WO2007094464A1 - Cardiopulmonary function measuring instrument - Google Patents

Cardiopulmonary function measuring instrument Download PDF

Info

Publication number
WO2007094464A1
WO2007094464A1 PCT/JP2007/052876 JP2007052876W WO2007094464A1 WO 2007094464 A1 WO2007094464 A1 WO 2007094464A1 JP 2007052876 W JP2007052876 W JP 2007052876W WO 2007094464 A1 WO2007094464 A1 WO 2007094464A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pass filter
piezoelectric film
sensor
conductive fiber
Prior art date
Application number
PCT/JP2007/052876
Other languages
French (fr)
Japanese (ja)
Inventor
Zhongwei Jiang
Samjin Choi
Original Assignee
Yamaguchi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University filed Critical Yamaguchi University
Priority to JP2008500568A priority Critical patent/JP4998896B2/en
Publication of WO2007094464A1 publication Critical patent/WO2007094464A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Definitions

  • the present invention relates to a cardiopulmonary function measuring device, and in particular, includes a signal processing circuit and an algorithm that enables high-precision signals to be obtained over a long time using a piezoelectric film sensor and a Z or conductive fiber sensor.
  • the present invention relates to a cardiopulmonary function measuring device.
  • Patent Document 1 discloses that a first bioelectrode formed by sandwiching a first polymer piezoelectric film between two sheets of electrically conductive fabric, and a second polymer piezoelectric film as two sheets of electric conduction.
  • a pressure fluctuation measuring unit receiving a signal of a biosignal measuring sensor force having a second biomedical electrode configured to be sandwiched between the elastic cloth and an electrical signal line configured to measure pressure fluctuation and bioelectricity, bioelectrical measurement
  • a biosignal measuring apparatus comprising a biosignal processing unit is described.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-284697
  • a conventional measuring device for processing a signal obtained by a pressure fluctuation measuring sensor composed of a piezoelectric film and an electrically conductive fabric, and a bioelectric sensor composed of an electrically conductive fabric The collected signal is weak and the sensor circuit is It is inevitable that noise will be generated due to the rise of the output voltage due to the accumulation of electric charge in the piezoelectric film sensor due to the influence of the human body such as body temperature or static electricity, and the body movement or EMG. Because of this, it was not possible to improve the measurement accuracy. Therefore, it is required to suppress pressure fluctuations and noise generated in a measuring apparatus that processes signals from sensors that measure bioelectricity, and to obtain high-precision measurement signals over a long period of time. .
  • the present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is a piezoelectric film sensor formed by sandwiching a polymer piezoelectric film between two thin layer biological electrodes. And a signal processing circuit for processing a signal obtained by the piezoelectric film sensor, wherein the signal processing circuit cuts low frequency noise to a signal indicating pressure fluctuation obtained by the piezoelectric film sensor.
  • the power off frequency of the low pass filter is 500 Hz or less, and the cut off frequency of the band pass filter is 0.10 H It is a cardiopulmonary function measurement device using a piezoelectric film sensor characterized by z to 30 Hz.
  • the signal indicating the pressure fluctuation obtained by the piezoelectric film sensor is a respiration signal and a heartbeat signal. It is a cardiopulmonary function measurement device using a piezoelectric film sensor characterized in that
  • the invention according to claim 4, which cites the invention according to claim 3, cuts low frequency components that affect baseline fluctuation and high frequency components that are not necessary for respiration signals, which are obtained by the piezoelectric film sensor. And a signal processing unit that performs processing for calculating a zero-crossing point, calculating an inspiratory interval and an expiratory interval, and extracting a respiration signal with a low-pass filter.
  • This cardiopulmonary function measurement device is characterized in that it is possible to extract respiration information from the signal obtained by the sensor.
  • the invention according to claim 5 relating to the invention according to claim 3 is a band pass filter for cutting high frequency components unnecessary for the influence of a respiration signal and a heartbeat signal from the signal acquired by the piezoelectric film sensor.
  • the signal processing unit is further provided with a signal processing unit that performs processing for extracting a heartbeat signal by a band pass filter, passing it through a low pass filter to detect a peak, and calculating a peak interval, and the signal strength obtained by the piezoelectric film sensor It is a cardiopulmonary function measurement device characterized in that information can be extracted.
  • the invention according to claim 6 is a conductive fiber sensor comprising a biological electrode consisting of two conductive fibers, and a signal processing circuit for processing a signal obtained by the conductive fiber sensor.
  • the signal processing circuit comprises a low noise filter for cutting low frequency noise from the signal indicative of bioelectricity acquired by the conductive fiber sensor, and a signal amplified after passing through the low pass filter.
  • Conductivity characterized by including a first band pass filter for cutting baseline fluctuation and high frequency noise, a notch filter for cutting power supply noise, and a second band pass filter. It is a cardiopulmonary function measurement device using a fiber sensor.
  • the invention according to claim 7 relating to the invention according to claim 6 is such that the power off frequency of the low pass filter is 500 Hz or less, and the cut off frequency of the first band pass filter is 0.1 Hz 150 Hz, The cutoff frequency of the second band pass filter is 0.10 Hz It is a cardiopulmonary function measurement device using a conductive fiber sensor characterized in that the frequency is 120 Hz.
  • the invention according to claim 8 citing the invention according to any one of claims 6 or 7 is characterized in that the signal indicating bioelectricity obtained by the conductive fiber sensor is an electrocardiogram signal and a heartbeat signal. It is a cardiopulmonary function measuring device using a conductive fiber sensor characterized by the above.
  • the invention according to claim 9 relating to the invention according to claim 8 is a band pass filter for cutting the signal obtained by the conductive fiber sensor from high frequency components unnecessary for the influence of the respiration signal and the heartbeat signal.
  • a signal processing unit that passes through a notch filter that removes power supply noise, extracts a heartbeat signal with a non-pass filter, passes through a low pass filter to make it easier to detect peaks, and calculates peak intervals.
  • the present invention is a cardiopulmonary function measuring device characterized in that it is possible to extract the signal strength heartbeat information obtained by the conductive fiber sensor.
  • a piezoelectric film sensor configured by sandwiching a polymer piezoelectric film between two thin-layered bioelectrodes, and a signal acquired by the piezoelectric film sensor are collected and processed.
  • a conductive fiber sensor comprising a signal collecting circuit for a piezoelectric film sensor and a biological electrode consisting of two conductive fibers, and a conductive fiber sensor for collecting and processing signals obtained by the conductive fiber sensor
  • a signal acquisition circuit for a piezoelectric film sensor comprising a low pass filter for cutting low frequency noise, and baseline fluctuation and high frequency noise for an amplified signal after passing through the low pass filter.
  • the signal collection circuit for the conductive fiber sensor is a low pass filter for cutting low frequency noise, and a baseline variation and high frequency noise for the amplified signal after passing through the low pass filter.
  • a combined cardiopulmonary function measurement device characterized in that it comprises: 1 band pass filter, notch filter for cutting noise of power source, and second band pass filter.
  • the invention according to claim 11, which cites the invention according to any one of claims 1, 2, 3, 6, 7, 8, 10, is worn on the body so that the measurement of cardiopulmonary function can be performed. Equipped with mounting means for It is a cardiopulmonary function measuring device characterized by becoming.
  • a cardiopulmonary function measuring device using a piezoelectric film sensor and Z or a conductive fiber sensor, a low pass filter, a band pass for signals acquired by the piezoelectric film sensor, and
  • the filter cuts noise while the comparator and short circuit eliminate saturation in the sensor, and for the signal acquired by the conductive fiber sensor, low pass filter, first and second band pass filters, notch Since noise is cut by the filter, a high-accuracy signal can be obtained for a long time, and a cardiopulmonary function measuring device of a form that can be used by ordinary people in daily life such as sleep can be obtained.
  • an embodiment using a piezoelectric film sensor for acquiring biological signals such as respiration and heart rate as a biological sensor, a conductive fiber sensor for measuring an electrocardiogram and heart rate information there is a form that uses a piezoelectric film sensor and a form that uses a piezoelectric film sensor and a conductive fiber sensor.
  • FIG. 1 shows the configuration of a piezoelectric film sensor type cardiopulmonary function measuring device.
  • the piezoelectric film sensor 1 is composed of a first thin-layered bioelectrode and a second thin-layered bioelectrode sandwiching a piezoelectric poly (vinyl fluoride) (PVDF) film, which is a piezoelectric body.
  • PVDF piezoelectric poly (vinyl fluoride)
  • the piezoelectric film sensor type cardiopulmonary function detection device includes a piezoelectric film sensor type unit including a piezoelectric film sensor 1 as shown in FIG. 1, an RC low pass filter 2, an amplifier 4, a band pass filter 5, a short circuit 6 and a comparator 7 force. Be done.
  • Fig. 2 shows an example of an RC low-pass filter.
  • This filter is provided to cut high-frequency noise that is always generated when measuring a biomedical signal and amplify it with a force amplifier, and to obtain a higher quality signal. It can.
  • the cutoff frequency of the RC low pass filter may be 500 Hz or less.
  • the short circuit 6 and the comparator 7 are for discharging the charges accumulated in the piezoelectric film sensor when measuring for a long time, and for preventing the overflow of the sensor.
  • the band pass filter 5 is provided to output higher quality breathing signals and heartbeat signals. Taking respiration and heart rate signals as an example, the power off frequency of the bandpass filter may be between 0.01 and 30 Hz.
  • the order of the band pass filter is preferably 2 or more.
  • FIG. 3 shows the signal force obtained by the piezoelectric film sensor and the extracted respiration information.
  • Fig. 3 (a) shows the original signal obtained by the piezoelectric film sensor, and simultaneously contains respiration information and heart rate information.
  • FIG. 3 (b) shows the signal obtained as a result extracted by the algorithm shown in FIG. 5 described later.
  • Fig. 3 (c) shows the signal obtained from a commercially available respiratory curve recording sensor.
  • the horizontal axis is time.
  • the time of the adjacent white circle time of the black circle time interval of inhalation
  • time of the adjacent black circle time of white circle time interval of exhalation.
  • FIG. 4 shows the heartbeat information extracted by the signal force obtained by the piezoelectric film sensor.
  • Fig. 4 (a) shows the original signal obtained by the piezoelectric film sensor, and it simultaneously contains respiration information and heart rate information as in Fig. 3 (a).
  • Figure 4 (b) shows the resulting signal extracted by the algorithm described later.
  • Fig. 4 (c) shows the signals obtained from a 3-electrode ECG (electrocardiogram).
  • the time interval between the white circles is the heart rate RR interval.
  • FIG. 5 shows an algorithm for extracting respiration information from the signal obtained by the piezoelectric film sensor as shown in FIG. 3 (a).
  • the signal obtained by the piezoelectric film sensor is output as a sensor signal x (n) (step 1), and then it is necessary for low frequencies and respiration signals that affect baseline variations, such as wavelets and filters.
  • the respiration signal is extracted using a digital low pass filter (0.3 Hz) (step 3).
  • the zero close point is calculated (step 5).
  • the results are as shown in Fig. 3 (b).
  • the inspiratory interval and expiratory interval can be calculated by measuring the interval of the obtained zero close point (step 6).
  • the cardiopulmonary function measuring apparatus may be provided with a signal processing circuit for performing the processes of steps 1 to 6.
  • a signal processing may be carried out by a computer having software for that purpose.
  • FIG. 6 shows an algorithm for extracting heart rate information from the signal obtained by the piezoelectric film sensor as shown in FIG. 4 (a).
  • the signal obtained by the piezoelectric film sensor is output as a sensor signal x (n) (step 1), and then the effect of the respiration signal and high frequency components unnecessary for the heart beat signal, such as a wavelet filter, are effectively used.
  • Pass a software filter (8 to 120 Hz) to remove step 2).
  • heart rate information is extracted using a digital band pass filter (13 to 25 Hz) (step 3).
  • the absolute value of the data obtained in step 3 is taken, then it is passed through a single pass filter (5 Hz) (step 4), and the peak value is detected (step 5).
  • the interval between the obtained peak values is the interval between heart beats R and R (step 6).
  • the cardiopulmonary function measuring apparatus capable of extracting heart rate information from the signal obtained by the piezoelectric film sensor may be provided with a signal processing circuit for performing the processes of steps 1 to 6.
  • a signal processing may be carried out by a computer having software for that purpose.
  • FIG. 7 shows the configuration of a conductive fiber sensor type cardiopulmonary measurement device.
  • the conductive fiber sensor 11 is composed of a first biological electrode and a second biological electrode made of conductive fiber, and the signal from each electrode is a RC low-pass filter 12, which removes noise signals due to power supply, myoelectricity, static electricity, etc. 13, through the first band pass filter 15 to be amplified by the amplifier 14, through the first band pass filter 15 to prevent baseline fluctuation and high frequency noise, and through the notch filter 16 to cut the noise of the power supply, and then the second band pass filter Output after 17
  • the cutoff frequency of the RC low pass filters 12 and 13 may be 500 Hz or less.
  • each of the band pass filters 15 and 17 is 2nd or higher.
  • the first band pass filter 15 preferably has a cutoff frequency of 0.01-15 OHz
  • the second band pass filter 17 preferably has a cutoff frequency of 0.01 to 120 Hz.
  • AC noise at 60 Hz or 50 Hz is removed using notch filter 16 Be
  • the first band pass filter 15, the notch filter 16, and the second band pass filter 17 are arranged in this order. This is very important.
  • the conductive fiber sensor type cardiopulmonary function detection device is the conductive fiber sensor 11 as shown in FIG. 7, RC low pass filter 12, 13, amplifier 14, first band pass filter 15, notch filter 16, second band pass filter It comprises the conductive fiber sensor type unit which consists of seventeen.
  • Fig. 8 shows the heart rate information extracted by the conductive fiber sensor type cardiopulmonary function measuring device.
  • the graph on the left is the case where the signal was obtained normally, and the graph on the right is the case where muscle noise is introduced.
  • the top row shows the original signal obtained by the conductive fiber sensor type cardiopulmonary function measuring device, and the middle row shows the extracted heartbeat information.
  • the lower part shows the signals obtained with a commercially available 3-electrode ECG.
  • FIG. 9 shows an algorithm for extracting heart beat information obtained by the conductive fiber sensor.
  • the signal obtained by the conductive fiber sensor is output as a sensor signal x (n) (step 1), and then effectively removes the influence of the respiration signal and high frequency components unnecessary for the heartbeat signal, such as a wavelet 'filter.
  • remove the power supply noise (60 Hz or 50 Hz) using a notch filter (Step 3).
  • heartbeat information is extracted using a digital band pass filter (13 to 25 Hz) (step 4).
  • the absolute value of the data obtained in step 4 is taken and then passed through a single pass filter (5 Hz) (step 5) to detect the peak value (step 6).
  • the interval between the obtained peak values is the heart rate RR interval (step 7).
  • the cardiopulmonary function measuring apparatus capable of extracting the heartbeat information obtained by the conductive fiber sensor should have a signal processing circuit for performing the processes of steps 1 to 7.
  • a configuration may be provided in which dedicated circuits are provided for the purpose, a computer having software for the purpose may be used to perform signal processing.
  • the conductive fiber sensor is more suitable for measuring the cardiac beat signal than the piezoelectric film sensor.
  • the conductive fiber sensor can not measure the cardiac beat signal.
  • the piezoelectric film sensor even if the sensor itself does not make contact with the body, it can not detect the piezoelectric film sensor force if the movement due to breathing or heartbeat gives the piezoelectric film sensor expansion and contraction. It is possible. However, the signal strength of the conductive fiber sensor can more accurately extract the heartbeat information from the signal of the piezoelectric film sensor. Therefore, in the case of a more accurate cardiopulmonary function measuring device, a combined cardiopulmonary function measuring device provided with both a conductive fiber sensor and a piezoelectric film sensor can be provided. By using both sensors simultaneously and interpolating each other, a more sophisticated cardiopulmonary measurement device can be realized.
  • Fig. 10 shows the configuration of a combined cardiopulmonary function measurement device comprising a conductive fiber sensor and a piezoelectric film sensor.
  • the signal from the conductive fiber sensor 21 is first.
  • the conductive fiber sensor signal collecting circuit 23 configured to include the conductive fiber sensor type unit described above is collected and processed by the microcomputer 25 after AZD conversion.
  • the signal from the piezoelectric film sensor 22 is also collected through the piezoelectric film sensor signal collecting circuit 24 configured to include the above-described piezoelectric film sensor type unit, and processed by the microcomputer 25 after AZD conversion.
  • the collected signal or data obtained by processing the signal is fed to a computer 27 connected via, for example, the USB 26, and data display 'storage' analysis is performed.
  • FIG. 11 shows an example of the configuration of a belt-type cardiopulmonary function measuring apparatus 31.
  • the belt-type cardiopulmonary function measuring device 31 has a belt 33 attached to a sensor head 32 which is formed by attaching two conductive fiber sheets 34 and 35 and a piezoelectric film sensor 36 to a cushioning material or a flexible plate. It is attached and made to be worn around the waist.
  • the sensor head 32 has a width of, for example, 90 mm and a length of 185.5 mm, and two conductive fiber sheets 34, 35 are used to measure the ECG for extracting heart rate information. Also, the piezoelectric film sensor 36 is It measures the cycle of breathing from up and down movement and also measures the heart rate.
  • FIG. 12 shows an output waveform and a heartbeat signal of the conductive fiber sensor.
  • (a) is a waveform measured when the conductive fiber sensor is in contact with the body poorly or is dry
  • (b) is a heartbeat signal extracted by applying the algorithm of FIG. I understand that I could not do it.
  • FIG. 13 shows the output signal of the piezoelectric film sensor and the extracted heartbeat signal at the same time as the measurement of the conductive fiber sensor shown in FIG.
  • (c) is the output signal of the piezoelectric film sensor force
  • (d) is the heartbeat signal obtained by applying the algorithm of FIG. 6, and it can be seen that the heartbeat information force S was successfully extracted.
  • FIG. 13 (c) shows an output signal obtained from the piezoelectric film sensor at the same time as the measurement using the conductive fiber sensor.
  • Figure 13 (d) shows the heartbeat signal extracted by the algorithm of Figure 6. It is obvious that the RR interval can be calculated from the output signal which can not be measured by the conductive fiber sensor, but the piezoelectric film sensor force is also obtained. Therefore, by using the conductive fiber sensor and the piezoelectric film sensor simultaneously and interpolating each other, a higher performance cardiopulmonary function sensor can be realized.
  • the piezoelectric film sensor and its signal processing algorithm can effectively extract respiration information, and have high potential for extraction of heart rate information.
  • piezoelectric film sensors may not always be effective. For example, if the belt sensor is shifted or moved by the movement of the body, it may lose its function for a fixed time during sleep.
  • FIG. 14 shows the result when the piezoelectric film sensor did not operate well and the conductive fiber sensor operated well.
  • A shows the heart rate signal extracted by the algorithm of FIG. 6 when the force signal which is the output signal from the piezoelectric film sensor is extremely small
  • b shows extraction of heart rate information or respiration information .
  • the conductive fiber sensor seems to be functioning properly, and it is clear that the heartbeat signal can be extracted. Therefore, by using the conductive fiber sensor and the piezoelectric film sensor simultaneously and interpolating each other, a higher performance cardiopulmonary function sensor can be realized.
  • FIG. 1 is a view showing a configuration of a piezoelectric film sensor type cardiopulmonary function measuring device as one embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of an RC low pass filter.
  • FIG. 3 Piezoelectric film sensor force Fig. 3 is a view showing extracted respiration information.
  • FIG. 4 Piezoelectric film sensor force obtained signal force
  • FIG. 5 is a diagram showing an algorithm for extracting respiration information from a piezoelectric film sensor signal.
  • FIG. 6 is a diagram showing an algorithm for extracting signal information of the piezoelectric film sensor as well as heartbeat information.
  • FIG. 7 is a view showing the configuration of a conductive fiber sensor type cardiopulmonary function measuring apparatus according to another embodiment of the present invention.
  • FIG. 8 A diagram showing two cases in which the conductive fiber sensor sensor and heart rate information are extracted
  • the left column shows when the signal is obtained normally, and the right column shows the case where the noise of the muscle enters.
  • FIG. 9 This is an algorithm for extracting heart rate information from conductive fiber sensor signals.
  • FIG. 10 is a view showing the configuration of a combined cardiopulmonary function measurement device provided with both a conductive fiber sensor and a piezoelectric film sensor according to still another embodiment of the present invention.
  • FIG. 11 is a view showing a belt type of the cardiopulmonary function measuring apparatus according to the present invention.
  • FIG. 12 is a view showing an output signal of a conductive fiber sensor and a heartbeat signal.
  • FIG. 13 is a diagram showing an output signal of a piezoelectric film sensor and a heartbeat signal extracted.
  • FIG. 14 is a diagram showing the results when the piezoelectric film sensor did not operate well and the conductive fiber sensor operated well.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pulmonology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

[PROBLEMS] A cardiopulmonary function measuring instrument by which a high precision signal can be obtained over a long time using a piezoelectric film and/or a conductive fiber sensor. [MEANS FOR SOLVING PROBLEMS] A cardiopulmonary function measuring instrument using a piezoelectric film has circuitry including a low-pass filter for cutting out noise due to a power supply, myoelectricity, static electricity, and the like, a band-pass filter for preventing baseline variation and high frequency noise, a comparator for canceling saturation state, and a short circuit. A cardiopulmonary function measuring instrument using a conductive fiber sensor has circuitry including a low-pass filter, a first band-pass filter for preventing baseline variation and high frequency noise, a notch filter for cutting out power supply noise, and a second band-pass filter. Some model can be attached to the body using a belt.

Description

明 細 書  Specification
心肺機能計測装置  Cardiorespiratory function measuring device
技術分野  Technical field
[oooi] 本発明は、心肺機能計測装置に関し、特に、圧電フィルムセンサ及び Zまたは導 電性繊維センサを用い、長時間にわたって高精度の信号を得られるようにする信号 処理回路及びアルゴリズムを備えた心肺機能計測装置に関する。  [oooi] The present invention relates to a cardiopulmonary function measuring device, and in particular, includes a signal processing circuit and an algorithm that enables high-precision signals to be obtained over a long time using a piezoelectric film sensor and a Z or conductive fiber sensor. The present invention relates to a cardiopulmonary function measuring device.
背景技術  Background art
[0002] 最近、飛行機、高速列車、長距離高速バス等で、運転者の操作ミスにより多くの事 故が発生している。これらの事故の多くは、運転者の高い精神的ストレスや居眠り運 転がその原因とされ、そのうちいくつかは睡眠時無呼吸症候群によるものと診断され ている。また、幼児の突然死、睡眠時無呼吸症候群は、大部分が睡眠中もしくは無 意識の状態で発生して!/、る。  [0002] Recently, many accidents have occurred due to driver's operation errors in airplanes, high-speed trains, long-distance express buses and the like. Many of these accidents are caused by the driver's high mental stress and drowsiness, some of which are diagnosed by sleep apnea syndrome. In addition, sudden death of infants and sleep apnea syndrome occur mostly during sleeping or in the unconscious state!
[0003] これらの病気に対しては、医者が診察する際に患者が健康状態にある力否かを同 定する助けとなる正確で継続的な観察手法が切望されている。また、このような健康 状態にある力否かを同定するための手法は、医療技術の発達によって人間の寿命が 延びると 、う状況にぉ 、て、家庭での健康管理に対する新たな要求ともなって 、る。  [0003] For these diseases, there is a need for an accurate, continuous observation method that will help identify if the patient is in good health or not when the doctor consults. In addition, methods for identifying whether or not in such a state of health have become a new demand for home health care, as the development of medical technology extends the life span of human beings. .
[0004] 特許文献 1には、第 1のポリマー圧電体フィルムを 2枚の電気伝導性布帛で挟んで 構成された第 1の生体電極と、第 2のポリマー圧電体フィルムを 2枚の電気伝導性布 帛で挟んで構成された第 2の生体電極と、圧力変動と生体電気とを計測するようにし た電気信号線を有する生体信号計測センサ力 の信号を受ける圧力変動計測部、 生体電気計測部、生体信号処理部を備えた生体信号計測装置につ!ヽて記載されて いる。  [0004] Patent Document 1 discloses that a first bioelectrode formed by sandwiching a first polymer piezoelectric film between two sheets of electrically conductive fabric, and a second polymer piezoelectric film as two sheets of electric conduction. A pressure fluctuation measuring unit receiving a signal of a biosignal measuring sensor force having a second biomedical electrode configured to be sandwiched between the elastic cloth and an electrical signal line configured to measure pressure fluctuation and bioelectricity, bioelectrical measurement A biosignal measuring apparatus comprising a biosignal processing unit is described.
特許文献 1:特開 2003 - 284697号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-284697
[0005] し力しながら、このような生体信号計測センサを人体に付けてデータを採集する際 に、センサ回路に絶対のアースが取れないこと、体温や生体微弱電流によって圧電 フィルムセンサに電荷が溜まっていくことによる出力電圧の上昇、さらに体の動きや 筋電などによりノイズが発生する。 [0006] 一方、電気伝導性布帛を電極として心拍情報の計測、心電図作成などを行う場合 には 3電極が用いられることが普通であるが、装着性などを考慮して特許文献 1では 2電極法を用いている。しかも、電気伝導性布帛によるセンサが参照電極をとつてい ないため、採集した信号が微弱であると同時に、人体の影響 (例えば、体温や静電気 など)によるノイズが生じる。 When such a biosignal measurement sensor is attached to a human body to collect data, the sensor circuit can not have an absolute ground, and the body temperature and the living body weak current cause a charge in the piezoelectric film sensor. Noise is generated by the rise of the output voltage due to the buildup, and the movement of the body and myoelectricity. On the other hand, when measuring heart rate information and creating an electrocardiogram by using an electrically conductive fabric as an electrode, three electrodes are generally used, but in consideration of wearability etc., Patent Document 1 discloses two electrodes. Use the method. In addition, since the sensor using the electrically conductive cloth does not connect the reference electrode, the collected signal is weak, and at the same time noise due to the influence of the human body (for example, body temperature or static electricity) occurs.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0007] 前述したように、圧電体フィルムと電気伝導性布帛とで構成された圧力変動計測セ ンサ、電気伝導性布帛で構成された生体電気センサにより得られた信号を処理する 従来の計測装置において、採集した信号が微弱であり、センサ回路に絶対のアース
Figure imgf000004_0001
、う事情や、体温や静電気など人体からの影響で圧電フィルムセンサ に電荷が溜まっていくことによる出力電圧の上昇、さらに体の動きゃ筋電などによりノ ィズが発生することが避けられないため、計測精度を高めることができないものであつ た。そのため、圧力変動、生体電気を計測するセンサからの信号を処理する計測装 置において発生するノイズを抑制し、長時間にわたって高精度の計測信号を得られ るようにすることが求められて 、た。
As described above, a conventional measuring device for processing a signal obtained by a pressure fluctuation measuring sensor composed of a piezoelectric film and an electrically conductive fabric, and a bioelectric sensor composed of an electrically conductive fabric , The collected signal is weak and the sensor circuit is
Figure imgf000004_0001
It is inevitable that noise will be generated due to the rise of the output voltage due to the accumulation of electric charge in the piezoelectric film sensor due to the influence of the human body such as body temperature or static electricity, and the body movement or EMG. Because of this, it was not possible to improve the measurement accuracy. Therefore, it is required to suppress pressure fluctuations and noise generated in a measuring apparatus that processes signals from sensors that measure bioelectricity, and to obtain high-precision measurement signals over a long period of time. .
課題を解決するための手段  Means to solve the problem
[0008] 本発明は前述した課題を解決すべくなしたものであり、請求項 1に係る発明は、ポリ マー圧電体フィルムを 2枚の薄層状の生体電極で挟んで構成された圧電フィルムセ ンサと、該圧電フィルムセンサで取得された信号を処理する信号処理回路とからなり 、前記信号処理理回路は前記圧電フィルムセンサで取得された圧力変動を示す信 号に対し低周波ノイズをカットするローノ スフィルタと、該ローパスフィルタを通った後 に増幅された信号に対しベースライン変動及び高周波数ノイズをカットするバンドパ スフィルタと、前記圧電フィルムセンサにおける飽和状態を解消するように接続された コンパレータ回路及びショート回路とを含んで構成されていることを特徴とする圧電フ イルムセンサを用いた心肺機能計測装置である。  The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is a piezoelectric film sensor formed by sandwiching a polymer piezoelectric film between two thin layer biological electrodes. And a signal processing circuit for processing a signal obtained by the piezoelectric film sensor, wherein the signal processing circuit cuts low frequency noise to a signal indicating pressure fluctuation obtained by the piezoelectric film sensor. A pass filter, a band pass filter that cuts baseline variation and high frequency noise from the amplified signal after passing through the low pass filter, and a comparator circuit connected to eliminate a saturated state in the piezoelectric film sensor And a short circuit, and is a cardiopulmonary function measurement device using a piezoelectric film sensor.
[0009] 請求項 1に係る発明を引用する請求項 2に係る発明は、前記ローパスフィルタの力 ットオフ周波数を 500Hz以下、前記バンドパスフィルタのカットオフ周波数を 0. 01H zから 30Hzとしたことを特徴とする圧電フィルムセンサを用いた心肺機能計測装置で ある。 In the invention according to claim 2 relating to the invention according to claim 1, the power off frequency of the low pass filter is 500 Hz or less, and the cut off frequency of the band pass filter is 0.10 H It is a cardiopulmonary function measurement device using a piezoelectric film sensor characterized by z to 30 Hz.
[0010] 請求項 1または請求項 2のいずれか 1項に係る発明を引用する請求項 3に係る発明 は、前記圧電フィルムセンサで取得される圧力変動を示す信号は呼吸信号と心拍信 号であることを特徴とする圧電フィルムセンサを用いた心肺機能計測装置である。  In the invention according to claim 3 citing the invention according to any one of claims 1 or 2, the signal indicating the pressure fluctuation obtained by the piezoelectric film sensor is a respiration signal and a heartbeat signal. It is a cardiopulmonary function measurement device using a piezoelectric film sensor characterized in that
[0011] 請求項 3に係る発明を引用する請求項 4に係る発明は、前記圧電フィルムセンサで 取得された信号をベースライン変動に影響する低周波数と呼吸信号に必要のない高 周波成分をカットするバンドパスフィルタに通し、ローパスフィルタにより呼吸信号を抽 出し、時間遅れ補償を行い、ゼロクロース点を算出し、吸気間隔及び呼気間隔を算 出する処理を行う信号処理部をさらに備え、圧電フィルムセンサで得られた信号から 呼吸情報を抽出できるようにしたことを特徴とする心肺機能計測装置である。  [0011] The invention according to claim 4, which cites the invention according to claim 3, cuts low frequency components that affect baseline fluctuation and high frequency components that are not necessary for respiration signals, which are obtained by the piezoelectric film sensor. And a signal processing unit that performs processing for calculating a zero-crossing point, calculating an inspiratory interval and an expiratory interval, and extracting a respiration signal with a low-pass filter. This cardiopulmonary function measurement device is characterized in that it is possible to extract respiration information from the signal obtained by the sensor.
[0012] 請求項 3に係る発明を引用する請求項 5に係る発明は、前記圧電フィルムセンサで 取得された信号を呼吸信号の影響と心拍信号に必要のない高周波成分をカットする バンドパスフィルタに通し、バンドパスフィルタにより心拍信号を抽出し、ピークを検出 しゃすくするためにローパスフィルタに通し、ピーク間隔を算出する処理を行う信号 処理部をさらに備え、圧電フィルムセンサで得られた信号力 心拍情報を抽出できる ようにしたことを特徴とする心肺機能計測装置である。  The invention according to claim 5 relating to the invention according to claim 3 is a band pass filter for cutting high frequency components unnecessary for the influence of a respiration signal and a heartbeat signal from the signal acquired by the piezoelectric film sensor. The signal processing unit is further provided with a signal processing unit that performs processing for extracting a heartbeat signal by a band pass filter, passing it through a low pass filter to detect a peak, and calculating a peak interval, and the signal strength obtained by the piezoelectric film sensor It is a cardiopulmonary function measurement device characterized in that information can be extracted.
[0013] また、請求項 6に係る発明は、 2枚の導電性繊維からなる生体電極で構成される導 電性線維センサと、該導電性線維センサで取得された信号を処理する信号処理回 路とからなり、前記信号処理回路は前記導電性線維センサで取得された生体電気を 示す信号に対し低周波ノイズをカットするローノ スフィルタと、該ローパスフィルタを通 つた後に増幅された信号に対しベースライン変動及び高周波数ノイズをカットする第 1のバンドパスフィルタと、電源のノイズをカットするノッチフィルタと、第 2のバンドパス フィルタとを含んで構成されて ヽることを特徴とする導電性線維センサを用いた心肺 機能計測装置である。  The invention according to claim 6 is a conductive fiber sensor comprising a biological electrode consisting of two conductive fibers, and a signal processing circuit for processing a signal obtained by the conductive fiber sensor. The signal processing circuit comprises a low noise filter for cutting low frequency noise from the signal indicative of bioelectricity acquired by the conductive fiber sensor, and a signal amplified after passing through the low pass filter. Conductivity characterized by including a first band pass filter for cutting baseline fluctuation and high frequency noise, a notch filter for cutting power supply noise, and a second band pass filter. It is a cardiopulmonary function measurement device using a fiber sensor.
[0014] 請求項 6に係る発明を引用する請求項 7に係る発明は、前記ローパスフィルタの力 ットオフ周波数を 500Hz以下、前記第 1のバンドパスフィルタのカットオフ周波数を 0 . 01Hz力ら 150Hz、前記第 2のバンドパスフィルタのカットオフ周波数を 0. 01Hz力 ら 120Hzとしたことを特徴とする導電性繊維センサを用いた心肺機能計測装置であ る。 [0014] The invention according to claim 7 relating to the invention according to claim 6 is such that the power off frequency of the low pass filter is 500 Hz or less, and the cut off frequency of the first band pass filter is 0.1 Hz 150 Hz, The cutoff frequency of the second band pass filter is 0.10 Hz It is a cardiopulmonary function measurement device using a conductive fiber sensor characterized in that the frequency is 120 Hz.
[0015] 請求項 6または請求項 7のいずれか 1項に係る発明を引用する請求項 8に係る発明 は、前記導電性線維センサで取得される生体電気を示す信号は心電信号と心拍信 号であることを特徴とする導電性繊維センサを用いた心肺機能計測装置である。  The invention according to claim 8 citing the invention according to any one of claims 6 or 7 is characterized in that the signal indicating bioelectricity obtained by the conductive fiber sensor is an electrocardiogram signal and a heartbeat signal. It is a cardiopulmonary function measuring device using a conductive fiber sensor characterized by the above.
[0016] 請求項 8に係る発明を引用する請求項 9に係る発明は、導電性繊維センで取得さ れた信号を呼吸信号の影響と心拍信号に必要のない高周波成分をカットするバンド パスフィルタに通し、電源ノイズを取り除くノッチフィルタを通し、ノ ンドパスフィルタに より心拍信号を抽出し、ピークを検出しやすくするためにローパスフィルタを通し、ピ ーク間隔を算出する処理を行う信号処理部をさらに備え、導電性線維センサで得ら れた信号力 心拍情報を抽出できるようにしたことを特徴とする心肺機能計測装置で ある。  [0016] The invention according to claim 9 relating to the invention according to claim 8 is a band pass filter for cutting the signal obtained by the conductive fiber sensor from high frequency components unnecessary for the influence of the respiration signal and the heartbeat signal. A signal processing unit that passes through a notch filter that removes power supply noise, extracts a heartbeat signal with a non-pass filter, passes through a low pass filter to make it easier to detect peaks, and calculates peak intervals. Further, the present invention is a cardiopulmonary function measuring device characterized in that it is possible to extract the signal strength heartbeat information obtained by the conductive fiber sensor.
[0017] 請求項 10に係る発明は、ポリマー圧電体フィルムを 2枚の薄層状の生体電極で挟 んで構成された圧電フィルムセンサと、該圧電フィルムセンサで取得された信号を収 集し処理する圧電フィルムセンサ用信号収集回路と、 2枚の導電性繊維からなる生 体電極で構成される導電性線維センサと、該導電性線維センサで取得された信号を 収集し処理する導電性線維センサ用信号収集回路とを備えてなり、前記圧電フィル ムセンサ用信号収集回路は低周波ノイズをカットするローパスフィルタと、該ローパス フィルタを通った後に増幅された信号に対しベースライン変動及び高周波数ノイズを カットするバンドパスフィルタと、前記圧電フィルムセンサにおける飽和状態を解消す るように接続されたコンパレータ回及びショート回路とを含んで構成され、前記導電 性線維センサ用信号収集回路は低周波ノイズをカットするローパスフィルタと、該ロー パスフィルタを通った後に増幅された信号に対しベースライン変動及び高周波数ノィ ズをカットする第 1のバンドパスフィルタと、電源のノイズをカットするノッチフィルタと、 第 2のバンドパスフィルタとを含んで構成されていることを特徴とする併用型の心肺機 能計測装置である。  In the invention according to claim 10, a piezoelectric film sensor configured by sandwiching a polymer piezoelectric film between two thin-layered bioelectrodes, and a signal acquired by the piezoelectric film sensor are collected and processed. A conductive fiber sensor comprising a signal collecting circuit for a piezoelectric film sensor and a biological electrode consisting of two conductive fibers, and a conductive fiber sensor for collecting and processing signals obtained by the conductive fiber sensor And a signal acquisition circuit for a piezoelectric film sensor, the signal acquisition circuit for a piezoelectric film sensor comprising a low pass filter for cutting low frequency noise, and baseline fluctuation and high frequency noise for an amplified signal after passing through the low pass filter. A band pass filter, and a comparator circuit and a short circuit connected to eliminate saturation in the piezoelectric film sensor. And the signal collection circuit for the conductive fiber sensor is a low pass filter for cutting low frequency noise, and a baseline variation and high frequency noise for the amplified signal after passing through the low pass filter. A combined cardiopulmonary function measurement device characterized in that it comprises: 1 band pass filter, notch filter for cutting noise of power source, and second band pass filter.
[0018] 請求項 1, 2, 3, 6, 7, 8, 10のいずれ力 1項に係る発明を引用する請求項 11に係 る発明は、心肺機能の計測を行えるように身体に装着するための装着手段を備えて なることを特徴とする心肺機能計測装置である。 The invention according to claim 11, which cites the invention according to any one of claims 1, 2, 3, 6, 7, 8, 10, is worn on the body so that the measurement of cardiopulmonary function can be performed. Equipped with mounting means for It is a cardiopulmonary function measuring device characterized by becoming.
発明の効果  Effect of the invention
[0019] 本発明によれば、圧電フィルムセンサ及び Zまたは導電性繊維センサを用いた心 肺機能計測装置にぉ 、て、圧電フィルムセンサで取得された信号に対してはローバ スフィルタ、バンドパスフィルタによりノイズをカットするとともにコンパレータ及びショー ト回路によりセンサにおける飽和状態を解消し、また、導電性線維センサで取得され た信号に対してはローパスフィルタ、第 1及び第 2のバンドパスフィルタ、ノッチフィル タによりノイズをカットするようにしたので、長時間にわたって高精度の信号を得ること ができ、また一般の者が睡眠中等日常生活において利用可能な形態の心肺機能計 測装置とすることができる。  According to the present invention, a cardiopulmonary function measuring device using a piezoelectric film sensor and Z or a conductive fiber sensor, a low pass filter, a band pass for signals acquired by the piezoelectric film sensor, and The filter cuts noise while the comparator and short circuit eliminate saturation in the sensor, and for the signal acquired by the conductive fiber sensor, low pass filter, first and second band pass filters, notch Since noise is cut by the filter, a high-accuracy signal can be obtained for a long time, and a cardiopulmonary function measuring device of a form that can be used by ordinary people in daily life such as sleep can be obtained. .
発明の実施に最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明による心肺機能計測にぉ 、ては、生体センサとして、呼吸と心拍などの生体 信号を取得する圧電フィルムセンサを用いる形態、心電図と心拍情報を計測するた めの導電性繊維センサを用いる形態、圧電フィルムセンサ及び導電性線維センサを 用いる形態がある。 In the cardiopulmonary function measurement according to the present invention, an embodiment using a piezoelectric film sensor for acquiring biological signals such as respiration and heart rate as a biological sensor, a conductive fiber sensor for measuring an electrocardiogram and heart rate information There is a form that uses a piezoelectric film sensor and a form that uses a piezoelectric film sensor and a conductive fiber sensor.
[0021] そこでまず、圧電フィルムセンサを用いた圧電フィルムセンサ型心肺機能計測装置 につ ヽて説明する。図 1に圧電フィルムセンサ型心肺機能計測装置の構成を示す。 圧電フィルムセンサ 1は、圧電体であるポリフッ化ビ-リデン(PVDF)フィルムを挟む 第 1の薄層状の生体電極及び第 2の薄層状の生体電極で構成されたものであり、各 電極からの信号は、 RCローパスフィルタ 2, 3を通り、アンプ 4で増幅されバンドパスフ ィルタ 5を経て出力され、また並列的にショート回路 6、コンパレータ 7が設けられてい る。圧電フィルムセンサ型心肺機能検出装置は、図 1のような圧電フィルムセンサ 1、 RCローパスフィルタ 2、アンプ 4、バンドパスフィルタ 5、ショート回路 6、コンパレータ 7 力 なる圧電フィルムセンサ型ユニットを含んで構成される。  Therefore, first, a piezoelectric film sensor type cardiopulmonary function measuring device using a piezoelectric film sensor will be described. Figure 1 shows the configuration of a piezoelectric film sensor type cardiopulmonary function measuring device. The piezoelectric film sensor 1 is composed of a first thin-layered bioelectrode and a second thin-layered bioelectrode sandwiching a piezoelectric poly (vinyl fluoride) (PVDF) film, which is a piezoelectric body. The signal passes through the RC low pass filters 2 and 3, is amplified by the amplifier 4, is output through the band pass filter 5, and the short circuit 6 and the comparator 7 are provided in parallel. The piezoelectric film sensor type cardiopulmonary function detection device includes a piezoelectric film sensor type unit including a piezoelectric film sensor 1 as shown in FIG. 1, an RC low pass filter 2, an amplifier 4, a band pass filter 5, a short circuit 6 and a comparator 7 force. Be done.
[0022] 図 2に、 RCローパスフィルタの一例を示す力 生体信号計測時に必ず発生する高 周波数ノイズをカットして力 アンプで増幅するために設けるもので、より高品質の信 号を得ることが出来る。前記 RCローパスフィルタのカットオフ周波数は 500Hz以下で よい。 [0023] ショート回路 6及びコンパレータ 7は、長時間の計測をするときに圧電フィルムセン サに溜まっている電荷を放電させ、センサのオーバーフローを防ぐためのものである 。バンドパスフィルタ 5は、より高質な呼吸信号と心拍信号を出力するために設けられ るものである。呼吸と心拍信号を採集することを例に取れば、バンドパスフィルタの力 ットオフ周波数は 0. 01〜30Hzでよい。また、前記バンドパスフィルタの次数は 2次 以上が好ましい。 Fig. 2 shows an example of an RC low-pass filter. This filter is provided to cut high-frequency noise that is always generated when measuring a biomedical signal and amplify it with a force amplifier, and to obtain a higher quality signal. It can. The cutoff frequency of the RC low pass filter may be 500 Hz or less. The short circuit 6 and the comparator 7 are for discharging the charges accumulated in the piezoelectric film sensor when measuring for a long time, and for preventing the overflow of the sensor. The band pass filter 5 is provided to output higher quality breathing signals and heartbeat signals. Taking respiration and heart rate signals as an example, the power off frequency of the bandpass filter may be between 0.01 and 30 Hz. The order of the band pass filter is preferably 2 or more.
[0024] 図 3に圧電フィルムセンサで得られた信号力 抽出された呼吸情報を示す。図 3 (a) は圧電フィルムセンサ力 得られた本来の信号を示し、呼吸情報及び心拍情報を同 時に含んでいる。図 3 (b)は、後述する図 5に示すアルゴリズムにより抽出された結果 として得られた信号を示す。比較のために、図 3 (c)には市販の呼吸曲線記録センサ から得られた信号を示す。いずれのグラフも横軸は時間である。なお、図 3 (b)中、隣 接の白丸の時間 黒丸の時間 =吸気の時間間隔、隣接の黒丸の時間 白丸の時 間 =呼気の時間間隔である。  FIG. 3 shows the signal force obtained by the piezoelectric film sensor and the extracted respiration information. Fig. 3 (a) shows the original signal obtained by the piezoelectric film sensor, and simultaneously contains respiration information and heart rate information. FIG. 3 (b) shows the signal obtained as a result extracted by the algorithm shown in FIG. 5 described later. For comparison, Fig. 3 (c) shows the signal obtained from a commercially available respiratory curve recording sensor. In each graph, the horizontal axis is time. In Fig. 3 (b), the time of the adjacent white circle time of the black circle = time interval of inhalation, time of the adjacent black circle time of white circle = time interval of exhalation.
[0025] 図 4に圧電フィルムセンサで得られた信号力 抽出された心拍情報を示す。図 4 (a) は圧電フィルムセンサ力 得られた本来の信号を示し、図 3 (a)と同様に呼吸情報及 び心拍情報を同時に含んでいる。図 4 (b)は、後述するアルゴリズムにより抽出された 結果として得られた信号を示す。比較のために、図 4 (c)には 3電極型 ECG (心電図: Electrocardiogram)から得られた信号を示す。なお、図 4 (b)中、白丸間の時間間 隔は心拍 R— R間隔である。  FIG. 4 shows the heartbeat information extracted by the signal force obtained by the piezoelectric film sensor. Fig. 4 (a) shows the original signal obtained by the piezoelectric film sensor, and it simultaneously contains respiration information and heart rate information as in Fig. 3 (a). Figure 4 (b) shows the resulting signal extracted by the algorithm described later. For comparison, Fig. 4 (c) shows the signals obtained from a 3-electrode ECG (electrocardiogram). In Fig. 4 (b), the time interval between the white circles is the heart rate RR interval.
[0026] 図 5に、図 3 (a)に示す如き圧電フィルムセンサで得られた信号から呼吸情報を抽 出するアルゴリズムを示す。圧電フィルムセンサで得られた信号はセンサ信号 x (n)と して出力され (ステップ 1)、次に、ウェーブレット(wavelet) ·フィルタなど、ベースライ ン変動に影響する低周波数と呼吸信号に必要のない高周波成分を有効に取り除く ためのソフトウェアフィルタ(0. 01〜4Hz)を通す (ステップ 2)。次に、デジタルロー パスフィルタ (0. 3Hz)を利用して呼吸信号を抽出する (ステップ 3)。その後時間遅 れ補償 (ステップ 4)を行った後、ゼロクロース点を算出する (ステップ 5)。その結果は 先に図 3 (b)に示したとおりである。得られたゼロクロース点の間隔を測定することで、 吸気間隔及び呼気間隔が算出できる (ステップ 6)。 [0027] このように圧電フィルムセンサで得られた信号から呼吸情報を抽出できるようにする 心肺機能計測装置は、ステップ 1〜6の処理を行うための信号処理回路を備えるもの とすればよぐそのための専用回路を備える形態としてもよいが、そのためのソフトゥ エアを有するコンピュータにより信号処理を行う形態としてもよい。 FIG. 5 shows an algorithm for extracting respiration information from the signal obtained by the piezoelectric film sensor as shown in FIG. 3 (a). The signal obtained by the piezoelectric film sensor is output as a sensor signal x (n) (step 1), and then it is necessary for low frequencies and respiration signals that affect baseline variations, such as wavelets and filters. Pass a software filter (0.01 to 4 Hz) to effectively remove high frequency components (step 2). Next, the respiration signal is extracted using a digital low pass filter (0.3 Hz) (step 3). After the time delay compensation (step 4), the zero close point is calculated (step 5). The results are as shown in Fig. 3 (b). The inspiratory interval and expiratory interval can be calculated by measuring the interval of the obtained zero close point (step 6). As described above, it is possible to extract respiration information from the signal obtained by the piezoelectric film sensor, and the cardiopulmonary function measuring apparatus may be provided with a signal processing circuit for performing the processes of steps 1 to 6. Although a dedicated circuit for that purpose may be provided, a signal processing may be carried out by a computer having software for that purpose.
[0028] 図 6に、図 4 (a)に示す如き圧電フィルムセンサで得られた信号から心拍情報を抽 出するアルゴリズムを示す。圧電フィルムセンサで得られた信号はセンサ信号 x (n)と して出力され (ステップ 1)、次に、ウェーブレット'フィルタなど、呼吸信号の影響と心 拍信号に必要のない高周波成分を有効に取り除くためのソフトウェアフィルタ(8〜1 20Hz)を通す (ステップ 2)。次に、デジタルバンドパスフィルタ(13〜25Hz)を利用 して、心拍情報を抽出する (ステップ 3)。そしてピーク値を検出しやすくするためにス テツプ 3で得られたデータの絶対値を取った後口一パスフィルタ(5Hz)を通し (ステツ プ 4)、ピーク値を検出する (ステップ 5)。得られたピーク値間の間隔が心拍 R— R間 隔である(ステップ 6)。  FIG. 6 shows an algorithm for extracting heart rate information from the signal obtained by the piezoelectric film sensor as shown in FIG. 4 (a). The signal obtained by the piezoelectric film sensor is output as a sensor signal x (n) (step 1), and then the effect of the respiration signal and high frequency components unnecessary for the heart beat signal, such as a wavelet filter, are effectively used. Pass a software filter (8 to 120 Hz) to remove (step 2). Next, heart rate information is extracted using a digital band pass filter (13 to 25 Hz) (step 3). Then, in order to make it easy to detect the peak value, the absolute value of the data obtained in step 3 is taken, then it is passed through a single pass filter (5 Hz) (step 4), and the peak value is detected (step 5). The interval between the obtained peak values is the interval between heart beats R and R (step 6).
[0029] このように圧電フィルムセンサで得られた信号から心拍情報を抽出できるようにする 心肺機能計測装置は、ステップ 1〜6の処理を行うための信号処理回路を備えるもの とすればよぐそのための専用回路を備える形態としてもよいが、そのためのソフトゥ エアを有するコンピュータにより信号処理を行う形態としてもよい。  As described above, the cardiopulmonary function measuring apparatus capable of extracting heart rate information from the signal obtained by the piezoelectric film sensor may be provided with a signal processing circuit for performing the processes of steps 1 to 6. Although a dedicated circuit for that purpose may be provided, a signal processing may be carried out by a computer having software for that purpose.
[0030] 次に、導電性繊維センサ型心肺機能計測装置にっ 、て説明する。図 7に導電性繊 維センサ型心肺機能計測装置の構成を示す。導電性繊維センサ 11は導電性繊維 からなる第 1の生体電極及び第 2の生体電極で構成され、各電極からの信号は電源 や筋電、静電気などによるノイズ信号を除去する RCローパスフィルタ 12, 13を通り、 アンプ 14で増幅され、ベースライン変動と高周波数ノイズを防ぐための第 1のバンド パスフィルタ 15を通り、電源のノイズをカットするノッチフィルタ 16を経て、さらに第 2 のバンドパスフィルタ 17を経て出力される。前記 RCローパスフィルタ 12, 13のカット オフ周波数は 500Hz以下でよい。また、前記バンドパスフィルタ 15, 17の次数はい ずれも 2次以上が好ましい。そして、前記第 1のバンドパスフィルタ 15は、 0. 01-15 OHz、前記第 2のバンドパスフィルタ 17は、 0. 01〜120Hzのカットオフ周波数とする ことが好ましい。 60Hzまたは 50Hzの交流ノイズはノッチフィルタ 16を用いて除去さ れる。導電性繊維センサ 11から適切な出力信号を得るためには、前記第 1のバンド パスフィルタ 15、ノッチフィルタ 16、前記第 2のバンドパスフィルタ 17というように、こ の順序で配置したものとすることが重要である。導電性線維センサ型心肺機能検出 装置は、図 7のような導電性線維センサ 11、 RCローパスフィルタ 12, 13、アンプ 14、 第 1のバンドパスフィルタ 15、ノッチフィルタ 16、第 2のバンドパスフィルタ 17からなる 導電性線維センサ型ユニットを含んで構成される。 Next, a conductive fiber sensor type cardiopulmonary function measuring apparatus will be described. Figure 7 shows the configuration of a conductive fiber sensor type cardiopulmonary measurement device. The conductive fiber sensor 11 is composed of a first biological electrode and a second biological electrode made of conductive fiber, and the signal from each electrode is a RC low-pass filter 12, which removes noise signals due to power supply, myoelectricity, static electricity, etc. 13, through the first band pass filter 15 to be amplified by the amplifier 14, through the first band pass filter 15 to prevent baseline fluctuation and high frequency noise, and through the notch filter 16 to cut the noise of the power supply, and then the second band pass filter Output after 17 The cutoff frequency of the RC low pass filters 12 and 13 may be 500 Hz or less. Further, it is preferable that the order of each of the band pass filters 15 and 17 is 2nd or higher. The first band pass filter 15 preferably has a cutoff frequency of 0.01-15 OHz, and the second band pass filter 17 preferably has a cutoff frequency of 0.01 to 120 Hz. AC noise at 60 Hz or 50 Hz is removed using notch filter 16 Be In order to obtain an appropriate output signal from the conductive fiber sensor 11, the first band pass filter 15, the notch filter 16, and the second band pass filter 17 are arranged in this order. This is very important. The conductive fiber sensor type cardiopulmonary function detection device is the conductive fiber sensor 11 as shown in FIG. 7, RC low pass filter 12, 13, amplifier 14, first band pass filter 15, notch filter 16, second band pass filter It comprises the conductive fiber sensor type unit which consists of seventeen.
[0031] 図 8に、導電性繊維センサ型心肺機能計測装置力 抽出された心拍情報を示す。  [0031] Fig. 8 shows the heart rate information extracted by the conductive fiber sensor type cardiopulmonary function measuring device.
左側のグラフは正常に信号が得られた場合であり、右側のグラフは筋肉ノイズが入つ た場合である。最上段は導電繊維センサ型心肺機能計測装置で得られた本来の信 号を示し、中段は抽出された心拍情報を示す。比較のために、下段には市販の 3電 極型 ECGで得られた信号を示す。  The graph on the left is the case where the signal was obtained normally, and the graph on the right is the case where muscle noise is introduced. The top row shows the original signal obtained by the conductive fiber sensor type cardiopulmonary function measuring device, and the middle row shows the extracted heartbeat information. For comparison, the lower part shows the signals obtained with a commercially available 3-electrode ECG.
[0032] 図 9に、導電性線維センサで得られた信号カゝら心拍情報を抽出するアルゴリズムを 示す。導電性線維センサで得られた信号がセンサ信号 x(n)として出力され (ステップ 1)、次に、ウェーブレット'フィルタなど、呼吸信号の影響と心拍信号に必要のない高 周波成分を有効に取り除くためのソフトウェアフィルタ(0. 03〜 125Hz)を通す (ステ ップ 2)。次に、ノッチフィルタを用いて電源ノイズ(60Hzまたは 50Hz)を取り除く(ス テツプ 3)。次に、デジタルバンドパスフィルタ(13〜25Hz)を利用して、心拍情報を 抽出する (ステップ 4)。そしてピーク値を検出しやすくするためにステップ 4で得られ たデータの絶対値を取った後口一パスフィルタ(5Hz)を通し (ステップ 5)、ピーク値を 検出する (ステップ 6)。得られたピーク値間の間隔が心拍 R—R間隔である (ステップ 7)。  FIG. 9 shows an algorithm for extracting heart beat information obtained by the conductive fiber sensor. The signal obtained by the conductive fiber sensor is output as a sensor signal x (n) (step 1), and then effectively removes the influence of the respiration signal and high frequency components unnecessary for the heartbeat signal, such as a wavelet 'filter. Pass the software filter (0. 03 to 125 Hz) for (step 2). Next, remove the power supply noise (60 Hz or 50 Hz) using a notch filter (Step 3). Next, heartbeat information is extracted using a digital band pass filter (13 to 25 Hz) (step 4). Then, in order to make it easy to detect the peak value, the absolute value of the data obtained in step 4 is taken and then passed through a single pass filter (5 Hz) (step 5) to detect the peak value (step 6). The interval between the obtained peak values is the heart rate RR interval (step 7).
[0033] この導電性線維センサで得られた信号カゝら心拍情報を抽出できるようにする心肺機 能計測装置は、ステップ 1〜7の処理を行うための信号処理回路を備えるものとすれ ばよぐそのための専用回路を備える形態としてもよいが、そのためのソフトウェアを 有するコンピュータにより信号処理を行う形態としてもよい。  The cardiopulmonary function measuring apparatus capable of extracting the heartbeat information obtained by the conductive fiber sensor should have a signal processing circuit for performing the processes of steps 1 to 7. Although a configuration may be provided in which dedicated circuits are provided for the purpose, a computer having software for the purpose may be used to perform signal processing.
[0034] 次に、圧電フィルムセンサ及び導電性繊維センサを組み合わせた併用型の心肺機 能計測装置について説明する。導電性繊維センサは、圧電フィルムセンサに比べ、 心電 '心拍信号の計測に適している。しかし、普通の睡眠状況と日常生活下で用い た場合、導電性繊維センサが体とうまく接触できない状況は頻繁に発生することが考 えられる。その場合、導電性繊維センサ力 心電 '心拍信号を計測することができなく なる。 Next, a combined-type cardiopulmonary measurement device in which a piezoelectric film sensor and a conductive fiber sensor are combined will be described. The conductive fiber sensor is more suitable for measuring the cardiac beat signal than the piezoelectric film sensor. However, under normal sleeping conditions and daily life In such cases, it may be considered that the situation where the conductive fiber sensor can not contact well with the body frequently occurs. In that case, the conductive fiber sensor can not measure the cardiac beat signal.
[0035] 一方、圧電フィルムセンサは、センサ自信が体と接触しなくても、呼吸や心拍による 体動が該圧電フィルムセンサに伸び縮みを与えれば、圧電フィルムセンサ力 その 信号を検出することは可能である。しかし、圧電フィルムセンサの信号からよりも導電 性繊維センサの信号力もの方が心拍情報をより正確に抽出できる。したがって、より 精度の高!ヽ心肺機能計測装置とする場合には、導電性繊維センサと圧電フィルムセ ンサとの両方を備えるのがよぐこのような両方のセンサを備える併用型の心肺機能 計測装置では、両センサを同時に使用し互いに補間することでより高性能の心肺機 能計測装置を実現できる。  On the other hand, in the piezoelectric film sensor, even if the sensor itself does not make contact with the body, it can not detect the piezoelectric film sensor force if the movement due to breathing or heartbeat gives the piezoelectric film sensor expansion and contraction. It is possible. However, the signal strength of the conductive fiber sensor can more accurately extract the heartbeat information from the signal of the piezoelectric film sensor. Therefore, in the case of a more accurate cardiopulmonary function measuring device, a combined cardiopulmonary function measuring device provided with both a conductive fiber sensor and a piezoelectric film sensor can be provided. By using both sensors simultaneously and interpolating each other, a more sophisticated cardiopulmonary measurement device can be realized.
[0036] 図 10に導電性線維センサと圧電フィルムセンサとを備える併用型の心肺機能計測 装置の構成を示しており、この心肺機能計測装置においては、導電性繊維センサ 21 からの信号を先に述べた導電性線維センサ型ユニットを含んで構成される導電繊維 センサ信号収集回路 23を通して収集し、 AZD変換後マイコン 25で処理する。同時 に圧電フィルムセンサ 22からの信号も先に述べた圧電フィルムセンサ型ユニットを含 んで構成される圧電フィルムセンサ信号収集回路 24を通して収集し、 AZD変換後 マイコン 25で処理する。さらに、収集された信号、あるいはそれを処理して得られた データを例えば USB26で接続されたコンピュータ 27に給送しデータの表示 '保存' 解析を行う。  [0036] Fig. 10 shows the configuration of a combined cardiopulmonary function measurement device comprising a conductive fiber sensor and a piezoelectric film sensor. In this cardiopulmonary function measurement device, the signal from the conductive fiber sensor 21 is first. The conductive fiber sensor signal collecting circuit 23 configured to include the conductive fiber sensor type unit described above is collected and processed by the microcomputer 25 after AZD conversion. At the same time, the signal from the piezoelectric film sensor 22 is also collected through the piezoelectric film sensor signal collecting circuit 24 configured to include the above-described piezoelectric film sensor type unit, and processed by the microcomputer 25 after AZD conversion. Further, the collected signal or data obtained by processing the signal is fed to a computer 27 connected via, for example, the USB 26, and data display 'storage' analysis is performed.
[0037] 導電性繊維センサと圧電フィルムセンサとの両方を備えた心肺機能計測装置の形 態として、これをベルトタイプ等、身体に装着可能な装置形態とすることが考えられる 。図 11にベルトタイプの心肺機能計測装置 31の構成の例を示す。ベルトタイプの心 肺機能計測装置 31は 2枚の導電性繊維シート 34, 35と圧電フィルムセンサ 36とをク ッシヨン材または可撓性板材に取り付けて構成されるセンサヘッド 32にベルト 33が取 り付けられ、ウェストの周りに着用されるようにしてある。センサヘッド 32は例えば 90 mmの幅、 185. 5mmの長さで、 2枚の導電性繊維シート 34, 35は心拍情報を抽出 するため ECGを測定するために用いられる。また、圧電フィルムセンサ 36は腹部の 上下動から呼吸のサイクルを測定すると共に心拍も測定する。 As a form of a cardiopulmonary function measuring device provided with both a conductive fiber sensor and a piezoelectric film sensor, it can be considered to make the device form that can be worn on the body, such as a belt type. FIG. 11 shows an example of the configuration of a belt-type cardiopulmonary function measuring apparatus 31. The belt-type cardiopulmonary function measuring device 31 has a belt 33 attached to a sensor head 32 which is formed by attaching two conductive fiber sheets 34 and 35 and a piezoelectric film sensor 36 to a cushioning material or a flexible plate. It is attached and made to be worn around the waist. The sensor head 32 has a width of, for example, 90 mm and a length of 185.5 mm, and two conductive fiber sheets 34, 35 are used to measure the ECG for extracting heart rate information. Also, the piezoelectric film sensor 36 is It measures the cycle of breathing from up and down movement and also measures the heart rate.
[0038] 図 12に、導電性繊維センサの出力波形と心拍信号を示す。図中 (a)は導電性繊維 センサが体と接触不良か乾燥している場合に測定された波形で、(b)は図 9のァルゴ リズムを適用して抽出した心拍信号であり、うまく抽出できな力つたことが分かる。  [0038] FIG. 12 shows an output waveform and a heartbeat signal of the conductive fiber sensor. In the figure, (a) is a waveform measured when the conductive fiber sensor is in contact with the body poorly or is dry, and (b) is a heartbeat signal extracted by applying the algorithm of FIG. I understand that I could not do it.
[0039] 図 13に、図 12に示した導電性繊維センサの測定時と同時刻における圧電フィルム センサの出力信号と抽出した心拍信号を示す。図中(c)は圧電フィルムセンサ力 の 出力信号、(d)は図 6のアルゴリズムを適用して得られた心拍信号であり、心拍情報 力 Sうまく抽出されたことが分かる。  FIG. 13 shows the output signal of the piezoelectric film sensor and the extracted heartbeat signal at the same time as the measurement of the conductive fiber sensor shown in FIG. In the figure, (c) is the output signal of the piezoelectric film sensor force, and (d) is the heartbeat signal obtained by applying the algorithm of FIG. 6, and it can be seen that the heartbeat information force S was successfully extracted.
[0040] 導電性繊維センサを用いる際は、常時皮膚に接触しており、皮膚が湿っていること が必要である。実際、皮膚が乾燥してくると重要なノイズが発生する。図 12に示した 例では、 R—R間隔は正確に測定できないことは明らかである。  When using a conductive fiber sensor, it is always in contact with the skin and the skin needs to be moist. In fact, as the skin becomes dry, significant noise is generated. In the example shown in FIG. 12, it is clear that the RR interval can not be measured accurately.
[0041] これに対して、前記導電性繊維センサを用いた測定と同時期に圧電フィルムセンサ 力 得られる出力信号を図 13 (c)に示す。図 13 (d)には図 6のアルゴリズムにより抽 出した心拍信号を示す。導電性繊維センサを用いた測定ではできないが、圧電フィ ルムセンサ力も得られる出力信号から R—R間隔は計算できることは明らかである。そ れゆえ、導電性繊維センサと圧電フィルムセンサを同時に使用し、互いに補間するこ とで、より高性能の心肺機能センサを実現できる。  On the other hand, FIG. 13 (c) shows an output signal obtained from the piezoelectric film sensor at the same time as the measurement using the conductive fiber sensor. Figure 13 (d) shows the heartbeat signal extracted by the algorithm of Figure 6. It is obvious that the RR interval can be calculated from the output signal which can not be measured by the conductive fiber sensor, but the piezoelectric film sensor force is also obtained. Therefore, by using the conductive fiber sensor and the piezoelectric film sensor simultaneously and interpolating each other, a higher performance cardiopulmonary function sensor can be realized.
[0042] 上述したように、圧電フィルムセンサ及びその信号処理アルゴリズムは有効に呼吸 情報の抽出を行うことができるものであり、心拍情報の抽出にも高い潜在力を有する ものである。しかしながら、圧電フィルムセンサはいつも有効ではないかもしれない。 例えば体の動きで前記ベルトセンサがずれたり、動くことで、睡眠中に一定時間その 機能を失ってしまうかも知れな 、。  As described above, the piezoelectric film sensor and its signal processing algorithm can effectively extract respiration information, and have high potential for extraction of heart rate information. However, piezoelectric film sensors may not always be effective. For example, if the belt sensor is shifted or moved by the movement of the body, it may lose its function for a fixed time during sleep.
[0043] 図 14には、圧電フィルムセンサがうまく動作せず、導電性繊維センサがうまく動作し た場合の結果を示す。(a)は圧電フィルムセンサからの出力信号である力 信号が非 常に小さぐ(b)に図 6のアルゴリズムにより抽出した心拍信号を示すが、心拍情報あ るいは呼吸情報の抽出が困難である。し力しながら、この時間帯では、(c)に示すよう に導電性繊維センサは正常に機能しているようであり、心拍信号が抽出できているこ とは明白である。 それゆえ、導電性繊維センサと圧電フィルムセンサを同時に使用し、互いに補間す ることで、より高性能の心肺機能センサを実現できる。 [0043] FIG. 14 shows the result when the piezoelectric film sensor did not operate well and the conductive fiber sensor operated well. (A) shows the heart rate signal extracted by the algorithm of FIG. 6 when the force signal which is the output signal from the piezoelectric film sensor is extremely small (b) shows extraction of heart rate information or respiration information . Meanwhile, at this time, as shown in (c), the conductive fiber sensor seems to be functioning properly, and it is clear that the heartbeat signal can be extracted. Therefore, by using the conductive fiber sensor and the piezoelectric film sensor simultaneously and interpolating each other, a higher performance cardiopulmonary function sensor can be realized.
図面の簡単な説明  Brief description of the drawings
[0044] [図 1]本発明の 1つの形態としての圧電フィルムセンサ型心肺機能計測装置の構成を 示す図である。  FIG. 1 is a view showing a configuration of a piezoelectric film sensor type cardiopulmonary function measuring device as one embodiment of the present invention.
[図 2]RCローパスフィルタの一例を示す図である。  FIG. 2 is a diagram showing an example of an RC low pass filter.
[図 3]圧電フィルムセンサ力 得られた信号力 抽出された呼吸情報を示す図である  [Fig. 3] Piezoelectric film sensor force Fig. 3 is a view showing extracted respiration information.
[図 4]圧電フィルムセンサ力 得られた信号力 抽出された心拍情報を示す図である [FIG. 4] Piezoelectric film sensor force obtained signal force FIG.
[図 5]圧電フィルムセンサ信号から呼吸情報を抽出するアルゴリズムを示す図である。 FIG. 5 is a diagram showing an algorithm for extracting respiration information from a piezoelectric film sensor signal.
[図 6]圧電フィルムセンサ信号力も心拍情報を抽出するアルゴリズムを示す図である。  FIG. 6 is a diagram showing an algorithm for extracting signal information of the piezoelectric film sensor as well as heartbeat information.
[図 7]本発明の他の形態としての導電性繊維センサ型心肺機能計測装置の構成を示 す図である。  FIG. 7 is a view showing the configuration of a conductive fiber sensor type cardiopulmonary function measuring apparatus according to another embodiment of the present invention.
[図 8]導電性繊維センサカゝら心拍情報を抽出した 2つの場合を示す図であり、  [FIG. 8] A diagram showing two cases in which the conductive fiber sensor sensor and heart rate information are extracted,
左欄は正常に信号が得られた場合、右欄は筋肉のノイズが入った場合をそれぞ れ示す。  The left column shows when the signal is obtained normally, and the right column shows the case where the noise of the muscle enters.
[図 9]導電性繊維センサ信号カゝら心拍情報を抽出するアルゴリズムである。  [Fig. 9] This is an algorithm for extracting heart rate information from conductive fiber sensor signals.
[図 10]本発明のさらに他の形態としての導電性繊維センサと圧電フィルムセンサとの 両方を備える併用型の心肺機能計測装置の構成を示す図である。  FIG. 10 is a view showing the configuration of a combined cardiopulmonary function measurement device provided with both a conductive fiber sensor and a piezoelectric film sensor according to still another embodiment of the present invention.
[図 11]本発明による心肺機能計測装置をベルトタイプとした構成を示す図である。  FIG. 11 is a view showing a belt type of the cardiopulmonary function measuring apparatus according to the present invention.
[図 12]導電性繊維センサの出力信号と心拍信号を示す図である。  FIG. 12 is a view showing an output signal of a conductive fiber sensor and a heartbeat signal.
[図 13]圧電フィルムセンサの出力信号と抽出した心拍信号を示す図である。  FIG. 13 is a diagram showing an output signal of a piezoelectric film sensor and a heartbeat signal extracted.
[図 14]圧電フィルムセンサがうまく動作せず、導電性繊維センサがうまく動作した場合 の結果を示す図である。  FIG. 14 is a diagram showing the results when the piezoelectric film sensor did not operate well and the conductive fiber sensor operated well.
符号の説明  Explanation of sign
[0045] 1 圧電フィルムセンサ 1 Piezoelectric film sensor
2 RCローパスフィルタ RCローパスフィルタ 2 RC low pass filter RC low pass filter
アンプ Amplifier
RCローノ スフイノレタ RC Rono Sufiinoleta
ショート回路 Short circuit
コンノ レータ CONNORATOR
導電性繊維センサ Conductive fiber sensor
RCローパスフィルタ RC low pass filter
RCローパスフィルタ RC low pass filter
アンプ Amplifier
第 1のバンドパスフィルタ ノッチフィルタ First band pass filter Notch filter
第 2のバンドパスフィルタ 導電性繊維センサ Second band pass filter Conductive fiber sensor
圧電フィルムセンサ Piezoelectric film sensor
導電性繊維センサ用信号収集回路 圧電フィルムセンサ用信号収集回路 マイコン Signal acquisition circuit for conductive fiber sensor Signal acquisition circuit for piezoelectric film sensor Microcomputer
ベルトセンサ Belt sensor
センサヘッド The sensor head
ベノレトBenolet
5 導電性繊維シート 5 Conductive fiber sheet
圧電フィルムセンサ Piezoelectric film sensor

Claims

請求の範囲 The scope of the claims
[1] ポリマー圧電体フィルムを 2枚の薄層状の生体電極で挟んで構成された圧電フィル ムセンサと、該圧電フィルムセンサで取得された信号を処理する信号処理回路とから なり、前記信号処理理回路は前記圧電フィルムセンサで取得された圧力変動を示す 信号に対し低周波ノイズをカットするローノ スフィルタと、該ローパスフィルタを通った 後に増幅された信号に対しベースライン変動及び高周波数ノイズをカットするバンド パスフィルタと、前記圧電フィルムセンサにおける飽和状態を解消するように接続され たコンパレータ回路及びショート回路とを含んで構成されていることを特徴とする圧電 フィルムセンサを用いた心肺機能計測装置。  [1] A signal processing circuit comprising: a piezoelectric film sensor configured by sandwiching a piezoelectric polymer film between two thin layer bio-electrodes; and a signal processing circuit that processes a signal acquired by the piezoelectric film sensor. The circuit cuts a low noise noise to the signal indicating pressure fluctuation acquired by the piezoelectric film sensor, and a baseline fluctuation and high frequency noise to the amplified signal after passing through the low pass filter. What is claimed is: 1. A cardiopulmonary function measuring device using a piezoelectric film sensor, comprising: a bandpass filter; and a comparator circuit and a short circuit connected so as to eliminate a saturated state in the piezoelectric film sensor.
[2] 前記ローパスフィルタのカットオフ周波数を 500Hz以下、前記バンドパスフィルタの カットオフ周波数を 0. 01Hzから 30Hzとしたことを特徴とする請求項 1に記載の圧電 フィルムセンサを用いた心肺機能計測装置。  [2] The cardiopulmonary function measurement using the piezoelectric film sensor according to claim 1, characterized in that the cutoff frequency of the low pass filter is 500 Hz or less, and the cutoff frequency of the band pass filter is 0.1 Hz to 30 Hz. apparatus.
[3] 前記圧電フィルムセンサで取得される圧力変動を示す信号は呼吸信号と心拍信号 であることを特徴とする請求項 1または請求項 2のいずれか 1項に記載の圧電フィル ムセンサを用いた心肺機能計測装置。  [3] The piezoelectric film sensor according to any one of claims 1 and 2, wherein the signal indicating pressure fluctuation acquired by the piezoelectric film sensor is a respiration signal and a heartbeat signal. Cardiorespiratory function measuring device.
[4] 請求項 3に記載の心肺機能計測装置において、前記圧電フィルムセンサで取得さ れた信号をベースライン変動に影響する低周波数と呼吸信号に必要のない高周波 成分をカットするバンドパスフィルタに通し、ローパスフィルタにより呼吸信号を抽出し 、時間遅れ補償を行い、ゼロクロース点を算出し、吸気間隔及び呼気間隔を算出す る処理を行う信号処理部をさらに備え、圧電フィルムセンサで得られた信号から呼吸 情報を抽出できるようにしたことを特徴とする心肺機能計測装置。  [4] The cardiopulmonary function measurement device according to claim 3, wherein the signal obtained by the piezoelectric film sensor is used as a band pass filter for cutting low frequencies that affect baseline fluctuation and high frequency components that are not necessary for respiration signals. The signal processing unit is further provided with a signal processing unit that performs processing for extracting a respiration signal with a low pass filter, performing time delay compensation, calculating a zero crossing point, and calculating an inspiratory interval and an expiratory interval, obtained by the piezoelectric film sensor A cardiopulmonary function measuring device characterized in that respiration information can be extracted from a signal.
[5] 請求項 3に記載の心肺機能計測装置において、前記圧電フィルムセンサで取得さ れた信号を呼吸信号の影響と心拍信号に必要のない高周波成分をカットするバンド パスフィルタに通し、バンドパスフィルタにより心拍信号を抽出し、ピークを検出しや すくするためにローパスフィルタに通し、ピーク間隔を算出する処理を行う信号処理 部をさらに備え、圧電フィルムセンサで得られた信号カゝら心拍情報を抽出できるよう にしたことを特徴とする心肺機能計測装置。  [5] In the cardiopulmonary function measuring device according to claim 3, the signal obtained by the piezoelectric film sensor is passed through a band pass filter for cutting high frequency components unnecessary for the influence of a respiration signal and a heartbeat signal, The signal processing unit is further provided with a signal processing unit that performs processing of extracting a heartbeat signal by a filter, passing it through a low pass filter to easily detect a peak, and calculating a peak interval, and signal heartbeat information obtained by the piezoelectric film sensor A cardiopulmonary function measuring device characterized by being able to extract
[6] 2枚の導電性繊維からなる生体電極で構成される導電性線維センサと、該導電性 線維センサで取得された信号を処理する信号処理回路とからなり、前記信号処理回 路は前記導電性線維センサで取得された生体電気を示す信号に対し低周波ノイズ をカットするローパスフィルタと、該ローノ スフィルタを通った後に増幅された信号に 対しベースライン変動及び高周波数ノイズをカットする第 1のバンドパスフィルタと、電 源のノイズをカットするノッチフィルタと、第 2のバンドパスフィルタとを含んで構成され て!ヽることを特徴とする導電性線維センサを用いた心肺機能計測装置。 [6] A conductive fiber sensor comprising a biological electrode consisting of two conductive fibers, and the conductive property A signal processing circuit for processing a signal acquired by a fiber sensor, wherein the signal processing circuit is a low pass filter for cutting low frequency noise from a signal indicating bioelectricity acquired by the conductive fiber sensor; A first band pass filter that cuts baseline variation and high frequency noise from the amplified signal after passing through a low noise filter, a notch filter that cuts noise of the power supply, and a second band pass filter A cardiopulmonary function measuring device using a conductive fiber sensor characterized by including!
[7] 前記ローパスフィルタのカットオフ周波数を 500Hz以下、前記第 1のバンドパスフィ ルタのカットオフ周波数を 0. 01Hz力ら 150Hz、前記第 2のバンドパスフィルタのカツ トオフ周波数を 0. 01Hzから 120Hzとしたことを特徴とする請求項 6に記載の導電性 繊維センサを用いた心肺機能計測装置。  [7] The cut-off frequency of the low-pass filter is 500 Hz or less, the cut-off frequency of the first band-pass filter is 0.10 Hz, 150 Hz, and the cut-off frequency of the second band-pass filter is 0.10 Hz The cardiopulmonary function measuring apparatus using the conductive fiber sensor according to claim 6, characterized in that the frequency is 120 Hz.
[8] 前記導電性線維センサで取得される生体電気を示す信号は心電信号と心拍信号 であることを特徴とする請求項 6または請求項 7のいずれか 1項に記載の導電性繊維 センサを用いた心肺機能計測装置。  [8] The conductive fiber sensor according to any one of claims 6 or 7, characterized in that the signal indicating bioelectricity acquired by the conductive fiber sensor is an electrocardiogram signal and a heartbeat signal. Cardiorespiratory function measuring device using.
[9] 請求項 8に記載の心肺機能計測装置において、導電性繊維センで取得された信 号を呼吸信号の影響と心拍信号に必要のない高周波成分をカットするバンドパスフィ ルタに通し、電源ノイズを取り除くノッチフィルタを通し、バンドパスフィルタにより心拍 信号を抽出し、ピークを検出しやすくするためにローパスフィルタを通し、ピーク間隔 を算出する処理を行う信号処理部をさらに備え、導電性線維センサで得られた信号 力も心拍情報を抽出できるようにしたことを特徴とする心肺機能計測装置。  [9] In the cardiopulmonary function measurement device according to claim 8, a signal obtained by the conductive fiber sensor is passed through a band pass filter for cutting high frequency components unnecessary for the influence of the respiration signal and the heartbeat signal, The conductive fiber sensor further includes a signal processing unit that passes a notch filter that removes noise, extracts a heartbeat signal by a band pass filter, passes a low pass filter to facilitate peak detection, and calculates a peak interval. A cardiopulmonary function measuring device characterized in that the heart rate information can also be extracted from the signal power obtained in the above.
[10] ポリマー圧電体フィルムを 2枚の薄層状の生体電極で挟んで構成された圧電フィル ムセンサと、該圧電フィルムセンサで取得された信号を収集し処理する圧電フィルム センサ用信号収集回路と、 2枚の導電性繊維からなる生体電極で構成される導電性 線維センサと、該導電性線維センサで取得された信号を収集し処理する導電性線維 センサ用信号収集回路とを備えてなり、前記圧電フィルムセンサ用信号収集回路は 低周波ノイズをカットするローパスフィルタと、該ローノ スフィルタを通った後に増幅さ れた信号に対しベースライン変動及び高周波数ノイズをカットするバンドパスフィルタ と、前記圧電フィルムセンサにおける飽和状態を解消するように接続されたコンパレ ータ回及びショート回路とを含んで構成され、前記導電性線維センサ用信号収集回 路は低周波ノイズをカットするローノ スフィルタと、該ローパスフィルタを通った後に増 幅された信号に対しベースライン変動及び高周波数ノイズをカットする第 1のバンドパ スフィルタと、電源のノイズをカットするノッチフィルタと、第 2のバンドパスフィルタとを 含んで構成されていることを特徴とする併用型の心肺機能計測装置。 [10] A piezoelectric film sensor configured by sandwiching a polymer piezoelectric film between two thin layer bio-electrodes, and a signal collecting circuit for a piezoelectric film sensor that collects and processes signals obtained by the piezoelectric film sensor. A conductive fiber sensor comprising a biological electrode consisting of two conductive fibers, and a signal collection circuit for a conductive fiber sensor for collecting and processing a signal acquired by the conductive fiber sensor, A signal acquisition circuit for a piezoelectric film sensor comprises: a low pass filter for cutting low frequency noise; a band pass filter for cutting a baseline fluctuation and high frequency noise from an amplified signal after passing through the low noise filter; The conductive system comprises a comparator circuit and a short circuit connected to eliminate saturation in the film sensor. Signal collection times for Wei sensor The path includes a low noise filter that cuts low frequency noise, a first band pass filter that cuts baseline variation and high frequency noise from the amplified signal after passing through the low pass filter, and noise from the power supply. A combined cardiopulmonary function measuring device comprising: a notch filter; and a second band pass filter.
心肺機能の計測を行えるように身体に装着するための装着手段を備えてなることを 特徴とする請求項 1, 2, 3, 6, 7, 8、 10のいずれか 1項に記載の心肺機能計測装置  The cardiopulmonary function according to any one of claims 1, 2, 3, 6, 7, 8 and 10, characterized in that it comprises an attachment means for attaching to a body so that the measurement of cardiopulmonary function can be performed. Measuring device
PCT/JP2007/052876 2006-02-16 2007-02-16 Cardiopulmonary function measuring instrument WO2007094464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500568A JP4998896B2 (en) 2006-02-16 2007-02-16 Cardiopulmonary function measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-039126 2006-02-16
JP2006039126 2006-02-16

Publications (1)

Publication Number Publication Date
WO2007094464A1 true WO2007094464A1 (en) 2007-08-23

Family

ID=38371640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052876 WO2007094464A1 (en) 2006-02-16 2007-02-16 Cardiopulmonary function measuring instrument

Country Status (2)

Country Link
JP (1) JP4998896B2 (en)
WO (1) WO2007094464A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120586A (en) * 2010-12-06 2012-06-28 Nissan Motor Co Ltd Cardiopulmonary function measuring device, and method for the same
JP2012125367A (en) * 2010-12-15 2012-07-05 Sony Corp Respiratory signal processing apparatus, respiratory signal processing method, and program
WO2014132713A1 (en) * 2013-02-26 2014-09-04 株式会社村田製作所 Pulse wave propagation time calculation device
JP2017502782A (en) * 2014-01-16 2017-01-26 ノキア テクノロジーズ オサケユイチア Method and device for respiratory rate detection
CN107397553A (en) * 2017-01-21 2017-11-28 北京理工大学 A kind of paces period monitoring unit based on electrostatic detection
JP2019122783A (en) * 2011-11-17 2019-07-25 日本電信電話株式会社 Biological electrode

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485584A (en) * 1977-09-05 1979-07-07 Terumo Corp Transducer for measuring frequency of respiration and pulse rate and device for measuring same
JPS62290442A (en) * 1986-06-10 1987-12-17 旭化成株式会社 Body movement detection sensor element
JPH06315468A (en) * 1993-04-06 1994-11-15 Matsushita Electric Ind Co Ltd Tension judging apparatus
JPH06319712A (en) * 1993-03-17 1994-11-22 Nippon Koden Corp Multisensor
JPH06335472A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Hypnogenetic device
JP2001212095A (en) * 2000-02-07 2001-08-07 Terumo Corp Real-time monitor for beat
JP2002224051A (en) * 2001-01-30 2002-08-13 Yamaguchi Prefecture Nonrestraint life monitor
JP2003284697A (en) * 2002-03-29 2003-10-07 Yamaguchi Prefecture Biological signal measuring sensor and apparatus for the same
JP2004275563A (en) * 2003-03-18 2004-10-07 Citizen Watch Co Ltd Ballistocardiogram monitoring device
JP2005205023A (en) * 2004-01-23 2005-08-04 Sumitomo Rubber Ind Ltd Method and system of measuring heart rate, respiratory rate or body motion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616659A (en) * 1985-05-06 1986-10-14 At&T Bell Laboratories Heart rate detection utilizing autoregressive analysis
JP2628690B2 (en) * 1987-08-04 1997-07-09 コーリン電子株式会社 Respiratory rate monitor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485584A (en) * 1977-09-05 1979-07-07 Terumo Corp Transducer for measuring frequency of respiration and pulse rate and device for measuring same
JPS62290442A (en) * 1986-06-10 1987-12-17 旭化成株式会社 Body movement detection sensor element
JPH06319712A (en) * 1993-03-17 1994-11-22 Nippon Koden Corp Multisensor
JPH06315468A (en) * 1993-04-06 1994-11-15 Matsushita Electric Ind Co Ltd Tension judging apparatus
JPH06335472A (en) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd Hypnogenetic device
JP2001212095A (en) * 2000-02-07 2001-08-07 Terumo Corp Real-time monitor for beat
JP2002224051A (en) * 2001-01-30 2002-08-13 Yamaguchi Prefecture Nonrestraint life monitor
JP2003284697A (en) * 2002-03-29 2003-10-07 Yamaguchi Prefecture Biological signal measuring sensor and apparatus for the same
JP2004275563A (en) * 2003-03-18 2004-10-07 Citizen Watch Co Ltd Ballistocardiogram monitoring device
JP2005205023A (en) * 2004-01-23 2005-08-04 Sumitomo Rubber Ind Ltd Method and system of measuring heart rate, respiratory rate or body motion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120586A (en) * 2010-12-06 2012-06-28 Nissan Motor Co Ltd Cardiopulmonary function measuring device, and method for the same
JP2012125367A (en) * 2010-12-15 2012-07-05 Sony Corp Respiratory signal processing apparatus, respiratory signal processing method, and program
JP2019122783A (en) * 2011-11-17 2019-07-25 日本電信電話株式会社 Biological electrode
US11862359B2 (en) 2011-11-17 2024-01-02 Nippon Telegraph And Telephone Corporation Conductive polymer fibers, method and device for producing conductive polymer fibers, biological electrode, device for measuring biological signals, implantable electrode, and device for measuring biological signals
WO2014132713A1 (en) * 2013-02-26 2014-09-04 株式会社村田製作所 Pulse wave propagation time calculation device
CN105007809A (en) * 2013-02-26 2015-10-28 株式会社村田制作所 Pulse wave propagation time calculation device
US9510759B2 (en) 2013-02-26 2016-12-06 Murata Manufacturing Co., Ltd. Pulse wave propagation time measurement device
JPWO2014132713A1 (en) * 2013-02-26 2017-02-02 株式会社村田製作所 Pulse wave propagation time measurement device
JP2017502782A (en) * 2014-01-16 2017-01-26 ノキア テクノロジーズ オサケユイチア Method and device for respiratory rate detection
CN107397553A (en) * 2017-01-21 2017-11-28 北京理工大学 A kind of paces period monitoring unit based on electrostatic detection

Also Published As

Publication number Publication date
JPWO2007094464A1 (en) 2009-07-09
JP4998896B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
KR102556074B1 (en) Wearable Technologies for Joint Health Assessment
EP2429390B1 (en) System and methods using flexible capacitive electrodes for measuring biosignals
US6547743B2 (en) Respiratory-analysis systems
US6091973A (en) Monitoring the occurrence of apneic and hypopneic arousals
US7215994B2 (en) Monitoring the neurological state of a patient
Choi et al. Slow-wave sleep estimation on a load-cell-installed bed: a non-constrained method
CN108245144A (en) A kind of contactless monitoring mattress and monitor system based on Multi-sensor Fusion
JP4998896B2 (en) Cardiopulmonary function measuring device
Peng et al. Flexible electrodes-based smart mattress for monitoring physiological signals of heart and autonomic nerves in a non-contact way
KR20210117230A (en) Apparatus for Inference of sleeping status using Patch type Electrode
Yi et al. Derivation of respiration from ECG measured without subject's awareness using wavelet transform
WO2003067967A1 (en) Body temperature holding device with heart rate and respiration rate detecting function for small animals and heart rate and respiration rate measuring system for small animals using the device
WO2014147939A1 (en) Biosignal measurement system, device, method and program therefor
Shouldice et al. Real time breathing rate estimation from a non contact biosensor
Lee et al. Biosignal monitoring clothing system for the acquisition of ECG and respiratory signals
CN111603170A (en) Human body position detection method based on vector cardiogram
Li et al. Thoracic impedance measurement for lung function evaluation
Kuo et al. Using ECG surface electrodes in measurement of respiration rate for preterm infants
Przystup et al. A detector of sleep disorders for using at home
Vehkaoja et al. Combining unobtrusive electrocardiography and ballistography for more accurate monitoring of sleep
Trobec et al. Two proximal skin electrodes–a body sensor for respiration rate
AU742291B2 (en) Respiratory-analysis systems
Estrada et al. Evaluation of Laplacian diaphragm electromyographic recordings in a static inspiratory maneuver
Fujita et al. Spectrum Analysis of Respiration and Heartbeat Signals Measured by A Non-Contact PVDF Piezoelectric Film Based Sensor
Ayyaswamy Design of a wearable wireless electrocardiograph (Quick Doc)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008500568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714406

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)