WO2007096954A1 - Neural network device and its method - Google Patents

Neural network device and its method Download PDF

Info

Publication number
WO2007096954A1
WO2007096954A1 PCT/JP2006/303147 JP2006303147W WO2007096954A1 WO 2007096954 A1 WO2007096954 A1 WO 2007096954A1 JP 2006303147 W JP2006303147 W JP 2006303147W WO 2007096954 A1 WO2007096954 A1 WO 2007096954A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
layer
input
error
output
Prior art date
Application number
PCT/JP2006/303147
Other languages
French (fr)
Japanese (ja)
Inventor
Kohei Arai
Original Assignee
Saga University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University filed Critical Saga University
Priority to PCT/JP2006/303147 priority Critical patent/WO2007096954A1/en
Priority to JP2008501514A priority patent/JP5002821B2/en
Publication of WO2007096954A1 publication Critical patent/WO2007096954A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a neural network device that realizes an information processing mechanism created by mimicking the mechanism of the brain, and in particular, not a local solution of a weighting factor between an input layer and a hidden layer, but a global solution. It can be efficiently determined-relating to a Euler network device.
  • a neural network is an information processing mechanism that mimics the mechanism of a human brain.
  • the human brain has an excellent ability to easily achieve processing that is difficult to achieve with a computer.
  • the computer we are using is called the Neumann type, which is extremely powerful when solving problems that are formulated with extremely high computation speeds. When solving such problems, it is very difficult to implement the problem formulation. Therefore, a neural network was born to realize the basic functions of human recognition, memory, and judgment on a computer using information processing mechanisms in the human brain as hints.
  • Neural networks have a structure that simplifies the information processing mechanism in the brain. There are about 14 billion nerve cells in the human brain, and these nerve cells are connected to each other.
  • Each neuron receives an input signal from another cell and sends an output signal to another cell when the sum of the input signals exceeds a certain value.
  • This propagation of information between cells enables processes such as recognition, memory, and judgment that are usually performed by humans.
  • the biggest feature of information processing in the brain is that a large number of cells that do not function and have power are gathered to realize complex and advanced processing as a whole, and neural networks produce this advantage. It is a powerful mechanism.
  • a neuron in the brain is modeled as an element called a “neuron”, and a network is constructed by arranging and connecting a large number of -eurons.
  • various problems can be dealt with by changing (learning) the parameters of each Euron according to the problem to be applied.
  • Fig. 10 (a) is a schematic diagram of -Euron.
  • the cell body (soma) contains the nucleus!
  • the dendrite is the part of many branches that come out of the cell body, and it is the input terminal of the neuron, and the axon has cell body strength. It extends and is the part that is the output terminal of the neuron, and the synapse is in contact with the other-euron with a small thick leg at the end of the branch, and it plays a role in connecting neurons and transmitting information.
  • Figure 10 (c) shows a three-layer hierarchical-Eural network (any mapping can be realized).
  • the neural network learning is performed as shown in Fig. 10 (d).
  • Figures 11 (b) and 11 (c) are diagrams illustrating the structure of back propagation.
  • the total input to the jth unit in the output layer is
  • the characteristics of neural networks are as follows.
  • the present invention has been made to solve the above-described problem, and provides a dual network device capable of reaching a global optimum solution by learning in a short time with a small number of training data sets. For the purpose.
  • the input data becomes highly correlated with the weighting coefficient that combines the input layer and the hidden layer as the learning progresses. It was. Although it depends on the number of hidden layer nodes, if the number of weighting coefficients is the same as that of the input layer (assuming one hidden layer node, all the input layer nodes The number of weighting factors matches the number of nodes in the input layer), and the correlation between the input and the weighting factor when learning progresses with the desired output,
  • the correlation coefficient of the equation can be calculated by thinning out or by averaging to match the number of input layers, and the progress of learning can be checked. Can do.
  • the method of obtaining the correlation coefficient is not limited to the above formula, and any formula that can be numerically expressed according to the degree of correlation can be used.
  • the present invention is based on a hierarchical-Eural network with backpropagation learning based on the steepest descent method, and examines the correlation coefficient between the input data and the weighting coefficient between the input layer and the hidden layer.
  • the ability to check the progress of learning and fall into a local solution, or globally optimal It is determined whether the solution is a suboptimal solution close to the solution. Also, even if error backpropagation learning converges, if the correlation coefficient is low, that is, if it falls into a local solution, a learning method that changes the initial value and restarts learning is used. It also included -European network equipment.
  • the -Eural network device includes an input layer having nodes, a hidden layer, and an output layer, and outputs output data that is input from the input layer and output from the output layer. And the teacher data prepared in advance corresponding to the input data, and using the error that is the comparison result, the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer are calculated.
  • a hierarchical neural network device based on backpropagation learning that learns by updating, and determines the convergence of the learning based on the correlation coefficient between the input data and the weighting coefficient between the nodes in the input layer and the hidden layer. To do.
  • the weighting coefficient is updated using the error between the output data generated by the neural network and the output data of the teacher data, and learning is performed when the error power is increased. Since the convergence of learning is judged based on the correlation coefficient between the input data and the weighting coefficients of the input layer and the hidden layer. The learning convergence is also determined using the correlation coefficient between the input data and the weighting coefficients of the input layer and hidden layer, and a global optimal solution that does not end the learning with a local solution is derived. The effect is that learning can be completed.
  • the -Ural network device includes an input layer having nodes, a hidden layer, and an output layer.
  • the input data is input to the input layer and output from the output layer.
  • Force data is compared with pre-prepared teacher data corresponding to the input data, and the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer are calculated using an error as a comparison result.
  • a hierarchical dual network device based on error back propagation learning that learns by updating the first learning convergence determination unit that determines the convergence of learning based on the error of the comparison result of the learning, and an input
  • a second learning convergence determination unit for determining the convergence of the learning based on a correlation coefficient between the data and a weighting coefficient between nodes of the input layer and the hidden layer, and the first learning convergence determination unit and the first learning convergence determination unit 2 learning convergence judgment departments
  • the learning is terminated when it is determined that has converged.
  • the first learning convergence determination unit looks at the fluctuations in the error of the comparison result obtained so far, and determines that the learning has converged when the fluctuations are almost eliminated.
  • the -Ural network device includes an input layer having nodes, a hidden layer, and an output layer.
  • the input data is input to the input layer and output from the output layer.
  • Force data is compared with pre-prepared teacher data corresponding to the input data, and the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer are calculated using an error as a comparison result.
  • a hierarchical dual network device based on error back propagation learning that learns by updating the first learning convergence determination unit that determines the convergence of learning based on the error of the comparison result of the learning, and an input
  • a second learning convergence determination unit that determines the convergence of the learning based on a correlation coefficient between the data and the weighting coefficient between nodes of the input layer and the hidden layer, and the first learning convergence determination unit learns After judging that has converged
  • the second learning convergence judgment unit judges the convergence of the learning, when the second learning convergence judgment unit determines that learning is converged, it is to end the learning.
  • the convergence of learning is first determined from the error between the output data generated by the Euler network and the output data of the teacher data.
  • the error between the output data and the output data of the teacher data is indispensable to reflect the weighting factor in error backpropagation learning, and the correlation between the input data and the weighting factor of the input layer and hidden layer
  • the Yule network device determines that the learning has converged when the correlation function is equal to or greater than a predetermined threshold, if necessary. Is.
  • the second network convergence judgment unit learns when the correlation coefficient satisfies the learning convergence condition in which the increasing tendency reaches saturation. It is judged that it has converged.
  • the Ural network device performs second learning as necessary.
  • the convergence determination unit initializes the weighting coefficient and learns again when the learning convergence condition is not met.
  • the present invention when it is determined that the error power learning between the output data generated by the neural network and the output data of the teacher data has converged, and the input data, the input layer, and the hidden If the learning converges from the correlation coefficient with the layer weighting coefficient, it is determined that the learning is unsuccessful. It has the effect that a global optimal solution can be obtained by back propagation learning. It is desirable to initialize the weighting factor because it is difficult to get out of the local solution and reach the global optimal solution no matter how many times you learn while in the local solution.
  • the weighting factor when the weighting factor is initialized as necessary, the correlation between the initialized weighting factor and the weighting factor before the initialization is performed. A coefficient is obtained, and when this correlation coefficient is equal to or greater than a predetermined threshold, the weight coefficient is initialized again.
  • the weighting factor even if the weighting factor is initialized, if it is the same as the weighting factor, the possibility of falling into the same local solution is high when error back propagation learning is performed again. In this case, it is possible to avoid unnecessary learning by re-initializing and efficiently obtain a global optimum solution.
  • the error back propagation learning method of the hierarchical neural network device corresponds to the input data and the output data output from the output layer by inputting the input data to the input layer. Learning by updating the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer using the error that is the comparison result by comparing with the prepared teacher data
  • An error back-propagation learning method for a hierarchical neural network apparatus wherein convergence of the learning is determined based on a correlation coefficient between input data and a weight coefficient between nodes of an input layer and a hidden layer.
  • the present invention can also be grasped as a method.
  • FIG. 1 is a block configuration diagram of a -ural network device according to a first embodiment of the present invention.
  • FIG. 2 is a hardware configuration diagram of a computer in which the Yural network device according to the first embodiment of the present invention is constructed.
  • FIG. 3 is an operation flowchart at the time of learning of the -Ural network device according to the first embodiment of the present invention.
  • Fig. 4 is a partial alternative flowchart relating to the initialization of the Yural network device according to the first embodiment of the present invention.
  • FIG. 5 Observation images and actual measurement values at 17:11 on May 20, 2002 according to the embodiment.
  • FIG. 10 An explanatory diagram of the background network-Ural network.
  • FIG. 11 is an explanatory diagram of the background art-a Ural network.
  • FIG. 1 is a block diagram of the -Ural network device according to this embodiment.
  • the -Ural network device according to the present embodiment includes an input unit 10 that captures input data to be processed, and generates output data by processing the input data that has been captured -Ural network mechanism unit 20 and the generated output Determine the output error between the output unit 30 that sends out the data and the output data generated by the neural network mechanism unit 20 during training and the output data of the teacher data, and determine whether the calculated error force error has converged. If it is determined that V has not converged, error back propagation is performed to update the weighting coefficient by performing error back propagation 40, and the correlation coefficient between the input data and the hidden coefficient between the input layer and the hidden layer during learning.
  • the error back-propagation mechanism 40 If the error back-propagation mechanism 40 is determined to have converged, the power of whether the latest correlation coefficient is lower than the predetermined threshold and the correlation coefficient tend to increase and reach saturation Judgment of power If the most recent correlation coefficient is lower than the predetermined threshold, the correlation coefficient is not increasing, or the correlation coefficient does not reach saturation even when increasing, the neural network And a correlation coefficient mechanism 50 for initializing the torque mechanism unit 20.
  • the error back-propagation mechanism 40 uses an error calculator 41 that calculates an error between the output data and the output data of the teacher data for each input of the input data during learning, and uses the error calculated by the error calculator 41.
  • the weight coefficient reflecting unit 42 for updating the weighting coefficient of the Ral network mechanism unit 20 and the error convergence determining unit 43 for determining whether or not the error fluctuating power obtained by the error calculating unit 41 has converged.
  • the weight coefficient reflection unit 42 may be configured to reflect the weight coefficient only when the error convergence determination unit 43 determines that the error has not converged, or the error calculation unit 41 does not depend on the error convergence determination unit 43. In the case where the weight coefficient is obtained, the weight coefficient reflecting unit 42 may be configured to reflect the weight coefficient. Even when the latter configuration is adopted, if the error convergence determination unit 43 determines that the convergence has occurred and if a global optimum solution has been obtained, the processing in the error calculation unit 41 and the weight coefficient reflection unit 42 is performed thereafter. Not done.
  • the correlation coefficient mechanism 50 includes a correlation coefficient calculation unit 51 that obtains a correlation coefficient between the input data and the weighting coefficient of the input layer and the hidden layer for each input of the input data during learning, and the latest correlation coefficient is The correlation coefficient condition determination unit 52 for determining whether the power is lower than the predetermined threshold and whether the correlation coefficient tends to increase and reach saturation, and the correlation coefficient condition determination unit 52 When it is determined that the correlation coefficient is lower than the predetermined threshold, when it is determined that the correlation coefficient is not increasing, or when the correlation coefficient is determined not to reach saturation even when increasing And an initialization unit 53 for initializing the mechanism unit 20.
  • FIG. 2 is a hardware configuration diagram of a computer in which the Yural network device according to the present embodiment is constructed.
  • the computer 100 on which the neural network is constructed is a CPU (Central Processing Unit) lll, a RAM (Random Access Memory) 112, a ROM (Read Only Memory) 11 3, a flash memory (Flash memory) 114, and an external storage device.
  • HD Hard disk
  • LAN Local Area Network
  • sound card 120 which is a display device electrically connected to this video card 119, this
  • a sound output device that is electrically connected to the sound card 120
  • a storage medium such as a flexible disk, CD-ROM, DVD-ROM, etc. It consists of a drive 121 that reads and writes.
  • a so-called person skilled in the art can slightly change the components of the hardware, and can construct a single-universal network for a plurality of computers.
  • One or more modules, not all, can be built for each computer to achieve load distribution.
  • FIG. 3 is an operation flow chart at the time of learning of the -Ural network device according to the present embodiment.
  • the input unit 10 captures input data and teacher data that also has output data power.
  • the acquired input data is processed by the -Ural network mechanism 20, and the output unit 10 outputs the generated output data.
  • the error calculation unit 41 also calculates an error for the output data and the output data of the teacher data (step 201).
  • the weighting factor reflection unit 42 updates the weighting factor of the Euler network using the calculated error (Step 202).
  • the correlation coefficient calculation unit 51 calculates the correlation coefficient from the input layer and hidden layer weight coefficients and the input data (step 211).
  • the error convergence determination unit 43 determines whether or not the error has converged using the error obtained by the error calculation unit 41 (step 221). If it is determined in step 221 that the signal has not converged, the process returns to step 100.
  • the correlation coefficient condition determination unit 52 uses the correlation coefficient obtained by the correlation coefficient calculation unit 51 and the latest correlation coefficient is lower than the predetermined threshold value. (Step 231). If it is determined in step 231 that the most recent correlation coefficient is low, it is determined whether or not the correlation coefficient is increasing and reaches saturation (step 232). If it is determined in step 231 that the number of correlations is not low, or if it is determined in step 232 that the correlation coefficient is increasing and reaches saturation, it is assumed that a global optimal solution has been found. Exit. If it is determined in step 232 that the correlation coefficient is increasing and has not reached saturation, it is assumed that a local solution has been obtained-the initial value of the Eural network mechanism 20 is reset (step 241), and step 100 Return to.
  • the neural network device The error between the output data generated by the workpiece and the output data of the teacher data is calculated and propagated back to the error to update the weighting factor, the calculated error is accumulated, and the convergence of the error is judged from the error variation. Judgment is made as to whether or not the fluctuation of the correlation coefficient obtained continuously when the convergence is satisfied is the condition satisfying the predetermined condition.
  • the predetermined condition is that the correlation coefficient is not smaller than the predetermined threshold, and the correlation The number is increasing and has reached saturation.If this condition is satisfied, the global optimal solution is found and learning is terminated.On the other hand, if the condition is not satisfied, a local solution is obtained.
  • the fluctuation of the error between the output data and the output data of the teacher data is first determined, and then the correlation coefficient is determined. It is also possible to determine the variation in error after first determining the number of relationships. However, since the error between the output data and the output data of the teacher data is a value that must be derived for the purpose of error back propagation learning, it is better to judge the error variation first. desirable.
  • initialization is performed with a random number.
  • initialization using the random number may be substantially the same as the weighting factor before initialization. Initialization to prevent unnecessary learning that is likely to fall into the same local solution again if the same weighting factor is obtained after initialization. If the correlation coefficient between the weighting factor after initialization and the weighting factor before initialization is equal to or greater than a predetermined threshold value, the initialization can be performed again.
  • step 2411 the current weighting factor is recorded (step 2411), the weighting factor is initialized (step 2412), and the recorded weighting factor before initialization and the initial
  • the correlation coefficient of the weighting coefficient after conversion is obtained (step 2413), and it is determined whether or not this correlation coefficient is equal to or greater than a predetermined threshold value (step 2414).
  • step 2414 it is determined whether or not this correlation coefficient is equal to or greater than a predetermined threshold value.
  • FIG. 5 shows the sea surface temperature estimated by the thermal infrared image of NOAA / AVHRR bands 4 and 5 and the method called MCSST (multi-channel sea surface temperature).
  • Fig. 5 (a) or Fig. 6 (a) is the thermal infrared image of band 4, and Fig. 5
  • Fig. 6 (b) or Fig. 6 (b) is a thermal infrared image of band 5
  • Fig. 5 (c) or Fig. 6 (c) is an estimated measured value by MCSST.
  • Figure 5 is the one at 17:11 on May 20, 2002
  • Figure 6 is the one at 16:45 on November 30, 2004.
  • FIG. 5 (a) (b) or 6 (a) (b) is used as input data, and FIG. 5 (c) or 6 (c) is considered as the desired output.
  • Ral network error backpropagation learning was performed.
  • the average difference between the desired output and the actual output of the hierarchical-Eural network was evaluated as the average error.
  • the initial value of the weighting factor is given by a uniform random number.
  • Figure 7 shows the transition of the solution for the input and desired output of Figure 6, and Figure 8 or Figure 9 is for Figure 5.
  • Figures 7 and 8 relate to the image area off Miyazaki Prefecture
  • Figure 9 relates to the image area off Kokura.
  • Fig. 7 (a) shows that the correlation coefficient converges at a low part without turning to an increasing trend
  • Fig. 7 (b) shows that the error decreases as the number of learning passes and decreases. The trend also shows that it tends to converge. Therefore, it can be seen from Fig. 7 that it has fallen into a local solution.
  • Fig. 8 (a) shows that the correlation coefficient tends to converge through an increasing trend
  • Fig. 8 (b) shows that the error decreases as the number of learning passes, and the decreasing trend also converges. Shows that it is in the direction. Therefore, it can be seen from Fig. 8 that a global optimal solution has been obtained.
  • Fig. 9 (a) shows that the correlation coefficient maintains an increasing trend
  • Fig. 9 (b) shows that the error becomes smaller as the number of learning passes. It shows that it is urgent. Therefore, it can be seen from Fig. 9 that a global optimal solution has been obtained.
  • the correlation coefficient between the input and the weighting coefficient between the input layer and the hidden layer increases, and the average error tends to decrease. That is, the correlation coefficient can be used as an index of learning convergence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

[PROBLEM TO BE SOLVED] A neural network device is provided to arrive at a large area-like optimum solution through short time learning with a less training data set. [MEANS FOR SOLVING THE PROBLEM] A weight coefficient is not only updated by using an error between output data generated by a neural network and the ones of teachers’ data and learning is finished if the error becomes small, but convergence of the learning is also judged on a basis of correlations between input data and weight coefficients of an input layer and a hided layer. Thus, since the convergence of the learning is not determined merely because the weight coefficient comes to a dead end but the correlation coefficients between the input data and the weight coefficients of the input layer and the hided layer are also used for the judgment of the convergence of the learning, a local solution does not lead the learning to a finish but the learning can be finished up if a large area-like optimum solution is reached.

Description

明 細 書  Specification
ニューラルネットワーク装置及びその方法  Neural network device and method thereof
技術分野  Technical field
[0001] 本発明は、脳の仕組みをまねて作成された情報処理機構を実現した-ユーラルネ ットワーク装置に関し、特に、入力層と隠れ層との間の重み係数の局所解ではなく大 局解を効率的に求めることができる-ユーラルネットワーク装置に関する。  [0001] The present invention relates to a neural network device that realizes an information processing mechanism created by mimicking the mechanism of the brain, and in particular, not a local solution of a weighting factor between an input layer and a hidden layer, but a global solution. It can be efficiently determined-relating to a Euler network device.
背景技術  Background art
[0002] ニューラルネットワークとは、人間の脳の仕組みをまねた情報処理機構である。人 間の脳はコンピュータでは実現が困難な処理でさえ容易に達成する優れた能力を持 つている。現在、私たちが使っているコンピュータはノイマン型と呼ばれ、演算速度が 非常に速ぐ定式化された問題などを解く場合には抜群の威力を発揮するが、人間 が普段行っているパターン認識などの問題を解く場合、問題の定式ィ匕が難しぐ実装 するのが非常に困難となる。そこで、人間の脳内の情報処理機構をヒントにして、人 間の基本機能である認識や記憶、判断と 、つた処理をコンピュータ上で実現させる ため、ニューラルネットワークが誕生した。ニューラルネットワークは脳内の情報処理 機構を単純ィ匕した構造を持っている。人間の脳内には約 140億個もの神経細胞が存 在しており、それら神経細胞は互いに結び付いている。各神経細胞は他の細胞から 入力信号を受け、その入力信号の和がある値を超えた場合に他の細胞へ出力信号 を送り出すという働きを持っている。この細胞間の情報の伝播が、人間が普段行って いる認識や記憶、判断といった処理を可能としている。脳内の情報処理の最大の特 徴は、単純な機能し力持たない細胞が多数集まることにより、全体として複雑で高度 な処理を実現しているという点にあり、ニューラルネットワークはこの利点を生力した 仕組みとなっている。具体的には、脳内の神経細胞を「ニューロン」と呼ばれる素子と してモデル化し、多数の-ユーロンを配置'結合することによりネットワークを構築する 。実際に応用する場合は、適用する問題に合わせて、各-ユーロンのパラメータを変 化 (学習)させることで、種々の問題に対応することができる。  A neural network is an information processing mechanism that mimics the mechanism of a human brain. The human brain has an excellent ability to easily achieve processing that is difficult to achieve with a computer. Currently, the computer we are using is called the Neumann type, which is extremely powerful when solving problems that are formulated with extremely high computation speeds. When solving such problems, it is very difficult to implement the problem formulation. Therefore, a neural network was born to realize the basic functions of human recognition, memory, and judgment on a computer using information processing mechanisms in the human brain as hints. Neural networks have a structure that simplifies the information processing mechanism in the brain. There are about 14 billion nerve cells in the human brain, and these nerve cells are connected to each other. Each neuron receives an input signal from another cell and sends an output signal to another cell when the sum of the input signals exceeds a certain value. This propagation of information between cells enables processes such as recognition, memory, and judgment that are usually performed by humans. The biggest feature of information processing in the brain is that a large number of cells that do not function and have power are gathered to realize complex and advanced processing as a whole, and neural networks produce this advantage. It is a powerful mechanism. Specifically, a neuron in the brain is modeled as an element called a “neuron”, and a network is constructed by arranging and connecting a large number of -eurons. In actual application, various problems can be dealt with by changing (learning) the parameters of each Euron according to the problem to be applied.
[0003] 図 10 (a)は-ユーロンの模式図である。細胞体 (soma)は核などが含まれて!/、る部分 で、ニューロンの本体といえる部分であり、榭状突起 (dendrite)は細胞体から出ている 多数の枝のような部分で、ニューロンの入力端子にあたるところであり、軸索 (axon)は 細胞体力も伸びだし、ニューロンの出力端子にあたる部分であり、シナプス (synapse) は枝の末端にある小さい太い足で他の-ユーロンに接しており、ニューロンどうしをつ なぎ、情報を伝達する役割をする。 [0003] Fig. 10 (a) is a schematic diagram of -Euron. The cell body (soma) contains the nucleus! The dendrite is the part of many branches that come out of the cell body, and it is the input terminal of the neuron, and the axon has cell body strength. It extends and is the part that is the output terminal of the neuron, and the synapse is in contact with the other-euron with a small thick leg at the end of the branch, and it plays a role in connecting neurons and transmitting information.
[0004] モデルィ匕すると、図 10(b)に示すようになり、式で示せば次のとおりとなる。  [0004] When modeled, the result is as shown in Fig. 10 (b).
[0005] [数 1]
Figure imgf000004_0001
[0005] [Equation 1]
Figure imgf000004_0001
入力の重み付き総和 ί線形識別関数) (1)  Input weighted sum (ί linear discriminant function) (1)
[0006] それをさらに多数組み合わせることによって複雑な計算が可能になる。三層の階層 形-ユーラルネットワーク (任意の写像が実現可能)を図 10 (c)に示す。 [0006] Combining a large number of them enables complex calculations. Figure 10 (c) shows a three-layer hierarchical-Eural network (any mapping can be realized).
ニューラルネットワークの学習は図 10 (d)に示すように行われる。  The neural network learning is performed as shown in Fig. 10 (d).
図 11 (a)はエラー (誤差)を示す。  Figure 11 (a) shows an error.
[0007] [数 2] [0007] [Equation 2]
最小にする重み (νν,ν)を求めればよい Find the minimum weight (νν, ν)
£ =
Figure imgf000004_0002
ノ . . . (2) 新しい重みは、次式となる。
£ =
Figure imgf000004_0002
(2) The new weight is given by the following equation.
[0008] [数 3] dE  [0008] [Equation 3] dE
w[t + \) = w(t)-e (3)  w (t + \) = w (t) -e (3)
dw  dw
比例定数  Proportionality constant
このようにすると極小値になる。  In this way, the minimum value is obtained.
[0009] [数 4] 単位時間における変化とすると [0009] [Equation 4] Change in unit time
Aw(t)=—ε—— • · · (4)  Aw (t) = — ε—— • · · (4)
[0010] [数 5]
Figure imgf000005_0001
[0010] [Equation 5]
Figure imgf000005_0001
[0011] [数 6]  [0011] [Equation 6]
£ = /(ν1,···,ν.,Η'11,···,
Figure imgf000005_0002
£ = / (ν 1, ··· , ν., Η '11, ···,
Figure imgf000005_0002
Iト: 正 (6)  I: Positive (6)
[0012] [数 7] [0012] [Equation 7]
Figure imgf000005_0003
Figure imgf000005_0003
[0013] これらの式を満たすように変化させると、時刻 tに対して誤差 Eは非増加である。  [0013] When changing to satisfy these equations, the error E does not increase with respect to time t.
多くの学習データ (入力と望ましい出力の糸且)を例示することによって-ユーラルネッ トワークの重みを決定する方法がある。最も多用されているのは誤差逆伝播と呼ばれ る、最急降下法に基づく学習方法である。  There is a way to determine the weight of the Ural network by exemplifying a lot of learning data (input and desired output thread). A learning method based on the steepest descent method is called error back propagation.
図 11 (b) (c)は誤差逆伝播の構造説明図である。  Figures 11 (b) and 11 (c) are diagrams illustrating the structure of back propagation.
出力層層の j番目のユニットへの総入力は、  The total input to the jth unit in the output layer is
[0014] [数 8]
Figure imgf000006_0001
[0014] [Equation 8]
Figure imgf000006_0001
[0015] [数 9] x ) = 0,(") . . . (9) [0015] [Equation 9] x) = 0, (")... (9)
[0016] [数 10] エラ— £≡ ∑ヌ Γ1)— ^)2 各学習データについての和 望ましい出力 であり、誤差 (エラー) Eが小さくなるように wを決める。 [0016] [ Equation 10] Error— £ ≡ ∑nu Γ 1 ) — ^) 2 The sum of each learning data is a desirable output, and w is determined so that error (error) E becomes small.
[0017] [数 11] iw =—ε [0017] [Equation 11] iw = —ε
dw  dw
に従うように重み wを変化させつづければょ 、。  If you keep changing the weight w to follow
[0018] [数 12] [0018] [Equation 12]
― · · · ( 1 2) ― · · · (1 2)
dw  dw
を求める。  Ask for.
図 11(d)参照。  See Figure 11 (d).
[0019] [数 13] dE ^ dE dxm (n+1) . . . 。、 ここで(3)より [0019] [Equation 13] dE ^ dE dx m (n + 1) . From here (3)
[0020] [数 14] " +1) = 5 («) ( 1 4) これを、 [0020] [Equation 14] " +1) = 5 («) (1 4)
[0021] [数 15] > · · · ( 15 ) で微分すると、 [0021] [Equation 15] > Differentiated by (15)
[0022] [数 16] [0022] [Equation 16]
( )) (") · · · (16) だけが残る。 ()) (") · · · Only (16) remains.
[0023] [数 17] dx, (»-!)  [0023] [Equation 17] dx, (»-!)
0 ( 17) )  0 (17))
よって(13)は、  So (13)
[0024] [数 18]
Figure imgf000007_0001
[0024] [Equation 18]
Figure imgf000007_0001
Ε dy ,(»)
Figure imgf000007_0002
Dy dy, (»)
Figure imgf000007_0002
[0025] [数 19]
Figure imgf000007_0003
を求める。
[0025] [Equation 19]
Figure imgf000007_0003
Ask for.
図 11(e)参照。  See Figure 11 (e).
[0026] [数 20] とき[0026] When [number 20]
Figure imgf000007_0004
Figure imgf000007_0004
Ε • , , (20) dx'  Ε •,, (20) dx '
[0027] まず、 [0027] First,
[数 21] dx, ("- 1) (21) [Number 21] dx, ("-1) (21)
9w  9w
[0028] 次に、 [0028] Next,
[数 22]
Figure imgf000008_0001
[Number 22]
Figure imgf000008_0001
[0029] [数 23]
Figure imgf000008_0002
[0029] [Equation 23]
Figure imgf000008_0002
' dE ))  'dE))
(23)(twenty three)
Figure imgf000008_0003
Figure imgf000008_0003
[0030] 以上の計算を出力側力 入力側へ逆向きに、 [0030] The above calculation is reversed to the output side force input side,
[数 24] dE  [Equation 24] dE
(24)  (twenty four)
dx  dx
を伝搬しながら傾き  Tilt while propagating
[0031] [数 25] dE [0031] [Equation 25] dE
(25)  (twenty five)
dw  dw
[0032] の計算が進む。これを誤差逆伝播学習という。 [0032] The calculation proceeds. This is called error back propagation learning.
ニューラルネットワークの特徴を挙げると以下のようになる。  The characteristics of neural networks are as follows.
(1) 学習能力 · · '提示される入出力サンプルに基づ ヽて必要な機能を自動形成す ることがでさる。  (1) Learning ability · · 'It is possible to automatically form necessary functions based on the input / output samples presented.
(2) 非線形性…学習により、定式化が困難な複雑な写像関係でさえ容易に構築す ることがでさる。  (2) Non-linearity: By learning, even complex mapping relationships that are difficult to formulate can be easily constructed.
(3) 並列処理…入力された信号は結合を通して様々な-ユーロンへと送られ、並 列的に処理される。 発明の開示 (3) Parallel processing: The input signal is sent to various Eurons through the combination and processed in parallel. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0033] 誤差逆伝播学習に基づく階層型-ユーラルネットワークでは、最急降下法に基づく 最適化学習を行うため、大域的最適解を保証するものではなく局所解に陥る危険性 がある。大域的最適解に到達するための学習方法としてシミュレ一テツドア- リング があるが、学習に時間を要することもさることながら、入力データセットと望ましい出力 データセット (これらをトレーニングデータセットと呼ぶ)を大量に用意する必要があり現 実的ではな ヽと ヽぅ課題を有する。  [0033] Since hierarchical learning based on backpropagation learning performs optimization learning based on the steepest descent method, there is a risk of falling into a local solution rather than guaranteeing a global optimal solution. There is a simulation method for reaching the global optimal solution, but it takes time to learn and the input data set and the desired output data set (referred to as the training data set). It needs to be prepared in large quantities and has unrealistic traps and traps.
[0034] 本発明は前記課題を解決するためになされたものであり、少ないトレーニングデー タセットによる短時間での学習によって大域的最適解に到達することが可能である二 ユーラルネットワーク装置を提供することを目的とする。 [0034] The present invention has been made to solve the above-described problem, and provides a dual network device capable of reaching a global optimum solution by learning in a short time with a small number of training data sets. For the purpose.
課題を解決するための手段  Means for solving the problem
[0035] 発明者の-ユーラルネットワークへの鋭意的研究の結果、入力データは、学習の進 行に伴って入力層と隠れ層を結合している重み係数に相関が高くなることが判明し た。隠れ層のノード数にも依存するが、仮に、入力層と重み係数の数が同じである場 合 (隠れ層のノードを 1つとすると、すべての入力層のノードがこの一つの隠れ層のノ ードに結合され、重み係数の数は入力層のノード数に一致)、入力と望ましい出力を 与えて学習が進行したときの重み係数との間には相関、  [0035] As a result of the inventor's earnest research on the Ural network, it was found that the input data becomes highly correlated with the weighting coefficient that combines the input layer and the hidden layer as the learning progresses. It was. Although it depends on the number of hidden layer nodes, if the number of weighting coefficients is the same as that of the input layer (assuming one hidden layer node, all the input layer nodes The number of weighting factors matches the number of nodes in the input layer), and the correlation between the input and the weighting factor when learning progresses with the desired output,
[0036] [数 26]  [0036] [Equation 26]
Rxw = J (χ. - Χ) πί} - W)!nm - · ■ ( 2 6 ) R xw = J ( χ.- Χ) π ί} -W)! Nm- · ■ (2 6)
[0037] が高くなる。隠れ層の数が大きくなつた場合も同様に、間引くことにより、または、平均 化操作を施して入力層の数に合わせると、式の相関係数が計算でき、学習の進行状 況を調べることができる。ただし、相関係数の求め方は上式に限らず、相関の程度に 数値ィ匕できる式であれば用いることができる。 [0037] becomes higher. Similarly, when the number of hidden layers increases, the correlation coefficient of the equation can be calculated by thinning out or by averaging to match the number of input layers, and the progress of learning can be checked. Can do. However, the method of obtaining the correlation coefficient is not limited to the above formula, and any formula that can be numerically expressed according to the degree of correlation can be used.
[0038] 本発明は、最急降下法に基づく誤差逆伝播学習を伴う階層型-ユーラルネットヮー クを基本とし、入力データと入力層と隠れ層との間の重み係数との相関係数を調べる ことにより、学習の進行状況を調べ、局所解に陥っている力 それとも、大域的最適 解に近い準最適解であるのかを判定するものである。また、仮に、誤差逆伝播学習 が収束したとしても相関係数が低い場合、すなわち、局所解に陥っているような場合 であれば、初期値を変えて学習をやり直すという学習法およびそれを用いた-ユーラ ルネットワーク装置も含まれる。 [0038] The present invention is based on a hierarchical-Eural network with backpropagation learning based on the steepest descent method, and examines the correlation coefficient between the input data and the weighting coefficient between the input layer and the hidden layer. The ability to check the progress of learning and fall into a local solution, or globally optimal It is determined whether the solution is a suboptimal solution close to the solution. Also, even if error backpropagation learning converges, if the correlation coefficient is low, that is, if it falls into a local solution, a learning method that changes the initial value and restarts learning is used. It also included -European network equipment.
[0039] (1) 本発明に係る-ユーラルネットワーク装置は、ノードを有する入力層、隠れ層 及び出力層からなり、入力データを入力層に入力して出力層から出力された出力デ ータと入力データに対応する予め用意された教師データとを比較し、比較結果となる 誤差を用いて出力層及び隠れ層のノード間の重み係数と隠れ層及び入力層のノー ド間の重み係数を更新することで学習する誤差逆伝播学習に基づく階層的ニューラ ルネットワーク装置であって、入力データと入力層及び隠れ層のノード間の重み係数 との相関係数に基づいて前記学習の収束を判断するものである。  [0039] (1) The -Eural network device according to the present invention includes an input layer having nodes, a hidden layer, and an output layer, and outputs output data that is input from the input layer and output from the output layer. And the teacher data prepared in advance corresponding to the input data, and using the error that is the comparison result, the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer are calculated. A hierarchical neural network device based on backpropagation learning that learns by updating, and determines the convergence of the learning based on the correlation coefficient between the input data and the weighting coefficient between the nodes in the input layer and the hidden layer. To do.
[0040] このように本発明によれば、ニューラルネットワークによって生成された出力データ と教師データの出力データとの誤差を用いて重み係数を更新し、力かる誤差力 、さく なってきた場合に学習を終了するだけではなぐ入力データと入力層及び隠れ層の 重み係数との相関係数に基づいて学習の収束を判断しているので、重み係数の更 新が行き詰るだけで学習の収束状態と判断せずに、入力データと入力層及び隠れ 層の重み係数との相関係数も用いて学習の収束を判断しており、局所解で学習が終 了することなぐ大域的最適解を導出して学習を終了させることができるという効果を 奏する。  [0040] As described above, according to the present invention, the weighting coefficient is updated using the error between the output data generated by the neural network and the output data of the teacher data, and learning is performed when the error power is increased. Since the convergence of learning is judged based on the correlation coefficient between the input data and the weighting coefficients of the input layer and the hidden layer. The learning convergence is also determined using the correlation coefficient between the input data and the weighting coefficients of the input layer and hidden layer, and a global optimal solution that does not end the learning with a local solution is derived. The effect is that learning can be completed.
[0041] (2) また、本発明に係る-ユーラルネットワーク装置は、ノードを有する入力層、隠 れ層及び出力層からなり、入力データを入力層に入力して出力層から出力された出 力データと入力データに対応する予め用意された教師データとを比較し、比較結果 となる誤差を用いて出力層及び隠れ層のノード間の重み係数と隠れ層及び入力層 のノード間の重み係数を更新することで学習する誤差逆伝播学習に基づく階層的二 ユーラルネットワーク装置であって、前記学習の比較結果の誤差に基づいて学習の 収束を判断する第 1の学習収束判断部と、入力データと入力層及び隠れ層のノード 間の重み係数との相関係数に基づいて前記学習の収束を判断する第 2の学習収束 判断部とを新たに備え、第 1の学習収束判断部と第 2の学習収束判断部が共に学習 が収束して 、ると判断して 、る場合に学習を終了するものである。 [0041] (2) In addition, the -Ural network device according to the present invention includes an input layer having nodes, a hidden layer, and an output layer. The input data is input to the input layer and output from the output layer. Force data is compared with pre-prepared teacher data corresponding to the input data, and the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer are calculated using an error as a comparison result. A hierarchical dual network device based on error back propagation learning that learns by updating the first learning convergence determination unit that determines the convergence of learning based on the error of the comparison result of the learning, and an input A second learning convergence determination unit for determining the convergence of the learning based on a correlation coefficient between the data and a weighting coefficient between nodes of the input layer and the hidden layer, and the first learning convergence determination unit and the first learning convergence determination unit 2 learning convergence judgment departments Practice The learning is terminated when it is determined that has converged.
第 1の学習収束判断部は、より具体的には、今まで求めてきた比較結果の誤差の 変動をみており、この変動が略なくなった場合に学習が収束したと判断する。  More specifically, the first learning convergence determination unit looks at the fluctuations in the error of the comparison result obtained so far, and determines that the learning has converged when the fluctuations are almost eliminated.
[0042] (3) また、本発明に係る-ユーラルネットワーク装置は、ノードを有する入力層、隠 れ層及び出力層からなり、入力データを入力層に入力して出力層から出力された出 力データと入力データに対応する予め用意された教師データとを比較し、比較結果 となる誤差を用いて出力層及び隠れ層のノード間の重み係数と隠れ層及び入力層 のノード間の重み係数を更新することで学習する誤差逆伝播学習に基づく階層的二 ユーラルネットワーク装置であって、前記学習の比較結果の誤差に基づいて学習の 収束を判断する第 1の学習収束判断部と、入力データと入力層及び隠れ層のノード 間の重み係数との相関係数に基づいて前記学習の収束を判断する第 2の学習収束 判断部とを新たに備え、第 1の学習収束判断部が学習が収束したと判断した後に、 第 2の学習収束判断部が学習の収束を判断し、第 2の学習収束判断部が学習が収 束したと判断した場合に、学習を終了するものである。  [0042] (3) In addition, the -Ural network device according to the present invention includes an input layer having nodes, a hidden layer, and an output layer. The input data is input to the input layer and output from the output layer. Force data is compared with pre-prepared teacher data corresponding to the input data, and the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer are calculated using an error as a comparison result. A hierarchical dual network device based on error back propagation learning that learns by updating the first learning convergence determination unit that determines the convergence of learning based on the error of the comparison result of the learning, and an input A second learning convergence determination unit that determines the convergence of the learning based on a correlation coefficient between the data and the weighting coefficient between nodes of the input layer and the hidden layer, and the first learning convergence determination unit learns After judging that has converged The second learning convergence judgment unit judges the convergence of the learning, when the second learning convergence judgment unit determines that learning is converged, it is to end the learning.
[0043] このように本発明によれば、まずもって-ユーラルネットワークの生成した出力デー タと教師データの出力データとの誤差から学習の収束を判断しており、この二ユーラ ルネットワークの生成した出力データと教師データの出力データとの誤差は誤差逆 伝播学習をする上では重み係数の反映のために必須のものであり、入力データと入 力層及び隠れ層の重み係数との相関係数力 学習収束を判断する前に、既に求ま つて 、る誤差を用いて誤差による学習収束の判断を実施することが効率がょ 、と 、う 効果を有する。  [0043] As described above, according to the present invention, the convergence of learning is first determined from the error between the output data generated by the Euler network and the output data of the teacher data. The error between the output data and the output data of the teacher data is indispensable to reflect the weighting factor in error backpropagation learning, and the correlation between the input data and the weighting factor of the input layer and hidden layer Before determining the power learning convergence, it is efficient to use the error already obtained to determine the learning convergence based on the error.
[0044] (4) また、本発明に係る-ユールネットワーク装置は必要に応じて、第 2の学習収 束判断部は、当該相関関数が所定閾値以上である場合に学習が収束したと判断す るものである。  [0044] (4) In addition, the Yule network device according to the present invention determines that the learning has converged when the correlation function is equal to or greater than a predetermined threshold, if necessary. Is.
(5) また、本発明に係る-ユーラルネットワーク装置は必要に応じて、第 2の学習 収束判断部は、相関係数が増大傾向が飽和に達する学習収束条件に該当する場 合に学習が収束したと判断するものである。  (5) In addition, according to the present invention, if necessary, the second network convergence judgment unit learns when the correlation coefficient satisfies the learning convergence condition in which the increasing tendency reaches saturation. It is judged that it has converged.
(6) また、本発明に係る-ユーラルネットワーク装置は必要に応じて、第 2の学習 収束判断部は、前記学習収束条件に該当しない場合、重み係数を初期化して改め て学習し直すものである。 (6) In addition, according to the present invention, the Ural network device performs second learning as necessary. The convergence determination unit initializes the weighting coefficient and learns again when the learning convergence condition is not met.
[0045] このように本発明によれば、ニューラルネットワークの生成した出力データと教師デ ータの出力データとの誤差力 学習が収束したと判断した場合で、且つ、入力データ と入力層及び隠れ層の重み係数との相関係数から学習が収束して 、な 、と判断した 場合には、大域的最適解が求まらず局所解に陥っていることとなり、再度重み係数を 初期化して誤差逆伝播学習をすることで大域的最適解を求めることができるという効 果を有する。局所解に陥っている状態で何度学習しても局所解を脱して大域的最適 解に達することは困難であるために、重み係数を初期化することが望ましい。  As described above, according to the present invention, when it is determined that the error power learning between the output data generated by the neural network and the output data of the teacher data has converged, and the input data, the input layer, and the hidden If the learning converges from the correlation coefficient with the layer weighting coefficient, it is determined that the learning is unsuccessful. It has the effect that a global optimal solution can be obtained by back propagation learning. It is desirable to initialize the weighting factor because it is difficult to get out of the local solution and reach the global optimal solution no matter how many times you learn while in the local solution.
[0046] (7) また、本発明に係る-ユーラルネットワーク装置は必要に応じて、前記重み係 数を初期化する場合には、初期化した重み係数と初期化する前の重み係数の相関 係数を求め、この相関係数が所定閾値以上である場合には再度重み係数を初期化 するものである。  [0046] (7) Further, in the case of the -Ural network device according to the present invention, when the weighting factor is initialized as necessary, the correlation between the initialized weighting factor and the weighting factor before the initialization is performed. A coefficient is obtained, and when this correlation coefficient is equal to or greater than a predetermined threshold, the weight coefficient is initialized again.
このように本発明によれば、重み係数を初期化した場合であっても依然の重み係数 と同様であれば誤差逆伝播の学習を再度行った場合に同様の局所解に陥る可能性 が高ぐその場合に、再度初期化することで無駄な学習を回避し、効率的に大域的 最適解を求めることができると 、う効果を有する。  Thus, according to the present invention, even if the weighting factor is initialized, if it is the same as the weighting factor, the possibility of falling into the same local solution is high when error back propagation learning is performed again. In this case, it is possible to avoid unnecessary learning by re-initializing and efficiently obtain a global optimum solution.
[0047] (8) また、本発明に係る階層的ニューラルネットワーク装置の誤差逆伝播学習方 法は、入力データを入力層に入力して出力層から出力された出力データと入力デー タに対応する予め用意された教師データとを比較し、比較結果となる誤差を用いて 出力層及び隠れ層のノード間の重み係数と隠れ層及び入力層のノード間の重み係 数を更新することで学習する階層的ニューラルネットワーク装置の誤差逆伝播学習 方法であって、入力データと入力層及び隠れ層のノード間の重み係数との相関係数 に基づいて前記学習の収束を判断するものである。 [0047] (8) Further, the error back propagation learning method of the hierarchical neural network device according to the present invention corresponds to the input data and the output data output from the output layer by inputting the input data to the input layer. Learning by updating the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer using the error that is the comparison result by comparing with the prepared teacher data An error back-propagation learning method for a hierarchical neural network apparatus, wherein convergence of the learning is determined based on a correlation coefficient between input data and a weight coefficient between nodes of an input layer and a hidden layer.
このように本発明は、方法としても把握することができる。  Thus, the present invention can also be grasped as a method.
これら前記の発明の概要は、本発明に必須となる特徴を列挙したものではなぐこ れら複数の特徴のサブコンビネーションも発明となり得る。  These outlines of the invention do not enumerate the features essential to the present invention, and a sub-combination of these features can also be an invention.
図面の簡単な説明 [0048] [図 1]本発明の第 1の実施形態に係る-ユーラルネットワーク装置のブロック構成図で ある。 Brief Description of Drawings FIG. 1 is a block configuration diagram of a -ural network device according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態に係る-ユーラルネットワーク装置を構築されているコ ンピュータのハードウェア構成図である。  FIG. 2 is a hardware configuration diagram of a computer in which the Yural network device according to the first embodiment of the present invention is constructed.
[図 3]本発明の第 1の実施形態に係る-ユーラルネットワーク装置の学習時の動作フ ローチャートである。  FIG. 3 is an operation flowchart at the time of learning of the -Ural network device according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施形態に係る-ユーラルネットワーク装置の初期化に関する 部分代替フローチャートである。 [Fig. 4] Fig. 4 is a partial alternative flowchart relating to the initialization of the Yural network device according to the first embodiment of the present invention.
[図 5]実施例に係る 2002年 5月 20日 17時 11分の観測画像及び実測値である。  [FIG. 5] Observation images and actual measurement values at 17:11 on May 20, 2002 according to the embodiment.
[図 6]実施例に係る 2004年 11月 30日 16時 45分の観測画像及び実測値である。  [Fig. 6] Observed images and measured values at 16:45 on November 30, 2004 according to the embodiment.
[図 7]図 6の入力及び望ましい出力に対する解の推移である。  [Fig. 7] Transition of solutions for the input and desired output of Fig. 6.
[図 8]図 5の入力及び望ま 、出力に対する解の推移である。  [Fig. 8] This is the transition of the solution with respect to the input and desired output in Fig. 5.
[図 9]図 5の入力及び望ま 、出力に対する解の推移である。  [Fig. 9] Transition of the solution to the input and desired output in Fig. 5.
[図 10]背景技術の-ユーラルネットワークの説明図である。  [FIG. 10] An explanatory diagram of the background network-Ural network.
[図 11]背景技術の-ユーラルネットワークの説明図である。  FIG. 11 is an explanatory diagram of the background art-a Ural network.
符号の説明  Explanation of symbols
[0049] 10 入力部 [0049] 10 input section
20 ニューラルネットワーク機構部  20 Neural network mechanism
30 出力部  30 Output section
40 誤差逆伝播機構  40 Back propagation mechanism
41 誤差算出部  41 Error calculator
42 重み係数反映部  42 Weight coefficient reflection part
43 誤差収束判定部  43 Error convergence judgment part
50 相関係数機構  50 Correlation coefficient mechanism
51 相関係数算出部  51 Correlation coefficient calculator
52 相関係数条件判定部  52 Correlation coefficient condition judgment unit
53 初期化部  53 Initialization section
100 コンピュータ 111 CPU 100 computers 111 CPU
112 RAM  112 RAM
113 ROM  113 ROM
114 フラッシュメモリ  114 flash memory
115 HD  115 HD
116 LANカード  116 LAN card
117 マウス  117 mouse
118 キーボード  118 keyboard
119 ビデオカード  119 video card
119a ディスプレイ  119a display
120 サウンドカード  120 sound card
120a スピーカ  120a speaker
121 ドライブ  121 drive
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(本発明の第 1の実施形態)  (First embodiment of the present invention)
(1)ブロック構成 (1) Block configuration
図 1は本実施形態に係る-ユーラルネットワーク装置のブロック構成図である。 本実施形態に係る-ユーラルネットワーク装置は、処理対象の入力データを取り込 む入力部 10と、取り込んだ入力データを処理して出力データを生成する-ユーラル ネットワーク機構部 20と、生成した出力データを送り出す出力部 30と、学習時にニュ 一ラルネットワーク機構部 20により生成された出力データと教師データの出力データ 力 誤差を求め、求めた誤差力 誤差が収束している力否かを判断し、収束していな V、と判断した場合には誤差逆伝播を行 、重み係数を更新する誤差逆伝播機構 40と 、学習時に入力データと入力層と隠れ層との隠れ係数との相関係数を求め、前記誤 差逆伝播機構 40が収束していると判断した場合に、直近の相関係数が所定閾値と 比べて低いか否力 及び、相関係数が増大傾向であって飽和に達する力否かを判 断し、直近の相関係数が所定閾値と比べて低い場合、相関係数が増大傾向ではな い場合、または、相関係数が増大傾向でも飽和に達しない場合、ニューラルネットヮ ーク機構部 20を初期化する相関係数機構 50とを備える構成である。 FIG. 1 is a block diagram of the -Ural network device according to this embodiment. The -Ural network device according to the present embodiment includes an input unit 10 that captures input data to be processed, and generates output data by processing the input data that has been captured -Ural network mechanism unit 20 and the generated output Determine the output error between the output unit 30 that sends out the data and the output data generated by the neural network mechanism unit 20 during training and the output data of the teacher data, and determine whether the calculated error force error has converged. If it is determined that V has not converged, error back propagation is performed to update the weighting coefficient by performing error back propagation 40, and the correlation coefficient between the input data and the hidden coefficient between the input layer and the hidden layer during learning. If the error back-propagation mechanism 40 is determined to have converged, the power of whether the latest correlation coefficient is lower than the predetermined threshold and the correlation coefficient tend to increase and reach saturation Judgment of power If the most recent correlation coefficient is lower than the predetermined threshold, the correlation coefficient is not increasing, or the correlation coefficient does not reach saturation even when increasing, the neural network And a correlation coefficient mechanism 50 for initializing the torque mechanism unit 20.
[0051] 誤差逆伝播機構 40は、学習時に入力データの入力毎に出力データと教師データ の出力データの誤差を求める誤差算出部 41と、この誤差算出部 41で求めた誤差を 用いて-ユーラルネットワーク機構部 20の重み係数を更新する重み係数反映部 42と 、誤差算出部 41が求めた誤差の変動力 収束しているか否かを判断する誤差収束 判定部 43とからなる。誤差収束判定部 43が収束しな 、と判断した場合にだけ重み 係数反映部 42が重み係数の反映を行う構成にすることもできるし、誤差収束判定部 43に依らず誤差算出部 41で誤差が求められた場合には重み係数反映部 42が重み 係数を反映する構成にすることもできる。後者の構成を採った場合にも、誤差収束判 定部 43が収束すると判断した場合で且つ、大域的最適解が求まっていれば以降誤 差算出部 41及び重み係数反映部 42での処理は行われない。 [0051] The error back-propagation mechanism 40 uses an error calculator 41 that calculates an error between the output data and the output data of the teacher data for each input of the input data during learning, and uses the error calculated by the error calculator 41. The weight coefficient reflecting unit 42 for updating the weighting coefficient of the Ral network mechanism unit 20 and the error convergence determining unit 43 for determining whether or not the error fluctuating power obtained by the error calculating unit 41 has converged. The weight coefficient reflection unit 42 may be configured to reflect the weight coefficient only when the error convergence determination unit 43 determines that the error has not converged, or the error calculation unit 41 does not depend on the error convergence determination unit 43. In the case where the weight coefficient is obtained, the weight coefficient reflecting unit 42 may be configured to reflect the weight coefficient. Even when the latter configuration is adopted, if the error convergence determination unit 43 determines that the convergence has occurred and if a global optimum solution has been obtained, the processing in the error calculation unit 41 and the weight coefficient reflection unit 42 is performed thereafter. Not done.
[0052] 相関係数機構 50は、学習時に入力データの入力毎に入力データと入力層と隠れ 層の重み係数との相関係数を求める相関係数算出部 51と、直近の相関係数が所定 閾値と比べて低いか否力、及び、相関係数が増大傾向であって飽和に達する力否か を判断する相関係数条件判定部 52と、この相関係数条件判定部 52が直近の相関 係数が所定閾値と比べて低いと判断した場合、相関係数が増大傾向ではないと判 断した場合、または、相関係数が増大傾向でも飽和に達しないと判断した場合に- ユーラルネットワーク機構部 20を初期化する初期化部 53とからなる。 [0052] The correlation coefficient mechanism 50 includes a correlation coefficient calculation unit 51 that obtains a correlation coefficient between the input data and the weighting coefficient of the input layer and the hidden layer for each input of the input data during learning, and the latest correlation coefficient is The correlation coefficient condition determination unit 52 for determining whether the power is lower than the predetermined threshold and whether the correlation coefficient tends to increase and reach saturation, and the correlation coefficient condition determination unit 52 When it is determined that the correlation coefficient is lower than the predetermined threshold, when it is determined that the correlation coefficient is not increasing, or when the correlation coefficient is determined not to reach saturation even when increasing And an initialization unit 53 for initializing the mechanism unit 20.
[0053] (2)ハードウェア構成 [0053] (2) Hardware configuration
図 2は本実施形態に係る-ユーラルネットワーク装置を構築されているコンピュータ のハードウェア構成図である。  FIG. 2 is a hardware configuration diagram of a computer in which the Yural network device according to the present embodiment is constructed.
ニューラルネットワークが構築されているコンピュータ 100は、 CPU(Central Proces sing Unit)l l l、 RAM(Random Access Memory) 112, ROM(Read Only Memory) 11 3、フラッシュメモリ (Flash memory) 114,外部記憶装置である HD(Hard disk) 115, L AN(Local Area Network)カード 116、マウス 117、キーボード 118、ビデオカード 11 9、このビデオカード 119と電気的に接続する表示装置であるディスプレイ 119a、サ ゥンドカード 120、このサウンドカード 120と電気的に接続する音出力装置であるスピ 一力 120a及びフレキシブルディスク、 CD-ROM, DVD— ROM等の記憶媒体を 読み書きするドライブ 121からなる。なお、所謂当業者であれば、若干のハードウェア の構成要素の変更をすることができ、また、複数コンピュータに対して一つの-ユーラ ルネットワークを構築することができる。コンピュータ毎に全てではなく一部の一又は 複数のモジュールを構築して負荷分散を図ることができる。勿論、グリッドコンビユー タシステム上に-ユーラルネットワークを構築することもできる。 The computer 100 on which the neural network is constructed is a CPU (Central Processing Unit) lll, a RAM (Random Access Memory) 112, a ROM (Read Only Memory) 11 3, a flash memory (Flash memory) 114, and an external storage device. HD (Hard disk) 115, LAN (Local Area Network) card 116, mouse 117, keyboard 118, video card 119, display 119a, sound card 120, which is a display device electrically connected to this video card 119, this A sound output device that is electrically connected to the sound card 120, and a storage medium such as a flexible disk, CD-ROM, DVD-ROM, etc. It consists of a drive 121 that reads and writes. A so-called person skilled in the art can slightly change the components of the hardware, and can construct a single-universal network for a plurality of computers. One or more modules, not all, can be built for each computer to achieve load distribution. Of course, it is possible to build a -Ural network on the grid computer system.
[0054] (3)動作 [0054] (3) Operation
図 3は本実施形態に係る-ユーラルネットワーク装置の学習時の動作フローチヤ一 トである。  FIG. 3 is an operation flow chart at the time of learning of the -Ural network device according to the present embodiment.
入力部 10が入力データ及び出力データ力もなる教師データを取り込み、取り込ん だ入力データが-ユーラルネットワーク機構 20で処理され、出力部 10が生成された 出力データを出力する。誤差算出部 41は出力データと教師データの出力データと 力も誤差を算出する (ステップ 201)。重み係数反映部 42は算出した誤差を用いて- ユーラルネットワークの重み係数を更新する (ステップ 202)。相関係数算出部 51は 入力層と隠れ層の重み係数と入力データとから相関係数を算出する (ステップ 211) 。誤差収束判定部 43は誤差算出部 41が求めてきた誤差を用いて誤差が収束してい る力否かを判断する(ステップ 221)。ステップ 221において収束していないと判断し た場合にはステップ 100に戻る。ステップ 221において収束していると判断した場合 には、相関係数条件判定部 52は相関係数算出部 51が求めてきた相関係数を用い て直近の相関係数が所定閾値と比べて低いか否かを判断する (ステップ 231)。ステ ップ 231にお 、て直近の相関係数が低 、と判断した場合には、相関係数が増大傾 向であって飽和に達するか否かを判断する(ステップ 232)。ステップ 231において相 関係数が低くないと判断した場合、又は、ステップ 232において相関係数が増大傾 向であって飽和に達すると判断した場合、大域的最適解が求まったとして-ユーラル ネットワークの学習を終了する。ステップ 232において相関係数が増大傾向であって 飽和に達してはいないと判断した場合には、局所解が求まったとして-ユーラルネッ トワーク機構 20の初期値を再設定し (ステップ 241)、ステップ 100に戻る。  The input unit 10 captures input data and teacher data that also has output data power. The acquired input data is processed by the -Ural network mechanism 20, and the output unit 10 outputs the generated output data. The error calculation unit 41 also calculates an error for the output data and the output data of the teacher data (step 201). The weighting factor reflection unit 42 updates the weighting factor of the Euler network using the calculated error (Step 202). The correlation coefficient calculation unit 51 calculates the correlation coefficient from the input layer and hidden layer weight coefficients and the input data (step 211). The error convergence determination unit 43 determines whether or not the error has converged using the error obtained by the error calculation unit 41 (step 221). If it is determined in step 221 that the signal has not converged, the process returns to step 100. If it is determined in step 221 that it has converged, the correlation coefficient condition determination unit 52 uses the correlation coefficient obtained by the correlation coefficient calculation unit 51 and the latest correlation coefficient is lower than the predetermined threshold value. (Step 231). If it is determined in step 231 that the most recent correlation coefficient is low, it is determined whether or not the correlation coefficient is increasing and reaches saturation (step 232). If it is determined in step 231 that the number of correlations is not low, or if it is determined in step 232 that the correlation coefficient is increasing and reaches saturation, it is assumed that a global optimal solution has been found. Exit. If it is determined in step 232 that the correlation coefficient is increasing and has not reached saturation, it is assumed that a local solution has been obtained-the initial value of the Eural network mechanism 20 is reset (step 241), and step 100 Return to.
[0055] (4)本実施形態の効果 [0055] (4) Effects of this embodiment
このように本実施形態に係る-ユーラルネットワーク装置によれば、ニューラルネット ワークによって生成された出力データと教師データの出力データの誤差を求めて誤 差逆伝播させて重み係数を更新させ、求めた誤差を蓄積して誤差の変動から誤差の 収束を判断し、誤差が収束している場合に継続して求めてきた相関係数の変動が所 定条件を満たす力否かを判断し、ここで所定条件とは相関係数が所定閾値より小さく ない、及び、相関係数が増加傾向であって飽和に達していることであり、この条件を 満たす場合には大域的最適解が求まったとして学習を終了し、一方、条件を満たさ ない場合には局所解が求まったとして-ユーラルネットワークを初期化して再度学習 するので、最急降下法を適用して迅速に学習をさせることができ、また、この最急降 下法で学習終了とされた-ユーラルネットワークが実際に大域的最適解が求まってい る力否かを判断しており、学習終了時に局所解ではなく大域的最適解が求まった状 態にすることができる。 As described above, according to the exemplary embodiment of the present invention, the neural network device The error between the output data generated by the workpiece and the output data of the teacher data is calculated and propagated back to the error to update the weighting factor, the calculated error is accumulated, and the convergence of the error is judged from the error variation. Judgment is made as to whether or not the fluctuation of the correlation coefficient obtained continuously when the convergence is satisfied is the condition satisfying the predetermined condition. Here, the predetermined condition is that the correlation coefficient is not smaller than the predetermined threshold, and the correlation The number is increasing and has reached saturation.If this condition is satisfied, the global optimal solution is found and learning is terminated.On the other hand, if the condition is not satisfied, a local solution is obtained. -Eural network is initialized and re-learned, so it is possible to apply the steepest descent method to quickly learn, and learning was terminated by this steepest descent method. Globally optimal solution Therefore, it is possible to make a state where a global optimal solution is obtained instead of a local solution at the end of learning.
[0056] (その他の実施形態)  [0056] (Other Embodiments)
[誤差による判断と相関係数による判断]  [Judgment by error and judgment by correlation coefficient]
前記第 1の実施形態に係る-ユーラルネットワーク装置においては、出力データと 教師データの出力データとの誤差の変動をまず判断し、その後に、相関係数の判断 を実行しているが、相関係数の判断をまず実行した後に誤差の変動を判断すること もできる。ただし、出力データと教師データの出力データとの誤差は、誤差逆伝播学 習にお 、ては学習のために必ず導出する必要がある値であるために誤差の変動を まずもって判断する方が望ましい。また、出力データと教師データの出力データとの 誤差の変動力 学習が収束したと判断した場合には少なくとも局所解は求まっており 、一方、相関係数力 学習が収束したと判断した場合には局所解すら求まっていな い可能性もあり、まずもって出力データと教師データの出力データとの誤差の変動か ら学習の収束を判断する方が望ましい。  In the -Ural network device according to the first embodiment, the fluctuation of the error between the output data and the output data of the teacher data is first determined, and then the correlation coefficient is determined. It is also possible to determine the variation in error after first determining the number of relationships. However, since the error between the output data and the output data of the teacher data is a value that must be derived for the purpose of error back propagation learning, it is better to judge the error variation first. desirable. In addition, when it is determined that the variable power learning of the error between the output data and the output data of the teacher data has converged, at least the local solution is obtained, whereas when it is determined that the correlation coefficient power learning has converged, There is a possibility that even a local solution has not been obtained, so it is desirable to first determine the convergence of learning from the variation in error between the output data and the output data of the teacher data.
[0057] [重み係数の初期化]  [0057] [Initialization of weighting factor]
前記第 1の実施形態に係る-ユーラルネットワーク装置においては、例えば、初期 化を乱数により実施するのであるが、この乱数による初期化が初期化前の重み係数 と略同様となる可能性もあり、初期化後も略同じ重み係数となった場合には再度同じ 局所解に陥る可能性が高ぐ無駄な学習を実施するのを未然に防止すベぐ初期化 した後の重み係数と初期化前の重み係数の相関係数が所定閾値以上であれば再 度初期化する構成にすることもできる。 In the -Ural network device according to the first embodiment, for example, initialization is performed with a random number. However, initialization using the random number may be substantially the same as the weighting factor before initialization. Initialization to prevent unnecessary learning that is likely to fall into the same local solution again if the same weighting factor is obtained after initialization. If the correlation coefficient between the weighting factor after initialization and the weighting factor before initialization is equal to or greater than a predetermined threshold value, the initialization can be performed again.
[0058] 例えば、ステップ 241に代えて図 4に示すように、現在の重み係数を記録し (ステツ プ 2411)、重み係数を初期化し (ステップ 2412)、記録した初期化前の重み係数と 初期化後の重み係数の相関係数を求め(ステップ 2413)、この相関係数が所定閾値 以上か否かを判断し (ステップ 2414)、所定閾値以上であると判断した場合にはステ ップ 2411に戻り、所定閾値より小さいと判断した場合にはステップ 100に戻る。 実施例  [0058] For example, instead of step 241, as shown in FIG. 4, the current weighting factor is recorded (step 2411), the weighting factor is initialized (step 2412), and the recorded weighting factor before initialization and the initial The correlation coefficient of the weighting coefficient after conversion is obtained (step 2413), and it is determined whether or not this correlation coefficient is equal to or greater than a predetermined threshold value (step 2414). Returning to step 100, if it is determined that the value is smaller than the predetermined threshold, the process returns to step 100. Example
[0059] 海洋 ·大気観測衛星 NOAA/AVHRR (高空間分解能可視熱赤外放射計)データを用 いた海面温度 (SST)推定に階層型-ユーラルネットワークを用いた。図 5または図 6は 、 NOAA/AVHRRバンド 4,5の熱赤外画像と MCSST (複数チャンネル海面温度)と呼ば れる方法によって推定された海面温度である。図 5 (a)または図 6 (a)がバンド 4の熱 赤外画像であり、図 5  [0059] Hierarchical-Eural network was used for sea surface temperature (SST) estimation using NOAA / AVHRR (High Spatial Resolution Visible Thermal Infrared Radiometer) data. Fig.5 or Fig.6 shows the sea surface temperature estimated by the thermal infrared image of NOAA / AVHRR bands 4 and 5 and the method called MCSST (multi-channel sea surface temperature). Fig. 5 (a) or Fig. 6 (a) is the thermal infrared image of band 4, and Fig. 5
(b)または図 6 (b)がバンド 5の熱赤外画像であり、図 5 (c)または図 6 (c)が MCSSTに よる推定実測値である。図 5が 2002年 5月 20日 17時 11分のものであり、図 6が 200 4年 11月 30日 16時 45分のものである。  Fig. 6 (b) or Fig. 6 (b) is a thermal infrared image of band 5, and Fig. 5 (c) or Fig. 6 (c) is an estimated measured value by MCSST. Figure 5 is the one at 17:11 on May 20, 2002, and Figure 6 is the one at 16:45 on November 30, 2004.
[0060] 図 5 (a) (b)または図 6 (a) (b)を入力データとして、また、図 5 (c)または図 6 (c)を望 ましい出力と見立てて階層型-ユーラルネットワークの誤差逆伝播学習を行った。こ のとき、望ましい出力と階層型-ユーラルネットワークの実際の出力との差の平均を平 均誤差として評価した。また、重み係数の初期値は一様乱数によって与えることにし た。 [0060] FIG. 5 (a) (b) or 6 (a) (b) is used as input data, and FIG. 5 (c) or 6 (c) is considered as the desired output. Ral network error backpropagation learning was performed. At this time, the average difference between the desired output and the actual output of the hierarchical-Eural network was evaluated as the average error. In addition, the initial value of the weighting factor is given by a uniform random number.
[0061] 学習の経過の一例を図 7ないし図 9にそれぞれ示す。図 7は図 6の入力及び望まし い出力に対する解の推移であり、図 8または図 9は図 5に対する場合である。図 7及び 図 8は宮崎県沖の画像領域に関するものであり、図 9は小倉沖の画像領域に関する ものである。  [0061] An example of the course of learning is shown in Figs. Figure 7 shows the transition of the solution for the input and desired output of Figure 6, and Figure 8 or Figure 9 is for Figure 5. Figures 7 and 8 relate to the image area off Miyazaki Prefecture, and Figure 9 relates to the image area off Kokura.
[0062] 図 7 (a)は相関係数が増加傾向に転じることなく低い部分で収束していることを示し 、図 7 (b)は誤差が学習回数を経るごとに小さくなつておりその減少傾向も収束の方 向に向力つていることを示す。したがって、図 7から局所解に陥っていることが分かる [0063] 図 8 (a)は相関係数が増加傾向を経て収束しょうとしていることを示し、図 8 (b)は誤 差が学習回数を経るごとに小さくなつておりその減少傾向も収束の方向に向力つて いることを示す。したがって、図 8から大域的最適解が求まっていることが分かる。 [0062] Fig. 7 (a) shows that the correlation coefficient converges at a low part without turning to an increasing trend, and Fig. 7 (b) shows that the error decreases as the number of learning passes and decreases. The trend also shows that it tends to converge. Therefore, it can be seen from Fig. 7 that it has fallen into a local solution. [0063] Fig. 8 (a) shows that the correlation coefficient tends to converge through an increasing trend, and Fig. 8 (b) shows that the error decreases as the number of learning passes, and the decreasing trend also converges. Shows that it is in the direction. Therefore, it can be seen from Fig. 8 that a global optimal solution has been obtained.
[0064] 図 9 (a)は相関係数が増加傾向を維持していることを示し、図 9 (b)は誤差が学習回 数を経るごとに小さくなつておりその減少傾向も収束の方向に向力つていることを示 す。したがって、図 9から大域的最適解が求まっていることが分かる。  [0064] Fig. 9 (a) shows that the correlation coefficient maintains an increasing trend, and Fig. 9 (b) shows that the error becomes smaller as the number of learning passes. It shows that it is urgent. Therefore, it can be seen from Fig. 9 that a global optimal solution has been obtained.
[0065] これらを見ると、いずれも入力と入力層と隠れ層の間の重み係数との相関係数が高 くなり、平均誤差が少なくなる傾向が見られる。すなわち、相関係数が学習収束の指 標として用いることができることを表して 、る。  [0065] Looking at these, it can be seen that the correlation coefficient between the input and the weighting coefficient between the input layer and the hidden layer increases, and the average error tends to decrease. That is, the correlation coefficient can be used as an index of learning convergence.
[0066] 以上の前記各実施形態により本発明を説明したが、本発明の技術的範囲は実施 形態に記載の範囲には限定されず、これら各実施形態に多様な変更又は改良を加 えることが可能である。そして、力 うな変更又は改良を加えた実施の形態も本発明 の技術的範囲に含まれる。このことは、特許請求の範囲及び課題を解決する手段か らち明らかなことである。  [0066] Although the present invention has been described with the above embodiments, the technical scope of the present invention is not limited to the scope described in the embodiments, and various modifications or improvements can be added to these embodiments. Is possible. Embodiments to which vigorous changes or improvements are added are also included in the technical scope of the present invention. This is clear from the claims and the means to solve the problems.

Claims

請求の範囲 The scope of the claims
[1] ノードを有する入力層、隠れ層及び出力層からなり、入力データを入力層に入力して 出力層から出力された出力データと入力データに対応する予め用意された教師デ 一タとを比較し、比較結果となる誤差を用いて出力層及び隠れ層のノード間の重み 係数と隠れ層及び入力層のノード間の重み係数を更新することで学習する誤差逆伝 播学習に基づく階層的-ユーラルネットワーク装置であって、  [1] It consists of an input layer with nodes, a hidden layer, and an output layer. Input data is input to the input layer, and output data output from the output layer and teacher data prepared in advance corresponding to the input data are displayed. Comparing and updating the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer by using the error that is the comparison result, the hierarchy based on error reverse propagation learning -Eural network device,
入力データと入力層及び隠れ層のノード間の重み係数との相関係数に基づいて前 記学習の収束を判断する誤差逆伝播学習に基づく階層的-ユーラルネットワーク装 置。  A hierarchical-Ural network device based on error back-propagation learning that determines the convergence of learning based on the correlation coefficient between input data and weighting factors between nodes in the input layer and hidden layer.
[2] ノードを有する入力層、隠れ層及び出力層からなり、入力データを入力層に入力して 出力層から出力された出力データと入力データに対応する予め用意された教師デ 一タとを比較し、比較結果となる誤差を用いて出力層及び隠れ層のノード間の重み 係数と隠れ層及び入力層のノード間の重み係数を更新することで学習する誤差逆伝 播学習に基づく階層的-ユーラルネットワーク装置であって、  [2] It consists of an input layer with nodes, a hidden layer, and an output layer. Input data is input to the input layer, output data output from the output layer, and teacher data prepared in advance corresponding to the input data. Comparing and updating the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer by using the error that is the comparison result, the hierarchy based on error reverse propagation learning -Eural network device,
前記学習の比較結果の誤差に基づいて学習の収束を判断する第 1の学習収束判 断部と、  A first learning convergence determination unit for determining learning convergence based on an error of the learning comparison result;
入力データと入力層及び隠れ層のノード間の重み係数との相関係数に基づいて前 記学習の収束を判断する第 2の学習収束判断部とを新たに備え、  A second learning convergence judging unit for judging the convergence of the learning based on the correlation coefficient between the input data and the weighting coefficient between nodes of the input layer and the hidden layer;
第 1の学習収束判断部と第 2の学習収束判断部が共に学習が収束していると判断 している場合に学習を終了する誤差逆伝播学習に基づく階層的-ユーラルネットヮ ーク装置。  A hierarchical-Ural network device based on back propagation learning that terminates learning when both the first learning convergence determination unit and the second learning convergence determination unit determine that learning has converged.
[3] ノードを有する入力層、隠れ層及び出力層からなり、入力データを入力層に入力して 出力層から出力された出力データと入力データに対応する予め用意された教師デ 一タとを比較し、比較結果となる誤差を用いて出力層及び隠れ層のノード間の重み 係数と隠れ層及び入力層のノード間の重み係数を更新することで学習する誤差逆伝 播学習に基づく階層的-ユーラルネットワーク装置であって、  [3] It consists of an input layer with nodes, a hidden layer, and an output layer. Input data is input to the input layer, output data output from the output layer, and teacher data prepared in advance corresponding to the input data. Comparing and updating the weighting coefficient between the nodes of the output layer and the hidden layer and the weighting coefficient between the nodes of the hidden layer and the input layer by using the error that is the comparison result, the hierarchy based on error reverse propagation learning -Eural network device,
前記学習の比較結果の誤差に基づいて学習の収束を判断する第 1の学習収束判 断部と、 入力データと入力層及び隠れ層のノード間の重み係数との相関係数に基づいて前 記学習の収束を判断する第 2の学習収束判断部とを新たに備え、 A first learning convergence determination unit for determining learning convergence based on an error of the learning comparison result; A second learning convergence judging unit for judging the convergence of the learning based on the correlation coefficient between the input data and the weighting coefficient between nodes of the input layer and the hidden layer;
第 1の学習収束判断部が学習が収束したと判断した後に、第 2の学習収束判断部 が学習の収束を判断し、  After the first learning convergence determination unit determines that the learning has converged, the second learning convergence determination unit determines the learning convergence,
第 2の学習収束判断部が学習が収束したと判断した場合に、学習を終了する誤差 逆伝播学習に基づく階層的-ユーラルネットワーク装置。  A hierarchical-Ural network device based on error back propagation learning that terminates learning when the second learning convergence determination unit determines that learning has converged.
[4] 第 2の学習収束判断部は、当該相関関数が所定閾値以上である場合に学習が収束 したと判断する [4] The second learning convergence determination unit determines that learning has converged when the correlation function is equal to or greater than a predetermined threshold.
前記請求項 2または 3に記載の誤差逆伝播学習に基づく階層的ニューラルネットヮ ーク装置。  A hierarchical neural network device based on error back-propagation learning according to claim 2 or 3.
[5] 第 2の学習収束判断部は、相関係数が増大傾向が飽和に達する学習収束条件に該 当する場合に学習が収束したと判断する  [5] The second learning convergence determination unit determines that the learning has converged when the learning convergence condition in which the correlation coefficient increases to reach saturation is met.
前記請求項 2または 3に記載の誤差逆伝播学習に基づく階層的ニューラルネットヮ ーク装置。  A hierarchical neural network device based on error back-propagation learning according to claim 2 or 3.
[6] 第 2の学習収束判断部は、前記学習収束条件に該当しない場合、重み係数を初期 化して改めて学習し直す  [6] When the learning convergence condition is not satisfied, the second learning convergence determination unit initializes the weighting coefficient and learns again.
前記請求項 4または 5に記載の誤差逆伝播学習に基づく階層的ニューラルネットヮ ーク。  6. A hierarchical neural network based on error back-propagation learning according to claim 4 or 5.
[7] 前記重み係数を初期化する場合には、初期化した重み係数と初期化する前の重み 係数の相関係数を求め、この相関係数が所定閾値以上である場合には再度重み係 数を初期化する  [7] When initializing the weighting coefficient, a correlation coefficient between the initialized weighting coefficient and the weighting coefficient before initialization is obtained, and when this correlation coefficient is equal to or greater than a predetermined threshold, the weighting coefficient is again obtained. Initialize the number
前記請求項 6に記載の誤差逆伝播学習に基づく階層的ニューラルネットワーク。  7. A hierarchical neural network based on back propagation learning according to claim 6.
[8] 入力データを入力層に入力して出力層から出力された出力データと入力データに対 応する予め用意された教師データとを比較し、比較結果となる誤差を用いて出力層 及び隠れ層のノード間の重み係数と隠れ層及び入力層のノード間の重み係数を更 新することで学習する階層的ニューラルネットワーク装置の誤差逆伝播学習方法で あって、 [8] Input data is input to the input layer, and the output data output from the output layer is compared with the teacher data prepared in advance corresponding to the input data. An error back-propagation learning method for a hierarchical neural network device that learns by updating a weighting factor between nodes of a layer and a weighting factor between nodes of a hidden layer and an input layer,
入力データと入力層及び隠れ層のノード間の重み係数との相関係数に基づいて前 記学習の収束を判断する階層的ニューラルネットワーク装置の誤差逆伝播学習方法 Based on the correlation coefficient between the input data and the weight coefficient between the input layer and hidden layer nodes Error Back Propagation Learning Method for Hierarchical Neural Network Device for Judging Convergence of Writing
PCT/JP2006/303147 2006-02-22 2006-02-22 Neural network device and its method WO2007096954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/303147 WO2007096954A1 (en) 2006-02-22 2006-02-22 Neural network device and its method
JP2008501514A JP5002821B2 (en) 2006-02-22 2006-02-22 Neural network device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303147 WO2007096954A1 (en) 2006-02-22 2006-02-22 Neural network device and its method

Publications (1)

Publication Number Publication Date
WO2007096954A1 true WO2007096954A1 (en) 2007-08-30

Family

ID=38437016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303147 WO2007096954A1 (en) 2006-02-22 2006-02-22 Neural network device and its method

Country Status (2)

Country Link
JP (1) JP5002821B2 (en)
WO (1) WO2007096954A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130120A3 (en) * 2012-12-03 2014-11-13 Hrl Laboratories, Llc Generating messages from the firing of pre-synaptic neurons
CN111782359A (en) * 2020-06-23 2020-10-16 平安科技(深圳)有限公司 Distributed computing system task allocation method and related equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197821A (en) * 1991-11-11 1993-08-06 Omron Corp Method for optimizing hierarchical neural network and device therefor
JPH10283334A (en) * 1997-04-10 1998-10-23 Fuji Electric Co Ltd Input layer optimizing method for neural network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319760A (en) * 1991-04-19 1992-11-10 Meidensha Corp Hierarchical connection type neuro-computer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197821A (en) * 1991-11-11 1993-08-06 Omron Corp Method for optimizing hierarchical neural network and device therefor
JPH10283334A (en) * 1997-04-10 1998-10-23 Fuji Electric Co Ltd Input layer optimizing method for neural network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUNAGA Y.: "Koyogo Sayo ni yori Jocho Chukanso Soshi o Shizen Tota suru Gosa Gyaku Denpan Gakushu Algorithm", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J79-D-II, no. 3, 25 March 1996 (1996-03-25), pages 403 - 412, XP003017215 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130120A3 (en) * 2012-12-03 2014-11-13 Hrl Laboratories, Llc Generating messages from the firing of pre-synaptic neurons
US9430736B2 (en) 2012-12-03 2016-08-30 Hrl Laboratories, Llc Firing rate independent spike message passing in large scale neural network modeling
CN111782359A (en) * 2020-06-23 2020-10-16 平安科技(深圳)有限公司 Distributed computing system task allocation method and related equipment
CN111782359B (en) * 2020-06-23 2022-03-11 平安科技(深圳)有限公司 Distributed computing system task allocation method and related equipment

Also Published As

Publication number Publication date
JPWO2007096954A1 (en) 2009-07-09
JP5002821B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
CN106600059B (en) Intelligent power grid short-term load prediction method based on improved RBF neural network
US20200097806A1 (en) Processing method and accelerating device
Zeng et al. Sensitivity analysis of multilayer perceptron to input and weight perturbations
US11449790B2 (en) Artificial intelligence device and method for executing an operation based on predicted biometric state of a user
Cai et al. An optimal construction and training of second order RBF network for approximation and illumination invariant image segmentation
CN108876044B (en) Online content popularity prediction method based on knowledge-enhanced neural network
CN113128678A (en) Self-adaptive searching method and device for neural network
CN113507118B (en) Wind power prediction method and system
JP2020068048A (en) Artificial neural network circuit and learning value switching method in artificial neural network circuit
Fan et al. Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks
CN108538301B (en) Intelligent digital musical instrument based on neural network audio technology
WO2007096954A1 (en) Neural network device and its method
CN113792753A (en) Dynamic hypergraph neural network classification method and system
Roy et al. Hardware efficient, neuromorphic dendritically enhanced readout for liquid state machines
CN116796821A (en) Efficient neural network architecture searching method and device for 3D target detection algorithm
CN109146069B (en) Arithmetic device, arithmetic method, and chip
Varahrami Recognition of good prediction of gold price between MLFF and GMDH neural network
JP7488375B2 (en) Method, device and computer-readable storage medium for generating neural networks
KR102478256B1 (en) Rank order coding based spiking convolutional neural network calculation method and handler
CN114966224A (en) Improved neural network-based modular multilevel converter capacitance monitoring method
CN114444654A (en) NAS-oriented training-free neural network performance evaluation method, device and equipment
CN112560784A (en) Electrocardiogram classification method based on dynamic multi-scale convolutional neural network
CN111489203A (en) Financing product recommendation method and system
Barreto et al. Nonstationary time series prediction using local models based on competitive neural networks
Su et al. A jacobian matrix-based learning machine and its applications in medical diagnosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008501514

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714287

Country of ref document: EP

Kind code of ref document: A1