したとき、そ[0021] The second grating 4 is an amplitude type diffraction grating. The second grating 4 is provided with a plurality of lines 41 for exhibiting a diffractive action (see FIG. 2). The period of line 41 is shown in FIG. When looking at quasi-monochromatic X-rays with the desired center wavelength, the second grating 4
2 2
の中心波長の自己像が形成される位置に配置する。第二格子 4の周期 dは、第一格  Are arranged at positions where self-images of the center wavelength are formed. The period d of the second lattice 4 is the first case
2 子 3によって形成される自己像の周期と実質的に同じとされている。第二格子 4のライ ン 41の隙間に前記自己像の強度が大きい部分が一致するように配置すれば、最も 効率よぐ上記の注目した中心波長を持つ準単色 X線が第二格子を通過できる。同 時に、その他の波長を持つ X線については、異なる場所に自己像が形成されている ので、第二格子 4を通過する割合が比較的小さい。このように、第二格子 4はェネル ギーフィルタ一として機能する。同時に、第二格子 4は、この第二格子 4を回折した上 記準単色 X線によって自己像を形成できる構成となっている。また、第二格子 4の位 置又は周期 dを調整することで、第二格子を通過する X線の波長をある程度調整す  The period of the self-image formed by two children 3 is substantially the same. If the part where the intensity of the self-image is large coincides with the gap between the lines 41 of the second grating 4, the quasi-monochromatic X-ray having the above-noted center wavelength, which is most efficient, passes through the second grating. it can. At the same time, for X-rays with other wavelengths, since the self-images are formed in different places, the rate of passing through the second grating 4 is relatively small. Thus, the second grating 4 functions as an energy filter. At the same time, the second grating 4 is configured such that a self-image can be formed by the quasi-monochromatic X-ray diffracted from the second grating 4. Also, by adjusting the position or period d of the second grating 4, the wavelength of X-rays passing through the second grating can be adjusted to some extent.
2  2
ることが可能である。  Is possible.
[0022] 第三格子 5は、振幅型格子となっている。第三格子 5は、吸収フィルタ作用を発揮 するための複数のライン 51を備えている(図 2参照)。ライン 51の周期を、図 2におい て符号 dで示す。第三格子 5は、第二格子 4の自己像が形成される位置とほぼ同じ [0022] The third grating 5 is an amplitude type grating. The third grid 5 is provided with a plurality of lines 51 for exhibiting an absorption filter action (see FIG. 2). The cycle of line 51 is indicated by d in FIG. The third lattice 5 is almost the same as the position where the self-image of the second lattice 4 is formed.
3 Three
位置に配置されている。第三格子 5は、第二格子 4による自己像を部分的に透過させ る空間フィルターであると捉えることができる。第三格子 5における周期 d (図 2参照)  Placed in position. The third grating 5 can be regarded as a spatial filter that partially transmits the self-image by the second grating 4. Period d in third lattice 5 (see Fig. 2)
3  Three
は、第二格子 4の自己像とほぼ同じ周期とされている。ここで、ほぼ同じ周期とは、第 二回折格子 4の自己像と第三回折格子 5とによりモアレ縞を形成できる程度に周期が 近似していることをいう。また、両方の周期が完全に等しくても、両者が平行配置から 僅かにずれている場合にはモアレ縞が生ずる。被写体 2およびその内部構造は、被 写体 2による屈折によって X線が曲げられた角度にほぼ比例したモアレ縞の変形とし て検知することができる。第二格子 4による自己像の周期と第三格子 5の周期 dとが 完全に等しぐかつ、両者が完全に平行であれば、検出される濃淡は、屈折によって 曲げられる X線の角度に比例した量の余弦に比例したものになる。 Is almost the same period as the self-image of the second lattice 4. Here, substantially the same period means that the period is approximated to the extent that moire fringes can be formed by the self-image of the second diffraction grating 4 and the third diffraction grating 5. Also, even if both periods are completely equal, moire fringes occur if they are slightly deviated from the parallel arrangement. The subject 2 and its internal structure can be detected as a moire fringe deformation approximately proportional to the angle at which the X-ray is bent by refraction by the subject 2. The period of self-image by the second lattice 4 and the period d of the third lattice 5 are If they are completely equal and both are completely parallel, the detected shade will be proportional to the cosine of an amount proportional to the angle of the X-ray bent by refraction.
[0023] なお、被写体 2を、 X線源 1と第一格子 3、または、第一格子 3と第二格子 4の間に配 置してもよい。ただし、この場合は第一格子 3と第二格子 4の組によるエネルギーフィ ルター機能に影響を及ぼす可能性があるので、被写体 2は第二格子 4と第三格子 5 の間に位置するのが望ましい。  Note that the subject 2 may be placed between the X-ray source 1 and the first grating 3 or between the first grating 3 and the second grating 4. However, in this case, since the energy filter function of the first grid 3 and the second grid 4 may be affected, the subject 2 is located between the second grid 4 and the third grid 5. desirable.
[0024] 以上説明したように、第一格子 3と第二格子 4の組はタルボ効果に基づくエネルギ 一フィルター(すなわち連続 X線力も準単色 X線を生成するフィルター)として機能し、 第二格子 4と第三格子 5の組は、上記の準単色 X線を用いたタルボ干渉計となって!/ヽ る。すなわち、第二格子 4はエネルギーフィルターとタルボ干渉計の両方に寄与する 構成となっている。  [0024] As explained above, the set of the first lattice 3 and the second lattice 4 functions as an energy filter based on the Talbot effect (that is, a filter that also generates a quasi-monochromatic X-ray with continuous X-ray force). The combination of 4 and the third grating 5 becomes a Talbot interferometer using the above quasi-monochromatic X-rays! That is, the second grating 4 is configured to contribute to both the energy filter and the Talbot interferometer.
[0025] X線画像検出器 6は、第二格子 4による自己像を形成し、かつ、第三格子 5を透過し た X線を検出する構成となっている。 X線画像検出器 6自体は、従来から使われてい るものと同様でよいので、詳しい説明を省略する。  The X-ray image detector 6 is configured to form a self-image with the second grating 4 and detect X-rays transmitted through the third grating 5. Since the X-ray image detector 6 itself may be the same as that conventionally used, detailed description thereof is omitted.
[0026] (X線タルボ干渉計の原理)  [0026] (Principle of X-ray Talbot interferometer)
本実施形態の X線撮像装置は、タルボ干渉計の原理を利用している。そこで、以下 、タルボ干渉計の原理を説明する。  The X-ray imaging apparatus of this embodiment uses the principle of the Talbot interferometer. Therefore, the principle of the Talbot interferometer will be described below.
[0027] X線タルボ干渉計は、 X線タルボ効果を利用した干渉計である。タルボ効果とは、「 格子などの周期的構造を持つ物体が、空間的干渉性が高い光に照射されたとすると 、光の波長と格子の周期で決まるある距離だけ格子力 離れた位置において、その 格子を透過した光に、格子の強度透過率と同じ強度パターン (すなわち「自己像」)が 現れる現象」である。狭義の自己像が現れる格子からの位置 zは、格子が振幅型のと  [0027] The X-ray Talbot interferometer is an interferometer using the X-ray Talbot effect. The Talbot effect is as follows: `` If an object with a periodic structure such as a grating is irradiated with light with high spatial coherence, it will be measured at a position where the grating force is separated by a certain distance determined by the wavelength of the light and the period of the grating. This is a phenomenon where the same intensity pattern (ie, “self-image”) as the intensity transmittance of the grating appears in the light transmitted through the grating. The position z from the lattice where the narrow self-image appears is that the lattice is of amplitude type.
T  T
さ、  Well,
[数 1] md2R [Equation 1] md 2 R
=— ~~ (数式 1 )  = — ~~ (Formula 1)
Λ.Κ - ma としたときの mが偶数の場合である。なお、 d、 λおよび Rはそれぞれ、格子の周期、 X 線の波長および X線源力も格子までの距離である。平面波 X線では、 R→無限大 This is the case where m is an even number when Λ.Κ-ma. D, λ, and R are the period of the lattice, X The wavelength of the line and the X-ray source force are also the distance to the grating. For plane wave X-rays, R → infinity
と考えればよい。また、 mが奇数の場合では、自己像のコントラストが反転したものが 得られ、これも広義で自己像と呼ぶ。格子が位相型であれば、 mが分数のときに周期 的な強度パターンが現れる(分数タルボ効果)。これもまた、広義では自己像と呼ぶ。 本実施形態において単に自己像というときは、狭義のみならず広義の自己像を含む こととする。なお、自己像は、数式 1で与えられる位置のみで表れるのではない。数式 1は自己像の周期パターンのコントラストが極大となる位置を与える。したがって、数 式 1で与えられる位置の近傍であれば、自己像は観察される。図 3にはその例が示さ れている。  I think that. When m is an odd number, a self-contrast image is inverted, which is also called a self-image in a broad sense. If the lattice is phase type, a periodic intensity pattern appears when m is a fraction (fractional Talbot effect). This is also called a self-image in a broad sense. In the present embodiment, the term “self image” includes not only a narrow sense but also a broad sense. Note that the self-image does not appear only at the position given by Equation 1. Equation 1 gives the position where the contrast of the self-image periodic pattern is maximized. Therefore, if it is in the vicinity of the position given by Equation 1, the self-image is observed. Figure 3 shows an example.
[0028] ここで X線源に求められる空間的干渉性にっ ヽて言及する。まず、 X線源 (X線発 生部)のサイズ(開口径)を aとする。このとき、空間的干渉性は a/Rに比例し、自己像 が形成されるためにはある程度の干渉性が必要となる。ここで Rは前記と同じ意味で ある。高い干渉性を得るためには、 X線源を小さくあるいは X線源カゝら遠く離れるとよ い。回折格子の周期 dとの関係として  [0028] Here, the spatial coherence required for the X-ray source will be mentioned. First, let a be the size (opening diameter) of the X-ray source (X-ray generating part). At this time, spatial coherence is proportional to a / R, and some degree of coherence is required to form a self-image. Here, R has the same meaning as described above. In order to obtain high coherence, the X-ray source should be small or far away from the X-ray source. As a relation with the period d of the diffraction grating
[数 2] a < ~ (数式 2 )  [Equation 2] a <~ (Formula 2)
a を満たしていることが望ましい。なお、この条件は格子の周期の方向(図 3において図 中の上下方向)に関するものであり、それに垂直な方向(図 3において紙面に垂直な 方向)に適用する必要はない。したがって、 X線発生部は幅 aの線状としてもよい。さら に、そのような複数の線状 X線発生部をほぼ等間隔にかつほぼ平行に並べたもので ちょい。  It is desirable to satisfy a. This condition relates to the direction of the grating period (up and down in the figure in FIG. 3), and need not be applied in the direction perpendicular to it (the direction perpendicular to the paper in FIG. 3). Therefore, the X-ray generation part may be linear with a width a. In addition, a plurality of such linear X-ray generators are arranged at almost equal intervals and almost in parallel.
[0029] さて、 X線がある物体に照射されたとき、仮に物体による X線の吸収が微弱であった としても、十分な大きさの位相シフトがあると考えられる。別の言葉で表現すれば、物 体によって X線が屈折される。位相シフトがあると、本来整然と形成されるべき上記自 己像が歪む。この歪みを観察すれば、物体による位相シフトに関する情報を得ること ができる。ただし、 X線回折格子の周期は、 X線の可干渉距離よりも小さいことが望ま しぐ典型的には数ミクロンオーダーである。自己像はそれに依存した周期的強度分 布を持つので、これを解像するには、特別に高い分解能の X線検出器が必要となる 。 X線タルボ干渉計では、この煩わしさを避けるために、別の格子を自己像に重ねる ように置く。この別の格子は、その周期が自己像の平均周期にほぼ等しい振幅型とし ておく。このとき、自己像と、別の格子との周期パターンとの重ねあわせによりモアレ 縞が発生し、自己像の歪みはモアレ縞の曲がりとして可視化される。モアレ縞の間隔 は、一般的に自己像の周期よりも大幅に広ぐ X線画像検出器に要求される空間分 解能の条件は大幅に軽減される。 [0029] Now, when an X-ray is irradiated to an object, it is considered that there is a sufficient phase shift even if the X-ray absorption by the object is weak. In other words, X-rays are refracted by an object. If there is a phase shift, the self-image that should be formed in an orderly manner is distorted. If you observe this distortion, you can get information about the phase shift caused by the object. Can do. However, it is desirable that the period of the X-ray diffraction grating is smaller than the coherence distance of the X-ray, and it is typically on the order of several microns. Since self-images have a periodic intensity distribution that depends on them, a specially high resolution X-ray detector is required to resolve them. In the X-ray Talbot interferometer, in order to avoid this annoyance, another grating is placed on the self-image. This other grating is of the amplitude type whose period is almost equal to the average period of the self-image. At this time, moire fringes are generated by superimposing the self-image and the periodic pattern of another grating, and the distortion of the self-image is visualized as the bending of the moire fringes. Moire fringe spacing is generally much wider than the self-image period. The spatial resolution requirements for X-ray image detectors are greatly reduced.
[0030] この X線タルボ干渉計の構成は、数式 1にお 、て波長 λを用いて記述されて!、る。  [0030] The configuration of this X-ray Talbot interferometer is described in Equation 1 using the wavelength λ!
ただし、ある程度のエネルギー幅 (すなわち、波長幅)を持つ場合でも同じ構成で機 能することが指摘できる。中心波長をえとして、 λ 士 Δ λの波長幅を考えると、自己  However, it can be pointed out that even if it has a certain energy width (ie, wavelength width), it functions in the same configuration. Given the center wavelength, and considering the wavelength width of λ
0 0  0 0
像が形成される位置が ζ 士 Δ ζの範囲で変化する。ここで Δ ζは数式 1に基づき、  The position where the image is formed changes in the range of ζ and Δ ζ. Where Δζ is based on Equation 1,
Τ Τ Τ  Τ Τ Τ
[数 3] (数式 3 ) [Equation 3] (Formula 3)
Figure imgf000011_0001
で与えられる。例えば、中心波長を 0.05nmとして、それから 5%の波長変化がある場合 、 R = lm、 d=5 μ mおよび m=l/2のケースにおいて計算すると、自己像が形成される 位置の変化 Δ ζは約 2cmとなる(ζはおよそ 33cm)。すなわち、中心波長から多少離
Figure imgf000011_0001
Given in. For example, if the center wavelength is 0.05 nm and then there is a 5% wavelength change, the change in the position where the self-image is formed when calculating in the case of R = lm, d = 5 μm and m = l / 2 Δ ζ is about 2cm (ζ is about 33cm). In other words, it is slightly away from the center wavelength.
T T  T T
れた波長を持つ X線が形成する自己像の位置は、中心波長の X線が形成するそれと 、それほど大きく異ならないことが言える。 X線タルボ干渉計は、単色 X線のみならず 、比較的広 、エネルギー幅を持つ準単色 X線に対しても機能すると言える。  It can be said that the position of the self-image formed by the X-rays with the specified wavelength is not so different from that of the X-rays with the central wavelength. It can be said that the X-ray Talbot interferometer functions not only for monochromatic X-rays but also for quasi-monochromatic X-rays having a relatively wide energy width.
[0031] し力しながら、既に述べたように、連続スペクトルを持つ X線源とタルボ干渉計とを 組み合わせて使用するとき、何らかの分光手段の後、 X線をタルボ干渉計に導かな ければならない。一般的に X線分光は、結晶を用いて行われる。その性能は極めて 高いが、その反面、 X線の単色度が 10— 4程度、平行度が 10— 4〜― 5radになるので、効率 が極めて悪い。しかし、 X線タルボ干渉計は回折格子で構成されているゆえに、その ような高い単色性と平行性は必要としない。すなわち、 X線タルボ干渉計と結晶分光 器の組み合わせでは、撮像に利用できる X線量を必要以上に減らすことになつてしま う。すると、シンクロトロン放射光源のような、平行性と輝度が非常に高い X線源を使う 場合以外では、 X線強度不足に陥ってしまい、実用的な装置構成が行えない。また、 シンクロトロン放射光源は巨大施設であるので、これを実用機とするには、コスト面や 設置スペースの問題など、障害はあまりにも大きい。 [0031] However, as described above, when using an X-ray source having a continuous spectrum in combination with a Talbot interferometer, the X-ray must be guided to the Talbot interferometer after some spectroscopic means. Don't be. In general, X-ray spectroscopy is performed using crystals. Its performance is very high, on the other hand, monochrome degree 10 4 about an X-ray, since parallelism is 10-4 ~ - 5 rad, efficiency is very poor. However, since the X-ray Talbot interferometer is composed of a diffraction grating, Such high monochromaticity and parallelism are not required. In other words, the combination of an X-ray Talbot interferometer and a crystal spectrometer will unnecessarily reduce the X-ray dose available for imaging. Then, except when using an X-ray source with very high parallelism and brightness, such as a synchrotron radiation source, the X-ray intensity is insufficient, and a practical apparatus configuration cannot be performed. In addition, since the synchrotron radiation source is a huge facility, there are too many obstacles to make it a practical machine, such as cost and installation space.
[0032] (本実施形態に係る X線撮像装置の作用)  (Operation of X-ray imaging apparatus according to this embodiment)
本実施形態の装置は、 X線タルボ干渉計に適した分光を、 X線タルボ干渉計と同様 な原理に基づいて行うというものである。上で述べたように、特許文献 1に記載したタ ルポ干渉計では、 2枚の格子を用いている。これに対して、本実施形態では、 3枚の 格子を用いる。 X線源 1の側力も第一格子 3と第二格子 4との組からなるタルボ干渉 計には分光機能を持たせ、第二格子 4と第三格子 5の組を別のタルボ干渉計として 考えて、上で述べた本来のコントラスト生成機能を果たさせる。  The apparatus of this embodiment performs spectroscopy suitable for an X-ray Talbot interferometer based on the same principle as that of an X-ray Talbot interferometer. As described above, the Talpau interferometer described in Patent Document 1 uses two gratings. On the other hand, in this embodiment, three lattices are used. The side force of the X-ray source 1 also has a spectroscopic function in the Talbot interferometer consisting of the first grating 3 and the second grating 4, and the second grating 4 and the third grating 5 as another Talbot interferometer. Thinking about it, it performs the original contrast generation function described above.
[0033] 以下、格子 3枚構成による本実施形態の作用を、図 2を用いて詳しく述べる。 X線源 1は連続スペクトルの X線をコーンビーム状に発しているとする。位相型の第一格子 3 は、 X線源 1から距離 Rの位置にあり、格子の周期は dであるとする。この第一格子 3  Hereinafter, the operation of the present embodiment having the three-grid configuration will be described in detail with reference to FIG. Assume that X-ray source 1 emits a continuous spectrum of X-rays in the shape of a cone beam. The phase type first grating 3 is located at a distance R from the X-ray source 1 and the period of the grating is d. This first lattice 3
1  1
におけるライン 31は、例えば位相差 πを与えるものとする。  For example, the line 31 in FIG.
[0034] このとき、自己像の発生の様子を計算した結果を図 3に示す。第一格子 3 ( π型位 相回折格子)の位置 (m = 0)から後方での X線強度を白黒の濃淡で表している。 m = 0.75の位置に注目すると、 X線が局所的に強くなつていることがわかる。ここに、第二 格子 4 (振幅回折格子)を、 X線が強いところのみがライン 41の隙間を通過できるよう に配置する。ここで、 X線の波長が変われば、図 3のパターンが変化することに注意し よう。すなわち、第二格子 4の背後には、ライン 41の隙間の位置で顕著な強度集中を もたらす特定の波長領域の X線がより多く通過することになる。  [0034] FIG. 3 shows the result of calculating the state of self-image generation at this time. The intensity of X-rays from the position of the first grating 3 (π-type phase diffraction grating) (m = 0) to the rear is expressed in black and white. If we focus on the position of m = 0.75, we can see that X-rays are locally strong. Here, the second grating 4 (amplitude diffraction grating) is arranged so that only the portion where the X-ray is strong can pass through the gap of the line 41. Note that the pattern in Figure 3 changes as the X-ray wavelength changes. In other words, behind the second grating 4, more X-rays in a specific wavelength region that cause a remarkable intensity concentration at the position of the gap of the line 41 pass.
[0035] ここで、第一格子 3と第二格子 4との距離を z 、第二格子 4と第三格子 5との距離を  [0035] Here, the distance between the first lattice 3 and the second lattice 4 is z, and the distance between the second lattice 4 and the third lattice 5 is
12  12
Z とすると、以下の条件を満たす必要がある。下記式においてえ はスペクトルの中 If Z, the following conditions must be satisfied. In the following equation,
23 0 23 0
心波長である。  The heart wavelength.
[数 4]
Figure imgf000013_0001
[Equation 4]
Figure imgf000013_0001
[数 5] 一 m'd^(R +∑u) [Equation 5] One m'd ^ (R + ∑ u )
¾ + ½)— 'も2 (数式5) ¾ + ½ ) — ' 2 (Equation 5 )
[数 6] [Equation 6]
R:di =(R + zn) d2 =(R + z +z23):d3 (数式 6) R: d i = (R + z n ) d 2 = (R + z + z 23 ): d 3 (Formula 6)
[0036] 具体的に、第一格子 3と第二格子 4とで、中心波長 0.05nmの X線を選択的に透 過させる場合の構成例は以下のようになる。 Specifically, a configuration example in which the first grating 3 and the second grating 4 selectively transmit X-rays having a central wavelength of 0.05 nm is as follows.
X線源:マイクロフォーカス X線源  X-ray source: Microfocus X-ray source
ターゲット:タングステン、焦点サイズ: 5 μτη  Target: Tungsten, focal size: 5 μτη
X線源から第一格子までの距離: R= 1.5 m  Distance from X-ray source to first grating: R = 1.5 m
第一格子:シリコンウェハ上の金パターンにより構成  First lattice: Consists of a gold pattern on a silicon wafer
第一格子の周期: d = 4.31 /zm、金ライン幅: d/4、金ライン高さ: 4.9 /zm (中心波長 0 .05nmの X線に対して π型位相回折格子になるように決定)  First grating period: d = 4.31 / zm, gold line width: d / 4, gold line height: 4.9 / zm (determined to be a π-type phase diffraction grating for X-rays with a center wavelength of 0.05 nm) )
第一格子力 第二格子までの距離: z = 0.34 m  First grid force Distance to second grid: z = 0.34 m
12  12
第二格子:シリコンウェハ上の金パターンにより構成  Second lattice: Consists of a gold pattern on a silicon wafer
第二格子の周期: d = 5.30 μ m、金ライン幅: d X 0.8、金ライン高さ: 60 μ m (ほぼ振  Second grating period: d = 5.30 μm, gold line width: d X 0.8, gold line height: 60 μm
2 2  twenty two
幅回折格子とみなせるように決定)  Determined to be regarded as a width diffraction grating)
第二格子から第三格子までの距離: Z = 0.81 m Distance from second grid to third grid: Z = 0.81 m
23  twenty three
第三格子:シリコンウェハ上の金パターンにより構成  Third lattice: Consists of a gold pattern on a silicon wafer
第三格子の周期: d = 7.62 μ m、金ライン幅: d 11、金ライン高さ: 60 m (ほぼ振幅格  Period of third grating: d = 7.62 μm, gold line width: d 11, gold line height: 60 m (almost amplitude case)
3 3  3 3
子とみなせるように決定)  Decided to be considered a child)
[0037] この構成例での、第一格子 3及び第二格子 4の組を透過した X線のスペクトルを計 算した結果を、図 4に示す。この例では、スペクトルの半値幅を、中心波長の約 1/4に することができている。ここでは、完全に均一なスペクトルの入射を前提に計算したが 、実際には適当なフィルターを用いることによる低エネルギー成分のカットや、フィル ターの吸収端や X線源の高エネルギーのカットオフを併用すれば、実効的にさらに 狭 、スペクトル幅を実現することができる。 [0037] In this configuration example, an X-ray spectrum transmitted through the set of the first grating 3 and the second grating 4 is measured. Figure 4 shows the result. In this example, the half width of the spectrum can be reduced to about 1/4 of the center wavelength. Here, the calculation was made on the assumption that the incidence of a completely uniform spectrum was used. However, in practice, low-energy components were cut by using an appropriate filter, and the absorption edge of the filter and the high-energy cutoff of the X-ray source were When used together, the spectrum width can be effectively narrowed.
[0038] 同時に、第二格子 4は、タルボ干渉計の X線源側回折格子の働きを兼ねさせること ができ、第二格子 4の自己像が発生する位置に第三格子 5を配置すれば、検出器 6 によってモアレ縞を観察することができる。  [0038] At the same time, the second grating 4 can also function as the X-ray source side diffraction grating of the Talbot interferometer, and if the third grating 5 is arranged at a position where the self-image of the second grating 4 is generated. The moire fringes can be observed by the detector 6.
[0039] 本実施形態にぉ 、ては、被写体 2の位置は、 X線源 1から第三格子 5の間であれば 、特に限定されない。ただし、第二格子 4より X線源側に被写体 2を置くと、波長選択 性能が若干劣化すると考えられるので、被写体 2の位置を第二格子 4と第三格子 5の 間とすることが望ましい。しかし、タルボ干渉計に求められる波長選択性能はあまりシ ヤープではないので、第二格子 4より X線源側に被写体を置くことは可能である。特に 、 X線源 1と第一格子 3との間に被写体 2を置くようにすれば、被写体を配置する作業 が容易となるという実際上の利点がある。なお、感度は、被写体 2と第三格子 5までの 距離にほぼ比例する。  In the present embodiment, the position of the subject 2 is not particularly limited as long as it is between the X-ray source 1 and the third grating 5. However, if the subject 2 is placed closer to the X-ray source than the second grating 4, it is considered that the wavelength selection performance is slightly deteriorated. Therefore, it is desirable that the position of the subject 2 is between the second grating 4 and the third grating 5. . However, since the wavelength selection performance required for the Talbot interferometer is not very sharp, it is possible to place an object closer to the X-ray source than the second grating 4. In particular, if the subject 2 is placed between the X-ray source 1 and the first grating 3, there is a practical advantage that the work of placing the subject becomes easy. The sensitivity is almost proportional to the distance between the subject 2 and the third grid 5.
[0040] 第二格子 4の開口比(ラインの線幅 Z周期)は 1Z2以上であることが好ましい。開 口比が 1Z2を下回ると、透過する X線に他の波長成分が増え、波長選択性が劣化 するためである。例えば、図 3の例では、開口比を 4Z5とすることで、波長選択性を 高めている。  [0040] The aperture ratio (line width Z period) of the second lattice 4 is preferably 1Z2 or more. This is because when the aperture ratio is less than 1Z2, other wavelength components increase in the transmitted X-ray and the wavelength selectivity deteriorates. For example, in the example of Fig. 3, the wavelength selectivity is improved by setting the aperture ratio to 4Z5.
[0041] 本実施形態に係る X線撮像装置及び X線撮像方法によれば、第一〜第三の三枚 の格子を用いることにより、線源力 の X線が連続 X線である場合でも、前記したとお り、 X線タルボ干渉計として機能させることができると!/、う利点がある。  [0041] According to the X-ray imaging apparatus and the X-ray imaging method according to the present embodiment, even when the X-ray of the source power is a continuous X-ray by using the first to third gratings. As described above, there is an advantage that it can function as an X-ray Talbot interferometer!
[0042] また、本実施形態によれば、 X線源 1として、連続 X線を用いた場合でも、 X線の位 相情報を利用した、高感度な X線撮像が可能になる。  In addition, according to the present embodiment, even when continuous X-rays are used as the X-ray source 1, high-sensitivity X-ray imaging using X-ray phase information is possible.
[0043] さらに、本実施形態では、第一及び第二の格子 3及び 4により、連続 X線から、単色 X線より格段に広 、エネルギーバンド幅の X線 (準単色 X線)を生成し、これを撮像に 利用できる。このため、広い帯域を持つ連続 X線のエネルギーを有効に利用すること ができる。また、使用できる X線源を多様ィ匕できるので、 X線撮像装置の実用化や用 途拡大を図ることができる。 Furthermore, in the present embodiment, the first and second gratings 3 and 4 generate X-rays (quasi-monochromatic X-rays) that are far wider than monochromatic X-rays and have an energy bandwidth from continuous X-rays. This can be used for imaging. For this reason, effective use of continuous X-ray energy with a wide bandwidth Can do. In addition, since various X-ray sources can be used, the X-ray imaging device can be put into practical use and expanded in use.
[0044] しかも本実施形態における第二の格子 4は、第一及び第二の格子 3及び 4によるェ ネルギフィルタ効果と、第二及び第三の格子 4及び 5によるタルボ干渉効果との両方 の機能を兼ねて 、るので、装置全体を小型化することが可能となる。  In addition, the second grating 4 in the present embodiment has both the energy filter effect by the first and second gratings 3 and 4 and the Talbot interference effect by the second and third gratings 4 and 5. Since this also serves as a function, the entire apparatus can be reduced in size.
[0045] (トモグラフィの実施例)  [0045] (Example of tomography)
なお、前記した本実施形態の構成において、第三格子を、格子の面に且つ格子の 周期構造が形成されている方向(図 2において図中上下方向)に沿って並進可能と すると、 X線が被写体における屈折によって曲げられる角度の分布を画像ィ匕すること ができる。この画像は、被写体による X線の位相シフトの微分に対応している。被写 体に対して、複数の投影方向でこの測定を行えば、トモグラフィの原理に基づき、断 層像さらには三次元画像の取得を実現することができる。  In the configuration of the present embodiment described above, if the third lattice is translatable along the direction in which the periodic structure of the lattice is formed on the surface of the lattice (vertical direction in FIG. 2), an X-ray It is possible to image the distribution of the angle at which the object is bent by refraction. This image corresponds to the differentiation of the X-ray phase shift by the subject. If this measurement is performed on a subject in a plurality of projection directions, acquisition of a slice image and further a three-dimensional image can be realized based on the principle of tomography.
[0046] 本実施形態の装置を用いたトモグラフィでは、つぎの三つの手順が必要となる。手 順 1は、 X線画像検出器 6により検出された X線画像 (以下「モアレ縞画像」という)か ら、「被写体 2による屈折効果によって X線が曲げられる角度の分布像」(以下「位相 シフト微分像」という)への変換である。手順 2は、位相シフト微分像を積分することに より、位相のずれそのものを表す像 (以下「位相シフト像」という)を取得することである 。手順 3は、複数の投影方向で得られる位相シフト像を用いて、トモグラフィにより立 体像を再構成することである。  In tomography using the apparatus of the present embodiment, the following three procedures are required. Procedure 1 is based on the X-ray image detected by the X-ray image detector 6 (hereinafter referred to as the “moire fringe image”) and the “distribution image of the angle at which the X-ray is bent by the refraction effect of the subject 2” (hereinafter “ This is referred to as “phase shift differential image”. Step 2 is to acquire an image representing the phase shift itself (hereinafter referred to as “phase shift image”) by integrating the phase shift differential image. Step 3 is to reconstruct a solid image by tomography using phase shift images obtained in multiple projection directions.
[0047] 手順 1には、縞走査法を用いる。この方法では、第三格子 5を、第二格子 4による自 己像に対して相対的に並進移動させる。並進方向は、格子表面および格子の周期 方向にほぼ沿う方向である。したがって、本実施形態の装置によりトモグラフィを行う 場合は、第三格子 5を移動させる移動機構を本実施形態の装置にさらに備えること が好ましい。  [0047] For the procedure 1, a fringe scanning method is used. In this method, the third lattice 5 is translated relative to the self-image of the second lattice 4. The translation direction is a direction substantially along the grating surface and the periodic direction of the grating. Therefore, when tomography is performed by the apparatus of this embodiment, it is preferable that the apparatus of this embodiment further includes a moving mechanism that moves the third lattice 5.
[0048] 格子の並進移動に伴って、モアレ縞は移動し、並進距離が格子の 1周期に達する と、モアレ縞画像は元に戻る。縞走査法は、格子を 1周期の整数分の 1ずつ並進させ ながらモアレ縞の変化を複数の画像に記録し、それらを演算処理することにより位相 シフト微分像 φ (x,y)を得るものである。(x,y)は画素の位置を示す座標である。上記並 進移動量を ξとして、モアレ縞画像 I(x,y)は一般的 [0048] The moire fringe moves as the lattice moves, and the moire fringe image is restored when the translation distance reaches one period of the lattice. The fringe scanning method records the change of moire fringes in multiple images while translating the grating by an integer of one period, and obtains a phase-shift differential image φ (x, y) by processing them. It is. (X, y) is a coordinate indicating the position of the pixel. Above average Moire fringe image I (x, y)
[数 7] 二 + γ) + ζ22φ{χ, γ) + ξ} [Equation 7] 2 + γ) + ζ 22 φ {χ, γ) + ξ}
(数式 7 )
Figure imgf000016_0001
で与えられる。ここで A (k = 0, 1, ···)は、格子のラインの断面形状により決まる定数 k
(Formula 7)
Figure imgf000016_0001
Given in. Where A (k = 0, 1, ...) is a constant k determined by the cross-sectional shape of the lattice lines.
である。 A (x,y)は、格子の歪、製作誤差、および配置誤差によって被写体とは関係な く発生するコントラストの寄与を表すものである。 dは、並進移動させる第三格子 5の  It is. A (x, y) represents the contribution of contrast generated regardless of the subject due to lattice distortion, manufacturing error, and placement error. d of the third lattice 5 to translate
3  Three
周期、 z は、第二格子 4と第三格子 5の間隔である。今、 をステップ d /M (M:整数) The period, z, is the distance between the second lattice 4 and the third lattice 5. Now, step d / M (M: integer)
23 3 23 3
で変化させながら M枚のモアレ縞画像を取得するとする。数式 7において k > Nの項 が十分小さく無視できるとすれば、 M > N+1を満たすように Mを選べば  Suppose you want to acquire M moiré fringe images while changing with. In Equation 7, if the term k> N is small enough to be ignored, choose M so that M> N + 1.
[数 8]  [Equation 8]
(数式 8 )
Figure imgf000016_0002
が満たされる。 arg口は偏角の抽出を意味する。 I (x,y)は、 = pd/Mとしたときの数式
(Formula 8)
Figure imgf000016_0002
Is satisfied. The arg port means extraction of declination. I (x, y) is the formula when = pd / M
P  P
7の値である。 dおよび z は既知であり、 A (x,y)は被写体が無いとき(すなわち φ (χ,Υ) A value of 7. d and z are known, A (x, y) when there is no object (i.e. φ (χ, Υ)
23  twenty three
= 0)に同様の測定を行って予め求めることができる。したがって、以上より φ (x,y)を得 ることがでさる。  = 0) can be obtained in advance by performing the same measurement. Therefore, φ (x, y) can be obtained from the above.
[0049] ただし、数式 8の偏角の抽出では逆正接の演算を行う。逆正接の値域は- πから π となるので、被写体による屈折がある程度大きいとき(モアレ画像においては、モアレ 縞の変形量がモアレ縞の間隔を超えるとき)、数式 8で計算される画像には、隣り合う 画素において、- πから π (あるいは π力も- π )のジャンプが現れる場合がある。この 場合は、隣り合う画素の一方に 2 πを加算(あるいは減算)して、画像全体としてジャ ンプを除去する処理 (アンラップと呼ばれる)を施す。  However, arc tangent calculation is performed in the extraction of the declination of Equation 8. Since the range of the arc tangent is -π to π, when the refraction by the subject is somewhat large (in the case of a moire image, when the amount of deformation of the moire fringes exceeds the interval of the moire fringes), In adjacent pixels, a jump from -π to π (or π force is also -π) may appear. In this case, 2 π is added (or subtracted) to one of the adjacent pixels to remove the jump (called unwrapping) for the entire image.
[0050] 前記した実施形態の条件下で、計算機シミュレーションにより取得した位相シフト微 分像を図 5に示す。このとき用いたファントムの構成を図 6に示す。これは一般的な乳 がん診断用装置の精度管理を目的に使用されているファントムをモデルィ匕したもの である。このファントムは、均質な基材 (マトリクス)の中に、図 6 (b)に示す組成及び形 状の物体 (組織)が混在しているものである。組織の概略的な形状を図 6 (a)に示した 。また、図 6 (a)における各組織には、同図(b)における説明に対応する番号を付した FIG. 5 shows a phase shift fine image acquired by computer simulation under the conditions of the above-described embodiment. Figure 6 shows the configuration of the phantom used at this time. This is a model of a phantom that is used for accuracy control of general breast cancer diagnostic equipment. It is. This phantom consists of a homogeneous base material (matrix) in which an object (structure) with the composition and shape shown in Fig. 6 (b) is mixed. The schematic shape of the tissue is shown in Fig. 6 (a). Each organization in Fig. 6 (a) is numbered corresponding to the explanation in Fig. 6 (b).
[0051] 一方、図 5と同じ露光量でシミュレートした X線の吸収像を、比較のため、図 7に示 す。図 5に比べて、 X線の吸収では、明らかに像が不明瞭になることが判る。 [0051] On the other hand, an X-ray absorption image simulated with the same exposure dose as in Fig. 5 is shown in Fig. 7 for comparison. Compared to Fig. 5, it can be seen that X-ray absorption clearly makes the image unclear.
[0052] 位相シフト像 Φ (x,y)と位相シフト微分像 φ (x,y)とは  [0052] What is phase shift image Φ (x, y) and phase shift differential image φ (x, y)?
[数 9]
Figure imgf000017_0001
で関係付けられる。 Xは、上記縞走査法により回折格子を並進移動させる方向にあた る。これより、位相シフト像 Φ(χ,γ)は、 φ (Χ,Υ)を X軸に沿って積分することにより与えら れる。これが手川頁 2である。
[Equation 9]
Figure imgf000017_0001
Are related. X is the direction in which the diffraction grating is translated by the fringe scanning method. Thus, the phase shift image Φ (χ, γ) is given by integrating φ (φ, Υ ) along the X axis. This is Page 2 of Tagawa.
[0053] 位相シフト像 Φ(χ,γ)は、被写体の屈折率分布を n(x,y,z)として [0053] The phase-shifted image Φ (χ, γ) has a refractive index distribution of the subject as n (x, y, z)
[数 10]
Figure imgf000017_0002
z (数式 1 0 ) で与えられる。ここで z軸は、 X線が進む方向である。トモグラフィは、二次元画像であ る投影像を複数の投影方向から取得できる場合に、それらから被写体の三次元像を 再構成する技術である。位相シフト像 Φ(χ,γ)は、 l-n(x,y,z)の投影像にあたるので、 複数の投影方向から位相シフト分布像が得られれば、 n(X,y,z)を示す立体像が再構 成される(手順 3)。なお、手順 2を手順 3に組み込むことも可能である。この場合は、ト モグラフの再生アルゴリズムで使用されるフィルタ関数を工夫することで実現される。
[Equation 10]
Figure imgf000017_0002
z (Equation 1 0). Here, the z axis is the direction in which the X-ray travels. Tomography is a technique for reconstructing a 3D image of a subject from two or more projection images that can be acquired from multiple projection directions. Since the phase shift image Φ (χ, γ) corresponds to the projected image of ln (x, y, z), if a phase shift distribution image is obtained from multiple projection directions, a solid that represents n ( X , y, z) The image is reconstructed (step 3). Note that step 2 can be incorporated into step 3. In this case, it is realized by devising the filter function used in the tomograph reproduction algorithm.
[0054] 上で述べた撮像手法は、手順 3まで進まなくては意味が無いものではなぐ前記し た実施形態の X線画像検出器 4により直接得られた画像 (生画像)、位相シフト微分 像 Φ (x,y)、および位相シフト像 Φ(χ,γ)のいずれも、撮像の目的に応じて十分に利用 できるものである。 [0054] The imaging method described above is not meaningless unless it proceeds to step 3. An image (raw image) directly obtained by the X-ray image detector 4 of the above-described embodiment, a phase shift differentiation. Both image Φ (x, y) and phase shift image Φ (χ, γ) are fully utilized depending on the purpose of imaging. It can be done.
[0055] なお、前記実施形態および実施例の記載は単なる一例に過ぎず、本発明に必須 の構成を示したものではない。各部の構成は、本発明の趣旨を達成できるものであ れば、上記に限らない。  It should be noted that the description of the above-described embodiment and examples is merely an example, and does not indicate a configuration essential to the present invention. The configuration of each part is not limited to the above as long as the gist of the present invention can be achieved.
[0056] たとえば、前記した各実施形態における構成要素は、機能要素として存在していれ ばよぐ装置または部品としては、他の要素と統合されていてもよぐまた、複数の部 品によって一つの要素が実現されて!、てもよ!/、。  [0056] For example, the components in each of the embodiments described above may be integrated with other elements as devices or parts as long as they exist as functional elements, and may be integrated by a plurality of parts. One element has been realized!
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]本発明の一実施形態に係る X線撮像装置の概略的な構成を示す説明図である [図 2]図 1に示す装置の概略的な横断面図である。  FIG. 1 is an explanatory diagram showing a schematic configuration of an X-ray imaging apparatus according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the apparatus shown in FIG.
[図 3]波長 0.05應の X線が第一格子を通過したときの強度分布と第二格子の配置位 置を示す説明図である。  FIG. 3 is an explanatory diagram showing an intensity distribution and an arrangement position of the second grating when an X-ray having a wavelength of 0.05 passes through the first grating.
[図 4]本実施形態の第一格子及び第二格子を透過した X線のスペクトル透過率を示 すグラフであって、縦軸は各波長での透過率 (透過前の X線強度を 1に正規化)、横 軸は波長(単位 nm)である。  FIG. 4 is a graph showing the spectral transmittance of X-rays transmitted through the first grating and the second grating of the present embodiment. The vertical axis represents the transmittance at each wavelength (the X-ray intensity before transmission is 1). The horizontal axis is the wavelength (unit: nm).
[図 5]本実施形態の装置を前提としたシミュレーションで得た位相シフト微分像を示す 図である。  FIG. 5 is a diagram showing a phase shift differential image obtained by simulation based on the apparatus of the present embodiment.
[図 6]図 5のシミュレーションで前提としたファントムの構成を示す説明図である。  6 is an explanatory diagram showing a phantom configuration assumed in the simulation of FIG. 5. FIG.
[図 7]図 6のファントムに対する X線吸収像をシミュレーションした図である。  FIG. 7 is a simulation of an X-ray absorption image for the phantom of FIG.
符号の説明  Explanation of symbols
[0058] 1 X線源 [0058] 1 X-ray source
2 被写体 (物体)  2 Subject (object)
3 第一格子  3 First lattice
d 第一格子のラインにおける周期  d Period at the line of the first lattice
4 第二格子  4 Second lattice
d 第二格子のラインにおける周期  d Period at the line of the second lattice
2  2
5 第三格子 第三格子のラインにおける周期 X線画像検出器 5 Third lattice Periodic X-ray image detector in the third grating line.

Claims

請求の範囲 [1] X線源と、第一格子と、第二格子と、第三格子と、 X線画像検出器とを備えており、 前記 X線源は、前記第一格子に向けて X線のコーンビームを照射する構成となって おり、 前記第一格子は、位相型回折格子あるいは振幅型回折格子となっており、 前記第二格子は、振幅型回折格子となっており、 前記第二格子は、前記第一格子で回折された前記 X線を回折する構成となっており 前記第二格子におけるラインの周期は、前記第一格子で回折された前記 X線によつ て形成される周期的強度パターンの周期と実質的に同じとされており、 さらに、前記第二格子は、この第二格子を回折した X線によって周期的強度パターン を形成できる構成となっており、 前記第三格子は、振幅型格子となっており、 前記第三格子は、前記第二格子で回折された前記 X線によって形成される周期的 強度パターンが形成される位置とほぼ同じ位置に配置されており、 前記第三格子におけるラインの周期は、前記第二格子によって形成される前記周期 的強度パターンの周期とほぼ同じとされており、 前記 X線画像検出器は、前記第二格子によって形成される前記周期的強度パター ンのなかから、前記第三格子を透過する X線を検出する構成となって 、る ことを特徴とする X線撮像装置。 [2] 前記 X線源から照射される前記 X線が連続 X線である、請求項 1に記載の X線撮像 装置。 [3] 前記第三格子が、格子の面に沿って且つ周期構造が形成される方向に沿って並 進可能となっており、前記 X線画像検出器は、前記第三格子が並進することによって 変化する、前記第三格子を透過した X線の強度を順次計測するものとなっている、請 求項 1又は 2に記載の X線撮像装置。 [4] X線源と、第一格子と、第二格子と、第三格子と、 X線画像検出器とを用い、 被写体が前記 X線源と前記第三格子との間のいずれかの位置に配置され、 前記第一格子は、位相型回折格子あるいは振幅型回折格子となっており、 前記第二格子は、振幅型回折格子となっており、 前記第二格子におけるラインの周期は、前記第一格子で回折される X線によって形 成される周期的強度パターンの周期と実質的に同じとされており、 前記第三格子は、振幅型格子となっており、 前記第三格子におけるラインの周期は、前記第二格子で回折される前記 X線によつ て形成される周期的強度パターンの周期とほぼ同じとされており、 さらに、以下のステップを備える X線撮像方法: Claims [1] An X-ray source, a first grating, a second grating, a third grating, and an X-ray image detector are provided, and the X-ray source is directed toward the first grating. It is configured to irradiate an X-ray cone beam, the first grating is a phase type diffraction grating or an amplitude type diffraction grating, and the second grating is an amplitude type diffraction grating, The second grating is configured to diffract the X-ray diffracted by the first grating, and the period of the line in the second grating is formed by the X-ray diffracted by the first grating. The period of the periodic intensity pattern is substantially the same, and the second grating is configured to be able to form a periodic intensity pattern by X-rays diffracting the second grating, The third lattice is an amplitude-type lattice, and the third lattice is the second case. The periodic intensity pattern formed by the X-rays diffracted at is arranged at substantially the same position as the position where the periodic pattern is formed, and the period of the line in the third grating is the period formed by the second grating The X-ray image detector detects X-rays transmitted through the third grating from the periodic intensity patterns formed by the second grating. An X-ray imaging apparatus characterized by the above. [2] The X-ray imaging apparatus according to [1], wherein the X-rays irradiated from the X-ray source are continuous X-rays. [3] The third grating can be translated along the plane of the grating and along the direction in which the periodic structure is formed, and the X-ray image detector has the third grating translated. The X-ray imaging apparatus according to claim 1 or 2, wherein the intensity of X-rays transmitted through the third grating, which changes depending on the measurement, is sequentially measured. [4] Using an X-ray source, a first grating, a second grating, a third grating, and an X-ray image detector, the subject is either between the X-ray source and the third grating. The first grating is a phase type diffraction grating or an amplitude type diffraction grating, the second grating is an amplitude type diffraction grating, and the period of the line in the second grating is: The period of the periodic intensity pattern formed by the X-rays diffracted by the first grating is substantially the same; the third grating is an amplitude-type grating; The period of the line is substantially the same as the period of the periodic intensity pattern formed by the X-ray diffracted by the second grating, and further includes the following steps:
(1)前記第一格子に向けて、連続 X線を含むコーンビームを照射するステップ; (1) irradiating a cone beam including continuous X-rays toward the first grating;
(2)前記連続 X線に含まれる所望のエネルギーを中心に持つスペクトルの準単色 X 線に対して、前記第一格子によって周期的強度パターンが形成される位置に、前記 第二格子を配置するステップ; (2) The second grating is arranged at a position where a periodic intensity pattern is formed by the first grating with respect to a quasi-monochromatic X-ray having a spectrum centered on a desired energy contained in the continuous X-ray. Step;
(3)前記第二格子が、前記第一格子で回折された前記準単色 X線を回折し、この第 二格子を回折した前記準単色 X線によって周期的強度パターンを形成するステップ; (3) the second grating diffracts the quasi-monochromatic X-ray diffracted by the first grating and forms a periodic intensity pattern by the quasi-monochromatic X-ray diffracted by the second grating;
(4)前記第三格子を、前記第二格子の前記周期的強度パターンが形成される位置 に配置するステップ; (4) disposing the third grating at a position where the periodic intensity pattern of the second grating is formed;
(5)前期第二格子によって形成される前期周期的強度パターンのなかから、前記第 三格子を透過する X線を検出するステップ。  (5) A step of detecting X-rays transmitted through the third grating from the periodical intensity pattern formed by the second grating.
PCT/JP2007/058645 2006-04-24 2007-04-20 X-ray image picking-up device and x-ray image picking-up method WO2007125833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006119606 2006-04-24
JP2006-119606 2006-04-24

Publications (1)

Publication Number Publication Date
WO2007125833A1 true WO2007125833A1 (en) 2007-11-08

Family

ID=38655359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058645 WO2007125833A1 (en) 2006-04-24 2007-04-20 X-ray image picking-up device and x-ray image picking-up method

Country Status (1)

Country Link
WO (1) WO2007125833A1 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104560A1 (en) * 2008-02-20 2009-08-27 国立大学法人東京大学 X-ray imaging apparatus and x-ray source used therein
EP2168488A1 (en) * 2008-09-30 2010-03-31 Siemens Aktiengesellschaft X-ray CT system for x-ray phase contrast and/or x-ray dark field imaging
JP2011011039A (en) * 2008-10-24 2011-01-20 Canon Inc X-ray imaging apparatus and x-ray imaging method
EP2311092A2 (en) * 2008-07-25 2011-04-20 Cornell University Light field image sensor, method and applications
WO2011096584A1 (en) * 2010-02-04 2011-08-11 Fujifilm Corporation Radiation imaging system
JP2012016370A (en) * 2010-07-06 2012-01-26 Univ Of Tokyo X-ray imaging apparatus and x-ray imaging method using the same
WO2012057045A1 (en) * 2010-10-25 2012-05-03 富士フイルム株式会社 X-ray imaging device, x-ray imaging system
WO2012057022A1 (en) * 2010-10-27 2012-05-03 富士フイルム株式会社 Radiography system and radiography method
WO2012056992A1 (en) * 2010-10-25 2012-05-03 富士フイルム株式会社 Radiograph detection device, radiography device, radiography system
WO2012070580A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Radiograph detection device, radiography device, and radiography system
WO2012081376A1 (en) * 2010-12-14 2012-06-21 富士フイルム株式会社 Grids for radiography and radiography system
JP2012170645A (en) * 2011-02-22 2012-09-10 Canon Inc X-ray imaging apparatus, and x-ray imaging method
JP2012521793A (en) * 2009-03-27 2012-09-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Achromatic phase contrast imaging
WO2012147671A1 (en) * 2011-04-25 2012-11-01 富士フイルム株式会社 Radiation imaging device and image processing method
CN103068311A (en) * 2010-08-19 2013-04-24 富士胶片株式会社 Radiography system and image-processing method therefor
JP2013181811A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Method for visualizing inclusion in aluminum material
WO2015078690A1 (en) 2013-11-28 2015-06-04 Koninklijke Philips N.V. Talbot effect based nearfield diffraction for spectral filtering
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
CN110049725A (en) * 2016-11-22 2019-07-23 株式会社岛津制作所 X-ray phase imaging device
CN110049727A (en) * 2016-12-06 2019-07-23 皇家飞利浦有限公司 Interferometer grating supporter for the x-ray imaging based on grating and/or the supporter bracket for it
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10466185B2 (en) 2016-12-03 2019-11-05 Sigray, Inc. X-ray interrogation system using multiple x-ray beams
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
WO2020079919A1 (en) * 2018-10-16 2020-04-23 株式会社島津製作所 X-ray phase imaging device
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10653376B2 (en) 2013-10-31 2020-05-19 Sigray, Inc. X-ray imaging system
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOMOSE A.: "Demonstration of X-ray Talbot interferometry", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 42, no. 7B, PART 2, 15 July 2003 (2003-07-15), pages 866 - 868, XP002976586 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104560A1 (en) * 2008-02-20 2009-08-27 国立大学法人東京大学 X-ray imaging apparatus and x-ray source used therein
EP2311092A2 (en) * 2008-07-25 2011-04-20 Cornell University Light field image sensor, method and applications
EP3836215A1 (en) * 2008-07-25 2021-06-16 Cornell University Light field image sensor, method and applications
EP2311092A4 (en) * 2008-07-25 2013-11-20 Univ Cornell Light field image sensor, method and applications
US7983381B2 (en) 2008-09-30 2011-07-19 Siemens Aktiengesellschaft X-ray CT system for x-ray phase contrast and/or x-ray dark field imaging
EP2168488A1 (en) * 2008-09-30 2010-03-31 Siemens Aktiengesellschaft X-ray CT system for x-ray phase contrast and/or x-ray dark field imaging
JP2011011039A (en) * 2008-10-24 2011-01-20 Canon Inc X-ray imaging apparatus and x-ray imaging method
JP2012045400A (en) * 2008-10-24 2012-03-08 Canon Inc X-ray imaging apparatus and x-ray imaging method
JP2012521793A (en) * 2009-03-27 2012-09-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Achromatic phase contrast imaging
WO2011096584A1 (en) * 2010-02-04 2011-08-11 Fujifilm Corporation Radiation imaging system
JP2012085995A (en) * 2010-02-04 2012-05-10 Fujifilm Corp Radiation imaging system
CN102740775A (en) * 2010-02-04 2012-10-17 富士胶片株式会社 Radiation imaging system
JP2012016370A (en) * 2010-07-06 2012-01-26 Univ Of Tokyo X-ray imaging apparatus and x-ray imaging method using the same
CN103068311A (en) * 2010-08-19 2013-04-24 富士胶片株式会社 Radiography system and image-processing method therefor
WO2012057045A1 (en) * 2010-10-25 2012-05-03 富士フイルム株式会社 X-ray imaging device, x-ray imaging system
WO2012056992A1 (en) * 2010-10-25 2012-05-03 富士フイルム株式会社 Radiograph detection device, radiography device, radiography system
WO2012057022A1 (en) * 2010-10-27 2012-05-03 富士フイルム株式会社 Radiography system and radiography method
WO2012070580A1 (en) * 2010-11-22 2012-05-31 富士フイルム株式会社 Radiograph detection device, radiography device, and radiography system
WO2012081376A1 (en) * 2010-12-14 2012-06-21 富士フイルム株式会社 Grids for radiography and radiography system
JP2012170645A (en) * 2011-02-22 2012-09-10 Canon Inc X-ray imaging apparatus, and x-ray imaging method
WO2012147671A1 (en) * 2011-04-25 2012-11-01 富士フイルム株式会社 Radiation imaging device and image processing method
JP2013181811A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Method for visualizing inclusion in aluminum material
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10653376B2 (en) 2013-10-31 2020-05-19 Sigray, Inc. X-ray imaging system
US9640293B2 (en) 2013-11-28 2017-05-02 Koninklijke Philips N.V. Talbot effect based nearfield diffraction for spectral filtering
JP2016517008A (en) * 2013-11-28 2016-06-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Near-field diffraction by Talbot effect for spectral filtering
WO2015078690A1 (en) 2013-11-28 2015-06-04 Koninklijke Philips N.V. Talbot effect based nearfield diffraction for spectral filtering
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
CN110049725A (en) * 2016-11-22 2019-07-23 株式会社岛津制作所 X-ray phase imaging device
US10466185B2 (en) 2016-12-03 2019-11-05 Sigray, Inc. X-ray interrogation system using multiple x-ray beams
CN110049727A (en) * 2016-12-06 2019-07-23 皇家飞利浦有限公司 Interferometer grating supporter for the x-ray imaging based on grating and/or the supporter bracket for it
CN110049727B (en) * 2016-12-06 2023-12-12 皇家飞利浦有限公司 Interferometer grating support for grating-based X-ray imaging and/or support bracket therefor
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
JP7131625B2 (en) 2018-10-16 2022-09-06 株式会社島津製作所 X-ray phase imaging system
JPWO2020079919A1 (en) * 2018-10-16 2021-09-16 株式会社島津製作所 X-ray phase imaging device
WO2020079919A1 (en) * 2018-10-16 2020-04-23 株式会社島津製作所 X-ray phase imaging device
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11428651B2 (en) 2020-05-18 2022-08-30 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Similar Documents

Publication Publication Date Title
WO2007125833A1 (en) X-ray image picking-up device and x-ray image picking-up method
EP2830505B1 (en) Hybrid pci system for medical radiographic imaging
JP5127249B2 (en) X-ray device focus-detector device X-ray optical transmission grating
JP5961614B2 (en) Grating apparatus for phase contrast imaging, apparatus for phase contrast imaging, X-ray system having the apparatus, and method of using the apparatus
US7564941B2 (en) Focus-detector arrangement for generating projective or tomographic phase contrast recordings with X-ray optical gratings
JP5601909B2 (en) X-ray imaging apparatus and X-ray imaging method using the same
JP5162453B2 (en) Interferometer for quantitative phase contrast imaging and tomography using an incoherent polychromatic X-ray source
JP7044764B2 (en) Source grid for X-ray imaging
JP5158699B2 (en) X-ray imaging apparatus and X-ray source used therefor
EP2509503B1 (en) Apparatus for phase-contrast imaging comprising a displaceable x-ray detector element and method
US9269469B2 (en) Arrangement and method for inverse X-ray phase contrast imaging
US9907524B2 (en) Material decomposition technique using x-ray phase contrast imaging system
JP2019523871A (en) Method and apparatus for x-ray microscopy
EP1062914A1 (en) Ultra-small-angle x-ray tomography
US7505561B1 (en) Schlieren-type radiography using a line source and focusing optics
JP2007206075A (en) Focus detector system of x-ray device
JP2012187341A (en) X-ray imaging apparatus
JP2016535642A (en) X-ray grating phase contrast imaging apparatus and method
US9575015B2 (en) Systems and methods for x-ray phase contrast imaging using arrays of x-ray focusing elements
US20200011812A1 (en) Radiographic image generating device
WO2017175364A1 (en) X-ray imaging device
Pyakurel Phase and dark field radiography and CT with mesh-based structured illumination and polycapillary optics
WO2018111170A1 (en) X-ray absorbing gratings for phase contrast imaging
JP2020038153A (en) Radiation image generating device
Viermetz et al. Dark-Field for Human CT–Realization of a Talbot-Lau Interferometer in a Clinical CT Gantry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP