WO2007074866A1 - Light emitting device driving circuit - Google Patents

Light emitting device driving circuit Download PDF

Info

Publication number
WO2007074866A1
WO2007074866A1 PCT/JP2006/326052 JP2006326052W WO2007074866A1 WO 2007074866 A1 WO2007074866 A1 WO 2007074866A1 JP 2006326052 W JP2006326052 W JP 2006326052W WO 2007074866 A1 WO2007074866 A1 WO 2007074866A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
constant current
control signal
current source
circuit
Prior art date
Application number
PCT/JP2006/326052
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Fukuda
Kengo Takahama
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007074866A1 publication Critical patent/WO2007074866A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a light emitting element driving circuit that drives a light emitting element at a constant current.
  • a light emitting diode (hereinafter abbreviated as LED) emits light when a voltage higher than the forward voltage Vf is applied.
  • the LED forward voltage Vf has the property that it increases with decreasing temperature and decreases with increasing temperature. Therefore, as a method of causing the LED to emit light correctly even when the forward voltage Vf changes with temperature, a constant current source has been conventionally connected in series with the LED to control the amount of current flowing through the LED. Methods are known (for example, Patent Documents 1 to 3).
  • FIG. 10 is a diagram showing a configuration of a conventional LED drive circuit.
  • the LED drive circuit 81 shown in FIG. 10 drives four LEDs connected in series (hereinafter referred to as LED array 87) at a constant current. More specifically, the constant current source 82 is connected to the LED array 87 in series.
  • the booster circuit 83 boosts the input voltage Vin and supplies the obtained boosted voltage Vb to the LED array 87 and the constant current source 82.
  • the resistors 84a and 84b are connected in series and divide the boosted voltage Vb.
  • the comparator 85 compares the divided voltage obtained by the resistors 84a and 84b with the reference voltage Vr provided by the reference power supply 86, and outputs a boost control signal 90 indicating the comparison result.
  • the booster circuit 83 changes the level of the boost voltage Vb based on the boost control signal 90.
  • Vb VrX (Rl + R2) / R2... hi)
  • Vb Vi + Vf X 4--(2)
  • the boost voltage Vb is determined so as to satisfy the following equation (3) derived from the above equation (2) and Vi> Vmin.
  • Patent Document 4 discloses a charge pump type booster circuit capable of arbitrarily setting an output voltage.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-359090
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-152224
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-11895
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-166220
  • FIG. 11 is a graph showing the temperature characteristics of the boosted voltage Vb in the LED drive circuit 81. As shown in FIG. Figure 11 shows the boost voltage Vb when the operating temperature range is 20 ° C up to 85 ° C, and four times the LED forward voltage Vf (Vf X
  • the voltage Vi across the constant current source 82 is minimized at 20 ° C. Therefore, when designing the LED drive circuit 81, the boosted voltage Vb is determined so as to satisfy Vi ( ⁇ 20 ° C.)> Vmin.
  • the constant current source 82 operates when the minimum operating voltage Vmin is applied to both ends. Therefore, the power consumption in the constant current source 82 can be suppressed to (VminX Id) ideally.
  • the above formula (4) is established for power consumption Pi (25 ° C) at room temperature, and the constant current source 82 consumes more power than necessary at room temperature. Since the above equation (4) holds even at room temperature, it can be said that the constant current source 82 always consumes more power than necessary within the operating temperature range.
  • an object of the present invention is to provide a light emitting element driving circuit that drives a light emitting element at a constant current stably and with low power consumption.
  • a first aspect of the present invention is a light emitting element driving circuit for driving a light emitting element at a constant current, a constant current source connected in series to the light emitting element to be driven,
  • a booster circuit that boosts an input voltage and applies the obtained boosted voltage to the light emitting element and the constant current source
  • a comparison circuit that compares the voltage detected by the detection circuit with a reference voltage and outputs a boost control signal indicating a comparison result
  • the booster circuit changes the level of the boosted voltage based on the boost control signal.
  • a second aspect of the present invention is the first aspect of the present invention.
  • the step-up circuit is a chitotsuba type step-up circuit including a coil and a switch that switches a flow of current that has passed through the coil.
  • the switch is controlled by a control signal whose duty ratio changes according to the boost control signal.
  • a third aspect of the present invention is the first aspect of the present invention.
  • the booster circuit is a charge pump booster circuit including a capacitor and a switch for switching a connection state of the capacitor,
  • the switch has a control signal whose duty ratio changes according to the boost control signal. It is controlled by.
  • a fourth aspect of the present invention provides, in the first aspect of the present invention,
  • the boost control signal is an analog signal indicating a difference between a voltage detected by the detection circuit and the reference voltage.
  • the light emitting element driving circuit detects the voltage across the constant current source and compares the detected voltage with the reference voltage so that the voltage across the constant current source becomes the reference voltage.
  • the boosted voltage is generated while performing feedback control so as to match the above. Therefore, even if the characteristics of the light emitting element (for example, the forward voltage Vf of the LED) fluctuate due to the operating temperature or the variation between elements, the voltage across the constant current source is kept constant, and the light emitting element is stably stabilized. Can be driven. Also, even if the operating temperature changes, keeping the voltage across the constant current source at a low level (for example, a level close to the minimum operating voltage) prevents the constant current source from consuming more power than necessary. can do. In this manner, the light emitting element can be driven with a constant current stably and with low power consumption.
  • the characteristics of the light emitting element for example, the forward voltage Vf of the LED
  • the second aspect of the present invention it is possible to obtain a light-emitting element driving circuit that drives a light-emitting element at a constant current stably and with low power consumption, using a chiyotsuba booster circuit.
  • the third aspect of the present invention it is possible to obtain a light emitting element driving circuit that drives a light emitting element at a constant current stably and with low power consumption using a charge pump booster circuit.
  • the voltage across the constant current source can be matched with the reference voltage with high accuracy by controlling the booster circuit using the analog boost control signal.
  • FIG. 1 is a diagram showing a configuration of an LED drive circuit according to first and second embodiments of the present invention.
  • FIG. 2 is a circuit diagram of a constant current source of the LED drive circuit shown in FIG.
  • FIG. 3 is a circuit diagram of a booster circuit of the LED drive circuit according to the first embodiment of the present invention.
  • FIG. 4A is a signal waveform diagram showing changes in input / output signals when the voltage of the boost control signal is high in the booster circuit shown in FIG.
  • FIG. 4B is a signal waveform diagram showing changes in input / output signals when the voltage of the boost control signal is low in the booster circuit shown in FIG.
  • FIG. 5 is a graph showing the temperature characteristics of the boosted voltage of the LED drive circuit shown in FIG.
  • FIG. 6 is a circuit diagram of a booster circuit of an LED drive circuit according to a second embodiment of the present invention.
  • FIG. 7 is a signal waveform diagram showing a change in the signal of the booster circuit shown in FIG.
  • FIG. 8 is a diagram showing another usage pattern of the LED drive circuit shown in FIG.
  • FIG. 9 is a graph showing the temperature characteristics of the boosted voltage when used in the form shown in FIG.
  • FIG. 10 is a diagram showing a configuration of a conventional LED drive circuit.
  • FIG. 11 is a graph showing the temperature characteristics of the boosted voltage of the LED drive circuit shown in FIG.
  • FIG. 1 is a diagram showing a configuration of an LED drive circuit according to the first embodiment of the present invention.
  • the LED drive circuit 1 shown in FIG. 1 includes a constant current source 2, a booster circuit 3, a differential amplifier 4, 5, and a reference power supply 6, and includes four LEDs connected in series (LED array 7). Is driven at a constant current.
  • the input voltage Vin is supplied to the LED drive circuit 1.
  • the booster circuit 3 boosts the input voltage Vin and outputs the obtained boosted voltage Vb.
  • the booster circuit 3 changes the level of the boost voltage Vb based on the boost control signal 10.
  • the booster circuit 3 increases the boost voltage Vb when the voltage of the boost control signal 10 is equal to or higher than a predetermined value, and decreases the boost voltage Vb otherwise (details will be described later).
  • the output terminal of the booster circuit 3 is connected to the current input terminal of the constant current source 2.
  • the current output terminal of the constant current source 2 is connected to the anode side terminal of the LED array 7, and the power sword side terminal of the LED array 7 is grounded. Thereby, each LED included in the LED array 7 is driven by the constant current source 2 at a constant current.
  • the differential amplifier 4 functions as a detection circuit that detects the voltage across the constant current source 2. More specifically, the positive input terminal of the differential amplifier 4 is connected to the current input terminal of the constant current source 2, and the negative input terminal of the differential amplifier 4 is connected to the current output terminal of the constant current source 2. Yes.
  • the differential amplifier 4 amplifies and outputs a potential difference (a voltage between both ends) between the current input terminal and the current output terminal of the constant current source 2.
  • the differential amplifier 5 functions as a comparison circuit that compares the voltage detected by the differential amplifier 4 with a reference voltage. More specifically, the negative input terminal of the differential amplifier 5 is connected to the output terminal of the differential amplifier 4, and the reference power supply 6 is connected to the positive input terminal of the differential amplifier 5. It is. The reference power supply 6 supplies a reference voltage E1.
  • the differential amplifier 5 amplifies the difference between the output voltage of the differential amplifier 4 and the reference voltage E1, and outputs it as an analog boost control signal 10.
  • the voltage of the boost control signal 10 is high when the reference voltage E1 is higher than the output voltage of the differential amplifier 4, and is low otherwise.
  • the boost control signal 10 shows the result of comparing the output voltage of the differential amplifier 4 with the reference voltage E1.
  • the LED drive circuit 1 detects the voltage across the constant current source 2 and compares the detected voltage with the reference voltage E1, so that the voltage Vi across the constant current source 2 becomes the reference voltage E1. While performing feedback control to match, boost voltage Vb is generated.
  • FIG. 2 is a circuit diagram of the constant current source 2.
  • the constant current source 2 shown in FIG. 2 includes P-channel MOS transistors 21 to 23, N-channel MOS transistors 24 and 25, a reference power supply 26, and a resistor 27.
  • the constant current source 2 has terminals 28a to 28c.
  • the terminal 28a is supplied with a boosted voltage Vb, the terminal 28b is connected to the negative input terminal of the differential amplifier 4, and the terminal 28c is connected to the anode side terminal of the LED array 7.
  • the sources of the P-channel MOS transistors 21 to 23, 25 are connected to the terminal 28a, and the drains of the P-channel MOS transistors 21, 22 are connected to both the terminals 28b, 28c. .
  • the gates of P-channel MOS transistors 21 to 23 and the drain of P-channel MOS transistor 23 are connected to the drain of N-channel MOS transistor 24.
  • the source of the N-channel MOS transistor 24 is connected to the reference power supply 26, and the source of the N-channel MOS transistor 25 and the gates of the N-channel MOS transistors 24 and 25 are connected to the resistor 27.
  • N-channel MOS transistors 24 and 25 constitute a current mirror circuit.
  • the reference voltage supplied by the reference power supply 26 is E and the resistance value of the resistor 27 is R
  • P-channel MOS transistors 21 and 23 form a current mirror circuit, and similarly, P-channel MOS transistors 22 and 23 also form a current mirror circuit.
  • the current Ic flows through the source of the P-channel MOS transistor 23.
  • the constant current source 2 outputs a current (I c X 2) twice the current Ic to the LED array 7 via the terminal 28c.
  • the potential difference between terminals 28a and 28b matches the voltage drop across P-channel MOS transistors 21 and 22.
  • FIG. 3 is a circuit diagram of the booster circuit 3.
  • the booster circuit 3a shown in FIG. 3 includes constant current sources 31, 32, a switch 33, a capacitor 34, a hysteresis comparator 35, a reference power supply 36, a comparator 37, an N-channel MOS transistor 38, a coil 39, a diode 40, and a capacitor 41. Is a Chietsuba type booster circuit. Further, the booster circuit 3a has terminals 42a to 42c. An input voltage Vin is applied to the terminal 42a, a boost control signal 10 is applied to the terminal 42b, and a boost voltage Vb is output from the terminal 42c.
  • the input voltage Vin is applied to the current input terminal of the constant current source 31 via the terminal 42a.
  • the current output terminal of the constant current source 31 is connected to the “a” contact of the switch 33.
  • the current input terminal of the constant current source 32 is connected to the b contact of the switch 33, and the current output terminal of the constant current source 32 is grounded.
  • the output contact of the switch 33 is connected to one electrode of the capacitor 34, the plus side input terminal of the hysteresis comparator 35, and the minus side input terminal of the comparator 37.
  • the other terminal of the capacitor 34 is grounded.
  • the negative input terminal of the hysteresis comparator 35 is connected to a reference power supply 36 that supplies a reference voltage E2.
  • the hysteresis comparator 35 is a comparison circuit having hysteresis characteristics with a hysteresis width Vh.
  • the hysteresis comparator 35 outputs a high level signal when the voltage applied to the positive input terminal (hereinafter referred to as voltage Vp) exceeds (E2 + VhZ2), and when the voltage Vp falls below (E2 ⁇ VhZ2), the hysteresis comparator 35 outputs a low level signal. A level signal is output.
  • the boost control signal 10 is given to the positive side input terminal of the comparator 37 via the terminal 42b.
  • the comparator 37 compares the voltage Vp applied to the negative input terminal with the voltage of the boost control signal 10 applied to the positive input terminal.
  • the output terminal of the comparator 37 is connected to the gate of the N-channel MOS transistor 38.
  • the source of the N-channel MOS transistor 38 is grounded, and the drain of the N-channel MOS transistor 38 is connected to one end of the coil 39 and the anode of the diode 40.
  • the input voltage Vin is applied to the other end of the coil 39 via the terminal 42a.
  • the power sword of the diode 40 is connected to one electrode of the capacitor 41 and the terminal 42c. The other electrode of the capacitor 41 is grounded.
  • 4A and 4B are signal waveform diagrams showing changes in input / output signals in the booster circuit 3a.
  • 4A shows a signal change when the voltage of the boost control signal 10 is high
  • FIG. 4B shows a signal change when the voltage of the boost control signal 10 is low.
  • the negative input terminal of the comparator 37 is supplied with a voltage Vp that changes in a triangular waveform in a range from (E2 ⁇ VhZ2) to (E2 + VhZ2).
  • the boost control signal 10 at a certain level is applied to the positive input terminal of the comparator 37.
  • the comparator 37 outputs a high level signal when the voltage of the boost control signal 10 is equal to or higher than the voltage Vp, and outputs a low level signal otherwise. Therefore, the output signal of the comparator 37 is a signal having a certain duty ratio that changes between a high level and a low level.
  • the N-channel MOS transistor 38 While the output signal of the comparator 37 is at a high level, the N-channel MOS transistor 38 is turned on. During this time, the current passing through the coil 39 flows to the ground via the N-channel MOS transistor 38. When the output signal of the comparator 37 changes to low level, the N-channel MOS transistor 38 is turned off, and the current passing through the coil 39 is Flows into capacitor 41 via node 40. Thereby, the capacitor 41 is charged. In this way, the booster circuit 3a boosts the input voltage Vin by switching the current flow that has passed through the coil 39 using the N-channel MOS transistor 38.
  • the booster circuit 3a changes the level of the boost voltage Vb based on the boost control signal 10 by the following method.
  • the voltage of the boost control signal 10 is high (FIG. 4A)
  • the output signal from the comparator 37 has a long and low period.
  • the voltage of the boost control signal 10 is low (FIG. 4B)
  • the period during which the voltage of the boost control signal 10 is equal to or lower than the voltage Vp is long, so the low level period is long in the output signal of the comparator 37.
  • the duty ratio of the output signal of the comparator 37 changes according to the boost control signal 10.
  • the boosted voltage Vb increases when the charge accumulation amount of the capacitor 41 is large, and decreases when the charge accumulation amount of the capacitor 41 is small.
  • the amount of charge stored in the capacitor 41 increases as the period during which the N-channel MOS transistor 38 is on is longer (that is, as the period during which the output signal of the comparator 37 is at a high level is longer). Therefore, the boost voltage Vb increases when the voltage of the boost control signal 10 is high, because the charge storage amount of the capacitor 41 is large.
  • the charge storage amount of the capacitor 41 is small! / , Descend for.
  • the boost control signal 10 is controlled by controlling the N-channel MOS transistor 38 using the switch control signal whose duty ratio changes according to the boost control signal 10. Based on this, the level of the boost voltage Vb can be changed.
  • FIG. 5 is a diagram showing the temperature characteristics of the boosted voltage Vb in the LED drive circuit 1.
  • Figure 5 shows the step-up voltage Vb when the operating temperature range is ⁇ 20 ° C to 85 ° C, and four times the LED forward voltage Vf (V f X 4). The difference between the two graphs shown in FIG. 5 is equal to the voltage Vi across the constant current source 2.
  • the forward voltage Vf of an LED increases as the temperature decreases and decreases as the temperature increases.
  • the LED drive circuit 1 is designed so that the voltage Vi across the constant current source 2 matches the reference voltage E1. Perform feedback control. Therefore, even if the operating temperature changes, the voltage Vi across the constant current source 2 does not change and always matches the reference voltage E1.
  • the graph of the boosted voltage Vb is a graph obtained by translating the voltage (Vf X 4) graph vertically by the reference voltage E1.
  • the constant current source 2 does not consume more power than necessary.
  • the booster circuit 3 is controlled by using an analog boost control signal 10 indicating the difference between the voltage Vi across the constant current source 2 and the reference voltage E1, so the voltage Vi across the constant current source 2 is used as a reference.
  • the voltage E1 can be matched with high accuracy.
  • the LED drive circuit 1 detects the voltage Vi between both ends of the constant current source 2, and compares the detected voltage with the reference voltage E1, whereby both ends of the constant current source 2 are detected. While performing feedback control so that the voltage V i matches the reference voltage E1, the boost voltage Vb is generated. Therefore, even if the forward voltage Vf of the LED fluctuates due to the operating temperature and variations between elements, the voltage Vi across the constant current source 2 can always be kept constant, and the LED can be driven stably at a constant current. Even if the operating temperature changes, the constant current source 2 consumes more power than necessary by keeping the voltage Vi across the constant current source 2 at a low level (for example, a level close to the minimum operating voltage Vmin). Can be prevented. As described above, according to the LED driving circuit 1 according to the present embodiment, the LED can be driven with a constant current stably and with low power consumption.
  • the LED drive circuit according to the second embodiment of the present invention has the configuration shown in FIG. 1, and includes a booster circuit 3b shown in FIG. 6 instead of the booster circuit 3a shown in FIG.
  • a booster circuit 3b shown in FIG. 6 instead of the booster circuit 3a shown in FIG.
  • details of the booster circuit 3 b will be described, and description of points that are common to the first embodiment will be omitted.
  • FIG. 6 is a circuit diagram of the booster circuit 3 included in the LED drive circuit according to the second embodiment.
  • the booster circuit 3b shown in FIG. 6 is a charge pump type booster including a hysteresis comparator 51, a reference power supply 52, an AND gate 53, noters 54 and 55, switches SA1 to SA8, SB1 to SB5, and capacitors C1 to C5. Circuit.
  • the booster circuit 3b includes terminals 56a to 5 6c.
  • An input voltage Vin is applied to the terminal 56a
  • a boost control signal 10 is applied to the terminal 56b
  • a boost voltage Vb is output from the terminal 56c.
  • the boost voltage Vb is 5 times the input voltage Vin.
  • one electrode of the capacitor C1 is grounded via the switch SA1, and the other electrode is connected to the terminal 56a via the switch SA2.
  • a switch SB1 force is provided between the terminal 56a and one electrode of the capacitor C1 (the electrode on the side where the switch SA1 is connected).
  • a switch SB2 is provided between the other electrode of the capacitor C1 and one electrode of the capacitor C2 (the electrode on the side to which the switch SA3 is connected).
  • Switches SB3 and SB4 are provided in the same manner.
  • a switch SB5 force is provided between the other electrode of the capacitor C4 (the electrode on the side where the switch SA8 is connected) and the terminal 56c.
  • Capacitor C5 is provided between terminal 56c and ground.
  • the AND gate 53 is supplied with a clock signal CLK having a predetermined frequency.
  • the AND gate 53 outputs a logical product of the clock signal CLK and the output signal of the hysteresis comparator 51.
  • the nofer 54 outputs the output signal of the AND gate 53 in a non-inverted manner.
  • the output signal of the notch 54 is given to the control terminals of the switches SB1 to SB5.
  • the notifier 55 inverts the output signal of the AND gate 53.
  • the output signal of the buffer 55 is applied to the control terminals of the switches SA1 to SA8. Therefore, the switches SA1 to SA8 are turned on at the same time, and the switches SB1 to SB5 are turned on at the same time when the switches SA1 to SA8 are turned off (see FIG. 7).
  • the capacitor C5 is the sum of the input voltage Vin and the voltage charged in the capacitors C1 to C4, that is, the input Charged by a voltage 5 times the voltage Vin.
  • the potential difference between both electrodes of capacitor C5 is output as boosted voltage Vb.
  • the booster circuit 3b The input voltage Vin is boosted by controlling the switches SA1 to SA8 and the switches SB1 to SB5 alternately on and off, and switching the connection state of the capacitors C1 to C5.
  • the booster circuit 3b changes the level of the boost voltage Vb based on the boost control signal 10 by the following method. As shown in FIG. 6, the boost control signal 10 is given to the positive side input terminal of the hysteresis comparator 51 via the terminal 56b. The negative input terminal of the hysteresis comparator 51 is connected to the reference power supply 52 that supplies the reference voltage E3.
  • the hysteresis comparator 51 is a comparison circuit having hysteresis characteristics with a hysteresis width VH.
  • the hysteresis comparator 51 outputs a high level signal when the voltage of the boost control signal 10 becomes (E3 + VHZ 2) or more, and outputs a low level signal when the voltage of the boost control signal 10 becomes (E3 ⁇ VHZ 2) or less. Output.
  • the output signal of the NAND gate 53 changes at a predetermined frequency similarly to the clock signal CLK.
  • the charge pump circuit composed of the switches SA1 to SA8, SB1 to SB5 and the capacitors C1 to C5 performs a boosting operation, and the boosted voltage Vb rises.
  • the duty ratio of the output signal of the AND gate 53 is a value other than zero (for example, 50%).
  • the output signal of the AND gate 53 is fixed at the low level. Therefore, after the voltage of the boost control signal 10 becomes (E3 ⁇ VHZ2) or less, the charge pump circuit does not perform the boost operation and the boost voltage Vb drops. At this time, the duty ratio of the output signal of the AND gate 53 is 0%. As described above, the duty ratio of the output signal of the AND gate 53 changes according to the boost control signal 10.
  • the switches SA1 to SA8 and SB1 to SB5 are controlled by using the switch control signal whose duty ratio changes according to the boost control signal 10, thereby boosting the voltage. Based on the control signal 10, the level of the boost voltage Vb can be changed.
  • the LED drive circuit of this embodiment including the booster circuit 3b shown in FIG.
  • the LED can be driven with a constant current stably and with low power consumption.
  • the 1S LED drive circuit that has been described so far for the case where the LED drive circuit drives four LEDs may drive one or more arbitrary LEDs.
  • the LED driving circuit 1 may drive two LEDs connected in series (hereinafter referred to as LED array 8) as shown in FIG. Even in this case, the LED drive circuit 1 generates the boost voltage Vb while performing feedback control so that the voltage across the constant current source 2 matches the reference voltage E1.
  • FIG. 9 is a diagram showing temperature characteristics of the boosted voltage Vb when the LED array 8 is driven.
  • the following equation (5) is established among the boosted voltage Vb, the voltage Vi across the constant current source 2, and the forward voltage Vf of each LED.
  • the graph of the boosted voltage Vb is a graph obtained by translating the voltage (Vf X 2) graph by the reference voltage E1 in the vertical direction.
  • Vb Vi + Vf X 2--(5)
  • the same LED driving circuit 1 can be used when driving four LEDs and when driving two LEDs.
  • the same LED driving circuit 1 can be used to drive n or less LEDs as long as the boosting circuit 3 can generate a boosted voltage Vb that satisfies the following equation (6).
  • Vb Vi + Vf X n ⁇ ' ⁇ (6)
  • the LED driving circuit for driving the LED has been described as an example of the light emitting element driving circuit so far, the electoric luminescence element (EL element) is driven by the same method in the same way. A light emitting element driving circuit can be obtained. These EL element drive circuit and filament ball drive circuit have the same effect as the LED drive circuit.
  • the light-emitting element driving circuit provides a constant current drive for a light-emitting element stably and with low power consumption. Since it has the effect of being able to move, it can be used for light emitting element drive circuits that drive LEDs, EL elements, and filament balls.

Landscapes

  • Led Devices (AREA)

Abstract

A constant current source (2) is connected in series to an LED array (7) to be driven. A booster circuit (3) boosts an input voltage (Vin) and supplies the obtained boost-up voltage (Vb) to the LED array (7) and the constant current source (2). A differential amplifier (4) detects the voltages at both ends of the constant current source (2), and a differential amplifier (5) compares the detected voltage with a reference voltage (E1). The booster circuit (3) changes the level of the boost-up voltage (Vb) according to the analog boost-up control signal (10) output from the differential amplifier (5). In a chopper-type booster circuit (3a), the switch that switches the flow of the current having passed through a coil is controlled by a control signal, the duty ratio of which varies according to the boost-up control signal (10). In a charge-pump-type booster circuit (3b), the switch that switches the connection states of a capacitor is also controlled by the control signal. This enables a light emitting device to be stably driven by a constant current at a low power consumption.

Description

明 細 書  Specification
発光素子駆動回路  Light emitting element drive circuit
技術分野  Technical field
[0001] 本発明は、発光素子を定電流駆動する発光素子駆動回路に関する。  The present invention relates to a light emitting element driving circuit that drives a light emitting element at a constant current.
背景技術  Background art
[0002] 発光素子を発光させるためには、発光素子に対して外部から所定の電流あるいは 電圧を与える必要がある。例えば、発光ダイオード(Light Emitting Diode :以下、 LE Dと略称する)は、順方向電圧 Vf以上の電圧を与えたときに発光する。 LEDの順方 向電圧 Vfには、温度が低いほど高くなり、温度が高いほど低くなるという性質がある。 そこで、温度の変化に伴って順方向電圧 Vfが変化しても LEDを正しく発光させる方 法として、従来から、 LEDに直列に定電流源を接続し、 LEDに流れる電流の量を制 御する方法が知られている(例えば、特許文献 1〜3)。  In order to cause a light emitting element to emit light, it is necessary to apply a predetermined current or voltage from the outside to the light emitting element. For example, a light emitting diode (hereinafter abbreviated as LED) emits light when a voltage higher than the forward voltage Vf is applied. The LED forward voltage Vf has the property that it increases with decreasing temperature and decreases with increasing temperature. Therefore, as a method of causing the LED to emit light correctly even when the forward voltage Vf changes with temperature, a constant current source has been conventionally connected in series with the LED to control the amount of current flowing through the LED. Methods are known (for example, Patent Documents 1 to 3).
[0003] 図 10は、従来の LED駆動回路の構成を示す図である。図 10に示す LED駆動回 路 81は、直列に接続された 4個の LED (以下、 LEDアレイ 87という)を定電流駆動 する。より詳細には、定電流源 82は、 LEDアレイ 87に直列に接続される。昇圧回路 83は、入力電圧 Vinを昇圧し、得られた昇圧電圧 Vbを LEDアレイ 87および定電流 源 82に与える。抵抗 84a、 84bは、直列に接続され、昇圧電圧 Vbを分圧する。比較 器 85は、抵抗 84a、 84bで得られた分圧を基準電源 86が与える基準電圧 Vrと比較 し、比較結果を示す昇圧制御信号 90を出力する。昇圧回路 83は、昇圧制御信号 9 0に基づき、昇圧電圧 Vbのレベルを変化させる。  FIG. 10 is a diagram showing a configuration of a conventional LED drive circuit. The LED drive circuit 81 shown in FIG. 10 drives four LEDs connected in series (hereinafter referred to as LED array 87) at a constant current. More specifically, the constant current source 82 is connected to the LED array 87 in series. The booster circuit 83 boosts the input voltage Vin and supplies the obtained boosted voltage Vb to the LED array 87 and the constant current source 82. The resistors 84a and 84b are connected in series and divide the boosted voltage Vb. The comparator 85 compares the divided voltage obtained by the resistors 84a and 84b with the reference voltage Vr provided by the reference power supply 86, and outputs a boost control signal 90 indicating the comparison result. The booster circuit 83 changes the level of the boost voltage Vb based on the boost control signal 90.
[0004] 抵抗 84a、 84bの抵抗値をそれぞれ Rl、 R2としたとき、昇圧電圧 Vbは次式(1)で 与えられる。また、定電流源 82の両端電圧を Vi、 LEDの順方向電圧を Vfとしたとき 、次式 (2)が成立する。  [0004] When the resistance values of the resistors 84a and 84b are Rl and R2, respectively, the boosted voltage Vb is given by the following equation (1). When the voltage across the constant current source 82 is Vi and the forward voltage of the LED is Vf, the following equation (2) is established.
Vb=VrX (Rl +R2) /R2 …ひ)  Vb = VrX (Rl + R2) / R2… hi)
Vb=Vi+Vf X 4 - -- (2)  Vb = Vi + Vf X 4--(2)
[0005] LED駆動回路 81を用いて LEDアレイ 87を駆動するためには、定電流源 82の両 端電圧 Viが最低動作電圧 Vminを超えている必要がある。そこで、 LED駆動回路 8 1を設計する際に、昇圧電圧 Vbは、上式(2)および Vi>Vminより導かれる次式(3) を満たすように決定される。 [0005] In order to drive the LED array 87 using the LED drive circuit 81, the voltage Vi across the constant current source 82 needs to exceed the minimum operating voltage Vmin. Therefore, LED drive circuit 8 When designing 1, the boost voltage Vb is determined so as to satisfy the following equation (3) derived from the above equation (2) and Vi> Vmin.
Vb >Vmin+Vf X 4 · '· (3)  Vb> Vmin + Vf X 4 '' (3)
[0006] なお、本願発明に関連する技術として、特許文献 4には、出力電圧を任意に設定 できるチャージポンプ型昇圧回路が開示されている。 [0006] As a technique related to the present invention, Patent Document 4 discloses a charge pump type booster circuit capable of arbitrarily setting an output voltage.
特許文献 1 :日本国特開 2002— 359090号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-359090
特許文献 2 :日本国特開 2003— 152224号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2003-152224
特許文献 3 :日本国特開 2005— 11895号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2005-11895
特許文献 4:曰本国特開 2000— 166220号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2000-166220
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] LED駆動回路 81の動作温度範囲内では、上式(3)は、常に (言い換えると、最悪 の温度条件下でも)成立している必要がある。ところが、最悪の温度条件下でも上式 ([0007] Within the operating temperature range of the LED drive circuit 81, the above equation (3) must always hold (in other words, even under the worst temperature condition). However, the above equation (
3)が成立するように LED駆動回路 81を設計すると、回路の消費電力が増大すると いう問題がある。 If the LED drive circuit 81 is designed so that 3) holds, there is a problem that the power consumption of the circuit increases.
[0008] 図 11を参照して、上記課題を具体的に説明する。図 11は、 LED駆動回路 81にお ける昇圧電圧 Vbの温度特性を示す図である。図 11には、動作温度範囲を 20°C 力 85°Cまでとしたときの昇圧電圧 Vb、および、 LEDの順方向電圧 Vfの 4倍 (Vf X [0008] The above problem will be described in detail with reference to FIG. FIG. 11 is a graph showing the temperature characteristics of the boosted voltage Vb in the LED drive circuit 81. As shown in FIG. Figure 11 shows the boost voltage Vb when the operating temperature range is 20 ° C up to 85 ° C, and four times the LED forward voltage Vf (Vf X
4)が記載されている。図 11に示す 2本のグラフの差は、定電流源 82の両端電圧 Vi に等しい。 4) is described. The difference between the two graphs shown in FIG. 11 is equal to the voltage Vi across the constant current source 82.
[0009] 図 11〖こ示すよう〖こ、定電流源 82の両端電圧 Viが最小となるのは、 20°Cのときで ある。このため、 LED駆動回路 81を設計する際には、昇圧電圧 Vbは、 Vi (- 20°C) >Vminを満たすように決定される。ここで、定電流源 82および LEDアレイ 87を流れ る電流を Idとしたとき、定電流源 82における消費電力 Piは、 Pi=Vi X Idで与えられ る。したがって、例えば、常温時の消費電力 Pi(25°C)について、次式 (4)が成立す る。  [0009] As shown in FIG. 11, the voltage Vi across the constant current source 82 is minimized at 20 ° C. Therefore, when designing the LED drive circuit 81, the boosted voltage Vb is determined so as to satisfy Vi (−20 ° C.)> Vmin. Here, when the current flowing through the constant current source 82 and the LED array 87 is Id, the power consumption Pi in the constant current source 82 is given by Pi = Vi X Id. Therefore, for example, the following equation (4) holds for power consumption Pi (25 ° C) at normal temperature.
Pi(25°C) =Vi (25°C) X ld  Pi (25 ° C) = Vi (25 ° C) X ld
>Vi(- 20°C) X ld >Vmin X Id · '· (4) > Vi (-20 ° C) X ld > Vmin X Id '' (4)
[0010] 定電流源 82は、両端に最低動作電圧 Vminを与えれば動作する。したがって、定 電流源 82における消費電力は、理想的には (VminX Id)に抑えることができる。とこ ろ力 実際には、常温時の消費電力 Pi(25°C)について上式 (4)が成立し、定電流 源 82は常温時に必要以上に電力を消費する。上式 (4)は常温時以外でも成立する ので、定電流源 82は、結局のところ、動作温度範囲内では常に必要以上に電力を 消費すると言える。  [0010] The constant current source 82 operates when the minimum operating voltage Vmin is applied to both ends. Therefore, the power consumption in the constant current source 82 can be suppressed to (VminX Id) ideally. In fact, the above formula (4) is established for power consumption Pi (25 ° C) at room temperature, and the constant current source 82 consumes more power than necessary at room temperature. Since the above equation (4) holds even at room temperature, it can be said that the constant current source 82 always consumes more power than necessary within the operating temperature range.
[0011] それ故に、本発明は、安定的にかつ低消費電力で発光素子を定電流駆動する発 光素子駆動回路を提供することを目的とする。  Therefore, an object of the present invention is to provide a light emitting element driving circuit that drives a light emitting element at a constant current stably and with low power consumption.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の第 1の局面は、発光素子を定電流駆動する発光素子駆動回路であって、 駆動すべき発光素子に直列に接続された定電流源と、 [0012] A first aspect of the present invention is a light emitting element driving circuit for driving a light emitting element at a constant current, a constant current source connected in series to the light emitting element to be driven,
入力電圧を昇圧し、得られた昇圧電圧を前記発光素子および前記定電流源に与 える昇圧回路と、  A booster circuit that boosts an input voltage and applies the obtained boosted voltage to the light emitting element and the constant current source;
前記定電流源の両端電圧を検出する検出回路と、  A detection circuit for detecting a voltage across the constant current source;
前記検出回路で検出された電圧を基準電圧と比較し、比較結果を示す昇圧制御 信号を出力する比較回路とを備え、  A comparison circuit that compares the voltage detected by the detection circuit with a reference voltage and outputs a boost control signal indicating a comparison result;
前記昇圧回路は、前記昇圧制御信号に基づき前記昇圧電圧のレベルを変化させ ることを特徴とする。  The booster circuit changes the level of the boosted voltage based on the boost control signal.
[0013] 本発明の第 2の局面は、本発明の第 1の局面において、 [0013] A second aspect of the present invention is the first aspect of the present invention,
前記昇圧回路は、コイル、および、前記コイルを通過した電流の流れを切り換える スィッチを含むチヨツバ型昇圧回路であり、  The step-up circuit is a chitotsuba type step-up circuit including a coil and a switch that switches a flow of current that has passed through the coil.
前記スィッチは、前記昇圧制御信号に応じてデューティー比が変化する制御信号 によって制御されることを特徴とする。  The switch is controlled by a control signal whose duty ratio changes according to the boost control signal.
[0014] 本発明の第 3の局面は、本発明の第 1の局面において、 [0014] A third aspect of the present invention is the first aspect of the present invention,
前記昇圧回路は、コンデンサ、および、前記コンデンサの接続状態を切り換えるス イッチを含むチャージポンプ型昇圧回路であり、  The booster circuit is a charge pump booster circuit including a capacitor and a switch for switching a connection state of the capacitor,
前記スィッチは、前記昇圧制御信号に応じてデューティー比が変化する制御信号 によって制御されることを特徴とする。 The switch has a control signal whose duty ratio changes according to the boost control signal. It is controlled by.
[0015] 本発明の第 4の局面は、本発明の第 1の局面において、  [0015] A fourth aspect of the present invention provides, in the first aspect of the present invention,
前記昇圧制御信号は、前記検出回路で検出された電圧と前記基準電圧との差を 示すアナログ信号であることを特徴とする。 発明の効果  The boost control signal is an analog signal indicating a difference between a voltage detected by the detection circuit and the reference voltage. The invention's effect
[0016] 本発明の第 1の局面によれば、発光素子駆動回路は、定電流源の両端電圧を検 出し、検出電圧を基準電圧と比較することにより、定電流源の両端電圧が基準電圧 に一致するようにフィードバック制御を行いながら、昇圧電圧を生成する。したがって 、発光素子の特性 (例えば、 LEDの順方向電圧 Vf)が動作温度や素子間のばらつき によって変動しても、定電流源の両端電圧を一定に保ち、発光素子を安定的に定電 流駆動することができる。また、動作温度が変化しても、定電流源の両端電圧を低い レベル (例えば、最低動作電圧に近いレベル)に保つことにより、定電流源で必要以 上に電力が消費されることを防止することができる。このように、安定的にかつ低消費 電力で発光素子を定電流駆動することができる。  [0016] According to the first aspect of the present invention, the light emitting element driving circuit detects the voltage across the constant current source and compares the detected voltage with the reference voltage so that the voltage across the constant current source becomes the reference voltage. The boosted voltage is generated while performing feedback control so as to match the above. Therefore, even if the characteristics of the light emitting element (for example, the forward voltage Vf of the LED) fluctuate due to the operating temperature or the variation between elements, the voltage across the constant current source is kept constant, and the light emitting element is stably stabilized. Can be driven. Also, even if the operating temperature changes, keeping the voltage across the constant current source at a low level (for example, a level close to the minimum operating voltage) prevents the constant current source from consuming more power than necessary. can do. In this manner, the light emitting element can be driven with a constant current stably and with low power consumption.
[0017] 本発明の第 2の局面によれば、チヨツバ型昇圧回路を用いて、安定的にかつ低消 費電力で発光素子を定電流駆動する発光素子駆動回路を得ることができる。  [0017] According to the second aspect of the present invention, it is possible to obtain a light-emitting element driving circuit that drives a light-emitting element at a constant current stably and with low power consumption, using a chiyotsuba booster circuit.
[0018] 本発明の第 3の局面によれば、チャージポンプ型昇圧回路を用いて、安定的にか つ低消費電力で発光素子を定電流駆動する発光素子駆動回路を得ることができる。  [0018] According to the third aspect of the present invention, it is possible to obtain a light emitting element driving circuit that drives a light emitting element at a constant current stably and with low power consumption using a charge pump booster circuit.
[0019] 本発明の第 4の局面によれば、アナログの昇圧制御信号を用いて昇圧回路を制御 することにより、定電流源の両端電圧を基準電圧に高い精度で一致させることができ る。  According to the fourth aspect of the present invention, the voltage across the constant current source can be matched with the reference voltage with high accuracy by controlling the booster circuit using the analog boost control signal.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の第 1および第 2の実施形態に係る LED駆動回路の構成を示す図であ る。  FIG. 1 is a diagram showing a configuration of an LED drive circuit according to first and second embodiments of the present invention.
[図 2]図 1に示す LED駆動回路の定電流源の回路図である。  2 is a circuit diagram of a constant current source of the LED drive circuit shown in FIG.
[図 3]本発明の第 1の実施形態に係る LED駆動回路の昇圧回路の回路図である。  FIG. 3 is a circuit diagram of a booster circuit of the LED drive circuit according to the first embodiment of the present invention.
[図 4A]図 3に示す昇圧回路において、昇圧制御信号の電圧が高いときの入出力信 号の変化を示す信号波形図である。 [図 4B]図 3に示す昇圧回路において、昇圧制御信号の電圧が低いときの入出力信 号の変化を示す信号波形図である。 FIG. 4A is a signal waveform diagram showing changes in input / output signals when the voltage of the boost control signal is high in the booster circuit shown in FIG. FIG. 4B is a signal waveform diagram showing changes in input / output signals when the voltage of the boost control signal is low in the booster circuit shown in FIG.
[図 5]図 1に示す LED駆動回路の昇圧電圧の温度特性を示す図である。  5 is a graph showing the temperature characteristics of the boosted voltage of the LED drive circuit shown in FIG.
[図 6]本発明の第 2の実施形態に係る LED駆動回路の昇圧回路の回路図である。  FIG. 6 is a circuit diagram of a booster circuit of an LED drive circuit according to a second embodiment of the present invention.
[図 7]図 6に示す昇圧回路の信号の変化を示す信号波形図である。  7 is a signal waveform diagram showing a change in the signal of the booster circuit shown in FIG.
[図 8]図 1に示す LED駆動回路の他の利用形態を示す図である。  8 is a diagram showing another usage pattern of the LED drive circuit shown in FIG.
[図 9]図 8に示す形態で利用したときの昇圧電圧の温度特性を示す図である。  9 is a graph showing the temperature characteristics of the boosted voltage when used in the form shown in FIG.
[図 10]従来の LED駆動回路の構成を示す図である。  FIG. 10 is a diagram showing a configuration of a conventional LED drive circuit.
[図 11]図 10に示す LED駆動回路の昇圧電圧の温度特性を示す図である。  11 is a graph showing the temperature characteristics of the boosted voltage of the LED drive circuit shown in FIG.
符号の説明 Explanation of symbols
1—LED駆動回路  1—LED drive circuit
2、 31、 32· ··定電流源  2, 31, 32 ... Constant current source
3…昇圧回路  3 Booster circuit
3a…チヨツバ型昇圧回路  3a ... Chiyotsuba type booster circuit
3b…チャージポンプ型昇圧回路  3b… Charge pump type booster circuit
4、 5…差動増幅器  4, 5 ... differential amplifier
6、 26、 36、 52· ··基準電源  6, 26, 36, 52
7、 8· "LEDアレイ  7, 8 · "LED array
Vin…入力電圧  Vin: Input voltage
Vb…昇圧電圧  Vb ... Boost voltage
10· ··昇圧制御信号  10 ··· Boost control signal
21〜23· · ·Ρチャンネル MOSトランジスタ  21 ~ 23ΡΡMOS transistors
24、 25、 38· "Νチャンネノレ MOSトランジスタ  24, 25, 38 · "ΝCannnerole MOS transistor
27…抵抗  27 ... resistance
28a〜28c、 42a〜42c、 56a〜56c…端子  28a-28c, 42a-42c, 56a-56c ... Terminal
33、 SA1〜SA8、 SB1〜SB5- "スィッチ  33, SA1-SA8, SB1-SB5- "switch
34、 41、 C1〜C5- "コンデンサ  34, 41, C1-C5- "capacitor
35、 51· ··ヒステリシスコンノ レータ 37…比較器 35, 51 Hysteresis 37 ... Comparator
39· ··コィノレ  39 ... Koinole
40· "ダイオード  40 "diode
53… ANDゲート  53 ... AND gate
54、 55· ··ノ ッファ  54, 55
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] (第 1の実施形態) [0022] (First embodiment)
図 1は、本発明の第 1の実施形態に係る LED駆動回路の構成を示す図である。図 1に示す LED駆動回路 1は、定電流源 2、昇圧回路 3、差動増幅器 4、 5、および、基 準電源 6を備え、直列に接続された 4個の LED (以下、 LEDアレイ 7という)を定電流 駆動する。  FIG. 1 is a diagram showing a configuration of an LED drive circuit according to the first embodiment of the present invention. The LED drive circuit 1 shown in FIG. 1 includes a constant current source 2, a booster circuit 3, a differential amplifier 4, 5, and a reference power supply 6, and includes four LEDs connected in series (LED array 7). Is driven at a constant current.
[0023] LED駆動回路 1には、入力電圧 Vinが供給される。昇圧回路 3は、入力電圧 Vinを 昇圧し、得られた昇圧電圧 Vbを出力する。昇圧回路 3は、昇圧制御信号 10に基づ き、昇圧電圧 Vbのレベルを変化させる。本実施形態では、昇圧回路 3は、昇圧制御 信号 10の電圧が所定値以上のときには昇圧電圧 Vbを上昇させ、それ以外のときに は昇圧電圧 Vbを下降させるものとする (詳細は後述)。  The input voltage Vin is supplied to the LED drive circuit 1. The booster circuit 3 boosts the input voltage Vin and outputs the obtained boosted voltage Vb. The booster circuit 3 changes the level of the boost voltage Vb based on the boost control signal 10. In the present embodiment, the booster circuit 3 increases the boost voltage Vb when the voltage of the boost control signal 10 is equal to or higher than a predetermined value, and decreases the boost voltage Vb otherwise (details will be described later).
[0024] 昇圧回路 3の出力端子は、定電流源 2の電流入力端子に接続されている。定電流 源 2の電流出力端子は、 LEDアレイ 7のアノード側端子に接続され、 LEDアレイ 7の 力ソード側端子は接地されている。これにより、 LEDアレイ 7に含まれる各 LEDは、定 電流源 2によって定電流駆動される。  The output terminal of the booster circuit 3 is connected to the current input terminal of the constant current source 2. The current output terminal of the constant current source 2 is connected to the anode side terminal of the LED array 7, and the power sword side terminal of the LED array 7 is grounded. Thereby, each LED included in the LED array 7 is driven by the constant current source 2 at a constant current.
[0025] 差動増幅器 4は、定電流源 2の両端電圧を検出する検出回路として機能する。より 詳細には、差動増幅器 4のプラス側入力端子は定電流源 2の電流入力端子に接続さ れ、差動増幅器 4のマイナス側入力端子は定電流源 2の電流出力端子に接続されて いる。差動増幅器 4は、定電流源 2の電流入力端子と電流出力端子との間の電位差 (両端電圧)を増幅して出力する。  The differential amplifier 4 functions as a detection circuit that detects the voltage across the constant current source 2. More specifically, the positive input terminal of the differential amplifier 4 is connected to the current input terminal of the constant current source 2, and the negative input terminal of the differential amplifier 4 is connected to the current output terminal of the constant current source 2. Yes. The differential amplifier 4 amplifies and outputs a potential difference (a voltage between both ends) between the current input terminal and the current output terminal of the constant current source 2.
[0026] 差動増幅器 5は、差動増幅器 4で検出された電圧を基準電圧と比較する比較回路 として機能する。より詳細には、差動増幅器 5のマイナス側入力端子は差動増幅器 4 の出力端子に接続され、差動増幅器 5のプラス側入力端子には基準電源 6が接続さ れている。基準電源 6は、基準電圧 E1を供給する。差動増幅器 5は、差動増幅器 4 の出力電圧と基準電圧 E1との差を増幅し、アナログの昇圧制御信号 10として出力 する。昇圧制御信号 10の電圧は、基準電圧 E1が差動増幅器 4の出力電圧よりも高 いときには高くなり、それ以外のときには低くなる。このように昇圧制御信号 10は、差 動増幅器 4の出力電圧を基準電圧 E1と比較した結果を示す。 The differential amplifier 5 functions as a comparison circuit that compares the voltage detected by the differential amplifier 4 with a reference voltage. More specifically, the negative input terminal of the differential amplifier 5 is connected to the output terminal of the differential amplifier 4, and the reference power supply 6 is connected to the positive input terminal of the differential amplifier 5. It is. The reference power supply 6 supplies a reference voltage E1. The differential amplifier 5 amplifies the difference between the output voltage of the differential amplifier 4 and the reference voltage E1, and outputs it as an analog boost control signal 10. The voltage of the boost control signal 10 is high when the reference voltage E1 is higher than the output voltage of the differential amplifier 4, and is low otherwise. Thus, the boost control signal 10 shows the result of comparing the output voltage of the differential amplifier 4 with the reference voltage E1.
[0027] 以上に示すように LED駆動回路 1は、定電流源 2の両端電圧を検出し、検出電圧 を基準電圧 E1と比較することにより、定電流源 2の両端電圧 Viが基準電圧 E1に一 致するようにフィードバック制御を行 、ながら、昇圧電圧 Vbを生成する。  [0027] As described above, the LED drive circuit 1 detects the voltage across the constant current source 2 and compares the detected voltage with the reference voltage E1, so that the voltage Vi across the constant current source 2 becomes the reference voltage E1. While performing feedback control to match, boost voltage Vb is generated.
[0028] 図 2は、定電流源 2の回路図である。図 2に示す定電流源 2は、 Pチャンネル MOSト ランジスタ 21〜23、 Nチャンネル MOSトランジスタ 24、 25、基準電源 26、および、 抵抗 27を含んでいる。また、定電流源 2は、端子 28a〜cを有している。端子 28a〖こ は昇圧電圧 Vbが与えられ、端子 28bは差動増幅器 4のマイナス側入力端子に接続 され、端子 28cは LEDアレイ 7のアノード側端子に接続される。  FIG. 2 is a circuit diagram of the constant current source 2. The constant current source 2 shown in FIG. 2 includes P-channel MOS transistors 21 to 23, N-channel MOS transistors 24 and 25, a reference power supply 26, and a resistor 27. The constant current source 2 has terminals 28a to 28c. The terminal 28a is supplied with a boosted voltage Vb, the terminal 28b is connected to the negative input terminal of the differential amplifier 4, and the terminal 28c is connected to the anode side terminal of the LED array 7.
[0029] 図 2に示すように、 Pチャンネル MOSトランジスタ 21〜23、 25のソースは端子 28a に接続され、 Pチャンネル MOSトランジスタ 21、 22のドレインは端子 28b、 28cの両 方に接続されている。 Pチャンネル MOSトランジスタ 21〜23のゲートおよび Pチャン ネル MOSトランジスタ 23のドレインは、 Nチャンネル MOSトランジスタ 24のドレイン に接続されている。 Nチャンネル MOSトランジスタ 24のソースは基準電源 26に接続 され、 Nチャンネル MOSトランジスタ 25のソースおよび Nチャンネル MOSトランジス タ 24、 25のゲートは抵抗 27に接続されている。  [0029] As shown in FIG. 2, the sources of the P-channel MOS transistors 21 to 23, 25 are connected to the terminal 28a, and the drains of the P-channel MOS transistors 21, 22 are connected to both the terminals 28b, 28c. . The gates of P-channel MOS transistors 21 to 23 and the drain of P-channel MOS transistor 23 are connected to the drain of N-channel MOS transistor 24. The source of the N-channel MOS transistor 24 is connected to the reference power supply 26, and the source of the N-channel MOS transistor 25 and the gates of the N-channel MOS transistors 24 and 25 are connected to the resistor 27.
[0030] Nチャンネル MOSトランジスタ 24、 25は、カレントミラー回路を構成する。基準電源 26が供給する基準電圧を E、抵抗 27の抵抗値を Rとしたとき、 Nチャンネル MOSトラ ンジスタ 24のドレインに流れる電流、および、 Nチャンネル MOSトランジスタ 25のドレ インに流れる電流は、いずれも、 Ic=EZRで与えられる。  N-channel MOS transistors 24 and 25 constitute a current mirror circuit. When the reference voltage supplied by the reference power supply 26 is E and the resistance value of the resistor 27 is R, the current flowing through the drain of the N-channel MOS transistor 24 and the current flowing through the drain of the N-channel MOS transistor 25 are either Is also given by Ic = EZR.
[0031] Pチャンネル MOSトランジスタ 21、 23はカレントミラー回路を構成し、同様に Pチヤ ンネル MOSトランジスタ 22、 23もカレントミラー回路を構成する。 Pチャンネル MOS トランジスタ 23のソースには、上記の電流 Icが流れる。 Pチャンネル MOSトランジスタ 21〜23が同じ特性を有するとき、 Pチャンネル MOSトランジスタ 21、 22のソースにも 、それぞれ、同じ電流 Icが流れる。したがって、定電流源 2は、電流 Icの 2倍の電流 (I c X 2)を端子 28c経由で LEDアレイ 7に出力する。なお、端子 28a、 28b間の電位差 は、 Pチャンネル MOSトランジスタ 21、 22における電圧降下分に一致する。 [0031] P-channel MOS transistors 21 and 23 form a current mirror circuit, and similarly, P-channel MOS transistors 22 and 23 also form a current mirror circuit. The current Ic flows through the source of the P-channel MOS transistor 23. When P-channel MOS transistors 21 to 23 have the same characteristics, the source of P-channel MOS transistors 21 and 22 , The same current Ic flows. Therefore, the constant current source 2 outputs a current (I c X 2) twice the current Ic to the LED array 7 via the terminal 28c. The potential difference between terminals 28a and 28b matches the voltage drop across P-channel MOS transistors 21 and 22.
[0032] 図 3は、昇圧回路 3の回路図である。図 3に示す昇圧回路 3aは、定電流源 31、 32、 スィッチ 33、コンデンサ 34、ヒステリシスコンパレータ 35、基準電源 36、比較器 37、 Nチャンネル MOSトランジスタ 38、コイル 39、ダイオード 40、および、コンデンサ 41 を含むチヨツバ型昇圧回路である。また、昇圧回路 3aは、端子 42a〜cを有している。 端子 42aには入力電圧 Vin、端子 42bには昇圧制御信号 10が与えられ、端子 42c からは昇圧電圧 Vbが出力される。  FIG. 3 is a circuit diagram of the booster circuit 3. The booster circuit 3a shown in FIG. 3 includes constant current sources 31, 32, a switch 33, a capacitor 34, a hysteresis comparator 35, a reference power supply 36, a comparator 37, an N-channel MOS transistor 38, a coil 39, a diode 40, and a capacitor 41. Is a Chietsuba type booster circuit. Further, the booster circuit 3a has terminals 42a to 42c. An input voltage Vin is applied to the terminal 42a, a boost control signal 10 is applied to the terminal 42b, and a boost voltage Vb is output from the terminal 42c.
[0033] 図 3に示すように、定電流源 31の電流入力端子には、端子 42a経由で入力電圧 Vi nが印加される。定電流源 31の電流出力端子は、スィッチ 33の a接点に接続されて いる。定電流源 32の電流入力端子はスィッチ 33の b接点に接続され、定電流源 32 の電流出力端子は接地されている。スィッチ 33の出力接点は、コンデンサ 34の一方 の電極、ヒステリシスコンパレータ 35のプラス側入力端子、および、比較器 37のマイ ナス側入力端子に接続されている。コンデンサ 34の他方の端子は、接地されている 。ヒステリシスコンパレータ 35のマイナス側入力端子は、基準電圧 E2を供給する基準 電源 36に接続されている。  As shown in FIG. 3, the input voltage Vin is applied to the current input terminal of the constant current source 31 via the terminal 42a. The current output terminal of the constant current source 31 is connected to the “a” contact of the switch 33. The current input terminal of the constant current source 32 is connected to the b contact of the switch 33, and the current output terminal of the constant current source 32 is grounded. The output contact of the switch 33 is connected to one electrode of the capacitor 34, the plus side input terminal of the hysteresis comparator 35, and the minus side input terminal of the comparator 37. The other terminal of the capacitor 34 is grounded. The negative input terminal of the hysteresis comparator 35 is connected to a reference power supply 36 that supplies a reference voltage E2.
[0034] ヒステリシスコンパレータ 35は、ヒステリシス幅 Vhのヒシテリシス特性を有する比較 回路である。ヒステリシスコンパレータ 35は、プラス側入力端子に与えられる電圧(以 下、電圧 Vpという)が(E2+VhZ2)以上になるとハイレベルの信号を出力し、電圧 Vpが(E2—VhZ2)以下になるとローレベルの信号を出力する。  [0034] The hysteresis comparator 35 is a comparison circuit having hysteresis characteristics with a hysteresis width Vh. The hysteresis comparator 35 outputs a high level signal when the voltage applied to the positive input terminal (hereinafter referred to as voltage Vp) exceeds (E2 + VhZ2), and when the voltage Vp falls below (E2−VhZ2), the hysteresis comparator 35 outputs a low level signal. A level signal is output.
[0035] スィッチ 33の a接点と出力接点とが導通している状態では、定電流源 31からスイツ チ 33経由でコンデンサ 34に電流が流れ込み、コンデンサ 34に電荷が蓄積され、電 圧 Vpは上昇する。電圧 Vpが(E2+VhZ2)以上になると、ヒステリシスコンパレータ 35の出力はハイレベルになる。  [0035] When the contact a of the switch 33 and the output contact are in conduction, a current flows from the constant current source 31 to the capacitor 34 via the switch 33, the electric charge is accumulated in the capacitor 34, and the voltage Vp increases. To do. When the voltage Vp becomes (E2 + VhZ2) or higher, the output of the hysteresis comparator 35 goes high.
[0036] ヒステリシスコンパレータ 35の出力がハイレベルになると、スィッチ 33の b接点と出 力接点とが導通する。この状態では、コンデンサ 34に蓄積された電荷はスィッチ 33 経由で定電流源 32に向かって放電され、電圧 Vpは下降する。電圧 Vpが(E2— Vh Z2)以下になると、ヒステリシスコンパレータ 35の出力はローレベルになる。 [0036] When the output of the hysteresis comparator 35 becomes high level, the b contact and the output contact of the switch 33 are brought into conduction. In this state, the electric charge accumulated in the capacitor 34 is discharged toward the constant current source 32 via the switch 33, and the voltage Vp drops. Voltage Vp is (E2—Vh When Z2) or less, the output of hysteresis comparator 35 goes low.
[0037] ヒステリシスコンパレータ 35の出力がローレベルになると、スィッチ 33の a接点と出 力接点とが再び導通する。これにより、定電流源 31からスィッチ 33経由でコンデンサ 34に電流が流れ込み、コンデンサ 34に電荷が蓄積され、電圧 Vpは再び上昇する。 昇圧回路 3aが以上の動作を繰り返すことにより、電圧 Vpは三角波状に変化する(図 4Aおよび図 4Bを参照)。 [0037] When the output of the hysteresis comparator 35 becomes low level, the contact a and the output contact of the switch 33 are brought into conduction again. As a result, a current flows from the constant current source 31 to the capacitor 34 via the switch 33, electric charges are accumulated in the capacitor 34, and the voltage Vp rises again. As the booster circuit 3a repeats the above operation, the voltage Vp changes in a triangular waveform (see FIGS. 4A and 4B).
[0038] 比較器 37のプラス側入力端子には、端子 42b経由で昇圧制御信号 10が与えられ る。比較器 37は、マイナス側入力端子に与えられた電圧 Vpを、プラス側入力端子に 与えられた昇圧制御信号 10の電圧と比較する。比較器 37の出力端子は、 Nチャン ネル MOSトランジスタ 38のゲートに接続されている。 Nチャンネル MOSトランジスタ 38のソースは接地され、 Nチャンネル MOSトランジスタ 38のドレインはコイル 39の一 端、および、ダイオード 40のアノードに接続されている。コイル 39の他端には、端子 4 2a経由で入力電圧 Vinが印加される。ダイオード 40の力ソードは、コンデンサ 41の 一方の電極、および、端子 42cに接続されている。コンデンサ 41の他方の電極は接 地されている。 [0038] The boost control signal 10 is given to the positive side input terminal of the comparator 37 via the terminal 42b. The comparator 37 compares the voltage Vp applied to the negative input terminal with the voltage of the boost control signal 10 applied to the positive input terminal. The output terminal of the comparator 37 is connected to the gate of the N-channel MOS transistor 38. The source of the N-channel MOS transistor 38 is grounded, and the drain of the N-channel MOS transistor 38 is connected to one end of the coil 39 and the anode of the diode 40. The input voltage Vin is applied to the other end of the coil 39 via the terminal 42a. The power sword of the diode 40 is connected to one electrode of the capacitor 41 and the terminal 42c. The other electrode of the capacitor 41 is grounded.
[0039] 図 4Aおよび図 4Bは、昇圧回路 3aにおける入出力信号の変化を示す信号波形図 である。図 4Aには昇圧制御信号 10の電圧が高いときの信号変化、図 4Bには昇圧 制御信号 10の電圧が低いときの信号変化が示されている。いずれの場合も、比較器 37のマイナス側入力端子には、レベルが(E2— VhZ2)から(E2+ VhZ2)までの 範囲で三角波状に変化する電圧 Vpが供給される。これに対して、比較器 37のプラス 側入力端子には、一定レベルの昇圧制御信号 10が印加される。比較器 37は、昇圧 制御信号 10の電圧が電圧 Vp以上であるときはハイレベルの信号を出力し、それ以 外のときにはローレベルの信号を出力する。したがって、比較器 37の出力信号は、 ハイレベルとローレベルとの間で変化する、あるデューティー比を有する信号となる。  4A and 4B are signal waveform diagrams showing changes in input / output signals in the booster circuit 3a. 4A shows a signal change when the voltage of the boost control signal 10 is high, and FIG. 4B shows a signal change when the voltage of the boost control signal 10 is low. In either case, the negative input terminal of the comparator 37 is supplied with a voltage Vp that changes in a triangular waveform in a range from (E2−VhZ2) to (E2 + VhZ2). On the other hand, the boost control signal 10 at a certain level is applied to the positive input terminal of the comparator 37. The comparator 37 outputs a high level signal when the voltage of the boost control signal 10 is equal to or higher than the voltage Vp, and outputs a low level signal otherwise. Therefore, the output signal of the comparator 37 is a signal having a certain duty ratio that changes between a high level and a low level.
[0040] 比較器 37の出力信号がハイレベルである間、 Nチャンネル MOSトランジスタ 38は オン状態になる。この間、コイル 39を通過した電流は、 Nチャンネル MOSトランジス タ 38経由で接地に流れる。比較器 37の出力信号がローレベルに変化すると、 Nチヤ ンネル MOSトランジスタ 38はオフ状態となり、コイル 39を通過した電流は、ダイォー ド 40経由でコンデンサ 41に流れ込む。これにより、コンデンサ 41は充電される。この ように昇圧回路 3aは、コイル 39を通過した電流の流れを Nチャンネル MOSトランジ スタ 38を用いて切り換えることにより、入力電圧 Vinを昇圧する。 [0040] While the output signal of the comparator 37 is at a high level, the N-channel MOS transistor 38 is turned on. During this time, the current passing through the coil 39 flows to the ground via the N-channel MOS transistor 38. When the output signal of the comparator 37 changes to low level, the N-channel MOS transistor 38 is turned off, and the current passing through the coil 39 is Flows into capacitor 41 via node 40. Thereby, the capacitor 41 is charged. In this way, the booster circuit 3a boosts the input voltage Vin by switching the current flow that has passed through the coil 39 using the N-channel MOS transistor 38.
[0041] 昇圧回路 3aは、以下の方法により、昇圧制御信号 10に基づき昇圧電圧 Vbのレべ ルを変化させる。昇圧制御信号 10の電圧が高いときには(図 4A)、昇圧制御信号 10 の電圧が電圧 Vp以上になる期間が長いために、比較器 37の出力信号ではノ、ィレべ ル期間が長くなる。これに対して、昇圧制御信号 10の電圧が低いときには(図 4B)、 昇圧制御信号 10の電圧が電圧 Vp以下になる期間が長いために、比較器 37の出力 信号ではローレベル期間が長くなる。このように、比較器 37の出力信号のデューティ 一比は、昇圧制御信号 10に応じて変化する。  The booster circuit 3a changes the level of the boost voltage Vb based on the boost control signal 10 by the following method. When the voltage of the boost control signal 10 is high (FIG. 4A), since the period during which the voltage of the boost control signal 10 is equal to or higher than the voltage Vp is long, the output signal from the comparator 37 has a long and low period. In contrast, when the voltage of the boost control signal 10 is low (FIG. 4B), the period during which the voltage of the boost control signal 10 is equal to or lower than the voltage Vp is long, so the low level period is long in the output signal of the comparator 37. . As described above, the duty ratio of the output signal of the comparator 37 changes according to the boost control signal 10.
[0042] 昇圧電圧 Vbは、コンデンサ 41の電荷蓄積量が多いときには上昇し、コンデンサ 41 の電荷蓄積量が少ないときには下降する。コンデンサ 41の電荷蓄積量は、 Nチャン ネル MOSトランジスタ 38がオン状態である期間が長いほど(すなわち、比較器 37の 出力信号がハイレベルである期間が長いほど)多くなる。したがって、昇圧電圧 Vbは 、昇圧制御信号 10の電圧が高いときには、コンデンサ 41の電荷蓄積量が多いため に上昇する力 昇圧制御信号 10の電圧が低いときには、コンデンサ 41の電荷蓄積 量が少な!/、ために下降する。  The boosted voltage Vb increases when the charge accumulation amount of the capacitor 41 is large, and decreases when the charge accumulation amount of the capacitor 41 is small. The amount of charge stored in the capacitor 41 increases as the period during which the N-channel MOS transistor 38 is on is longer (that is, as the period during which the output signal of the comparator 37 is at a high level is longer). Therefore, the boost voltage Vb increases when the voltage of the boost control signal 10 is high, because the charge storage amount of the capacitor 41 is large. When the voltage of the boost control signal 10 is low, the charge storage amount of the capacitor 41 is small! / , Descend for.
[0043] 以上に示すようにチヨッパ型の昇圧回路 3aでは、昇圧制御信号 10に応じてデュー ティー比が変化するスィッチ制御信号を用いて Nチャンネル MOSトランジスタ 38を 制御することにより、昇圧制御信号 10に基づき昇圧電圧 Vbのレベルを変化させるこ とがでさる。  As described above, in the chopper type booster circuit 3 a, the boost control signal 10 is controlled by controlling the N-channel MOS transistor 38 using the switch control signal whose duty ratio changes according to the boost control signal 10. Based on this, the level of the boost voltage Vb can be changed.
[0044] 以下、図 5を参照して、 LED駆動回路 1の効果を説明する。図 5は、 LED駆動回路 1における昇圧電圧 Vbの温度特性を示す図である。図 5には、動作温度範囲を— 2 0°Cから 85°Cまでとしたときの昇圧電圧 Vb、および、 LEDの順方向電圧 Vfの 4倍 (V f X 4)が記載されている。図 5に示す 2本のグラフの差は、定電流源 2の両端電圧 Vi に等しい。  Hereinafter, the effect of the LED drive circuit 1 will be described with reference to FIG. FIG. 5 is a diagram showing the temperature characteristics of the boosted voltage Vb in the LED drive circuit 1. Figure 5 shows the step-up voltage Vb when the operating temperature range is −20 ° C to 85 ° C, and four times the LED forward voltage Vf (V f X 4). The difference between the two graphs shown in FIG. 5 is equal to the voltage Vi across the constant current source 2.
[0045] 一般に、 LEDの順方向電圧 Vfは、温度が低いほど高くなり、温度が高いほど低く なる。 LED駆動回路 1は、定電流源 2の両端電圧 Viが基準電圧 E1に一致するように フィードバック制御を行う。したがって、動作温度が変化しても、定電流源 2の両端電 圧 Viは変化せず、常に基準電圧 E1に一致する。図 5では、電圧 (Vf X 4)のグラフを 垂直方向に基準電圧 E1分だけ平行移動したグラフが、昇圧電圧 Vbのグラフとなる。 [0045] In general, the forward voltage Vf of an LED increases as the temperature decreases and decreases as the temperature increases. The LED drive circuit 1 is designed so that the voltage Vi across the constant current source 2 matches the reference voltage E1. Perform feedback control. Therefore, even if the operating temperature changes, the voltage Vi across the constant current source 2 does not change and always matches the reference voltage E1. In FIG. 5, the graph of the boosted voltage Vb is a graph obtained by translating the voltage (Vf X 4) graph vertically by the reference voltage E1.
[0046] また、定電流源 2および LEDアレイ 7を流れる電流を Idとすると、定電流源 2におけ る消費電力 Qiは、 Qi=ViX Idで与えられる。ところが、温度が変化しても、定電流源 2の両端電圧 Viも電流 Idも変化しないので、定電流源 2における消費電力 Qiは温度 によらず一定となる。したがって、定電流源 2は、必要以上に電力を消費しない。  If the current flowing through the constant current source 2 and the LED array 7 is Id, the power consumption Qi in the constant current source 2 is given by Qi = ViX Id. However, even if the temperature changes, both the voltage Vi and the current Id of the constant current source 2 do not change, so the power consumption Qi in the constant current source 2 is constant regardless of the temperature. Therefore, the constant current source 2 does not consume more power than necessary.
[0047] また、昇圧回路 3は定電流源 2の両端電圧 Viと基準電圧 E1との差を示すアナログ の昇圧制御信号 10を用いて制御されるので、定電流源 2の両端電圧 Viを基準電圧 E1に高 、精度で一致させることができる。  [0047] In addition, the booster circuit 3 is controlled by using an analog boost control signal 10 indicating the difference between the voltage Vi across the constant current source 2 and the reference voltage E1, so the voltage Vi across the constant current source 2 is used as a reference. The voltage E1 can be matched with high accuracy.
[0048] 以上に示すように、本実施形態に係る LED駆動回路 1は、定電流源 2の両端電圧 Viを検出し、検出電圧を基準電圧 E1と比較することにより、定電流源 2の両端電圧 V iが基準電圧 E1に一致するようにフィードバック制御を行 、ながら、昇圧電圧 Vbを生 成する。したがって、 LEDの順方向電圧 Vfが動作温度や素子間のばらつきによって 変動しても、定電流源 2の両端電圧 Viを常に一定に保ち、 LEDを安定的に定電流 駆動することができる。また、動作温度が変化しても、定電流源 2の両端電圧 Viを低 いレベル(例えば、最低動作電圧 Vminに近いレベル)に保つことにより、定電流源 2 で必要以上に電力が消費されることを防止することができる。このように本実施形態 に係る LED駆動回路 1によれば、安定的にかつ低消費電力で LEDを定電流駆動す ることがでさる。  [0048] As described above, the LED drive circuit 1 according to the present embodiment detects the voltage Vi between both ends of the constant current source 2, and compares the detected voltage with the reference voltage E1, whereby both ends of the constant current source 2 are detected. While performing feedback control so that the voltage V i matches the reference voltage E1, the boost voltage Vb is generated. Therefore, even if the forward voltage Vf of the LED fluctuates due to the operating temperature and variations between elements, the voltage Vi across the constant current source 2 can always be kept constant, and the LED can be driven stably at a constant current. Even if the operating temperature changes, the constant current source 2 consumes more power than necessary by keeping the voltage Vi across the constant current source 2 at a low level (for example, a level close to the minimum operating voltage Vmin). Can be prevented. As described above, according to the LED driving circuit 1 according to the present embodiment, the LED can be driven with a constant current stably and with low power consumption.
[0049] (第 2の実施形態)  [0049] (Second Embodiment)
本発明の第 2の実施形態に係る LED駆動回路は、図 1に示す構成を有し、図 3〖こ 示す昇圧回路 3aに代えて、図 6に示す昇圧回路 3bを備えている。以下、昇圧回路 3 bの詳細について説明し、第 1の実施形態と共通する点については説明を省略する。  The LED drive circuit according to the second embodiment of the present invention has the configuration shown in FIG. 1, and includes a booster circuit 3b shown in FIG. 6 instead of the booster circuit 3a shown in FIG. Hereinafter, details of the booster circuit 3 b will be described, and description of points that are common to the first embodiment will be omitted.
[0050] 図 6は、第 2の実施形態に係る LED駆動回路に含まれる昇圧回路 3の回路図であ る。図 6に示す昇圧回路 3bは、ヒステリシスコンパレータ 51、基準電源 52、 ANDゲ 一卜 53、ノ ッファ 54、 55、スィッチ SA1〜SA8、 SB1〜SB5、および、コンデンサ C1 〜C5を含むチャージポンプ型昇圧回路である。また、昇圧回路 3bは、端子 56a〜5 6cを有している。端子 56aには入力電圧 Vin、端子 56bには昇圧制御信号 10が与え られ、端子 56cからは昇圧電圧 Vbが出力される。昇圧電圧 Vbは、入力電圧 Vinの 5 倍の電圧である。 FIG. 6 is a circuit diagram of the booster circuit 3 included in the LED drive circuit according to the second embodiment. The booster circuit 3b shown in FIG. 6 is a charge pump type booster including a hysteresis comparator 51, a reference power supply 52, an AND gate 53, noters 54 and 55, switches SA1 to SA8, SB1 to SB5, and capacitors C1 to C5. Circuit. In addition, the booster circuit 3b includes terminals 56a to 5 6c. An input voltage Vin is applied to the terminal 56a, a boost control signal 10 is applied to the terminal 56b, and a boost voltage Vb is output from the terminal 56c. The boost voltage Vb is 5 times the input voltage Vin.
[0051] 図 6に示すように、コンデンサ C1の一方の電極はスィッチ SA1を介して接地され、 他方の電極はスィッチ SA2を介して端子 56aに接続されて!、る。コンデンサ C2〜C4 も、これと同様である。端子 56aと、コンデンサ C1の一方の電極 (スィッチ SA1が接続 されている側の電極)との間には、スィッチ SB1力設けられる。コンデンサ C1の他方 の電極と、コンデンサ C2の一方の電極 (スィッチ SA3が接続されている側の電極)と の間には、スィッチ SB2が設けられる。スィッチ SB3、 SB4も、同様にして設けられる 。コンデンサ C4の他方の電極 (スィッチ SA8が接続されている側の電極)と、端子 56 cとの間には、スィッチ SB5力設けられる。端子 56cと接地との間には、コンデンサ C5 が設けられる。  As shown in FIG. 6, one electrode of the capacitor C1 is grounded via the switch SA1, and the other electrode is connected to the terminal 56a via the switch SA2. The same applies to capacitors C2 to C4. A switch SB1 force is provided between the terminal 56a and one electrode of the capacitor C1 (the electrode on the side where the switch SA1 is connected). A switch SB2 is provided between the other electrode of the capacitor C1 and one electrode of the capacitor C2 (the electrode on the side to which the switch SA3 is connected). Switches SB3 and SB4 are provided in the same manner. A switch SB5 force is provided between the other electrode of the capacitor C4 (the electrode on the side where the switch SA8 is connected) and the terminal 56c. Capacitor C5 is provided between terminal 56c and ground.
[0052] ANDゲート 53には、所定の周波数を有するクロック信号 CLKが与えられる。 AND ゲート 53は、クロック信号 CLKとヒステリシスコンパレータ 51の出力信号の論理積を 出力する。ノ ッファ 54は、 ANDゲート 53の出力信号を非反転出力する。ノ ッファ 54 の出力信号は、スィッチ SB1〜SB5の制御端子に与えられる。これに対して、ノ ッフ ァ 55は、 ANDゲート 53の出力信号を反転出力する。バッファ 55の出力信号は、スィ ツチ SA1〜SA8の制御端子に与えられる。したがって、スィッチ SA1〜SA8は同時 にオン状態となり、スィッチ SB1〜SB5は、スィッチ SA1〜SA8がオフ状態のときに 同時にオン状態となる(図 7を参照)。  The AND gate 53 is supplied with a clock signal CLK having a predetermined frequency. The AND gate 53 outputs a logical product of the clock signal CLK and the output signal of the hysteresis comparator 51. The nofer 54 outputs the output signal of the AND gate 53 in a non-inverted manner. The output signal of the notch 54 is given to the control terminals of the switches SB1 to SB5. On the other hand, the notifier 55 inverts the output signal of the AND gate 53. The output signal of the buffer 55 is applied to the control terminals of the switches SA1 to SA8. Therefore, the switches SA1 to SA8 are turned on at the same time, and the switches SB1 to SB5 are turned on at the same time when the switches SA1 to SA8 are turned off (see FIG. 7).
[0053] スィッチ SA1〜SA8がオン状態で、スィッチ SB1〜SB5がオフ状態のとき、コンデ ンサ C1の各電極には、スィッチ SA1および SA2経由で、それぞれ、接地電圧および 入力電圧 Vinが印加される。これにより、コンデンサ C1は充電される。このとき、同時 にコンデンサ C2〜C4も充電される。  [0053] When the switches SA1 to SA8 are in the on state and the switches SB1 to SB5 are in the off state, the ground voltage and the input voltage Vin are applied to each electrode of the capacitor C1 via the switches SA1 and SA2, respectively. . As a result, the capacitor C1 is charged. At this time, capacitors C2 to C4 are also charged.
[0054] これに対して、スィッチ SA1〜SA8がオフ状態で、スィッチ SB1〜SB5がオン状態 のとき、コンデンサ C5は、入力電圧 Vinおよびコンデンサ C1〜C4に充電された電圧 の合計、すなわち、入力電圧 Vinの 5倍の電圧によって充電される。コンデンサ C5の 両電極間の電位差が、昇圧電圧 Vbとして出力される。このように昇圧回路 3bは、スィ ツチ SA1〜SA8およびスィッチ SB1〜SB5を交互にオン状態およびオフ状態に制 御して、コンデンサ C1〜C5の接続状態を切り換えることにより、入力電圧 Vinを昇圧 する。 [0054] On the other hand, when the switches SA1 to SA8 are in the off state and the switches SB1 to SB5 are in the on state, the capacitor C5 is the sum of the input voltage Vin and the voltage charged in the capacitors C1 to C4, that is, the input Charged by a voltage 5 times the voltage Vin. The potential difference between both electrodes of capacitor C5 is output as boosted voltage Vb. In this way, the booster circuit 3b The input voltage Vin is boosted by controlling the switches SA1 to SA8 and the switches SB1 to SB5 alternately on and off, and switching the connection state of the capacitors C1 to C5.
[0055] 昇圧回路 3bは、以下の方法により、昇圧制御信号 10に基づき昇圧電圧 Vbのレべ ルを変化させる。図 6に示すように、ヒステリシスコンパレータ 51のプラス側入力端子 には、端子 56b経由で昇圧制御信号 10が与えられる。また、ヒステリシスコンパレー タ 51のマイナス側入力端子は、基準電圧 E3を与える基準電源 52に接続されている  The booster circuit 3b changes the level of the boost voltage Vb based on the boost control signal 10 by the following method. As shown in FIG. 6, the boost control signal 10 is given to the positive side input terminal of the hysteresis comparator 51 via the terminal 56b. The negative input terminal of the hysteresis comparator 51 is connected to the reference power supply 52 that supplies the reference voltage E3.
[0056] ヒステリシスコンパレータ 51は、ヒステリシス幅 VHのヒシテリシス特性を有する比較 回路である。ヒステリシスコンパレータ 51は、昇圧制御信号 10の電圧が(E3+VHZ 2)以上になるとハイレベルの信号を出力し、昇圧制御信号 10の電圧が(E3—VHZ 2)以下になるとローレベルの信号を出力する。 The hysteresis comparator 51 is a comparison circuit having hysteresis characteristics with a hysteresis width VH. The hysteresis comparator 51 outputs a high level signal when the voltage of the boost control signal 10 becomes (E3 + VHZ 2) or more, and outputs a low level signal when the voltage of the boost control signal 10 becomes (E3−VHZ 2) or less. Output.
[0057] したがって、昇圧制御信号 10の電圧が(E3+VHZ2)以上になった以降は、 AN Dゲート 53の出力信号はクロック信号 CLKと同様に所定の周波数で変化する。これ により、スィッチ SA1〜SA8、 SB1〜SB5、および、コンデンサ C1〜C5からなるチヤ ージポンプ回路は昇圧動作を行い、昇圧電圧 Vbは上昇する。また、このとき、 AND ゲート 53の出力信号のデューティー比は、ゼロ以外の値 (例えば 50%)となる。  Therefore, after the voltage of the boost control signal 10 becomes equal to or higher than (E3 + VHZ2), the output signal of the NAND gate 53 changes at a predetermined frequency similarly to the clock signal CLK. As a result, the charge pump circuit composed of the switches SA1 to SA8, SB1 to SB5 and the capacitors C1 to C5 performs a boosting operation, and the boosted voltage Vb rises. At this time, the duty ratio of the output signal of the AND gate 53 is a value other than zero (for example, 50%).
[0058] これに対して、昇圧制御信号 10の電圧が(E3— VHZ2)以下になった以降は、 A NDゲート 53の出力信号はローレベルに固定される。したがって、昇圧制御信号 10 の電圧が (E3— VHZ2)以下になった以降は、チャージポンプ回路は昇圧動作を行 わず、昇圧電圧 Vbは下降する。このとき、 ANDゲート 53の出力信号のデューティー 比は 0%となる。このように、 ANDゲート 53の出力信号のデューティー比は、昇圧制 御信号 10に応じて変化する。  On the other hand, after the voltage of the boost control signal 10 becomes equal to or lower than (E3−VHZ2), the output signal of the AND gate 53 is fixed at the low level. Therefore, after the voltage of the boost control signal 10 becomes (E3−VHZ2) or less, the charge pump circuit does not perform the boost operation and the boost voltage Vb drops. At this time, the duty ratio of the output signal of the AND gate 53 is 0%. As described above, the duty ratio of the output signal of the AND gate 53 changes according to the boost control signal 10.
[0059] 以上に示すようにチャージポンプ型の昇圧回路 3bでは、昇圧制御信号 10に応じて デューティー比が変化するスィッチ制御信号を用いてスィッチ SA1〜SA8、 SB1〜 SB5を制御することにより、昇圧制御信号 10に基づき昇圧電圧 Vbのレベルを変化さ せることができる。  [0059] As described above, in the charge pump type booster circuit 3b, the switches SA1 to SA8 and SB1 to SB5 are controlled by using the switch control signal whose duty ratio changes according to the boost control signal 10, thereby boosting the voltage. Based on the control signal 10, the level of the boost voltage Vb can be changed.
[0060] 図 6に示す昇圧回路 3bを備えた本実施形態に係る LED駆動回路によれば、図 3 に示す昇圧回路 3aを備えた第 1の実施形態に係る LED駆動回路と同様に、安定的 にかつ低消費電力で LEDを定電流駆動することができる。 [0060] According to the LED drive circuit of this embodiment including the booster circuit 3b shown in FIG. As in the LED driving circuit according to the first embodiment provided with the booster circuit 3a shown in FIG. 2, the LED can be driven with a constant current stably and with low power consumption.
[0061] なお、ここまで、 LED駆動回路が 4個の LEDを駆動する場合について説明してきた 1S LED駆動回路は、 1個以上の任意個の LEDを駆動してもよい。例えば、 LED駆 動回路 1は、図 8に示すように、直列に接続された 2個の LED (以下、 LEDアレイ 8と いう)を駆動してもよい。この場合でも LED駆動回路 1は、定電流源 2の両端電圧が 基準電圧 E1に一致するようにフィードバック制御を行 ヽながら、昇圧電圧 Vbを生成 する。 It should be noted that the 1S LED drive circuit that has been described so far for the case where the LED drive circuit drives four LEDs may drive one or more arbitrary LEDs. For example, the LED driving circuit 1 may drive two LEDs connected in series (hereinafter referred to as LED array 8) as shown in FIG. Even in this case, the LED drive circuit 1 generates the boost voltage Vb while performing feedback control so that the voltage across the constant current source 2 matches the reference voltage E1.
[0062] 図 9は、 LEDアレイ 8を駆動する場合の昇圧電圧 Vbの温度特性を示す図である。  FIG. 9 is a diagram showing temperature characteristics of the boosted voltage Vb when the LED array 8 is driven.
この場合、昇圧電圧 Vb、定電流源 2の両端電圧 Vi、および、各 LEDの順方向電圧 Vfの間には、次式(5)が成立する。また、図 9では、電圧 (Vf X 2)のグラフを垂直方 向に基準電圧 E1分だけ平行移動したグラフが、昇圧電圧 Vbのグラフとなる。  In this case, the following equation (5) is established among the boosted voltage Vb, the voltage Vi across the constant current source 2, and the forward voltage Vf of each LED. In FIG. 9, the graph of the boosted voltage Vb is a graph obtained by translating the voltage (Vf X 2) graph by the reference voltage E1 in the vertical direction.
Vb=Vi+Vf X 2 - -- (5)  Vb = Vi + Vf X 2--(5)
[0063] LEDアレイ 8を駆動する場合、温度が変化しても、定電流源 2の両端電圧 Viも、定 電流源 2および LEDアレイ 8を流れる電流も変化しないので、定電流源 2における消 費電力は温度によらず一定となる。したがって、定電流源 2は、必要以上に電力を消 費しない。 1個以上の任意個の LEDを駆動する場合も、これと同様である。  [0063] When driving the LED array 8, even if the temperature changes, the voltage Vi across the constant current source 2 and the current flowing through the constant current source 2 and the LED array 8 do not change. The power consumption is constant regardless of the temperature. Therefore, the constant current source 2 does not consume more power than necessary. The same applies to driving one or more arbitrary LEDs.
[0064] また、 4個の LEDを駆動する場合にも、 2個の LEDを駆動する場合にも同じ LED駆 動回路 1を使用することができる。一般的には、昇圧回路 3が次式 (6)を満たす昇圧 電圧 Vbを生成できる限り、 n個以下の LEDを駆動するために、同じ LED駆動回路 1 を使用することができる。  [0064] The same LED driving circuit 1 can be used when driving four LEDs and when driving two LEDs. In general, the same LED driving circuit 1 can be used to drive n or less LEDs as long as the boosting circuit 3 can generate a boosted voltage Vb that satisfies the following equation (6).
Vb=Vi+Vf X n · '· (6)  Vb = Vi + Vf X n · '· (6)
[0065] なお、ここまで発光素子駆動回路の例として、 LEDを駆動する LED駆動回路につ いて説明してきたが、同様の方法で、エレクト口ルミネッセンス素子 (EL素子)ゃフイラ メント球を駆動する発光素子駆動回路を得ることができる。これらの EL素子駆動回路 およびフィラメント球駆動回路は、 LED駆動回路と同じ効果を奏する。  [0065] Although the LED driving circuit for driving the LED has been described as an example of the light emitting element driving circuit so far, the electoric luminescence element (EL element) is driven by the same method in the same way. A light emitting element driving circuit can be obtained. These EL element drive circuit and filament ball drive circuit have the same effect as the LED drive circuit.
産業上の利用可能性  Industrial applicability
[0066] 本発明の発光素子駆動回路は、安定的にかつ低消費電力で発光素子を定電流駆 動できるという効果を奏するので、 LEDや EL素子やフィラメント球を駆動する発光素 子駆動回路などに利用することができる。 [0066] The light-emitting element driving circuit according to the present invention provides a constant current drive for a light-emitting element stably and with low power consumption. Since it has the effect of being able to move, it can be used for light emitting element drive circuits that drive LEDs, EL elements, and filament balls.

Claims

請求の範囲 The scope of the claims
[1] 発光素子を定電流駆動する発光素子駆動回路であって、  [1] A light emitting element driving circuit for driving a light emitting element at a constant current,
駆動すべき発光素子に直列に接続された定電流源と、  A constant current source connected in series to the light emitting element to be driven;
入力電圧を昇圧し、得られた昇圧電圧を前記発光素子および前記定電流源に与 える昇圧回路と、  A booster circuit that boosts an input voltage and applies the obtained boosted voltage to the light emitting element and the constant current source;
前記定電流源の両端電圧を検出する検出回路と、  A detection circuit for detecting a voltage across the constant current source;
前記検出回路で検出された電圧を基準電圧と比較し、比較結果を示す昇圧制御 信号を出力する比較回路とを備え、  A comparison circuit that compares the voltage detected by the detection circuit with a reference voltage and outputs a boost control signal indicating a comparison result;
前記昇圧回路は、前記昇圧制御信号に基づき前記昇圧電圧のレベルを変化させ ることを特徴とする、発光素子駆動回路。  The light-emitting element driving circuit, wherein the booster circuit changes a level of the boosted voltage based on the boost control signal.
[2] 前記昇圧回路は、コイル、および、前記コイルを通過した電流の流れを切り換える スィッチを含むチヨツバ型昇圧回路であり、  [2] The booster circuit is a chitotsuba booster circuit including a coil and a switch that switches a flow of current that has passed through the coil.
前記スィッチは、前記昇圧制御信号に応じてデューティー比が変化する制御信号 によって制御されることを特徴とする、請求項 1に記載の発光素子駆動回路。  2. The light emitting element driving circuit according to claim 1, wherein the switch is controlled by a control signal whose duty ratio changes according to the boost control signal.
[3] 前記昇圧回路は、コンデンサ、および、前記コンデンサの接続状態を切り換えるス イッチを含むチャージポンプ型昇圧回路であり、 [3] The booster circuit is a charge pump booster circuit including a capacitor and a switch for switching a connection state of the capacitor.
前記スィッチは、前記昇圧制御信号に応じてデューティー比が変化する制御信号 によって制御されることを特徴とする、請求項 1に記載の発光素子駆動回路。  2. The light emitting element driving circuit according to claim 1, wherein the switch is controlled by a control signal whose duty ratio changes according to the boost control signal.
[4] 前記昇圧制御信号は、前記検出回路で検出された電圧と前記基準電圧との差を 示すアナログ信号であることを特徴とする、請求項 1に記載の発光素子駆動回路。 4. The light emitting element drive circuit according to claim 1, wherein the boost control signal is an analog signal indicating a difference between a voltage detected by the detection circuit and the reference voltage.
PCT/JP2006/326052 2005-12-28 2006-12-27 Light emitting device driving circuit WO2007074866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005379031 2005-12-28
JP2005-379031 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007074866A1 true WO2007074866A1 (en) 2007-07-05

Family

ID=38218088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326052 WO2007074866A1 (en) 2005-12-28 2006-12-27 Light emitting device driving circuit

Country Status (1)

Country Link
WO (1) WO2007074866A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539707A (en) * 2007-09-14 2010-12-16 イクシス コーポレーション Programmable LED drive
WO2010130588A3 (en) * 2009-05-11 2011-01-06 Austriamicrosystems Ag Voltage converter and method for converting voltage
JP2011023750A (en) * 2010-10-26 2011-02-03 Panasonic Corp Apparatus for driving light emitting element, and light emitting device
CN103200730A (en) * 2012-01-06 2013-07-10 苏州璨宇光学有限公司 Current control circuit and corresponding light-emitting diode (LED) module thereof
CN103533695A (en) * 2012-07-03 2014-01-22 成都市宏山科技有限公司 LED constant-current driving system
CN103533699A (en) * 2012-07-03 2014-01-22 成都市宏山科技有限公司 Constant-current driving circuit of light emitting diode applied to system testing
CN104735863A (en) * 2013-12-24 2015-06-24 理察·蓝德立·葛瑞 Anti flicker circuit for a led direct driver under low input voltage operation
WO2017117723A1 (en) * 2016-01-05 2017-07-13 Tridonic Gmbh & Co. Kg Two-stage charge pump for led drivers
AT519927A1 (en) * 2017-04-26 2018-11-15 Zkw Group Gmbh Supply circuit for supplying LEDs from a primary DC voltage
AT520880A1 (en) * 2017-04-26 2019-08-15 Zkw Group Gmbh Supply circuit for supplying LEDs from a primary DC voltage
WO2021008384A1 (en) * 2019-07-17 2021-01-21 深圳市洲明科技股份有限公司 Power supply feedback adjustment system, and display screen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022929A (en) * 2002-06-19 2004-01-22 Matsushita Electric Ind Co Ltd Dc-dc step-up method
JP2004051014A (en) * 2002-07-22 2004-02-19 Toyoda Gosei Co Ltd Led headlamp device for vehicle
JP2005011895A (en) * 2003-06-17 2005-01-13 Nintendo Co Ltd Led driving circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022929A (en) * 2002-06-19 2004-01-22 Matsushita Electric Ind Co Ltd Dc-dc step-up method
JP2004051014A (en) * 2002-07-22 2004-02-19 Toyoda Gosei Co Ltd Led headlamp device for vehicle
JP2005011895A (en) * 2003-06-17 2005-01-13 Nintendo Co Ltd Led driving circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539707A (en) * 2007-09-14 2010-12-16 イクシス コーポレーション Programmable LED drive
US9112405B2 (en) 2009-05-11 2015-08-18 Ams Ag Voltage converter with step-down converter circuit and method for converting voltage
WO2010130588A3 (en) * 2009-05-11 2011-01-06 Austriamicrosystems Ag Voltage converter and method for converting voltage
JP2011023750A (en) * 2010-10-26 2011-02-03 Panasonic Corp Apparatus for driving light emitting element, and light emitting device
CN103200730A (en) * 2012-01-06 2013-07-10 苏州璨宇光学有限公司 Current control circuit and corresponding light-emitting diode (LED) module thereof
CN103533695A (en) * 2012-07-03 2014-01-22 成都市宏山科技有限公司 LED constant-current driving system
CN103533699A (en) * 2012-07-03 2014-01-22 成都市宏山科技有限公司 Constant-current driving circuit of light emitting diode applied to system testing
CN104735863A (en) * 2013-12-24 2015-06-24 理察·蓝德立·葛瑞 Anti flicker circuit for a led direct driver under low input voltage operation
WO2017117723A1 (en) * 2016-01-05 2017-07-13 Tridonic Gmbh & Co. Kg Two-stage charge pump for led drivers
GB2561483A (en) * 2016-01-05 2018-10-17 Tridonic Gmbh & Co Kg Two-stage charge pump for LED drivers
GB2561483B (en) * 2016-01-05 2021-08-04 Tridonic Gmbh & Co Kg Two-stage charge pump for LED drivers
AT519927A1 (en) * 2017-04-26 2018-11-15 Zkw Group Gmbh Supply circuit for supplying LEDs from a primary DC voltage
AT519927B1 (en) * 2017-04-26 2019-02-15 Zkw Group Gmbh Supply circuit for supplying LEDs from a primary DC voltage
AT520880A1 (en) * 2017-04-26 2019-08-15 Zkw Group Gmbh Supply circuit for supplying LEDs from a primary DC voltage
WO2021008384A1 (en) * 2019-07-17 2021-01-21 深圳市洲明科技股份有限公司 Power supply feedback adjustment system, and display screen

Similar Documents

Publication Publication Date Title
WO2007074866A1 (en) Light emitting device driving circuit
JP4902390B2 (en) Current detection circuit and current mode switching regulator
CN107370340B (en) Current detection circuit and DCDC converter including the same
JP5877074B2 (en) Comparator, oscillator using the same, DC / DC converter control circuit, DC / DC converter, electronic device
US7595620B2 (en) Switching regulator
KR101131262B1 (en) Current mode control type switching regulator
US20070211502A1 (en) Voltage step-up circuit and electric appliance therewith
JP5749551B2 (en) Charge pump type boosting system and semiconductor chip
WO2006057107A1 (en) Switching power source
KR20070044755A (en) Dc-dc converter, dc-dc converter control circuit, and dc-dc converter control method
WO2007007752A1 (en) Step-down switching regulator, its control circuit, and electronic device using same
US8686704B2 (en) Current sense circuit and switching regulator using the same
WO2005078910A1 (en) Switching power supply apparatus and mobile device
JP4941911B2 (en) Organic EL drive circuit and organic EL display device using the same
JPWO2006059501A1 (en) DRIVE CIRCUIT FOR CHARGE PUMP CIRCUIT, POWER SUPPLY DEVICE, AND LIGHT EMITTING DEVICE
US9531259B2 (en) Power supply circuit
KR101087749B1 (en) Apparatus for detecting current, and driver for light emitting diode comprising the same
JP4562596B2 (en) Switching power supply circuit and electronic device using the same
JP2018102023A (en) Overcurrent detection circuit, semiconductor device, and power supply device
US20070103225A1 (en) Charge pump circuit
JP5398422B2 (en) Switching power supply
JP5666694B2 (en) Load current detection circuit
TWI406592B (en) Low pin count led driver integrated circuit
JP5062188B2 (en) POWER CIRCUIT, ELECTRONIC DEVICE, SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE, AND POWER CIRCUIT CONTROL METHOD
WO2023188964A1 (en) Light-emitting element drive device, light emission control device, and light emission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06843434

Country of ref document: EP

Kind code of ref document: A1