WO2007119812A1 - Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film - Google Patents

Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film Download PDF

Info

Publication number
WO2007119812A1
WO2007119812A1 PCT/JP2007/058137 JP2007058137W WO2007119812A1 WO 2007119812 A1 WO2007119812 A1 WO 2007119812A1 JP 2007058137 W JP2007058137 W JP 2007058137W WO 2007119812 A1 WO2007119812 A1 WO 2007119812A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
surface treatment
titanium
zinc
antifouling
Prior art date
Application number
PCT/JP2007/058137
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Endo
Hideaki Nogami
Shunjiro Watanabe
Shoichiro Adachi
Yukiyasu Kan
Original Assignee
Hoden Seimitsu Kako Kenkyusho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoden Seimitsu Kako Kenkyusho Co., Ltd. filed Critical Hoden Seimitsu Kako Kenkyusho Co., Ltd.
Priority to EP07741573.5A priority Critical patent/EP2009073B1/en
Priority to US12/282,979 priority patent/US8367201B2/en
Priority to CN2007800138749A priority patent/CN101426871B/en
Priority to JP2008510999A priority patent/JP5566024B2/en
Priority to KR1020087028036A priority patent/KR100983464B1/en
Publication of WO2007119812A1 publication Critical patent/WO2007119812A1/en
Priority to US13/733,999 priority patent/US8623503B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2925Helical or coiled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a non-chromium antifouling surface treatment agent used for preventing the occurrence of white glaze and red glaze in a metal member having a zinc surface such as a zinc-plated bolt or nut, and its fender
  • the present invention relates to a metal member having a zinc surface coated with a skin film.
  • the trivalent chromium surface treatment is a temporary surface treatment, and it is considered that it should move to a complete non-chromium surface treatment soon.
  • Patent Document 1 the present inventors proposed a non-chromium surface treatment agent that forms a siliceous thin film that can be applied to the surface of a zinc-plated metal member to suppress the occurrence of red coral for a long time.
  • the non-chromium surface treatment agent contains an effective amount of ultra-fine titanium oxide powder in which the average particle size of the dispersed primary particles is 70 nm or less.
  • the present inventors have proposed a non-chromium anti-fouling surface treating agent for zinc surface, which is mainly composed of an alcohol solution of an alkoxysilane oligomer having a specific weight average molecular weight.
  • a non-chromium antibacterial surface treatment agent for zinc surface which is mainly composed of an alcohol solution of an alkoxysilane oligomer having a specific weight average molecular weight.
  • the non-chromium surface treatment agent mainly composed of an alcohol solution of an alkoxysilane oligomer is an activation treatment (as a pretreatment for chromate treatment) in which a metal member is immersed in a dilute nitric acid solution after zinc plating.
  • an activation treatment as a pretreatment for chromate treatment
  • a metal member is immersed in a dilute nitric acid solution after zinc plating.
  • a method of applying a non-chromium antibacterial surface treatment to a zinc-plated member that has been washed and dried without applying nitric acid activation treatment (vitaling) after zinc plating is adopted.
  • non-chromium anti-fouling surface treatment agent mainly composed of an alcohol solution of alkoxysilane oligomer V, whitening (without chromate treatment) zinc, which was also obtained by several manufacturers of zinc plating
  • non-chromium anti-fouling surface treatment agent mainly composed of an alcohol solution of alkoxysilane oligomer V, whitening (without chromate treatment) zinc, which was also obtained by several manufacturers of zinc plating
  • Patent Document 3 a non-chromium anti-mold surface treatment agent comprising a non-chromium chemical conversion treatment and an alcohol solution of an alkoxysilane oligomer as a main component.
  • the surface treatment requires the addition of at least one treatment process, and does not meet the user's request that the surface treatment is performed with a simple process.
  • this non-chromium surface treatment agent is applied to a zinc-plated metal member such as a bolt. If the film is stored for about a year with the film attached, the film will crack, and in places where the film is applied a little thicker (more than 3 ⁇ m), the crack will continue to occur. The phenomenon of peeling of the film was observed, and there was a problem that white powder appeared on the zinc-plated surface and it appeared to have white glaze.
  • Patent Document 4 does not describe antifungal performance, a coating composition obtained by hydrolyzing an alkoxysilane by adding an acid catalyst and water and performing condensation polymerization while evaporating the alcohol and water is disclosed. It is disclosed.
  • the alkoxysilanes used as raw materials for the coating composition are all alkylalkoxysilanes.
  • a chelate compound of zirconium, titanium or aluminum is blended in this composition.
  • a zirconium chelate compound is blended in the examples (see Example 7 of the same document), but a coating on a metal member having a zinc surface is the same as the example in which an organic chelate titanium compound is blended. There was no example.
  • Patent Document 5 discloses a silica-based protective coating solution in which alkoxysilane and titanium alkoxide are subjected to condensation polymerization after hydrolysis in an alcohol solution using acetic acid as a catalyst.
  • CFRP carbon fiber reinforced plastic
  • alkoxysilane having an epoxy functional group and alkoxysilane having an amino group are used as the alkoxysilane used as a raw material for the protective coating solution.
  • the amino group functions as an alkaline catalyst that promotes the cross-linking reaction between oligomer molecules, so that the sol solution has a drawback that gelation easily occurs.
  • this protective coating solution is applied to a hot dip galvanized steel sheet, coated, and then applied to the coating film substrate. Evaluate the adhesion and check the strength and anti-fouling performance.
  • Patent Document 1 JP-A-2005-97719
  • Patent Document 2 JP 2005-264170 A
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-225761
  • Patent Document 4 Japanese Patent Laid-Open No. 7-157715
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-160759
  • the previously proposed non-chromium antifouling surface treatment agent mainly composed of an alcohol solution of an alkoxysilane oligomer has some problems.
  • a metal member galvanized under various different conditions is subjected to surface treatment with the previously proposed non-chromium antifouling surface treatment agent, satisfactory antifouling performance may not be obtained.
  • a small amount of the dispersion-treated titanium oxide ultrafine powder blended to enhance the anti-mold performance tended to aggregate.
  • a coating was formed by applying a surface treatment agent containing agglomerated titanium oxide ultrafine powder to the zinc surface of the metal member, the surface became slightly whitish and white haze appeared to appear.
  • the present invention eliminates the problems of the previously proposed non-chromium antifouling surface treatment agent mainly composed of an alcohol solution of an alkoxysilane oligomer, and improves the antifouling performance. It aims at providing a processing agent.
  • the present invention further improves the antifouling performance of the non-chromium antifouling surface treatment agent, and thus has a poor compatibility with a surface treatment agent that is difficult to impart practical antifungal performance.
  • a practical level of antifouling performance to the zinc-plated parts, cracks and peeling are unlikely to occur in the formed antifouling coating! Purpose.
  • the non-chromium antifouling surface treating agent for metal members having a zinc surface is an alcohol solution of an alkoxysilane oligomer having a weight average molecular weight Mw of 1,000 to 10,000.
  • Some of the key atoms are organic chelated titanium
  • the total amount of titanium and titanium in the alcohol solution is substituted with titanium from the compound, and the alcohol solution contains 2.5 to 15 atomic percent titanium relative to the total amount of silicon and titanium. The amount is 5 to 20% by weight when converted to SiO and TiO respectively.
  • an alcohol solution of an alkoxysilane oligomer is synthesized by synthesizing an alkoxysilane oligomer by hydrolyzing and polycondensing the alkoxysilane raw material by adding an acid catalyst and water to an alcohol solution containing the alkoxysilane raw material. It can be a mixture of an oligomeric alcohol solution and an organic chelate titanium compound.
  • the organic chelate titanium compound is 40 to 40% of the alkoxy group of the titanium alkoxide.
  • 60% is preferably blocked or substituted with a chelating agent.
  • the alkoxysilane alkoxysilane raw material of 90 to 99 mole 0/0 tetraalkoxysilane monomer or low molecular weight oligomer weight average molecular weight Mw of tetraalkoxysilane used in the synthesis of oligomers 800 smaller.
  • Ru seek mole 0/0 in a total molar amount of monomers.
  • the remainder is an alkyl alkoxy silane monomers.
  • the alkylalkoxysilane monomer cation trimethoxysilane, methyltriethoxysilane, etyltrimethoxysilane, vinyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane force are also at least one selected. It is preferable.
  • the chelating agent is preferably a 13-diketone or octylene glycol.
  • ⁇ -diketone acetylacetone is preferably used.
  • the alcohol solution of the alkoxysilane oligomer of the present invention preferably contains 0.1 to 2% by weight of an alcohol-soluble resin. It is preferred that the alcohol soluble in the alcohol is polybutyral.
  • the alcohol solution of the alkoxysilane oligomer of the present invention contains boric acid in the range of 0.004 to 0.10. U, preferred to include, by weight.
  • the alcohol component in the alcoholic solution of the alkoxysilane oligomer is an alcohol or glycol ether having a boiling point of 97 ° C or higher.
  • alcohol having a boiling point of 97 ° C or higher or glycol ether strength n-propyl alcohol (boiling point 97 ° C), n-butyl alcohol (boiling point 117 ° C), propylene glycol monomethyl ether (hereinafter referred to as “PGME”) Abbreviated, boiling point 121 ° C), sometimes referred to as ethylene dalcol monoethyl ether (both 136 ° C boiling point) and ethylene tert-butyl ether (hereinafter referred to as “ETB”, boiling point 152.5 ° C) And at least one selected from the group consisting of
  • the metal member of the present invention has a zinc surface coated with a siliceous film having an average thickness of 0.5 to 3 ⁇ m formed of the above-described non-chromium antifouling surface treatment agent.
  • the non-chromium antifouling surface treatment agent is applied to the zinc surface of the metal member by a dip-and-spin method to form a siliceous film.
  • the siliceous film is baked at a temperature of 120 ° C. or less after coating.
  • a film containing silica as a main component that is, a siliceous film, has a SiO component of 65%.
  • the antifouling performance of the zinc surface coated with a siliceous film by substituting a part of the silicon in the alkoxysilane oligomer in the alcohol solution with titanium.
  • the salt spray test the time until the occurrence of white glaze is increased to 210 hours or more, the time to occurrence of red glaze to 1150 hours or more, and the adhesion of the siliceous film to the zinc surface is improved. be able to.
  • the siliceous film formed on the zinc surface of the metal member with the non-chromium antifouling surface treatment agent of the present invention is not affected by moisture in the air even if the film is scratched with a knife or the like. Self-healing property that prevents the occurrence of white glaze by covering the wound with a thin film by spreading the film components.
  • the alkoxysilane oligomer which is the main active ingredient of the non-chromium antifouling surface treating agent according to the present invention, is an alkoxysilane oligomer in which a part of the oligomer in the oligomer molecule is substituted with titanium.
  • a linear molecule having a molecular structure in which titanium and oxygen are alternately bonded and having a length exhibiting a good film forming property is formed.
  • the weight average molecular weight Mw of this alkoxysilane oligomer molecule is too small, the film-forming property and the antifouling performance that can be imparted to the metal member are inferior, and if it is too large, the stability of the alcohol solution (meaning preservation, time After that, it becomes gelled and becomes unusable.)
  • the alkoxysilane oligomer molecule must have a weight average molecular weight Mw of 1,000,000 to 10,000.
  • An alkoxysilane oligomer obtained by adding an acid catalyst and water to an alcoholic solution of an alkoxysilane raw material and hydrolyzing and condensing it is a linear molecule, and this linear molecule is a single linear molecule. Or it is presumed that it is either a ladder type linear shape.
  • an alkoxysilane oligomer obtained by polycondensation using an alkaline catalyst in an alcohol solution tends to progress in the three-dimensional polycondensation of the oligomer, and is easily gelled, so that the storage stability of the alkoxysilane oligomer solution is poor.
  • a more preferred weight average molecular weight Mw of an alkoxysilane oligomer in which a part of the cage in the molecule is substituted with titanium is 1,500 to 5,000.
  • the weight average molecular weight Mw of the alkoxysilane oligomer can be measured by gel permeation chromatography using a polystyrene standard using tetrahydrofuran as a solvent.
  • the siliceous film formed by applying an alcohol solution of an alkoxysilane oligomer in which a part of the silicon in the molecule is substituted with titanium to the dumbbell surface of the metal member has excellent adhesion to the zinc surface. Even if the siliceous film is cracked, the siliceous film does not peel off.
  • the degree of the antifouling performance that the siliceous film formed with the non-chromium antifouling surface treatment agent in which a part of the silicon in the alkoxysilane oligomer molecule is substituted with titanium is imparted to the metal member having the zinc surface. If the ratio of substitution of titanium with titanium is small and too small, the cost will be high for the performance to be obtained, so the substitution ratio is preferably 2.5 to 15 atomic%. A more preferable replacement ratio of titanium in the alkoxysilane oligomer molecule with titanium is 3 to 10 atomic%.
  • the alkoxysilane oligomer in which a part of the cage is substituted with titanium is hydrolyzed and polycondensed by adding a small amount of acid catalyst such as hydrochloric acid and water to an alcohol solution containing the alkoxysilane raw material and titanium alkoxide.
  • acid catalyst such as hydrochloric acid and water
  • an alcohol solution containing the alkoxysilane raw material and titanium alkoxide can be synthesized.
  • the active titanium alkoxide is rapidly hydrolyzed, a precipitate is formed. Therefore, before mixing titanium alkoxide with an alkoxysilane raw material in an alcohol solvent and subjecting it to condensation polymerization, 40-60% of the alkoxy group of the titanium alkoxide is removed. It is preferable to block or substitute with a chelating agent to reduce the reaction activity of the titanium alkoxide! /.
  • Titanium tetraalkoxide is preferably used as the titanium alkoxide. Titanium tetraisopropoxide and titanium tetra n -butoxide can be used as titanium tetraalkoxide. J8-diketones such as acetylethylacetone and octylenedarcol can be used as chelating agents to block or substitute alkoxy groups. Since acetylacetone reacts with the zinc surface and wears out the zinc layer, the non-chromium antifouling surface treatment agent of the present invention and tantalene glycol, which has a low reactivity with the dumbbell surface, are used as the chelating agent for the titanium alkoxide. Is preferred.
  • the non-chromium antifouling surface treatment agent of the present invention is an alkoxysilane monomer or a low molecular weight oligomer thereof (weight average molecular weight Mw is smaller than 800. In the case of an oligomer, it is polymerized! /, The total molar amount of the monomer. To obtain the mol%.)) Is used as the alkoxysilane raw material. Hydrolysis is performed by adding an acid catalyst such as hydrochloric acid to the alcoholic solution of the above, and polycondensation is performed to obtain a linear molecular alkoxysilane oligomer having a required weight average molecular weight. In addition to mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid, organic acids such as acetic acid can be used as the acid catalyst.
  • mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid
  • organic acids such as acetic acid can be used as the acid catalyst.
  • an alcohol solution of an alkoxysilane oligomer that has been condensation-polymerized using an acid catalyst so as to have a required weight average molecular weight is prepared in advance, and then an alcohol solution of an organic chelate titanium compound is mixed with this solution. Then, the organic chelate titanium compound can be reacted with an alkoxysilane oligomer to prepare a non-chromium antifouling surface treatment agent.
  • a solution obtained by mixing an alcohol solution of a titanium alkoxide chelated with octylene glycol with an alcohol solution of an alkoxysilane monomer or an alkoxysilane oligomer is obtained by mixing an alcohol solution of titanium alkoxide chelated with acetylylacetone. Compared to a solution mixed with an alcohol solution of an alkoxysilane oligomer, yellow coloration is less.
  • an alkoxysilane containing a titanium component is used to form a siliceous film having a thickness that provides a practical level of antifouling performance on the zinc surface of a metal member.
  • the total amount of silicon and titanium in the oligomeric alcohol solution is 5 to 20% by weight when converting silicon and titanium to SiO and TiO, respectively.
  • a more preferred total amount with titanium is 7 to 15% by weight.
  • the weight average molecular weight Mw of the alkoxysilane oligomer is large.
  • a siliceous film with excellent antifouling performance can be formed, and the film does not easily crack, so that the preservation property of the antifouling surface treatment solution is not impaired. It is preferable to make it larger.
  • the polycondensation is performed so that the weight average molecular weight of the alkoxysilane oligomer is Mw force S1, 000 to 10,000, preferably 1,500 to 5,000.
  • Such an alkoxysilane oligomer can be synthesized by adjusting an alcohol solution mixed with starting materials to around pH4.
  • the progress of the condensation polymerization reaction becomes saturated in a short time.
  • An organic component can be introduced into the alkoxysilane oligomer by copolymerizing a silane coupling agent, which is an alkylalkoxysilane having an organic group such as an alkyl group, with a tetraalkoxysilane monomer or a low molecular weight alkoxysilane oligomer.
  • a silane coupling agent which is an alkylalkoxysilane having an organic group such as an alkyl group
  • an organic component soluble in alcohol can be dissolved in an alcoholic solution of an alkoxysilane oligomer and an organic component can be introduced into the siliceous film.
  • alkoxysilane raw material it is preferable to use tetraethoxysilane, tetramethoxysilane, or a low molecular weight alkoxysilane oligomer obtained by condensation polymerization of these monomers.
  • the chelating agent used to suppress the reaction activity of the titanium alkoxide remains in the alcohol solution of the alkoxysilane oligomer after synthesis, and the coating of the antifouling surface treatment agent is performed at a temperature around 100 ° C. It is estimated that it remains in the siliceous film even after being baked on the zinc surface and plays a part in the softening of the formed siliceous film.
  • a chelating agent in an amount exceeding 2 moles per 1 mole of titanium alkoxide is blended, most of the chelating agents in excess of 2 moles due to steric hindrance are not used for the formation of organic chelating titanium compounds.
  • a chelating agent used for titanium alkoxide it is preferable to use j8-diketone such as acetylylacetone or octylene glycol.
  • acetylacetone When acetylacetone is added excessively, the boiling point of acetylosylacetone is as high as 140 ° C, so it is contained in the alcohol solution as a high boiling point solvent. Since octylene glycol is a high-boiling solvent above 240 ° C, it functions as a high-boiling point solvent in an alcohol solution like acetylenic acetone.
  • alkylalkoxysilane monomer methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane, which have a low tendency to deteriorate the antifungal performance, are also selected. I prefer to pick at least one. In particular, butyltrimethoxysilane is preferred as an alkylalkoxysilane monomer.
  • the siliceous film formed by dissolving the alcohol soluble in alcohol in an alcohol solution of a non-chromium antifouling surface treatment agent and applying the antifouling surface treatment agent to the zinc surface of the metal member The rosin component can be introduced into the.
  • a rosin component is introduced into the siliceous film, it is possible to suppress the generation of cracks in the film by softening the film. If the organic resin soluble in alcohol is water-soluble, the water resistance of the formed siliceous film is impaired. Therefore, it is preferable to select a resin that is soluble in alcohol but not water.
  • Polyuraptilal resin is preferred as a resin suitable for this purpose. It is preferable that the amount of polybutybutyral resin dissolved in the alcohol solution of the non-chromic anti-bacterial surface treatment agent is 0.1 to 2% by weight, more preferably 0.2 to 1% by weight.
  • a metal member having a zinc surface is immersed in an alcohol solution of a non-chromium antifouling surface treatment agent, and the wet metal member is taken out of the alcohol solution and placed in a metal cage attached to a centrifuge.
  • This is an application that sprinkles off the excess alcohol solution of the surface treatment agent attached to the surface of the metal member by centrifugal force.
  • the metal parts covered with a thin liquid film (coating film) taken out from the bowl are baked at about 100 ° C after drying and Use a strong film.
  • the coating thickness of the antifouling surface treatment agent formed on the zinc surface of the metal member by the dip-and-spin method is not limited to the magnitude of the centrifugal force trapped on the metal member, and the alkoxysilane oligomer in the alcohol solution Affected by the concentration of alcohol and the viscosity of the alcohol solution. Since the siliceous film formed with a thick siliceous film tends to crack, the consumption of the antifouling surface treatment liquid increases and the cost of the surface treatment increases, so that the siliceous film requires a siliceous film. It is preferable to make it thin as long as the performance is satisfied.
  • the thickness of the siliceous film formed on the surface of the metal member is changed according to the purpose of use, but if it is less than 0.5 / zm, it is difficult to provide practical antifungal performance. It is preferable that the siliceous film formed on the zinc surface has an average thickness of 0.5 to 3 and ⁇ ⁇ so that practical antifouling performance can be exhibited. A thin siliceous film with an average thickness is less prone to cracking and peeling, but it has poor antifungal performance. On the other hand, if the siliceous film is thick, cracks are likely to occur, so an average thickness of 0.7 to 2 m is more preferable.
  • the film thickness of the antifouling surface treatment agent coating film formed on the surface of the metal member is changed by changing the alcohol solution concentration of the non-chromium antifouling surface treatment agent and changing the number of revolutions when applied by the dip-and-spin method.
  • the viscosity of the solution of the non-chromium antifouling surface treatment agent can be adjusted by changing the addition amount of the resin component having a thickening effect.
  • the dip-and-spin method is suitable for applying a solution of the anti-fouling surface treatment agent to a metal member having a small size such as a bolt or a nut.
  • an alcohol solution of a non-chromium antifouling surface treatment agent can be applied in accordance with the size and shape of the product to be applied, in addition to the dip-and-spin method, the dip drain method, spray method, brush coating, etc. .
  • the alcohol used as the solvent for the non-chromium antifouling surface treatment agent maintains a concentration suitable for coating because the alcohol with a low boiling point alone increases the concentration of the solution when the alcohol evaporates quickly when the room temperature is high. Refill with alcohol as needed.
  • the humidity is high, such as on rainy days, and a non-chromium antifouling surface treatment agent is applied to the surface of a metal member indoors.
  • a non-chromium antifouling surface treatment agent is applied to the surface of a metal member indoors.
  • condensation may occur on the surface, and the applied non-chromium anti-fouling surface treatment coating may be altered to reduce the anti-fouling performance of the silica coating.
  • Alcohol having a boiling point of 97 ° C or higher is incorporated in the solution of the non-chromium antifouling surface treatment agent! / ⁇ is n-propyl alcohol, n-butyl alcohol, PGME, ethylene glycol monoethyl ether, You can use ETB.
  • ETB has a tendency to impair the antifouling performance of the siliceous film formed by condensation on the surface of the coating film to be formed when the humidity of the working atmosphere in which the liquid for the surface treating agent is applied is high! It is a preferred solvent with an inhibitory effect.
  • the coating film of the applied antifouling surface treating agent solution is dried and maintained at a temperature of 120 ° C or lower and baked to form a siliceous film. Since the user prefers a low baking temperature, it can be dried and cured at room temperature, but the protective performance that can be imparted at 80 ° C or below is slightly inferior. It is preferable to form the siliceous film by baking at 90 to 110 ° C. so that a siliceous film having good antifouling performance can be efficiently formed in a short time on the surface of the metal member.
  • the heating time for baking the anticorrosive film at 90 to 110 ° C is preferably 10 to 25 minutes.
  • the zinc surface in the present invention can be an alloy containing zinc as a main component, and the non-chromium antifouling surface treatment agent of the present invention can be applied to a metal member to which various dumbbells are applied, dumbbell die-cast member. It can be preferably applied.
  • Titanium tetraisopropoxide (Matsumoto Fine Chemical Co., Ltd.), a titanium alkoxide TA-10) 2) 55.5 parts by weight are mixed with 60 parts by weight of isopropyl alcohol and 18 parts by weight of acetylethylacetone, and about half of the hydrolyzable isopropoxy group of titanium tetraisopropoxide is added with a chelating agent. A blocked solution (yellow color) was obtained.
  • ethyl silicate 40 product of Tama Chemical Industry Co., Ltd., an approximately pentameric oligomer obtained by polycondensation of tetraethoxysilane
  • alkoxysilane raw materials used in the alkoxy silane oligomer solution A 9. 2 mol 0/0 (in this case, E chill Silicate 40 was calculated as a monomer. Hereinafter the same.) was alkylalkoxy Sila Nmonoma.
  • the alkoxysilane oligomer solution A obtained are substitution with titanium 4.7 atomic 0/0 of Kei element, the total content in terms of Kei element and titanium SiO and TiO are 24.6 % By weight
  • the weight average molecular weight of this alkoxysilane oligomer was measured using a gel permeation chromatography (HLC-8120GPC from Tosoichi Co., Ltd.) (using tetrahydrofuran as the solvent and polystyrene as the standard). It was.
  • composition of the formulation described in column B of Table 1 was reduced by reducing the blending amount of butyltrimethoxysilane, and kept at 35 ° C for 24 hours while being stirred for condensation polymerization to obtain an alkoxysilane oligomer.
  • solution B degree of substitution Kei element by titanium 5 atomic 0/0, SiO and TiO and Kei-containing and titanium
  • alkoxysilane 2 mole 0/0 alkyl alkoxy silane monomer of the alkoxysilane raw material use was the oligomer first solution B, about the ⁇ isethionate Honoré acetone lifting one isopropoxy titanium tetraisopropoxide using chelating agents It was the amount to block half.
  • the weight average molecular weight of this alkoxysilane oligomer was 2270.
  • alkyl alkoxy silane monomer - use a butyl alcohol solvent - with methacryloxypropyl trimethoxysilane (SH6030) of the entire alkoxysilane raw material 16.7 mole 0/0, in place of isopropyl ⁇ alcohol ⁇
  • SH6030 methacryloxypropyl trimethoxysilane
  • the composition described in column D of Table 1 prepared in this manner was subjected to polycondensation by stirring at 35 ° C for 24 hours while stirring, to obtain an alkoxysilane oligomer solution D (the substitution rate of titanium with titanium was 14.3%).
  • silicon and titanium SiO and TiO
  • the amount of tylacetone was equivalent to 25% of the isopropoxy group of titanium tetraisopropoxide.
  • the alkoxysilane oligomer had a weight average molecular weight of 1720.
  • the alkoxysilane oligomer solution E was not added with an alkylalkoxysilane monomer.
  • the amount of the acetylating agent acetylylacetone used was equivalent to 33% of the n-butoxy group of titanium tetra n-butoxide.
  • the alkoxysilane oligomer had a weight average molecular weight of 1910.
  • methyl triethoxysilane (SZ6383 manufactured by Toray Dow Co., Ltd.) as an alkylalkoxysilane monomer was prepared by using 8.0 mol% of the total alkoxysilane raw material, and is shown in column F of Table 1.
  • composition by condensation polymerization was kept for 24 hours in 35 ° C with stirring, substitution rate of Kei element according alkoxide silane oligomer solution F (titanium 4. 9 atomic 0/0, Keimoto The total content of titanium and titanium converted to SiO and TiO was 22.7% by weight. ) Na
  • Acetylacetone used here was an amount corresponding to 42% of the isopropoxy group of titanium isopropoxide.
  • the alkoxysilane oligomer had a weight average molecular weight of 1990.
  • an alkoxysilane oligomer solution prepared by mixing the composition described in column G of Table 1 prepared without blending an alkylalkoxysilane monomer or titanium alkoxide with stirring at 35 ° C for 24 hours, followed by condensation polymerization.
  • G content of conversion of silicon to SiO was 20 weight 0 /.
  • the alkoxysilane oligomer had a weight average molecular weight of 2310.
  • the alkoxysilane oligomer had a weight average molecular weight of 2004.
  • the amount of vinyltrimethoxysilane was increased to 9.1 mol% of the total alkoxysilane raw material, and the composition of the formulation not containing titanium alkoxide was stirred. It was kept at 40 ° C. for 20 hours and subjected to condensation polymerization to obtain an alkoxysilane oligomer solution 1 (containing no titanium component, and content obtained by converting silicon to SiO was 19.3% by weight).
  • the alkoxysilane oligomer had a weight average molecular weight of 2020.
  • Ethyl silicate 40 Low molecular weight tetraethoxysilane oligomer (Tammer, SiO 2 equivalent content: about 40 wt ⁇ 1 ⁇ 2) manufactured by Tama Chemical Co., Ltd.
  • ethyl silicate 40 is a pentamer of ⁇ traethoxysilane, 1 mol (744.5) was calculated as 5 mol.
  • OSH6300 Silane coupling agent (vinyltrimethoxysilane) manufactured by Toray Dow Corning (Mw: 148.2)
  • OSH6030 Toray 'Dacon Co., Ltd. silane coupling agent-methacryloxypropylmethoxysilane) (Mw: 248)
  • OSZ6383 Methyltriethoxysilane (Mw: 178) manufactured by Toray Dow Corning Co., Ltd.
  • OTA-10 Titanium tetraisopropoxide manufactured by Matsumoto Fine Chemical Co., Ltd. (Mw: 283.8)
  • OTA-25 Titanium tetra n_butoxide (Mw: 339.9) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • alkoxysilane oligomer solution A In 48 parts by weight of alkoxysilane oligomer solution A, 7.5 parts by weight of a 10% by weight butyl acetate solution of polybutyral, 1 part by weight of a 0.6% by weight isopropyl alcohol solution of boric acid, and isopropyl alcohol are added. 44.5 parts by weight were mixed to obtain an alcohol solution of the non-chromium antifouling surface treating agent of Example 1 shown in Table 2-1. The combined content of silicon and titanium in this non-chromium surface treatment solution converted to SiO and TiO is 11.7 wt.
  • Example 1 the non-chromium of Example 1 in which five M8 bolts (half screw with a neck length of 45 mm) plated with zinc in a zincate bath (plating thickness: 5 to 7 ⁇ m) were placed in a container. Put it in the anti-bacterial surface treatment solution and rotate it. Remove the 5 bolts from the container and place them in a stainless steel jar attached to the centrifuge, and rotate the jar at 700 RPM (rotation radius approx. 150 mm) for 4 seconds. The excess antifouling surface treatment solution adhering to the surface of the M8 bolt was shaken off.
  • RPM rotation radius approx. 150 mm
  • the bolts wetted with the antibacterial surface treatment agent were placed on a stainless steel wire mesh, placed in a baking furnace, dried at 60 ° C for 10 minutes, heated to 100 ° C, held for 15 minutes, and baked.
  • One of the M8 bolts of Example 1 coated with a coating of a non-chromium antifouling surface treatment agent was observed with a stereomicroscope (magnification approximately 40 times) to check for cracks.
  • the surface of the film was observed for the presence or absence of cracks in the antifouling film.
  • the remaining three bolts were placed in a salt spray test machine as they were, and when the surface of the bolt was observed with the naked eye every 24 hours, the time when white glaze occurred and the time when red glaze occurred were recorded.
  • the time of occurrence of the white glaze and red glaze shown in Table 2-1, Table 2-2 and Table 3 is the time when white glaze or red glaze was observed in two of the three.
  • the bolt coated with the siliceous film of the non-chromium antifouling surface treatment agent of Example 1 had good antifouling performance against the occurrence of white glazes and red glazes that were difficult to crack.
  • the average film thickness was slightly weaker than m. .
  • the film thickness was examined in the same manner, and as a result, the average film thickness of Comparative Example 1 was 2.3 m.
  • Silica coating The average film thickness of each film was 0.7-2 / ⁇ ⁇ .
  • Example 2 5 volt 8 bolts (half screw with a neck length of 45 mm) were applied to each of Examples 2 and 3 by the dip and spin method. It was applied and baked in the same manner as in Example 1. Each one was examined for cracks with a stereomicroscope, and the remaining 4 were placed in a salt spray tester. After 24 hours, each one was taken out and washed with water. The presence or absence was examined, and the results are shown in Table 2-1. In addition, for each of the three bolts placed in the salt spray tester, the presence or absence of white sharks and red foxes was examined with the naked eye every 24 hours. The allowed times are shown in Table 2-1.
  • Example 2 and Example 3 are good, and they are taken out in a salt spray tester for 24 hours and taken out. The cracks observed in the film were minor and had no practical problem!
  • Examples 4 to 6 Using the alkoxysilane oligomer solution B, the non-chromium antifouling surface treatment agents of Examples 4 to 6 were prepared with the composition shown in Table 2-1. In Examples 4 to 6, the boiling point is low and it is easy to evaporate, and a part of isopropyl alcohol is replaced with a high boiling point! 4-The non-chromium anti-mold surface treatment agent of Example 6 was prepared. Using these non-chromium antifouling surface treatment agents, they were applied to M8 bolts by the dip and spin method in the same manner as in Example 1, dried and baked. These bolts were examined for crack resistance and antifouling performance in the same manner as in Example 1. The results were as shown in Table 2-1, and all were good.
  • the alcohol solution power of the non-chromium anti-fouling surface treatment agent can be slowed to evaporate, and the fouling surface treatment agent can be applied to metal parts in summer when the temperature is high. Also when applied to the surface, the replenishment amount of alcohol evaporated from the antifouling surface treatment solution was reduced.
  • the non-chromium antifouling surface treatment agent of Example 7 was prepared with the composition shown in Table 2-1.
  • This non-chromium antibacterial surface treatment solution was applied by dipping and spinning to five M8 bolts plated with zinc in a zincate bath in the same manner as in Example 1, dried and baked. For these bolts, crack resistance and anti-fouling performance were examined in the same manner as in Example 1. As shown in Table 2-1, excessive force acetylacetone was added in each case. The effect of was unrecognizable.
  • Example 9 Using the alkoxysilane oligomer solution E containing titanium tetra-n-butoxide as the titanium alkoxide without the addition of an alkylalkoxysilane monomer, the nonchromium antibacterial surface treatment of Example 9 with the composition shown in Table 2-1 An agent was prepared. Next, this non-chromium anti-surface treatment agent was applied by dipping and spinning to five M8 bolts that were galvanized in a zincate bath in the same manner as in Example 1, dried, held at 100 ° C for 15 minutes, and baked. It was. These bolts were examined for crack resistance and antifouling performance in the same manner as in Example 1. As a result, as shown in Table 2-1, they were all good.
  • Example 10 Using an alkoxysilane oligomer solution F obtained by condensation polymerization of methyltriethoxysilane using titanium tetraisopropoxide chelated with acetylacetone, a part of the alcohol in the alcohol solution has a boiling point of 121 ° C. PGME was blended, and the non-chromium anti-mold surface treatment agent of Example 10 was prepared with the blending composition shown in Table 2-1. Next, in the same manner as in Example 1, this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by the dive and spin method, and after drying, kept at 100 ° C for 15 minutes. I baked it. These bolts were examined for crack resistance and anti-fouling performance in the same manner as in Example 1. As shown in Table 2-1, they were all good.
  • Do include titanium component obtained by polycondensation by blending Bulle trimethoxysilane, 52.8 alkoxysilane oligomer solution H of parts, 3 parts by weight of 10 weight 0/0 Echiru cellosolve solution of poly Bulle butyral, boric acid 5 parts by weight of a 1.2% by weight isopropyl alcohol solution, 23.8 parts by weight of isopropyl alcohol, a titanium otatilene glycol chelate compound made by Nippon Soda Co., Ltd. (compound whose alkoxy group is isopropoxide. , "TO
  • the calculated content is 9.9% by weight, and the content ratio of titanium to the total amount of silicon and titanium is 4%. 6 atomic percent.
  • this non-chromium surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. These bolts were examined for crack resistance and fender resistance as in Example 1, and as a result, as shown in Table 2-2, both were good.
  • Example 12 Using an alkoxysilane oligomer solution I that does not contain a titanium component that has been polycondensed by increasing the blending ratio of butyltrimethoxysilane, the same composition as in Example 11 was used, and the non-conducting composition of Example 12 was used. A chromium antifungal surface treatment agent was prepared. The total content of silicon and titanium in this non-chromium surface treatment solution converted to SiO and TiO is 9
  • this non-chromium antifouling surface treatment agent was applied to five M8 bolts galvanized in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking.
  • Example 52 Using 8 parts by weight of the alkoxysilane oligomer solution H, the TOG was reduced to 3.2 parts by weight compared to Example 11, and the non-chromium antifouling surface treatment of Example 13 with the composition shown in Table 2-2. An agent was prepared. The silicon and titanium in this non-chromium surface treatment solution are mixed with
  • the total content of C 2 and T 2 converted to 2 2 was 11.0% by weight, and the content of titanium with respect to the total content of C and T was 2.7 atomic%.
  • this non-chromium antifouling surface treatment was applied by dip-and-spin to the surface of 5 M8 bolts galvanized in a zincate bath, dried and kept at 100 ° C for 20 minutes and baked . These bolts were examined for crack resistance and fender resistance as in Example 1. As a result, as shown in Table 2-2, the amount of the titanium octylene glycol chelate compound was less than that of the non-chromium antifouling surface treatment agent of Example 11, and the antifouling performance was slightly inferior. Both It was almost good.
  • the non-chromium surface treatment solution was applied to five M8 bolts zinc-plated in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. These bolts were examined for crack resistance and antifouling performance in the same manner as in Example 1. As shown in Table 2-2, the alkoxide groups of the titanium octylene glycol chelate compounds were different. Therefore, the anti-fouling performance was slightly inferior to that of Example 11, but almost good results were obtained.
  • Titanium chelate obtained by chelating about half of the isopropoxy group of titanium tetraisopropoxide by adding 2 moles of acetylethylacetone to 1 mole of titanium tetraisopropoxide in 8 parts by weight of alkoxysilane oligomer solution H
  • Compound TC-100 product of Matsumoto Fine Chemical Co., Ltd.
  • the silicon and titanium in this non-chromium surface treatment solution were converted to SiO and TiO.
  • the total content of silicon and titanium was 11.6% by weight, and the content of titanium with respect to the total content of silicon and titanium was 6.1 atom%.
  • this non-chromium antifouling surface treatment agent was applied by dipping and spinning to the surface of five M8 bolts that had been galvanized in a zincate bath, dried and held at 100 ° C for 20 minutes for baking.
  • Example 1 the crack resistance and the antifouling performance were examined.
  • Table 2-2 the force that was slightly inferior to that of Example 11 was almost good. It was.
  • the content ratio of titanium to the total amount of silicon and titanium was 4.6 atomic%.
  • this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking.
  • the force that was slightly inferior to that in Example 11 was almost the same. It was good.
  • the non-chromium anti-surface treatment agent of Example 17 described in Table 2-2 was prepared by blending 52.8 parts by weight of the alkoxysilane oligomer j with TOG, PGME, which is a high boiling point alcohol, and ethyl acetate sorb. Prepared. The total content of kaen and titanium in the solution of this non-chromium anti-fouling surface treatment agent converted to SiO and TiO is 11.1% by weight.
  • the titanium content relative to the total amount of titanium was 4.7 atomic%.
  • this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As in Example 1, these bolts were examined for crack resistance and antifouling performance.
  • this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As in Example 1, these bolts were examined for crack resistance and antifouling performance. As shown in 2-2, the force, which was slightly inferior to that of Example 11, was almost satisfactory.
  • the non-chromium surface treating agent of Example 19 shown in Table 2-2 was prepared by blending 45.9 parts by weight of the alkoxysilane oligomer solution H with TOG, PGME, which is a high boiling point alcohol, and ETB.
  • the silicon and titanium in the solution of this non-chromium anti-fouling surface treatment agent are combined with SiO and TiO.
  • the total content of C and T in terms of 2 is 6.6% by weight, and the total content of C and T
  • the titanium content was 4.6 atomic%.
  • this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking.
  • the force that was slightly inferior to that in Example 11 was almost the same. It was good.
  • titanium chelate compounds used in Examples 11 to 19 are commercially available products in which half of the alkoxy groups of titanium tetraalkoxide are blocked with a chelating agent.
  • OPGME Propylene glycol monomethyl ether
  • OTOG Titanium glycol glycolate compound manufactured by Nippon Soda Co., Ltd. (purity 72%, alkoxy group is isopropoxy group)
  • ⁇ TC-200 Titanium octylene glycol chelate compound manufactured by Matsumoto Fine Chemical Co., Ltd. (purity 67%, alkoxy group is n-octoxy group)
  • OTC-100 A compound obtained by chelating 2 moles of acetylylacetone with 2 moles of acetyl chloride from Matsumoto Fine Chemical Co., Ltd.
  • Alkoxysilane oligomer solution G in polybutylbutyral succinate solvate solution, epoxy-functional silane coupling agent ⁇ -glycidoxypropyltrimethoxysilane, titanium oxide ultrafine powder slurry dispersed with bead mill A non-chromium anti-fouling surface treatment agent of Comparative Example 1 was prepared with the composition shown in Table 3 by blending ethyl acetate and titanium oxide (containing 5: 1 ratio). The content of silicon in this non-chromium surface treatment solution converted to SiO was 10.6% by weight. Then as in Example 1
  • this anti-bacterial surface treatment agent was applied to the surface of five M8 bolts galvanized in a zincate bath by the dip-and-spin method, dried and held at 100 ° C. for 15 minutes for baking.
  • These bolts were examined for crack resistance and anti-fouling performance in the same manner as in Example 1.
  • the salt spray tester It was taken out for 24 hours, and it was observed that a crack was formed in the fender film coated on the surface of the bolt that had been dried.
  • the antifouling performance evaluated in the salt spray test was inferior to the bolts applied with the non-chromium antifouling surface treatment agents of Examples 1 to 19.
  • this anti-bacterial surface treatment agent was applied to five M8 bolts galvanized in a zincate bath by a dip-and-spin method, dried, held at 100 ° C for 20 minutes, and baked.
  • this anti-bacterial surface treatment agent was applied to five M8 bolts galvanized in a zincate bath by a dip-and-spin method, dried, held at 100 ° C for 20 minutes, and baked.
  • the amount is 11. a 2 wt 0/0, the content of zirconium to the total amount of Kei element and zirconium was 8.9 atomic%.
  • this anti-bacterial surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking.
  • Table 3 the crack resistance and the antifouling performance were examined in the same manner as in Example 1.
  • the occurrence of cracks was slight and the antifouling performance was relatively good. It was a little inferior to the bolt applied with the non-chromium antifouling surface treatment agent of Example 16 in which the compound was mixed.
  • the zirconium chelate compound is more expensive than the titanium chelate compound, the surface treatment cost is high and it is not practical.
  • Zirconium chelate compound A liquid obtained by adding 2 moles of 2-ethylhexanoic acid to 1 mole of ZA-40 (zirconium tetra n-propoxide) manufactured by Matsumoto Fine Chemical Co., Ltd. It contains 30 wt% zirconium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a non-chromate rust-preventive surface treating agent which can form, on a zinc surface of a metal member, a silica-containing coating film which hardly causes cracking or detaching and can impart good anti-rust properties to the surface. The agent comprises a solution of an alkoxysilane oligomer having a weight average molecular weight of 1,000 to 10,000 in an alcohol, wherein 2.5 to 15% of silicon atoms in the alkoxysilane oligomer molecule are substituted by titanium atoms. The alkoxysilane oligomer which is partially substituted by titanium can be produced by reacting a titanium compound with a tetraalkoxysilane monomer or an alkoxysilane oligomer in an alcoholic solution, wherein the titanium compound can be prepared by chelating about half of alkoxide groups in titanium tetraalkoxide.

Description

明 細 書  Specification
亜鉛表面を有する金属部材用非クロム防鲭表面処理剤とその防鲭皮膜 で被覆した亜鉛表面を有する金属部材  Non-chromium antifouling surface treatment agent for metal parts having a zinc surface and metal parts having a zinc surface coated with the antifouling film
技術分野  Technical field
[0001] 本発明は、亜鉛めつきされたボルトやナットなど亜鉛表面を有する金属部材に白鲭 や赤鲭が発生するのを防止するのに用いる非クロム防鲭表面処理剤と、その防鲭皮 膜で被覆された亜鉛表面を有する金属部材に関する。  [0001] The present invention relates to a non-chromium antifouling surface treatment agent used for preventing the occurrence of white glaze and red glaze in a metal member having a zinc surface such as a zinc-plated bolt or nut, and its fender The present invention relates to a metal member having a zinc surface coated with a skin film.
背景技術  Background art
[0002] 欧州にお 、て RoHS規制が発効し、亜鉛表面に防鲭性能を付与するために施され るクロメート処理(六価クロム成分を使う表面処理)など六価クロム成分を含む表面処 理剤の使用が規制された。これに伴い、産業界ではクロメート処理に代え、亜鉛めつ きした金属部材に行う三価クロム表面処理が普及している。しかし、三価クロム表面 処理にはいくつかの問題がある。例えば処理液の管理が難しぐ液の更新寿命が短 V、、三価クロム処理を施した亜鉛めつき金属部材表面の摩擦係数が大き ヽなどであ る。一部の亜鉛めつきボルトやナットなどのファスナー部材では、摩擦係数を調整す る表面処理剤をさらに塗布する必要がある。また、三価クロム表面処理を施した亜鉛 めっき製品の防鲭性能は、従来のクロメート処理を施した製品の防鲭性能と比べて 劣るので、亜鉛めつき部材に要求される防鲭性能の製品スペックを緩めることも行わ れている。  [0002] In Europe, RoHS regulations come into effect, and surface treatments containing hexavalent chromium components such as chromate treatment (surface treatment using hexavalent chromium components) applied to impart antifouling performance to zinc surfaces The use of the agent was regulated. Along with this, trivalent chromium surface treatment applied to zinc-plated metal members has become widespread in industry instead of chromate treatment. However, trivalent chromium surface treatment has several problems. For example, the renewal life of the liquid, which is difficult to manage the treatment liquid, is short V, and the coefficient of friction of the surface of the zinc-plated metal member treated with trivalent chromium is large. For some fastener members such as zinc bolts and nuts, it is necessary to further apply a surface treatment agent that adjusts the friction coefficient. In addition, the anti-corrosion performance of zinc-plated products with a trivalent chromium surface treatment is inferior to that of conventional chromate-treated products. The specification is also loosened.
[0003] さらに、平衡反応によって三価クロムの一部が六価クロムに変わることが避けられず 、皮膜中に相当量の六価クロム成分が検出される。このため、三価クロム表面処理は 暫定的な表面処理であって、近く完全な非クロム表面処理に移行すべきものと考えら れている。  [0003] Furthermore, it is inevitable that a part of trivalent chromium is changed to hexavalent chromium due to the equilibrium reaction, and a considerable amount of hexavalent chromium component is detected in the film. For this reason, the trivalent chromium surface treatment is a temporary surface treatment, and it is considered that it should move to a complete non-chromium surface treatment soon.
[0004] 完全な非クロムの表面処理についても既に多くの処理方法が提案されている。しか し、非クロム表面処理でクロメート処理並みの薄 、皮膜を施した亜鉛めつき金属部材 では、防鲭性能が実用レベルに達していない。上塗り塗装を施す場合には、非クロム 表面処理を施した亜鉛めつき金属部材の表面に 10 μ mを超える厚さの塗膜を塗り重 ねれば、要求される防鲭性能を達成できる。しかし、薄い皮膜のみでクロメート処理 に劣らない防鲭性能を示す亜鉛めつき表面用の非クロム防鲭表面処理は、今のとこ ろ本発明者らが先に提案した非クロム防鲭表面処理以外には見当たらない。 [0004] Many treatment methods have already been proposed for complete non-chromium surface treatment. However, the zinc-plated metal member with a non-chromium surface treatment that is as thin and coated as the chromate treatment has not reached the practical level. When top-coating is applied, a coating with a thickness of more than 10 μm is applied to the surface of a zinc-plated metal member with a non-chrome surface treatment. If required, the required fendering performance can be achieved. However, the non-chromium antifouling surface treatment for zinc-plated surfaces, which exhibits a fouling performance comparable to the chromate treatment with only a thin film, is currently other than the non-chromium antifouling surface treatment previously proposed by the present inventors. Is not found.
[0005] 本発明者らは特許文献 1において、亜鉛めつきされた金属部材の表面に塗布して 赤鲭の発生を長時間抑制できるシリカ質の薄い皮膜を形成する非クロム表面処理剤 を提案した。その非クロム表面処理剤中には分散処理された一次粒子の平均粒径が 70nm以下である酸ィ匕チタン超微粉末が有効量配合されている。  [0005] In Patent Document 1, the present inventors proposed a non-chromium surface treatment agent that forms a siliceous thin film that can be applied to the surface of a zinc-plated metal member to suppress the occurrence of red coral for a long time. did. The non-chromium surface treatment agent contains an effective amount of ultra-fine titanium oxide powder in which the average particle size of the dispersed primary particles is 70 nm or less.
[0006] また、本発明者らは特許文献 2において、特定の重量平均分子量を有するアルコ キシシランオリゴマーのアルコール溶液を主成分とする亜鉛表面用非クロム防鲭表 面処理剤を提案した。その非クロム防鲭表面処理剤を亜鉛めつき製品などの亜鉛表 面に塗布して薄いシリカ質皮膜を形成すると、白鲭の発生を長時間防止することがで きる。  [0006] In addition, in the Patent Document 2, the present inventors have proposed a non-chromium anti-fouling surface treating agent for zinc surface, which is mainly composed of an alcohol solution of an alkoxysilane oligomer having a specific weight average molecular weight. By applying the non-chromium antibacterial surface treatment agent to zinc surfaces such as zinc-plated products to form a thin siliceous film, it is possible to prevent the occurrence of white glaze for a long time.
[0007] そのアルコキシシランオリゴマーのアルコール溶液を主成分とする非クロム防鲭表 面処理剤では、亜鉛めつき後に金属部材を希い硝酸水溶液に浸す活性化処理 (クロ メート処理の前処理としてなされるピクリング)を施して力 非クロム表面処理を行うと、 劣った防鲭性能となることが多い。このため、亜鉛めつき後には硝酸活性処理 (ビタリ ング)を施さず、水洗及び乾燥した状態の亜鉛めつき部材に非クロム防鲭表面処理を 行う方法を採用している。  [0007] The non-chromium surface treatment agent mainly composed of an alcohol solution of an alkoxysilane oligomer is an activation treatment (as a pretreatment for chromate treatment) in which a metal member is immersed in a dilute nitric acid solution after zinc plating. When applying non-chromium surface treatment, poor anti-fouling performance is often obtained. For this reason, a method of applying a non-chromium antibacterial surface treatment to a zinc-plated member that has been washed and dried without applying nitric acid activation treatment (vitaling) after zinc plating is adopted.
[0008] また、アルコキシシランオリゴマーのアルコール溶液を主成分とする非クロム防鲭表 面処理剤を、 V、くつかの亜鉛めつき業者力も入手した白あげ (クロメート処理をしてな い)亜鉛めつきボルトに塗布したところ、白鲭発生に対する防鲭性能が入手先の亜鉛 めっき業者の亜鉛めつきボルトによって大きく変わるという問題があった。  [0008] In addition, non-chromium anti-fouling surface treatment agent mainly composed of an alcohol solution of alkoxysilane oligomer V, whitening (without chromate treatment) zinc, which was also obtained by several manufacturers of zinc plating When applied to galvanized bolts, there was a problem that the antifouling performance against the occurrence of white glazing varied greatly depending on the zinc galvanized bolts of the galvanizing supplier.
[0009] この問題を回避し得る方法として、本発明者らは特許文献 3で、非クロム化成処理 を施してカゝらアルコキシシランオリゴマーのアルコール溶液を主成分とする非クロム防 鲭表面処理剤を塗布する防鲭処理を提案した。しかし、その表面処理は少なくとも一 処理プロセスの追加を必要とし、簡易なプロセスで表面処理をした 、と 、うユーザー の要望にそぐわない。  [0009] As a method for avoiding this problem, the present inventors have disclosed in Patent Document 3 a non-chromium anti-mold surface treatment agent comprising a non-chromium chemical conversion treatment and an alcohol solution of an alkoxysilane oligomer as a main component. Proposal of anti-bacterial treatment to apply However, the surface treatment requires the addition of at least one treatment process, and does not meet the user's request that the surface treatment is performed with a simple process.
[0010] その後、この非クロム表面処理剤をボルトなどの亜鉛めつきした金属部材に塗布し 、皮膜を付けた状態で 1年程保管しておいたところ、皮膜にひびが発生し、皮膜が少 し厚く(3 μ m以上)塗布されて ヽる箇所では、ひびの発生に続 ヽて皮膜が剥離する 現象が認められ、亜鉛めつき表面に白い粉が付き、白鲭が出たように見えるという問 題が生じた。 [0010] Thereafter, this non-chromium surface treatment agent is applied to a zinc-plated metal member such as a bolt. If the film is stored for about a year with the film attached, the film will crack, and in places where the film is applied a little thicker (more than 3 μm), the crack will continue to occur. The phenomenon of peeling of the film was observed, and there was a problem that white powder appeared on the zinc-plated surface and it appeared to have white glaze.
[0011] 特許文献 4には、防鲭性能について書かれていないが、アルコキシシランに酸触媒 と水を加えて加水分解し、アルコールと水を蒸発させながら縮重合させたコーティン グ用組成物が開示されて 、る。このコーティング用組成物の原料に用いられて 、るァ ルコキシシランは、実施例ではすべてアルキルアルコキシシランである。また、この組 成物中にはジルコニウム、チタン又はアルミニウムのキレートイ匕合物を配合することが 書かれている。しかし、実施例にジルコニウムキレートイ匕合物を配合した例(同文献の 実施例 7を参照)があるが、有機キレートチタンィ匕合物を配合した例がなぐ亜鉛表面 を有する金属部材にコーティングした例もな 、。  [0011] Although Patent Document 4 does not describe antifungal performance, a coating composition obtained by hydrolyzing an alkoxysilane by adding an acid catalyst and water and performing condensation polymerization while evaporating the alcohol and water is disclosed. It is disclosed. In the examples, the alkoxysilanes used as raw materials for the coating composition are all alkylalkoxysilanes. In addition, it is described that a chelate compound of zirconium, titanium or aluminum is blended in this composition. However, there is an example in which a zirconium chelate compound is blended in the examples (see Example 7 of the same document), but a coating on a metal member having a zinc surface is the same as the example in which an organic chelate titanium compound is blended. There was no example.
[0012] また特許文献 5には、アルコキシシランとチタンアルコキシドをアルコール溶液中で 酢酸を触媒に使って加水分解後縮重合したシリカ系の保護コーティング液が開示さ れている。その実施例には、保護コーティングする対象物としてチタンなどの金属部 材の他に CFRP (炭素繊維強化プラスチック)も例示されている。また、保護コーティ ング液の原料に使うアルコキシシランとしてエポキシ官能基を持つアルコキシシラン 及びアミノ基を有するアルコキシシラン (アルカリ性を示す)を使用して 、る。アルコキ シシランのゾル溶液中にぉ 、て、アミノ基はオリゴマー分子間の架橋反応を促進する アルカリ性触媒として機能するので、ゾル溶液がゲルイ匕し易いという欠点がある。同 文献の実施例 4 (アルコールと水の混合溶媒のコーティング液を使用して ヽる)では、 この保護コーティング液を溶融亜鉛めつき鋼板に塗布してコーティングした後、コー ティング膜の基材に対する密着性を評価して 、る力 防鲭性能にっ 、ては調べて ヽ ない。 [0012] Patent Document 5 discloses a silica-based protective coating solution in which alkoxysilane and titanium alkoxide are subjected to condensation polymerization after hydrolysis in an alcohol solution using acetic acid as a catalyst. In this embodiment, CFRP (carbon fiber reinforced plastic) is exemplified as an object to be protectively coated in addition to metal parts such as titanium. In addition, alkoxysilane having an epoxy functional group and alkoxysilane having an amino group (indicating alkalinity) are used as the alkoxysilane used as a raw material for the protective coating solution. In the sol solution of alkoxysilane, the amino group functions as an alkaline catalyst that promotes the cross-linking reaction between oligomer molecules, so that the sol solution has a drawback that gelation easily occurs. In Example 4 of the same document (using a coating solution of a mixed solvent of alcohol and water), this protective coating solution is applied to a hot dip galvanized steel sheet, coated, and then applied to the coating film substrate. Evaluate the adhesion and check the strength and anti-fouling performance.
特許文献 1 :特開 2005-97719号公報  Patent Document 1: JP-A-2005-97719
特許文献 2 :特開 2005 -264170号公報  Patent Document 2: JP 2005-264170 A
特許文献 3 :特開 2006-225761号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2006-225761
特許文献 4:特開平 7- 157715号公報 特許文献 5:特開 2003- 160759号公報 Patent Document 4: Japanese Patent Laid-Open No. 7-157715 Patent Document 5: Japanese Patent Laid-Open No. 2003-160759
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 先に提案したアルコキシシランオリゴマーのアルコール溶液を主成分とする非クロム 防鲭表面処理剤にはいくつか問題点があった。特に種々の異なる条件で亜鉛めつき された金属部材に、先に提案した非クロム防鲭表面処理剤で表面処理を施したとき に、満足できる防鲭性能が得られないことがあった。また、空気中の湿気が溶液中に 取り込まれるに伴って、防鲭性能を増強するために配合している分散処理した少量 の酸ィ匕チタン超微粉末が凝集する傾向があった。凝集した酸ィ匕チタン超微粉末を含 む表面処理剤を金属部材の亜鉛表面に塗布して皮膜を形成すると、表面が少し白 っぽくなつて白鲭が発生したように見えた。また、ゾル ·ゲル法を用いたコーティング 膜に特有の現象として、塗布した皮膜を乾燥後焼き付けると溶媒の蒸発に伴って塗 布皮膜中に引っ張り応力が生じ、この応力によって皮膜にひびが発生する。ひびが 発生した箇所では、皮膜に少し厚い部分があると時間の経過とともに剥離する傾向 があった。皮膜が剥離すると白い粉となって金属部材の表面に白鲭が生じたように見 え、その箇所の防鲭性能が低下する。  [0013] The previously proposed non-chromium antifouling surface treatment agent mainly composed of an alcohol solution of an alkoxysilane oligomer has some problems. In particular, when a metal member galvanized under various different conditions is subjected to surface treatment with the previously proposed non-chromium antifouling surface treatment agent, satisfactory antifouling performance may not be obtained. Further, as moisture in the air was taken into the solution, a small amount of the dispersion-treated titanium oxide ultrafine powder blended to enhance the anti-mold performance tended to aggregate. When a coating was formed by applying a surface treatment agent containing agglomerated titanium oxide ultrafine powder to the zinc surface of the metal member, the surface became slightly whitish and white haze appeared to appear. In addition, as a phenomenon peculiar to coating films using the sol-gel method, when the applied film is dried and baked, tensile stress is generated in the coated film as the solvent evaporates, and this stress causes cracks in the film. . In the cracked part, if there was a little thick part in the film, it tended to peel off over time. When the film is peeled off, it appears as white powder and white dust appears on the surface of the metal member.
[0014] 本発明は、先に提案したアルコキシシランオリゴマーのアルコール溶液を主成分と する非クロム防鲭表面処理剤の有する問題点を解消し、防鲭性能を向上させた非ク ロム防鲭表面処理剤を提供することを目的とする。  [0014] The present invention eliminates the problems of the previously proposed non-chromium antifouling surface treatment agent mainly composed of an alcohol solution of an alkoxysilane oligomer, and improves the antifouling performance. It aims at providing a processing agent.
[0015] すなわち本発明は、非クロム防鲭表面処理剤の防鲭性能を更に向上させることによ つて、従来実用的な防鲭性能を付与し難ぐ表面処理剤との相性が悪カゝつた亜鉛め つき部材に対しても、実用的なレベルの防鲭性能を付与するとともに、形成した防鲭 皮膜に亀裂や剥離が発生し難!ヽ非クロム防鲭表面処理剤を提供することを目的とす る。  [0015] That is, the present invention further improves the antifouling performance of the non-chromium antifouling surface treatment agent, and thus has a poor compatibility with a surface treatment agent that is difficult to impart practical antifungal performance. In addition to imparting a practical level of antifouling performance to the zinc-plated parts, cracks and peeling are unlikely to occur in the formed antifouling coating! Purpose.
課題を解決するための手段  Means for solving the problem
[0016] 本発明の亜鉛表面を有する金属部材用非クロム防鲭表面処理剤は重量平均分子 量 Mwが 1, 000〜10, 000であるアルコキシシランオリゴマーのアルコール溶液で あり、アルコキシシランオリゴマー分子中のケィ素原子の一部が有機キレートチタンィ匕 合物からのチタンで置換されており、アルコール溶液がケィ素とチタンとの合計量に 対して 2. 5〜15原子%のチタンを含んでいて、アルコール溶液中のケィ素とチタンと の合計量がケィ素とチタンそれぞれを SiOと TiOに換算したとき 5〜20重量%であ [0016] The non-chromium antifouling surface treating agent for metal members having a zinc surface according to the present invention is an alcohol solution of an alkoxysilane oligomer having a weight average molecular weight Mw of 1,000 to 10,000. Some of the key atoms are organic chelated titanium The total amount of titanium and titanium in the alcohol solution is substituted with titanium from the compound, and the alcohol solution contains 2.5 to 15 atomic percent titanium relative to the total amount of silicon and titanium. The amount is 5 to 20% by weight when converted to SiO and TiO respectively.
2 2  twenty two
る。  The
[0017] アルコキシシランオリゴマーのアルコール溶液力 アルコキシシラン原料と有機キレ ートチタン化合物とを含むアルコール溶液に酸触媒と水をカ卩えてアルコキシシラン原 料と有機キレートチタンィ匕合物とを加水分解及び縮重合し合成したものであることが 好ましい。  [0017] Alcohol solution power of alkoxysilane oligomer Hydrolysis and condensation of alkoxysilane raw material and organic chelate titanium compound by adding acid catalyst and water to alcohol solution containing alkoxysilane raw material and organic chelate titanium compound A polymerized and synthesized product is preferred.
[0018] あるいは、アルコキシシランオリゴマーのアルコール溶液力 アルコキシシラン原料 を含むアルコール溶液に酸触媒と水をカ卩えてアルコキシシラン原料を加水分解及び 縮重合してアルコキシシランオリゴマーを合成して、そのアルコキシシランオリゴマー のアルコール溶液に有機キレートチタンィ匕合物を混合したものであることができる。  [0018] Alternatively, an alcohol solution of an alkoxysilane oligomer is synthesized by synthesizing an alkoxysilane oligomer by hydrolyzing and polycondensing the alkoxysilane raw material by adding an acid catalyst and water to an alcohol solution containing the alkoxysilane raw material. It can be a mixture of an oligomeric alcohol solution and an organic chelate titanium compound.
[0019] 本発明で、有機キレートチタン化合物がチタンアルコキシドのアルコキシ基の 40〜  [0019] In the present invention, the organic chelate titanium compound is 40 to 40% of the alkoxy group of the titanium alkoxide.
60%をキレート剤でブロック又は置換したものであることが好ましい。  60% is preferably blocked or substituted with a chelating agent.
[0020] 本発明で、アルコキシシランオリゴマーの合成に用いるアルコキシシラン原料の 90 〜99モル0 /0がテトラアルコキシシランモノマー又はテトラアルコキシシランの低分子 量オリゴマー(重量平均分子量 Mwが 800より小さい。低分子量オリゴマーの場合重 合して 、るモノマーの合計モル量でモル0 /0を求める。 )で残部がアルキルアルコキシ シランモノマーであることが好まし 、。 [0020] In the present invention, the alkoxysilane alkoxysilane raw material of 90 to 99 mole 0/0 tetraalkoxysilane monomer or low molecular weight oligomer (weight average molecular weight Mw of tetraalkoxysilane used in the synthesis of oligomers 800 smaller. Low If heavy combined with the molecular weight oligomers, Ru seek mole 0/0 in a total molar amount of monomers.) it is preferred that the remainder is an alkyl alkoxy silane monomers.
[0021] 本発明で、アルキルアルコキシシランモノマーカ^チルトリメトキシシラン、メチルトリ エトキシシラン、ェチルトリメトキシシラン、ビニルトリメトキシシラン及び γ -メタクリロキ シプロピルトリメトキシシラン力も選ばれた少なくとも 1種であることが好ましい。  [0021] In the present invention, the alkylalkoxysilane monomer cation trimethoxysilane, methyltriethoxysilane, etyltrimethoxysilane, vinyltrimethoxysilane and γ-methacryloxypropyltrimethoxysilane force are also at least one selected. It is preferable.
[0022] 本発明で、キレート剤が 13 -ジケトンあるいはオタチレングリコールであることが好ま しい。 β -ジケトンとしてはァセチルアセトンを用いることが好ましい。  [0022] In the present invention, the chelating agent is preferably a 13-diketone or octylene glycol. As the β-diketone, acetylacetone is preferably used.
[0023] 本発明のアルコキシシランオリゴマーのアルコール溶液がアルコールに可溶な榭 脂を 0. 1〜2重量%含んでいることが好ましい。そのアルコールに可溶な榭脂がポリ ビュルブチラールであることが好まし 、。  [0023] The alcohol solution of the alkoxysilane oligomer of the present invention preferably contains 0.1 to 2% by weight of an alcohol-soluble resin. It is preferred that the alcohol soluble in the alcohol is polybutyral.
[0024] 本発明のアルコキシシランオリゴマーのアルコール溶液がホウ酸を 0. 004〜0. 10 重量%含んで 、ることが好ま U 、。 [0024] The alcohol solution of the alkoxysilane oligomer of the present invention contains boric acid in the range of 0.004 to 0.10. U, preferred to include, by weight.
[0025] 本発明で、アルコキシシランオリゴマーのアルコール溶液中のアルコール成分の 2 0〜40重量%が、沸点 97°C以上のアルコールあるいはグリコールエーテルであるこ とが好ましい。 [0025] In the present invention, it is preferable that 20 to 40% by weight of the alcohol component in the alcoholic solution of the alkoxysilane oligomer is an alcohol or glycol ether having a boiling point of 97 ° C or higher.
[0026] さらに、沸点 97°C以上のアルコールあるいはグリコールエーテル力 n-プロピルァ ルコール(沸点 97°C)、 n-ブチルアルコール(沸点 117°C)、プロピレングリコールモ ノメチルエーテル(以下「PGME」と略す。沸点 121°C)、エチレンダルコールモノエ チルエーテル(「ェチルセ口ソルブ」と呼ぶことがある。沸点 136°C)及びエチレンダリ コールターシャリーブチルエーテル(以下「ETB」と略す。沸点 152. 5°C)から選ばれ た少なくとも 1種であることが好ましい。  [0026] Further, alcohol having a boiling point of 97 ° C or higher or glycol ether strength n-propyl alcohol (boiling point 97 ° C), n-butyl alcohol (boiling point 117 ° C), propylene glycol monomethyl ether (hereinafter referred to as “PGME”) Abbreviated, boiling point 121 ° C), sometimes referred to as ethylene dalcol monoethyl ether (both 136 ° C boiling point) and ethylene tert-butyl ether (hereinafter referred to as “ETB”, boiling point 152.5 ° C) And at least one selected from the group consisting of
[0027] 本発明の金属部材が上述した非クロム防鲭表面処理剤で形成された平均厚さ 0. 5 〜3 μ mのシリカ質皮膜で被覆された亜鉛表面を持つ。  [0027] The metal member of the present invention has a zinc surface coated with a siliceous film having an average thickness of 0.5 to 3 µm formed of the above-described non-chromium antifouling surface treatment agent.
[0028] その非クロム防鲭表面処理剤が金属部材の亜鉛表面にディップアンドスピン法で 塗布されてシリカ質皮膜が形成されたものであることが好ましい。また、シリカ質皮膜 が塗布後 120°C以下の温度で焼き付けられたものであることが好ましい。  [0028] It is preferable that the non-chromium antifouling surface treatment agent is applied to the zinc surface of the metal member by a dip-and-spin method to form a siliceous film. In addition, it is preferable that the siliceous film is baked at a temperature of 120 ° C. or less after coating.
[0029] 本発明にお 、てシリカを主成分とする皮膜すなわちシリカ質皮膜は SiO成分を 65  [0029] In the present invention, a film containing silica as a main component, that is, a siliceous film, has a SiO component of 65%.
2 重量%以上含む皮膜を意味する。  It means a film containing 2% by weight or more.
発明の効果  The invention's effect
[0030] 本発明の非クロム防鲭表面処理剤では、アルコール溶液としたアルコキシシランォ リゴマー中のケィ素の一部をチタンで置換することによって、シリカ質皮膜を被覆した 亜鉛表面の防鲭性能を向上させることができ、塩水噴霧試験で白鲭発生までの時間 を 210時間以上、赤鲭発生までの時間を 1150時間以上に伸ばすとともに、亜鉛表 面へのシリカ質皮膜の密着性を向上させることができる。  [0030] With the non-chromium antifouling surface treatment agent of the present invention, the antifouling performance of the zinc surface coated with a siliceous film by substituting a part of the silicon in the alkoxysilane oligomer in the alcohol solution with titanium. In the salt spray test, the time until the occurrence of white glaze is increased to 210 hours or more, the time to occurrence of red glaze to 1150 hours or more, and the adhesion of the siliceous film to the zinc surface is improved. be able to.
[0031] 本発明による非クロム防鲭表面処理剤のアルコール溶液を金属部材の亜鉛表面に 塗布し 0. 5〜3 mの薄いシリカ質皮膜を形成すれば、従来のクロメート処理および 発明者らが先に提案したアルコキシシランオリゴマーのアルコール溶液を主成分とす る非クロム防鲭表面処理剤よりも優れた耐白鲭性を金属部材の亜鈴表面に付与でき る。さらに、経時によってひびがシリカ質皮膜に生じる現象を抑制し、ひびの生じたシ リカ質皮膜が剥離する現象を防止することができる。 [0031] By applying an alcohol solution of the non-chromium antifouling surface treatment agent according to the present invention to the zinc surface of a metal member to form a thin siliceous film of 0.5 to 3 m, the conventional chromate treatment and the inventors Whitening resistance superior to the non-chromium antifouling surface treatment agent mainly composed of the alcohol solution of the alkoxysilane oligomer previously proposed can be imparted to the dumbbell surface of the metal member. In addition, it suppresses the phenomenon of cracks in the siliceous film over time, and cracks occur. It is possible to prevent a phenomenon in which the liquor film peels off.
[0032] 本発明の非クロム防鲭表面処理剤で金属部材の亜鉛表面に形成されたシリカ質皮 膜は、皮膜にナイフなどで傷を付けても、傷ついた部分に空気中の湿気によって皮 膜成分が拡散し傷を薄い皮膜で覆って白鲭の発生を防止する自己修復性を示す。 発明を実施するための最良の形態  [0032] The siliceous film formed on the zinc surface of the metal member with the non-chromium antifouling surface treatment agent of the present invention is not affected by moisture in the air even if the film is scratched with a knife or the like. Self-healing property that prevents the occurrence of white glaze by covering the wound with a thin film by spreading the film components. BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 本発明による非クロム防鲭表面処理剤の主な有効成分であるアルコキシシランオリ ゴマ一はオリゴマー分子中の一部のケィ素がチタンで置換されたアルコキシシランォ リゴマーであり、ケィ素又はチタンと酸素とが交互に結合した分子構造を持ち、良好 な造膜性を示す長さを持つ線状分子を形成して ヽる。 [0033] The alkoxysilane oligomer, which is the main active ingredient of the non-chromium antifouling surface treating agent according to the present invention, is an alkoxysilane oligomer in which a part of the oligomer in the oligomer molecule is substituted with titanium. Alternatively, a linear molecule having a molecular structure in which titanium and oxygen are alternately bonded and having a length exhibiting a good film forming property is formed.
[0034] このアルコキシシランオリゴマー分子の重量平均分子量 Mwが小さ過ぎると造膜性 と金属部材に付与できる防鲭性能が劣り、大き過ぎるとアルコール溶液の安定性 (保 存性を意味し、時間が経つとゲルイ匕して使用不能になる。)が損なわれるので、アル コキシシランオリゴマー分子が 1, 000〜10, 000の重量平均分子量 Mwを持つ必要 がある。 [0034] If the weight average molecular weight Mw of this alkoxysilane oligomer molecule is too small, the film-forming property and the antifouling performance that can be imparted to the metal member are inferior, and if it is too large, the stability of the alcohol solution (meaning preservation, time After that, it becomes gelled and becomes unusable.) The alkoxysilane oligomer molecule must have a weight average molecular weight Mw of 1,000,000 to 10,000.
[0035] アルコキシシラン原料のアルコール溶液に酸触媒と水を添カ卩して加水分解し縮重 合して得たアルコキシシランオリゴマーは線状分子になっており、この線状分子は単 一線状又は梯子型線状のいずれかであると推定される。他方、アルコール溶液中で アルカリ性触媒を用いて縮重合して得たアルコキシシランオリゴマーでは、オリゴマー の三次元的な縮重合が進む傾向があってゲルイ匕し易くアルコキシシランオリゴマー 溶液の保存性が悪い。  [0035] An alkoxysilane oligomer obtained by adding an acid catalyst and water to an alcoholic solution of an alkoxysilane raw material and hydrolyzing and condensing it is a linear molecule, and this linear molecule is a single linear molecule. Or it is presumed that it is either a ladder type linear shape. On the other hand, an alkoxysilane oligomer obtained by polycondensation using an alkaline catalyst in an alcohol solution tends to progress in the three-dimensional polycondensation of the oligomer, and is easily gelled, so that the storage stability of the alkoxysilane oligomer solution is poor.
[0036] 分子中のケィ素の一部をチタンで置換したアルコキシシランオリゴマーのより好まし い重量平均分子量 Mwが 1, 500〜5, 000である。本発明において、アルコキシシラ ンオリゴマーの重量平均分子量 Mwは、テトラヒドロフランを溶媒に使い、ポリスチレン 標準を用いてゲルパーミエイシヨンクロマトグラフで測定することができる。  [0036] A more preferred weight average molecular weight Mw of an alkoxysilane oligomer in which a part of the cage in the molecule is substituted with titanium is 1,500 to 5,000. In the present invention, the weight average molecular weight Mw of the alkoxysilane oligomer can be measured by gel permeation chromatography using a polystyrene standard using tetrahydrofuran as a solvent.
[0037] アルコキシシランオリゴマー分子中のケィ素の一部をチタンで置換したアルコール 溶液力 なる非クロム防鲭表面処理剤を用い、金属部材の亜鉛表面にシリカ質皮膜 を形成すると良好な防鲭性能を示し、シリカ質皮膜が 1 μ mより薄くても亜鉛表面を 有する金属部材に実用性のある防鲭性能を付与できる。皮膜にひびや剥離が起きる ことを防ぐには、シリカ質皮膜を薄くすることが有効である。 [0037] Good antifouling performance when a siliceous film is formed on the zinc surface of a metal member using a non-chromium antifouling surface treatment agent with alcohol solution in which part of the silicon in the alkoxysilane oligomer molecule is replaced with titanium Even if the siliceous film is thinner than 1 μm, it is possible to impart practical antifouling performance to a metal member having a zinc surface. Cracking or peeling occurs on the film In order to prevent this, it is effective to make the siliceous film thinner.
[0038] さらに、分子中のケィ素の一部をチタンで置換したアルコキシシランオリゴマーのァ ルコール溶液を金属部材の亜鈴表面に塗布して形成したシリカ質皮膜は、亜鉛表面 との密着性に優れておりシリカ質皮膜にひびが生じることがあってもシリカ質皮膜が 剥離しない。  [0038] Further, the siliceous film formed by applying an alcohol solution of an alkoxysilane oligomer in which a part of the silicon in the molecule is substituted with titanium to the dumbbell surface of the metal member has excellent adhesion to the zinc surface. Even if the siliceous film is cracked, the siliceous film does not peel off.
[0039] アルコキシシランオリゴマー分子中のケィ素の一部をチタンで置換した非クロム防 鲭表面処理剤で形成したシリカ質皮膜が、亜鉛表面を有する金属部材に付与する 防鲭性能の程度は、ケィ素のチタンによる置換割合が少ないと小さぐ多過ぎると得 られる性能の割りにコスト高となるので、その置換割合を 2. 5〜15原子%とするのが 好ましい。より好ましいアルコキシシランオリゴマー分子中のケィ素のチタンによる置 換割合は 3〜 10原子%である。  [0039] The degree of the antifouling performance that the siliceous film formed with the non-chromium antifouling surface treatment agent in which a part of the silicon in the alkoxysilane oligomer molecule is substituted with titanium is imparted to the metal member having the zinc surface. If the ratio of substitution of titanium with titanium is small and too small, the cost will be high for the performance to be obtained, so the substitution ratio is preferably 2.5 to 15 atomic%. A more preferable replacement ratio of titanium in the alkoxysilane oligomer molecule with titanium is 3 to 10 atomic%.
[0040] ケィ素の一部をチタンで置換したアルコキシシランオリゴマーは、アルコキシシラン 原料とチタンアルコキシドとを含むアルコール溶液に少量の塩酸などの酸触媒と水を 加えて加水分解し、縮重合させて合成できる。しかし、活性の大きいチタンアルコキ シドが急速に加水分解すると沈殿が生成するので、チタンアルコキシドをアルコール 溶媒中でアルコキシシラン原料と混合して縮重合させる前に、チタンアルコキシドの アルコキシ基の 40〜60%をキレート剤でブロック又は置換し、チタンアルコキシドの 反応活性を小さくしておくのが好まし!/、。  [0040] The alkoxysilane oligomer in which a part of the cage is substituted with titanium is hydrolyzed and polycondensed by adding a small amount of acid catalyst such as hydrochloric acid and water to an alcohol solution containing the alkoxysilane raw material and titanium alkoxide. Can be synthesized. However, because the active titanium alkoxide is rapidly hydrolyzed, a precipitate is formed. Therefore, before mixing titanium alkoxide with an alkoxysilane raw material in an alcohol solvent and subjecting it to condensation polymerization, 40-60% of the alkoxy group of the titanium alkoxide is removed. It is preferable to block or substitute with a chelating agent to reduce the reaction activity of the titanium alkoxide! /.
[0041] チタンアルコキシドとしてチタンテトラアルコキシドを用いることが好ましい。チタンテ トラアルコキシドとしてチタンテトライソプロボキシドおよびチタンテトラ n-ブトキシドを 使うことができる。アルコキシ基をブロック又は置換するキレート剤としてァセチルァセ トンなどの j8 -ジケトンおよびォクチレンダルコールを使用できる。ァセチルアセトンは 亜鉛表面と反応して亜鉛層を消耗するので、本発明の非クロム防鲭表面処理剤でチ タンアルコキシドのキレート剤には亜鈴表面との反応性の小さいオタチレングリコール を使うのが好ましい。 [0041] Titanium tetraalkoxide is preferably used as the titanium alkoxide. Titanium tetraisopropoxide and titanium tetra n -butoxide can be used as titanium tetraalkoxide. J8-diketones such as acetylethylacetone and octylenedarcol can be used as chelating agents to block or substitute alkoxy groups. Since acetylacetone reacts with the zinc surface and wears out the zinc layer, the non-chromium antifouling surface treatment agent of the present invention and tantalene glycol, which has a low reactivity with the dumbbell surface, are used as the chelating agent for the titanium alkoxide. Is preferred.
[0042] 本発明の非クロム防鲭表面処理剤は、アルコキシシランモノマーやその低分子量 オリゴマー(重量平均分子量 Mwが 800より小さ 、。オリゴマーの場合は重合して!/、る モノマーの全モル量を用いてモル%を求める。 )をアルコキシシラン原料として用いそ のアルコール溶液中に塩酸などの酸触媒を添加して加水分解し、縮重合して所要の 重量平均分子量を持つ線状分子のアルコキシシランオリゴマーにする。酸触媒として 塩酸、硫酸、硝酸などの鉱酸の他、酢酸などの有機酸を使うことができる。 [0042] The non-chromium antifouling surface treatment agent of the present invention is an alkoxysilane monomer or a low molecular weight oligomer thereof (weight average molecular weight Mw is smaller than 800. In the case of an oligomer, it is polymerized! /, The total molar amount of the monomer. To obtain the mol%.)) Is used as the alkoxysilane raw material. Hydrolysis is performed by adding an acid catalyst such as hydrochloric acid to the alcoholic solution of the above, and polycondensation is performed to obtain a linear molecular alkoxysilane oligomer having a required weight average molecular weight. In addition to mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid, organic acids such as acetic acid can be used as the acid catalyst.
[0043] それに代えて、予め所要の重量平均分子量を持つように酸触媒を使って縮重合し たアルコキシシランオリゴマーのアルコール溶液を作り、次 、でこの溶液に有機キレ ートチタン化合物のアルコール溶液を混合して有機キレートチタンィ匕合物をアルコキ シシランオリゴマーと反応させ、非クロム防鲭表面処理剤を調製することもできる。  [0043] Instead, an alcohol solution of an alkoxysilane oligomer that has been condensation-polymerized using an acid catalyst so as to have a required weight average molecular weight is prepared in advance, and then an alcohol solution of an organic chelate titanium compound is mixed with this solution. Then, the organic chelate titanium compound can be reacted with an alkoxysilane oligomer to prepare a non-chromium antifouling surface treatment agent.
[0044] 有機キレートチタン化合物のアルコール溶液を所要の重量平均分子量 Mwを持つ アルコキシシランオリゴマーのアルコール溶液と後から混合すると、有機キレートチタ ン化合物の分子がアルコキシシランオリゴマーに付加重合したアルコキシシランオリ ゴマーが得られる。  [0044] When an alcohol solution of an organic chelate titanium compound is mixed later with an alcohol solution of an alkoxysilane oligomer having a required weight average molecular weight Mw, an alkoxysilane oligomer in which the molecules of the organic chelate titanium compound are addition-polymerized to the alkoxysilane oligomer is obtained. can get.
[0045] オタチレングリコールでキレート化したチタンアルコキシドのアルコール溶液をアル コキシシランモノマー又はアルコキシシランオリゴマーのアルコール溶液に混合して 得た溶液は、ァセチルアセトンでキレートイ匕したチタンアルコキシドのアルコール溶液 をアルコキシシランオリゴマーのアルコール溶液に混合した溶液と比べて、黄色の着 色が少ない。  [0045] A solution obtained by mixing an alcohol solution of a titanium alkoxide chelated with octylene glycol with an alcohol solution of an alkoxysilane monomer or an alkoxysilane oligomer is obtained by mixing an alcohol solution of titanium alkoxide chelated with acetylylacetone. Compared to a solution mixed with an alcohol solution of an alkoxysilane oligomer, yellow coloration is less.
[0046] 本発明の非クロム防鲭表面処理剤において、実用レベルの防鲭性能が得られる厚 さのシリカ質皮膜を金属部材の亜鉛表面に形成するために、チタン成分を含むアル コキシシランオリゴマーのアルコール溶液中におけるケィ素とチタンとの合計量がケィ 素とチタンとをそれぞれ SiOと TiOに換算したときに 5〜20重量%である。ケィ素と  [0046] In the non-chromium antifouling surface treatment agent of the present invention, an alkoxysilane containing a titanium component is used to form a siliceous film having a thickness that provides a practical level of antifouling performance on the zinc surface of a metal member. The total amount of silicon and titanium in the oligomeric alcohol solution is 5 to 20% by weight when converting silicon and titanium to SiO and TiO, respectively. With key
2 2  twenty two
チタンとのより好ましい合計量が 7〜 15重量%である。  A more preferred total amount with titanium is 7 to 15% by weight.
[0047] アルコキシシランオリゴマーの重量平均分子量 Mwが大き ヽ方が防鲭性能に優れ たシリカ質皮膜を形成でき皮膜にひびを生じにくいので、防鲭表面処理剤溶液の保 存性を損なわない範囲で大きくするのが好ましい。具体的には、アルコキシシランォ リゴマーの重量平均分子量 Mw力 S1, 000〜10, 000、好ましくは 1, 500〜5, 000と なるように縮重合させる。  [0047] The weight average molecular weight Mw of the alkoxysilane oligomer is large. On the other hand, a siliceous film with excellent antifouling performance can be formed, and the film does not easily crack, so that the preservation property of the antifouling surface treatment solution is not impaired. It is preferable to make it larger. Specifically, the polycondensation is performed so that the weight average molecular weight of the alkoxysilane oligomer is Mw force S1, 000 to 10,000, preferably 1,500 to 5,000.
[0048] このようなアルコキシシランオリゴマーは、出発原料を混合したアルコール溶液を p H4付近に調整すれば合成できる。短 ヽ時間で縮重合反応の進行が飽和状態となる ようにアルコール溶液の温度を 35°C〜45°Cに保ちアルコキシシランオリゴマーの合 成を行うのが好ましい。縮重合反応が飽和になっていれば、アルコキシシランオリゴ マーのアルコール溶液を室温で保存する間の縮重合反応の進行が遅 、ので、アル コキシシランオリゴマーのアルコール溶液の保存性が良い。 [0048] Such an alkoxysilane oligomer can be synthesized by adjusting an alcohol solution mixed with starting materials to around pH4. The progress of the condensation polymerization reaction becomes saturated in a short time. Thus, it is preferable to synthesize the alkoxysilane oligomer while keeping the temperature of the alcohol solution at 35 ° C to 45 ° C. If the polycondensation reaction is saturated, the progress of the polycondensation reaction during the storage of the alcohol solution of the alkoxysilane oligomer at room temperature is slow, so the preservability of the alcohol solution of the alkoxysilane oligomer is good.
[0049] アルキル基などの有機基を持つアルキルアルコキシシランであるシランカップリング 剤をテトラアルコキシシランモノマーあるいは低分子量アルコキシシランオリゴマーと 共重合させてアルコキシシランオリゴマーに有機成分を導入できる。また、アルコキシ シランオリゴマーのアルコール溶液中にアルコールに可溶な有機榭脂を溶カゝしてシリ 力質皮膜中に有機成分を導入できる。 [0049] An organic component can be introduced into the alkoxysilane oligomer by copolymerizing a silane coupling agent, which is an alkylalkoxysilane having an organic group such as an alkyl group, with a tetraalkoxysilane monomer or a low molecular weight alkoxysilane oligomer. Moreover, an organic component soluble in alcohol can be dissolved in an alcoholic solution of an alkoxysilane oligomer and an organic component can be introduced into the siliceous film.
[0050] アルコキシシラン原料としては、価格が安!、テトラエトキシシラン、テトラメトキシシラ ン、ある 、はこれらモノマーを縮重合した低分子量アルコキシシランオリゴマーを使う のが好ま U、。低分子量アルコキシシランオリゴマーとして巿販されて!/、るェチルシリ ケート 40 (Mw= 745の 5量体)ある!/ヽはメチルシリケート 51 (Mw 470の 4量体)を 用!/、ることができる。 [0050] As the alkoxysilane raw material, it is preferable to use tetraethoxysilane, tetramethoxysilane, or a low molecular weight alkoxysilane oligomer obtained by condensation polymerization of these monomers. Sold as a low molecular weight alkoxysilane oligomer! /, Ruetyl silicate 40 (Mw = 745 pentamer)! / ヽ can use methyl silicate 51 (Mw 470 tetramer)! /.
[0051] また、チタンアルコキシドの反応活性を抑制するのに用いたキレート剤が合成後の アルコキシシランオリゴマーのアルコール溶液中に残留し、防鲭表面処理剤の塗膜 を 100°C付近の温度で亜鉛表面に焼き付けた後にもシリカ質皮膜中に残り、形成さ れたシリカ質皮膜を軟らかくする働きの一部を担うと推定される。  [0051] In addition, the chelating agent used to suppress the reaction activity of the titanium alkoxide remains in the alcohol solution of the alkoxysilane oligomer after synthesis, and the coating of the antifouling surface treatment agent is performed at a temperature around 100 ° C. It is estimated that it remains in the siliceous film even after being baked on the zinc surface and plays a part in the softening of the formed siliceous film.
[0052] チタンアルコキシド 1モルに対して 2モルを超える量のキレート剤を配合した場合、 立体障害があって 2モルを超える分のキレート剤の多くは有機キレートチタン化合物 の形成に使われない。チタンアルコキシドに用いるキレート剤として、ァセチルァセト ンなどの j8 -ジケトン又はオタチレングリコールを使用するのが好ましい。  [0052] When a chelating agent in an amount exceeding 2 moles per 1 mole of titanium alkoxide is blended, most of the chelating agents in excess of 2 moles due to steric hindrance are not used for the formation of organic chelating titanium compounds. As a chelating agent used for titanium alkoxide, it is preferable to use j8-diketone such as acetylylacetone or octylene glycol.
[0053] ァセチルアセトンを過剰に配合すると、ァセチルアセトンの沸点が 140°Cと高いの で、高沸点の溶媒としてアルコール溶液中に含まれる。オタチレングリコールは 240 °Cを超える高沸点溶媒なので、ァセチルアセトンと同様にアルコール溶液中で高沸 点溶媒として機能する。  [0053] When acetylacetone is added excessively, the boiling point of acetylosylacetone is as high as 140 ° C, so it is contained in the alcohol solution as a high boiling point solvent. Since octylene glycol is a high-boiling solvent above 240 ° C, it functions as a high-boiling point solvent in an alcohol solution like acetylenic acetone.
[0054] 有機基が直接ケィ素と結合して 、るアルキルアルコキシシランモノマーをアルコキ シシランオリゴマー中に導入すると、有機基が一部のケィ素に結合した状態のアルコ キシシランオリゴマーになる。ケィ素と結合した有機基の存在により、金属部材表面に 形成したシリカ質皮膜を軟らかくすることができ、皮膜に亀裂が発生するのを抑制す る効果が得られる。アルキルアルコキシシランモノマーとしては、防鲭性能を劣化させ る傾向の小さいメチルトリメトキシシラン、メチルトリエトキシシラン、ェチルトリメトキシシ ラン、ビュルトリメトキシシラン及び γ -メタクリロキシプロピルトリメトキシシラン力も選ば れる少なくとも 1種を選ぶのが好まし 、。特にビュルトリメトキシシランは好まし 、アル キルアルコキシシランモノマーである。 [0054] When an alkyl alkoxysilane monomer is introduced into an alkoxysilane oligomer with an organic group directly bonded to the silicon, the alcohol in a state in which the organic group is bonded to a part of the silicon is introduced. Becomes a xysilane oligomer. Due to the presence of the organic group bonded to the silicon, the siliceous film formed on the surface of the metal member can be softened, and the effect of suppressing the occurrence of cracks in the film can be obtained. As the alkylalkoxysilane monomer, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane, which have a low tendency to deteriorate the antifungal performance, are also selected. I prefer to pick at least one. In particular, butyltrimethoxysilane is preferred as an alkylalkoxysilane monomer.
[0055] しかし、有機基を多く導入し過ぎると、亜鉛表面にシリカ質皮膜を被覆したときに得 られる防鲭性能が低下する傾向があるので、アルキルアルコキシシランモノマーをァ ルコキシシラン原料全体の 1〜 10モル%の割合、さらには 2〜8モル%の割合で配合 してアルコキシシランオリゴマーを合成するのが好ましい。  [0055] However, if too many organic groups are introduced, the antifouling performance obtained when the siliceous film is coated on the zinc surface tends to be reduced. It is preferable to synthesize an alkoxysilane oligomer by blending at a ratio of 10 mol%, further 2-8 mol%.
[0056] また、アルコールに可溶な榭脂を非クロム防鲭表面処理剤のアルコール溶液中に 溶かしておき、金属部材の亜鉛表面に防鲭表面処理剤を塗布し、形成するシリカ質 皮膜中に榭脂成分を導入することができる。シリカ質皮膜中に榭脂成分を導入すると 、皮膜が柔らかくなって皮膜に亀裂が発生するのを抑制することができる。アルコー ルに可溶な有機樹脂が水溶性であると、形成したシリカ質皮膜の耐水性が損なわれ るので、アルコールに溶けるが水に溶けない榭脂を選ぶのが好ましい。  [0056] Further, in the siliceous film formed by dissolving the alcohol soluble in alcohol in an alcohol solution of a non-chromium antifouling surface treatment agent and applying the antifouling surface treatment agent to the zinc surface of the metal member The rosin component can be introduced into the. When a rosin component is introduced into the siliceous film, it is possible to suppress the generation of cracks in the film by softening the film. If the organic resin soluble in alcohol is water-soluble, the water resistance of the formed siliceous film is impaired. Therefore, it is preferable to select a resin that is soluble in alcohol but not water.
[0057] この目的に適した榭脂としてはポリビュルプチラール榭脂が好ま 、。非クロム防鲭 表面処理剤のアルコール溶液に溶けて 、るポリビュルブチラール榭脂の量が 0. 1〜 2重量%、さらには 0. 2〜1重量%であるのが好ましい。  [0057] Polyuraptilal resin is preferred as a resin suitable for this purpose. It is preferable that the amount of polybutybutyral resin dissolved in the alcohol solution of the non-chromic anti-bacterial surface treatment agent is 0.1 to 2% by weight, more preferably 0.2 to 1% by weight.
[0058] ポリビニルブチラール榭脂など有機樹脂の他に、少量のホウ酸を非クロム防鲭表面 処理剤のアルコール溶液中に溶力しておくと、亀裂の発生を抑制する効果がある。ァ ルコール溶液中に 0. 004〜0. 10重量%のホウ酸が溶けているのが好ましい。  [0058] In addition to an organic resin such as polyvinyl butyral resin, if a small amount of boric acid is dissolved in an alcohol solution of a non-chromium antifouling surface treatment agent, there is an effect of suppressing the occurrence of cracks. It is preferable that 0.004 to 0.10% by weight of boric acid is dissolved in the alcohol solution.
[0059] ディップアンドスピン法は、亜鉛表面を有する金属部材を非クロム防鲭表面処理剤 のアルコール溶液中に浸し、濡れた金属部材をアルコール溶液から取り出して遠心 機に取り付けた金属製の籠に入れ、籠を回転させて遠心力で金属部材表面に付い た余分の表面処理剤のアルコール溶液を振り飛ばす塗布である。籠から取り出した 薄い液膜 (塗膜)で覆われた金属部材は、乾燥後 100°C前後の温度で焼き付けてシリ 力質皮膜とする。 [0059] In the dip-and-spin method, a metal member having a zinc surface is immersed in an alcohol solution of a non-chromium antifouling surface treatment agent, and the wet metal member is taken out of the alcohol solution and placed in a metal cage attached to a centrifuge. This is an application that sprinkles off the excess alcohol solution of the surface treatment agent attached to the surface of the metal member by centrifugal force. The metal parts covered with a thin liquid film (coating film) taken out from the bowl are baked at about 100 ° C after drying and Use a strong film.
[0060] 金属部材の亜鉛表面にディップアンドスピン法で形成する防鲭表面処理剤の塗膜 厚さは、金属部材にカ卩える遠心力の大きさの他、アルコール溶液中のアルコキシシラ ンオリゴマーの濃度とアルコール溶液の粘度に影響される。シリカ質皮膜が厚 、と形 成したシリカ質皮膜に亀裂が生じる傾向があり、防鲭表面処理剤の液の消費が増え て表面処理のコストが嵩むので、シリカ質皮膜を要求される防鲭性能を満足する範 囲で薄く形成するのが好まし 、。  [0060] The coating thickness of the antifouling surface treatment agent formed on the zinc surface of the metal member by the dip-and-spin method is not limited to the magnitude of the centrifugal force trapped on the metal member, and the alkoxysilane oligomer in the alcohol solution Affected by the concentration of alcohol and the viscosity of the alcohol solution. Since the siliceous film formed with a thick siliceous film tends to crack, the consumption of the antifouling surface treatment liquid increases and the cost of the surface treatment increases, so that the siliceous film requires a siliceous film. It is preferable to make it thin as long as the performance is satisfied.
[0061] 金属部材表面に形成するシリカ質皮膜の膜厚は使用目的に合わせて変えるが、 0 . 5 /z mより薄いと実用性のある防鲭性能を付与しがたい。実用性のある防鲭性能を 発揮できるように、亜鉛表面に形成したシリカ質皮膜を平均厚さ 0. 5〜3 ;ζ ΐηとする のが好ましい。平均厚さの薄いシリカ質皮膜は亀裂や剥離が生じにくいが、防鲭性 能が劣る。反対にシリカ質皮膜が厚いと亀裂が発生し易いので、平均厚さ 0. 7〜2 mがより好ましい。  [0061] The thickness of the siliceous film formed on the surface of the metal member is changed according to the purpose of use, but if it is less than 0.5 / zm, it is difficult to provide practical antifungal performance. It is preferable that the siliceous film formed on the zinc surface has an average thickness of 0.5 to 3 and ζ ΐη so that practical antifouling performance can be exhibited. A thin siliceous film with an average thickness is less prone to cracking and peeling, but it has poor antifungal performance. On the other hand, if the siliceous film is thick, cracks are likely to occur, so an average thickness of 0.7 to 2 m is more preferable.
[0062] 金属部材表面に形成する防鲭表面処理剤塗膜の膜厚は、非クロム防鲭表面処理 剤のアルコール溶液濃度を変え、ディップアンドスピン法で塗布するときの回転数を 変えて遠心力を調節し、あるいは非クロム防鲭表面処理剤の溶液の粘度を増粘効果 のある榭脂成分の添加量を変えて、調節することができる。  [0062] The film thickness of the antifouling surface treatment agent coating film formed on the surface of the metal member is changed by changing the alcohol solution concentration of the non-chromium antifouling surface treatment agent and changing the number of revolutions when applied by the dip-and-spin method. The viscosity of the solution of the non-chromium antifouling surface treatment agent can be adjusted by changing the addition amount of the resin component having a thickening effect.
[0063] ディップアンドスピン法はボルトやナットなど寸法が小さい金属部材に防鲭表面処 理剤の溶液を塗布するのに適している。また、非クロム防鲭表面処理剤のアルコー ル溶液の塗布は、塗布する製品の寸法や形状に合わせ、ディップアンドスピン法の 他にディップドレイン法、スプレー法、刷毛塗りなどを採用することができる。  [0063] The dip-and-spin method is suitable for applying a solution of the anti-fouling surface treatment agent to a metal member having a small size such as a bolt or a nut. In addition, an alcohol solution of a non-chromium antifouling surface treatment agent can be applied in accordance with the size and shape of the product to be applied, in addition to the dip-and-spin method, the dip drain method, spray method, brush coating, etc. .
[0064] 非クロム防鲭表面処理剤のアルコール溶液の濃度を金属部材に塗布する方法に 応じて変えるのが好ましぐディップドレイン法やスプレー法で塗布する場合には濃度 の薄 、溶液で塗布するのが好まし 、。  [0064] When applying by the dip drain method or spray method, it is preferable to change the concentration of the alcohol solution of the non-chromium antifouling surface treatment agent according to the method of applying to the metal member. I prefer to do it.
[0065] 非クロム防鲭表面処理剤の溶媒であるアルコールは、低沸点のアルコールのみで は室温が高いと蒸発が早ぐアルコールが蒸発すると溶液の濃度が増すので、塗布 に適した濃度を保つよう、必要に応じてアルコールを補給する。  [0065] The alcohol used as the solvent for the non-chromium antifouling surface treatment agent maintains a concentration suitable for coating because the alcohol with a low boiling point alone increases the concentration of the solution when the alcohol evaporates quickly when the room temperature is high. Refill with alcohol as needed.
[0066] また雨の日など、湿度が高!、室内で金属部材の表面に非クロム防鲭表面処理剤を 塗布すると表面に結露が生じて塗布した非クロム防鲭表面処理剤塗膜が変質してシ リカ質皮膜の防鲭性能が低下することがある。 [0066] In addition, the humidity is high, such as on rainy days, and a non-chromium antifouling surface treatment agent is applied to the surface of a metal member indoors. When applied, condensation may occur on the surface, and the applied non-chromium anti-fouling surface treatment coating may be altered to reduce the anti-fouling performance of the silica coating.
[0067] アルコールの蒸発を少なくして結露を避けるため、夏季にはアルコール溶液中のァ ルコール成分の 20〜40重量%を沸点 97°C以上のアルコールあるいはグリコールェ 一テルとするのが好ましい。  [0067] In order to reduce condensation of alcohol by reducing evaporation of alcohol, it is preferable that 20 to 40% by weight of the alcohol component in the alcohol solution is alcohol having a boiling point of 97 ° C or higher or glycol ether in summer.
[0068] 非クロム防鲭表面処理剤の溶液中に配合する沸点 97°C以上のアルコールある!/ヽ はグリコールエーテルとして n-プロピルアルコール、 n-ブチルアルコール、 PGME、 エチレングリコールモノェチルエーテル、 ETBを使うことができる。特に、 ETBは、防 鲭表面処理剤の液を塗布する作業雰囲気の湿度が高!ヽとき、形成する塗膜の表面 に結露が生じて形成するシリカ質皮膜の防鲭性能を損うのを抑制する効果のある好 ましい溶媒である。  [0068] Alcohol having a boiling point of 97 ° C or higher is incorporated in the solution of the non-chromium antifouling surface treatment agent! / ヽ is n-propyl alcohol, n-butyl alcohol, PGME, ethylene glycol monoethyl ether, You can use ETB. In particular, ETB has a tendency to impair the antifouling performance of the siliceous film formed by condensation on the surface of the coating film to be formed when the humidity of the working atmosphere in which the liquid for the surface treating agent is applied is high! It is a preferred solvent with an inhibitory effect.
[0069] 小さな寸法をした金属部材の亜鉛表面への非クロム防鲭表面処理剤塗膜の形成 は、一度に多数の金属部材の表面に形成するのが容易なので、前述のディップアン ドスピン法を適用するのが好まし 、。  [0069] Since the formation of a non-chromium anti-fouling surface treatment agent coating on the zinc surface of a metal member having a small size is easy to form on the surface of a large number of metal members at once, the dip-and-spin method described above is used. Preferred to apply ,.
[0070] 塗布した防鲭表面処理剤の溶液の塗膜を乾燥後 120°C以下の温度に保持して焼 付けてシリカ質皮膜とするのが好ま 、。ユーザーは焼付け温度が低 、のを好むの で、室温で乾燥し硬化させることも出来るが、 80°C以下では付与できる防鲭性能が 少し劣る。短時間に能率良く良好な防鲭性能を持ったシリカ質皮膜を金属部材の表 面に形成できるよう、 90〜110°Cで焼き付けてシリカ質皮膜を形成するのが好ましい 。 90〜110°Cで防鲭皮膜を焼き付ける加熱時間は 10〜25分であるのが好ましい。  [0070] It is preferable that the coating film of the applied antifouling surface treating agent solution is dried and maintained at a temperature of 120 ° C or lower and baked to form a siliceous film. Since the user prefers a low baking temperature, it can be dried and cured at room temperature, but the protective performance that can be imparted at 80 ° C or below is slightly inferior. It is preferable to form the siliceous film by baking at 90 to 110 ° C. so that a siliceous film having good antifouling performance can be efficiently formed in a short time on the surface of the metal member. The heating time for baking the anticorrosive film at 90 to 110 ° C is preferably 10 to 25 minutes.
[0071] 本発明における亜鉛表面は、亜鉛を主成分とする合金であることができ、本発明の 非クロム防鲭表面処理剤は各種の亜鈴めつきが施された金属部材ゃ亜鈴ダイカスト 部材に好ましく適用することができる。  [0071] The zinc surface in the present invention can be an alloy containing zinc as a main component, and the non-chromium antifouling surface treatment agent of the present invention can be applied to a metal member to which various dumbbells are applied, dumbbell die-cast member. It can be preferably applied.
実施例  Example
[0072] 以下本発明を、実施例を挙げて具体的に説明するが、本発明はこれら実施例に限 定されるものではない。  Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0073] アルコキシシランオリゴマーの合成 [0073] Synthesis of alkoxysilane oligomer
チタンアルコキシドであるチタンテトライソプロポキシド(マツモトファインケミカル (株 )製の TA- 10) 25. 5重量部に、イソプロピルアルコール 60重量部及びァセチルァセ トン 18重量部を混合し、チタンテトライソプロボキシドの有する加水分解性のイソプロ ポキシ基の約半分をキレート剤でブロックした溶液 (黄色を呈する)を得た。 Titanium tetraisopropoxide (Matsumoto Fine Chemical Co., Ltd.), a titanium alkoxide TA-10) 2) 55.5 parts by weight are mixed with 60 parts by weight of isopropyl alcohol and 18 parts by weight of acetylethylacetone, and about half of the hydrolyzable isopropoxy group of titanium tetraisopropoxide is added with a chelating agent. A blocked solution (yellow color) was obtained.
[0074] 次に、アルコキシシラン原料としてェチルシリケート 40 (多摩化学工業 (株)製品、テ トラエトキシシランを縮重合した略 5量体のオリゴマーで、ケィ素を SiO換算量で約 4 [0074] Next, as an alkoxysilane raw material, ethyl silicate 40 (product of Tama Chemical Industry Co., Ltd., an approximately pentameric oligomer obtained by polycondensation of tetraethoxysilane;
2  2
0重量%含む。) 250重量部、ビニルトリメトキシシラン (東レ 'ダウコーユング (株)製の SH6300) 25重量部及びイソプロピルアルコール約 65重量部を混合した混合液に、 上で得たチタンテトライソプロボキシドのイソプロポキシ基の約半分をキレート剤のァ セチルアセトンでブロックした溶液を混合した。この溶液に 1規定の塩酸 5. 5重量部 と水 27. 9重量部を混合した酸性水を添加し、攪拌しながら 24時間 35°Cに保温して 縮重合させ、表 1の A欄に示すアルコキシシランオリゴマー溶液 Aを得た。アルコキシ シランオリゴマー溶液 Aに用いたアルコキシシラン原料のうち 9. 2モル0 /0(この場合、 ェチルシリケート 40はモノマーとして計算した。以下同じ。)がアルキルアルコキシシラ ンモノマーであった。 Contains 0% by weight. ) 250 parts by weight, vinyltrimethoxysilane (SH6300 manufactured by Toray Dow Co., Ltd.) and a mixture of about 65 parts by weight of isopropyl alcohol were mixed with the isopropoxy group of titanium tetraisopropoxide obtained above. A solution in which about half of the solution was blocked with the chelating agent acetylacetone was mixed. To this solution was added acidic water mixed with 5.5 parts by weight of 1N hydrochloric acid and 27.9 parts by weight of water, and the mixture was subjected to polycondensation by stirring at 35 ° C for 24 hours with stirring. The alkoxysilane oligomer solution A shown was obtained. Of alkoxysilane raw materials used in the alkoxy silane oligomer solution A 9. 2 mol 0/0 (in this case, E chill Silicate 40 was calculated as a monomer. Hereinafter the same.) Was alkylalkoxy Sila Nmonoma.
[0075] ここで得たアルコキシシランオリゴマー溶液 Aはケィ素の 4. 7原子0 /0がチタンで置 換されており、ケィ素とチタンを SiOと TiOに換算した合計含有量は 24. 6重量%で [0075] Here, the alkoxysilane oligomer solution A obtained are substitution with titanium 4.7 atomic 0/0 of Kei element, the total content in terms of Kei element and titanium SiO and TiO are 24.6 % By weight
2 2  twenty two
あった。このアルコキシシランオリゴマーの重量平均分子量をゲルパーミエイシヨンク 口マトグラフ (東ソ一 (株)の HLC-8120GPC)を使って測定 (テトラヒドロフランを溶媒 に使い、ポリスチレンを標準に使用)した値は 2010であった。  there were. The weight average molecular weight of this alkoxysilane oligomer was measured using a gel permeation chromatography (HLC-8120GPC from Tosoichi Co., Ltd.) (using tetrahydrofuran as the solvent and polystyrene as the standard). It was.
[0076] 同様にして、ビュルトリメトキシシランの配合量を減らして表 1の B欄に記した調合の 組成物を攪拌しながら 35°Cに 24時間保温して縮重合させ、アルコキシシランオリゴ マー溶液 B (チタンによるケィ素の置換率は 5原子0 /0、ケィ素とチタンを SiOと TiO [0076] Similarly, the composition of the formulation described in column B of Table 1 was reduced by reducing the blending amount of butyltrimethoxysilane, and kept at 35 ° C for 24 hours while being stirred for condensation polymerization to obtain an alkoxysilane oligomer. solution B (degree of substitution Kei element by titanium 5 atomic 0/0, SiO and TiO and Kei-containing and titanium
2 2 に換算した合算含有量は 21. 8重量0 /0であった。)を得た。アルコキシシランオリゴマ 一溶液 Bに用 、たアルコキシシラン原料のうち 2モル0 /0がアルキルアルコキシシラン モノマーで、キレート剤のァセチノレアセトンは用いたチタンテトライソプロポキシドの持 つイソプロポキシ基の約半分をブロックする量であった。このアルコキシシランオリゴ マーの重量平均分子量は 2270であった。 Combined content in terms of 2 2 was 21.8 wt 0/0. ) In alkoxysilane 2 mole 0/0 alkyl alkoxy silane monomer of the alkoxysilane raw material use was the oligomer first solution B, about the § isethionate Honoré acetone lifting one isopropoxy titanium tetraisopropoxide using chelating agents It was the amount to block half. The weight average molecular weight of this alkoxysilane oligomer was 2270.
[0077] 次に、過剰のァセチルアセトン(用いたチタンテトライソプロポキシドの持つイソプロ ポキシ基の 1. 5倍にあたるァセチルアセトンを配合した。)を配合し表 1の C欄に記し た調合の組成物を撹拌しつつ 35°Cに 24時間保温して縮重合させ、黄色に着色した アルコキシシランオリゴマー溶液 C (チタンによるケィ素の置換率は 6. 6原子0 /0で、 Si Oと TiOに換算した合計含有量は 21. 4重量%であった。)を得た。アルコキシシラ[0077] Next, an excess of acetylosylacetone (the isoprop of titanium tetraisopropoxide used) Acetylacetone, 1.5 times the amount of the poxy group, was added. ) And the composition of the formulation shown in column C of Table 1 was stirred for 24 hours at 35 ° C while agitating, and was subjected to polycondensation to give a yellow colored alkoxysilane oligomer solution C (replacement rate of titanium with titanium) is 6. 6 atoms 0/0, the total content in terms of Si O and TiO got 21. was 4 wt%.). Alkoxysila
2 2 twenty two
ンオリゴマー溶液 Cに配合したアルコキシシラン原料のうち 2モル0 /0がアルキルアルコ キシシランモノマーであった。このアルコキシシランオリゴマーの重量平均分子量は 1 760であった。 2 mole 0/0 of the alkoxysilane raw materials formulated to down oligomer solution C was alkylalkoxy silane monomer. The weight average molecular weight of this alkoxysilane oligomer was 1760.
[0078] また、アルキルアルコキシシランモノマーとして γ -メタクリロキシプロピルトリメトキシ シラン(SH6030)をアルコキシシラン原料全体の 16. 7モル0 /0用い、イソプロピルァ ルコールの代わりに η-ブチルアルコールを溶媒に用 、て調合した表 1の D欄に記し た組成物を撹拌しつつ 35°Cに 24時間保温して縮重合させ、アルコキシシランオリゴ マー溶液 D (チタンによるケィ素の置換率は 14. 3%で、ケィ素とチタンを SiOと TiO [0078] In addition, gamma as alkyl alkoxy silane monomer - use a butyl alcohol solvent - with methacryloxypropyl trimethoxysilane (SH6030) of the entire alkoxysilane raw material 16.7 mole 0/0, in place of isopropyl § alcohol η The composition described in column D of Table 1 prepared in this manner was subjected to polycondensation by stirring at 35 ° C for 24 hours while stirring, to obtain an alkoxysilane oligomer solution D (the substitution rate of titanium with titanium was 14.3%). In the case of silicon and titanium, SiO and TiO
2 に換算した合計含有量は 23. 4重量%であった。)を得た。なお、ここで用いたァセ The total content converted to 2 was 23.4% by weight. ) The case used here
2 2
チルアセトンは、チタンテトライソプロポキシドの持つイソプロポキシ基の 25%に相当 する量であった。このアルコキシシランオリゴマーの重量平均分子量は 1720であつ た。  The amount of tylacetone was equivalent to 25% of the isopropoxy group of titanium tetraisopropoxide. The alkoxysilane oligomer had a weight average molecular weight of 1720.
[0079] また、チタンテトライソプロボキシドに代えチタンテトラ n-ブトキシドを用いて調合した 表 1の E欄に記す組成物を撹拌しつつ 35°Cに 24時間保温して縮重合させアルコキ シシランオリゴマー溶液 E (チタンによるケィ素の置換率は 12. 2原子0 /0で、ケィ素と チタンを SiOと TiOに換算した合計含有量は 18. 7重量%であった。)を得た。なお [0079] In addition, titanium tetra-n-butoxide was used instead of titanium tetraisopropoxide, and the composition described in column E of Table 1 was subjected to condensation polymerization by stirring at 35 ° C for 24 hours while stirring. oligomer solution E (the substitution rate of Kei element by titanium at 12.2 atomic 0/0, the total content in terms of Kei element and titanium SiO and TiO was 18.7 wt%.) was obtained. In addition
2 2  twenty two
、アルコキシシランオリゴマー溶液 Eにはアルキルアルコキシシランモノマーを添カロし なかった。また、キレート剤のァセチルアセトンの使用量はチタンテトラ n-ブトキシドの 持つ n -ブトキシ基の 33 %に相当する量であつた。このアルコキシシランオリゴマーの 重量平均分子量は 1910であった。  The alkoxysilane oligomer solution E was not added with an alkylalkoxysilane monomer. The amount of the acetylating agent acetylylacetone used was equivalent to 33% of the n-butoxy group of titanium tetra n-butoxide. The alkoxysilane oligomer had a weight average molecular weight of 1910.
[0080] また、アルキルアルコキシシランモノマーとしてメチルトリエトキシシラン(東レ'ダウコ 一-ング (株)製の SZ6383)をアルコキシシラン原料全体の 8. 0モル%用いて調合 した表 1の F欄に記す組成物を撹拌しつつ 35°Cに 24時間保温して縮重合させ、アル コキシシランオリゴマー溶液 F (チタンによるケィ素の置換率は 4. 9原子0 /0で、ケィ素 とチタンを SiOと TiOに換算した合計含有量は 22. 7重量%であった。)を得た。な[0080] Also, methyl triethoxysilane (SZ6383 manufactured by Toray Dow Co., Ltd.) as an alkylalkoxysilane monomer was prepared by using 8.0 mol% of the total alkoxysilane raw material, and is shown in column F of Table 1. composition by condensation polymerization was kept for 24 hours in 35 ° C with stirring, substitution rate of Kei element according alkoxide silane oligomer solution F (titanium 4. 9 atomic 0/0, Keimoto The total content of titanium and titanium converted to SiO and TiO was 22.7% by weight. ) Na
2 2 twenty two
おここで用いたァセチルアセトンは、チタンイソプロポキシドの持つイソプロポキシ基 の 42%に相当した量であった。このアルコキシシランオリゴマーの重量平均分子量 は 1990であった。  Acetylacetone used here was an amount corresponding to 42% of the isopropoxy group of titanium isopropoxide. The alkoxysilane oligomer had a weight average molecular weight of 1990.
[0081] 次に、アルキルアルコキシシランモノマーやチタンアルコキシドを配合しないで調合 した表 1の G欄に記す組成物を撹拌しつつ 35°Cに 24時間保温して縮重合させアル コキシシランオリゴマー溶液 G (ケィ素を SiOに換算した含有量は 20重量0 /。であった [0081] Next, an alkoxysilane oligomer solution prepared by mixing the composition described in column G of Table 1 prepared without blending an alkylalkoxysilane monomer or titanium alkoxide with stirring at 35 ° C for 24 hours, followed by condensation polymerization. G (content of conversion of silicon to SiO was 20 weight 0 /.
2  2
。)を得た。このアルコキシシランオリゴマーの重量平均分子量は 2310であった。  . ) The alkoxysilane oligomer had a weight average molecular weight of 2310.
[0082] また、表 1の H欄に記すように、ェチルシリケート 40のアルコール溶液にビュルトリメ トキシシランをアルコキシシラン原料全体の 2モル%配合し、チタンアルコキシドを配 合しない調合の組成物を撹拌しつつ 40°Cに 20時間保温して縮重合させアルコキシ シランオリゴマー溶液 H (チタン成分を含まず、ケィ素を SiOに換算した含有量は 20 [0082] Further, as described in column H of Table 1, 2 mol% of butyltrimethoxysilane was mixed with an alcohol solution of ethyl silicate 40 in the total amount of the alkoxysilane raw material, and a composition having a composition not containing titanium alkoxide was stirred. While maintaining the temperature at 40 ° C for 20 hours for condensation polymerization, the alkoxysilane oligomer solution H (contains no titanium component;
2  2
. 2重量%であった。)を得た。このアルコキシシランオリゴマーの重量平均分子量は 2004であった。  2% by weight. ) The alkoxysilane oligomer had a weight average molecular weight of 2004.
[0083] 次に、表 1の I欄に記すように、ビニルトリメトキシシランの配合量を増やしアルコキシ シラン原料全体の 9. 1モル%とし、チタンアルコキシドを配合しない調合の組成物を 撹拌しつつ 40°Cに 20時間保温して縮重合させアルコキシシランオリゴマー溶液 1 (チ タン成分を含まず、ケィ素を SiOに換算した含有量は 19. 3重量%であった。)を得  [0083] Next, as described in column I of Table 1, the amount of vinyltrimethoxysilane was increased to 9.1 mol% of the total alkoxysilane raw material, and the composition of the formulation not containing titanium alkoxide was stirred. It was kept at 40 ° C. for 20 hours and subjected to condensation polymerization to obtain an alkoxysilane oligomer solution 1 (containing no titanium component, and content obtained by converting silicon to SiO was 19.3% by weight).
2  2
た。このアルコキシシランオリゴマーの重量平均分子量は 2020であった。  It was. The alkoxysilane oligomer had a weight average molecular weight of 2020.
[0084] また、表 1の J欄に記すように、ェチルシリケート 40の 250重量部に対し、ビニルトリメ トキシシラン、 1規定の塩酸水および水を加えた調合の組成物を 35°Cで 24時間保温 してアルコキシシランオリゴマーを合成した。合成後このアルコキシシランオリゴマー のアルコール溶液を約 2年 6月間密閉状態で保管してお!、たアルコール溶液中のァ ルコキシシランオリゴマーの重量平均分子量を測定したところ 7820であった。合成 直後のアルコキシシランオリゴマーの重量平均分子量は通常 2, 000前後なので、縮 重合が保管中にさらに進んだものと理解した。 [0084] As shown in column J of Table 1, a composition prepared by adding vinyltrimethoxysilane, 1N hydrochloric acid and water to 250 parts by weight of ethyl silicate 40 at 35 ° C for 24 hours The alkoxysilane oligomer was synthesized by keeping warm. After synthesis, the alcohol solution of the alkoxysilane oligomer was stored in a sealed state for about 2 years and 6 months, and the weight average molecular weight of the alkoxysilane oligomer in the alcohol solution was measured to be 7820. Since the weight average molecular weight of the alkoxysilane oligomer immediately after synthesis is usually around 2,000, it was understood that the condensation polymerization further progressed during storage.
[0085] [表 1] [0085] [Table 1]
Figure imgf000018_0001
Figure imgf000018_0001
0ェチルシリケ一ト 40:多摩化学工業 (株)製の低分子量テトラエトキシシシランオリゴマー (5量体、 Si02換算含有量約 40重量 <½)。0 Ethyl silicate 40: Low molecular weight tetraethoxysilane oligomer (Tammer, SiO 2 equivalent content: about 40 wt <½) manufactured by Tama Chemical Co., Ltd.
Oアルキルアルコキシシラン(モル%):モノマーに換算したアルコキシシラン化合物中のアルキルアルコキシシランのモル%。 O alkylalkoxysilane (mol%): mol% of alkylalkoxysilane in the alkoxysilane compound in terms of monomer.
ェチルシリケ一ト 40が亍トラエトキシシランの 5量体なので、 1モル(744.5)を 5モルとして計算した。 Since ethyl silicate 40 is a pentamer of 亍 traethoxysilane, 1 mol (744.5) was calculated as 5 mol.
OSH6300:東レ'ダウコ一ニング (株)製のシランカツプリング剤(ビニルトリメトキシシラン) (Mw: 148.2)  OSH6300: Silane coupling agent (vinyltrimethoxysilane) manufactured by Toray Dow Corning (Mw: 148.2)
OSH6030 :東レ 'ダウコ一ニング (株)製のシランカップリング剤 -メタクリロキシプロピルメトキシシラン) (Mw: 248)  OSH6030: Toray 'Dacon Co., Ltd. silane coupling agent-methacryloxypropylmethoxysilane) (Mw: 248)
OSZ6383 :東レ 'ダウコ一ニング (株)製のメチルトリエトキシシラン (Mw: 178)  OSZ6383: Methyltriethoxysilane (Mw: 178) manufactured by Toray Dow Corning Co., Ltd.
OTA-10:マツモトファインケミカル(株)製のチタンテトライソプロポキシド (Mw: 283.8)  OTA-10: Titanium tetraisopropoxide manufactured by Matsumoto Fine Chemical Co., Ltd. (Mw: 283.8)
OTA-25:マツモトファインケミカル (株)製のチタンテトラ n_ブトキシド (Mw: 339.9) OTA-25: Titanium tetra n_butoxide (Mw: 339.9) manufactured by Matsumoto Fine Chemical Co., Ltd.
[0086] 実施例 1 [0086] Example 1
48重量部のアルコキシシランオリゴマー溶液 Aに、ポリビュルブチラールの 10重量 %ェチルセ口ソルブ溶液を 7. 5重量部、ホウ酸の 0. 6重量%イソプロピルアルコー ル溶液を 1重量部、及びイソプロピルアルコールを 44. 5重量部混合して表 2- 1に示 す実施例 1の非クロム防鲭表面処理剤のアルコール溶液を得た。この非クロム表面 処理剤溶液中のケィ素とチタンを SiOと TiOに換算した合算含有量は 11. 7重量  In 48 parts by weight of alkoxysilane oligomer solution A, 7.5 parts by weight of a 10% by weight butyl acetate solution of polybutyral, 1 part by weight of a 0.6% by weight isopropyl alcohol solution of boric acid, and isopropyl alcohol are added. 44.5 parts by weight were mixed to obtain an alcohol solution of the non-chromium antifouling surface treating agent of Example 1 shown in Table 2-1. The combined content of silicon and titanium in this non-chromium surface treatment solution converted to SiO and TiO is 11.7 wt.
2 2  twenty two
%であった。  %Met.
[0087] 次に、ジンケート浴で亜鉛めつき(めっき厚さ 5〜7 μ m)した M8ボルト(首下長さ 45 mmの半ねじ) 5本を、容器に入れた実施例 1の非クロム防鲭表面処理剤液中に入れ て力き回し、 5本のボルトを容器から取り出して遠心分離機に取り付けたステンレス製 の籠に入れ、籠を 700RPM (回転半径約 150mm)で 4秒間回転させて M8ボルトの 表面に付着している余分の防鲭表面処理剤溶液を振り落とした。次いで、防鲭表面 処理剤で濡れたボルトをステンレス製の金網に載せて焼付け炉に入れ、 60°Cで 10 分間乾燥後、 100°Cに昇温して 15分間保持し焼き付けた。非クロム防鲭表面処理剤 の皮膜で被覆した実施例 1の M8ボルトの 1本を実体顕微鏡 (倍率約 40倍)で観察し て亀裂の有無を調べた。残りの M8ボルト 4本を JIS-Z-2371に基づく塩水噴霧試験 機 (SST)に入れ、 24時間後に 1本を取り出して水で洗い、乾燥して実体顕微鏡 (倍 率約 40倍)でボルトの表面を観察し防鲭皮膜に生じた亀裂の有無を調べた。残りの 3本のボルトはそのまま塩水噴霧試験機に入れておき、 24時間毎にボルトの表面を 肉眼で見て白鲭が発生した時間と赤鲭の発生した時間を記録した。  [0087] Next, the non-chromium of Example 1 in which five M8 bolts (half screw with a neck length of 45 mm) plated with zinc in a zincate bath (plating thickness: 5 to 7 μm) were placed in a container. Put it in the anti-bacterial surface treatment solution and rotate it. Remove the 5 bolts from the container and place them in a stainless steel jar attached to the centrifuge, and rotate the jar at 700 RPM (rotation radius approx. 150 mm) for 4 seconds. The excess antifouling surface treatment solution adhering to the surface of the M8 bolt was shaken off. Next, the bolts wetted with the antibacterial surface treatment agent were placed on a stainless steel wire mesh, placed in a baking furnace, dried at 60 ° C for 10 minutes, heated to 100 ° C, held for 15 minutes, and baked. One of the M8 bolts of Example 1 coated with a coating of a non-chromium antifouling surface treatment agent was observed with a stereomicroscope (magnification approximately 40 times) to check for cracks. Put the remaining 4 M8 bolts into a salt spray tester (SST) based on JIS-Z-2371, remove one after 24 hours, wash with water, dry and bolt with a stereomicroscope (a magnification of about 40 times) The surface of the film was observed for the presence or absence of cracks in the antifouling film. The remaining three bolts were placed in a salt spray test machine as they were, and when the surface of the bolt was observed with the naked eye every 24 hours, the time when white glaze occurred and the time when red glaze occurred were recorded.
[0088] 表 2- 1、表 2-2及び表 3に記す白鲭と赤鲭の発生した時間は、 3本のうち 2本に白 鲭又は赤鲭が観察された時間である。  [0088] The time of occurrence of the white glaze and red glaze shown in Table 2-1, Table 2-2 and Table 3 is the time when white glaze or red glaze was observed in two of the three.
[0089] 実施例 1の非クロム防鲭表面処理剤のシリカ質皮膜を被覆したボルトは皮膜に亀裂 が入り難ぐ白鲭と赤鲭の発生に対する防鲭性能が良好であった。また、実体顕微鏡 で観察したボルトを榭脂中に埋め、切断サンプルを作ってボルトの断面を顕微鏡で 見てシリカ質皮膜の膜厚を調べたところ、平均膜厚は mよりも少し薄力つた。なお 実施例 2〜19及び比較例 1〜3について、同様にして膜厚を調べた結果、比較例 1 の平均皮膜厚さが 2. 3 mであったのを除き、他のボルトに被覆されたシリカ質皮膜 の膜厚は何れも平均膜厚が 0. 7〜2 /ζ πιであった。 [0089] The bolt coated with the siliceous film of the non-chromium antifouling surface treatment agent of Example 1 had good antifouling performance against the occurrence of white glazes and red glazes that were difficult to crack. In addition, when the bolts observed with a stereomicroscope were buried in the resin, a cut sample was made, and when the cross section of the bolt was observed with a microscope to examine the film thickness of the siliceous film, the average film thickness was slightly weaker than m. . For Examples 2 to 19 and Comparative Examples 1 to 3, the film thickness was examined in the same manner, and as a result, the average film thickness of Comparative Example 1 was 2.3 m. Silica coating The average film thickness of each film was 0.7-2 / ζ πι.
[0090] 非クロム防鲭表面処理剤のシリカ質皮膜で被覆した Μ8ボルトを塩水噴霧試験機 中から 24時間後に取り出し、水洗後乾力して皮膜に生じた亀裂の有無を実体顕微 鏡で観察することは、シリカ質皮膜に亀裂を発生させる一種の促進試験であり、非ク ロム防鲭表面処理剤のシリカ質皮膜で被覆した Μ8ボルトを長時間放置した後に防 鲭皮膜に亀裂が発生した力どうかを調べることに代わる試験である。  [0090] Eight bolts covered with a siliceous coating of non-chromium antifouling surface treatment agent were taken out from the salt spray tester 24 hours later, washed with water and dried to observe the presence or absence of cracks in the coating. This is a kind of accelerated test that causes cracks in the siliceous film, and the cracks occurred in the fouling film after leaving the 8 bolts covered with the siliceous film of the non-chromic antifouling surface treatment for a long time. This is an alternative to examining power.
[0091] 実施例 2  [0091] Example 2
52. 8重量部のアルコキシシランオリゴマー溶液 Βに、ポリビュルブチラールの 10重 量%ェチルセ口ソルブ溶液、ホウ酸の 0. 6重量%イソプロピルアルコール溶液及び イソプロピルアルコールを表 2- 1に示した調合で混合し実施例 2の非クロム防鲭表面 処理剤を得た。  52. 8 parts by weight of alkoxysilane oligomer solution In addition to 10% by weight polybutylbutyral solvate solution, 0.6% by weight isopropyl alcohol solution of boric acid, and isopropyl alcohol in the formulation shown in Table 2-1. By mixing, the non-chromium antifouling surface treatment agent of Example 2 was obtained.
[0092] 実施例 3 [0092] Example 3
48. 0重量部のアルコキシシランオリゴマー溶液 Βに対して、ポリビュルプチラール の 10重量0 /0ェチルセ口ソルブ溶液 3重量部、ホウ酸の 0. 6重量0 /0イソプロピルアル コール溶液 5重量部及びイソプロピルアルコール 38重量部を混合して実施例 3の非 クロム防鲭表面処理剤を得た。 48. against the alkoxysilane oligomer solution Β of 0 parts by weight, 10 weight 0/0 Echiruse port cellosolve solution 3 parts by weight of poly Bulle butyral, 0.6 weight 0/0 isopropyl alcohol solution 5 parts by weight of boric acid And 38 parts by weight of isopropyl alcohol were mixed to obtain the non-chromium anti-mold surface treatment agent of Example 3.
[0093] 次いで実施例 1と同様にして Μ8ボルト(首下長さ 45mmの半ねじ)各 5本に実施例 2と実施例 3それぞれの非クロム防鲭表面処理剤をディップアンドスピン法で実施例 1 と同様にして塗布し焼き付けた。各 1本について、実体顕微鏡で亀裂の有無を調べ、 残り各 4本を塩水噴霧試験機に入れ、 24時間後に各 1本を取り出して水で洗い、乾 燥後に同様にして実体顕微鏡で亀裂の有無を調べ、その結果を表 2- 1に記した。ま た、塩水噴霧試験機に入れた各 3本のボルトについて 24時間毎に白鲭と赤鲭の発 生の有無を肉眼で調べ、 3本のうち 2本に白鲭と赤鲭の発生を認めた時間を表 2- 1 にそれぞれ記した。 [0093] Next, in the same manner as in Example 1, 5 volt 8 bolts (half screw with a neck length of 45 mm) were applied to each of Examples 2 and 3 by the dip and spin method. It was applied and baked in the same manner as in Example 1. Each one was examined for cracks with a stereomicroscope, and the remaining 4 were placed in a salt spray tester. After 24 hours, each one was taken out and washed with water. The presence or absence was examined, and the results are shown in Table 2-1. In addition, for each of the three bolts placed in the salt spray tester, the presence or absence of white sharks and red foxes was examined with the naked eye every 24 hours. The allowed times are shown in Table 2-1.
[0094] 実施例 2と実施例 3の耐亀裂性と防鲭性能は何れも良好であり、塩水噴霧試験機 に 24時間入れておいて取り出し、乾力した M8ボルトに被覆してあるシリカ質皮膜に 認められた亀裂は、軽微であって実用上問題のな!、程度のものであった。  [0094] Both the crack resistance and the antifungal performance of Example 2 and Example 3 are good, and they are taken out in a salt spray tester for 24 hours and taken out. The cracks observed in the film were minor and had no practical problem!
[0095] 実施例 4から 6 アルコキシシランオリゴマー溶液 Bを用い、表 2-1に記した調合組成で実施例 4〜 実施例 6の非クロム防鲭表面処理剤を試作した。実施例 4〜実施例 6では、沸点が低 くて蒸発し易 、イソプロピルアルコールの一部を、沸点の高!、アルコール溶媒である PGME、ェチルセ口ソルブ、 n-プロピルアルコールで置き代えそれぞれ実施例 4〜 実施例 6の非クロム防鲭表面処理剤を調製した。これらの非クロム防鲭表面処理剤を 用い、実施例 1と同様にしてディップアンドスピン法で M8ボルトに塗布し、乾燥後焼 き付けた。これらのボルトについて、実施例 1と同様に耐亀裂性と防鲭性能を調べた 。その結果は表 2-1に記した通りで、いずれも良好であった。また、沸点の高いアル コール溶媒を配合することにより、非クロム防鲭表面処理剤のアルコール溶液力ゝらァ ルコールが蒸発するのを遅くでき、気温の高い夏季に防鲭表面処理剤を金属部材 に塗布するときにも、防鲭表面処理剤溶液から蒸発したアルコールの補充量を少な くできた。 [0095] Examples 4 to 6 Using the alkoxysilane oligomer solution B, the non-chromium antifouling surface treatment agents of Examples 4 to 6 were prepared with the composition shown in Table 2-1. In Examples 4 to 6, the boiling point is low and it is easy to evaporate, and a part of isopropyl alcohol is replaced with a high boiling point! 4-The non-chromium anti-mold surface treatment agent of Example 6 was prepared. Using these non-chromium antifouling surface treatment agents, they were applied to M8 bolts by the dip and spin method in the same manner as in Example 1, dried and baked. These bolts were examined for crack resistance and antifouling performance in the same manner as in Example 1. The results were as shown in Table 2-1, and all were good. In addition, by adding an alcohol solvent with a high boiling point, the alcohol solution power of the non-chromium anti-fouling surface treatment agent can be slowed to evaporate, and the fouling surface treatment agent can be applied to metal parts in summer when the temperature is high. Also when applied to the surface, the replenishment amount of alcohol evaporated from the antifouling surface treatment solution was reduced.
[0096] 実施例 7 [0096] Example 7
キレート剤のァセチルアセトンを過剰に加えて合成したアルコキシシランオリゴマー 溶液 Cを使 ヽ、表 2- 1に記した調合組成で実施例7の非クロム防鲭表面処理剤を調 製した。この非クロム防鲭表面処理剤の溶液を、実施例 1と同様にしてジンケート浴 で亜鉛めつきされた M8ボルト 5本にディップアンドスピン法で塗布し、乾燥後焼き付 けた。これらのボルトについて、実施例 1と同様にして、耐亀裂性と防鲭性能を調べ た結果、表 2- 1に示すように、いずれも良好であった力 ァセチルアセトンを過剰に 加えたことによる効果は認められな力つた。 Using the alkoxysilane oligomer solution C synthesized by adding an excess of the chelating agent acetylylacetone, the non-chromium antifouling surface treatment agent of Example 7 was prepared with the composition shown in Table 2-1. This non-chromium antibacterial surface treatment solution was applied by dipping and spinning to five M8 bolts plated with zinc in a zincate bath in the same manner as in Example 1, dried and baked. For these bolts, crack resistance and anti-fouling performance were examined in the same manner as in Example 1. As shown in Table 2-1, excessive force acetylacetone was added in each case. The effect of was unrecognizable.
[0097] 実施例 8 [0097] Example 8
アルキルアルコキシシランモノマーとしてビュルトリメトキシシランに代えて γ -メタタリ ロキシプロピルトリメトキシシランをカ卩えて合成したアルコキシシランオリゴマー溶液 D を使 、、表 2- 1に示した調合組成で実施例 8の非クロム防鲭表面処理剤を調製した。 次 、で、この非クロム防鲭表面処理剤を実施例 1と同様にしてジンケート浴で亜鉛め つきした Μ8ボルト 5本にディップアンドスピン法で塗布し、乾燥後焼き付けた。これら のボルトについて、実施例 1と同様にして、耐亀裂性と防鲭性能を調べた結果、表 2- 1に示すように、防鲭皮膜が軟らかくなり亀裂の発生のな 、防鲭シリカ質皮膜を得る ことができたが、防鲭性能につ!ヽては少し劣る結果になった。 Using an alkoxysilane oligomer solution D synthesized by adding γ-metataloxypropyltrimethoxysilane instead of butyltrimethoxysilane as an alkylalkoxysilane monomer, the formulation composition shown in Table 2-1 was used. A chromium antifungal surface treatment agent was prepared. Next, in the same manner as in Example 1, this non-chromium antifouling surface treatment agent was applied by dipping and spinning to five 8 bolts that were zinc-plated in a zincate bath, dried and baked. These bolts were examined for crack resistance and anti-fouling performance in the same manner as in Example 1. As shown in Table 2-1, the anti-fouling siliceous material had a soft anti-fouling coating and no cracks. Get a film Although it was able to, it was a little inferior in anti-fouling performance!
[0098] 実施例 9  [0098] Example 9
アルキルアルコキシシランモノマーを配合せず、チタンアルコキシドとしてチタンテト ラ n-ブトキシドを用いたアルコキシシランオリゴマー溶液 Eを使 ヽ、表 2- 1に記した調 合組成で実施例 9の非クロム防鲭表面処理剤を調製した。次いで、この非クロム防鲭 表面処理剤を、実施例 1と同様にしてジンケート浴で亜鉛めつきした M8ボルト 5本に ディップアンドスピン法で塗布し、乾燥後 100°Cに 15分間保持し焼き付けた。これら のボルトについて、実施例 1と同様にして、耐亀裂性と防鲭性能を調べた結果、表 2- 1に示すように、何れもほぼ良好であった。  Using the alkoxysilane oligomer solution E containing titanium tetra-n-butoxide as the titanium alkoxide without the addition of an alkylalkoxysilane monomer, the nonchromium antibacterial surface treatment of Example 9 with the composition shown in Table 2-1 An agent was prepared. Next, this non-chromium anti-surface treatment agent was applied by dipping and spinning to five M8 bolts that were galvanized in a zincate bath in the same manner as in Example 1, dried, held at 100 ° C for 15 minutes, and baked. It was. These bolts were examined for crack resistance and antifouling performance in the same manner as in Example 1. As a result, as shown in Table 2-1, they were all good.
[0099] 実施例 10 [0099] Example 10
ァセチルアセトンでキレートイ匕したチタンテトライソプロポキシドを用い、メチルトリエ トキシシランをカ卩えて縮重合させたアルコキシシランオリゴマー溶液 Fを使 、、アルコ ール溶液のアルコールの一部に沸点が 121°Cの PGMEを配合し、表 2- 1に記した 調合組成で実施例 10の非クロム防鲭表面処理剤を調製した。次 ヽで実施例 1と同様 に、この非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5本にデ イッブアンドスピン法で塗布し、乾燥後 100°Cに 15分間保持し焼き付けた。これらの ボルトについて、実施例 1と同様に耐亀裂性と防鲭性能を調べた結果、表 2- 1に示 すように、何れもほぼ良好であった。  Using an alkoxysilane oligomer solution F obtained by condensation polymerization of methyltriethoxysilane using titanium tetraisopropoxide chelated with acetylacetone, a part of the alcohol in the alcohol solution has a boiling point of 121 ° C. PGME was blended, and the non-chromium anti-mold surface treatment agent of Example 10 was prepared with the blending composition shown in Table 2-1. Next, in the same manner as in Example 1, this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by the dive and spin method, and after drying, kept at 100 ° C for 15 minutes. I baked it. These bolts were examined for crack resistance and anti-fouling performance in the same manner as in Example 1. As shown in Table 2-1, they were all good.
[0100] 実施例 11 [0100] Example 11
ビュルトリメトキシシランを配合して縮重合させたチタン成分を含まな 、52. 8重量 部のアルコキシシランオリゴマー溶液 Hに、ポリビュルブチラールの 10重量0 /0ェチル セロソルブ溶液を 3重量部、ホウ酸の 1. 2重量%イソプロピルアルコール溶液を 5重 量部、イソプロピルアルコールを 23. 8重量部、 日本曹達 (株)製のチタンオタチレング リコールキレートイ匕合物(アルコキシ基がイソプロボキシドである化合物。以下、「TODo include titanium component obtained by polycondensation by blending Bulle trimethoxysilane, 52.8 alkoxysilane oligomer solution H of parts, 3 parts by weight of 10 weight 0/0 Echiru cellosolve solution of poly Bulle butyral, boric acid 5 parts by weight of a 1.2% by weight isopropyl alcohol solution, 23.8 parts by weight of isopropyl alcohol, a titanium otatilene glycol chelate compound made by Nippon Soda Co., Ltd. (compound whose alkoxy group is isopropoxide. , "TO
G」と呼ぶ。 )を 5. 4重量部、 PGMEを 10重量部及び ETBを 15重量部混合し、表 2- 2に記した実施例 11の非クロム防鲭表面処理剤を調製した。この非クロム表面処理 剤の溶液中に含まれるケィ素とチタンを SiOと TiOに換算したケィ素とチタンの合 G ". 5.4 parts by weight), 10 parts by weight of PGME, and 15 parts by weight of ETB were mixed to prepare the non-chromium antifouling surface treatment agent of Example 11 shown in Table 2-2. The combination of silicon and titanium in the non-chromium surface treatment solution converted to SiO and TiO.
2 2  twenty two
算含有量は 9. 9重量%であり、ケィ素とチタンの合量に対するチタンの含有割合は 4 . 6原子%であった。 The calculated content is 9.9% by weight, and the content ratio of titanium to the total amount of silicon and titanium is 4%. 6 atomic percent.
[0101] 次いでこの非クロム表面処理剤を、ジンケート浴で亜鉛めつきした M8ボルト 5本に ディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。これ らのボルトにっ ヽて実施例 1と同様に耐亀裂性と防鲭性能を調べた結果、表 2 - 2に 示すように、いずれも良好であった。  [0101] Next, this non-chromium surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. These bolts were examined for crack resistance and fender resistance as in Example 1, and as a result, as shown in Table 2-2, both were good.
[0102] 実施例 12  [0102] Example 12
ビュルトリメトキシシランの配合割合を増やして縮重合させたチタン成分を含まない アルコキシシランオリゴマー溶液 Iを用い、実施例 11と同様にして表 2-2に記した調 合組成で実施例 12の非クロム防鲭表面処理剤を調製した。この非クロム表面処理剤 の溶液中のケィ素とチタンを SiOと TiOに換算したケィ素とチタンの合算含有量は 9  Using an alkoxysilane oligomer solution I that does not contain a titanium component that has been polycondensed by increasing the blending ratio of butyltrimethoxysilane, the same composition as in Example 11 was used, and the non-conducting composition of Example 12 was used. A chromium antifungal surface treatment agent was prepared. The total content of silicon and titanium in this non-chromium surface treatment solution converted to SiO and TiO is 9
2 2  twenty two
. 5重量%であり、ケィ素とチタンの合量に対するチタンの含有割合は 4. 8原子%で めつに。  It is 5% by weight, and the content ratio of titanium to the total amount of silicon and titanium is 4.8 atomic%.
[0103] 次いでこの非クロム防鲭表面処理剤を、ジンケート浴で亜鉛めつきした M8ボルト 5 本にディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。 これらのボルトについて、実施例 1と同様にして耐亀裂性と防鲭性能を調べた結果、 表 2-2に示すように、実施例 11よりも少し防鲭性能が劣っていた力 いずれもほぼ良 好であった。  [0103] Next, this non-chromium antifouling surface treatment agent was applied to five M8 bolts galvanized in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As a result of investigating crack resistance and anti-fouling performance for these bolts in the same manner as in Example 1, as shown in Table 2-2, almost all of the forces that were slightly inferior to Example 11 were obtained. It was good.
[0104] 実施例 13  [0104] Example 13
52. 8重量部のアルコキシシランオリゴマー溶液 Hを用い、実施例 11と比べ TOGを 3. 2重量部に減らし、表 2 -2に記した調合組成で実施例 13の非クロム防鲭表面処 理剤を調製した。この非クロム表面処理剤の溶液中のケィ素とチタンを SiOと TiO  52. Using 8 parts by weight of the alkoxysilane oligomer solution H, the TOG was reduced to 3.2 parts by weight compared to Example 11, and the non-chromium antifouling surface treatment of Example 13 with the composition shown in Table 2-2. An agent was prepared. The silicon and titanium in this non-chromium surface treatment solution are mixed with
2 2 に換算したケィ素とチタンの合算含有量は 11. 0重量%であり、ケィ素とチタンの合 量に対するチタンの含有割合は 2. 7原子%であった。  The total content of C 2 and T 2 converted to 2 2 was 11.0% by weight, and the content of titanium with respect to the total content of C and T was 2.7 atomic%.
[0105] 次!、でこの非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5本 の表面にディップアンドスピンで塗布し、乾燥後 100°Cに 20分保持して焼き付けた。 これらのボルトについて実施例 1と同様に耐亀裂性と防鲭性能を調べた。その結果、 表 2-2に示すように、チタンオタチレングリコールキレートイ匕合物の配合量が実施例 1 1の非クロム防鲭表面処理剤より少ない分、防鲭性能は少し劣っていた力 いずれも ほぼ良好であった。 [0105] Next !, this non-chromium antifouling surface treatment was applied by dip-and-spin to the surface of 5 M8 bolts galvanized in a zincate bath, dried and kept at 100 ° C for 20 minutes and baked . These bolts were examined for crack resistance and fender resistance as in Example 1. As a result, as shown in Table 2-2, the amount of the titanium octylene glycol chelate compound was less than that of the non-chromium antifouling surface treatment agent of Example 11, and the antifouling performance was slightly inferior. Both It was almost good.
[0106] 実施例 14  [0106] Example 14
52. 8重量部のアルコキシシランオリゴマー溶液 Hにチタンオタチレングリコールキ レートイ匕合物の TC- 200 (マツモトファインケミカル (株)製のアルコキシ基が n-オタトキ シドである化合物。以下、「TC-200」と呼ぶ。)を 7. 6重量部配合し、表 2-2に記した 調合組成で実施例 14の非クロム防鲭表面処理剤を調製した。この非クロム表面処理 剤の溶液中のケィ素とチタンを SiOと TiOに換算したケィ素とチタンの合算含有量  52. TC-200 of titanium octylene glycol chelate compound in 8 parts by weight of alkoxysilane oligomer solution H (compound having an alkoxy group of n-otatoxide manufactured by Matsumoto Fine Chemical Co., Ltd. ) Was blended with 7.6 parts by weight, and the non-chromium antifouling surface treating agent of Example 14 was prepared with the composition shown in Table 2-2. The total content of silicon and titanium in the solution of this non-chromium surface treatment agent converted to SiO and TiO.
2 2  twenty two
は 11. 3重量%であり、ケィ素とチタンの合量に対するチタンの含有割合は 4. 6原子 %であった。  Was 11.3% by weight, and the content ratio of titanium to the total amount of silicon and titanium was 4.6 atomic%.
[0107] 次!、でジンケート浴で亜鉛めつきした M8ボルト 5本にこの非クロム表面処理剤溶液 をディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。こ れらのボルトについて、実施例 1と同様にして、耐亀裂性と防鲭性能を調べた結果、 表 2-2に示すように、チタンオタチレングリコールキレートイ匕合物のアルコキシド基が 異なるためか実施例 11と比べて防鲭性能は少し劣るが、ほぼ良好な結果を得た。  [0107] Next, the non-chromium surface treatment solution was applied to five M8 bolts zinc-plated in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. These bolts were examined for crack resistance and antifouling performance in the same manner as in Example 1. As shown in Table 2-2, the alkoxide groups of the titanium octylene glycol chelate compounds were different. Therefore, the anti-fouling performance was slightly inferior to that of Example 11, but almost good results were obtained.
[0108] 実施例 15  [0108] Example 15
52. 8重量部のアルコキシシランオリゴマー溶液 Hに、チタンテトライソプロポキシド 1モルにァセチルアセトン 2モルをカ卩えてチタンテトライソプロポキシドの有するイソプ 口ポキシ基の約半分をキレート化したチタンキレート化合物 TC- 100 (マツモトフアイ ンケミカル (株)製品)を配合し、表 2 -2に記した実施例 15の非クロム表面処理剤溶液 を得た。この非クロム表面処理剤の溶液中のケィ素とチタンを SiOと TiOに換算した  52. Titanium chelate obtained by chelating about half of the isopropoxy group of titanium tetraisopropoxide by adding 2 moles of acetylethylacetone to 1 mole of titanium tetraisopropoxide in 8 parts by weight of alkoxysilane oligomer solution H Compound TC-100 (product of Matsumoto Fine Chemical Co., Ltd.) was blended to obtain a non-chromium surface treating agent solution of Example 15 shown in Table 2-2. The silicon and titanium in this non-chromium surface treatment solution were converted to SiO and TiO.
2 2 ケィ素とチタンの合算含有量は 11. 6重量%であり、ケィ素とチタンの合量に対する チタンの含有割合は 6. 1原子%であった。  2 2 The total content of silicon and titanium was 11.6% by weight, and the content of titanium with respect to the total content of silicon and titanium was 6.1 atom%.
[0109] 次いで、この非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5 本の表面にディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持し焼き付 けた。実施例 1と同様にして、耐亀裂性と防鲭性能を調べた結果、表 2-2に示すよう に、実施例 11と比べて少し防鲭性能は劣っていた力 何れもほぼ良好であった。  [0109] Next, this non-chromium antifouling surface treatment agent was applied by dipping and spinning to the surface of five M8 bolts that had been galvanized in a zincate bath, dried and held at 100 ° C for 20 minutes for baking. As in Example 1, the crack resistance and the antifouling performance were examined. As shown in Table 2-2, the force that was slightly inferior to that of Example 11 was almost good. It was.
[0110] 実施例 16  [0110] Example 16
アルコキシシランオリゴマー溶液 Hの 45. 9重量部に、 TOGと、高沸点アルコール である PGMEとェチルセ口ソルブの両方を配合して表 2 - 2に記した実施例 16の非ク ロム防鲭表面処理剤を調製した。この非クロム防鲭表面処理剤の溶液中のケィ素と チタンを SiOと TiOに換算したケィ素とチタンの合算含有量は 9. 9重量%であり、 In 45.9 parts by weight of alkoxysilane oligomer solution H, TOG and high boiling alcohol The non-chrome anti-mold surface treatment agent of Example 16 described in Table 2-2 was prepared by blending both PGME and ethylcetone solve. The total content of silicon and titanium in the solution of this non-chromium antifouling surface treatment agent converted to SiO and TiO is 9.9% by weight,
2 2  twenty two
ケィ素とチタンの合量に対するチタンの含有割合は 4. 6原子%であった。  The content ratio of titanium to the total amount of silicon and titanium was 4.6 atomic%.
[0111] 次いで、この非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5 本にディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。 実施例 1と同様にしてこれらのボルトについて耐亀裂性と防鲭性能を調べた結果、表 2-2に示すように、実施例 11と比べて少し防鲭性能は劣っていた力 何れもほぼ良 好であった。 [0111] Next, this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As a result of examining the crack resistance and the anti-fouling performance of these bolts in the same manner as in Example 1, as shown in Table 2-2, the force that was slightly inferior to that in Example 11 was almost the same. It was good.
[0112] 実施例 17 [0112] Example 17
アルコキシシランオリゴマー jの 52. 8重量部に、 TOGと、高沸点アルコールである PGMEとェチルセ口ソルブとを配合して表 2-2に記した実施例 17の非クロム防鲭表 面処理剤を調製した。この非クロム防鲭表面処理剤の溶液中のケィ素とチタンを SiO と TiOに換算したケィ素とチタンの合算含有量は 11. 1重量%であり、ケィ素とチタ The non-chromium anti-surface treatment agent of Example 17 described in Table 2-2 was prepared by blending 52.8 parts by weight of the alkoxysilane oligomer j with TOG, PGME, which is a high boiling point alcohol, and ethyl acetate sorb. Prepared. The total content of kaen and titanium in the solution of this non-chromium anti-fouling surface treatment agent converted to SiO and TiO is 11.1% by weight.
2 2 twenty two
ンの合量に対するチタンの含有割合は 4. 7原子%であった。  The titanium content relative to the total amount of titanium was 4.7 atomic%.
[0113] 次いで、この非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5 本にディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。 実施例 1と同様にしてこれらのボルトについて耐亀裂性と防鲭性能を調べた結果、表[0113] Next, this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As in Example 1, these bolts were examined for crack resistance and antifouling performance.
2-2に示すように、良好な結果を得た。 As shown in 2-2, good results were obtained.
[0114] 実施例 18 [0114] Example 18
アルコキシシランオリゴマー溶液 Hの 73. 4重量部に、 TOGを配合して表 2 -2に記 した実施例 18の非クロム防鲭表面処理剤を調製した。この非クロム防鲭表面処理剤 の溶液中のケィ素とチタンを SiOと TiOに換算したケィ素とチタンの合算含有量は 1  Tog was added to 73.4 parts by weight of the alkoxysilane oligomer solution H to prepare the non-chromium antifouling surface treatment agent of Example 18 shown in Table 2-2. The total content of keye and titanium in the solution of this non-chromium antifouling surface treatment agent converted to SiO and TiO is 1
2 2  twenty two
8. 9重量%であり、ケィ素とチタンの合量に対するチタンの含有割合は 4. 6原子% であった。  8. It was 9% by weight, and the content ratio of titanium with respect to the total amount of silicon and titanium was 4.6 atomic%.
[0115] 次いで、この非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5 本にディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。 実施例 1と同様にしてこれらのボルトについて耐亀裂性と防鲭性能を調べた結果、表 2-2に示すように、実施例 11と比べて少し防鲭性能は劣っていた力 何れもほぼ良 好であった。 [0115] Next, this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As in Example 1, these bolts were examined for crack resistance and antifouling performance. As shown in 2-2, the force, which was slightly inferior to that of Example 11, was almost satisfactory.
[0116] 実施例 19 [0116] Example 19
アルコキシシランオリゴマー溶液 Hの 45. 9重量部に、 TOGと、高沸点アルコール である PGMEと ETBを配合して表 2 -2に記した実施例 19の非クロム防鲭表面処理 剤を調製した。この非クロム防鲭表面処理剤の溶液中のケィ素とチタンを SiOと TiO  The non-chromium surface treating agent of Example 19 shown in Table 2-2 was prepared by blending 45.9 parts by weight of the alkoxysilane oligomer solution H with TOG, PGME, which is a high boiling point alcohol, and ETB. The silicon and titanium in the solution of this non-chromium anti-fouling surface treatment agent are combined with SiO and TiO.
2 に換算したケィ素とチタンの合算含有量は 6. 6重量%であり、ケィ素とチタンの合量 The total content of C and T in terms of 2 is 6.6% by weight, and the total content of C and T
2 2
に対するチタンの含有割合は 4. 6原子%であった。  The titanium content was 4.6 atomic%.
[0117] 次いで、この非クロム防鲭表面処理剤をジンケート浴で亜鉛めつきした M8ボルト 5 本にディップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持して焼き付けた。 実施例 1と同様にしてこれらのボルトについて耐亀裂性と防鲭性能を調べた結果、表 2-2に示すように、実施例 11と比べて少し防鲭性能は劣っていた力 何れもほぼ良 好であった。 [0117] Next, this non-chromium antifouling surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by a dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As a result of examining the crack resistance and the anti-fouling performance of these bolts in the same manner as in Example 1, as shown in Table 2-2, the force that was slightly inferior to that in Example 11 was almost the same. It was good.
[0118] なお、実施例 11〜19で用いたチタンキレートイ匕合物は、チタンテトラアルコキシド の半分のアルコキシ基をキレート剤でブロックした状態の市販品である。  [0118] The titanium chelate compounds used in Examples 11 to 19 are commercially available products in which half of the alkoxy groups of titanium tetraalkoxide are blocked with a chelating agent.
[0119] [表 2-1] [0119] [Table 2-1]
¾:-〔〔2210120- ¾:-[[2210120-
Figure imgf000027_0001
Figure imgf000027_0001
O0.6wt%ホウ酸溶液: 0.6wt%ホウ酸のイソプロピルアルコール O0.6wt% boric acid solution: 0.6wt% boric acid isopropyl alcohol
OPGME :プロピレングリコールモノメチルエーテル OPGME: Propylene glycol monomethyl ether
Oェチルセ口ソルブ:エチレングリコ一ルモノエチルェ一テル Oethyl solvate: Ethylene glycol monoethyl ether
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000028_0002
01.2wt%ホウ酸溶液: 1.2w«ホウ酸のイソプロピルアルコール溶液  01.2wt% boric acid solution: 1.2w «Boric acid in isopropyl alcohol
OTOG :日本曹達㈱製のチタンォクチレングリコールキレ一ト化合物(純度 72%、アルコキシ基はイソプロポキシ基)  OTOG: Titanium glycol glycolate compound manufactured by Nippon Soda Co., Ltd. (purity 72%, alkoxy group is isopropoxy group)
◦TC-200 :マツモトファインケミカル㈱製のチタンォクチレングリコールキレート化合物(純度 67%、アルコキシ基は n—ォクトキシ基) ◦TC-200: Titanium octylene glycol chelate compound manufactured by Matsumoto Fine Chemical Co., Ltd. (purity 67%, alkoxy group is n-octoxy group)
OTC-100 :マツモトファインケミカル㈱製のチタン亍トライソプロポキシト Ίモルをァセチルアセトン 2モルでキレート化した化合物 OTC-100: A compound obtained by chelating 2 moles of acetylylacetone with 2 moles of acetyl chloride from Matsumoto Fine Chemical Co., Ltd.
アルコキシシランオリゴマー溶液 Gにポリビュルブチラール榭脂のェチルセ口ソルブ 溶液、エポキシ官能基を持つシランカップリング剤である γ -グリシドキシプロピルトリ メトキシシラン、ビーズミルで分散処理した酸化チタン超微粉末スラリー(ェチルセロソ ルブと酸ィ匕チタンを 5 : 1の割合で含む)を配合して、表 3に記した調合組成で比較例 1の非クロム防鲭表面処理剤を調製した。この非クロム表面処理剤溶液中のケィ素を SiOに換算したケィ素の含有量は 10. 6重量%であった。次いで実施例 1と同様にAlkoxysilane oligomer solution G in polybutylbutyral succinate solvate solution, epoxy-functional silane coupling agent γ-glycidoxypropyltrimethoxysilane, titanium oxide ultrafine powder slurry dispersed with bead mill ( A non-chromium anti-fouling surface treatment agent of Comparative Example 1 was prepared with the composition shown in Table 3 by blending ethyl acetate and titanium oxide (containing 5: 1 ratio). The content of silicon in this non-chromium surface treatment solution converted to SiO was 10.6% by weight. Then as in Example 1
2 2
してこの防鲭表面処理剤を、ジンケート浴で亜鉛めつきした M8ボルト 5本の表面に ディップアンドスピン法で塗布し、乾燥後 100°Cに 15分間保持し焼き付けた。これら のボルトについて、実施例 1と同様に耐亀裂性と防鲭性能を調べた結果、焼付け後 の防鲭表面処理剤の防鲭皮膜中には少ないが亀裂が認められ、塩水噴霧試験機に 24時間入れて取り出し、乾力したボルトの表面に被覆された防鲭皮膜に亀裂が生じ ているのを観察した。また、塩水噴霧試験で評価した防鲭性能は、表 3に示すように 実施例 1〜 19の非クロム防鲭表面処理剤を塗布したボルトと比べて劣っていた。  Then, this anti-bacterial surface treatment agent was applied to the surface of five M8 bolts galvanized in a zincate bath by the dip-and-spin method, dried and held at 100 ° C. for 15 minutes for baking. These bolts were examined for crack resistance and anti-fouling performance in the same manner as in Example 1. As a result, there were few cracks in the anti-fouling film of the anti-fouling surface treatment after baking, and the salt spray tester It was taken out for 24 hours, and it was observed that a crack was formed in the fender film coated on the surface of the bolt that had been dried. In addition, as shown in Table 3, the antifouling performance evaluated in the salt spray test was inferior to the bolts applied with the non-chromium antifouling surface treatment agents of Examples 1 to 19.
[0122] 比較例 2 [0122] Comparative Example 2
チタン成分を含まな 、アルコキシシランオリゴマー溶液 Gを用い、アルコキシシラン オリゴマー溶液 Gに、イソプロピルアルコールをカ卩えて希釈し、表 3に記した調合組成 で比較例 2の非クロム防鲭表面処理剤を調製した。この非クロム表面処理剤の溶液 中のケィ素を SiOに換算したケィ素の含有量は 10. 8重量%であった。  Using the alkoxysilane oligomer solution G containing no titanium component, dilute the alkoxysilane oligomer solution G with isopropyl alcohol, and apply the non-chromium antifouling surface treatment agent of Comparative Example 2 with the composition shown in Table 3. Prepared. The content of the kaen converted to SiO in the solution of the non-chromium surface treatment agent was 10.8% by weight.
2  2
[0123] 次いでこの防鲭表面処理剤を、ジンケート浴で亜鉛めつきした M8ボルト 5本にディ ップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持し焼き付けた。実施例 1と 同様にして耐亀裂性と防鲭性能を調べた結果、表 3に示すように比較例 1とほぼ同様 の結果を得た。  [0123] Next, this anti-bacterial surface treatment agent was applied to five M8 bolts galvanized in a zincate bath by a dip-and-spin method, dried, held at 100 ° C for 20 minutes, and baked. As a result of examining the crack resistance and the anti-fouling performance in the same manner as in Example 1, as shown in Table 3, almost the same result as in Comparative Example 1 was obtained.
[0124] 比較例 3  [0124] Comparative Example 3
アルコキシシランオリゴマー溶液 Hの 45. 9重量部に対し、マツモトファインケミカル ( 株)製のジルコニウムテトラ n -プロポキシド(ZA - 40)の 1モルに 2モルの 2 -ェチルへ キサン酸を反応させたジルコニウムキレートイ匕合物を 8. 8重量部、ポリビニルブチラ ールの 10重量0 /0ェチルセ口ソルブ溶液、ホウ酸の 0. 6%イソプロピルアルコール溶 液、イソプロピルアルコール、 PGME、及び ETBを表 3に記した調合組成で混合し比 較例 3の非クロム防鲭表面処理剤を調製した。この非クロム防鲭表面処理剤の溶液 中のケィ素とジルコニウムを SiOと ZrOに換算したケィ素とジルコニウムの合算含有 Zirconium with 45.9 parts by weight of alkoxysilane oligomer solution H and 1 mol of zirconium tetra n-propoxide (ZA-40) manufactured by Matsumoto Fine Chemical Co., Ltd. reacted with 2 mol of 2-ethylhexanoic acid Kiretoi匕合was 8. 8 parts by weight, 10 weight 0/0 Echiruse port cellosolve solution of polyvinyl butyral, 0.6% isopropyl alcohol solvent solution of boric acid, isopropyl alcohol, PGME, and Table 3 the ETB Mix ratio with the formulation composition described in The non-chromium antifouling surface treatment agent of Comparative Example 3 was prepared. Incorporation of Ce and Zr in the solution of this non-chromium anti-fouling surface treatment agent converted to SiO and ZrO
2 2  twenty two
量は 11. 2重量0 /0であり、ケィ素とジルコニウムの合量に対するジルコニウムの含有 割合は 8. 9原子%であった。 The amount is 11. a 2 wt 0/0, the content of zirconium to the total amount of Kei element and zirconium was 8.9 atomic%.
[0125] 次いでこの防鲭表面処理剤を、ジンケート浴で亜鉛めつきした M8ボルト 5本にディ ップアンドスピン法で塗布し、乾燥後 100°Cに 20分間保持し焼き付けた。実施例 1と 同様にして耐亀裂性と防鲭性能を調べたところ、表 3に示すように、亀裂の発生は軽 微で防鲭性能も比較的良力 たが、防鲭性能はチタンキレートイ匕合物を配合した実 施例 16の非クロム防鲭表面処理剤を塗布したボルトと比べ少し劣っていた。また、ジ ルコニゥムキレート化合物はチタンキレート化合物と比べ高価な化合物なので、表面 処理のコストが高くて実用性がな 、。 [0125] Next, this anti-bacterial surface treatment agent was applied to five M8 bolts zinc-plated in a zincate bath by the dip-and-spin method, dried and held at 100 ° C for 20 minutes for baking. As shown in Table 3, the crack resistance and the antifouling performance were examined in the same manner as in Example 1. As shown in Table 3, the occurrence of cracks was slight and the antifouling performance was relatively good. It was a little inferior to the bolt applied with the non-chromium antifouling surface treatment agent of Example 16 in which the compound was mixed. In addition, since the zirconium chelate compound is more expensive than the titanium chelate compound, the surface treatment cost is high and it is not practical.
[0126] [表 3] [0126] [Table 3]
Figure imgf000031_0001
Figure imgf000031_0001
(二酸化チタン微粉末は昭和電工 (株)製のスーパ一タイタニア F-6を使用)  (For titanium dioxide fine powder, use Super Titania F-6 from Showa Denko KK)
0ジルコニウムキレート化合物:マツモトファインケミカル㈱製の ZA-40(ジルコニウムテトラ n-プロポキシド)の 1モルに対し 2- ェチルへキサン酸を 2モル加えて反応させた液体で、ジルコニウムを 30wt%含む。  0 Zirconium chelate compound: A liquid obtained by adding 2 moles of 2-ethylhexanoic acid to 1 mole of ZA-40 (zirconium tetra n-propoxide) manufactured by Matsumoto Fine Chemical Co., Ltd. It contains 30 wt% zirconium.

Claims

請求の範囲 The scope of the claims
[1] 重量平均分子量が 1, 000〜10, 000であるアルコキシシランオリゴマーのアルコー ル溶液であり、アルコキシシランオリゴマー分子中のケィ素原子の一部が有機キレー トチタン化合物力 のチタンで置換されており、アルコール溶液が、ケィ素とチタンと の合計量に対して 2. 5〜15原子%のチタンを含んでおり、アルコール溶液中のケィ 素とチタンとの合計量がケィ素とチタンそれぞれを SiOと TiOに換算したとき 5〜20  [1] Alkoxysilane oligomer alcohol solution having a weight average molecular weight of 1,000 to 10,000, wherein some of the silicon atoms in the alkoxysilane oligomer molecule are replaced with titanium having an organic chelate titanium compound power. The alcohol solution contains 2.5 to 15 atomic% of titanium with respect to the total amount of silicon and titanium, and the total amount of silicon and titanium in the alcohol solution contains each of the silicon and titanium. 5-20 when converted to SiO and TiO
2 2  twenty two
重量%である亜鉛表面を有する金属部材用非クロム防鲭表面処理剤。  A non-chromium antifouling surface treating agent for metal members having a zinc surface that is wt%.
[2] アルコキシシランオリゴマーの前記アルコール溶液力 アルコキシシラン原料と有機 キレートチタン化合物とを含むアルコール溶液に酸触媒と水をカ卩えてアルコキシシラ ン原料と有機キレートチタンィ匕合物とを加水分解及び縮重合して製造したものである 請求項 1に記載の亜鉛表面を有する金属部材用非クロム防鲭表面処理剤。  [2] Alcohol solution power of the alkoxysilane oligomer The hydrolyzate of the alkoxysilane raw material and the organic chelate titanium compound is obtained by adding an acid catalyst and water to an alcohol solution containing the alkoxysilane raw material and the organic chelate titanium compound. 2. The non-chromium antifouling surface treatment agent for metal members having a zinc surface according to claim 1, wherein the surface treatment agent is produced by condensation polymerization.
[3] 前記有機キレートチタン化合物がチタンアルコキシドのアルコキシ基の 40〜60%を キレート剤でブロック又は置換したものである請求項 2に記載の亜鉛表面を有する金 属部材用非クロム防鲭表面処理剤。  [3] The non-chromium antibacterial surface treatment for metal parts having a zinc surface according to claim 2, wherein the organic chelate titanium compound is obtained by blocking or replacing 40 to 60% of an alkoxy group of a titanium alkoxide with a chelating agent. Agent.
[4] 前記アルコキシシラン原料の 90〜99モル0 /0がテトラアルコキシシランモノマー又は 8 00より小さ 、重量平均分子量を持つテトラアルコキシシランオリゴマーであり、残部が アルキルアルコキシシランモノマーである請求項 2に記載の亜鉛表面を有する金属 部材用非クロム防鲭表面処理剤。 [4] The alkoxy 90-99 mole 0/0 of the silane material is smaller than the tetraalkoxysilane monomer or 8 00, a tetraalkoxysilane oligomer having a weight average molecular weight, the balance being alkylalkoxysilane monomer in claim 2 A non-chromium antifouling surface treating agent for metal members having the zinc surface described.
[5] 前記アルキルアルコキシシランモノマーがメチルトリメトキシシラン、メチルトリエトキシ シラン、ェチルトリメトキシシラン、ビニルトリメトキシシラン及び γ -メタクリロキシプロピ ルトリメトキシシラン力 選ばれた少なくとも 1種である請求項 4に記載の亜鉛表面を 有する金属部材用非クロム防鲭表面処理剤。  [5] The alkylalkoxysilane monomer is at least one selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane. A non-chromium antifouling surface treatment agent for metal members having the zinc surface described in 1.
[6] 前記キレート剤が β -ジケトンあるいはオタチレングリコールである請求項 3に記載の 亜鉛表面を有する金属部材用非クロム防鲭表面処理剤。  6. The non-chromium anti-mold surface treating agent for metal members having a zinc surface according to claim 3, wherein the chelating agent is β-diketone or octylene glycol.
[7] アルコキシシランオリゴマーの前記アルコール溶液力 アルコキシシラン原料を含む アルコール溶液に酸触媒と水をカ卩えてアルコキシシラン原料を加水分解及び縮重合 してアルコキシシランオリゴマーを合成して、その合成したアルコキシシラン才リゴマ 一のアルコール溶液に有機キレートチタンィ匕合物を混合したものである請求項 1に記 載の亜鉛表面を有する金属部材用非クロム防鲭表面処理剤。 [7] Alcohol solution power of alkoxysilane oligomer The alkoxysilane raw material is synthesized by synthesizing an alkoxysilane oligomer by hydrolyzing and polycondensing the alkoxysilane raw material by adding an acid catalyst and water to an alcohol solution containing the alkoxysilane raw material. 2. The silane-born ligoma mixed with an organic chelate titanium compound in an alcohol solution. A non-chromium antifouling surface treatment agent for metal members having a zinc surface.
[8] 前記有機キレートチタン化合物がチタンアルコキシドのアルコキシ基の 40〜60%を キレート剤でブロック又は置換したものである請求項 7に記載の亜鉛表面を有する金 属部材用非クロム防鲭表面処理剤。  8. The non-chromium antibacterial surface treatment for metal parts having a zinc surface according to claim 7, wherein the organic chelate titanium compound is obtained by blocking or replacing 40-60% of the alkoxy group of the titanium alkoxide with a chelating agent. Agent.
[9] 前記アルコキシシラン原料の 90〜99モル0 /0がテトラアルコキシシランモノマー又は 8[9] The alkoxy 90-99 moles of silane material 0/0 tetraalkoxysilane monomer or 8
00より小さ 、重量平均分子量を持つテトラアルコキシシランオリゴマーであり、残部が アルキルアルコキシシランモノマーである請求項 7に記載の亜鉛表面を有する金属 部材用非クロム防鲭表面処理剤。 The non-chromium antifouling surface treating agent for metal members having a zinc surface according to claim 7, which is a tetraalkoxysilane oligomer having a weight average molecular weight smaller than 00 and the balance being an alkylalkoxysilane monomer.
[10] 前記アルキルアルコキシシランモノマーがメチルトリメトキシシラン、メチルトリエトキシ シラン、ェチルトリメトキシシラン、ビニルトリメトキシシラン及び γ -メタクリロキシプロピ ルトリメトキシシラン力 選ばれた少なくとも 1種である請求項 9に記載の亜鉛表面を 有する金属部材用非クロム防鲭表面処理剤。 10. The alkylalkoxysilane monomer is at least one selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane. A non-chromium antifouling surface treatment agent for metal members having the zinc surface described in 1.
[11] 前記キレート剤が β -ジケトンあるいはオタチレングリコールである請求項 8に記載の 亜鉛表面を有する金属部材用非クロム防鲭表面処理剤。 [11] The non-chromium antifouling surface treating agent for metal members having a zinc surface according to [8], wherein the chelating agent is β-diketone or octylene glycol.
[12] アルコキシシランオリゴマーの前記アルコール溶液力 アルコールに可溶な榭脂を 0[12] Alcohol solution power of alkoxysilane oligomers
. 1〜2重量%含んで 、る請求項 1に記載の亜鉛表面を有する金属部材用非クロム 防鲭表面処理剤。 The non-chromium antifouling surface treatment agent for metal members having a zinc surface according to claim 1, comprising 1 to 2% by weight.
[13] 前記アルコールに可溶な榭脂がポリビニルブチラールである請求項 12に記載の亜 鉛表面を有する金属部材用非クロム防鲭表面処理剤。  13. The non-chromium antifouling surface treatment agent for metal members having a zinc surface according to claim 12, wherein the alcohol-soluble rosin is polyvinyl butyral.
[14] アルコキシシランオリゴマーの前記アルコール溶液がホウ酸を 0. 004〜0. 10重量[14] The alcohol solution of the alkoxysilane oligomer contains boric acid in an amount of 0.004 to 0.10 wt.
%含んでいる請求項 12に記載の亜鉛表面を有する金属部材用非クロム防鲭表面処 理剤。 13. The non-chromium antifouling surface treatment agent for metal members having a zinc surface according to claim 12, wherein the surface treatment agent contains zinc.
[15] アルコキシシランオリゴマーの前記アルコール溶液中のアルコール成分の 20〜40重 量%が、沸点 97°C以上のアルコールあるいはグリコールエーテルである請求項 1に 記載の亜鉛表面を有する金属部材用非クロム防鲭表面処理剤。  15. The non-chromium for metal parts having a zinc surface according to claim 1, wherein 20 to 40% by weight of the alcohol component of the alkoxysilane oligomer in the alcohol solution is alcohol or glycol ether having a boiling point of 97 ° C. or higher. Antifouling surface treatment agent.
[16] 沸点 97°C以上の前記アルコールあるいはグリコールエーテル力 n-プロピルアルコ 一ノレ、 n-ブチノレアノレコーノレ、プロピレングリコーノレモノメチノレエーテノレ、エチレングノレ コーノレモノェチノレエーテノレ及びエチレングリコーノレターシャリーブチノレエーテノレから 選ばれた少なくとも 1種である請求項 15に記載の亜鉛表面を有する金属部材用非ク ロム防鲭表面処理剤。 [16] Alcohol or glycol ether having a boiling point of 97 ° C or higher n-propyl alcohol mononole, n-butino enore eno oleore, propylene glycol eno mono mono eno enoenore, ethylene gnole konole mono eno eno enoenore and ethylene From Glicono Letter Shary Buchinore Etenore 16. The non-chrome anti-mold surface treatment agent for metal members having a zinc surface according to claim 15, which is at least one selected.
[17] 請求項 1に記載された非クロム防鲭表面処理剤で形成された平均厚さ 0. 5〜3 μ m のシリカ質皮膜で被覆されている亜鉛表面を有する金属部材。  [17] A metal member having a zinc surface coated with a siliceous film having an average thickness of 0.5 to 3 μm formed of the non-chromium antifouling surface treatment agent according to claim 1.
[18] 前記シリカ質皮膜がディップアンドスピン法で塗布されたものである請求項 17に記載 の亜鉛表面を有する金属部材。  18. The metal member having a zinc surface according to claim 17, wherein the siliceous film is applied by a dip and spin method.
[19] 前記シリカ質皮膜が、 120°C以下の温度で焼き付けられたものである請求項 17に記 載の亜鉛表面を有する金属部材。  [19] The metal member having a zinc surface according to [17], wherein the siliceous film is baked at a temperature of 120 ° C. or lower.
PCT/JP2007/058137 2006-04-18 2007-04-13 Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film WO2007119812A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07741573.5A EP2009073B1 (en) 2006-04-18 2007-04-13 Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
US12/282,979 US8367201B2 (en) 2006-04-18 2007-04-13 Chromium-free rust-inhibitive surface treatment agent for metal parts with zinc surfaces and metal parts with zinc surfaces coated with rust-inhibitive surface coated film
CN2007800138749A CN101426871B (en) 2006-04-18 2007-04-13 Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
JP2008510999A JP5566024B2 (en) 2006-04-18 2007-04-13 Non-chromium rust preventive surface treatment agent for metal members having zinc surface and metal member having zinc surface coated with rust preventive film
KR1020087028036A KR100983464B1 (en) 2006-04-18 2007-04-13 Non-chromic antirust surface treatment agent for metal parts having a zinc surface and metal parts having a zinc surface coated with such an antirust coating
US13/733,999 US8623503B2 (en) 2006-04-18 2013-01-04 Chromium-free rust-inhibitive surface treatment agent for metal parts with zinc surfaces and metal parts with zinc surfaces coated with rust-inhibitive surface coated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-114099 2006-04-18
JP2006114099 2006-04-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/282,979 A-371-Of-International US8367201B2 (en) 2006-04-18 2007-04-13 Chromium-free rust-inhibitive surface treatment agent for metal parts with zinc surfaces and metal parts with zinc surfaces coated with rust-inhibitive surface coated film
US13/733,999 Division US8623503B2 (en) 2006-04-18 2013-01-04 Chromium-free rust-inhibitive surface treatment agent for metal parts with zinc surfaces and metal parts with zinc surfaces coated with rust-inhibitive surface coated film

Publications (1)

Publication Number Publication Date
WO2007119812A1 true WO2007119812A1 (en) 2007-10-25

Family

ID=38609572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058137 WO2007119812A1 (en) 2006-04-18 2007-04-13 Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film

Country Status (7)

Country Link
US (2) US8367201B2 (en)
EP (1) EP2009073B1 (en)
JP (1) JP5566024B2 (en)
KR (1) KR100983464B1 (en)
CN (1) CN101426871B (en)
TW (1) TWI411702B (en)
WO (1) WO2007119812A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185363A (en) * 2008-02-08 2009-08-20 Matsumoto Fine Chemical Co Ltd Surface treating composition
JP2010007158A (en) * 2008-06-30 2010-01-14 Kida Seiko Kk Surface treatment line for sack-shaped workpiece and surface treatment method therefor
JP4433334B2 (en) * 2008-01-24 2010-03-17 ユケン工業株式会社 Member with anti-rust coating
WO2010032702A1 (en) 2008-09-17 2010-03-25 株式会社放電精密加工研究所 Aqueous solution for blackening chemical conversion treatment of zinc or zinc alloy surface and method for forming blackened antirust coating film using the aqueous solution for the treatment
EP2342298A1 (en) * 2008-10-31 2011-07-13 University of Florida Research Foundation, Inc. Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
JP2012505295A (en) * 2008-10-10 2012-03-01 スリーエム イノベイティブ プロパティズ カンパニー Silica coating to increase hydrophilicity
CN103938195A (en) * 2014-04-29 2014-07-23 浙江大学 Method for preparing alkyl trichlorosilane self-assembled monomolecular film on stainless steel surface
US9206335B2 (en) 2008-10-10 2015-12-08 3M Innovation Properties Company Silica coating for enhanced hydrophilicity
JP2016056411A (en) * 2014-09-10 2016-04-21 東京電力株式会社 Rust treatment agent for galvanized steel and repair method using the same
JP2016534220A (en) * 2013-08-06 2016-11-04 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Coating composition for the preparation of metal surfaces, its production and its use
JP2016191003A (en) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 Coating liquid for forming transparent film, method for producing the same, and transparent film-fitted base material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030114B4 (en) 2009-08-11 2021-11-04 Evonik Operations Gmbh Aqueous silane system for bare corrosion protection, process for its production, its use as well as objects treated with this and anti-corrosion layer
US20110143980A1 (en) * 2009-12-15 2011-06-16 Chevron Oronite Company Llc Lubricating oil compositions containing titanium complexes
DE102010041676A1 (en) * 2010-09-29 2012-03-29 Wacker Chemie Ag Crosslinkable organopolysiloxane composition
US8598260B2 (en) * 2011-02-22 2013-12-03 Surface Technology, Inc. Composite PTFE plating
JPWO2013099193A1 (en) * 2011-12-26 2015-04-30 コニカミノルタ株式会社 LED device sealant, LED device, and manufacturing method of LED device
TWI485211B (en) * 2013-09-24 2015-05-21 Chi Mei Corp Composition for electrode protection film, electrode protection film, electronic device and liquid crystal display apparatus
CN108297221A (en) * 2017-01-11 2018-07-20 广东华润涂料有限公司 The water-borne dispersions of siloxanes reduce the application of the muscle that rises of wood substrate and the product containing the anti-muscle coating that rises
CN111774274A (en) * 2020-07-07 2020-10-16 湖北华越汽车零部件有限公司 Surface treatment process for automobile frame
CN112553613B (en) * 2020-12-10 2022-11-01 佛山市顺德区美硕金属表面技术有限公司 Neutral silane treating agent and preparation method and application thereof
WO2024052071A1 (en) * 2022-09-06 2024-03-14 Sika Technology Ag Process for producing a storage-stable activator for glass and ceramic substrates

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320377A (en) * 1989-06-16 1991-01-29 Hitachi Chem Co Ltd Coating liquid for forming oxide coating film and method for forming oxide coating film
JPH03239774A (en) * 1990-02-16 1991-10-25 Tama Kagaku Kogyo Kk Coating material composition
JPH05179201A (en) * 1992-01-08 1993-07-20 Hitachi Chem Co Ltd Production of coating solution for forming silica coating film, coating solution for forming silica coating film, production of silica coating film, silica coating film and liquid crystal display element having silica coating film formed thereon
JPH07157715A (en) 1993-10-12 1995-06-20 Toray Ind Inc Production of coating composition
JP2003160759A (en) 2001-09-14 2003-06-06 Nippon Steel Corp Silica-based coating liquid, silica-based coating film using it and base material coated with the same film
JP2004527626A (en) * 2001-05-01 2004-09-09 ダウ・コ−ニング・コ−ポレ−ション Protective coating composition
JP2005097719A (en) 2003-08-15 2005-04-14 Hoden Seimitsu Kako Kenkyusho Ltd Non-chromium surface treatment agent for galvanized product
JP2005264170A (en) 2004-03-16 2005-09-29 Hoden Seimitsu Kako Kenkyusho Ltd Chromium-free surface treatment agent for galvanized product
JP2006225761A (en) 2005-01-24 2006-08-31 Hoden Seimitsu Kako Kenkyusho Ltd Chromium-free rust inhibitive treatment method for metal product having zinc surface and metal product treated thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239774B2 (en) * 1996-09-20 2001-12-17 豊田合成株式会社 Substrate separation method for group III nitride semiconductor light emitting device
EP1500686B1 (en) * 2003-07-22 2011-07-13 Hoden Seimitsu Kako Kenkyusho Co., Ltd. Rust inhibitive treatment method for metals
DE602004014296D1 (en) * 2003-08-15 2008-07-17 Inst Tech Precision Elect Chromium-free agent for the treatment of metal surfaces
US20060166013A1 (en) * 2005-01-24 2006-07-27 Hoden Seimitsu Kako Kenyusho Co., Ltd. Chromium-free rust inhibitive treatment method for metal products having zinc surface and metal products treated thereby

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320377A (en) * 1989-06-16 1991-01-29 Hitachi Chem Co Ltd Coating liquid for forming oxide coating film and method for forming oxide coating film
JPH03239774A (en) * 1990-02-16 1991-10-25 Tama Kagaku Kogyo Kk Coating material composition
JPH05179201A (en) * 1992-01-08 1993-07-20 Hitachi Chem Co Ltd Production of coating solution for forming silica coating film, coating solution for forming silica coating film, production of silica coating film, silica coating film and liquid crystal display element having silica coating film formed thereon
JPH07157715A (en) 1993-10-12 1995-06-20 Toray Ind Inc Production of coating composition
JP2004527626A (en) * 2001-05-01 2004-09-09 ダウ・コ−ニング・コ−ポレ−ション Protective coating composition
JP2003160759A (en) 2001-09-14 2003-06-06 Nippon Steel Corp Silica-based coating liquid, silica-based coating film using it and base material coated with the same film
JP2005097719A (en) 2003-08-15 2005-04-14 Hoden Seimitsu Kako Kenkyusho Ltd Non-chromium surface treatment agent for galvanized product
JP2005264170A (en) 2004-03-16 2005-09-29 Hoden Seimitsu Kako Kenkyusho Ltd Chromium-free surface treatment agent for galvanized product
JP2006225761A (en) 2005-01-24 2006-08-31 Hoden Seimitsu Kako Kenkyusho Ltd Chromium-free rust inhibitive treatment method for metal product having zinc surface and metal product treated thereby

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433334B2 (en) * 2008-01-24 2010-03-17 ユケン工業株式会社 Member with anti-rust coating
JPWO2009093319A1 (en) * 2008-01-24 2011-05-26 ユケン工業株式会社 Member with anti-rust coating
JP2009185363A (en) * 2008-02-08 2009-08-20 Matsumoto Fine Chemical Co Ltd Surface treating composition
JP2010007158A (en) * 2008-06-30 2010-01-14 Kida Seiko Kk Surface treatment line for sack-shaped workpiece and surface treatment method therefor
WO2010032702A1 (en) 2008-09-17 2010-03-25 株式会社放電精密加工研究所 Aqueous solution for blackening chemical conversion treatment of zinc or zinc alloy surface and method for forming blackened antirust coating film using the aqueous solution for the treatment
JP2012505295A (en) * 2008-10-10 2012-03-01 スリーエム イノベイティブ プロパティズ カンパニー Silica coating to increase hydrophilicity
US9206335B2 (en) 2008-10-10 2015-12-08 3M Innovation Properties Company Silica coating for enhanced hydrophilicity
EP2342298A1 (en) * 2008-10-31 2011-07-13 University of Florida Research Foundation, Inc. Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
EP2342298A4 (en) * 2008-10-31 2013-01-16 Univ Florida Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
JP2016534220A (en) * 2013-08-06 2016-11-04 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Coating composition for the preparation of metal surfaces, its production and its use
CN103938195A (en) * 2014-04-29 2014-07-23 浙江大学 Method for preparing alkyl trichlorosilane self-assembled monomolecular film on stainless steel surface
JP2016056411A (en) * 2014-09-10 2016-04-21 東京電力株式会社 Rust treatment agent for galvanized steel and repair method using the same
JP2016191003A (en) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 Coating liquid for forming transparent film, method for producing the same, and transparent film-fitted base material

Also Published As

Publication number Publication date
KR20090013194A (en) 2009-02-04
US8623503B2 (en) 2014-01-07
EP2009073A4 (en) 2011-08-31
EP2009073A1 (en) 2008-12-31
CN101426871A (en) 2009-05-06
US20130122238A1 (en) 2013-05-16
US20090169875A1 (en) 2009-07-02
US8367201B2 (en) 2013-02-05
JP5566024B2 (en) 2014-08-06
CN101426871B (en) 2012-07-04
JPWO2007119812A1 (en) 2009-08-27
TWI411702B (en) 2013-10-11
TW200745380A (en) 2007-12-16
EP2009073B1 (en) 2019-11-13
KR100983464B1 (en) 2010-09-27

Similar Documents

Publication Publication Date Title
WO2007119812A1 (en) Non-chromate rust-preventive surface treating agent for metallic member having zinc surface, and metallic member having zinc surface coated with the rust-preventive coating film
JP4746323B2 (en) Composition for coating metal to protect against corrosion
AU2001297867B2 (en) Non-aqueous coating compositions formed from silanes and metal alcoholates
JP4469728B2 (en) Corrosion resistant coating on metal
JP2003531924A (en) Silane-based coating compositions, coated products obtained therefrom and methods of using the same
JPH04226572A (en) Hardwearing coating material composition and production thereof
JP2574061B2 (en) Organic solution type coating composition, painted inorganic cured product, and method for producing the same
JP2002128898A (en) Production method for inorganic polymer compound, inorganic polymer compound and inorganic polymer compound film
JPH0331380A (en) Coating composition
JP3825813B2 (en) Coating liquid for forming high refractive index insulating coating for liquid crystal display
JP5364390B2 (en) Non-chromium aqueous rust preventive surface treatment agent for metal parts with zinc surface
JPH04202481A (en) Composition for treating metal surface
JPH0445129A (en) Paint composition for coating
JP2007217739A (en) Method for forming water-repellent film
JP2002115084A (en) Surface treating agent, surface treatment film and surface modified metallic material
KR101126708B1 (en) Nano Inorganic Coating Composition For Plated Steel And Method Of Forming The Coating Layer Using The Same
JPS63117074A (en) Coating composition and production thereof
JPS6383175A (en) Coating composition having excellent alkali resistance
JP6080071B2 (en) Coating agent composition for metal painting
JPH01163276A (en) Composition for forming hard coating film
JP2005068165A (en) Silicon-containing composition
JPS63280777A (en) Coating composition and production thereof
JPH01149866A (en) Method for coating
NZ520880A (en) Non-aqueous coating compositions formed from silanes and metal alcoholates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510999

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12282979

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 7845/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007741573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780013874.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE