WO2007072856A1 - Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using them - Google Patents

Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using them Download PDF

Info

Publication number
WO2007072856A1
WO2007072856A1 PCT/JP2006/325374 JP2006325374W WO2007072856A1 WO 2007072856 A1 WO2007072856 A1 WO 2007072856A1 JP 2006325374 W JP2006325374 W JP 2006325374W WO 2007072856 A1 WO2007072856 A1 WO 2007072856A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light diffusing
fine particle
particle group
Prior art date
Application number
PCT/JP2006/325374
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhisa Hirata
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Publication of WO2007072856A1 publication Critical patent/WO2007072856A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present invention relates to a light diffusing sheet and a light diffusing plate, and a backlight unit and a liquid crystal display device using the same.
  • liquid crystal display devices are used in a wide range of fields such as cellular phones, PDA terminals, digital cameras, televisions, personal computer displays, and notebook computers.
  • a backlight unit is disposed behind a liquid crystal display panel, and an image is displayed by supplying light from the knock light unit to the liquid crystal display panel.
  • the backlight unit used in such a liquid crystal display device is required to supply as much light as possible without simply supplying uniform light to the liquid crystal display panel in order to make the displayed image easy to see.
  • the knocklight unit is required to have optical characteristics such as excellent light diffusibility and high brightness.
  • the conventional backlight unit in addition to the light source 201, light emitted backward from the light source 201 is directed to a liquid crystal display panel (not shown) (hereinafter referred to as “front direction”).
  • Reflecting sheet 202 that plays a role of reflecting light
  • a light diffusing plate 203 that diffuses light from the light source 201 (line light source) to form a surface light source and erase the shape of the light source; Light that has passed through the light diffusing plate 203 is further diffused, the shape of the light source is erased, and the light is condensed in the front direction to improve the brightness.
  • a number of members such as a prism sheet 205 which plays a role of concentrating the light in the front direction and improving the luminance are also configured.
  • the force that shows one light diffusion sheet and one prism sheet each.
  • the knocklight unit has a plurality of light diffusion sheets and prism sheets in order to obtain high brightness. Used.
  • the conventional light diffusing plate is a transparent thermoplastic resin 21 such as polymethyl methacrylate, MS resin, polycarbonate, and cyclic polyolefin.
  • a composition obtained by kneading a fine particle group 212 such as a silicone-based resin or an acrylic-based resin in 1 is extruded into a plate shape or cast and used.
  • the light diffusion plate 210 shown in FIG. 21 diffuses light by the fine particle group 212 dispersed in the transparent thermoplastic resin 211.
  • the conventional light diffusion sheet for example, as shown in FIG.
  • the surface of a transparent film 221 such as a polyethylene terephthalate film is directly coated with a composition obtained by kneading the fine particle group 223 in the translucent resin 222. Things are used.
  • the light diffusing sheet 220 shown in FIG. 22 in the light diffusing layer 224, the light is diffused by the fine particles completely embedded in the translucent resin 222, and the fine particles partially protruded from the translucent resin 222. To collect the light in the front direction.
  • a conventional prism sheet is used in which a prism pattern of acrylic resin is uniformly and precisely formed on the surface of a polyester film, for example.
  • the conventional backlight unit shown in FIG. 20 has a large number of members, the cost required for assembly increases.
  • the cost required for assembly increases.
  • a plurality of prism sheets or light diffusion sheets are stacked in order to improve the brightness, there is a problem that moire caused by light interference between the sheets occurs and the image quality of the display image is lowered. Therefore, in the structure of the knock light unit, there is a need for a reduction in the number of members and a combination of functions without reducing the total light transmittance and brightness and without causing light interference.
  • a method of attaching a light diffusion sheet on a glass substrate serving as a light diffusion plate for example, JP 2 005-129346
  • a method of using only a light diffusing sheet held on a transparent member without using a light diffusing plate for example, JP-A-2003-272406
  • a prism sheet instead, a method of forming prism rows on the surface of the light diffusing plate (see, for example, Japanese Patent Application Laid-Open No.
  • a diffusion layer containing a diffuser is provided between a light incident control layer composed of a prism surface and a light distribution layer.
  • a light incident control layer composed of a prism surface and a light distribution layer.
  • the light diffusing plate and the light diffusing sheet are respectively integrated, or the diffusing plate is omitted.
  • the diffusing plate is omitted.
  • problem ⁇ a force s.
  • the methods described in Japanese Patent Application Laid-Open Nos. 2003-0116819, 2004-163575, and 2005-107020 are all methods for integrating the light diffusing plate and the prism sheet. Force Brightness is improved and the shape of the light source can be completely erased.
  • JP-A-11 64611 is excellent in light diffusibility, but since there are few fine particles partially protruding from the light diffusion layer, the light collecting property is low and the luminance is low.
  • the methods described in Japanese Patent No. 3509703 and Japanese Patent Application Laid-Open No. 2001-281420 are excellent in light-collecting properties, but only spherical particles and microsphere lenses are arranged in a single layer. Therefore, there is a problem that the light diffusibility is insufficient and the shape of the light source cannot be completely erased.
  • a light diffusion sheet provided with a light diffusion layer containing fine particles is in contact with other members with which the convex portions of the light diffusion layer come into contact during production, storage, transportation, installation on a display, and the like.
  • the light diffusing sheet is stored in a roll shape, and at this time, the light diffusing layer is strongly pressed against the facing base film, so that the light diffusing sheet and the base film are damaged.
  • an optical sheet such as a light diffusion sheet, a prism sheet, or a brightness enhancement sheet may be further installed on the light diffusion sheet.
  • the convex portions of the light diffusion layer come into contact with the optical sheet, so that the light diffusion sheet and the optical sheet are damaged.
  • optical characteristics such as light diffusibility and total light transmittance are deteriorated.
  • the light diffusing layer contains crosslinked (meth) acrylic acid ester polymer fine particles whose compression strength and average particle diameter are adjusted
  • a method in which a light diffusing layer contains rosin particles and a particulate lubricant whose compressive strength is adjusted see, for example, JP-A-2003-270410
  • a light diffusing sheet And a method of providing a sticking prevention layer composed of a resin layer containing a hard coat agent on the back surface of the base film on which the film is formed (see, for example, JP-A-2003-107219).
  • the problem to be solved by the present invention is that, in addition to being excellent in light diffusibility and light condensing property, high light transmittance and luminance can be obtained. While maintaining, the number of components of the knock light unit can be reduced, and the light diffusion sheet and light diffusion plate excellent in scratch resistance of the light diffusion layer, and the backlight unit and liquid crystal using them It is to provide a display device.
  • the present inventors have configured a light diffusion layer in a light diffusion sheet or a light diffusion plate. If the refractive index difference between the translucent resin and the fine particle group is defined, the light diffusion sheet and light diffusion plate are high by themselves and have light diffusibility and light condensing properties. Since it is not necessary to use a light diffusing sheet and a light diffusing plate or a prism sheet, the number of members can be reduced while maintaining the basic optical characteristics of the knock light unit, and inorganic If (meth) acrylic resin containing ultrafine particles or organic / inorganic composite ultrafine particles is used as a translucent resin, the hardened resin has an appropriate hardness derived from inorganic ultrafine particles or organic / inorganic composite ultrafine particles. Thus, the present invention was completed by finding that the light diffusing layer and the contact member are less likely to be damaged by covering the light diffusing agent fine particles partially protruding from the light diffusing layer.
  • the present invention is a light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on at least one surface of a transparent film,
  • a light diffusing sheet characterized in that the absolute value of the difference in refractive index between the translucent resin constituting the layer and at least one kind of fine particle group is 0.05 or more.
  • At least one of the light diffusing layers includes two types of fine particle groups, and the surface roughness of the light diffusing layer is an arithmetic average roughness of not less than 0 and not more than 7 m. .
  • a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent film, and at least one kind of the translucent resin is formed on the light diffusion layer.
  • a condensing layer in which fine particle groups are embedded is formed, and the surface roughness of the condensing layer is not less than 0.5 ⁇ m and not more than 7 ⁇ m in terms of arithmetic average roughness.
  • a light diffusion layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least one kind of transparent resin is provided on the opposite surface of the transparent film.
  • a light collecting layer in which fine particle groups are embedded is formed, and the surface roughness of the light collecting layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness.
  • the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on at least one surface of the transparent support, and the light transmissive layer constituting the light diffusing layer is formed.
  • a light diffusing plate characterized in that the absolute value of the difference in refractive index between the hydrophobic resin and at least one kind of fine particle group is 0.05 or more; and at least the transparent resin on one side of the transparent film.
  • an absolute value of a refractive index difference with at least one kind of fine particle group is 0.05 or more.
  • At least one of the light diffusing layers contains two types of fine particle groups, and the surface roughness of the light diffusing layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness.
  • a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and at least one type of translucent resin is formed on the light diffusion layer.
  • a light condensing layer in which fine particle groups are embedded is formed, and the surface roughness of the light condensing layer is an arithmetic average roughness of not less than 0 and not more than 7 m.
  • a light diffusion layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of the transparent support, and at least 1 of the transparent resin is provided on the opposite surface of the transparent support.
  • a condensing layer in which various kinds of fine particle groups are embedded is formed, and the surface roughness of the condensing layer is not less than 0.
  • a light diffusing layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of the transparent support, and at least 1 of the transparent resin is provided on one side of the transparent film.
  • a condensing sheet having a condensing layer in which various kinds of fine particle groups are embedded is attached to the opposite surface of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is an arithmetic average.
  • the roughness is 0.5 ⁇ m or more and 7 ⁇ m or less.
  • a light diffusion layer in which at least one kind of fine particle group is dispersed is formed in the translucent resin, and on the light diffusion layer, at least one kind of fine particle group is formed in the translucent resin.
  • a light diffusing sheet formed with a light condensing layer embedded therein is bonded to one side of the transparent support with an adhesive or an adhesive, and the surface roughness of the light condensing layer is an arithmetic average roughness of 0. This is 7 m or less.
  • a light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of a transparent film is attached to one side of the transparent support with an adhesive or a pressure sensitive adhesive.
  • a condensing layer in which at least one kind of fine particle group is embedded in a transparent resin is formed on the opposite surface of the transparent support, and the surface roughness of the condensing layer is an arithmetic average roughness of 0. It is 5 ⁇ m or more and 7 ⁇ m or less.
  • a light diffusion layer in which a light diffusion layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of a transparent film
  • a sheet is attached to the opposite surface of the transparent support with an adhesive or an adhesive.
  • the surface roughness of the light condensing layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness.
  • the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the present invention provides a backlight unit comprising a light source, a reflection sheet, a transparent support, and the light diffusion sheet; a light source, a reflection sheet, and the light diffusion sheet; A backlight unit comprising a light source, a reflective sheet, and the light diffusing plate; and a backlight unit comprising any of these backlight units!
  • a liquid crystal display device characterized by the above.
  • the shape of the light source can be completely erased, and the line light source can be used as a surface light source. Therefore, the light diffusing property and the light collecting property are excellent.
  • the number of components of the knock light unit can be reduced while maintaining basic optical characteristics. Therefore, the knock light unit and the liquid crystal display device of the present invention using such a light diffusion sheet and light diffusion plate can reduce the cost of various products using the liquid crystal display device. Moreover, since the loss of light rays when passing between members is reduced by reducing the number of members, the number of light sources can be reduced and the power of the light sources can be reduced.
  • the image quality of the display image is improved. Since the light diffusing layer has excellent scratch resistance, the light diffusing sheet and light diffusing plate of the present invention are easy to handle during production, storage, transportation, use, etc., and yield is improved. .
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a light diffusion sheet of the present invention.
  • FIG. 2 is a schematic sectional view showing another configuration example of the light diffusion sheet of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another configuration example of the light diffusion sheet of the present invention.
  • FIG. 4 is a schematic sectional view showing another configuration example of the light diffusion sheet of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another configuration example of the light diffusion sheet of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another configuration example of the light diffusion sheet of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a configuration example of a light diffusion plate of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
  • FIG. 10 is a schematic sectional view showing another configuration example of the light diffusing plate of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
  • FIG. 14 is a schematic sectional view showing another configuration example of the light diffusing plate of the present invention.
  • FIG. 15 is a schematic explanatory view showing a configuration example of a backlight unit of the present invention.
  • FIG. 16 is a schematic explanatory view showing another configuration example of the backlight unit of the present invention.
  • FIG. 17 is a schematic explanatory view showing another configuration example of the backlight unit of the present invention.
  • FIG. 18 is a schematic explanatory diagram showing another configuration example of the backlight unit of the present invention.
  • FIG. 19 is a drawing-substituting photograph showing irregularities on the surface of the light collecting layer of the light diffusion sheet obtained in Example 1.
  • FIG. 20 is a schematic explanatory view showing a configuration example of a conventional backlight unit.
  • FIG. 21 is a schematic cross-sectional view showing a configuration of a conventional light diffusing plate.
  • FIG. 22 is a schematic sectional view showing a configuration example of a conventional light diffusion sheet.
  • the light diffusion sheet of the present invention is a light diffusion sheet in which a light diffusion layer in which at least one kind of fine particle group is dispersed is formed on at least one surface of a transparent film.
  • the absolute value of the difference in refractive index between the translucent resin constituting the layer and at least one kind of fine particle group is 0.05 or more.
  • At least one of the light diffusion layers contains two types of fine particle groups, and the surface roughness of the light diffusion layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness. .
  • at least one kind of fine particle group in translucent resin A light-diffusing layer is formed, and a light-condensing layer is formed on the light-diffusing layer by embedding at least one kind of fine particles in a translucent resin, and the surface of the light-condensing layer is roughened.
  • the arithmetic mean roughness is 0.5 ⁇ m or more and 7 ⁇ m or less.
  • a light diffusion layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least one kind of transparent resin is provided on the opposite surface of the transparent film.
  • a light collecting layer in which fine particle groups are embedded is formed, and the surface roughness of the light collecting layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness.
  • the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • “at least one kind of fine particle group is dispersed in the light transmissive resin” means that one kind of fine particle is contained in the light transmissive resin constituting the light diffusion layer.
  • Force that groups are dispersed substantially uniformly force that two types of particles are dispersed substantially uniformly, or group of three or more types of particles are distributed substantially uniformly Means that.
  • the type of fine particle group it is preferable that substantially all of the fine particle group is embedded in the light-transmitting resin constituting the light diffusion layer, and there are two or more types of fine particle groups.
  • a fine particle group (for example, a fine particle group having a relatively small particle diameter) mostly embedded in the light transmissive resin constituting the light diffusion layer and a part of the light transmissive resin constituting the light diffusion layer
  • fine particle groups that protrude for example, fine particle groups having a relatively large particle diameter
  • the particle size is small! / ⁇ particle group has a large particle size! Also present in translucent resin.
  • the type of fine particle group is distinguished depending on the material and the state of existence, but it is not distinguished depending on the particle diameter and shape.
  • “at least one kind of fine particle group is embedded in the translucent resin” means that the fine particle group (for example, having a particle diameter of the light transmitting resin constituting the light collecting layer) is embedded.
  • a relatively small particle group) and a group of fine particles partially protruding from the translucent coagulant constituting the light collecting layer for example, a particle group having a relatively large particle diameter.
  • Such a light diffusion sheet is, for example, the content of the fine particle group in the translucent resin and the difference in refractive index between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group.
  • the surface roughness of the light condensing layer, the shape of each fine particle constituting the fine particle group embedded in the light condensing layer, the average particle diameter of the fine particle group, and the embedded state (or partially protruding state) should be adjusted.
  • the light diffusibility of the light diffusion layer and the light condensing property of the light collecting layer can be controlled.
  • the surface roughness of the light diffusion layer that is, the fine particle groups dispersed in the translucent resin.
  • the embedding state (or partially protruding state) of the fine particles constituting the light diffusion layer By adjusting the embedding state (or partially protruding state) of the fine particles constituting the light diffusion layer, the light diffusibility and the light condensing property of the light diffusion layer can be controlled. That is, if two types of fine particle groups are dispersed in the translucent resin constituting the light diffusing layer and the surface roughness of the light diffusing layer is adjusted, the light diffusing layer having the light diffusing property can be focused. Can be granted.
  • such a light diffusion layer may be referred to as a “light diffusion / condensing layer”.
  • the absolute value of the difference is specified to be 0.05 or higher. When the absolute value of the refractive index difference is less than 0.05, light is not largely refracted at the interface between the translucent resin and each fine particle constituting at least one kind of fine particle group, and the light cannot be sufficiently diffused.
  • the absolute value of the refractive index difference is preferably 0.07 or more, more preferably 0.09 or more.
  • the upper limit of the absolute value of the refractive index difference is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less.
  • the refractive index of the translucent resin was measured by forming a 40 m thick film and measuring the refractive index of the obtained film with a multiwavelength Abbe refractometer (for example, DR-M2, manufactured by Atago Co., Ltd.). Value. However, the measurement wavelength is 589.3 nm and the measurement temperature is 25 ° C.
  • the interface between the fine particle group and the refractive standard solution is the least visible!
  • the refractive index of the standard refractive solution used at times is used.
  • the refractive index of the fine particle group is the intermediate value of these refractive indexes. If the refractive index of the fine particle group is outside the refractive index range of the standard gilding liquid, the refractive index of the material is taken as the refractive index of the fine particle group.
  • the fine particle group dispersed in the translucent resin is composed of the fine particle group mostly embedded in the light diffusion layer and the light. It consists of a group of fine particles partially protruding from the diffusion layer. The latter fine particle group is partially embedded in the light diffusion layer, and the remaining portion protrudes from the light diffusion layer force. Part). Therefore, in the light diffusing sheet of the present invention, the surface roughness of the light diffusing layer is preferably expressed by arithmetic average roughness in order to express the embedded state (or partially protruding state) of the fine particle group in the light diffusing layer. 0. It is specified as 7 m or less.
  • the fine particle group When the surface roughness is less than 0.5 / zm in terms of arithmetic average roughness, the fine particle group is unlikely to partially protrude from the light diffusion layer, and thus light may not be sufficiently collected. Conversely, if the surface roughness exceeds 7 m in terms of arithmetic average roughness, the fine particle group partially protrudes from the light diffusion layer, so that light may not be sufficiently collected.
  • the surface roughness is more preferably 0.
  • the surface roughness is obtained by measuring the arithmetic average roughness at 5 or more points randomly selected for each sample using a surface roughness meter (for example, Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). It is the average value of the measured values.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light diffusion layer is Preferably it is 1.0 or more and 4.0 or less.
  • the ratio is less than 1.0, the fine particle group partially protrudes excessively from the light diffusion layer, so that light may not be sufficiently collected.
  • the ratio exceeds 4.0, the group of fine particles is unlikely to partially protrude from the light diffusion layer. The light may not be collected sufficiently.
  • the ratio is more preferably 1.05 or more and 3.0 or less, and still more preferably 1.1 or more and 2.5 or less.
  • the average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter, Inc.).
  • the layer thickness of the light diffusion layer is obtained by measuring the layer thickness at 5 points or more for each sample using a thickness measuring instrument (for example, dial thickness gauge G-6, manufactured by Ozaki Mfg. Co., Ltd.). The average value of the measured values.
  • the layer thickness of the light diffusing layer refers to the thickness up to the maximum height portion where the back surface translucent resin exists where the light diffusing layer is in contact with the transparent film or the like.
  • the maximum height portion is the most protruding part from the light diffusion layer among the fine particle group coated with the translucent resin. It refers to the apex of the translucent resin covering the fine particles.
  • the fine particle group embedded in the translucent resin in the light condensing layer is buried in the light condensing layer.
  • the latter fine particle group is partially embedded in the condensing layer and the remaining part is in a state where the condensing layer force protrudes.
  • Light is condensed by the protruding part (convex part). Therefore, in the light diffusing sheet of the present invention, the surface roughness of the light condensing layer is preferably expressed as an arithmetic average roughness in order to express the embedded state (or partially protruding state) of the fine particle groups in the light condensing layer.
  • the surface roughness is an arithmetic average roughness, more preferably 0.7 ⁇ m or more and 6 ⁇ m or less, and still more preferably 0.9 ⁇ m or more and 5 ⁇ m or less.
  • the surface roughness was obtained by measuring the arithmetic average roughness at 5 or more locations randomly selected for each sample using a surface roughness meter (Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). This is the average value of the measured values.
  • the embedded state (or partially protruding state) of the fine particle group in the light condensing layer can be expressed in another form.
  • Ratio of layer thickness to average particle diameter of fine particle group in condensing layer (concentration layer thickness Z condensing
  • the average particle diameter of the fine particle group in the layer is preferably 1.0 or more and 4.0 or less. When the ratio is less than 1.0, the fine particle group partially protrudes from the light condensing layer, so that the light may not be sufficiently collected.
  • the ratio is more preferably 1.05 or more and 3.0 or less, and still more preferably 1.1 or more and 2.5 or less.
  • the average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter, Inc.).
  • the layer thickness of the condensing layer is the average of the measured values obtained by observing the cross section of the light diffusion sheet with an electron microscope and measuring the layer thickness at 5 or more points for each sample.
  • the layer thickness of the condensing layer refers to the thickness up to the maximum height where the condensing layer is in contact with the light diffusing layer, the transparent film, etc., and the rear force translucent resin is present. Therefore, for example, when the fine particle group is coated with a translucent resin, the maximum height portion is the most part of the fine particle group coated with the translucent resin from the light collecting layer.
  • the apex of the translucent resin that covers the protruding fine particles For example, in the case of a light diffusion sheet in which a light condensing layer is formed on the surface of the transparent film and a light diffusion layer is formed on the back surface of the transparent film, the film is first formed at the stage where only the light condensing layer is formed. By measuring the total thickness of the transparent film and the light condensing layer with a thickness meter and subtracting the film thickness of the transparent film, the layer thickness of the light condensing layer can be calculated.
  • the “surface (front surface)” of the transparent film means the surface of the obtained light diffusion sheet facing the liquid crystal display panel (front direction) when used, for example,
  • the other side is expressed as “back side (back side)”, but it is not necessary to distinguish the front side from the back side when handling transparent film. If one side is the front side, the other side becomes the back side. There is no other special meaning.
  • each of the light diffusing layer and the light collecting layer is composed of a translucent resin and at least one kind of fine particle group.
  • the translucent resin constituting the light diffusion layer and the translucent resin constituting the light condensing layer may be the same type or different types.
  • Examples of the translucent resin include (meth) acrylic resin; styrene resin; vinyl acetate. Olefins such as polyethylene and polypropylene; Cyclic olefins such as norbornene resin; salt vinyl resin; salt vinylidene resin; polyethylene terephthalate and polyethylene Polyester-based resin such as naphthalate; copolymers of these
  • rosins may be used alone or in combination of two or more.
  • the (meth) acrylic resin is preferred.
  • the translucent resin constituting the light diffusion layer is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • organic-inorganic composite ultrafine particles means composite ultrafine particles in which an organic polymer is fixed on the surface of inorganic ultrafine particles.
  • ultrafine particles is an expression for distinguishing from at least one type of fine particles dispersed in a translucent resin, and as will be described below, the average particle size is smaller than that of the latter type of fine particles. Small! / Dark means fine particles.
  • a copolymer having a repeating unit is particularly preferred.
  • the repeating unit derived from the (meth) acrylic acid ester having a cycloalkyl group is preferably the following formula (1):
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrogen atom, a methyl group or an ethyl group
  • R 3 is an organic residue
  • m is an integer of 0 or more and 4 or less.
  • N is an integer of 0 or more and 2 or less, and when m is 2 or more and 4 or less, R 2 may be the same or different.
  • R 3 may be the same or different.
  • the organic residue represented by R 3 is, for example, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, 1 or more carbon atoms, 5 or less hydroxy alkyl group, 1 or more carbon atoms, 5 or less alkoxyalkyl group, 1 or more carbon atoms, 5 or less acetooxyalkyl group, 1 to 5 carbon atoms halogenated (for example, chlorinated, bromine Or a fluorinated alkyl group.
  • halogenated for example, chlorinated, bromine Or a fluorinated alkyl group.
  • an alkyl group having 1 or more and 4 or less carbon atoms a hydroxyalkyl group having 1 or more and 2 or less carbon atoms, an alkoxyalkyl group having 1 or more and 2 or less carbon atoms, 1 or more carbon atoms, Less than 2 acetooxyalkyl groups are preferred.
  • a ring when n is 2, a ring may be formed by two R 3 .
  • a ring may be formed by two R 3
  • the cyclohexyl group in the above formula (1) may be an isoborn group.
  • the bonding position of R 3 to the cyclohexyl group is not particularly limited, but when n is 1 or 2, preferably one R 3 is cycl. It binds to the 3rd or 4th position of the mouth hexyl group.
  • the repeating unit represented by the above formula (1) is not particularly limited.
  • cyclohexyl (meth) acrylate cyclohexyl methyl (meth) acrylate
  • 4-methylcyclohexyl methyl (meth) acrylate are preferred. That is, the repeating unit represented by the above formula (1) is preferably such that R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom, an R 3 cate group, m force ⁇ or 1 And n is 0 or 1.
  • the copolymer used as the translucent resin may contain a repeating unit derived from isobutyl (meth) acrylate.
  • the repeating unit derived from isobutyl (meth) acrylate is “—CH—CH (COOCH CH (CH)) —” or “—CH—C (CH) (C
  • the copolymer used as the translucent resin may contain a repeating unit derived from t-butyl (meth) acrylate.
  • the repeating unit derived from t-butyl (meth) acrylate means “one CH-CH (COOC (CH)) one” or “one CH-C (CH) (COOC (C
  • the heat resistance, moisture resistance, hardness, etc. of the light diffusion layer and the light collecting layer are improved.
  • the copolymer used as the translucent resin is preferably a repeating unit derived from a (meth) acrylic acid ester having a cycloalkyl group, a repeating unit derived from isobutyl (meth) acrylate, or It has at least one repeating unit derived from t-butyl (meth) acrylate.
  • the copolymer used as the translucent resin may contain other repeating units!
  • Monomers that can be used to synthesize the copolymer include, for example, polymerizable unsaturated monomers having a carboxyl group such as (meth) acrylic acid, maleic acid, and maleic anhydride; methyl (meth) atari Rate, ethyl (meth) acrylate, propyl (meth) acrylate, isopyl pill (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, lauryl (meth) acrylate , (Meth) acrylic acid alkyl esters such as stearyl (meth) acrylate; 2 hydroxyethyl (meth) acrylate, 4 hydroxy butyl (meth) acrylate, force prolatatone modified hydroxy (meth) acrylate, etc.
  • polymerizable unsaturated monomers having a carboxyl group such as (meth) acrylic acid, maleic acid, and maleic anhydr
  • Polyunsaturated unsaturated monomer bull sulfonic acid, styrene sulfonic acid, sulfoethyl (meth) alk
  • Polymerizable unsaturated monomers having a sulfonic acid group such as relate; 2- (meth) attaroyloxychetyl acid phosphate, 2- (meth) allyloyloxypropyl acid phosphate, 2-methacryloyloxyschetilphe -Acidic phosphate ester unsaturated unsaturated monomers such as luric acid;
  • Polymerizable unsaturated monomers having an epoxy group such as glycidyl (meth) acrylate; (meth) acrylamide, N, N'-dimethyl Polymerizable unsaturated monomers having a nitrogen atom such as aminoethyl (meth) acrylate; Polymerizable unsaturated monomers having a halogen atom such as salty bubul and salty v
  • each repeating unit in the copolymer used as the translucent resin is not particularly limited.
  • a repeating unit derived from a (meth) acrylic acid ester having a cycloalkyl group in the copolymer and a repeating unit derived from isobutyl (meth) acrylate The total amount of units and repeating units derived from t-butyl (meth) acrylate is preferably 5.0% by mass or more and 90.0% by mass or less, more preferably 30% by mass relative to the polymerizable unsaturated monomer. It is 0 mass% or more and 8 0.0 mass% or less.
  • the method for producing the copolymer may be appropriately selected according to the type of monomer and the working environment. There is no particular limitation.
  • the translucent resin has a glass transition temperature of preferably 0 ° C or higher and 120 ° C or lower, more preferably
  • the glass transition temperature is calculated using the formula for FOX:
  • Tg is the glass transition temperature (K) of the translucent resin
  • W is the mass fraction of monomer i
  • Tg is the glass transition temperature of the resin composed of the monomer ( K)
  • the glass transition temperature (K) calculated in (1) can be calculated by converting from absolute temperature (K) to Celsius temperature (° c).
  • the translucent resin has a haze of preferably 0% or more and 20% or less, more preferably 0% or more, 10% or less, further preferably 0% or more and 5% or less, and Z or
  • the total light transmittance is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less.
  • the haze and total light transmittance are values measured by a measurement method based on JIS K7105 using a turbidimeter (for example, NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the translucent resin contains inorganic ultrafine particles and organic-inorganic composite ultrafine particles. Either one of inorganic ultrafine particles or organic-inorganic composite ultrafine particles may be used, or both may be used in combination. If the translucent resin contains inorganic ultrafine particles or organic-inorganic composite ultrafine particles, the heat resistance of the light diffusing layer and the condensing layer is improved, the deformation of the light diffusing layer due to heat is suppressed, and the liquid crystal display panel Luminance unevenness on the display screen is eliminated.
  • the translucent resin contains inorganic ultrafine particles or organic-inorganic composite ultrafine particles
  • the translucent resin has an appropriate hardness and toughness, so that the light diffusing sheet and the contact member are caused by friction with other members. Excellent scratch resistance, easy to handle during manufacturing, storage, transportation, use, etc., improving yield. Furthermore, it is possible to prevent the fine particle group from falling off the light diffusion sheet.
  • the material of the inorganic ultrafine particles is not particularly limited.
  • a metal element for example, a metal element
  • silicon is included.
  • metal elements belonging to Group 2 to Group 6 are preferred.
  • Metal elements belonging to Group 3 to Group 5 are more preferred.
  • -Kay which is particularly preferred, is most preferred.
  • colloidal silica is particularly preferable among the oxides of silicon.
  • the inorganic ultrafine particles may be formed of a single material or may be formed of two or more kinds of materials, and may be formed of one kind of fine particle cartridge having the same material. There are also two or more types of fine particle forces that are made of different materials.
  • Examples of the shape of the inorganic ultrafine particles include a spherical shape, a needle shape, a plate shape, a scale shape, and a crushed shape.
  • the inorganic ultrafine particles having these shapes may be used alone or in combination of two or more.
  • the organic-inorganic composite ultrafine particles are composite ultrafine particles in which an organic polymer is fixed on the surface of the inorganic ultrafine particles.
  • the dispersibility of the inorganic ultrafine particles in the translucent resin and the affinity between the translucent resin and the inorganic ultrafine particles are improved.
  • the total light transmittance of the light diffusion layer and the light collecting layer is improved.
  • “fixing” means that a chemical bond is formed between the inorganic ultrafine particles and the organic polymer, which is not simply adhesion or adhesion. Therefore, when the organic / inorganic composite ultrafine particles are washed with an arbitrary organic solvent, substantially no organic polymer is detected in the organic solvent.
  • the inorganic ultrafine particles may contain an organic polymer in the fine particles. In this case, moderate softness and toughness can be imparted to the central portion of the inorganic ultrafine particles.
  • the organic polymer means a polymer composed of organic components, and is not particularly limited with respect to molecular weight, shape, composition, presence or absence of functional groups, and the like.
  • the resin constituting the organic polymer include (meth) acrylic resin; styrene resin; vinyl acetate resin; polyolefin resin such as polyethylene and polypropylene; and cyclic olefin resins such as norbornene resin. Examples thereof include resin, salt-bulle resin, salt-vinyl-redene resin, polyester resin such as polyethylene terephthalate, and copolymers thereof. These resins may be used alone or in combination of two or more.
  • the organic polymer content in the organic / inorganic composite ultrafine particles is preferably 0.5% by mass or more and 50% by mass or less with respect to the inorganic ultrafine particles, for example.
  • the average particle diameter of the inorganic ultrafine particles or organic-inorganic composite ultrafine particles is preferably 5 nm or more and 1 OO nm or less, more preferably 5 nm or more and 50 nm or less. If the average particle size is less than 5 nm, the surface energy of the fine particles becomes high and aggregation or the like may occur easily. Conversely, when the average particle diameter exceeds 200 nm, the amount of light passing through the light diffusion layer and the light condensing layer is decreased, and the luminance may be decreased.
  • the average particle size of inorganic ultrafine particles and organic-inorganic composite ultrafine particles is a volume average particle size measured using a submicron particle size analyzer (NICOMP MODEL 370, manufactured by Nozaki Sangyo Co., Ltd.).
  • the content of the inorganic ultrafine particles or organic-inorganic composite ultrafine particles in the translucent resin is, for example, preferably 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the translucent resin. More preferably, it is 5 parts by mass or more and 100 parts by mass or less. If the content of inorganic ultrafine particles or organic-inorganic composite ultrafine particles is less than 1 part by mass, thermal deformation of the light diffusion layer and damage to the light diffusion layer and the contact member may not be sufficiently prevented.
  • inorganic ultrafine particles or organic inorganic composite ultrafine particles exceeds 200 parts by mass, it becomes difficult to coat the light diffusing layer, and the amount of light passing through the light diffusing layer and the condensing layer decreases. In addition, the total light transmittance and brightness may decrease.
  • the translucent resin may contain a polyfunctional isocyanate compound.
  • a polyfunctional isocyanate compound When a polyfunctional isocyanate compound is contained and a component having a hydroxyl group is further contained, a crosslinked structure can be formed between the multifunctional isocyanate compound and the component having a hydroxyl group. As a result, the characteristics such as moisture resistance, flexibility and durability of the light diffusion layer and the light collecting layer are further improved.
  • additives such as a stabilizer, a deterioration preventing agent, a plasticizer, a dispersant, and a fluorescent brightening agent may be added to the translucent resin.
  • the blending amount of these additives is not particularly limited as long as it is appropriately adjusted according to the type thereof.
  • the light diffusing layer is composed of a translucent resin and at least one kind of fine particle group.
  • the light diffusion on the transparent film And a condensing layer both of which are composed of translucent resin and at least one kind of fine particle group.
  • at least one type of fine particle group dispersed in the translucent resin constituting the light diffusion layer and at least one type of fine particle group embedded in the translucent resin constituting the light collecting layer are: Even if they are composed of the same kind of fine particles, they may be composed of different kinds of microparticle forces.
  • each fine particle constituting the fine particle group includes, for example, (meth) acrylic resin such as polymethyl methacrylate; styrene resin such as polystyrene; amino compound such as melamine and benzoguanamine and formaldehyde Condensed with amino formalin crosslinked resin; polyurethane resin; polyester resin; silicone resin; fluorine resin; copolymers of these; clays such as smectite and kaolinite Inorganic compounds such as silica, titanium dioxide, alumina, silica alumina, zirconium oxide, zinc oxide, barium oxide, strontium oxide; calcium carbonate, barium carbonate, barium chloride, barium sulfate, barium nitrate, water Barium oxide, aluminum hydroxide, strontium carbonate, strontium chloride, strontium sulfate, And the like; silica composite ⁇ particles of transparent or translucent ⁇ and silica fine particles; strontium, strontium, strontium, str
  • each fine particle constituting at least one kind of fine particle group dispersed in the translucent resin constituting the light diffusion layer (meth) acrylic resin, styrene resin, Amino-formalin crosslinked resin, silicone resin, silica, titanium, alumina, inorganic acid such as zinc oxide, calcium carbonate, barium sulfate, etc. are suitable, (meth) acrylic resin Fats, styrene-based resins, amino-based formalin crosslinked resins, silicone-based resins, titers, alumina, zinc oxide, calcium carbonate, and barium sulfate are particularly suitable.
  • each fine particle constituting at least one kind of fine particle group embedded in the translucent resin constituting the light collecting layer (meth) acrylic resin, styrene resin, amino formalin are used.
  • Cross-linked resin, silicone-based resin, silica composite resin particles and the like are suitable, and (meth) acrylic resin, styrene-based resin, silicone-based resin, and silica composite resin particles are particularly preferable.
  • At least one type of fine particle group dispersed in the light transmissive resin constituting the light diffusion layer and at least one type of fine particle group embedded in the light transmissive resin constituting the light collecting layer are formed.
  • Each fine particle may be made of a single material or two or more kinds of materials, and the fine particles may be made of different materials even if they are composed of the same kind of fine particle force 2 More than one kind of fine particle force is also configured.
  • each fine particle constituting the fine particle group examples include a spherical shape, a plate shape, an ellipsoid shape, a saddle shape, a polygonal shape, a disk shape, a star shape, a surface wrinkle shape, a hollow shape, and a crushed shape. It is done.
  • the fine particles having these shapes may be used alone or in combination of two or more.
  • spherical particles are preferred as the fine particles constituting at least one kind of fine particle group dispersed in the translucent resin constituting the light diffusion layer, but stronger than the spherical particles. ⁇ Light diffusibility.
  • spherical particles are particularly preferable as the fine particles constituting at least one kind of fine particle group embedded in the translucent resin constituting the light collecting layer.
  • the average particle size of the fine particle group dispersed in the translucent resin constituting the light diffusion layer is preferably 0.2 ⁇ m or more and 30 ⁇ m or less, more preferably 0.25 ⁇ m or more, 30 It is not more than ⁇ m, more preferably not less than 0 and not more than 10 m. If the average particle size of the fine particle group is less than 0, the light incident on the light diffusion layer may not be sufficiently diffused. Conversely, when the average particle size of the fine particle group exceeds 30 m, the amount of light passing through the light diffusion layer decreases, and the total light transmittance and luminance may decrease.
  • the average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring apparatus (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
  • the average particle size of the fine particle group embedded in the translucent resin constituting the light collecting layer is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less. More preferably, it is 5 ⁇ m or more and 30 ⁇ m or less. If the average particle size of the fine particle group is less than 1 ⁇ m, the light incident on the condensing layer may not be sufficiently collected. Conversely, when the average particle size of the fine particle group exceeds 50 m, the amount of light passing through the condensing layer may decrease, and the total light transmittance and luminance may decrease.
  • the average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer I type II, manufactured by Coulter, Inc.).
  • the content of the fine particle group in the translucent resin constituting the light diffusion layer is, for example, preferably 1 part by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the translucent resin. Preferably they are 5 to 200 mass parts.
  • the content of the fine particle group is less than 1 part by mass, the light incident on the light diffusion layer may not be sufficiently diffused. On the contrary, if the content of the fine particle group exceeds 300 parts by mass, it becomes difficult to form a light diffusion layer, or the amount of light passing through the light diffusion layer decreases, and the total light transmittance and luminance may decrease. is there.
  • the content of the fine particle group in the translucent resin constituting the light collecting layer is, for example, preferably 5 parts by mass or more and 700 parts by mass or less with respect to 100 parts by mass of the translucent resin. Preferably they are 10 to 500 mass parts.
  • the content of the fine particle group is less than 5 parts by mass, the light incident on the condensing layer may not be sufficiently collected.
  • the content force of the fine particle group exceeds S700 parts by mass, it becomes difficult to form a condensing layer, or the amount of light passing through the condensing layer decreases, and the total light transmittance and luminance decrease. There is.
  • At least one of the light diffusion layers contains two types of fine particle groups.
  • examples of the material of each fine particle constituting the fine particle group include the above-described materials listed as materials for each fine particle constituting the fine particle group in the light diffusion sheet of the present invention.
  • each fine particle constituting “Group A”) may be (meth) acrylic resin, styrene resin, amino formalin cross-linked resin, silicone resin, silica, titanium Inorganic acids such as alumina and acid zinc, calcium carbonate, and barium sulfate are preferred.
  • (Meth) acrylic resin, styrene resin, amino formalin cross-linked resin, silicone resin Fat, titer, alumina, calcium carbonate, and barium sulfate are particularly suitable.
  • Group B may be made of (meth) acrylic resin, styrene resin, amino formalin cross-linked resin, silicone resin, silica composite resin particle (Meth) acrylic resin, styrene resin, silicone resin, and silica composite resin particles are particularly preferable.
  • Each fine particle constituting the fine particle groups A and B may be formed of a single material or two or more kinds of material particles. The same material may be composed of one kind of fine particle cover, or may be composed of two or more kinds of fine particles of different materials.
  • Examples of the shapes of the fine particles constituting the fine particle groups A and B include the shapes described above as the shapes of the fine particles constituting the fine particle group in the light diffusion sheet of the present invention.
  • the fine particles having these shapes may be used alone or in combination of two or more.
  • the fine particles constituting the fine particle group A are preferably spherical particles, but have a light diffusibility stronger than that of the spherical particles, and are excellent in light diffusibility when added in a small amount.
  • high total light transmittance and brightness can be obtained, and thus irregular particles such as plate, ellipsoid, saddle, polygon, disk, star, surface wrinkle, hollow, and crushed are preferable.
  • the fine particles constituting the fine particle group B are particularly preferably spherical particles from the viewpoint of collecting light.
  • the average particle size of the fine particle group A is preferably 0.2 m or more and 30 ⁇ m or less, more preferably 0.25 ⁇ m or more and 20 ⁇ m or less, and still more preferably 0.3 ⁇ m or more, 10 ⁇ m or less. If the average particle size of the fine particle group A is less than 0.2 m, the light incident on the light diffusion layer may not be sufficiently diffused. On the contrary, when the average particle size of the fine particle group A exceeds 30 m, the amount of light passing through the light diffusion layer decreases, and the total light transmittance and luminance may decrease.
  • the average particle size of the fine particle group A is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter, Inc.).
  • the average particle size of the fine particle group B is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. is there. If the average particle size of the particle group B is less than 1 ⁇ m, the light incident on the light diffusion layer may not be sufficiently collected. On the contrary, if the average particle size of the fine particle group B exceeds 50 m, the amount of light passing through the light diffusion layer may decrease, and the total light transmittance and luminance may decrease.
  • the average particle size of the fine particle group B is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
  • the content of the fine particle group A in the translucent resin constituting the light diffusion layer is, for example, translucent
  • the amount is preferably 1 part by mass or more and 300 parts by mass or less, more preferably 5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the synthetic resin. If the content of the fine particle group A is less than 1 part by mass, the light incident on the light diffusion layer may not be sufficiently diffused. Conversely, if the content of fine particle group A exceeds 300 parts by mass, it becomes difficult to form a light diffusing layer, or the amount of light passing through the light diffusing layer decreases, resulting in a decrease in total light transmittance and luminance. There is.
  • the content of the fine particle group B in the translucent resin constituting the light diffusion layer is, for example, preferably 5 parts by mass or more and 700 parts by mass or less with respect to 100 parts by mass of the translucent resin. More preferably, it is 10 parts by mass or more and 500 parts by mass or less. If the content of the fine particle group B is less than 5 parts by mass, the light incident on the light diffusion layer may not be sufficiently collected. Conversely, if the content of fine particle group B exceeds 700 parts by mass, it becomes difficult to form a light diffusing layer, or the amount of light passing through the light diffusing layer decreases, resulting in a decrease in total light transmittance and luminance. There is.
  • the light diffusion sheet of the present invention has a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin.
  • the light diffusion layer has a function of sufficiently diffusing incident light.
  • a light diffusion layer in which one kind of fine particle group is dispersed in a transparent resin is formed on at least one side of a transparent film.
  • These fine particle groups are the fine particle group A satisfying the condition that the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more.
  • the fine particle group A is preferably mostly buried in a translucent resin constituting the light diffusion layer, and has a function of sufficiently diffusing the light incident on the light diffusion layer.
  • the light diffusing layer formed on at least one side of the transparent film is composed of a translucent resin in which the fine particle group A is dispersed and has a function of sufficiently diffusing incident light.
  • the light diffusion layer When the light diffusion layer is formed on the surface of the transparent film, the light that has entered and passed through the transparent film enters the light diffusion layer, and the light diffusion layer is formed on the surface of the transparent film. Can be sufficiently diffused. Further, when the light diffusion layer is formed on both surfaces of the transparent film, the light incident on the light diffusion layer formed on the back surface of the transparent film is sufficiently diffused by the particle group A in the light diffusion layer. The light enters the transparent film, passes through, enters the light diffusion layer formed on the surface of the transparent film, and is further sufficiently diffused by the fine particle group A.
  • a light diffusing layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the surface of the transparent film, and the light diffusing layer is formed.
  • the light diffusing layer is formed, and a light condensing layer is formed on the surface of the transparent film by embedding one kind of fine particle group in a translucent resin.
  • the fine particle group dispersed in the light diffusion layer has an absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group of 0.05 or more. It is a fine particle group A that satisfies the condition of being.
  • the fine particle group A is preferably mostly buried in a translucent resin constituting the light diffusion layer, and has a function of sufficiently diffusing the light incident on the light diffusion layer.
  • the light diffusing layer formed on the front or back surface of the transparent film is composed of a translucent resin in which the fine particle group A is dispersed, and has a function of sufficiently diffusing incident light.
  • the light diffusing layer When the light diffusing layer is formed on the surface of the transparent film, the light that has entered and passed through the transparent film enters the light diffusing layer and is sufficiently diffused by the fine particle group A in the light diffusing layer. After that, the light is incident on the light collecting layer formed on the light diffusion layer. In addition, when the light diffusion layer is formed on the back surface of the transparent film, the light incident on the light diffusion layer is sufficiently diffused by the fine particle group A in the light diffusion layer, and then enters the transparent film. And enters the condensing layer formed on the surface of the transparent film.
  • the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A is 0.05 or more, preferably 0.07 or more, more preferably 0.09 or more.
  • the upper limit of the absolute value of the refractive index difference is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less. Therefore, as the translucent resin and fine particle group A constituting the light diffusion layer, the translucent resin and fine particle group described above so that the absolute value of the difference in refractive index S falls within this range. Materials selected and combined as appropriate from the above are used in a blended amount adjusted as appropriate.
  • the thickness of the light diffusion layer is preferably 1 ⁇ m or more, 60 ⁇ m or less, more preferably 5 ⁇ m or more, 40 ⁇ m or less. If the thickness of the light diffusion layer is less than 1 ⁇ m, the light incident on the light diffusion layer may not be sufficiently diffused. Conversely, if the thickness of the light diffusing layer exceeds 60 m, the amount of light passing through the light diffusing layer decreases, and the total light transmittance and luminance may decrease.
  • the light diffusing layer may be formed of a single layer or may be formed of two or more layers. Also, the light diffusing layer may be formed of one single layer of the same material, but two types of materials are different. It may be composed of the above multiple layers.
  • the light diffusing sheet of the present invention has a light diffusing layer in which two or more kinds of fine particle groups are dispersed in a translucent resin on at least one side of a transparent film.
  • These fine particle groups satisfy the above conditions when the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more.
  • the fine particle group B does not necessarily have to satisfy the conditions. And.
  • the fine particle group A is preferably mostly buried in the light-transmitting resin constituting the light diffusion layer and has a function of sufficiently diffusing the light incident on the light diffusion layer, whereas the fine particle group Preferably, most of B protrudes partially from the translucent resin constituting the light diffusing layer, and the front surface is a convex portion that partially protrudes the light sufficiently diffused by the fine particle group A. It has a function of collecting light in the direction. Therefore, such a light diffusion layer is sometimes referred to as “light diffusion layer”.
  • the light diffusing light condensing layer formed on at least one side of the transparent film is composed of a translucent resin in which two or more kinds of fine particle groups A and B are dispersed, and sufficiently diffuses incident light.
  • the condensing layer has a function of condensing light in the front direction.
  • Light diffusing If the condensing layer is formed on one side of the transparent film, the light that has entered the transparent film and passed through it is incident on the light diffusing' condensing layer and formed on the surface of the transparent film. In the diffusion-condensing layer, it is sufficiently diffused by the particle group A, and is condensed in the front direction by the convex part of the particle group B.
  • the light diffusion / condensation layer is formed on both sides of the transparent film, the light diffusion / condensation layer formed on the back surface of the transparent film is the light diffusion / condensation layer.
  • the light is condensed by the convex part of B, and after being sufficiently diffused by the fine particle group A, it enters and passes through the transparent film, and enters the light diffusing 'condensing layer formed on the surface of the transparent film. Further, it is further sufficiently diffused by the fine particle group A, and the positive part of the fine particle group B is positive. It is condensed in the surface direction.
  • the surface of the particle group B partially protruding from the light diffusing / condensing layer may or may not be covered with the light transmissive resin constituting the light diffusing / condensing layer. However, the viewpoint power for improving the scratch resistance of the light diffusion sheet is preferably covered.
  • the fine particle group B has light diffusion 'concavity and convexity formed on the surface of the condensing layer.
  • Light diffusion' light incident on the condensing layer is formed on the surface of the light diffusion 'condensing layer. Concentrated in the front direction by the convex part of fine particle group B.
  • the translucent resin and the fine particle group A constituting the light diffusing condensing layer have the absolute value of the difference in refractive index S. Materials appropriately selected and combined from the group of fats and fine particles are used in appropriately adjusted amounts.
  • the surface roughness of the light diffusing condensing layer is an arithmetic average roughness, preferably 0.5 / zm or more and 7 m or less, more preferably 0.7 m or more and 6 m or less, and still more preferably. 0.9 m or more and 5 m or less.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group B in the light diffusion / condensing layer is preferably 1.0 or more and 4.0 or less, more preferably 1.05 or more and 3.0 or less, and further preferably. Is 1.1 or more and 2.5 or less.
  • the translucent resin and fine particle group B constituting the light diffusion / condensing layer are described above so that the ratio of the layer thickness to the average particle diameter and the surface roughness are within this range.
  • a material selected and combined as appropriate from the translucent resin and the fine particle group is used by appropriately adjusting it within the range of the blending amount explained above.
  • the thickness of the light diffusion layer is preferably 1 ⁇ m or more and 60 m or less, more preferably 5 ⁇ m or more and 40 m or less. If the thickness of the light diffusion / condensing layer is less than 1 ⁇ m, light incident on the light diffusion / condensing layer may be sufficiently diffused and not collected. Conversely, if the thickness of the light diffusing / condensing layer exceeds 60 m, the amount of light passing through the light diffusing / condensing layer may decrease, and the total light transmittance and luminance may decrease.
  • the light diffusing condensing layer may be formed of a single layer or two or more layers. In addition, even if it is composed of one single layer of the same material, it may be composed of two or more layers of different materials.
  • a layer having a refractive index different from that of the translucent resin may be formed on the fine particle group partially protruding from the light diffusing / condensing layer.
  • a layer having a refractive index lower than that of the translucent resin is particularly preferable.
  • Light diffusion ⁇ Total reflection at the interface between the fine particles partially protruding from the condensing layer and the layer having a low refractive index, and at the interface between the layer having a low refractive index and the air layer is reduced. Backward light scattering is reduced and total light transmission and brightness are improved.
  • the resin used as the light transmissive resin constituting the light diffusing layer or the light diffusing light collecting layer has an appropriate hardness and toughness. It has excellent scratch resistance with few scratches on the light diffusion sheet and contact member, and is easy to handle during production, storage, transportation, use, etc., and yield is improved.
  • the light diffusing sheet of the present invention has a condensing layer in which at least one kind of fine particle group is embedded in a translucent coagulant.
  • the condensing layer also has a light diffusing function that only condenses incident light in the front direction.
  • the light collecting layer is formed on the light diffusing layer formed on the surface of the transparent film, the light sufficiently diffused by the light diffusing layer is incident on the light collecting layer, and partially from the light collecting layer. It is condensed in the front direction by the fine particle group protruding to the front.
  • the condensing layer When the condensing layer is formed on the surface of the transparent film, it is sufficiently diffused by the light diffusing layer formed on the back surface of the transparent film, then enters and passes through the transparent film, and enters the condensing layer. Thus, the light is collected in the front direction by the group of fine particles partially protruding from the light collecting layer. Note that the surface of the fine particle group partially protruding from the light collecting layer may or may not be covered with the translucent resin constituting the light collecting layer. In either case, it is sufficient if the group of fine particles embedded in the condensing layer forms irregularities on the surface of the condensing layer. Condensed in the front direction by the convex part.
  • the surface roughness of the light collecting layer is an arithmetic average roughness, and is preferably 0.5 / zm or more and m or less, more preferably 0.7 ⁇ m or more and 6 ⁇ m or less, and still more preferably 0. 9 ⁇ m or more and 5 ⁇ m or less.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer is preferably Is 1.0 or more and 4.0 or less, more preferably 1.05 or more and 3.0 or less, and still more preferably 1.1 or more and 2.5 or less.
  • the translucent resin and the fine particle group constituting the condensing layer include the translucent resin described above so that the ratio of the layer thickness to the average particle diameter and the surface roughness are within this range.
  • materials appropriately selected from the group of fine particles and combined can be appropriately adjusted and used within the range of the blending amounts described above.
  • the thickness of the light collecting layer is preferably 1 ⁇ m or more and 60 ⁇ m or less, more preferably 5 ⁇ m or more and 40 m or less. If the thickness of the condensing layer is less than 1 m, the light incident on the condensing layer may not be sufficiently collected. Conversely, if the thickness of the light condensing layer exceeds 60 m, the amount of light passing through the light condensing layer may decrease, and the total light transmittance and brightness may decrease.
  • the light-collecting layer may be formed of a single layer or may be formed of two or more layers, and the material may be different even if it is formed of one type of the same single layer. It may consist of more than one kind of multiple layers.
  • a layer having a refractive index different from that of the translucent resin may be formed on the fine particle group partially protruding from the light collecting layer.
  • a layer having a refractive index lower than that of the translucent resin is particularly preferable. Total reflection at the interface between the particle group partially protruding from the condensing layer and the layer having a low refractive index, and the interface between the layer having a low refractive index and the air layer is reduced. Light scattering is reduced and total light transmission and brightness are improved.
  • the transparent film is made of, for example, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate; a (meth) acrylic resin such as polymethyl methacrylate; 2- (hydroxyalkyl) acrylic Rataton ring-containing resins containing latatone ring structural units derived from acid esters; polycarbonate-based resins; olefin-based resins such as polyethylene and polypropylene; cyclic olefin-based resins such as norbornene resins; salt-bulls Examples thereof include fats; salty vinyl-redene-based resins; styrene-based resins; polyamide-based resins such as polyamide 6 and polyamide 66; cellulose derivatives such as triacetyl cellulose; and copolymers thereof.
  • a polyester resin such as polyethylene terephthalate or polyethylene naphthalate
  • a (meth) acrylic resin such as polymethyl methacrylate
  • polyester-based resins (meth) acrylic-based resins, outer ring-containing resins, and polycarbonate-based resins are suitable.
  • polyethylene terephthalate, latton ring-containing resin, and polycarbonate resin are particularly suitable.
  • the transparent film may be formed of a single material or two or more kinds of materials, and may be formed of a single layer or a plurality of layers. Good
  • the thickness of the transparent film is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 400 ⁇ m or less, and further preferably 20 ⁇ m or more and 300 ⁇ m or less. If the thickness of the transparent film is less than 5 m, the mechanical strength of the light diffusing sheet may decrease. Conversely, if the thickness of the transparent film exceeds 500 m, the amount of light passing through the transparent film decreases, and the total light transmittance and brightness may decrease.
  • the transparent film preferably has a haze of 0% or more and 20% or less, more preferably 0% or more and 10% or less, still more preferably 0% or more and 5% or less, and Z or all light transmission.
  • the rate is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less.
  • the haze and total light transmittance are values measured by a measurement method based on JIS K7105 using a turbidimeter (for example, NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • Members that directly receive light of light source power may contain an ultraviolet inhibitor in these members in order to prevent the influence of ultraviolet rays. It is also possible to provide a UV protection layer on the surface that receives light from the light source, and members that come into contact with the air layer, such as transparent films, light diffusion layers, and condensing layers, are not affected by dust in the air. In order to prevent this, an antistatic agent may be contained in these members, or an antistatic layer may be provided on the surface in contact with the air layer.
  • the back surface of the transparent film is usually a smooth surface, but for example, embossing is performed.
  • the light diffusing property may be a force imparting anti-sticking property, or a anti-sticking layer may be provided on the back surface of the transparent film.
  • the anti-sticking layer is formed, for example, by directly coating the back surface of a transparent film with a composition obtained by kneading the above-described fine particle group in the above-described translucent resin.
  • the average particle size of the fine particle group dispersed in the anti-sticking layer is preferably 0.5 ⁇ m or more and 20 ⁇ m or less, and more preferably. 1 ⁇ m or more and 15 m or less.
  • the average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
  • the thickness of the anti-sticking layer is preferably 0.5 ⁇ m or more and 20 m or less, more preferably 1 m or more and 15 m or less.
  • the content of the fine particle group in the translucent resin is not particularly limited, but is relatively small, and the fine particles constituting the fine particle group are separated from each other and dispersed in the translucent resin. However, it is sufficient that a part of the fine particle group partially protrudes from the translucent resin.
  • FIG. 1 corresponds to a light diffusing sheet in which a light diffusing layer in which one kind of fine particle group is dispersed in a translucent resin is formed on the surface of a transparent film.
  • Fig. 2 corresponds to a light diffusing sheet in which a light diffusing layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the front and back surfaces of a transparent film.
  • Fig. 3 corresponds to a light diffusing sheet in which a light diffusing / condensing layer is formed by dispersing two types of fine particle groups in a translucent resin on the surface of a transparent film.
  • Figure 4 corresponds to a light diffusing sheet in which a light diffusing and condensing layer is formed on the front and back surfaces of a transparent film, in which two types of fine particles are dispersed in a translucent resin.
  • FIG. 5 shows that a light diffusion layer in which one kind of fine particle group is dispersed in a transparent film is formed on the surface of the transparent film, and one kind of fine particle group in the light transparent resin is formed on the light diffusion layer. It corresponds to a light diffusion sheet with a light condensing layer embedded.
  • Fig. 6 shows a condensing layer in which one type of fine particle group is embedded in a transparent film on the surface of the transparent film, and one type of fine particle in the transparent film on the back surface of the transparent film. This corresponds to a light diffusion sheet in which a light diffusion layer in which groups are dispersed is formed.
  • a light diffusing condensing layer in which two or more kinds of fine particles are dispersed in a transparent resin is formed on the surface of the transparent film.
  • a light diffusion layer in which two or more kinds of fine particles are dispersed in a transparent resin on the back surface of the transparent film; a light diffusion sheet in which a light collecting layer is formed; etc. Can be considered.
  • the light diffusing sheet 10 shown in FIG. 1 has one type of translucent resin 11 on the surface of the transparent film 11.
  • the light diffusion layer A in which the fine particle group 14 is dispersed is formed.
  • the fine particle group 14 is substantially uniformly dispersed in the light diffusion layer A, and substantially all of the fine particle group is embedded in the translucent resin 11.
  • the absolute value of the refractive index difference between the translucent resin 11 and the fine particle group 14 is 0.05 or more.
  • the translucent resin 11 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic / inorganic composite ultrafine particles.
  • the light diffusion layer A diffused light is emitted after being sufficiently diffused by the fine particle group 14 dispersed in the translucent resin 11. Since the fine particle group 14 is present substantially over the entire light diffusion layer A, more diffused light is emitted and luminance unevenness is reduced.
  • the light diffusion sheet 10 shown in FIG. 1 may be used upside down.
  • a light diffusing sheet 20 shown in FIG. 2 has a light diffusing layer A in which one kind of fine particle group 22 is dispersed in a translucent resin 23 formed on the surface of a transparent film 21. Similarly, a light diffusion layer A in which one kind of fine particle group 22 is dispersed in a translucent resin 23 is formed on the back surface.
  • the fine particle group 22 is substantially uniformly dispersed in the light diffusion layer A, and substantially all the fine particle group is embedded in the translucent resin 23.
  • the absolute value of the refractive index difference between the translucent resin 23 and the fine particle group 22 is 0.05 or more.
  • the translucent resin 23 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the light incident on the light diffusion layer A formed on the back surface of the transparent film 21 is sufficiently diffused by the fine particle group 22 dispersed in the translucent resin 23, and then passes through the transparent film 21 and passes through the transparent film 21.
  • the light enters the light diffusion layer A formed on the surface of 21.
  • diffused light is emitted after being sufficiently diffused by the fine particle group 22 dispersed in the translucent resin 23. Since the particle group 22 is present substantially over the entire light diffusion layer A, more diffused light is emitted and luminance unevenness is reduced.
  • the light diffusing sheet 30 shown in FIG. 3 has a light diffusing / condensing layer B in which two kinds of fine particle groups 34 and 35 are dispersed in a transparent resin 33 on the surface of a transparent film 31. Yes.
  • the fine particle groups 34 and 35 are substantially uniformly dispersed in the light diffusion / condensing layer B, and some of the fine particle groups partially protrude from the light diffusion / condensing layer B.
  • the absolute value of the refractive index difference between the translucent resin 33 and the fine particle group 34 is 0.05 or more.
  • Translucent rosin 33 is preferred Or (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the light incident on the back surface of the transparent film 31 passes through the transparent film 31 and enters the light diffusion / condensing layer B.
  • the light diffusion / condensation layer B after being sufficiently diffused by the fine particle group 34 dispersed in the translucent resin 33, the protruding part of the fine particle group 35 partially protruding from the translucent resin 33
  • the light is collected in the front direction by the (convex portion). Since the particle group 35 exists substantially throughout the light diffusing and condensing layer B, more light is collected in the front direction and luminance unevenness is reduced.
  • the light diffusion sheet 40 shown in FIG. 4 has a light diffusing condensing layer B in which two kinds of fine particle groups 44 and 45 are dispersed in a transparent resin 43 on the surface of a transparent film 41.
  • a light diffusing / condensing layer B in which two kinds of fine particle groups 44 and 45 are dispersed in a translucent resin 43 is formed on the back surface of the transparent film 41.
  • the fine particle groups 44 and 45 are substantially uniformly dispersed in the light diffusing / condensing layer B, and some of the fine particle groups partially protrude from the light diffusing / condensing layer B.
  • the absolute value of the refractive index difference between the translucent resin 43 and the fine particle group 44 is 0.05 or more.
  • the translucent resin 43 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic inorganic composite ultrafine particles.
  • Light diffused on the back surface of the transparent film 41 'Light incident on the condensing layer B is partly diffused by the fine particle group 44 dispersed in the translucent resin 43 and partly translucent. After being condensed by the protruding part (convex part) of the fine particle group 45 partially protruding from the synthetic resin 43, it passes through the transparent film 41, and then the light diffusion 'condensing formed on the surface of the transparent film 41 Incident to layer B.
  • the protruding portion of the fine particle group 45 partially protruding from the translucent resin 43 ( The light is collected in the front direction by the convex portion. Since the particle group 45 is present substantially over the entire light diffusion / condensing layer B, more light is condensed in the front direction and luminance unevenness is reduced.
  • a light diffusion layer C in which one kind of fine particle group 54 is dispersed in a translucent resin 53 is formed on the surface of a transparent film 51, and the light diffusion layer C On top of this, a condensing layer D in which five kinds of fine particle groups 56 are embedded in a translucent resin 55 is formed.
  • the absolute value of the refractive index difference between the translucent resin 53 and the fine particle group 54 is 0.05 or more.
  • the surface roughness of the light collecting layer D is preferably an arithmetic average roughness of 0.5 / zm or more and 7 m or less.
  • Fine particles The subgroups 54 are substantially uniformly dispersed in the light diffusion layer C, and the fine particle group 56 also partially projects the condensing layer D force.
  • the light incident on the back surface of the transparent film 51 passes through the transparent film 51 and enters the light diffusion layer C.
  • the fine particle group 54 dispersed in the translucent resin 53 and then enters the light condensing layer D.
  • the condensing layer D light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group 56 partially protruding from the translucent resin 55. Since the particle group 56 exists on substantially the entire surface of the condensing layer D, more light is condensed in the front direction and luminance unevenness is reduced.
  • a light diffusing sheet 60 shown in FIG. 6 has a light condensing layer D in which one type of fine particle group 66 is embedded in a transparent resin 65 on the surface of a transparent film 61.
  • a light diffusion layer C in which one kind of fine particle group 64 is dispersed in a transparent resin 63 is formed on the back surface.
  • the absolute value of the refractive index difference between the translucent resin 63 and the fine particle group 64 is 0.05 or more.
  • the surface roughness of the light collecting layer D is preferably not less than 0 and not more than the arithmetic average roughness.
  • the fine particle group 64 is substantially uniformly dispersed in the light diffusion layer C, and the fine particle group 66 also partially projects the condensing layer D force.
  • the light incident on the light diffusion layer C formed on the back surface of the transparent film 61 is sufficiently diffused by the fine particle group 64 dispersed in the translucent resin 63, and then passes through the transparent film 61.
  • the light enters the condensing layer D formed on the surface of 61.
  • the condensing layer D light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group 66 partially protruding from the translucent resin 65. Since the fine particle group 66 exists on substantially the entire surface of the condensing layer D, more light is condensed in the front direction and luminance unevenness is reduced.
  • a light diffusing sheet 10 shown in FIG. 1 is prepared by first mixing a composition obtained by kneading one kind of fine particle group 14 with a light transmitting resin 13 constituting a light diffusing layer A. After coating directly on the surface of the transparent film 11, the light-transmitting resin 13 is dried to form the light diffusion layer A.
  • the light diffusing sheet 20 shown in FIG. 2 is first coated directly on the surface of the transparent film 21 with a composition in which one kind of fine particle group 24 is kneaded with the translucent resin 23 constituting the light diffusing layer A. After that, the translucent resin 23 is dried to form a light diffusion layer A, and then the same composition as above It can be manufactured by directly coating an object on the back surface of the transparent film 21 and then drying the translucent resin 23 to form the light diffusion layer A. Of course, first, after forming the light diffusion layer A on the back surface of the transparent film 21, the light diffusion layer A may be formed on the surface of the transparent film 21.
  • a light diffusing sheet 30 shown in FIG. 3 is prepared by first mixing a composition obtained by kneading two kinds of fine particle groups 34 and 35 with a light transmissive resin 33 constituting a light diffusing 'condensing layer B. After coating directly on the surface, the light-transmitting resin 33 is dried to form a light diffusing and condensing layer B.
  • the light diffusing sheet shown in FIG. 4 is prepared by first mixing a composition obtained by kneading two kinds of fine particle groups 44 and 45 with the light transmissive resin 43 constituting the light diffusing 'condensing layer B. After coating directly onto the transparent film 41, the light-transmitting resin 43 is dried to form a light diffusion / diffusion layer B, and then the back surface of the transparent film 41 is directly coated with the same composition as above. It can be produced by drying the translucent resin 43 to form the light diffusion / condensing layer B.
  • the light diffusion / condensing layer B may be formed on the back surface of the transparent film 41, and then the light diffusion / condensing layer B may be formed on the surface of the transparent film 41.
  • the surface of the transparent film 51 is directly coated with a composition in which one kind of fine particle group 54 is kneaded with the translucent resin 53 constituting the light diffusion layer C. After that, the light-transmitting resin 53 is dried to form a light diffusion layer C, and then the light-transmitting resin 55 constituting the light-collecting layer D is kneaded with one kind of fine particle group 56. Can be manufactured by coating the light diffusing layer C directly and then drying the translucent resin 55 to form the light collecting layer D.
  • the back surface of the transparent film 61 is directly coated with a composition in which one kind of fine particle group 64 is kneaded with the translucent resin 63 constituting the light diffusion layer C.
  • the light transmissive resin 63 is dried to form the light diffusion layer C, and then the light transmissive resin 65 constituting the light condensing layer D is kneaded with one kind of fine particle group 66.
  • the light condensing layer D may be formed on the surface of the transparent film 61, and then the light diffusion layer C may be formed on the back surface of the transparent film 61.
  • An organic solvent may be used when the fine particle group is kneaded with the translucent resin.
  • the organic solvent is not particularly limited as long as it is appropriately selected in consideration of the solubility, workability, cost, etc. of each component. Specifically, for example, aromatic solvents such as toluene and xylene are used.
  • Hydrocarbon solvents Aliphatic hydrocarbon solvents such as hexane and heptane; Ester solvents such as ethyl acetate and butyl acetate; Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; Isopropyl alcohol and butyl alcohol Alcohol-based solvents such as; petroleum fractions having various boiling points mainly composed of aliphatic hydrocarbons; and the like. These organic solvents may be used alone or in combination of two or more.
  • the method of directly coating the composition obtained by kneading the fine particle group in the translucent resin is not particularly limited as long as a conventionally known coating technique is employed.
  • the method for drying the translucent rosin is not particularly limited as long as a conventionally known drying method is adopted.
  • the light diffusion sheet of the present invention may be used in a conventionally known direct type or edge light type backlight unit as a light diffusion sheet of a direct type or edge light type backlight unit. It is preferably used for a type backlight unit.
  • the light diffusion sheet of the present invention can be widely used for applications such as a screen for a projection display device, a plasma display device, an electoluminescence display device, and the like for expanding the viewing angle.
  • the light diffusing plate of the present invention has a light transmissive layer in which at least one surface of a transparent support is formed with a light diffusing layer in which at least one fine particle group is dispersed in a light transmissive resin, and constitutes the light diffusing layer.
  • the absolute value of the refractive index difference between the resin and the group of at least one kind of fine particles is 0.05 or more, or at least one kind of fine particles in the translucent resin on one side of the transparent film.
  • at least one of the light diffusing layers contains two kinds of fine particle groups, and the surface roughness of the light diffusing layer is not less than 0. It is preferable.
  • Such a light diffusing layer has a light condensing property in addition to a light diffusing property, and therefore is sometimes called a “light diffusing / condensing layer”.
  • a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and the translucent resin is formed on the light diffusing layer. It is preferable that a condensing layer in which at least one kind of fine particle group is embedded is formed, and that the surface roughness of the condensing layer is an arithmetic average roughness of 0.5 ⁇ m or more and 7 ⁇ m or less.
  • a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and the translucent resin is formed on the opposite surface of the transparent support. It is preferable that a condensing layer in which at least one kind of fine particle group is embedded is formed, and that the surface roughness of the condensing layer is an arithmetic average roughness of 0.5 m or more and 7 m or less.
  • a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and at least 1 of the translucent resin is formed on one surface of the transparent film.
  • a condensing sheet having a condensing layer in which various kinds of fine particle groups are embedded is attached to the opposite surface of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is arithmetically averaged. The roughness is preferably 0.5 ⁇ m or more and 7 ⁇ m or less.
  • a light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least 1 in the transparent resin is formed on the light diffusing layer.
  • a light diffusing sheet on which a condensing layer in which various kinds of fine particle groups are embedded is formed is bonded to one side of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is an arithmetic average roughness. It is preferably 0.5 m or more and 7 ⁇ m or less.
  • a light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of a transparent film is an adhesive on one side of the transparent support. Is bonded with an adhesive, and a condensing layer is formed on the opposite surface of the transparent support with at least one fine particle group embedded in translucent resin, and the surface roughness of the condensing layer is arithmetic
  • the average roughness is preferably 0.5 ⁇ m or more and 7 ⁇ m or less.
  • At least one type of fine particle group is separated in the translucent resin.
  • a light diffusing sheet having a light diffusing layer dispersed thereon is bonded to one side of the transparent support with an adhesive or a pressure-sensitive adhesive, and at least one kind of fine particle group composed of translucent resin on one side of the transparent film.
  • a condensing sheet with a condensing layer embedded therein is attached to the opposite surface of the transparent support with an adhesive or a pressure-sensitive adhesive, and the surface roughness of the condensing layer is an arithmetic average roughness of 0. It is preferably 5 ⁇ m or more and 7 ⁇ m or less.
  • the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the light diffusing layer and the fine particle group constituting the light diffusing layer and the light condensing layer, and the light diffusing layer in which at least one kind of fine particle group is dispersed in the light transmissive resin are the same as in the case of the light diffusion sheet described above, and thus the description thereof is omitted here.
  • “light diffusing sheet” shall be read as “light diffusing plate” as necessary.
  • the resin used as the translucent resin constituting the light diffusing layer and the light collecting layer has an appropriate hardness and toughness. Excellent scratch resistance with few scratches on the plate and contact members, easy handling during production, storage, transportation, use, etc., and yield improvement.
  • the transparent support may be made of, for example, a (meth) acrylic resin such as polymethyl methacrylate; a rataton containing a rataton ring structural unit derived from 2- (hydroxyalkyl) acrylate. Ring-containing resin; Styrene resin such as MS resin; Olefin resin such as polyethylene and polypropylene; Cyclic olefin resin such as norbornene resin; Salt vinyl resin; Salt resin -Ridene-based resin; Polyester-based resin such as polyethylene terephthalate and polyethylene naphthalate; Polycarbonate-based resin; Copolymers of these; and other inorganic materials such as glass . Of these materials, (meth) acrylic resin, rubber ring-containing resin, MS resin, cyclic olefin-based resin, polycarbonate-based resin, and glass are preferable.
  • transparent thermoplastic resins include, for example, stabilizers and prevention of deterioration. You may mix
  • the transparent support may be formed of a single material or two or more materials, and may be formed of a single layer or a plurality of layers. May
  • the thickness of the transparent support is not particularly limited as long as the transparent support itself does not suffice and has a mechanical strength that does not cause the light diffusion sheet to squeeze. It is preferably 0.3 mm or more and 10 mm or less, more preferably 0.5 mm or more and 7 mm or less, and further preferably lmm or more and 5 mm or less. If the thickness of the transparent support is less than 0.3 mm, the mechanical strength of the light diffusing plate may decrease. Conversely, if the thickness of the transparent support exceeds 10 mm, the thickness of the knocklight unit may increase.
  • the transparent support preferably has a haze of 0% or more and 20% or less, more preferably 0% or more, 10% or less, more preferably 0% or more and 5% or less, and Z or all
  • the light transmittance is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less.
  • the haze and total light transmittance are values measured by a measurement method based on JIS K7105 using a turbidimeter (for example, NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • members such as a transparent support and a light diffusion layer that directly receive light of light source power may contain an ultraviolet absorber in order to prevent the influence of ultraviolet rays. It is also possible to provide an ultraviolet absorbing layer on the surface that receives light with a strong light source. Members that come into contact with the air layer, such as a transparent support, light diffusing layer, and condensing layer, are affected by dust in the air. In order to prevent this, an antistatic agent may be contained in these members, or an antistatic layer may be provided on the surface in contact with the air layer.
  • FIG. 7 corresponds to a light diffusing plate in which a light diffusing layer in which one kind of fine particle group is dispersed in a translucent resin is formed on the surface of the transparent support.
  • FIG. 8 a light diffusing layer in which two kinds of fine particle groups are dispersed in a translucent resin is formed on the surface of the transparent support and corresponds to a light diffusing plate.
  • Fig. 9 shows a light diffusion layer in which a single particle group is dispersed in a transparent resin on the surface of a transparent support.
  • FIG. 10 shows that a condensing layer in which one type of fine particle group is embedded in a transparent support is formed on the surface of the transparent support, and one type of translucent resin is provided on the back of the transparent support. It corresponds to a light diffusing plate on which a light diffusing layer in which fine particles are dispersed is formed.
  • FIG. 11 shows a light diffusing sheet in which a light diffusing layer in which one type of fine particle group is dispersed in a translucent resin is formed on the surface of a transparent film, and an adhesive or an adhesive on the surface of the transparent support.
  • Fig. 12 shows that a light diffusing sheet in which a light diffusing layer in which two types of fine particles are dispersed in a transparent resin is formed on the surface of a transparent film is bonded to the surface of the transparent support with an adhesive or an adhesive. It corresponds to the light diffusion plate.
  • Fig. 13 shows that a light diffusing layer in which one kind of fine particle group is dispersed in a transparent film is formed on the surface of the transparent film, and one kind of fine particle group is formed on the light diffusing layer on the light diffusing layer.
  • the light diffusion sheet on which the buried light-collecting layer is formed corresponds to the light diffusion plate bonded to the surface of the transparent support with an adhesive or a pressure-sensitive adhesive.
  • a condensing sheet in which a condensing layer in which one type of fine particle group is embedded in a transparent film is formed on the surface of a transparent film is bonded to the surface of the transparent support with an adhesive or an adhesive.
  • a light diffusion sheet in which a light diffusion layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the back surface of the transparent film is bonded to the back surface of the transparent support with an adhesive or an adhesive. It corresponds to the light diffusion plate.
  • a light diffusing sheet in which a light diffusing layer in which a light diffusing layer is dispersed is bonded to both sides of a transparent support with an adhesive or a pressure sensitive adhesive; two types of translucent resin on the surface of a transparent film, or Light diffusion sheet in which three or more kinds of fine particles are dispersed 'Light diffusion sheet with light condensing layer formed on both sides of transparent support with adhesive or adhesive; surface of transparent support
  • a light diffusion layer in which one type of fine particle group is dispersed in a transparent resin is formed, and the back of the transparent film is formed.
  • a light diffusion layer in which one type of fine particle group is dispersed in translucent resin
  • a light diffusing plate in which the light diffusing sheet is bonded to the back surface of the transparent support with an adhesive or a pressure sensitive adhesive
  • a light diffusing layer in which one kind of fine particle group is dispersed in a translucent resin on the surface of the transparent film
  • a light diffusing sheet on which is formed is bonded to the surface of a transparent support with an adhesive or a pressure-sensitive adhesive, and light in which one kind of fine particle group is dispersed in a transparent resin on the back surface of the transparent support.
  • a light diffusing sheet in which two or more kinds of fine particle groups are dispersed in a translucent resin is formed on the back surface of the transparent support with an adhesive or an adhesive on the back surface of the transparent support.
  • Bonded light diffusing plate 2 or 3 or more kinds of translucent resin on the surface of the transparent film
  • a light diffusion sheet in which a child group is dispersed A light diffusion sheet on which a diffusion layer is formed is bonded to the surface of the transparent support with an adhesive or a pressure-sensitive adhesive, and the transparent support is coated on the back surface of the transparent support.
  • Light diffusing plate in which two or more types of fine particles are dispersed; a light diffusing plate in which a diffusion layer is formed; light condensing with one type of fine particles embedded in a transparent support on the surface of a transparent support
  • Light diffusion plate bonded with an adhesive; a light-condensing sheet in which a light-condensing layer in which one type of fine particle group is embedded in a transparent film is formed on the surface of a transparent film is attached to the surface of the transparent support Or, it is bonded with an adhesive, and one kind of fine particle group is added to the transparent resin on the back of the transparent support.
  • a light diffusing plate on which a dispersed light diffusing layer is formed may be considered.
  • a light diffusing layer A in which one type of fine particle group 74 is dispersed in a translucent resin 73 is formed on the surface of a transparent support 72.
  • the fine particle group 74 is substantially uniformly dispersed in the light diffusion layer A, and substantially all of the fine particle group is embedded in the translucent resin 73.
  • the absolute value of the refractive index difference between the translucent resin 73 and the fine particle group 74 is 0.05 or more.
  • the translucent resin 73 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic inorganic composite ultrafine particles. Light incident from the back surface of the transparent support 72 is sufficiently diffused by the fine particle group 74 and then travels to a liquid crystal display panel (not shown). Note that the light diffusing plate 70 shown in FIG. 7 may be used upside down.
  • the light diffusing plate 80 shown in Fig. 8 has two kinds of fine particles on the surface of the transparent support 82 and the translucent resin 83.
  • a light diffusing / condensing layer B in which the particle groups 84 and 85 are dispersed is formed.
  • the fine particle groups 84 and 85 are substantially uniformly dispersed in the light diffusion / condensing layer B, and some of the fine particle groups partially protrude from the light diffusion / condensing layer B.
  • the absolute value of the difference in refractive index between the translucent resin 83 and the fine particle group 84 is 0.05 or more.
  • the translucent resin 83 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the surface roughness of the light diffusing light condensing layer B is an arithmetic average roughness, preferably 0.
  • the light that has also entered the back surface force of the transparent support 82 passes through the transparent support 82 and enters the light diffusion / condensing layer B.
  • the incident light is sufficiently diffused by the fine particle group 84, and then the frontal direction is caused by the protruding portion (convex portion) of the fine particle group 85 partially protruding from the translucent resin 83.
  • the light is focused on the liquid crystal display panel (not shown).
  • a light diffusing layer C in which one kind of fine particle group 94 is dispersed in a transparent resin 93 is formed on the surface of a transparent support 92, and the light diffusing layer C is formed.
  • a condensing layer D in which one kind of fine particle group 96 is embedded in translucent resin 95 is formed on layer C.
  • the absolute value of the refractive index difference between the translucent resin 93 and the fine particle group 94 is 0.05 or more.
  • the surface roughness of the light collecting layer D is preferably an arithmetic average roughness of 0.5 / z m or more and 7 m or less.
  • the light that has also entered the back surface force of the transparent support 92 passes through the transparent support 92 and enters the light diffusion layer C.
  • the incident light is sufficiently diffused by the fine particle group 94 and then enters the light condensing layer D.
  • the light condensing layer D the light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group partially protruding from the translucent resin 95 and heads toward the liquid crystal display panel (not shown).
  • a condensing layer D in which one kind of fine particle group 106 is embedded in a transparent resin 105 is formed on the surface of a transparent support 102, and the transparent support 102 is formed.
  • a light diffusion layer C in which one kind of fine particle group 104 is dispersed in a translucent resin 103 is formed on the back surface of the body 102.
  • the absolute value of the refractive index difference between the translucent resin 103 and the fine particle group 104 is 0.05 or more.
  • the surface roughness of the light collecting layer D is preferably an arithmetic average roughness of 0.5 / zm or more and m or less.
  • the light incident on the light diffusion layer C formed on the back surface of the transparent support 102 is sufficiently diffused by the fine particle group 104, passes through the transparent support 102, and is formed on the surface of the transparent support 102.
  • the translucent resin 105 is partially The light is condensed in the front direction by the protruding portion (convex portion) of the protruding fine particle group, and is directed to a liquid crystal display panel (not shown).
  • the light diffusing plate 110 shown in FIG. 11 is a light diffusing sheet in which a light diffusing layer A in which one kind of fine particle group 114 is dispersed in a translucent resin 113 is formed on the surface of a transparent film 111.
  • the transparent support 112 is bonded to the surface with an adhesive or a pressure sensitive adhesive 118.
  • the fine particle group 114 is substantially uniformly dispersed in the light diffusion layer A, and substantially all of the fine particle group is embedded in the translucent resin 113.
  • the absolute value of the refractive index difference between the translucent resin 113 and the fine particle group 114 is 0.05 or more.
  • the translucent resin 113 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the light incident from the back surface of the transparent support 112 passes through the transparent support 112, the adhesive or pressure-sensitive adhesive 118, and the transparent film 111 and enters the light diffusion layer A.
  • the incident light is sufficiently diffused by the fine particle group 114 and then travels to a liquid crystal display panel (not shown).
  • a light diffusing condensing layer B in which two kinds of fine particle groups 124 and 125 are dispersed in a transparent resin 123 is formed on the surface of a transparent film 121.
  • the light diffusion sheet is bonded to the surface of the transparent support 122 with an adhesive or an adhesive 128.
  • the fine particle groups 124 and 125 are substantially uniformly dispersed in the light diffusion / condensing layer B, and some of the fine particle groups partially protrude from the light diffusion / condensing layer B.
  • the absolute value of the refractive index difference between the translucent resin 123 and the fine particle group 124 is 0.05 or more.
  • the translucent resin 123 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
  • the light that has also entered the back surface force of the transparent support 122 passes through the transparent support 122, the adhesive or pressure-sensitive adhesive 128, and the transparent film 121, and enters the light diffusing layer B.
  • the incident light is sufficiently diffused by the fine particle group 124, and then the front surface is projected by the protruding portion (convex portion) of the fine particle group 125 partially protruding from the translucent resin 123.
  • the light is condensed in the direction toward the liquid crystal display panel (not shown).
  • a light diffusion layer C in which one kind of fine particle group 134 is dispersed in a transparent resin 133 is formed on the surface of the transparent film 131, and the light diffusion layer A light diffusing sheet with a condensing layer D formed by embedding one type of fine particle group 136 in transparent resin 135 on C Is bonded to the surface of the transparent support 132 with an adhesive or an adhesive 138.
  • the absolute value of the difference in refractive index between the translucent resin 133 and the fine particle group 134 is 0.05 or more.
  • the surface roughness of the light collecting layer D is preferably not less than 0 and not more than the arithmetic average roughness.
  • the light that has also entered the back surface force of the transparent support 132 passes through the transparent support 132, the adhesive or adhesive 138, and the transparent film 131, and enters the light diffusion layer C.
  • the incident light is sufficiently diffused by the fine particle group 134 and then enters the light condensing layer D.
  • the light condensing layer D the light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group partially protruding from the translucent resin 135 and is directed to the liquid crystal display panel (not shown).
  • the light diffusing plate 140 shown in FIG. 14 has a condensing sheet in which a condensing layer D in which one kind of fine particle group 146 is embedded in a transparent resin 141 is formed on the surface of a transparent film 141.
  • a light diffusing layer C in which one kind of fine particle group 144 is dispersed in the transparent resin 141 is formed on the back surface of the transparent film 141 by being bonded to the surface of the transparent support 14 2 with an adhesive or an adhesive 148.
  • the light diffusion sheet thus adhered is bonded to the back surface of the transparent support 142 with an adhesive or an adhesive 148.
  • the absolute value of the refractive index difference between the translucent resin 143 and the fine particle group 144 is 0.05 or more.
  • the surface roughness of the light collecting layer D is preferably an arithmetic average roughness of not less than 0 and not more than 7 m.
  • Light incident on the light diffusion layer C of the light diffusion sheet bonded to the back surface of the transparent support 142 is sufficiently diffused by the fine particle group 143, and then the transparent film 141, the adhesive or pressure sensitive adhesive 148, the transparent support Passes through 142, adhesive or adhesive 148, transparent film 141, and enters the light collecting layer D.
  • the light condensing layer D the light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group partially protruding from the translucent resin 145 and is directed to the liquid crystal display panel (not shown).
  • the light diffusing plate shown in FIG. 7 is prepared by first transparently translating a composition in which one kind of fine particle group 74 is kneaded with a light transmitting resin 73 constituting the light diffusing layer A. It can be manufactured by coating the surface of the support 72 directly and then drying the translucent resin 73 to form the light diffusion layer A.
  • the transparent support 72 is composed of a transparent thermoplastic resin
  • the transparent thermoplastic resin constituting the transparent support 72 and one kind of fine particle group 74 in the translucent resin 73 Coextruded with the kneaded composition to prepare a transparent support 72 It can be manufactured by forming the light diffusion layer A on the surface.
  • a transparent support 82 is prepared by mixing a composition obtained by kneading two kinds of fine particle groups 84 and 85 with a translucent resin 83 constituting a light diffusing 'condensing layer B. After the direct coating on the surface, the light-transmitting resin 53 is dried to form a light diffusion / condensing layer B.
  • the transparent support 82 is composed of a transparent thermoplastic resin
  • the transparent thermoplastic resin constituting the transparent support 82 and the translucent resin 83 are divided into two types of fine particle groups 84 and 85. It is possible to manufacture by coextruding a composition obtained by kneading the above and forming the light diffusing and condensing layer B on the surface of the transparent support 82.
  • the surface of the transparent support 92 is directly coated with a composition in which the fine particle group 94 is kneaded with the translucent resin 93 constituting the light diffusing layer C.
  • the light transmissive resin 93 is dried to form a light diffusing layer C, and then a composition obtained by kneading the fine particle group 96 with the light transmissive resin 95 constituting the light collecting layer D is placed on the light diffusing layer C.
  • the light-transmitting resin 95 is dried to form the light-collecting layer D.
  • the transparent support 92 is made of a transparent thermoplastic resin
  • the fine particle group 94 is first kneaded with the transparent thermoplastic resin constituting the transparent support 92 and the translucent resin 93.
  • the light diffusing plate 100 shown in FIG. 10 is obtained by first directly coating the back surface of the transparent support 102 with a composition in which the fine particle group 104 is kneaded with the translucent resin 103 constituting the light diffusing layer C.
  • the light transmissive resin 103 is dried to form the light diffusion layer C, and then the composition obtained by kneading the light transmissive resin 105 constituting the light collecting layer D with the fine particle group 106 is used as the transparent support 102.
  • the light-transmitting resin 105 is dried to form the light condensing layer D.
  • the light condensing layer D may be formed on the surface of the transparent support 102, and then the light diffusion layer C may be formed on the back surface of the transparent support 102.
  • the transparent support 102 is made of a transparent thermoplastic resin
  • the fine particle group 104 is kneaded with the transparent thermoplastic resin constituting the transparent support 102 and the translucent resin 103.
  • Composition By coextruding the product, a light diffusing layer C is formed on the back surface of the transparent support 102, and then a composition obtained by kneading the fine particle group 106 with the translucent resin 105 constituting the condensing layer D is obtained. It can be manufactured by coating the surface of the transparent support 102 directly and then drying the translucent resin 105 to form the light collecting layer D.
  • the light diffusing plate shown in FIG. 11 is first coated directly on the surface of the transparent film 111 with a composition in which one kind of fine particle group 114 is kneaded with the translucent resin 113 constituting the light diffusing layer A.
  • the light diffusing sheet A is dried to form a light diffusing layer A, whereby a light diffusing sheet is prepared. Then, the light diffusing sheet is applied to the surface of the transparent support 112.
  • the transparent film 111 can be produced by bonding with an adhesive or pressure-sensitive adhesive 118 so that the transparent film 111 faces the transparent support 112.
  • the light diffusing plate shown in FIG. 12 is prepared by first mixing a composition obtained by kneading two kinds of fine particle groups 124 and 125 with the light transmissive resin 123 constituting the light diffusing 'condensing layer B. After the direct coating, the light-transmitting resin 123 is dried to form a light diffusing condensing layer B to prepare a light diffusing sheet, and then the light diffusing sheet is used as a transparent support. It can be produced by adhering the transparent film 121 of the light diffusing sheet to the transparent support 122 on the surface of 122 2 with an adhesive or an adhesive 128.
  • the light diffusing plate 130 shown in FIG. 13 first, a composition obtained by kneading the fine particle group 134 in the translucent resin 133 constituting the light diffusing layer C was directly coated on the surface of the transparent film 131. Thereafter, the light transmissive resin 133 is dried to form a light diffusing layer C, and then a composition obtained by kneading the light transmissive resin 135 constituting the light collecting layer D with the fine particle group 136 is added to the light diffusing layer. After coating directly on C, the light transmissive resin 135 is dried to form a light condensing layer D, whereby a light diffusing sheet is prepared, and then the light diffusing sheet is used as a transparent support. It can be manufactured by adhering the transparent film 131 of the light diffusing sheet to the transparent support 132 on the surface of 132 with an adhesive or an adhesive 138.
  • the light diffusing plate 140 shown in FIG. 14 first, a composition in which the fine particle group 144 was kneaded with the translucent resin 143 constituting the light diffusing layer C was directly coated on the back surface of the transparent film 141. Thereafter, the light-transmitting resin 143 is dried to form a light diffusion layer C, whereby a light diffusion sheet is prepared and fine particles are added to the light-transmitting resin 145 constituting the light-collecting layer D. Group 146 was kneaded After the composition is directly coated on the surface of the transparent film 141, the light-transmitting resin 145 is dried to form the light-collecting layer D, thereby preparing a light-condensing sheet.
  • the transparent support 142 Is attached to the back surface of the transparent support 142 with an adhesive or an adhesive 148 so that the transparent film 141 of the light diffusion sheet faces the transparent support 142, and this condensing sheet is attached to the transparent support 142.
  • the transparent film 141 of the light condensing sheet is bonded to the surface with an adhesive or a pressure sensitive adhesive 148 so that the transparent film 142 faces the transparent support 142.
  • the light condensing sheet may be bonded to the surface of the transparent support 142, and then the light diffusion sheet may be bonded to the back surface of the transparent support 142.
  • An organic solvent may be used when the fine particle group is kneaded with the translucent resin.
  • the organic solvent is not particularly limited as long as it is appropriately selected in consideration of the solubility, workability, cost, and the like of each component. Specifically, for example, aromatic carbon such as toluene and xylene is used.
  • Hydrogen solvents Aliphatic hydrocarbon solvents such as hexane and heptane; Ester solvents such as ethyl acetate and butyl acetate; Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; Isopropyl alcohol and butyl alcohol Alcohol-based solvents; petroleum fractions having various boiling points mainly composed of aliphatic hydrocarbons; and the like.
  • These organic solvents may be used alone or in combination of two or more.
  • the method of directly coating the composition obtained by kneading the fine particle group in the translucent resin is not particularly limited as long as a conventionally known coating technique is employed.
  • the method for drying the translucent rosin is not particularly limited as long as a conventionally known drying method is adopted.
  • Examples of the adhesive used to bond the light diffusing sheet and the light collecting sheet include acryl-based adhesives, polyester-based adhesives, polyamide-based adhesives, polyurethane-based adhesives, and isocyanate-based adhesives. And epoxy adhesives. These adhesives may be used alone or in combination of two or more. Of these adhesives, polyurethane adhesives, isocyanate adhesives, and acrylic adhesives are preferable, and polyurethane adhesives are particularly preferable.
  • Examples of the pressure-sensitive adhesive used for bonding the light diffusion sheet and the light collecting sheet include an acrylic pressure-sensitive adhesive and a silicone pressure-sensitive adhesive. These adhesives may be used alone or in combination of two or more. Of these adhesives, acrylic A system-based pressure-sensitive adhesive is particularly suitable.
  • the light diffusing plate of the present invention may be used in a conventionally known direct type backlight unit as a light diffusing plate of a direct type backlight unit, but is used in the direct type backlight unit of the present invention described below. Is preferred.
  • the backlight unit of the present invention has a light source, a reflection sheet, a transparent support, and the light diffusion sheet of the present invention described above, or a light source and a reflection sheet.
  • the light diffusing sheet of the present invention described above is included, or the light diffusing sheet of the present invention described above is characterized by including a light source, a reflective sheet, and the light diffusing plate of the present invention described above. .
  • the light diffusion sheet and the light diffusion plate of the present invention exhibit high light diffusibility by the light diffusion layer and high light condensing property by the light condensing layer, or high light diffusibility by the light diffusing layer.
  • the backlight unit of the present invention using such a light diffusion sheet or light diffusion plate is a light diffusion plate or light diffusion sheet for diffusing light, a prism sheet or light diffusion for condensing light.
  • a backlight unit can be configured without using a sheet. That is, according to the present invention, when the light diffusibility and the light condensing property are excellent and the high total light transmittance and the luminance are obtained, the number of members of the satellite unit can be reduced while maintaining the basic optical characteristics. Can do.
  • the light source is not particularly limited as long as it is appropriately selected from various light sources used in conventionally known backlight units.
  • Examples include fluorescent lamps (CCFL), external electrode fluorescent lamps (EEFL), flat fluorescent lamps (FFL), and light emitting diodes (LEDs).
  • the reflection sheet is not particularly limited as long as it is appropriately selected from various reflection sheets used in conventionally known backlight units. Synthetic resin sheet in which white pigment is dispersed, synthetic resin sheet in which bubbles for scattering light are dispersed, synthetic resin sheet in which the surface is formed in a mat shape, metal or alloy such as silver or aluminum is deposited on the surface Synthetic resin sheets and the like. [0159] ⁇ Transparent support>
  • the material, thickness, configuration, characteristics and the like of the transparent support are the same as those described when the light diffusing plate of the present invention is described, and thus the description thereof is omitted here.
  • the transparent support used for supporting the light diffusing sheet of the present invention not the transparent support used for the light diffusing plate of the present invention, has a pattern shape on the surface facing the light diffusing sheet. May be.
  • the pattern shape is prismatic (specifically, a shape in which prism lens portions are arranged substantially in parallel), pyramid shape (specifically, a triangular pyramid or quadrangular pyramidal convex or concave portion is regular.
  • Shape shape
  • hemisphere specifically, a shape in which hemispherical convex or concave portions are regularly arranged
  • various embossed patterns for example, prism lenses
  • Shapes with irregularly arranged parts shapes with triangular or quadrangular pyramidal projections or recesses irregularly, shapes with irregularly arranged hemispherical projections or recesses, and other arbitrary shapes
  • Irregular shapes such as irregularly arranged convex or concave portions.
  • the pattern shape may be provided on the entire surface of the transparent support, or may be provided on a part of the surface of the transparent support (that is, there may be a portion where the pattern shape is not provided).
  • the light guided to the light diffusion sheet can be controlled, so that the light from the light source can be diffused more efficiently.
  • Light diffusion can be easily simulated with a light beam simulator.
  • an irregular shape is provided on the surface of the transparent support, light from the light source can be diffused to some extent, so that the light diffusion effect can be further enhanced.
  • an embossing roll having a pattern shape is used as a method of providing a pattern shape on the surface of the transparent support.
  • a method of embossing using a gravure roll A method of applying a resin composition with a gravure roll having a pattern shape and drying or curing; After applying a photocurable resin, a laser light interference method is used for exposure.
  • the transparent support is composed of an inorganic material, the transparent support can be formed by laser processing, wet or dry etching, etc.
  • Body table Examples thereof include a method of forming a pattern shape on the surface. These methods may be used alone or in combination of two or more.
  • the pitch of the pattern shape is ⁇ , preferably ⁇ or more lm to 1,000 / zm, more preferably ⁇ to 5 m or more, 800 m or less, more preferably 10 / zm or more, 500 / zm or less. If the pitch force of the pattern shape is less than m, or if it exceeds 1,000 m, the light from the light source may not be effectively diffused.
  • the transparent support used for supporting the light diffusion sheet of the present invention also contains an ultraviolet absorber or prevents light from the light source power in order to prevent the influence of ultraviolet rays.
  • an antistatic agent is added or an antistatic layer is provided on the surface in contact with the air layer. You may keep it.
  • the light diffusion sheet of the present invention described above (for example, the light diffusion sheet shown in FIGS. 1 to 6) is used as the light diffusion sheet.
  • the light diffusion plate As the light diffusion plate, the light diffusion plate of the present invention described above (for example, the light diffusion plate shown in FIGS. 7 to 14) is used.
  • the knocklight of the present invention either the light diffusing sheet of the present invention or the light diffusing plate of the present invention may be used alone, or both may be used together.
  • a prism sheet and a brightness enhancement film (for example, DB EF manufactured by 3M) may be used in combination.
  • FIGS. 15 and 16 correspond to a backlight unit having a light source, a reflection sheet, a transparent support, and the light diffusion sheet of the present invention described above.
  • FIG. 17 corresponds to a backlight unit having a light source, a reflection sheet, and the light diffusion sheet of the present invention described above.
  • FIG. 18 corresponds to a backlight unit having a light source, a reflection sheet, and the light diffusion plate of the present invention described above.
  • a backlight unit 150 shown in FIG. 15 includes a light source 151, a reflection sheet 152, a transparent support 153, and a light diffusion sheet 154.
  • FIGS. The light diffusion sheet shown in FIG. A part of the light emitted from the light source 151 is directed to the transparent support 153, a part is reflected by the reflection sheet 152, and the force is also directed to the transparent support 153.
  • the light incident on the transparent support 153 passes through the transparent support 153 and enters the light diffusion sheet 154.
  • the light incident on the light diffusion sheet 154 is sufficiently diffused by the light diffusion layer A as shown in the light diffusion sheets 10 and 20 shown in FIGS. 1 and 2, or the light diffusion shown in FIGS. 3 and 4, respectively.
  • the light is diffused sufficiently by the light condensing layer B and condensed in the front direction, or as in the light diffusion sheets 50 and 60 shown in FIGS. 5 and 6, respectively.
  • the light After being sufficiently diffused by the diffusion layer C, the light is condensed in the front direction by the light condensing layer D and is directed to a liquid crystal display panel (not shown).
  • the backlight unit 160 shown in FIG. 16 includes a light source 161, a reflection sheet 162, a transparent support 163, and a light diffusion sheet 164.
  • the light diffusion sheet 164 the light diffusion sheet shown in FIGS. A part of the light emitted from the light source 161 is directed to the transparent support 163, and part of the light is reflected by the reflection sheet 162, and the force is also directed to the transparent support 163.
  • the light incident on the transparent support 163 passes through the transparent support 163 and forms a pattern formed on the surface of the transparent support 163 (FIG. 16 shows a hemispherical pattern as a specific example. However, it is not limited to this shape) and is then incident on the light diffusion sheet 164.
  • the light incident on the light diffusing sheet 164 is sufficiently diffused by the light diffusing layer A, as shown in FIGS. 1 and 2, respectively, or in FIGS. 3 and 4, respectively.
  • the light diffusion sheets 30 and 40 shown in FIG. 5 it is sufficiently diffused by the light diffusion 'condensing layer B and condensed in the front direction, or the light diffusion sheets 50 and 60 shown in FIGS. 5 and 6 respectively.
  • the light after being sufficiently diffused by the light diffusion layer C, the light is condensed in the front direction by the light condensing layer D, and is directed to a liquid crystal display panel (not shown).
  • a backlight unit 170 shown in FIG. 17 includes a light source 171, a reflection sheet 172, and a light diffusion sheet 174.
  • the light diffusion sheet 174 the light diffusion sheet force S shown in FIGS.
  • the light diffusion sheet 174 is supported by a support member (not shown) without using a transparent support.
  • a part of the light emitted from the light source 171 is directed to the light diffusion sheet 174, a part is reflected by the reflection sheet 172, and the force is also directed to the light diffusion sheet 174.
  • Light incident on the light diffusing sheet 174 is reflected by the light diffusing sheets 10 and 20 shown in FIGS. 1 and 2, respectively.
  • Condensed force Alternatively, after being sufficiently diffused by the light diffusing layer C, as shown in FIGS. 5 and 6, respectively, after being sufficiently diffused by the light diffusing layer C, the light is condensed in the front direction by the liquid crystal. Head to the display panel (not shown).
  • the backlight unit 180 shown in FIG. 18 includes a light source 181, a reflection sheet 182, and a light diffusing plate 183.
  • the light diffusion plate 183 the light diffusion plate shown in FIGS. A part of the light emitted from the light source 181 is directed to the light diffusing plate 183, and part of the light is reflected by the reflection sheet 182 and travels toward the force light diffusing plate 183.
  • the light incident on the light diffusion plate 183 is sufficiently diffused by the light diffusion layer A as shown in the light diffusion plates 70 and 110 shown in FIGS. 7 and 11, respectively, or the light shown in FIGS. 8 and 12, respectively.
  • the diffuser plates 80 and 120 Like the diffuser plates 80 and 120, it is sufficiently diffused by the light diffusing / condensing layer B and condensed in the front direction, or the light diffusing plate 90, shown in FIGS. 9, 10, 13 and 14, respectively. After being sufficiently diffused by the light diffusion layer, such as 100, 130, and 140, the light is condensed in the front direction by the light condensing layer D and is directed to a liquid crystal display panel (not shown).
  • the backlight units shown in Figs. 15 to 18 use either the light diffusion sheet or the light diffusion plate of the present invention.
  • the light diffusion sheet and the light diffusion sheet of the present invention and Both of the light diffusing plates may be used together, or a conventionally known light diffusing sheet, prism sheet, and brightness enhancement film (for example, DBEF manufactured by 3M) may be used in combination.
  • DBEF brightness enhancement film
  • the backlight unit of the present invention is at least a light source, a reflection sheet, a transparent support, a light, except that it is not always necessary to use a light diffusing plate or a prism sheet used in a conventionally known backlight unit. It can be assembled from a diffusion sheet, from a light source, a reflection sheet, and a light diffusion sheet, or from a light source, a reflection sheet, and a light diffusion plate in the same manner as a conventionally known knock light unit. Therefore, the method for assembling the backlight unit of the present invention is not particularly limited. In the case of the backlight unit of the present invention, the light diffusing sheet and the light diffusing plate alone have high light diffusing properties and high light collecting properties. Can be used together with Since there is no need to use a sheet or, in some cases, a transparent support, it is possible to reduce at least one to three members of the knock light unit, which in turn reduces the cost of assembly. be able to.
  • the backlight unit of the present invention can be suitably used as a light source for image display of a transmissive liquid crystal display device, particularly for applications such as liquid crystal televisions and liquid crystal displays.
  • the liquid crystal display device of the present invention includes the backlight unit of the present invention described above. Since the backlight unit of the present invention is preferably a direct type backlight unit, the liquid crystal display device of the present invention preferably has a relatively large screen size. Therefore, the liquid crystal display device of the present invention can be suitably used particularly for applications such as liquid crystal televisions and liquid crystal displays having a relatively large screen size.
  • the liquid crystal display device of the present invention has the same components as those of conventionally known liquid crystal display devices, except that the knocklight unit is the knocklight unit of the present invention. Therefore, the liquid crystal display device of the present invention can be manufactured in the same manner as a conventionally known liquid crystal display device except that the backlight unit of the present invention is used as the knock light unit.
  • the liquid crystal display device of the present invention uses the backlight unit of the present invention, the liquid crystal display device can provide high brightness, small display unevenness, uniform brightness and display.
  • D-M2 multiwavelength Abbe refractometer
  • the refractive index of the fine particle group is the intermediate value of these refractive indices.
  • the refractive index of the material is taken as the refractive index of the fine particle group.
  • the surface roughness of the condensing layer can be obtained by measuring the arithmetic average roughness at 5 or more points randomly selected for each sample using a surface roughness meter (Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). This is the average of the measured values.
  • the thickness of the light condensing layer is determined for each sample by solidifying the sample of the light diffusion sheet or light diffusion plate with an epoxy-based resin, cutting with a microtome, and observing the obtained cross section with an electron microscope. It is the average value of the measured values obtained by measuring the layer thickness of the light collecting layer at 5 points or more.
  • the average particle diameter of the fine particle group is a volume average particle diameter measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
  • the total light transmittance and haze of the sample were measured using a color difference meter ( ⁇ 90, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the front luminance of the sample was measured by the following method using a cold cathode tube (luminance on the light source: about 10,000 cd, m 2 ) as a light source.
  • Examples 1 1 to 14 and Comparative Examples 1 1 to 14 a 2 mm thick polycarbonate transparent support was placed 5 mm away from the surface of the cold cathode tube, and a sample was placed thereon.
  • a luminance meter (BM-7, manufactured by Topcon Corporation) was fixed at a position 50 cm away from the sample cover, and the luminance on the light source was measured.
  • the shape of the light source was visually observed and evaluated according to the following criteria.
  • The light source shape is blurred
  • a polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
  • a special acrylic resin containing a repeating unit derived from cyclohexylmethacrylate (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 100 Part by mass, fine particle group, spherical fine particles of benzoguanamine 'formaldehyde condensate (Epester M05, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.66, average particle size 5.2 / ⁇ ⁇ ) 30 parts by mass, polyfunctional isocyanate Compound (Desmodur ⁇ 3200, manufactured by Sumika Bayer Urethane Co., Ltd.) 10 parts by weight and 40 parts by weight of toluene are thoroughly stirred and mixed, and then applied onto the surface of the transparent film using a bar coater and dried. A light diffusing layer having a thickness of 19. was formed.
  • a special acrylic resin containing a repeating unit derived from cyclohexyl methacrylate (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 10 0 Particulate mass, fine particle group, polymethyl methacrylate cross-linked spherical microparticles (Eposta MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 / zm) 70 parts by mass, multifunctional Isocyanate compound (Desmodur N3200, manufactured by Sumika Bayer Urethane Co., Ltd.) 10 parts by mass and 80 parts by mass of toluene were sufficiently stirred and mixed, and then on the light diffusion layer formed above using a bar coater. It was applied and dried to form a light collecting layer with a thickness of 19.5 m.
  • a light diffusion layer having a thickness of 16. was formed on the back surface of the transparent film using the same material as in Example 11. Then, a light condensing layer having a thickness of 21.7 m was formed on the surface of the transparent film. .
  • a condensing layer is formed on the surface of the transparent film, in which fine particles are embedded in translucent resin, and the fine particles are dispersed in translucent resin on the back of the transparent film.
  • a light diffusing sheet having the light diffusing layer formed thereon was obtained. In the obtained light diffusing sheet, the absolute value of the refractive index difference between the translucent resin constituting the light diffusing layer and the fine particle group is 0.17, and the surface roughness of the light collecting layer is 2.O. / zm.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.6.
  • the total light transmittance and haze of the obtained light diffusion sheet were 72% and 93%, respectively.
  • the front luminance was 6766 cdZm 2 , and the shape of the light source could not be confirmed.
  • Example 1-1 a cyclohexane compounded with organocolloidal silica was used as the translucent resin instead of special acrylic resin (Udable S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49).
  • a polyfunctional isocyanate compound (Desmodur N3200, Residential module) using a special acrylic resin containing a repeating unit derived from hexylmethacrylate (Udouble C-3600, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51) Except for changing the blending amount of Kabayashi Urethane Co., Ltd.
  • Example 1-1 After forming the layer, a light collecting layer having a thickness of 18. was formed on the light diffusion layer.
  • Example 1-2 as a translucent resin, a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) was used instead of a special compound containing organocolloidal silica.
  • acrylic resin Udable C-3600, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51 was used, a transparent film with a thickness of 18. After the diffusion layer was formed, a light collecting layer having a thickness of 24.7 m was formed on the surface of the transparent film.
  • a condensing layer is formed on the surface of the transparent film, in which fine particles are embedded in translucent resin, and the fine particles are dispersed in translucent resin on the back of the transparent film.
  • a light diffusing sheet having the light diffusing layer formed thereon was obtained.
  • the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusion layer is 0.15
  • the surface roughness of the light collecting layer is 2.2. m.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.8.
  • the total light transmittance and haze of the obtained light diffusion sheet were 76% and 93%, respectively.
  • the front luminance was 6600 cdZm 2 , and the shape of the light source could not be confirmed.
  • a polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
  • a translucent resin a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49), 100 parts by mass, as a fine particle group, a polymethyl methacrylate cross-linked product Spherical fine particles (Poster MA1004, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 4.3 m) 30 parts by mass, polyfunctional isocyanate compound (Desmodur N3200, Sumika Bayer Urethane Co., Ltd. 10 parts by mass and 40 parts by mass of toluene were sufficiently stirred and mixed, and then applied to the surface of the transparent film using a bar coater and dried to form a light diffusion layer having a thickness of 14.
  • a special acrylic resin Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49
  • a light diffusing layer in which fine particles are dispersed is formed on the surface of the transparent film, and the fine particles are embedded in the light transmissive resin on the light diffusing layer.
  • a light diffusing sheet on which a condensing layer was formed was obtained.
  • the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusing layer is 0.02
  • the surface roughness of the light collecting layer is 2.1. ⁇ m.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.8.
  • the total light transmittance and haze of the obtained light diffusion sheet were 91% and 64%, respectively.
  • the front luminance was 8724cdZm 2 and the light source shape was clearly confirmed.
  • a light diffusion layer having a thickness of 18. was formed on the back surface of the transparent film using the same material as in Comparative Example 11 and then a light condensing layer having a thickness of 23.2 m was formed on the surface of the transparent film. .
  • a light condensing layer in which fine particles are embedded in translucent resin is formed on the surface of the transparent film, and the fine particles are dispersed in the transparent film on the back surface of the transparent film.
  • a light diffusing sheet having the light diffusing layer formed thereon was obtained.
  • the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusion layer is 0.02
  • the surface roughness of the light collecting layer is 2.1. ⁇ m.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.7.
  • the total light transmittance and haze of the obtained light diffusion sheet were 79% and 89%, respectively.
  • the front luminance was 8527 cdZm 2 and the light source shape was blurred.
  • a polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
  • a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 100 parts by mass, as a fine particle group, silica acrylic composite Spherical fine particles (Soliostar YS, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 4.2 ⁇ ⁇ ) 30 parts by mass, polyfunctional isocyanate compound (Desmodur ⁇ 3200, Sumika Bayer Ureta) 10 parts by mass and 40 parts by mass of toluene after sufficiently stirring and mixing, using a bar coater, applied to the surface of the transparent film and dried to obtain a light diffusion layer having a thickness of 16. Formed.
  • a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 100 parts by mass, as a fine particle group, polymethyl methacrylate Spherical fine particles of epoxy cross-linked product (Poster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 m) 70 parts by mass, polyfunctional isocyanate compound (Desmodur N3200, Sumika Neue Urethane ( 10 parts by mass and 80 parts by mass of toluene were sufficiently stirred and mixed, and then applied onto the light diffusion layer formed above using a bar coater and dried to a thickness of 18.9 ⁇ m The light condensing layer was formed.
  • a special acrylic resin Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49
  • Polymethyl methacrylate Spherical fine particles of epoxy cross-linked product Poster MA1013, manufactured by Nippon Shokubai
  • a light diffusing layer in which fine particles are dispersed in a transparent resin is formed, and the fine particles are embedded in the transparent resin on the light diffusing layer.
  • a light diffusing sheet on which a condensing layer was formed was obtained.
  • the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusing layer is 0.02, and the surface roughness of the light collecting layer is 2.1. ⁇ m.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.4.
  • the total light transmittance and haze of the obtained light diffusion sheet were 93% and 73%, respectively.
  • the front luminance was 8714cdZm 2 and the light source shape was clearly confirmed.
  • a light diffusing layer having a thickness of 15. was formed on the back surface of the transparent film using the same material as in Comparative Example 13 and then a light condensing layer having a thickness of 23.1 m was formed on the surface of the transparent film. .
  • a light condensing layer in which fine particles are embedded in a translucent resin is formed on the surface of the transparent film, and the fine particles are added to the transparent film on the back surface of the transparent film.
  • a light diffusing sheet on which a dispersed light diffusing layer was formed was obtained.
  • the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group is 0.02, and the surface roughness of the light collecting layer is 2.O. / zm.
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.7.
  • the total light transmittance and haze of the obtained light diffusion sheet were 78% and 79%, respectively.
  • the front luminance was 8662 cdZm 2 and the light source shape was blurred.
  • a polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
  • a light diffusing sheet was obtained in which only the light-collecting layer in which fine particles were embedded in translucent resin was formed on the surface of the transparent film.
  • the surface roughness of the light collecting layer was 2.1 ⁇ m
  • the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.8.
  • the total light transmittance and haze of the obtained light diffusion sheet were 81% and 89%, respectively.
  • the front luminance was 5959cdZm 2 and the light source shape was too strong to confirm.
  • the front luminance was measured by using the light diffusing plate used in Comparative Example 15 in combination with the light diffusing sheet obtained in this Comparative Example.
  • the light diffusion sheet of 14 shows sufficient total light transmittance, high haze, and sufficient front brightness, so it has both sufficient light diffusibility and light collecting properties as a light diffusion sheet. Since the shape of the light source can be completely erased, it can be seen that it has the function of making the line light source a surface light source.
  • the light of Comparative Examples 1 1 to 14 that does not satisfy the condition that the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusion layer is 0.05 or more.
  • the diffuser sheet exhibits sufficient total light transmittance and frontal brightness, but its haze is low, so the light diffusibility is not sufficient, and the shape of the light source cannot be completely erased. It turns out that it does not have a function to do.
  • the light diffusion sheet of Comparative Example 1-5 in which only a light-collecting layer is formed on a conventionally known polycarbonate light diffusion plate of Comparative Example 1-5 or a transparent film (used in combination with a conventionally known polycarbonate light diffusion plate) is a light source. Since the shape of the light source can be completely erased, it has the function of using a line light source as a surface light source, but it is not satisfactory as a light diffusing sheet with low light diffusivity and front brightness! /.
  • a light transmissive film constituting the light diffusing layer is used. If the absolute value of the difference in refractive index between the fat and at least one type of fine particle group (fine particle group A) is 0.05 or more, the condition is necessary, and in particular, it has excellent scratch resistance and fine particle shedding.
  • the translucent resin constituting the light diffusion layer is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. Prove that.
  • the light diffusion layer in which the fine particle groups A and B are dispersed in the light-transmitting resin is a light diffusion layer. It means the light collecting layer.
  • the average particle size of the fine particle group is a volume average particle size measured using a particle size distribution analyzer (Multisizer II type, manufactured by Coulter Co., Ltd.).
  • the layer thickness of the light diffusing layer is the average value of the measured values obtained by measuring the layer thickness at 5 or more points for each sample using a thickness meter (Dial Thickness Gauge, manufactured by Ozaki Manufacturing Co., Ltd.). .
  • D-M2 multiwavelength Abbe refractometer
  • the intermediate value of these refractive indices is set to the refractive index of the fine particle group A.
  • the refractive index of the fine particle group A is outside the refractive index range of the Cargill standard refraction liquid, the refractive index of the material is taken as the refractive index of the fine particle group A.
  • the surface roughness of the light diffusing layer was obtained by measuring the arithmetic average roughness at 5 or more locations randomly selected for each sample using a surface roughness meter (Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). The average value of the measured values.
  • the front luminance of the sample was measured by the following method using a cold cathode tube (luminance on the light source: about 10,000 cd, m 2 ) as a light source.
  • a 2 mm-thick polycarbonate transparent support was placed 5 mm away from the surface of the cold cathode tube, and a sample was placed on it.
  • a luminance meter (BM-7, manufactured by Topcon Co., Ltd.) was fixed at a position 50 cm away from the sample, and the luminance on the light source was measured.
  • the shape of the light source was visually observed and evaluated according to the following criteria. ⁇ : The power source shape could not be confirmed;
  • The light source shape is blurred
  • the scratch resistance was evaluated using a friction tester (FR-2 type, manufactured by Suga Test Instruments Co., Ltd.).
  • a friction tester FR-2 type, manufactured by Suga Test Instruments Co., Ltd.
  • PET polyethylene terephthalate
  • a light diffusion layer was placed on top of it.
  • a light diffusing sheet was placed so as to face, a load of 200 g was applied, and the friction element was reciprocated 10 times.
  • the occurrence of scratches on the surface of the light diffusion sheet is observed with an optical microscope (450 times), and the occurrence of scratches on the surface of the PET film is visually observed.
  • the detachability of the fine particle group was evaluated using a friction tester (FR-2, manufactured by Suga Test Instruments Co., Ltd.).
  • a friction tester FR-2, manufactured by Suga Test Instruments Co., Ltd.
  • a non-woven fabric (Bencott, manufactured by Asahi Kasei Co., Ltd.) was placed on the frictional sliding surface of the friction tester, and a light diffusion sheet was placed on top of it so that the light diffusion layer was opposed to it. Or And made 10 round trips. Thereafter, the adhesion state of the drop-off particles on the surface of the nonwoven fabric was observed with an optical microscope (450 times), and the drop-off property of the light diffusion sheet was evaluated according to the following criteria.
  • the monomer mixture was dropped from the dropping funnel over 3 hours. Furthermore, 1,1-bis (t-butylperoxy) 1,3,3,5 trimethylcyclohexane (trade name Perhexa 3M, manufactured by NOF Corporation) 0.2 part by mass is added 3 times at 30 minute intervals And held at reflux temperature for 2 hours. Thereafter, the reaction solution was cooled to room temperature to obtain a copolymer A solution. The resulting copolymer A had a solid content concentration of 50.3%.
  • Formula power of FOX The calculated theoretical glass transition temperature was 40 ° C, and the theoretical hydroxyl value was 60.
  • Organic inorganic composite ultrafine particles in which an organic polymer ((meth) acrylic resin) is fixed on the surface of inorganic ultrafine particles (silica) according to the method described in JP-A-11-5940, paragraphs 0056 to 0061 (Hereinafter, sometimes simply referred to as “composite ultrafine particles”) was obtained in a dispersion in butyl acetate.
  • concentration of the composite ultrafine particles was 30.0% by mass, and the inorganic content in the composite ultrafine particles was 57.8% by mass.
  • the composite ultrafine particles had an average particle size of 55 nm and a coefficient of variation of 18.0%.
  • the alkoxy group present in the composite ultrafine particles contained 0.12 mol / g of methoxy group.
  • the composite ultrafine particles also had good stability over time.
  • the force obtained by analyzing the supernatant obtained by centrifuging this composite ultrafine particle dispersion by gel permeation chromatography (GPC) showed that no organic polymer was detected.
  • each composite ultrafine particle which is a sediment after centrifugation of the composite ultrafine particle dispersion, was washed with tetrahydrofuran or water, and the washing was analyzed by gel permeation chromatography (GPC). No power was detected.
  • GPC gel permeation chromatography
  • the composite ultrafine particle concentration was calculated by the following formula after drying the composite ultrafine particle dispersion at 130 ° C for 24 hours under a pressure of 1.33 X 10 4 Pa (100 mmHg).
  • the inorganic content in the composite ultrafine particles was determined by elemental analysis of the composite ultrafine particle dispersion dried at 130 ° C for 24 hours under a pressure of 1.33 X 10 4 Pa (100 mmHg) It was set as the inorganic content in the composite ultrafine particles.
  • the average particle size of the composite ultrafine particles was measured at 23 ° C by a dynamic light scattering measurement method using a submicron particle size analyzer (NICOMPMO DEL370, manufactured by Nozaki Sangyo Co., Ltd.).
  • the measured average particle diameter is a volume average particle diameter.
  • the measurement sample was a composite ultrafine particle dispersion dispersed in tetrahydrofuran having a composite ultrafine particle concentration of 0.1 to 2.0% by mass (if the organic polymer in the composite ultrafine particles does not dissolve in tetrahydrofuran, the organic polymer Dispersed in a solvent in which one is dissolved).
  • Coefficient of variation (%) Standard deviation of particle diameter of composite ultrafine particles Z Average particle diameter of composite ultrafine particles
  • the content of alkoxy groups in composite ultrafine particles is 1.33 X 10 4 Pa (lOOmmHg) 5 g of composite ultrafine particles dried at 130 ° C for 24 hours under a pressure of 50 ⁇ g of acetone and 50 g of 2N-NaOH aqueous solution was dispersed in the mixture and stirred at room temperature for 24 hours. The alcohol was quantitatively calculated.
  • the composite ultrafine particles are stable over time by sealing the composite ultrafine particle dispersion in a Gardner viscosity tube and storing it at 50 ° C for 1 month, then agglomeration and sedimentation of the composite ultrafine particles, increase in viscosity, etc. What was not recognized was set as "good”.
  • fine particle group A spherical fine particles of benzoguanamine 'formaldehyde condensate (Epester MS, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.66, average particle size 1.6 / zm) is 30% by mass with respect to the translucent resin solution
  • microparticles group B spherical microparticles of polymethyl methacrylate-based crosslinked product (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1. 51, An average particle diameter of 13.5 m) was added to 70% by mass with respect to the translucent resin solution.
  • the obtained resin composition was coated on a polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) as a transparent film using a bar coater. After standing for a period of time, it was dried at 80 ° C. for 2 hours to obtain a light diffusion sheet having a light diffusion layer having a thickness of 25 m.
  • the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.15, and the surface roughness of the light diffusion layer was 1.55 / zm.
  • the total light transmittance and haze of the obtained light diffusion sheet were 71% and 93%, respectively.
  • the front luminance was 7,253 cdZm 2 and the light source shape could not be confirmed.
  • Example 2-1 except that the solution of the copolymer B obtained above was used instead of the solution of the copolymer A, a translucent resin solution was prepared.
  • a light diffusion sheet having a light diffusion layer with a thickness of 24 / zm was obtained.
  • the refractive index of the translucent resin was 1.51.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.15, and the surface roughness of the light diffusion layer was 1.52 / zm.
  • the total light transmittance and haze of the obtained light diffusion sheet were 70% and 94%, respectively.
  • the front luminance was 7,186 cdZm 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-1 titanium oxide fine particles (TIPAQUE CR-95, manufactured by Ishihara Sangyo Co., Ltd .; average particle size 250 nm) as fine particle group A were added to the translucent resin solution.
  • a fine particle group B a spherical particle of polymethyl methacrylate-based cross-linked product (Epester MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 / zm) is passed through.
  • a light diffusing sheet having a light diffusing layer having a thickness of 26 m was obtained in the same manner as in Example 2-1, except that 70% by mass was added to the light waving solution.
  • the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 1.20, and the surface roughness of the light diffusion layer was 1.49 / zm.
  • the total light transmittance and haze of the obtained light diffusion sheet were 46% and 92%, respectively.
  • the front luminance was 4,658 cdZm 2 , and the light source shape could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-1 spherical fine particles of benzoguanamine 'formaldehyde condensate as fine particle group A (Poster MS, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.66, average particle size 1. 6 m) was added in an amount of 30% by mass with respect to the translucent resin solution, but as fine particle group B, spherical particles of polymethyl methacrylate-based crosslinked product (Epester MA10 13, manufactured by Nippon Shokubai Co., Ltd .; refractive index) 1.
  • a light diffusing sheet having a light diffusing layer having a thickness of 23 m was obtained in the same manner as in Example 2-1, except that 1.51 and an average particle size of 13.5 m) were added.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.15, and the surface roughness of the light diffusion layer was 0.49 m.
  • the total light transmittance and haze of the obtained light diffusing sheet were 79% and 93%, respectively.
  • the front luminance was 6,621 cd / m 2 , and the shape of the light source could not be confirmed.
  • Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-1 the translucent resin solution was mixed with acid zinc fine particles (LPZINC-2, manufactured by Sakai Chemical Industry Co., Ltd .; refractive index 1.95, average particle size m) as the fine particle group A. 20% by mass with respect to the translucent rosin solution, and as microparticles group B, spherical microparticles of polymethyl methacrylate-based cross-linked product (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13
  • a light diffusion sheet having a light diffusion layer having a thickness of 22 m was prepared in the same manner as in Example 2-1, except that 70% by mass of 5 ⁇ m) was added to the translucent resin solution. Obtained.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.44, and the surface roughness of the light diffusion layer was 1.48 m.
  • the total light transmittance and haze of the obtained light diffusion sheet were 70% and 90%, respectively.
  • the front luminance was 7,013 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-1 the thickness of the film was changed in the same manner as in Example 2-1, except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer A solution.
  • a light diffusion sheet having a light diffusion layer of 24 m was obtained.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.17, and the surface roughness of the light diffusion layer was 1.53 / zm.
  • the total light transmittance and haze of the obtained light diffusion sheet were 70% and 91%, respectively.
  • the front luminance was 7,213 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-2 a thickness of 26 m was obtained in the same manner as in Example 2 except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer B solution. A light diffusing sheet having a light diffusing layer was obtained. The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.05, and the surface roughness of the light diffusion layer was 1.
  • the total light transmittance and haze of the obtained light diffusion sheet were 70% and 92%, respectively.
  • the front luminance was 7,159 cdZm 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-3 the thickness was changed in the same manner as in Example 2-3 except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer A solution.
  • a light diffusing sheet having a light diffusing layer was obtained.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 1.22, and the surface roughness of the light diffusion layer was 1.
  • the total light transmittance and haze of the obtained light diffusion sheet were 45% and 92%, respectively.
  • the front luminance was 4,523 cdZm 2 , and the shape of the light source could not be confirmed. Table 1 shows these results and the performance of the light diffusion sheet.
  • Example 2-5 the thickness was determined in the same manner as in Example 2-5, except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer A solution.
  • a light diffusion sheet having a 21 ⁇ m light diffusion layer was obtained.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.46, and the surface roughness of the light diffusion layer was 1.46 m.
  • the total light transmittance and haze of the obtained light diffusion sheet were 71% and 88%, respectively.
  • the front luminance was 7,002 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-1 spherical particles of poly (methacrylic acid) methyl-based cross-linked product as fine particle group A in a translucent resin solution (Epaster MA1004, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle)
  • the diameter of 4.3 m is 30% by mass with respect to the translucent resin solution
  • the fine particle group B is a spherical particle of polymethyl methacrylate-based crosslinked product (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1
  • a light diffusion layer having a thickness of 24 m was obtained in the same manner as in Example 2-1, except that 70% by mass of 51, average particle size of 13.5 m) was added to the translucent resin solution.
  • a light diffusing sheet having The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.00, and the surface roughness of the light diffusion layer was 1.58 / zm.
  • the total light transmittance and haze of the obtained light diffusion sheet were 75% and 90%, respectively.
  • the front luminance was 9,012 cdZm 2 , and the light source shape was clearly confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
  • Example 2-4 spherical fine particles of polymethacrylic acid methyl-based cross-linked product as a fine particle group A in a translucent resin solution (Epaster MA1004, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle A spherical particle of polymethyl methacrylate-based bridge as force particle group B with 4.3 m diameter added (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5
  • a light diffusing sheet having a light diffusing layer having a thickness of 22 m was obtained in the same manner as in Example 2-4, except that m) was not added.
  • the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.00, and the surface roughness of the light diffusion layer was 0.78 m.
  • the total light transmittance and haze of the obtained light diffusion sheet were 78% and 85%, respectively.
  • the front luminance was 9, 312 cdZm 2 and the light source shape was clearly confirmed.
  • Table 2 shows these results and the performance of the light diffusion sheet.
  • the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group (fine particle group A) is 0.05 or more.
  • the light diffusing sheets of Examples 2-1 to 2-5 satisfying the above conditions exhibit a sufficient total light transmittance, high haze, sufficient front luminance, and can completely erase the shape of the light source.
  • the translucent resin constituting the light diffusion layer is a resin containing (meth) acrylic resin and organic-inorganic composite ultrafine particles, and has excellent scratch resistance.
  • the light diffusing sheet and the contact member will not be damaged, and the particles that make up the light diffusing layer will not fall off.Manufacturing, storage, transportation, use, etc. It is easy to handle and it can be seen that the yield is improved.
  • the condition that the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group (microparticle group A) is 0.05 or more is satisfied.
  • Comparative Example 2-1 to 2-4 The light diffusing sheet has sufficient total light transmittance, front luminance and haze, and can completely erase the shape of the light source, and the function of using a linear light source as a surface light source Therefore, the light diffusing sheet has sufficient light diffusibility and light collecting property, but the translucent resin constituting the light diffusing layer does not contain inorganic ultrafine particles or organic-inorganic composite ultrafine particles. !
  • ⁇ (Meth) acrylic resin inferior in scratch resistance and fine particle shedding, so it is not practical as a light diffusion sheet that is not easy to handle during production, storage, transportation, use, etc. I understand that. Further, if the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group (fine particle group A) is 0.05 or more, the above condition is not satisfied!
  • the light diffusing sheets of Comparative Examples 5 and 6 have good or comparatively good scratch resistance and fine particle shedding, but the shape of the light source is good despite showing sufficient total light transmittance, front luminance, and haze. Is not practical as a light diffusing sheet because it cannot be completely extinguished and does not have a function of using a line light source as a surface light source.
  • the light diffusing sheet and the light diffusing plate of the present invention can completely erase the light source shape and have a function of using a line light source as a surface light source. While maintaining the basic optical properties of providing light transmittance and brightness The number of components of the knocklight unit can be reduced, and the force is excellent in the scratch resistance of the light diffusion layer, the handling is easy, and the yield is improved. It makes a great contribution to the reduction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

This invention provides a light diffusing sheet comprising a transparent film and a light diffusing layer provided on at lest one side of the transparent film, the light diffusing layer comprising a group of at least one type of fine particles dispersed in a light transparent resin, characterized in that the absolute value of the difference in refractive index between the light transparent resin constituting the light diffusing layer and the group of at least one type of fine particles is not less than 0.05; a light diffusing plate characterized by comprising a transparent support and a light diffusing layer provided on at least one side of the transparent support, the light diffusing layer comprising a group of at least one type of fine particles dispersed in a light transparent resin, the absolute value of the difference in refractive index between the light transparent resin constituting the light diffusing layer and the group of at least one type of fine particles being not less than 0.05; and a light diffusing plate characterized by comprising a light diffusing sheet applied onto at least one side of the transparent support with the aid of an adhesive or a pressure-sensitive adhesive, the light diffusing sheet comprising a transparent film and a light diffusing layer provided on one side of the transparent film and formed of a group of at least one type of fine particles dispersed in a light transparent resin, the absolute value of the difference in refractive index between the light transparent resin constituting the light diffusing layer and the group of at least one type of fine particles being not less than 0.05. The light diffusing sheet and light diffusing plates, while maintaining basic optical properties such as excellent light diffusing properties and light focusing properties and, at the same time, high total light transmittance and brightness, can reduce the members of a backlight unit and, at the same time, is excellent in scratch resistance of the light diffusing layer, and thus is suitable for used in a backlight unit in a liquid crystal display device.

Description

光拡散シートおよび光拡散板、ならびにそれらを用いたバックライトュニッ トおよび液晶表示装置  Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using the same
技術分野  Technical field
[0001] 本発明は、光拡散シートおよび光拡散板、ならびにそれらを用いたバックライトュ- ットおよび液晶表示装置に関する。  The present invention relates to a light diffusing sheet and a light diffusing plate, and a backlight unit and a liquid crystal display device using the same.
背景技術  Background art
[0002] 現在、液晶表示装置は、携帯電話、 PDA端末、デジタルカメラ、テレビ、パーソナ ルコンピュータ用ディスプレイ、ノートパソコンなどの幅広い分野で利用されている。 液晶表示装置においては、例えば、液晶表示パネルの背後にバックライトユニットを 配置し、このノ ックライトユニットからの光を液晶表示パネルに供給することにより、画 像を表示する。このような液晶表示装置に用いられるバックライトユニットは、その表 示画像を見やすくするために、液晶表示パネルに均一な光を供給するだけでなぐ できるだけ多くの光を供給することが要求される。すなわち、ノ ックライトユニットは、 光拡散性に優れると共に高い輝度が得られるという光学特性が要求される。  [0002] Currently, liquid crystal display devices are used in a wide range of fields such as cellular phones, PDA terminals, digital cameras, televisions, personal computer displays, and notebook computers. In a liquid crystal display device, for example, a backlight unit is disposed behind a liquid crystal display panel, and an image is displayed by supplying light from the knock light unit to the liquid crystal display panel. The backlight unit used in such a liquid crystal display device is required to supply as much light as possible without simply supplying uniform light to the liquid crystal display panel in order to make the displayed image easy to see. In other words, the knocklight unit is required to have optical characteristics such as excellent light diffusibility and high brightness.
[0003] 従来のバックライトユニットは、例えば、図 20に示すように、光源 201の他に、光源 2 01から後方に出射した光を液晶表示パネル(図示せず)の方向(以下「正面方向」と いうことがある。 )に反射する役割を果たす反射シート 202 ;光源 201 (線光源)からの 光を拡散し、面光源とすると共に、光源の形状を消す役割を果たす光拡散板 203 ; 光拡散板 203を通過した光をさらに拡散し、光源の形状を消すと共に、光を正面方 向に集光し、輝度を向上させる役割を果たす光拡散シート 204;光拡散シート 204を 通過した光を正面方向に集光し、輝度を向上させる役割を果たすプリズムシート 205 ;などの多くの部材カも構成されている。図 20のノ ックライトユニット 200では、光拡散 シートおよびプリズムシートを各々 1枚ずつ示した力 通常、ノ ックライトユニットには、 高い輝度を得るために、複数枚の光拡散シートおよびプリズムシートが用いられる。  For example, as shown in FIG. 20, in the conventional backlight unit, in addition to the light source 201, light emitted backward from the light source 201 is directed to a liquid crystal display panel (not shown) (hereinafter referred to as “front direction”). ) Reflecting sheet 202 that plays a role of reflecting light); a light diffusing plate 203 that diffuses light from the light source 201 (line light source) to form a surface light source and erase the shape of the light source; Light that has passed through the light diffusing plate 203 is further diffused, the shape of the light source is erased, and the light is condensed in the front direction to improve the brightness. A number of members such as a prism sheet 205 which plays a role of concentrating the light in the front direction and improving the luminance are also configured. In the knocklight unit 200 of FIG. 20, the force that shows one light diffusion sheet and one prism sheet each. Usually, the knocklight unit has a plurality of light diffusion sheets and prism sheets in order to obtain high brightness. Used.
[0004] ここで、従来の光拡散板は、例えば、図 21に示すように、例えば、ポリメチルメタタリ レート、 MS榭脂、ポリカーボネート、環状ポリオレフインなどの透明熱可塑性榭脂 21 1にシリコーン系榭脂ゃアクリル系榭脂などの微粒子群 212を混練した組成物を板状 に押出成形したものやキャスト成形したものが用いられて!/ヽる。図 21に示す光拡散 板 210は、透明熱可塑性榭脂 211に分散させた微粒子群 212により光を拡散する。 また、従来の光拡散シートは、例えば、図 22に示すように、ポリエチレンテレフタレー トフイルムなどの透明フィルム 221の表面に、透光性榭脂 222に微粒子群 223を混練 した組成物を直接コーティングしたものが用いられている。図 22に示す光拡散シート 220では、光拡散層 224において、透光性榭脂 222に完全に埋設された微粒子群 により光を拡散し、透光性榭脂 222から部分的に突出した微粒子群により光を正面 方向に集光する。さらに、従来のプリズムシートは、図示していないが、例えば、ポリ エステルフィルムの表面にアクリル系榭脂のプリズムパターンを均一に精密成形した ものが用いられている。 Here, as shown in FIG. 21, for example, the conventional light diffusing plate is a transparent thermoplastic resin 21 such as polymethyl methacrylate, MS resin, polycarbonate, and cyclic polyolefin. A composition obtained by kneading a fine particle group 212 such as a silicone-based resin or an acrylic-based resin in 1 is extruded into a plate shape or cast and used. The light diffusion plate 210 shown in FIG. 21 diffuses light by the fine particle group 212 dispersed in the transparent thermoplastic resin 211. Further, in the conventional light diffusion sheet, for example, as shown in FIG. 22, the surface of a transparent film 221 such as a polyethylene terephthalate film is directly coated with a composition obtained by kneading the fine particle group 223 in the translucent resin 222. Things are used. In the light diffusing sheet 220 shown in FIG. 22, in the light diffusing layer 224, the light is diffused by the fine particles completely embedded in the translucent resin 222, and the fine particles partially protruded from the translucent resin 222. To collect the light in the front direction. Further, although not shown in the drawings, a conventional prism sheet is used in which a prism pattern of acrylic resin is uniformly and precisely formed on the surface of a polyester film, for example.
[0005] しかし、図 20に示す従来のバックライトユニットのように、部材の数が多 、と、組み立 てに要するコストが高くなる。また、光源からの光が液晶表示パネルに到達するまで に多くの部材を通過するので、光線の損失が生じ、全光線透過率や輝度が低下する 。その結果、例えば、輝度を向上させるために、光源の数を増やしたり、光源の電力 を高くしたりすることが必要となっている。さらに、輝度を向上するために複数枚のプリ ズムシートや光拡散シートを重ねると、シート間における光の干渉に起因するモアレ が生じ、表示画像の画質が低下するという問題がある。それゆえ、ノ ックライトユニット の構成において、全光線透過率や輝度を低下させることなぐまた、光の干渉を起こ すことなく、部材の削減や機能の複合ィ匕が求められて 、る。  However, as the conventional backlight unit shown in FIG. 20 has a large number of members, the cost required for assembly increases. In addition, since light from the light source passes through many members before reaching the liquid crystal display panel, loss of light occurs, and total light transmittance and luminance are reduced. As a result, for example, in order to improve luminance, it is necessary to increase the number of light sources or increase the power of the light sources. Furthermore, when a plurality of prism sheets or light diffusion sheets are stacked in order to improve the brightness, there is a problem that moire caused by light interference between the sheets occurs and the image quality of the display image is lowered. Therefore, in the structure of the knock light unit, there is a need for a reduction in the number of members and a combination of functions without reducing the total light transmittance and brightness and without causing light interference.
[0006] ノ ックライトユニットの部材を削減したり、機能を複合ィ匕したりする試みとしては、例 えば、光拡散板となるガラス基板上に光拡散シートを貼り付ける方法 (例えば、特開 2 005— 129346号公報を参照)、光拡散板を用いずに、透明部材に保持された光拡 散シートだけで構成する方法 (例えば、特開 2003— 272406号公報を参照)、プリズ ムシートに代えて光拡散板の表面にプリズム列を形成する方法 (例えば、特開 2003 — 016819号公報を参照)、光拡散板の表面にプリズム形状などの立体模様を有す る榭脂シートを貼り合わせる方法 (例えば、特開 2004— 163575号公報を参照)、プ リズム面で構成される入光制御層と配光層との間に拡散子を含有する拡散層を設け る方法 (例えば、特開 2005— 107020号公報を参照)などが挙げられる。 [0006] As an attempt to reduce the number of members of the knocklight unit or to combine the functions, for example, a method of attaching a light diffusion sheet on a glass substrate serving as a light diffusion plate (for example, JP 2 005-129346), a method of using only a light diffusing sheet held on a transparent member without using a light diffusing plate (see, for example, JP-A-2003-272406), a prism sheet Instead, a method of forming prism rows on the surface of the light diffusing plate (see, for example, Japanese Patent Application Laid-Open No. 2003-016819), and bonding a resin sheet having a three-dimensional pattern such as a prism shape to the surface of the light diffusing plate Method (see, for example, Japanese Patent Application Laid-Open No. 2004-163575), a diffusion layer containing a diffuser is provided between a light incident control layer composed of a prism surface and a light distribution layer. (For example, refer to JP-A-2005-107020).
[0007] し力し、特開 2005— 129346号公報および特開 2003— 272406号公報に記載の 方法は、それぞれ、光拡散板と光拡散シートとを一体ィ匕するか、あるいは拡散板を省 略する方法であるが、充分な拡散光が得られないので、光源の形状を完全に消すこ とができず、しかも、プリズムシートを用いていないので、低い輝度し力得られないと ヽぅ 題^;力 sある。また、特開 2003— 016819号公報、特開 2004— 163575号公 報および特開 2005— 107020号公報に記載の方法は、いずれも光拡散板とプリズ ムシートとの一体ィ匕を行う方法である力 輝度が向上し、光源の形状を完全に消すこ とができる反面、プリズム形状などの形成を精度よく工業的規模で行うのは困難であ り、製造コストが増大するという問題点がある。 [0007] According to the methods described in JP-A-2005-129346 and JP-A-2003-272406, the light diffusing plate and the light diffusing sheet are respectively integrated, or the diffusing plate is omitted. Although it is an abbreviated method, sufficient diffused light cannot be obtained, so the shape of the light source cannot be completely erased, and since a prism sheet is not used, low brightness and power cannot be obtained. problem ^; a force s. In addition, the methods described in Japanese Patent Application Laid-Open Nos. 2003-0116819, 2004-163575, and 2005-107020 are all methods for integrating the light diffusing plate and the prism sheet. Force Brightness is improved and the shape of the light source can be completely erased. On the other hand, it is difficult to accurately form the prism shape on an industrial scale, resulting in an increase in manufacturing cost.
[0008] その一方で、光拡散シートの光拡散性や輝度を向上させる試みも盛んに行われて いる。このような試みとしては、例えば、透明な基材フィルム上に形成した光拡散層中 に微粒子群を一部は完全に、残部は部分的に埋設する方法 (例えば、特開平 11 64611号公報を参照)、透光性基体上に球状微粒子を単層で配列する方法 (例え ば、特許第 3509703号公報を参照)、透明支持基材上に形成した光吸収層に微小 球レンズを埋設する方法 (例えば、特開 2001— 281420号公報を参照)などが挙げ られる。 On the other hand, attempts to improve the light diffusibility and brightness of the light diffusing sheet are also actively made. As such an attempt, for example, a method in which a part of the fine particle group is completely embedded in the light diffusion layer formed on the transparent base film and the remaining part is partially embedded (for example, Japanese Patent Laid-Open No. 11 64611). See), a method of arranging spherical fine particles in a single layer on a translucent substrate (see, for example, Japanese Patent No. 3509703), and a method of embedding microsphere lenses in a light absorption layer formed on a transparent support substrate (For example, see JP-A-2001-281420).
[0009] しかし、特開平 11 64611号公報に記載の方法は、光拡散性に優れるが、光拡 散層から部分的に突出した状態の微粒子が少ないので、集光性が低ぐ低い輝度し か得られず、また、特許第 3509703号公報および特開 2001— 281420号公報に 記載の方法は、集光性に優れるが、球状微粒子や微小球レンズを単層に配列してい るだけであるので、光拡散性が不充分であり、光源形状が完全には消せないという問 題点がある。  [0009] However, the method described in JP-A-11 64611 is excellent in light diffusibility, but since there are few fine particles partially protruding from the light diffusion layer, the light collecting property is low and the luminance is low. In addition, the methods described in Japanese Patent No. 3509703 and Japanese Patent Application Laid-Open No. 2001-281420 are excellent in light-collecting properties, but only spherical particles and microsphere lenses are arranged in a single layer. Therefore, there is a problem that the light diffusibility is insufficient and the shape of the light source cannot be completely erased.
[0010] ところで、微粒子を含有する光拡散層を設けた光拡散シートは、製造時、保管時、 運搬時、ディスプレイに設置時などに、光拡散層の凸部が接触する他の部材との摩 擦により、光拡散シートおよび接触部材に傷が発生する。例えば、光拡散シートは、 ロール状に保管されるが、その際、光拡散層は対向する基材フィルムに強く押し付け られるので、光拡散シートおよび基材フィルムに傷が発生する。また、ディスプレイに 設置時には、光拡散シートの上に、さらに光拡散シート、プリズムシート、輝度向上シ ートなどの光学シートが設置されることがある。その際、光拡散層の凸部が光学シート と接触することにより、光拡散シートおよび光学シートに傷が発生する。このように、光 拡散シートに傷が発生すると、光拡散性や全光線透過率などの光学的特性が低下 する。 [0010] By the way, a light diffusion sheet provided with a light diffusion layer containing fine particles is in contact with other members with which the convex portions of the light diffusion layer come into contact during production, storage, transportation, installation on a display, and the like. By rubbing, scratches occur on the light diffusion sheet and the contact member. For example, the light diffusing sheet is stored in a roll shape, and at this time, the light diffusing layer is strongly pressed against the facing base film, so that the light diffusing sheet and the base film are damaged. Also on the display At the time of installation, an optical sheet such as a light diffusion sheet, a prism sheet, or a brightness enhancement sheet may be further installed on the light diffusion sheet. At that time, the convex portions of the light diffusion layer come into contact with the optical sheet, so that the light diffusion sheet and the optical sheet are damaged. As described above, when the light diffusing sheet is scratched, optical characteristics such as light diffusibility and total light transmittance are deteriorated.
[0011] 光拡散シートの耐傷付性を向上させる試みとしては、例えば、光拡散層に圧縮強 度および平均粒子径を調節した架橋 (メタ)アクリル酸エステル系重合体微粒子を含 有させる方法 (例えば、特許第 3531668号公報を参照)、光拡散層に圧縮強度を調 節した榭脂粒子と粒子状滑剤とを含有させる方法 (例えば、特開 2003— 270410号 公報を参照)、光拡散シートを形成した基材フィルムの裏面にハードコート剤を含有 する榭脂層からなるステイツキング防止層を設ける方法 (例えば、特開 2003— 1072 19号公報を参照)などが挙げられる。  [0011] As an attempt to improve the scratch resistance of the light diffusing sheet, for example, a method in which the light diffusing layer contains crosslinked (meth) acrylic acid ester polymer fine particles whose compression strength and average particle diameter are adjusted ( For example, see Japanese Patent No. 3531668), a method in which a light diffusing layer contains rosin particles and a particulate lubricant whose compressive strength is adjusted (see, for example, JP-A-2003-270410), a light diffusing sheet And a method of providing a sticking prevention layer composed of a resin layer containing a hard coat agent on the back surface of the base film on which the film is formed (see, for example, JP-A-2003-107219).
[0012] しかし、特許第 3531668号公報に記載の方法は、架橋 (メタ)アクリル酸エステル 系重合体微粒子が透明榭脂バインダーで被覆されて ヽるので、光拡散層から部分 的に突出した微粒子を被覆している透明榭脂バインダーが摩擦などにより剥離する ことがあり、また、特開 2003— 270410号公報に記載の方法は、光拡散剤の榭脂粒 子に加えて粒子状滑剤を用いているので、光拡散層の光拡散性を低下させることが あり、さらに、特開 2003— 107219号公報に記載の方法は、ステイツキング防止層の 硬度が光拡散層より高!、 (鉛筆硬度 2H〜3H)ので、光拡散層を形成した基材フィル ムの裏面に傷が発生することを防止できても、光拡散層に傷が発生することは防止で きないという問題点がある。 However, in the method described in Japanese Patent No. 3531668, since the crosslinked (meth) acrylate polymer fine particles are coated with a transparent resin binder, the fine particles partially protrude from the light diffusion layer. In some cases, the transparent resin binder covering the surface may be peeled off by friction or the like, and the method described in JP-A-2003-270410 uses a particulate lubricant in addition to the resin particles of the light diffusing agent. Therefore, the light diffusibility of the light diffusing layer may be lowered, and the method described in Japanese Patent Application Laid-Open No. 2003-107219 has a higher anti-sticking layer hardness than the light diffusing layer! 2H to 3H), there is a problem that even if it is possible to prevent scratches on the back surface of the base film on which the light diffusion layer is formed, scratches cannot be prevented from occurring on the light diffusion layer.
発明の開示  Disclosure of the invention
[0013] 上述した状況の下、本発明が解決すべき課題は、光拡散性や集光性に優れると共 に高 、全光線透過率および輝度が得られると ヽぅ基本的な光学特性を維持しながら 、ノ ックライトユニットの部材を削減することができ、し力も光拡散層の耐傷付性に優 れた光拡散シートおよび光拡散板、ならびにそれらを用いたバックライトユニットおよ び液晶表示装置を提供することにある。  [0013] Under the circumstances described above, the problem to be solved by the present invention is that, in addition to being excellent in light diffusibility and light condensing property, high light transmittance and luminance can be obtained. While maintaining, the number of components of the knock light unit can be reduced, and the light diffusion sheet and light diffusion plate excellent in scratch resistance of the light diffusion layer, and the backlight unit and liquid crystal using them It is to provide a display device.
[0014] 本発明者らは、種々検討の結果、光拡散シートや光拡散板における光拡散層を構 成する透光性榭脂と微粒子群との屈折率差を規定すれば、光拡散シートや光拡散 板が単独で高!、光拡散性と集光性とを有するので、従来技術のように光拡散シートと 光拡散板とを併用したり、プリズムシートを用いたりする必要がないことから、ノ ックラ イトユニットの基本的な光学特性を維持しながら、その部材を削減できること、ならび に、無機超微粒子または有機無機複合超微粒子を含有する (メタ)アクリル系榭脂を 透光性榭脂として用いれば、カゝかる榭脂は無機超微粒子または有機無機複合超微 粒子に由来する適度な硬度および靭性を有するので、光拡散層から部分的に突出 した光拡散剤の微粒子を被覆することにより、光拡散層および接触部材に傷が発生 しにくいことを見出して、本発明を完成した。 As a result of various studies, the present inventors have configured a light diffusion layer in a light diffusion sheet or a light diffusion plate. If the refractive index difference between the translucent resin and the fine particle group is defined, the light diffusion sheet and light diffusion plate are high by themselves and have light diffusibility and light condensing properties. Since it is not necessary to use a light diffusing sheet and a light diffusing plate or a prism sheet, the number of members can be reduced while maintaining the basic optical characteristics of the knock light unit, and inorganic If (meth) acrylic resin containing ultrafine particles or organic / inorganic composite ultrafine particles is used as a translucent resin, the hardened resin has an appropriate hardness derived from inorganic ultrafine particles or organic / inorganic composite ultrafine particles. Thus, the present invention was completed by finding that the light diffusing layer and the contact member are less likely to be damaged by covering the light diffusing agent fine particles partially protruding from the light diffusing layer.
[0015] すなわち、本発明は、透明フィルムの少なくとも片面に、透光性榭脂に少なくとも 1 種類の微粒子群を分散させた光拡散層が形成された光拡散シートであって、該光拡 散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対値が 0. 05以上であることを特徴とする光拡散シートを提供する。  That is, the present invention is a light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on at least one surface of a transparent film, Provided is a light diffusing sheet characterized in that the absolute value of the difference in refractive index between the translucent resin constituting the layer and at least one kind of fine particle group is 0.05 or more.
[0016] 好ましい実施態様では、前記光拡散層の少なくとも一方が 2種類の微粒子群を含 有し、かつ前記光拡散層の表面粗さが算術平均粗さで 0. 以上、 7 m以下で ある。また、前記透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群 を分散させた光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種 類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平 均粗さで 0. 5 μ m以上、 7 μ m以下である。あるいは、前記透明フィルムの片面に、 透光性榭脂に少なくとも 1種類の微粒子群を分散させた光拡散層が形成され、前記 透明フィルムの反対面に、透光性榭脂に少なくとも 1種類の微粒子群を埋設させた集 光層が形成され、かつ該集光層の表面粗さが算術平均粗さで 0. 以上、 7 m 以下である。さらに、前記透光性榭脂が無機超微粒子または有機無機複合超微粒 子を含有する (メタ)アクリル榭脂である。  In a preferred embodiment, at least one of the light diffusing layers includes two types of fine particle groups, and the surface roughness of the light diffusing layer is an arithmetic average roughness of not less than 0 and not more than 7 m. . In addition, a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent film, and at least one kind of the translucent resin is formed on the light diffusion layer. A condensing layer in which fine particle groups are embedded is formed, and the surface roughness of the condensing layer is not less than 0.5 μm and not more than 7 μm in terms of arithmetic average roughness. Alternatively, a light diffusion layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least one kind of transparent resin is provided on the opposite surface of the transparent film. A light collecting layer in which fine particle groups are embedded is formed, and the surface roughness of the light collecting layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness. Furthermore, the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
[0017] また、本発明は、透明支持体の少なくとも片面に、透光性榭脂に少なくとも 1種類の 微粒子群を分散させた光拡散層が形成され、かつ該光拡散層を構成する透光性榭 脂と少なくとも 1種類の微粒子群との屈折率差の絶対値が 0. 05以上であることを特 徴とする光拡散板;ならびに、透明フィルムの片面に、透光性榭脂に少なくとも 1種類 の微粒子群を分散させた光拡散層が形成された光拡散シートが透明支持体の少な くとも片面に接着剤または粘着剤で貼り合わされ、かつ該光拡散層を構成する透光 性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対値が 0. 05以上であること を特徴とする光拡散板;を提供する。 [0017] Further, according to the present invention, a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on at least one surface of the transparent support, and the light transmissive layer constituting the light diffusing layer is formed. A light diffusing plate characterized in that the absolute value of the difference in refractive index between the hydrophobic resin and at least one kind of fine particle group is 0.05 or more; and at least the transparent resin on one side of the transparent film. 1 type A light diffusing sheet in which a light diffusing layer in which fine particles are dispersed is bonded to at least one surface of a transparent support with an adhesive or a pressure-sensitive adhesive, and constitutes the light diffusing layer. There is provided a light diffusing plate characterized in that an absolute value of a refractive index difference with at least one kind of fine particle group is 0.05 or more.
好ましい実施態様では、前記光拡散層の少なくとも一方が 2種類の微粒子群を含 有し、かつ前記光拡散層の表面粗さが算術平均粗さで 0. 以上、 7 m以下で ある。また、前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を 分散させた光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種類 の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平均 粗さで 0. 以上、 7 m以下である。あるいは、前記透明支持体の片面に、透光 性榭脂に少なくとも 1種類の微粒子群を分散させた光拡散層が形成され、前記透明 支持体の反対面に、透光性榭脂に少なくとも 1種類の微粒子群を埋設させた集光層 が形成され、かつ該集光層の表面粗さが算術平均粗さで 0. 以上、 以下 である。あるいは、前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒 子群を分散させた光拡散層が形成され、透明フィルムの片面に、透光性榭脂に少な くとも 1種類の微粒子群を埋設させた集光層が形成された集光シートが前記透明支 持体の反対面に接着剤または粘着剤で貼り付けられ、かつ該集光層の表面粗さが 算術平均粗さで 0. 5 μ m以上、 7 μ m以下である。あるいは、透明フィルムの片面に 、透光性榭脂に少なくとも 1種類の微粒子群を分散させた光拡散層が形成され、該 光拡散層上に、透光性榭脂に少なくとも 1種類の微粒子群を埋設させた集光層が形 成された光拡散シートが前記透明支持体の片面に接着剤または粘着剤で貼り合わ され、かつ該集光層の表面粗さが算術平均粗さで 0. 以上、 7 m以下である。 あるいは、透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散 させた光拡散層が形成された光拡散シートが前記透明支持体の片面に接着剤また は粘着剤で貼り合わされ、前記透明支持体の反対面に、透光性榭脂に少なくとも 1 種類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術 平均粗さで 0. 5 μ m以上、 7 μ m以下である。あるいは、透明フィルムの片面に、透 光性榭脂に少なくとも 1種類の微粒子群を分散させた光拡散層が形成された光拡散 シートが前記透明支持体の片面に接着剤または粘着剤で貼り合わされ、透明フィル ムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を埋設させた集光層が形成 された集光シートが前記透明支持体の反対面に接着剤または粘着剤で貼り付けられIn a preferred embodiment, at least one of the light diffusing layers contains two types of fine particle groups, and the surface roughness of the light diffusing layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness. Further, a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and at least one type of translucent resin is formed on the light diffusion layer. A light condensing layer in which fine particle groups are embedded is formed, and the surface roughness of the light condensing layer is an arithmetic average roughness of not less than 0 and not more than 7 m. Alternatively, a light diffusion layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of the transparent support, and at least 1 of the transparent resin is provided on the opposite surface of the transparent support. A condensing layer in which various kinds of fine particle groups are embedded is formed, and the surface roughness of the condensing layer is not less than 0. Alternatively, a light diffusing layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of the transparent support, and at least 1 of the transparent resin is provided on one side of the transparent film. A condensing sheet having a condensing layer in which various kinds of fine particle groups are embedded is attached to the opposite surface of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is an arithmetic average. The roughness is 0.5 μm or more and 7 μm or less. Alternatively, on one side of the transparent film, a light diffusion layer in which at least one kind of fine particle group is dispersed is formed in the translucent resin, and on the light diffusion layer, at least one kind of fine particle group is formed in the translucent resin. A light diffusing sheet formed with a light condensing layer embedded therein is bonded to one side of the transparent support with an adhesive or an adhesive, and the surface roughness of the light condensing layer is an arithmetic average roughness of 0. This is 7 m or less. Alternatively, a light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of a transparent film is attached to one side of the transparent support with an adhesive or a pressure sensitive adhesive. And a condensing layer in which at least one kind of fine particle group is embedded in a transparent resin is formed on the opposite surface of the transparent support, and the surface roughness of the condensing layer is an arithmetic average roughness of 0. It is 5 μm or more and 7 μm or less. Alternatively, a light diffusion layer in which a light diffusion layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of a transparent film A light-condensing layer in which a sheet is bonded to one side of the transparent support with an adhesive or a pressure-sensitive adhesive, and a light-condensing layer in which at least one type of fine particle group is embedded in one side of the transparent film. A sheet is attached to the opposite surface of the transparent support with an adhesive or an adhesive.
、かつ該集光層の表面粗さが算術平均粗さで 0. 以上、 7 m以下である。さら に、前記透光性榭脂が無機超微粒子または有機無機複合超微粒子を含有する (メタ )アクリル榭脂である。 And the surface roughness of the light condensing layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness. Furthermore, the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
[0019] さらに、本発明は、光源と、反射シートと、透明支持体と、前記光拡散シートとを有 することを特徴とするバックライトユニット;光源と、反射シートと、前記光拡散シートと を有することを特徴とするバックライトユニット;光源と、反射シートと、前記光拡散板と を有することを特徴とするバックライトユニット;ならびに、これらのバックライトユニット の!、ずれかを備えて 、ることを特徴とする液晶表示装置;を提供する。  [0019] Further, the present invention provides a backlight unit comprising a light source, a reflection sheet, a transparent support, and the light diffusion sheet; a light source, a reflection sheet, and the light diffusion sheet; A backlight unit comprising a light source, a reflective sheet, and the light diffusing plate; and a backlight unit comprising any of these backlight units! A liquid crystal display device characterized by the above.
[0020] 本発明の光拡散シートおよび光拡散板によれば、光源形状を完全に消すことがで き、線光源を面光源にする機能を有するので、光拡散性や集光性に優れると共に、 高 、全光線透過率および輝度を与えることができると ヽぅ基本的な光学特性を維持 しながら、ノ ックライトユニットの部材を削減することができる。それゆえ、このような光 拡散シートおよび光拡散板を用いた本発明のノ ックライトユニットおよび液晶表示装 置は、液晶表示装置を用いた種々の製品のコストを低減することができる。また、部 材の削減により、部材間を通過する際の光線の損失が減少するので、光源の数を減 少させたり、光源の電力を低下させたりすることができる。さらには、部材の削減により 、シート間における光の干渉を起こすことがないので、表示画像の画質が向上する。 し力も、光拡散層が耐傷付性に優れるので、本発明の光拡散シートおよび光拡散板 は、製造時、保管時、運搬時、使用時などの取り扱いが容易であり、歩留りが向上す る。  [0020] According to the light diffusing sheet and the light diffusing plate of the present invention, the shape of the light source can be completely erased, and the line light source can be used as a surface light source. Therefore, the light diffusing property and the light collecting property are excellent. When high light transmittance and brightness can be provided, the number of components of the knock light unit can be reduced while maintaining basic optical characteristics. Therefore, the knock light unit and the liquid crystal display device of the present invention using such a light diffusion sheet and light diffusion plate can reduce the cost of various products using the liquid crystal display device. Moreover, since the loss of light rays when passing between members is reduced by reducing the number of members, the number of light sources can be reduced and the power of the light sources can be reduced. Furthermore, since the number of members does not cause light interference between sheets, the image quality of the display image is improved. Since the light diffusing layer has excellent scratch resistance, the light diffusing sheet and light diffusing plate of the present invention are easy to handle during production, storage, transportation, use, etc., and yield is improved. .
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の光拡散シートの構成例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing a configuration example of a light diffusion sheet of the present invention.
[図 2]本発明の光拡散シートの他の構成例を示す概略断面図である。  FIG. 2 is a schematic sectional view showing another configuration example of the light diffusion sheet of the present invention.
[図 3]本発明の光拡散シートの他の構成例を示す概略断面図である。  FIG. 3 is a schematic cross-sectional view showing another configuration example of the light diffusion sheet of the present invention.
[図 4]本発明の光拡散シートの他の構成例を示す概略断面図である。 [図 5]本発明の光拡散シートの他の構成例を示す概略断面図である。 FIG. 4 is a schematic sectional view showing another configuration example of the light diffusion sheet of the present invention. FIG. 5 is a schematic cross-sectional view showing another configuration example of the light diffusion sheet of the present invention.
[図 6]本発明の光拡散シートの他の構成例を示す概略断面図である。  FIG. 6 is a schematic cross-sectional view showing another configuration example of the light diffusion sheet of the present invention.
[図 7]本発明の光拡散板の構成例を示す概略断面図である。  FIG. 7 is a schematic cross-sectional view showing a configuration example of a light diffusion plate of the present invention.
[図 8]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 8 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
[図 9]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 9 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
[図 10]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 10 is a schematic sectional view showing another configuration example of the light diffusing plate of the present invention.
[図 11]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 11 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
[図 12]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 12 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
[図 13]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 13 is a schematic cross-sectional view showing another configuration example of the light diffusion plate of the present invention.
[図 14]本発明の光拡散板の他の構成例を示す概略断面図である。  FIG. 14 is a schematic sectional view showing another configuration example of the light diffusing plate of the present invention.
[図 15]本発明のバックライトユニットの構成例を示す概略説明図である。  FIG. 15 is a schematic explanatory view showing a configuration example of a backlight unit of the present invention.
[図 16]本発明のバックライトユニットの他の構成例を示す概略説明図である。  FIG. 16 is a schematic explanatory view showing another configuration example of the backlight unit of the present invention.
[図 17]本発明のバックライトユニットの他の構成例を示す概略説明図である。  FIG. 17 is a schematic explanatory view showing another configuration example of the backlight unit of the present invention.
[図 18]本発明のバックライトユニットの他の構成例を示す概略説明図である。  FIG. 18 is a schematic explanatory diagram showing another configuration example of the backlight unit of the present invention.
[図 19]実施例 1で得られた光拡散シートの集光層表面の凹凸を示す図面代用写真 である。  FIG. 19 is a drawing-substituting photograph showing irregularities on the surface of the light collecting layer of the light diffusion sheet obtained in Example 1.
[図 20]従来のバックライトユニットの構成例を示す概略説明図である。  FIG. 20 is a schematic explanatory view showing a configuration example of a conventional backlight unit.
[図 21]従来の光拡散板の構成を示す概略断面図である。  FIG. 21 is a schematic cross-sectional view showing a configuration of a conventional light diffusing plate.
[図 22]従来の光拡散シートの構成例を示す概略断面図である。  FIG. 22 is a schematic sectional view showing a configuration example of a conventional light diffusion sheet.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 《光拡散シート〉〉  [0022] << Light diffusion sheet >>
本発明の光拡散シートは、透明フィルムの少なくとも片面に、透光性榭脂に少なくと も 1種類の微粒子群を分散させた光拡散層が形成された光拡散シートであって、該 光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対 値が 0. 05以上であることを特徴とする。  The light diffusion sheet of the present invention is a light diffusion sheet in which a light diffusion layer in which at least one kind of fine particle group is dispersed is formed on at least one surface of a transparent film. The absolute value of the difference in refractive index between the translucent resin constituting the layer and at least one kind of fine particle group is 0.05 or more.
[0023] 好ましい実施態様では、前記光拡散層の少なくとも一方が 2種類の微粒子群を含 有し、かつ前記光拡散層の表面粗さが算術平均粗さで 0. 以上、 7 m以下で ある。また、前記透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群 を分散させた光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種 類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平 均粗さで 0. 5 μ m以上、 7 μ m以下である。あるいは、前記透明フィルムの片面に、 透光性榭脂に少なくとも 1種類の微粒子群を分散させた光拡散層が形成され、前記 透明フィルムの反対面に、透光性榭脂に少なくとも 1種類の微粒子群を埋設させた集 光層が形成され、かつ該集光層の表面粗さが算術平均粗さで 0. 以上、 7 m 以下である。さらに、前記透光性榭脂が無機超微粒子または有機無機複合超微粒 子を含有する (メタ)アクリル榭脂である。 In a preferred embodiment, at least one of the light diffusion layers contains two types of fine particle groups, and the surface roughness of the light diffusion layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness. . Further, on one side of the transparent film, at least one kind of fine particle group in translucent resin A light-diffusing layer is formed, and a light-condensing layer is formed on the light-diffusing layer by embedding at least one kind of fine particles in a translucent resin, and the surface of the light-condensing layer is roughened. The arithmetic mean roughness is 0.5 μm or more and 7 μm or less. Alternatively, a light diffusion layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least one kind of transparent resin is provided on the opposite surface of the transparent film. A light collecting layer in which fine particle groups are embedded is formed, and the surface roughness of the light collecting layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness. Furthermore, the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
[0024] ここで、光拡散層にお ヽて「透光性榭脂に少なくとも 1種類の微粒子群を分散させ た」とは、光拡散層を構成する透光性榭脂に 1種類の微粒子群が実質的に均一に分 散している力、あるいは 2種類の微粒子群が実質的に均一に分散している力 あるい は 3種類以上の微粒子群が実質的に均一に分散していることを意味する。微粒子群 力 種類の場合には、好ましくは、実質的に全部の微粒子群が光拡散層を構成する 透光性榭脂に埋没しており、微粒子群が 2種類または 3種類以上である場合には、 好ましくは、光拡散層を構成する透光性榭脂に大部分が埋没した微粒子群 (例えば 、粒子径が比較的小さい微粒子群)と光拡散層を構成する透光性榭脂から部分的に 突出した微粒子群 (例えば、粒子径が比較的大きい微粒子群)とが存在する。ただし 、粒子径の差が充分に大きい 2種類または 3種類以上の微粒子群を用いた場合は、 粒子径が小さ!/ヽ微粒子群は、粒子径が大き!/ヽ微粒子群の表面を被覆する透光性榭 脂中にも存在する。なお、微粒子群の種類は、材質や存在状態により区別するが、 粒子径ゃ形状などにより区別しないものとする。また、集光層において「透光性榭脂 に少なくとも 1種類の微粒子群を埋設させた」とは、集光層を構成する透光性榭脂〖こ 埋没した微粒子群 (例えば、粒子径が比較的小さ!ヽ微粒子群)と集光層を構成する 透光性榭脂から部分的に突出した微粒子群 (例えば、粒子径が比較的大きい微粒 子群)とが存在して 、ることを意味する。  Here, in the light diffusion layer, “at least one kind of fine particle group is dispersed in the light transmissive resin” means that one kind of fine particle is contained in the light transmissive resin constituting the light diffusion layer. Force that groups are dispersed substantially uniformly, force that two types of particles are dispersed substantially uniformly, or group of three or more types of particles are distributed substantially uniformly Means that. In the case of the type of fine particle group, it is preferable that substantially all of the fine particle group is embedded in the light-transmitting resin constituting the light diffusion layer, and there are two or more types of fine particle groups. Preferably, a fine particle group (for example, a fine particle group having a relatively small particle diameter) mostly embedded in the light transmissive resin constituting the light diffusion layer and a part of the light transmissive resin constituting the light diffusion layer In particular, there are fine particle groups that protrude (for example, fine particle groups having a relatively large particle diameter). However, when two or more types of fine particle groups with a sufficiently large difference in particle size are used, the particle size is small! / ヽ particle group has a large particle size! Also present in translucent resin. The type of fine particle group is distinguished depending on the material and the state of existence, but it is not distinguished depending on the particle diameter and shape. In addition, in the light collecting layer, “at least one kind of fine particle group is embedded in the translucent resin” means that the fine particle group (for example, having a particle diameter of the light transmitting resin constituting the light collecting layer) is embedded. A relatively small particle group) and a group of fine particles partially protruding from the translucent coagulant constituting the light collecting layer (for example, a particle group having a relatively large particle diameter). means.
[0025] このような光拡散シートは、例えば、透光性榭脂中における微粒子群の含有量や、 光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との屈折率差、光拡 散層に分散させた微粒子群を構成する各微粒子の形状や微粒子群の平均粒子径、 ならびに、集光層の表面粗さ、集光層に埋設させた微粒子群を構成する各微粒子の 形状や微粒子群の平均粒子径、埋設状態 (または部分的な突出状態)などを調節す ることにより、光拡散層の光拡散性および集光層の集光性を制御することができる。 また、好ましい実施態様として、透光性榭脂に 2種類の微粒子群を分散させた光拡 散層の場合、さらに光拡散層の表面粗さ、すなわち透光性榭脂に分散させた微粒子 群を構成する各微粒子の埋設状態 (または部分的な突出状態)などを調節すること により、光拡散層の光拡散性および集光性を制御することができる。すなわち、光拡 散層を構成する透光性榭脂に 2種類の微粒子群を分散させ、かつ光拡散層の表面 粗さを調節すれば、光拡散性を有する光拡散層に集光性を付与することができる。 以下、このような光拡散層を特に「光拡散'集光層」ということがある。 [0025] Such a light diffusion sheet is, for example, the content of the fine particle group in the translucent resin and the difference in refractive index between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group. , The shape of each fine particle constituting the fine particle group dispersed in the light diffusion layer, the average particle diameter of the fine particle group, In addition, the surface roughness of the light condensing layer, the shape of each fine particle constituting the fine particle group embedded in the light condensing layer, the average particle diameter of the fine particle group, and the embedded state (or partially protruding state) should be adjusted. Thus, the light diffusibility of the light diffusion layer and the light condensing property of the light collecting layer can be controlled. Further, as a preferred embodiment, in the case of a light diffusion layer in which two types of fine particle groups are dispersed in a translucent resin, the surface roughness of the light diffusion layer, that is, the fine particle groups dispersed in the translucent resin. By adjusting the embedding state (or partially protruding state) of the fine particles constituting the light diffusion layer, the light diffusibility and the light condensing property of the light diffusion layer can be controlled. That is, if two types of fine particle groups are dispersed in the translucent resin constituting the light diffusing layer and the surface roughness of the light diffusing layer is adjusted, the light diffusing layer having the light diffusing property can be focused. Can be granted. Hereinafter, such a light diffusion layer may be referred to as a “light diffusion / condensing layer”.
例えば、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との屈折率 差が大きいほど、透光性榭脂と各微粒子との界面において光が大きく屈折するので 、光を充分に拡散させることができる。そこで、本発明の光拡散シートでは、光拡散層 における微粒子群の光拡散性の程度を表現するために、光拡散層を構成する透光 性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対値を 0. 05以上に規定して いる。前記屈折率差の絶対値が 0. 05未満であると、透光性榭脂と少なくとも 1種類 の微粒子群を構成する各微粒子との界面において光が大きく屈折せず、光を充分に 拡散できないので、光源形状を完全に消すことができず、線光源を面光源にする機 能を有しないことがある。前記屈折率差の絶対値は、好ましくは 0. 07以上、より好ま しくは 0. 09以上である。また、前記屈折率差の絶対値の上限は、特に限定されるも のではないが、好ましくは 2. 0以下、より好ましくは 1. 5以下である。なお、透光性榭 脂の屈折率は、厚さ 40 mのフィルムを成形し、得られたフィルムの屈折率を多波長 アッベ屈折計 (例えば、 DR— M2、(株)ァタゴ製)で測定した値とする。ただし、測定 波長は 589. 3nm、測定温度は 25°Cである。また、微粒子群の屈折率は、数種類の カーギル標準屈折液 (例えば、スタンダードシリーズ、 (株)モリテックス製;屈折率範 囲 n 25= 1. 300-2. 11)を用意し、予想される屈折率の標準屈折液に微粒子群をFor example, the greater the difference in refractive index between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group, the more light is refracted at the interface between the translucent resin and each fine particle, It can be diffused sufficiently. Therefore, in the light diffusing sheet of the present invention, in order to express the degree of light diffusibility of the fine particle group in the light diffusing layer, the refractive index of the translucent resin constituting the light diffusing layer and at least one kind of fine particle group. The absolute value of the difference is specified to be 0.05 or higher. When the absolute value of the refractive index difference is less than 0.05, light is not largely refracted at the interface between the translucent resin and each fine particle constituting at least one kind of fine particle group, and the light cannot be sufficiently diffused. Therefore, the shape of the light source cannot be completely erased, and the function of making the line light source a surface light source may not be provided. The absolute value of the refractive index difference is preferably 0.07 or more, more preferably 0.09 or more. The upper limit of the absolute value of the refractive index difference is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less. The refractive index of the translucent resin was measured by forming a 40 m thick film and measuring the refractive index of the obtained film with a multiwavelength Abbe refractometer (for example, DR-M2, manufactured by Atago Co., Ltd.). Value. However, the measurement wavelength is 589.3 nm and the measurement temperature is 25 ° C. For the refractive index of the fine particle group, several types of Cargill standard refraction liquids (for example, standard series, manufactured by Moritex Co., Ltd .; refractive index range n 25 = 1. 300-2.11) are prepared. Of fine particles in the standard refractive liquid
D D
浸漬し、 25°Cで透過光学顕微鏡 (例えば、デジタルマイクロスコープ VHX— 200、 ( 株)キーエンス製;光源ランプは、 12V、 100Wのハロゲンランプ(色温度 3, 100K( 最大光量時) ) )を用いて観察し、微粒子群と屈折標準液との界面が最も見えにく!、 時に用いた標準屈折液の屈折率とする。ただし、微粒子群と標準屈折液との界面が 最も見えにくい時に用いた標準屈折液が屈折率の連続した 2種類存在する場合は、 それらの屈折率の中間値を微粒子群の屈折率とする。また、微粒子群の屈折率が力 一ギル標準屈折液の屈折率範囲外である場合は、その材質の屈折率を微粒子群の 屈折率とする。 Immersion and transmission optical microscope at 25 ° C (for example, digital microscope VHX-200, manufactured by Keyence Corporation; light source lamp is a 12V, 100W halogen lamp (color temperature 3, 100K ( When the maximum amount of light is observed)))), the interface between the fine particle group and the refractive standard solution is the least visible! The refractive index of the standard refractive solution used at times is used. However, if there are two types of standard refractive liquids used when the interface between the fine particle group and the standard refractive liquid is least visible, the refractive index of the fine particle group is the intermediate value of these refractive indexes. If the refractive index of the fine particle group is outside the refractive index range of the standard gilding liquid, the refractive index of the material is taken as the refractive index of the fine particle group.
[0027] 好ま 、実施態様として、光拡散層に 2種類の微粒子群を分散させた場合、透光 性榭脂に分散させた微粒子群は、光拡散層に大部分が埋没した微粒子群と光拡散 層から部分的に突出した微粒子群とからなり、後者の微粒子群は、光拡散層に部分 的に埋設され、残りの部分が光拡散層力 突出した状態であり、この突出した部分( 凸部)により光が集光される。そこで、本発明の光拡散シートでは、光拡散層におけ る微粒子群の埋設状態 (または部分的な突出状態)を表現するために、光拡散層の 表面粗さを算術平均粗さで好ましくは 0. 以上、 7 m以下に規定している。前 記表面粗さが算術平均粗さで 0. 5 /z m未満であると、光拡散層から微粒子群が部分 的に突出しにくいので、光を充分に集光できないことがある。逆に、前記表面粗さが 算術平均粗さで 7 mを超えると、光拡散層から微粒子群が部分的に突出しすぎる ので、光を充分に集光できないことがある。前記表面粗さは、より好ましくは 0.  [0027] Preferably, as an embodiment, when two kinds of fine particle groups are dispersed in the light diffusion layer, the fine particle group dispersed in the translucent resin is composed of the fine particle group mostly embedded in the light diffusion layer and the light. It consists of a group of fine particles partially protruding from the diffusion layer. The latter fine particle group is partially embedded in the light diffusion layer, and the remaining portion protrudes from the light diffusion layer force. Part). Therefore, in the light diffusing sheet of the present invention, the surface roughness of the light diffusing layer is preferably expressed by arithmetic average roughness in order to express the embedded state (or partially protruding state) of the fine particle group in the light diffusing layer. 0. It is specified as 7 m or less. When the surface roughness is less than 0.5 / zm in terms of arithmetic average roughness, the fine particle group is unlikely to partially protrude from the light diffusion layer, and thus light may not be sufficiently collected. Conversely, if the surface roughness exceeds 7 m in terms of arithmetic average roughness, the fine particle group partially protrudes from the light diffusion layer, so that light may not be sufficiently collected. The surface roughness is more preferably 0.
以上、 6 μ m以下、さらに好ましくは 0. 9 μ m以上、 5 μ m以下である。なお、表面粗 さは、表面粗さ計 (例えば、 Dektak3030、日本真空技術 (株)製)を用いて、各試料 あたり無作為に選択した 5個所以上で算術平均粗さを測定し、得られた測定値の平 均値である。  It is 6 μm or less, more preferably 0.9 μm or more and 5 μm or less. The surface roughness is obtained by measuring the arithmetic average roughness at 5 or more points randomly selected for each sample using a surface roughness meter (for example, Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). It is the average value of the measured values.
[0028] また、好ま U、実施態様として、光拡散層に 2種類の微粒子群を分散させた場合、 光拡散層における平均粒子径の大き!、方の微粒子群の埋設状態 (または部分的な 突出状態)を別の形で表現すれば、光拡散層における微粒子群の平均粒子径に対 する層厚の比率 (光拡散層の層厚 Z光拡散層における微粒子群の平均粒子径)は、 好ましくは 1. 0以上、 4. 0以下である。前記比率が 1. 0未満であると、光拡散層から 微粒子群が部分的に突出しすぎるので、光を充分に集光できないことがある。逆に、 前記比率が 4. 0を超えると、光拡散層から微粒子群が部分的に突出しにくいので、 光を充分に集光できないことがある。前記比率は、より好ましくは 1. 05以上、 3. 0以 下、さらに好ましくは 1. 1以上、 2. 5以下である。なお、微粒子群の平均粒子径は、 粒度分布測定装置 (例えば、マルチサイザ一 II型、コールター (株)製)を用いて測定 した体積平均粒子径である。また、光拡散層の層厚は、厚み測定器 (例えば、ダイヤ ルシックネスゲージ G— 6、(株)尾崎製作所製)を用いて、各試料あたり 5点以上で層 厚を測定し、得られた測定値の平均値である。ここで、光拡散層の層厚とは、光拡散 層が透明フィルムなどと接する裏面力 透光性榭脂が存在する最大高さ部分までの 厚さをいう。それゆえ、例えば、微粒子群が透光性榭脂で被覆されている場合、最大 高さ部分とは、透光性榭脂で被覆された微粒子群のうち、光拡散層から最も部分的 に突出した微粒子を被覆する透光性榭脂の頂点をいう。 [0028] Further, preferably U, as an embodiment, when two kinds of fine particle groups are dispersed in the light diffusion layer, the average particle diameter in the light diffusion layer is large! Expressed in a different form, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light diffusion layer (layer thickness of the light diffusion layer Z average particle diameter of the fine particle group in the light diffusion layer) is Preferably it is 1.0 or more and 4.0 or less. When the ratio is less than 1.0, the fine particle group partially protrudes excessively from the light diffusion layer, so that light may not be sufficiently collected. Conversely, if the ratio exceeds 4.0, the group of fine particles is unlikely to partially protrude from the light diffusion layer. The light may not be collected sufficiently. The ratio is more preferably 1.05 or more and 3.0 or less, and still more preferably 1.1 or more and 2.5 or less. The average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter, Inc.). The layer thickness of the light diffusion layer is obtained by measuring the layer thickness at 5 points or more for each sample using a thickness measuring instrument (for example, dial thickness gauge G-6, manufactured by Ozaki Mfg. Co., Ltd.). The average value of the measured values. Here, the layer thickness of the light diffusing layer refers to the thickness up to the maximum height portion where the back surface translucent resin exists where the light diffusing layer is in contact with the transparent film or the like. Therefore, for example, when the fine particle group is coated with a translucent resin, the maximum height portion is the most protruding part from the light diffusion layer among the fine particle group coated with the translucent resin. It refers to the apex of the translucent resin covering the fine particles.
[0029] さらに、好ましい実施態様として、光拡散層に加えて、集光層を設けた場合、集光 層にお ヽて透光性榭脂に埋設させた微粒子群は、集光層に埋没した微粒子群と集 光層から部分的に突出した微粒子群とからなり、後者の微粒子群は、集光層に部分 的に埋設され、残りの部分が集光層力 突出した状態であり、この突出した部分(凸 部)により光が集光される。そこで、本発明の光拡散シートでは、集光層における微 粒子群の埋設状態 (または部分的な突出状態)を表現するために、集光層の表面粗 さを算術平均粗さで好ましくは 0. 以上、 7 m以下に規定している。前記表面 粗さが算術平均粗さで 0. 5 m未満であると、集光層から微粒子群が部分的に突出 しにくいので、光を充分に集光できないことがある。逆に、前記表面粗さが算術平均 粗さで 7 mを超えると、集光層から微粒子群が部分的に突出しすぎるので、光を充 分に集光できないことがある。前記表面粗さは、算術平均粗さで、より好ましくは 0. 7 μ m以上、 6 μ m以下、さらに好ましくは 0. 9 μ m以上、 5 μ m以下である。なお、表 面粗さは、表面粗さ計 (Dektak3030、日本真空技術 (株)製)を用いて、各試料あた り無作為に選択した 5個所以上で算術平均粗さを測定し、得られた測定値の平均値 である。 [0029] Furthermore, as a preferred embodiment, in the case where a light condensing layer is provided in addition to the light diffusion layer, the fine particle group embedded in the translucent resin in the light condensing layer is buried in the light condensing layer. The latter fine particle group is partially embedded in the condensing layer and the remaining part is in a state where the condensing layer force protrudes. Light is condensed by the protruding part (convex part). Therefore, in the light diffusing sheet of the present invention, the surface roughness of the light condensing layer is preferably expressed as an arithmetic average roughness in order to express the embedded state (or partially protruding state) of the fine particle groups in the light condensing layer. As stated above, it is specified as 7 m or less. When the surface roughness is less than 0.5 m in terms of arithmetic average roughness, the fine particle group is unlikely to partially protrude from the light condensing layer, so that light may not be sufficiently collected. On the other hand, if the surface roughness exceeds 7 m in terms of arithmetic average roughness, the fine particle group partially protrudes excessively from the light condensing layer, so that light may not be sufficiently condensed. The surface roughness is an arithmetic average roughness, more preferably 0.7 μm or more and 6 μm or less, and still more preferably 0.9 μm or more and 5 μm or less. The surface roughness was obtained by measuring the arithmetic average roughness at 5 or more locations randomly selected for each sample using a surface roughness meter (Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). This is the average value of the measured values.
[0030] さらに、好ましい実施態様として、光拡散層に加えて集光層を設けた場合、集光層 における微粒子群の埋設状態 (または部分的な突出状態)を別の形で表現すれば、 集光層における微粒子群の平均粒子径に対する層厚の比率 (集光層の層厚 Z集光 層における微粒子群の平均粒子径)は、好ましくは 1. 0以上、 4. 0以下である。前記 比率が 1. 0未満であると、集光層から微粒子群が部分的に突出しすぎるので、光を 充分に集光できないことがある。逆に、前記比率が 4. 0を超えると、集光層から微粒 子群が部分的に突出しにくいので、光を充分に集光できないことがある。前記比率は 、より好ましくは 1. 05以上、 3. 0以下、さらに好ましくは 1. 1以上、 2. 5以下である。 なお、微粒子群の平均粒子径は、粒度分布測定装置 (例えば、マルチサイザ一 II型 、コールター (株)製)を用いて測定した体積平均粒子径である。また、集光層の層厚 は、光拡散シートの断面を電子顕微鏡で観察し、各試料あたり 5点以上で層厚を測 定し、得られた測定値の平均値である。ここで、集光層の層厚とは、集光層が光拡散 層や透明フィルムなどと接する裏面力 透光性榭脂が存在する最大高さ部分までの 厚さをいう。それゆえ、例えば、微粒子群が透光性榭脂で被覆されている場合、最大 高さ部分とは、透光性榭脂で被覆された微粒子群のうち、集光層から最も部分的〖こ 突出した微粒子を被覆する透光性榭脂の頂点をいう。なお、例えば、透明フィルムの 表面に集光層が形成され、透明フィルムの裏面に光拡散層が形成された光拡散シ ートの場合には、まず集光層だけを形成した段階で、膜厚計で透明フィルムと集光層 との合計の厚さを測定し、透明フィルムの膜厚を差し引くことにより、集光層の層厚を 算出することができる。 [0030] Furthermore, as a preferred embodiment, in the case where a light condensing layer is provided in addition to the light diffusion layer, the embedded state (or partially protruding state) of the fine particle group in the light condensing layer can be expressed in another form. Ratio of layer thickness to average particle diameter of fine particle group in condensing layer (concentration layer thickness Z condensing The average particle diameter of the fine particle group in the layer is preferably 1.0 or more and 4.0 or less. When the ratio is less than 1.0, the fine particle group partially protrudes from the light condensing layer, so that the light may not be sufficiently collected. On the other hand, when the ratio exceeds 4.0, the fine particle group is unlikely to partially protrude from the light condensing layer, so that the light may not be sufficiently collected. The ratio is more preferably 1.05 or more and 3.0 or less, and still more preferably 1.1 or more and 2.5 or less. The average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter, Inc.). The layer thickness of the condensing layer is the average of the measured values obtained by observing the cross section of the light diffusion sheet with an electron microscope and measuring the layer thickness at 5 or more points for each sample. Here, the layer thickness of the condensing layer refers to the thickness up to the maximum height where the condensing layer is in contact with the light diffusing layer, the transparent film, etc., and the rear force translucent resin is present. Therefore, for example, when the fine particle group is coated with a translucent resin, the maximum height portion is the most part of the fine particle group coated with the translucent resin from the light collecting layer. The apex of the translucent resin that covers the protruding fine particles. For example, in the case of a light diffusion sheet in which a light condensing layer is formed on the surface of the transparent film and a light diffusion layer is formed on the back surface of the transparent film, the film is first formed at the stage where only the light condensing layer is formed. By measuring the total thickness of the transparent film and the light condensing layer with a thickness meter and subtracting the film thickness of the transparent film, the layer thickness of the light condensing layer can be calculated.
[0031] 以下、透明フィルムの「表面(おもて面)」とは、得られた光拡散シートが、使用時に 、例えば、液晶表示パネルに対向する側(正面方向)の面を意味し、他方の面を「裏 面 (うら面)」と表現するが、透明フィルムを取り扱う際に表面と裏面とを区別する必要 はなぐ一方の面を表面とすれば、他方の面が裏面になること以外に特別な意味は ない。  Hereinafter, the “surface (front surface)” of the transparent film means the surface of the obtained light diffusion sheet facing the liquid crystal display panel (front direction) when used, for example, The other side is expressed as “back side (back side)”, but it is not necessary to distinguish the front side from the back side when handling transparent film. If one side is the front side, the other side becomes the back side. There is no other special meaning.
[0032] <透光性榭脂 >  [0032] <Translucent resin>
本発明の光拡散シートにおいて、光拡散層および集光層は、いずれも透光性榭脂 および少なくとも 1種類の微粒子群から構成されている。光拡散層を構成する透光性 榭脂と、集光層を構成する透光性榭脂とは、同じ種類であっても異なる種類であって ちょい。  In the light diffusing sheet of the present invention, each of the light diffusing layer and the light collecting layer is composed of a translucent resin and at least one kind of fine particle group. The translucent resin constituting the light diffusion layer and the translucent resin constituting the light condensing layer may be the same type or different types.
[0033] 透光性榭脂としては、例えば、(メタ)アクリル系榭脂;スチレン系榭脂;酢酸ビニル 系榭脂;ポリエチレンやポリプロピレンなどのォレフィン系榭脂;ノルボルネン榭脂など の環状ォレフィン系榭脂;塩ィ匕ビ二ル系榭脂;塩ィ匕ビ -リデン系榭脂;ポリエチレンテ レフタレートやポリエチレンナフタレートなどのポリエステル系榭脂;これらの共重合体[0033] Examples of the translucent resin include (meth) acrylic resin; styrene resin; vinyl acetate. Olefins such as polyethylene and polypropylene; Cyclic olefins such as norbornene resin; salt vinyl resin; salt vinylidene resin; polyethylene terephthalate and polyethylene Polyester-based resin such as naphthalate; copolymers of these
;などが挙げられる。これらの榭脂は、単独で用いても 2種以上を併用してもよい。こ れらの榭脂のうち、(メタ)アクリル系榭脂が好適である。 And so on. These rosins may be used alone or in combination of two or more. Of these, the (meth) acrylic resin is preferred.
[0034] 好ま ヽ実施態様では、光拡散層を構成する透光性榭脂は、無機超微粒子または 有機無機複合超微粒子を含有する (メタ)アクリル系榭脂である。ここで、「有機無機 複合超微粒子」とは、無機超微粒子の表面に有機ポリマーが固定されてなる複合超 微粒子を意味する。また、「超微粒子」とは、透光性榭脂に分散させる少なくとも 1種 の微粒子群と区別するための表現であり、下記で説明するように、後者の微粒子群 に比べて平均粒子径が小さ!/ヽ微粒子を意味する。  [0034] In a preferred embodiment, the translucent resin constituting the light diffusion layer is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. Here, “organic-inorganic composite ultrafine particles” means composite ultrafine particles in which an organic polymer is fixed on the surface of inorganic ultrafine particles. The term “ultrafine particles” is an expression for distinguishing from at least one type of fine particles dispersed in a translucent resin, and as will be described below, the average particle size is smaller than that of the latter type of fine particles. Small! / Dark means fine particles.
[0035] 透光性榭脂として用いられる (メタ)アクリル系榭脂のうち、シクロアルキル基を有す る (メタ)アクリル酸エステルに由来する繰り返し単位、(メタ)アクリル酸イソブチルに 由来する繰り返し単位および (メタ)アクリル酸 t ブチルに由来する繰り返し単位より なる群力 選択される少なくとも 1種の繰り返し単位を有する共重合体が好適であり、 シクロアルキル基を有する (メタ)アクリル酸エステルに由来する繰り返し単位を有する 共重合体が特に好適である。  [0035] Of the (meth) acrylic resin used as a translucent resin, a repeating unit derived from a (meth) acrylic acid ester having a cycloalkyl group and a repeating element derived from isobutyl (meth) acrylate Group power consisting of units and repeating units derived from t-butyl (meth) acrylate. Preferred is a copolymer having at least one repeating unit selected and derived from a (meth) acrylic acid ester having a cycloalkyl group. A copolymer having a repeating unit is particularly preferred.
[0036] シクロアルキル基を有する (メタ)アクリル酸エステルに由来する繰り返し単位は、好 ましくは、下記式(1) : [0036] The repeating unit derived from the (meth) acrylic acid ester having a cycloalkyl group is preferably the following formula (1):
[0037] [化 1] [0037] [Chemical 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0038] [式中、 R1は水素原子またはメチル基であり、 R2は水素原子、メチル基またはェチル 基であり、 R3は有機残基であり、 mは 0以上、 4以下の整数であり、 nは 0以上、 2以下 の整数であり、 mが 2以上、 4以下である場合には、 R2は同一であっても異なっていて もよぐ nが 2である場合には、 R3は同一であっても異なっていてもよい] [In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom, a methyl group or an ethyl group, R 3 is an organic residue, m is an integer of 0 or more and 4 or less. N is an integer of 0 or more and 2 or less, and when m is 2 or more and 4 or less, R 2 may be the same or different. When n is 2, R 3 may be the same or different.]
で示される。  Indicated by
[0039] 上記式(1)において、 R3で表される有機残基としては、例えば、炭素数 1以上、 10 以下の直鎖状、分枝状または環状のアルキル基、炭素数 1以上、 5以下のヒドロキシ アルキル基、炭素数 1以上、 5以下のアルコキシアルキル基、炭素数 1以上、 5以下の ァセトキシアルキル基、炭素数 1以上、 5以下のハロゲン化 (例えば、塩素化、臭素化 またはフッ素化)アルキル基などが挙げられる。これらの有機残基のうち、炭素数 1以 上、 4以下のアルキル基、炭素数 1以上、 2以下のヒドロキシアルキル基、炭素数 1以 上、 2以下のアルコキシアルキル基、炭素数 1以上、 2以下のァセトキシアルキル基が 好適である。 In the above formula (1), the organic residue represented by R 3 is, for example, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, 1 or more carbon atoms, 5 or less hydroxy alkyl group, 1 or more carbon atoms, 5 or less alkoxyalkyl group, 1 or more carbon atoms, 5 or less acetooxyalkyl group, 1 to 5 carbon atoms halogenated (for example, chlorinated, bromine Or a fluorinated alkyl group. Among these organic residues, an alkyl group having 1 or more and 4 or less carbon atoms, a hydroxyalkyl group having 1 or more and 2 or less carbon atoms, an alkoxyalkyl group having 1 or more and 2 or less carbon atoms, 1 or more carbon atoms, Less than 2 acetooxyalkyl groups are preferred.
[0040] 上記式(1)において、 nが 2である場合、 2個の R3によって環が形成されていてもよ い。例えば、 2個の R3によって環が形成されて、上記式(1)中のシクロへキシル基が イソボル-ル基となっていてもよい。また、 R3のシクロへキシル基への結合位置は、特 に限定されるものではないが、 nが 1または 2である場合、好ましくは、 1個の R3がシク 口へキシル基の 3位または 4位に結合して!/、る。 In the above formula (1), when n is 2, a ring may be formed by two R 3 . For example, a ring may be formed by two R 3 , and the cyclohexyl group in the above formula (1) may be an isoborn group. Further, the bonding position of R 3 to the cyclohexyl group is not particularly limited, but when n is 1 or 2, preferably one R 3 is cycl. It binds to the 3rd or 4th position of the mouth hexyl group.
[0041] 上記式(1)で示される繰り返し単位は、特に限定されるものではないが、例えば、シ クロへキシル (メタ)アタリレート、シクロへキシルメチル (メタ)アタリレート、シクロへキシ ルェチル(メタ)アタリレート、シクロへキシルプロピル(メタ)アタリレート、シクロへキシ ルブチル(メタ)アタリレート、 4ーメチルシクロへキシルメチル(メタ)アタリレート、 4 ェチルシクロへキシルメチル (メタ)アタリレート、イソボル-ル (メタ)アタリレート、 4—ヒ ドロキシメチルシクロへキシルメチル (メタ)アタリレートなどの単量体を用いて導入す ることができる。これらの単量体のうち、シクロへキシル (メタ)アタリレート、シクロへキ シルメチル (メタ)アタリレート、 4—メチルシクロへキシルメチル (メタ)アタリレートが好 適である。すなわち、上記式(1)で示される繰り返し単位は、好ましくは、 R1が水素原 子またはメチル基であり、 R2が水素原子であり、 R3カ チル基であり、 m力 ^または 1 であり、 nが 0または 1である。 [0041] The repeating unit represented by the above formula (1) is not particularly limited. For example, cyclohexyl (meth) acrylate, cyclohexyl methyl (meth) acrylate, cyclohexyl ethyl ( (Meth) acrylate, cyclohexyl propyl (meth) acrylate, cyclohexyl butyl (meth) acrylate, 4-methylcyclohexyl methyl (meth) acrylate, 4-ethyl cyclohexylmethyl (meth) acrylate, isobornyl (meta ) It can be introduced by using monomers such as acrylate and 4-hydroxymethylcyclohexylmethyl (meth) acrylate. Of these monomers, cyclohexyl (meth) acrylate, cyclohexyl methyl (meth) acrylate, and 4-methylcyclohexyl methyl (meth) acrylate are preferred. That is, the repeating unit represented by the above formula (1) is preferably such that R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom, an R 3 cate group, m force ^ or 1 And n is 0 or 1.
[0042] 透光性榭脂として用いられる共重合体は、(メタ)アクリル酸イソブチルに由来する 繰り返し単位を含有していてもよい。(メタ)アクリル酸イソブチルに由来する繰り返し 単位とは、「― CH— CH (COOCH CH (CH ) )―」または「― CH— C (CH ) (C  [0042] The copolymer used as the translucent resin may contain a repeating unit derived from isobutyl (meth) acrylate. The repeating unit derived from isobutyl (meth) acrylate is “—CH—CH (COOCH CH (CH)) —” or “—CH—C (CH) (C
2 2 3 2 2 3 2 2 3 2 2 3
OOCH CH (CH ) )―」で示される繰り返し単位を意味する。(メタ)アクリル酸イソOOCH CH (CH)) — ”means a repeating unit. (Meth) acrylic acid iso
2 3 2 2 3 2
ブチルに由来する繰り返し単位を含有する共重合体を用いると、光拡散層および集 光層の耐熱性、耐湿性、硬度などが向上する。  When a copolymer containing a repeating unit derived from butyl is used, heat resistance, moisture resistance, hardness and the like of the light diffusion layer and the light collecting layer are improved.
[0043] 透光性榭脂として用いられる共重合体は、(メタ)アクリル酸 t—ブチルに由来する繰 り返し単位を含有していてもよい。(メタ)アクリル酸 t—ブチルに由来する繰り返し単 位とは、「一 CH― CH (COOC (CH ) )一」または「一 CH― C (CH ) (COOC (C [0043] The copolymer used as the translucent resin may contain a repeating unit derived from t-butyl (meth) acrylate. The repeating unit derived from t-butyl (meth) acrylate means “one CH-CH (COOC (CH)) one” or “one CH-C (CH) (COOC (C
2 3 3 2 3  2 3 3 2 3
H ) )一」で示される繰り返し単位を意味する。(メタ)アクリル酸 t ブチルに由来す H)) means a repeating unit represented by “1”. Derived from t-butyl (meth) acrylate
3 3 3 3
る繰り返し単位を含有する共重合体を用いると、光拡散層および集光層の耐熱性、 耐湿性、硬度などが向上する。  When a copolymer containing a repeating unit is used, the heat resistance, moisture resistance, hardness, etc. of the light diffusion layer and the light collecting layer are improved.
[0044] 透光性榭脂として用いられる共重合体は、好ましくは、シクロアルキル基を有する( メタ)アクリル酸エステルに由来する繰り返し単位、(メタ)アクリル酸イソブチルに由来 する繰り返し単位、または、(メタ)アクリル酸 t—ブチルに由来する繰り返し単位の少 なくとも 1種を有する。 [0045] 透光性榭脂として用いられる共重合体は、他の繰り返し単位を含有して 、てもよ!/ヽ 。共重合体を合成するために用いられうる単量体としては、例えば、(メタ)アクリル酸 、マレイン酸、無水マレイン酸などのカルボキシル基を有する重合性不飽和単量体; メチル (メタ)アタリレート、ェチル (メタ)アタリレート、プロピル (メタ)アタリレート、イソプ 口ピル (メタ)アタリレート、ブチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレ ート、ラウリル (メタ)アタリレート、ステアリル (メタ)アタリレートなどの (メタ)アクリル酸ァ ルキルエステル; 2 ヒドロキシェチル(メタ)アタリレート、 4 ヒドロキシブチル(メタ) アタリレート、力プロラタトン変成ヒドロキシ (メタ)アタリレートなどの水酸基を有する重 合性不飽和単量体;ビュルスルホン酸、スチレンスルホン酸、スルホェチル(メタ)ァク リレートなどのスルホン酸基を有する重合性不飽和単量体; 2—(メタ)アタリロイルォ キシェチルアシッドホスフェート、 2- (メタ)アタリロイルォキシプロピルアシッドホスフ エート、 2—メタクリロイルォキシェチルフエ-ルリン酸などの酸性リン酸エステル系重 合性不飽和単量体;グリシジル (メタ)アタリレートなどのエポキシ基を有する重合性不 飽和単量体;(メタ)アクリルアミド、 N, N'—ジメチルアミノエチル (メタ)アタリレートな どの窒素原子を有する重合性不飽和単量体;塩ィ匕ビュル、塩ィ匕ビユリデンなどのハ ロゲン原子を有する重合性不飽和単量体;スチレン、 α—メチルスチレン、ビュルトル ェンなどの芳香族系重合性不飽和単量体;酢酸ビュルなどのビニルエステル;ビ- ルエーテル;(メタ)アクリロニトリルなどの不飽和シアンィ匕合物;などが挙げられる。他 に使用される単量体およびその配合量は、透光性榭脂に所望する耐熱性、透光性、 硬度などの特性を考慮して、決定すればよい。 [0044] The copolymer used as the translucent resin is preferably a repeating unit derived from a (meth) acrylic acid ester having a cycloalkyl group, a repeating unit derived from isobutyl (meth) acrylate, or It has at least one repeating unit derived from t-butyl (meth) acrylate. [0045] The copolymer used as the translucent resin may contain other repeating units! Monomers that can be used to synthesize the copolymer include, for example, polymerizable unsaturated monomers having a carboxyl group such as (meth) acrylic acid, maleic acid, and maleic anhydride; methyl (meth) atari Rate, ethyl (meth) acrylate, propyl (meth) acrylate, isopyl pill (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, lauryl (meth) acrylate , (Meth) acrylic acid alkyl esters such as stearyl (meth) acrylate; 2 hydroxyethyl (meth) acrylate, 4 hydroxy butyl (meth) acrylate, force prolatatone modified hydroxy (meth) acrylate, etc. Polyunsaturated unsaturated monomer: bull sulfonic acid, styrene sulfonic acid, sulfoethyl (meth) alk Polymerizable unsaturated monomers having a sulfonic acid group, such as relate; 2- (meth) attaroyloxychetyl acid phosphate, 2- (meth) allyloyloxypropyl acid phosphate, 2-methacryloyloxyschetilphe -Acidic phosphate ester unsaturated unsaturated monomers such as luric acid; Polymerizable unsaturated monomers having an epoxy group such as glycidyl (meth) acrylate; (meth) acrylamide, N, N'-dimethyl Polymerizable unsaturated monomers having a nitrogen atom such as aminoethyl (meth) acrylate; Polymerizable unsaturated monomers having a halogen atom such as salty bubul and salty vyuryidene; styrene, α-methyl Aromatic polymerizable unsaturated monomers such as styrene and butyl toluene; vinyl esters such as butyl acetate; vinyl ethers; (meth) acrylonitrile Unsaturated Shiani 匕合 of like; and the like. Other monomers to be used and their blending amounts may be determined in consideration of characteristics such as heat resistance, translucency and hardness desired for the translucent resin.
[0046] 透光性榭脂として用いる共重合体における各繰り返し単位の含有量は、特に限定 されるものではない。光拡散シートの橈みを効果的に防止するためには、好ましくは 、共重合体におけるシクロアルキル基を有する (メタ)アクリル酸エステルに由来する 繰り返し単位、(メタ)アクリル酸イソブチルに由来する繰り返し単位および (メタ)アタリ ル酸 t ブチルに由来する繰り返し単位の総量力 重合性不飽和単量体に対して、 好ましくは 5. 0質量%以上、 98. 0質量%以下、より好ましくは 30. 0質量%以上、 8 0. 0質量%以下である。  [0046] The content of each repeating unit in the copolymer used as the translucent resin is not particularly limited. In order to effectively prevent stagnation of the light diffusion sheet, preferably, a repeating unit derived from a (meth) acrylic acid ester having a cycloalkyl group in the copolymer and a repeating unit derived from isobutyl (meth) acrylate The total amount of units and repeating units derived from t-butyl (meth) acrylate is preferably 5.0% by mass or more and 90.0% by mass or less, more preferably 30% by mass relative to the polymerizable unsaturated monomer. It is 0 mass% or more and 8 0.0 mass% or less.
[0047] 共重合体の製造方法は、単量体の種類や作業環境などに応じて適宜選択すれば よぐ特に限定されるものではない。 [0047] The method for producing the copolymer may be appropriately selected according to the type of monomer and the working environment. There is no particular limitation.
[0048] 透光性榭脂は、ガラス転移温度が好ましくは 0°C以上、 120°C以下、より好ましくは  [0048] The translucent resin has a glass transition temperature of preferably 0 ° C or higher and 120 ° C or lower, more preferably
10°C以上、 110°C以下、さらに好ましくは 20°C以上、 100°C以下である。なお、ガラ ス転移温度は、 FOXの計算式:  It is 10 ° C or more and 110 ° C or less, more preferably 20 ° C or more and 100 ° C or less. The glass transition temperature is calculated using the formula for FOX:
[0049] [数 1] [0049] [Equation 1]
/ Tg - X CVV / Tg, )  / Tg-X CVV / Tg,)
[0050] [式中、 Tgは透光性榭脂のガラス転移温度 (K)、 Wは単量体 iの質量分率、 Tgは単 量体 ゝら構成される榭脂のガラス転移温度 (K)を表す]  [0050] [wherein Tg is the glass transition temperature (K) of the translucent resin, W is the mass fraction of monomer i, and Tg is the glass transition temperature of the resin composed of the monomer ( K)]
で算出されるガラス転移温度 (K)を絶対温度 (K)から摂氏温度 (°c)に換算して求め ることがでさる。  The glass transition temperature (K) calculated in (1) can be calculated by converting from absolute temperature (K) to Celsius temperature (° c).
[0051] 透光性榭脂は、ヘイズが好ましくは 0%以上、 20%以下、より好ましくは 0%以上、 1 0%以下、さらに好ましくは 0%以上、 5%以下であり、および Zまたは、全光線透過 率が好ましくは 70%以上、 100%以下、より好ましくは 80%以上、 100%以下である 。なお、ヘイズおよび全光線透過率は、濁度計 (例えば、 NDH—1001DP、日本電 色工業 (株)製)を用いて、 JIS K7105に準拠した測定法により測定した値である。  [0051] The translucent resin has a haze of preferably 0% or more and 20% or less, more preferably 0% or more, 10% or less, further preferably 0% or more and 5% or less, and Z or The total light transmittance is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less. The haze and total light transmittance are values measured by a measurement method based on JIS K7105 using a turbidimeter (for example, NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.).
[0052] 好まし ヽ実施態様では、透光性榭脂は、無機超微粒子や有機無機複合超微粒子 を含有する。無機超微粒子および有機無機複合超微粒子は、いずれか一方を用い ても、両方を併用してもよい。透光性榭脂が無機超微粒子や有機無機複合超微粒 子を含有すると、光拡散層および集光層の耐熱性が向上し、熱による光拡散層の変 形が抑制され、液晶表示パネルの表示画面における輝度ムラが解消される。また、 透光性榭脂が無機超微粒子や有機無機複合超微粒子を含有すると、透光性榭脂が 適度な硬度および靭性を有するので、他の部材との摩擦により、光拡散シートおよび 接触部材に傷が発生することが少なぐ耐傷付性に優れ、製造時、保管時、運搬時、 使用時などの取り扱いが容易であり、歩留りが向上する。さらに、光拡散シートから微 粒子群が脱落することを防止することができる。  [0052] In a preferred embodiment, the translucent resin contains inorganic ultrafine particles and organic-inorganic composite ultrafine particles. Either one of inorganic ultrafine particles or organic-inorganic composite ultrafine particles may be used, or both may be used in combination. If the translucent resin contains inorganic ultrafine particles or organic-inorganic composite ultrafine particles, the heat resistance of the light diffusing layer and the condensing layer is improved, the deformation of the light diffusing layer due to heat is suppressed, and the liquid crystal display panel Luminance unevenness on the display screen is eliminated. In addition, when the translucent resin contains inorganic ultrafine particles or organic-inorganic composite ultrafine particles, the translucent resin has an appropriate hardness and toughness, so that the light diffusing sheet and the contact member are caused by friction with other members. Excellent scratch resistance, easy to handle during manufacturing, storage, transportation, use, etc., improving yield. Furthermore, it is possible to prevent the fine particle group from falling off the light diffusion sheet.
[0053] 無機超微粒子の材質としては、特に限定されるものではないが、例えば、金属元素  [0053] The material of the inorganic ultrafine particles is not particularly limited. For example, a metal element
(本発明では、ケィ素を含むものとする。 )が主に酸素原子を介して 3次元ネットワーク を構成して!/ヽる金属酸化物が挙げられる。金属酸化物を構成する金属元素としては 、短周期型の元素周期律表における第 2族〜第 6族に属する金属元素が好ましぐ 第 3族〜第 5族に属する金属元素がより好ましぐケィ素、アルミニウム、チタン、ジル コ-ゥムが特に好ましぐケィ素が最も好ましい。無機超微粒子としては、ケィ素の酸 化物のうち、コロイダルシリカが特に好適である。 (In the present invention, it is assumed that silicon is included.) Is a metal oxide that forms a three-dimensional network mainly through oxygen atoms. As a metal element constituting a metal oxide In the short-period element periodic table, metal elements belonging to Group 2 to Group 6 are preferred. Metal elements belonging to Group 3 to Group 5 are more preferred. -Kay, which is particularly preferred, is most preferred. As the inorganic ultrafine particles, colloidal silica is particularly preferable among the oxides of silicon.
[0054] なお、無機超微粒子は、単一の材質から形成されていても 2種以上の材質から形 成されていてもよぐまた、材質が同じ 1種類の微粒子カゝら構成されていても材質が異 なる 2種類以上の微粒子力も構成されて 、てもよ 、。 [0054] The inorganic ultrafine particles may be formed of a single material or may be formed of two or more kinds of materials, and may be formed of one kind of fine particle cartridge having the same material. There are also two or more types of fine particle forces that are made of different materials.
[0055] 無機超微粒子の形状としては、例えば、球状、針状、板状、鱗片状、破砕状などが 挙げられる。これらの形状を有する無機超微粒子は、単独で用いても 2種以上を併用 してちよい。 [0055] Examples of the shape of the inorganic ultrafine particles include a spherical shape, a needle shape, a plate shape, a scale shape, and a crushed shape. The inorganic ultrafine particles having these shapes may be used alone or in combination of two or more.
[0056] 有機無機複合超微粒子は、無機超微粒子の表面に有機ポリマーが固定されてなる 複合超微粒子である。無機超微粒子の表面に有機ポリマーを固定することによって、 透光性榭脂中における無機超微粒子の分散性および透光性榭脂と無機超微粒子と の親和性が向上し、その結果、得られる光拡散層および集光層の全光線透過率が 向上する。ここで、「固定」とは、単なる接着や付着ではなぐ無機超微粒子と有機ポリ マーとの間でィ匕学結合が形成されていることを意味する。従って、有機無機複合超 微粒子を任意の有機溶剤で洗浄した場合、有機溶剤中に有機ポリマーが実質的〖こ 検出されない。なお、無機超微粒子は、微粒子内に有機ポリマーを内包していてもよ ぐこの場合には、無機超微粒子の中心部に適度な軟らかさと靭性とを付与すること ができる。  [0056] The organic-inorganic composite ultrafine particles are composite ultrafine particles in which an organic polymer is fixed on the surface of the inorganic ultrafine particles. By fixing the organic polymer on the surface of the inorganic ultrafine particles, the dispersibility of the inorganic ultrafine particles in the translucent resin and the affinity between the translucent resin and the inorganic ultrafine particles are improved. The total light transmittance of the light diffusion layer and the light collecting layer is improved. Here, “fixing” means that a chemical bond is formed between the inorganic ultrafine particles and the organic polymer, which is not simply adhesion or adhesion. Therefore, when the organic / inorganic composite ultrafine particles are washed with an arbitrary organic solvent, substantially no organic polymer is detected in the organic solvent. The inorganic ultrafine particles may contain an organic polymer in the fine particles. In this case, moderate softness and toughness can be imparted to the central portion of the inorganic ultrafine particles.
[0057] 有機ポリマーとは、有機成分カゝら構成されるポリマーを意味し、分子量、形状、組成 、官能基の有無などに関しては、特に限定されるものではない。有機ポリマーを構成 する榭脂としては、例えば、(メタ)アクリル系榭脂;スチレン系榭脂;酢酸ビニル系榭 脂;ポリエチレンやポリプロピレンなどのォレフィン系榭脂;ノルボルネン榭脂などの環 状ォレフイン系榭脂;塩ィ匕ビュル系榭脂;塩ィ匕ビ -リデン系榭脂;ポリエチレンテレフ タレートなどのポリエステル系榭脂;これらの共重合体;などが挙げられる。これらの榭 脂は、単独で用いても 2種以上を併用してもよい。これらの榭脂は、アミノ基、ェポキ シ基、水酸基、カルボキシル基などの官能基で部分的に変性されていてもよい。なお 、有機無機複合超微粒子における有機ポリマーの含有量は、例えば、無機超微粒子 に対して、好ましくは 0. 5質量%以上、 50質量%以下である。 [0057] The organic polymer means a polymer composed of organic components, and is not particularly limited with respect to molecular weight, shape, composition, presence or absence of functional groups, and the like. Examples of the resin constituting the organic polymer include (meth) acrylic resin; styrene resin; vinyl acetate resin; polyolefin resin such as polyethylene and polypropylene; and cyclic olefin resins such as norbornene resin. Examples thereof include resin, salt-bulle resin, salt-vinyl-redene resin, polyester resin such as polyethylene terephthalate, and copolymers thereof. These resins may be used alone or in combination of two or more. These resins may be partially modified with a functional group such as an amino group, an epoxy group, a hydroxyl group, or a carboxyl group. In addition The organic polymer content in the organic / inorganic composite ultrafine particles is preferably 0.5% by mass or more and 50% by mass or less with respect to the inorganic ultrafine particles, for example.
[0058] 無機超微粒子や有機無機複合超微粒子の平均粒子径は、好ましくは 5nm以上、 1 OOnm以下であり、より好ましくは 5nm以上、 50nm以下である。平均粒子径が 5nm 未満であると、微粒子の表面エネルギーが高くなり、凝集などが起こりやすくなること がある。逆に、平均粒子径が 200nmを超えると、光拡散層や集光層を通過する光の 量が減少し、輝度が低下することがある。なお、無機超微粒子や有機無機複合超微 粒子の平均粒子径は、サブミクロン粒子径アナライザー(NICOMP MODEL 37 0、野崎産業 (株)製)を用いて測定した体積平均粒子径である。 [0058] The average particle diameter of the inorganic ultrafine particles or organic-inorganic composite ultrafine particles is preferably 5 nm or more and 1 OO nm or less, more preferably 5 nm or more and 50 nm or less. If the average particle size is less than 5 nm, the surface energy of the fine particles becomes high and aggregation or the like may occur easily. Conversely, when the average particle diameter exceeds 200 nm, the amount of light passing through the light diffusion layer and the light condensing layer is decreased, and the luminance may be decreased. The average particle size of inorganic ultrafine particles and organic-inorganic composite ultrafine particles is a volume average particle size measured using a submicron particle size analyzer (NICOMP MODEL 370, manufactured by Nozaki Sangyo Co., Ltd.).
[0059] 透光性榭脂中における無機超微粒子や有機無機複合超微粒子の含有量は、例え ば、透光性榭脂 100質量部に対して、好ましくは 1質量部以上、 200質量部以下、よ り好ましくは 5質量部以上、 100質量部以下である。無機超微粒子や有機無機複合 超微粒子の含有量が 1質量部未満であると、光拡散層の熱変形や、光拡散層および 接触部材の傷付きを充分に防止できないことがある。逆に、無機超微粒子や有機無 機複合超微粒子の含有量が 200質量部を超えると、光拡散層のコーティングが困難 になることや、光拡散層や集光層を通過する光量が減少し、全光線透過率および輝 度が低下することがある。 [0059] The content of the inorganic ultrafine particles or organic-inorganic composite ultrafine particles in the translucent resin is, for example, preferably 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the translucent resin. More preferably, it is 5 parts by mass or more and 100 parts by mass or less. If the content of inorganic ultrafine particles or organic-inorganic composite ultrafine particles is less than 1 part by mass, thermal deformation of the light diffusion layer and damage to the light diffusion layer and the contact member may not be sufficiently prevented. Conversely, if the content of inorganic ultrafine particles or organic inorganic composite ultrafine particles exceeds 200 parts by mass, it becomes difficult to coat the light diffusing layer, and the amount of light passing through the light diffusing layer and the condensing layer decreases. In addition, the total light transmittance and brightness may decrease.
[0060] 透光性榭脂には、多官能性イソシァネートイ匕合物を含有して 、てもよ 、。多官能性 イソシァネート化合物を含有し、さらに、水酸基を有する成分を含有すると、多官能性 イソシァネート化合物と水酸基を有する成分との間で架橋構造を形成することができ る。その結果、光拡散層や集光層の耐湿性、可撓性、耐久性などの特性がさらに向 上する。 [0060] The translucent resin may contain a polyfunctional isocyanate compound. When a polyfunctional isocyanate compound is contained and a component having a hydroxyl group is further contained, a crosslinked structure can be formed between the multifunctional isocyanate compound and the component having a hydroxyl group. As a result, the characteristics such as moisture resistance, flexibility and durability of the light diffusion layer and the light collecting layer are further improved.
[0061] また、透光性榭脂には、例えば、安定化剤、劣化防止剤、可塑剤、分散剤、蛍光増 白剤などの添加剤を配合してもよい。これらの添加剤の配合量は、その種類などに 応じて適宜調節すればよぐ特に限定されるものではない。  [0061] In addition, additives such as a stabilizer, a deterioration preventing agent, a plasticizer, a dispersant, and a fluorescent brightening agent may be added to the translucent resin. The blending amount of these additives is not particularly limited as long as it is appropriately adjusted according to the type thereof.
[0062] <微粒子群 >  [0062] <Fine particle group>
本発明の光拡散シートにおいて、光拡散層は、透光性榭脂および少なくとも 1種類 の微粒子群カゝら構成されている。好ましい実施態様では、透明フィルム上に、光拡散 層および集光層が設けられ、いずれも透光性榭脂および少なくとも 1種類の微粒子 群から構成されている。この場合、光拡散層を構成する透光性榭脂に分散させる少 なくとも 1種類の微粒子群および集光層を構成する透光性榭脂に埋設させる少なくと も 1種類の微粒子群は、同じ種類の微粒子から構成されていても異なる種類の微粒 子力も構成されていてもよい。 In the light diffusing sheet of the present invention, the light diffusing layer is composed of a translucent resin and at least one kind of fine particle group. In a preferred embodiment, the light diffusion on the transparent film And a condensing layer, both of which are composed of translucent resin and at least one kind of fine particle group. In this case, at least one type of fine particle group dispersed in the translucent resin constituting the light diffusion layer and at least one type of fine particle group embedded in the translucent resin constituting the light collecting layer are: Even if they are composed of the same kind of fine particles, they may be composed of different kinds of microparticle forces.
[0063] 微粒子群を構成する各微粒子の材質としては、例えば、ポリメチルメタタリレートな どの (メタ)アクリル系榭脂;ポリスチレンなどのスチレン系榭脂;メラミンやベンゾグァ ナミンなどのアミノ化合物とホルムアルデヒドとの縮合物であるアミノ系ホルマリン架橋 榭脂;ポリウレタン系榭脂;ポリエステル系榭脂;シリコーン系榭脂;フッ素系榭脂;こ れらの共重合体;スメクタイト、カオリナイトなどの粘土ィ匕合物;シリカ、チタ二了、アルミ ナ、シリカアルミナ、ジルコユア、酸化亜鉛、酸化バリウム、酸化ストロンチウムなどの 無機酸ィ匕物;炭酸カルシウム、炭酸バリウム、塩化バリウム、硫酸バリウム、硝酸バリゥ ム、水酸化バリウム、水酸ィ匕アルミニウム、炭酸ストロンチウム、塩化ストロンチウム、硫 酸ストロンチウム、硝酸ストロンチウム、水酸化ストロンチウム、ガラス粒子などの無機 微粒子;透明もしくは半透明榭脂とシリカ微粒子とのシリカ複合榭脂粒子;などが挙げ られる。これらの材質のうち、光拡散層を構成する透光性榭脂に分散させる少なくとも 1種類の微粒子群を構成する各微粒子の材質としては、(メタ)アクリル系榭脂、スチ レン系榭脂、アミノ系ホルマリン架橋榭脂、シリコーン系榭脂、シリカ、チタ-ァ、アル ミナ、酸ィ匕亜鉛などの無機酸ィ匕物、炭酸カルシウム、硫酸バリウムなどが好適であり、 (メタ)アクリル系榭脂、スチレン系榭脂、アミノ系ホルマリン架橋榭脂、シリコーン系榭 脂、チタ-ァ、アルミナ、酸化亜鉛、炭酸カルシウム、硫酸バリウムが特に好適である 。また、集光層を構成する透光性榭脂に埋設させる少なくとも 1種類の微粒子群を構 成する各微粒子の材質としては、(メタ)アクリル系榭脂、スチレン系榭脂、アミノ系ホ ルマリン架橋榭脂、シリコーン系榭脂、シリカ複合榭脂粒子などが好適であり、(メタ) アクリル系榭脂、スチレン系榭脂、シリコーン系榭脂、シリカ複合榭脂粒子が特に好 適である。  [0063] The material of each fine particle constituting the fine particle group includes, for example, (meth) acrylic resin such as polymethyl methacrylate; styrene resin such as polystyrene; amino compound such as melamine and benzoguanamine and formaldehyde Condensed with amino formalin crosslinked resin; polyurethane resin; polyester resin; silicone resin; fluorine resin; copolymers of these; clays such as smectite and kaolinite Inorganic compounds such as silica, titanium dioxide, alumina, silica alumina, zirconium oxide, zinc oxide, barium oxide, strontium oxide; calcium carbonate, barium carbonate, barium chloride, barium sulfate, barium nitrate, water Barium oxide, aluminum hydroxide, strontium carbonate, strontium chloride, strontium sulfate, And the like; silica composite 榭脂 particles of transparent or translucent 榭脂 and silica fine particles; strontium, strontium hydroxide, inorganic fine particles such as glass particles. Among these materials, as the material of each fine particle constituting at least one kind of fine particle group dispersed in the translucent resin constituting the light diffusion layer, (meth) acrylic resin, styrene resin, Amino-formalin crosslinked resin, silicone resin, silica, titanium, alumina, inorganic acid such as zinc oxide, calcium carbonate, barium sulfate, etc. are suitable, (meth) acrylic resin Fats, styrene-based resins, amino-based formalin crosslinked resins, silicone-based resins, titers, alumina, zinc oxide, calcium carbonate, and barium sulfate are particularly suitable. In addition, as the material of each fine particle constituting at least one kind of fine particle group embedded in the translucent resin constituting the light collecting layer, (meth) acrylic resin, styrene resin, amino formalin are used. Cross-linked resin, silicone-based resin, silica composite resin particles and the like are suitable, and (meth) acrylic resin, styrene-based resin, silicone-based resin, and silica composite resin particles are particularly preferable.
[0064] 光拡散層を構成する透光性榭脂に分散させる少なくとも 1種類の微粒子群および 集光層を構成する透光性榭脂に埋設させる少なくとも 1種類の微粒子群を構成する 各微粒子は、単一の材質から形成されていても 2種以上の材質から形成されていて もよぐまた、微粒子群は、材質が同じ 1種類の微粒子力も構成されていても材質が 異なる 2種類以上の微粒子力も構成されて 、てもよ 、。 [0064] At least one type of fine particle group dispersed in the light transmissive resin constituting the light diffusion layer and at least one type of fine particle group embedded in the light transmissive resin constituting the light collecting layer are formed. Each fine particle may be made of a single material or two or more kinds of materials, and the fine particles may be made of different materials even if they are composed of the same kind of fine particle force 2 More than one kind of fine particle force is also configured.
[0065] 微粒子群を構成する各微粒子の形状としては、例えば、球状、板状、楕円体状、椀 型、多角形状、円盤型、星型、表面しわ状、中空状、破砕状などが挙げられる。これ らの形状を有する微粒子は、単独で用いても 2種以上を併用してもよい。これらの形 状を有する微粒子のうち、光拡散層を構成する透光性榭脂に分散させる少なくとも 1 種類の微粒子群を構成する各微粒子は、球状粒子が好適であるが、球状粒子よりも 強 ヽ光拡散性を有しており、少量の添加で光拡散性に優れると共に高!ヽ全光線透 過率および輝度が得られることから、板状、楕円体状、椀型、多角形状、円盤型、星 型、表面しわ状、中空状、破砕状などの異形粒子が好適な場合もある。集光層を構 成する透光性榭脂に埋設させる少なくとも 1種類の微粒子群を構成する各微粒子は 、光魏光する観点から、球状粒子が特に好適である。  [0065] Examples of the shape of each fine particle constituting the fine particle group include a spherical shape, a plate shape, an ellipsoid shape, a saddle shape, a polygonal shape, a disk shape, a star shape, a surface wrinkle shape, a hollow shape, and a crushed shape. It is done. The fine particles having these shapes may be used alone or in combination of two or more. Of the fine particles having these shapes, spherical particles are preferred as the fine particles constituting at least one kind of fine particle group dispersed in the translucent resin constituting the light diffusion layer, but stronger than the spherical particles.ヽ Light diffusibility. Addition of a small amount makes it excellent in light diffusibility and high!か ら When plate-shaped, ellipsoidal, bowl-shaped, polygonal, disk-shaped, star-shaped, surface wrinkled, hollow, crushed, etc. are suitable because total light transmittance and brightness can be obtained There is also. From the viewpoint of photofluorescence, spherical particles are particularly preferable as the fine particles constituting at least one kind of fine particle group embedded in the translucent resin constituting the light collecting layer.
[0066] 光拡散層を構成する透光性榭脂に分散させる微粒子群の平均粒子径は、好ましく は 0. 2 μ m以上、 30 μ m以下、より好ましくは 0. 25 μ m以上、 30 μ m以下、さらに 好ましくは 0. 以上、 10 m以下である。微粒子群の平均粒子径が 0. 未 満であると、光拡散層に入射した光を充分に拡散できないことがある。逆に、微粒子 群の平均粒子径が 30 mを超えると、光拡散層を通過する光量が減少し、全光線 透過率および輝度が低下することがある。なお、微粒子群の平均粒子径は、粒度分 布測定装置 (例えば、マルチサイザ一 II型、コールター (株)製)を用いて測定した体 積平均粒子径である。  [0066] The average particle size of the fine particle group dispersed in the translucent resin constituting the light diffusion layer is preferably 0.2 μm or more and 30 μm or less, more preferably 0.25 μm or more, 30 It is not more than μm, more preferably not less than 0 and not more than 10 m. If the average particle size of the fine particle group is less than 0, the light incident on the light diffusion layer may not be sufficiently diffused. Conversely, when the average particle size of the fine particle group exceeds 30 m, the amount of light passing through the light diffusion layer decreases, and the total light transmittance and luminance may decrease. The average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring apparatus (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
[0067] 集光層を構成する透光性榭脂に埋設させる微粒子群の平均粒子径は、好ましくは 1 μ m以上、 50 μ m以下、より好ましくは 2 μ m以上、 40 μ m以下、さらに好ましくは 5 μ m以上、 30 μ m以下である。微粒子群の平均粒子径が 1 μ m未満であると、集光 層に入射した光を充分に集光できないことがある。逆に、微粒子群の平均粒子径が 5 0 mを超えると、集光層を通過する光量が減少し、全光線透過率および輝度が低 下することがある。なお、微粒子群の平均粒子径は、粒度分布測定装置 (例えば、マ ルチサイザ一 II型、コールター (株)製)を用いて測定した体積平均粒子径である。 [0068] 光拡散層を構成する透光性榭脂中における微粒子群の含有量は、例えば、透光 性榭脂 100質量部に対して、好ましくは 1質量部以上、 300質量部以下、より好ましく は 5質量部以上、 200質量部以下である。微粒子群の含有量が 1質量部未満である と、光拡散層に入射した光が充分に拡散されないことがある。逆に、微粒子群の含有 量が 300質量部を超えると、光拡散層の形成が困難になることや、光拡散層を通過 する光量が減少し、全光線透過率および輝度が低下することがある。 [0067] The average particle size of the fine particle group embedded in the translucent resin constituting the light collecting layer is preferably 1 μm or more and 50 μm or less, more preferably 2 μm or more and 40 μm or less. More preferably, it is 5 μm or more and 30 μm or less. If the average particle size of the fine particle group is less than 1 μm, the light incident on the condensing layer may not be sufficiently collected. Conversely, when the average particle size of the fine particle group exceeds 50 m, the amount of light passing through the condensing layer may decrease, and the total light transmittance and luminance may decrease. The average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer I type II, manufactured by Coulter, Inc.). [0068] The content of the fine particle group in the translucent resin constituting the light diffusion layer is, for example, preferably 1 part by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the translucent resin. Preferably they are 5 to 200 mass parts. When the content of the fine particle group is less than 1 part by mass, the light incident on the light diffusion layer may not be sufficiently diffused. On the contrary, if the content of the fine particle group exceeds 300 parts by mass, it becomes difficult to form a light diffusion layer, or the amount of light passing through the light diffusion layer decreases, and the total light transmittance and luminance may decrease. is there.
[0069] 集光層を構成する透光性榭脂中における微粒子群の含有量は、例えば、透光性 榭脂 100質量部に対して、好ましくは 5質量部以上、 700質量部以下、より好ましくは 10質量部以上、 500質量部以下である。微粒子群の含有量が 5質量部未満であると 、集光層に入射した光が充分に集光されないことがある。逆に、微粒子群の含有量 力 S700質量部を超えると、集光層の形成が困難になることや、集光層を通過する光 量が減少し、全光線透過率および輝度が低下することがある。  [0069] The content of the fine particle group in the translucent resin constituting the light collecting layer is, for example, preferably 5 parts by mass or more and 700 parts by mass or less with respect to 100 parts by mass of the translucent resin. Preferably they are 10 to 500 mass parts. When the content of the fine particle group is less than 5 parts by mass, the light incident on the condensing layer may not be sufficiently collected. On the contrary, when the content force of the fine particle group exceeds S700 parts by mass, it becomes difficult to form a condensing layer, or the amount of light passing through the condensing layer decreases, and the total light transmittance and luminance decrease. There is.
[0070] 好ましい実施態様では、光拡散層の少なくとも一方が 2種類の微粒子群を含有する 。この場合、微粒子群を構成する各微粒子の材質としては、本発明の光拡散シート にお 、て、微粒子群を構成する各微粒子に材質として列挙した上記のような材質が 挙げられる。これらの材質のうち、光拡散層を構成する透光性榭脂と少なくとも 1種類 の微粒子群との屈折率差の絶対値が 0. 05以上であるという条件を満足する微粒子 群 (以下「微粒子群 A」ということがある。)を構成する各微粒子の材質としては、(メタ) アクリル系榭脂、スチレン系榭脂、アミノ系ホルマリン架橋榭脂、シリコーン系榭脂、シ リカ、チタ-ァ、アルミナ、酸ィ匕亜鉛などの無機酸ィ匕物、炭酸カルシウム、硫酸バリゥ ムなどが好適であり、(メタ)アクリル系榭脂、スチレン系榭脂、アミノ系ホルマリン架橋 榭脂、シリコーン系榭脂、チタ-ァ、アルミナ、炭酸カルシウム、硫酸バリウムが特に 好適である。また、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群と の屈折率差の絶対値が 0. 05以上であるという条件を必ずしも満足する必要がない 微粒子群 (以下「微粒子群 B」 ヽぅことがある。 )を構成する各微粒子の材質としては 、(メタ)アクリル系榭脂、スチレン系榭脂、アミノ系ホルマリン架橋榭脂、シリコーン系 榭脂、シリカ複合榭脂粒子などが好適であり、(メタ)アクリル系榭脂、スチレン系榭脂 、シリコーン系榭脂、シリカ複合榭脂粒子が特に好適である。 [0071] 微粒子群 Aおよび Bを構成する各微粒子は、単一の材質から形成されていても 2種 以上の材質カゝら形成されていてもよぐまた、微粒子群 Aおよび Bは、いずれも材質 が同じ 1種類の微粒子カゝら構成されていても材質が異なる 2種類以上の微粒子から 構成されていてもよい。 [0070] In a preferred embodiment, at least one of the light diffusion layers contains two types of fine particle groups. In this case, examples of the material of each fine particle constituting the fine particle group include the above-described materials listed as materials for each fine particle constituting the fine particle group in the light diffusion sheet of the present invention. Among these materials, a fine particle group that satisfies the condition that the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more (hereinafter referred to as “fine particle” The material of each fine particle constituting “Group A”) may be (meth) acrylic resin, styrene resin, amino formalin cross-linked resin, silicone resin, silica, titanium Inorganic acids such as alumina and acid zinc, calcium carbonate, and barium sulfate are preferred. (Meth) acrylic resin, styrene resin, amino formalin cross-linked resin, silicone resin Fat, titer, alumina, calcium carbonate, and barium sulfate are particularly suitable. Further, it is not always necessary to satisfy the condition that the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more. Group B ”) may be made of (meth) acrylic resin, styrene resin, amino formalin cross-linked resin, silicone resin, silica composite resin particle (Meth) acrylic resin, styrene resin, silicone resin, and silica composite resin particles are particularly preferable. [0071] Each fine particle constituting the fine particle groups A and B may be formed of a single material or two or more kinds of material particles. The same material may be composed of one kind of fine particle cover, or may be composed of two or more kinds of fine particles of different materials.
[0072] 微粒子群 Aおよび Bを構成する各微粒子の形状としては、本発明の光拡散シート にお 、て、微粒子群を構成する各微粒子の形状として列挙した上記のような形状が 挙げられる。これらの形状を有する微粒子は、単独で用いても 2種以上を併用しても よい。これらの形状を有する微粒子のうち、微粒子群 Aを構成する各微粒子は、球状 粒子が好適であるが、球状粒子よりも強い光拡散性を有しており、少量の添加で光 拡散性に優れると共に高い全光線透過率および輝度が得られることから、板状、楕 円体状、椀型、多角形状、円盤型、星型、表面しわ状、中空状、破砕状などの異形 粒子が好適な場合もある。微粒子群 Bを構成する各微粒子は、光を集光する観点か ら、球状粒子が特に好適である。  [0072] Examples of the shapes of the fine particles constituting the fine particle groups A and B include the shapes described above as the shapes of the fine particles constituting the fine particle group in the light diffusion sheet of the present invention. The fine particles having these shapes may be used alone or in combination of two or more. Among the fine particles having these shapes, the fine particles constituting the fine particle group A are preferably spherical particles, but have a light diffusibility stronger than that of the spherical particles, and are excellent in light diffusibility when added in a small amount. In addition, high total light transmittance and brightness can be obtained, and thus irregular particles such as plate, ellipsoid, saddle, polygon, disk, star, surface wrinkle, hollow, and crushed are preferable. In some cases. The fine particles constituting the fine particle group B are particularly preferably spherical particles from the viewpoint of collecting light.
[0073] 微粒子群 Aの平均粒子径は、好ましくは 0. 2 m以上、 30 μ m以下、より好ましく は 0. 25 μ m以上、 20 μ m以下、さらに好ましくは 0. 3 μ m以上、 10 μ m以下である 。微粒子群 Aの平均粒子径が 0. 2 m未満であると、光拡散層に入射した光を充分 に拡散できないことがある。逆に、微粒子群 Aの平均粒子径が 30 mを超えると、光 拡散層を通過する光量が減少し、全光線透過率および輝度が低下することがある。 なお、微粒子群 Aの平均粒子径は、粒度分布測定装置 (例えば、マルチサイザ一 II 型、コールター (株)製)を用いて測定した体積平均粒子径である。  [0073] The average particle size of the fine particle group A is preferably 0.2 m or more and 30 μm or less, more preferably 0.25 μm or more and 20 μm or less, and still more preferably 0.3 μm or more, 10 μm or less. If the average particle size of the fine particle group A is less than 0.2 m, the light incident on the light diffusion layer may not be sufficiently diffused. On the contrary, when the average particle size of the fine particle group A exceeds 30 m, the amount of light passing through the light diffusion layer decreases, and the total light transmittance and luminance may decrease. The average particle size of the fine particle group A is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter, Inc.).
[0074] 微粒子群 Bの平均粒子径は、好ましくは 1 μ m以上、 50 μ m以下、より好ましくは 2 μ m以上、 40 μ m以下、さらに好ましくは 5 μ m以上、 30 μ m以下である。微粒子群 Bの平均粒子径が 1 μ m未満であると、光拡散層に入射した光を充分に集光できな いことがある。逆に、微粒子群 Bの平均粒子径が 50 mを超えると、光拡散層を通過 する光量が減少し、全光線透過率および輝度が低下することがある。なお、微粒子 群 Bの平均粒子径は、粒度分布測定装置 (例えば、マルチサイザ一 II型、コールター (株)製)を用いて測定した体積平均粒子径である。  [0074] The average particle size of the fine particle group B is preferably 1 μm or more and 50 μm or less, more preferably 2 μm or more and 40 μm or less, and further preferably 5 μm or more and 30 μm or less. is there. If the average particle size of the particle group B is less than 1 μm, the light incident on the light diffusion layer may not be sufficiently collected. On the contrary, if the average particle size of the fine particle group B exceeds 50 m, the amount of light passing through the light diffusion layer may decrease, and the total light transmittance and luminance may decrease. The average particle size of the fine particle group B is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
[0075] 光拡散層を構成する透光性榭脂中における微粒子群 Aの含有量は、例えば、透光 性榭脂 100質量部に対して、好ましくは 1質量部以上、 300質量部以下、より好ましく は 5質量部以上、 200質量部以下である。微粒子群 Aの含有量が 1質量部未満であ ると、光拡散層に入射した光が充分に拡散されないことがある。逆に、微粒子群 Aの 含有量が 300質量部を超えると、光拡散層の形成が困難になることや、光拡散層を 通過する光量が減少し、全光線透過率および輝度が低下することがある。 [0075] The content of the fine particle group A in the translucent resin constituting the light diffusion layer is, for example, translucent The amount is preferably 1 part by mass or more and 300 parts by mass or less, more preferably 5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the synthetic resin. If the content of the fine particle group A is less than 1 part by mass, the light incident on the light diffusion layer may not be sufficiently diffused. Conversely, if the content of fine particle group A exceeds 300 parts by mass, it becomes difficult to form a light diffusing layer, or the amount of light passing through the light diffusing layer decreases, resulting in a decrease in total light transmittance and luminance. There is.
[0076] 光拡散層を構成する透光性榭脂中における微粒子群 Bの含有量は、例えば、透光 性榭脂 100質量部に対して、好ましくは 5質量部以上、 700質量部以下、より好ましく は 10質量部以上、 500質量部以下である。微粒子群 Bの含有量が 5質量部未満で あると、光拡散層に入射した光が充分に集光されないことがある。逆に、微粒子群 B の含有量が 700質量部を超えると、光拡散層の形成が困難になることや、光拡散層 を通過する光量が減少し、全光線透過率および輝度が低下することがある。  [0076] The content of the fine particle group B in the translucent resin constituting the light diffusion layer is, for example, preferably 5 parts by mass or more and 700 parts by mass or less with respect to 100 parts by mass of the translucent resin. More preferably, it is 10 parts by mass or more and 500 parts by mass or less. If the content of the fine particle group B is less than 5 parts by mass, the light incident on the light diffusion layer may not be sufficiently collected. Conversely, if the content of fine particle group B exceeds 700 parts by mass, it becomes difficult to form a light diffusing layer, or the amount of light passing through the light diffusing layer decreases, resulting in a decrease in total light transmittance and luminance. There is.
[0077] <光拡散層 >  [0077] <Light diffusion layer>
本発明の光拡散シートは、透光性榭脂に少なくとも 1種類の微粒子群を分散させた 光拡散層を有する。光拡散層は、入射した光を充分に拡散させる機能を有する。  The light diffusion sheet of the present invention has a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin. The light diffusion layer has a function of sufficiently diffusing incident light.
[0078] 本発明の光拡散シートは、好ましい実施態様では、透明フィルムの少なくとも片面 に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成されている。これ らの微粒子群は、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との 屈折率差の絶対値が 0. 05以上であるという条件を満足する微粒子群 Aである。微 粒子群 Aは、好ましくは、その大部分が光拡散層を構成する透光性榭脂に埋没して おり、光拡散層に入射した光を充分に拡散させる機能を有する。透明フィルムの少な くとも片面に形成される光拡散層は、微粒子群 Aを分散させた透光性榭脂から構成 され、入射した光を充分に拡散する機能を有する。光拡散層が透明フィルムの表面 に形成されている場合は、透明フィルムに入射して通過した光が光拡散層に入射し て、透明フィルムの表面に形成された光拡散層で、微粒子群 Aにより、充分に拡散さ れる。また、光拡散層が透明フィルムの両面に形成されている場合は、透明フィルム の裏面に形成された光拡散層に入射した光が光拡散層で、微粒子群 Aにより、充分 に拡散された後、透明フィルムに入射して通過し、透明フィルムの表面に形成された 光拡散層に入射して、微粒子群 Aにより、さらに充分に拡散される。なお、このように 光拡散層を構成する透光性榭脂に 1種類の微粒子群を分散させた光拡散シートを 用いる場合には、光拡散層を構成する透光性榭脂に 2種類または 3種類以上の微粒 子群を分散させた光拡散シートや、従来公知の光拡散シートを併用することが望まし い。 [0078] In a preferred embodiment of the light diffusion sheet of the present invention, a light diffusion layer in which one kind of fine particle group is dispersed in a transparent resin is formed on at least one side of a transparent film. These fine particle groups are the fine particle group A satisfying the condition that the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more. . The fine particle group A is preferably mostly buried in a translucent resin constituting the light diffusion layer, and has a function of sufficiently diffusing the light incident on the light diffusion layer. The light diffusing layer formed on at least one side of the transparent film is composed of a translucent resin in which the fine particle group A is dispersed and has a function of sufficiently diffusing incident light. When the light diffusion layer is formed on the surface of the transparent film, the light that has entered and passed through the transparent film enters the light diffusion layer, and the light diffusion layer is formed on the surface of the transparent film. Can be sufficiently diffused. Further, when the light diffusion layer is formed on both surfaces of the transparent film, the light incident on the light diffusion layer formed on the back surface of the transparent film is sufficiently diffused by the particle group A in the light diffusion layer. The light enters the transparent film, passes through, enters the light diffusion layer formed on the surface of the transparent film, and is further sufficiently diffused by the fine particle group A. In addition, like this When using a light diffusion sheet in which one type of fine particle group is dispersed in the translucent resin constituting the light diffusion layer, two or more types of fine particles are used in the translucent resin constituting the light diffusion layer. It is desirable to use a light diffusion sheet in which the child groups are dispersed or a conventionally known light diffusion sheet in combination.
[0079] また、本発明の光拡散シートは、好ましい実施態様では、透明フィルムの表面に、 透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成され、該光拡散層上 に、透光性榭脂に 1種類の微粒子群を埋設させた集光層が形成されているか、ある いは、透明フィルムの裏面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散 層が形成され、該透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を埋設さ せた集光層が形成されている。これらの微粒子群のうち光拡散層に分散させた微粒 子群は、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との屈折率 差の絶対値が 0. 05以上であるという条件を満足する微粒子群 Aである。微粒子群 A は、好ましくは、その大部分が光拡散層を構成する透光性榭脂に埋没しており、光拡 散層に入射した光を充分に拡散させる機能を有する。透明フィルムの表面または裏 面に形成される光拡散層は、微粒子群 Aを分散させた透光性榭脂から構成され、入 射した光を充分に拡散する機能を有する。光拡散層が透明フィルムの表面に形成さ れている場合は、透明フィルムに入射して通過した光が光拡散層に入射して、光拡 散層で、微粒子群 Aにより、充分に拡散された後、光拡散層上に形成された集光層 に入射する。また、光拡散層が透明フィルムの裏面に形成されている場合は、光拡 散層に入射した光が光拡散層で、微粒子群 Aにより、充分に拡散された後、透明フィ ルムに入射して通過し、透明フィルムの表面に形成された集光層に入射する。  [0079] In the light diffusing sheet of the present invention, in a preferred embodiment, a light diffusing layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the surface of the transparent film, and the light diffusing layer is formed. A condensing layer in which one type of fine particle group is embedded in the translucent coagulant is formed, or one type of fine particle group is dispersed in the translucent coagulant on the back surface of the transparent film. The light diffusing layer is formed, and a light condensing layer is formed on the surface of the transparent film by embedding one kind of fine particle group in a translucent resin. Among these fine particle groups, the fine particle group dispersed in the light diffusion layer has an absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group of 0.05 or more. It is a fine particle group A that satisfies the condition of being. The fine particle group A is preferably mostly buried in a translucent resin constituting the light diffusion layer, and has a function of sufficiently diffusing the light incident on the light diffusion layer. The light diffusing layer formed on the front or back surface of the transparent film is composed of a translucent resin in which the fine particle group A is dispersed, and has a function of sufficiently diffusing incident light. When the light diffusing layer is formed on the surface of the transparent film, the light that has entered and passed through the transparent film enters the light diffusing layer and is sufficiently diffused by the fine particle group A in the light diffusing layer. After that, the light is incident on the light collecting layer formed on the light diffusion layer. In addition, when the light diffusion layer is formed on the back surface of the transparent film, the light incident on the light diffusion layer is sufficiently diffused by the fine particle group A in the light diffusion layer, and then enters the transparent film. And enters the condensing layer formed on the surface of the transparent film.
[0080] 光拡散層を構成する透光性榭脂と微粒子群 Aとの屈折率差の絶対値は、 0. 05以 上、好ましくは 0. 07以上、より好ましくは 0. 09以上である。また、屈折率差の絶対値 の上限は、特に限定されるものではないが、好ましくは 2. 0以下、より好ましくは 1. 5 以下である。それゆえ、光拡散層を構成する透光性榭脂と微粒子群 Aとしては、屈折 率差の絶対値力 Sこの範囲内に収まるように、上記で説明した透光性榭脂および微粒 子群の中から適宜選択して組み合わせた材料が適宜調節した配合量で用いられる。  [0080] The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A is 0.05 or more, preferably 0.07 or more, more preferably 0.09 or more. . The upper limit of the absolute value of the refractive index difference is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less. Therefore, as the translucent resin and fine particle group A constituting the light diffusion layer, the translucent resin and fine particle group described above so that the absolute value of the difference in refractive index S falls within this range. Materials selected and combined as appropriate from the above are used in a blended amount adjusted as appropriate.
[0081] 光拡散層の厚さは、好ましくは 1 μ m以上、 60 μ m以下、より好ましくは 5 μ m以上、 40 μ m以下である。光拡散層の厚さが 1 μ m未満であると、光拡散層に入射した光 が充分に拡散されないことがある。逆に、光拡散層の厚さが 60 mを超えると、光拡 散層を通過する光量が減少し、全光線透過率および輝度が低下することがある。 [0081] The thickness of the light diffusion layer is preferably 1 μm or more, 60 μm or less, more preferably 5 μm or more, 40 μm or less. If the thickness of the light diffusion layer is less than 1 μm, the light incident on the light diffusion layer may not be sufficiently diffused. Conversely, if the thickness of the light diffusing layer exceeds 60 m, the amount of light passing through the light diffusing layer decreases, and the total light transmittance and luminance may decrease.
[0082] 光拡散層は、単層から形成されていても 2層以上カゝら形成されていてもよぐまた、 材質が同じ 1種類の単層から構成されていても材質が異なる 2種類以上の複層から 構成されていてもよい。 [0082] The light diffusing layer may be formed of a single layer or may be formed of two or more layers. Also, the light diffusing layer may be formed of one single layer of the same material, but two types of materials are different. It may be composed of the above multiple layers.
[0083] 本発明の光拡散シートは、好ましい実施態様では、透明フィルムの少なくとも片面 に、透光性榭脂に 2種類または 3種類以上の微粒子群を分散させた光拡散層を有す る。これらの微粒子群は、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒 子群との屈折率差の絶対値が 0. 05以上であると 、う条件を満足する微粒子群 Aと、 光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対 値が 0. 05以上であると 、う条件を必ずしも満足する必要がな 、微粒子群 Bとである 。微粒子群 Aは、好ましくは、その大部分が光拡散層を構成する透光性榭脂に埋没 しており、光拡散層に入射した光を充分に拡散させる機能を有するのに対し、微粒子 群 Bは、好ましくは、その大部分が光拡散層を構成する透光性榭脂から部分的に突 出しており、微粒子群 Aにより充分に拡散された光を部分的に突出した凸部で正面 方向に集光する機能を有する。それゆえ、このような光拡散層を、以下「光拡散'集 光層」ということがある。透明フィルムの少なくとも片面に形成される光拡散'集光層は 、 2種類または 3種類以上の微粒子群 Aおよび Bを分散させた透光性榭脂から構成さ れ、入射した光を充分に拡散すると共に、正面方向に集光する機能を有する。光拡 散'集光層が透明フィルムの片面に形成されている場合は、透明フィルムに入射して 通過した光が光拡散'集光層に入射して、透明フィルムの表面に形成された光拡散- 集光層で、微粒子群 Aにより、充分に拡散され、微粒子群 Bの凸部により、正面方向 に集光される。また、光拡散'集光層が透明フィルムの両面に形成されている場合は 、透明フィルムの裏面に形成された光拡散 ·集光層に入射した光が光拡散 ·集光層 で、微粒子群 Bの凸部により集光されると共に、微粒子群 Aにより、充分に拡散された 後、透明フィルムに入射して通過し、透明フィルムの表面に形成された光拡散'集光 層に入射して、微粒子群 Aにより、さらに充分拡散され、微粒子群 Bの凸部により、正 面方向に集光される。なお、光拡散 ·集光層から部分的に突出した微粒子群 Bの表 面は、光拡散'集光層を構成する透光性榭脂で被覆されて ヽても被覆されて ヽなく てもよいが、光拡散シートの耐傷付性を向上させる観点力 は、被覆されている方が 好ましい。いずれの場合にも、微粒子群 Bが光拡散'集光層の表面に凹凸を形成し ていればよぐ光拡散'集光層に入射した光が光拡散'集光層の表面に形成された 微粒子群 Bの凸部で正面方向に集光される。 [0083] In a preferred embodiment, the light diffusing sheet of the present invention has a light diffusing layer in which two or more kinds of fine particle groups are dispersed in a translucent resin on at least one side of a transparent film. These fine particle groups satisfy the above conditions when the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more. When the absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group is 0.05 or more, the fine particle group B does not necessarily have to satisfy the conditions. And. The fine particle group A is preferably mostly buried in the light-transmitting resin constituting the light diffusion layer and has a function of sufficiently diffusing the light incident on the light diffusion layer, whereas the fine particle group Preferably, most of B protrudes partially from the translucent resin constituting the light diffusing layer, and the front surface is a convex portion that partially protrudes the light sufficiently diffused by the fine particle group A. It has a function of collecting light in the direction. Therefore, such a light diffusion layer is sometimes referred to as “light diffusion layer”. The light diffusing light condensing layer formed on at least one side of the transparent film is composed of a translucent resin in which two or more kinds of fine particle groups A and B are dispersed, and sufficiently diffuses incident light. And has a function of condensing light in the front direction. Light diffusing 'If the condensing layer is formed on one side of the transparent film, the light that has entered the transparent film and passed through it is incident on the light diffusing' condensing layer and formed on the surface of the transparent film. In the diffusion-condensing layer, it is sufficiently diffused by the particle group A, and is condensed in the front direction by the convex part of the particle group B. In addition, when the light diffusion / condensation layer is formed on both sides of the transparent film, the light diffusion / condensation layer formed on the back surface of the transparent film is the light diffusion / condensation layer. The light is condensed by the convex part of B, and after being sufficiently diffused by the fine particle group A, it enters and passes through the transparent film, and enters the light diffusing 'condensing layer formed on the surface of the transparent film. Further, it is further sufficiently diffused by the fine particle group A, and the positive part of the fine particle group B is positive. It is condensed in the surface direction. The surface of the particle group B partially protruding from the light diffusing / condensing layer may or may not be covered with the light transmissive resin constituting the light diffusing / condensing layer. However, the viewpoint power for improving the scratch resistance of the light diffusion sheet is preferably covered. In either case, it is sufficient if the fine particle group B has light diffusion 'concavity and convexity formed on the surface of the condensing layer. Light diffusion' light incident on the condensing layer is formed on the surface of the light diffusion 'condensing layer. Concentrated in the front direction by the convex part of fine particle group B.
[0084] 光拡散'集光層を構成する透光性榭脂と微粒子群 Aとの屈折率差の絶対値は、 0. [0084] The absolute value of the difference in refractive index between the light transmissive resin and the fine particle group A constituting the light diffusing condensing layer is 0.
05以上、好ましくは 0. 07以上、より好ましくは 0. 09以上である。また、屈折率差の 絶対値の上限は、特に限定されるものではないが、好ましくは 2. 0以下、より好ましく は 1. 5以下である。それゆえ、光拡散'集光層を構成する透光性榭脂と微粒子群 Aと しては、屈折率差の絶対値力 Sこの範囲内に収まるように、上記で説明した透光性榭 脂および微粒子群の中から適宜選択して組み合わせた材料が適宜調節した配合量 で用いられる。  05 or more, preferably 0.07 or more, more preferably 0.09 or more. The upper limit of the absolute value of the refractive index difference is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less. Therefore, the translucent resin and the fine particle group A constituting the light diffusing condensing layer have the absolute value of the difference in refractive index S. Materials appropriately selected and combined from the group of fats and fine particles are used in appropriately adjusted amounts.
[0085] 光拡散'集光層の表面粗さは、算術平均粗さで、好ましくは 0. 5 /z m以上、 7 m 以下、より好ましくは 0. 7 m以上、 6 m以下、さらに好ましくは 0. 9 m以上、 5 m以下である。また、光拡散'集光層における微粒子群 Bの平均粒子径に対する層 厚の比率は、好ましくは 1. 0以上、 4. 0以下、より好ましくは 1. 05以上、 3. 0以下、 さらに好ましくは 1. 1以上、 2. 5以下である。それゆえ、光拡散'集光層を構成する 透光性榭脂と微粒子群 Bとしては、平均粒子径に対する層厚の比率や表面粗さがこ の範囲内に収まるように、上記で説明した透光性榭脂および微粒子群の中から適宜 選択して組み合わせた材料が上記で説明した配合量の範囲内で適宜調節して用い られる。  [0085] The surface roughness of the light diffusing condensing layer is an arithmetic average roughness, preferably 0.5 / zm or more and 7 m or less, more preferably 0.7 m or more and 6 m or less, and still more preferably. 0.9 m or more and 5 m or less. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group B in the light diffusion / condensing layer is preferably 1.0 or more and 4.0 or less, more preferably 1.05 or more and 3.0 or less, and further preferably. Is 1.1 or more and 2.5 or less. Therefore, the translucent resin and fine particle group B constituting the light diffusion / condensing layer are described above so that the ratio of the layer thickness to the average particle diameter and the surface roughness are within this range. A material selected and combined as appropriate from the translucent resin and the fine particle group is used by appropriately adjusting it within the range of the blending amount explained above.
[0086] 光拡散'集光層の厚さは、好ましくは 1 μ m以上、 60 m以下、より好ましくは 5 μ m 以上、 40 m以下である。光拡散'集光層の厚さが 1 μ m未満であると、光拡散'集 光層に入射した光が充分に拡散され、かつ集光されないことがある。逆に、光拡散- 集光層の厚さが 60 mを超えると、光拡散'集光層を通過する光量が減少し、全光 線透過率および輝度が低下することがある。  [0086] The thickness of the light diffusion layer is preferably 1 μm or more and 60 m or less, more preferably 5 μm or more and 40 m or less. If the thickness of the light diffusion / condensing layer is less than 1 μm, light incident on the light diffusion / condensing layer may be sufficiently diffused and not collected. Conversely, if the thickness of the light diffusing / condensing layer exceeds 60 m, the amount of light passing through the light diffusing / condensing layer may decrease, and the total light transmittance and luminance may decrease.
[0087] 光拡散'集光層は、単層から形成されていても 2層以上カゝら形成されていてもよぐ また、材質が同じ 1種類の単層から構成されていても材質が異なる 2種類以上の複層 力 構成されて 、てもよ 、。 [0087] The light diffusing condensing layer may be formed of a single layer or two or more layers. In addition, even if it is composed of one single layer of the same material, it may be composed of two or more layers of different materials.
[0088] なお、光拡散 ·集光層から部分的に突出した微粒子群上に、透光性榭脂と異なる 屈折率を有する層を形成してもよい。屈折率が異なる層のうち、透光性榭脂より低い 屈折率を有する層が特に好ましい。光拡散 ·集光層から部分的に突出した微粒子群 と低い屈折率を有する層との界面、および、低い屈折率を有する層と空気層との界 面における全反射が減少し、その結果、後方への光の散乱が減少し、全光線透過率 および輝度が向上する。  Note that a layer having a refractive index different from that of the translucent resin may be formed on the fine particle group partially protruding from the light diffusing / condensing layer. Of the layers having different refractive indexes, a layer having a refractive index lower than that of the translucent resin is particularly preferable. Light diffusion · Total reflection at the interface between the fine particles partially protruding from the condensing layer and the layer having a low refractive index, and at the interface between the layer having a low refractive index and the air layer is reduced. Backward light scattering is reduced and total light transmission and brightness are improved.
[0089] 本発明の光拡散シートは、光拡散層または光拡散'集光層を構成する透光性榭脂 として用いる榭脂が適度な硬度および靭性を有するので、他の部材との摩擦により、 光拡散シートおよび接触部材に傷が発生することが少なぐ耐傷付性に優れ、製造 時、保管時、運搬時、使用時などの取り扱いが容易であり、歩留りが向上する。  [0089] In the light diffusing sheet of the present invention, the resin used as the light transmissive resin constituting the light diffusing layer or the light diffusing light collecting layer has an appropriate hardness and toughness. It has excellent scratch resistance with few scratches on the light diffusion sheet and contact member, and is easy to handle during production, storage, transportation, use, etc., and yield is improved.
[0090] <集光層 >  [0090] <Condensing layer>
本発明の光拡散シートは、好ましい実施態様では、透光性榭脂に少なくとも 1種類 の微粒子群を埋設させた集光層を有する。集光層は、入射した光を正面方向に集光 するだけでなぐ光拡散機能も有する。集光層が透明フィルムの表面に形成された光 拡散層上に形成されている場合は、光拡散層で充分に拡散された光が集光層に入 射して、集光層から部分的に突出した微粒子群により正面方向に集光される。集光 層が透明フィルムの表面に形成されている場合は、透明フィルムの裏面に形成され た光拡散層で充分に拡散された後、透明フィルムに入射して通過し、集光層に入射 して、集光層から部分的に突出した微粒子群により正面方向に集光される。なお、集 光層から部分的に突出した微粒子群の表面は、集光層を構成する透光性榭脂で被 覆されていても被覆されていなくてもよい。いずれの場合にも、集光層に埋設させた 微粒子群が集光層の表面に凹凸を形成していればよぐ集光層に入射した光が集 光層の表面に形成された微粒子群の凸部で正面方向に集光される。  In a preferred embodiment, the light diffusing sheet of the present invention has a condensing layer in which at least one kind of fine particle group is embedded in a translucent coagulant. The condensing layer also has a light diffusing function that only condenses incident light in the front direction. When the light collecting layer is formed on the light diffusing layer formed on the surface of the transparent film, the light sufficiently diffused by the light diffusing layer is incident on the light collecting layer, and partially from the light collecting layer. It is condensed in the front direction by the fine particle group protruding to the front. When the condensing layer is formed on the surface of the transparent film, it is sufficiently diffused by the light diffusing layer formed on the back surface of the transparent film, then enters and passes through the transparent film, and enters the condensing layer. Thus, the light is collected in the front direction by the group of fine particles partially protruding from the light collecting layer. Note that the surface of the fine particle group partially protruding from the light collecting layer may or may not be covered with the translucent resin constituting the light collecting layer. In either case, it is sufficient if the group of fine particles embedded in the condensing layer forms irregularities on the surface of the condensing layer. Condensed in the front direction by the convex part.
[0091] 集光層の表面粗さは、算術平均粗さで、好ましくは 0. 5 /z m以上、 m以下、より 好ましくは 0. 7 μ m以上、 6 μ m以下、さらに好ましくは 0. 9 μ m以上、 5 μ m以下で ある。また、集光層における微粒子群の平均粒子径に対する層厚の比率は、好ましく は 1. 0以上、 4. 0以下、より好ましくは 1. 05以上、 3. 0以下、さらに好ましくは 1. 1 以上、 2. 5以下である。それゆえ、集光層を構成する透光性榭脂と微粒子群としては 、平均粒子径に対する層厚の比率や表面粗さがこの範囲内に収まるように、上記で 説明した透光性榭脂および微粒子群の中から適宜選択して組み合わせた材料が上 記で説明した配合量の範囲内で適宜調節して用いられる。 [0091] The surface roughness of the light collecting layer is an arithmetic average roughness, and is preferably 0.5 / zm or more and m or less, more preferably 0.7 μm or more and 6 μm or less, and still more preferably 0. 9 μm or more and 5 μm or less. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer is preferably Is 1.0 or more and 4.0 or less, more preferably 1.05 or more and 3.0 or less, and still more preferably 1.1 or more and 2.5 or less. Therefore, the translucent resin and the fine particle group constituting the condensing layer include the translucent resin described above so that the ratio of the layer thickness to the average particle diameter and the surface roughness are within this range. In addition, materials appropriately selected from the group of fine particles and combined can be appropriately adjusted and used within the range of the blending amounts described above.
[0092] 集光層の厚さは、好ましくは 1 μ m以上、 60 μ m以下、より好ましくは 5 μ m以上、 4 0 m以下である。集光層の厚さが 1 m未満であると、集光層に入射した光が充分 に集光されないことがある。逆に、集光層の厚さが 60 mを超えると、集光層を通過 する光量が減少し、全光線透過率および輝度が低下することがある。  [0092] The thickness of the light collecting layer is preferably 1 μm or more and 60 μm or less, more preferably 5 μm or more and 40 m or less. If the thickness of the condensing layer is less than 1 m, the light incident on the condensing layer may not be sufficiently collected. Conversely, if the thickness of the light condensing layer exceeds 60 m, the amount of light passing through the light condensing layer may decrease, and the total light transmittance and brightness may decrease.
[0093] 集光層は、単層から形成されていても 2層以上カゝら形成されていてもよぐまた、材 質が同じ 1種類の単層から構成されていても材質が異なる 2種類以上の複層から構 成されていてもよい。  [0093] The light-collecting layer may be formed of a single layer or may be formed of two or more layers, and the material may be different even if it is formed of one type of the same single layer. It may consist of more than one kind of multiple layers.
[0094] なお、集光層から部分的に突出した微粒子群上に、透光性榭脂と異なる屈折率を 有する層を形成してもよい。屈折率が異なる層のうち、透光性榭脂より低い屈折率を 有する層が特に好ましい。集光層から部分的に突出した微粒子群と低い屈折率を有 する層との界面、および、低い屈折率を有する層と空気層との界面における全反射 が減少し、その結果、後方への光の散乱が減少し、全光線透過率および輝度が向上 する。  [0094] Note that a layer having a refractive index different from that of the translucent resin may be formed on the fine particle group partially protruding from the light collecting layer. Of the layers having different refractive indexes, a layer having a refractive index lower than that of the translucent resin is particularly preferable. Total reflection at the interface between the particle group partially protruding from the condensing layer and the layer having a low refractive index, and the interface between the layer having a low refractive index and the air layer is reduced. Light scattering is reduced and total light transmission and brightness are improved.
[0095] <透明フィルム >  [0095] <Transparent film>
本発明の光拡散シートにおいて、透明フィルムの材質としては、例えば、ポリエチレ ンテレフタレートやポリエチレンナフタレートなどのポリエステル系榭脂;ポリメチルメタ タリレートなどの (メタ)アクリル系榭脂;2— (ヒドロキシアルキル)アクリル酸エステルに 由来するラタトン環構造単位を含有するラタトン環含有榭脂;ポリカーボネート系榭脂 ;ポリエチレンやポリプロピレンなどのォレフィン系榭脂;ノルボルネン榭脂などの環状 ォレフィン系榭脂;塩ィ匕ビュル系榭脂;塩ィ匕ビ -リデン系榭脂;スチレン系榭脂;ポリ アミド 6、ポリアミド 66などのポリアミド系榭脂;トリァセチルセルロースなどのセルロー ス誘導体;これらの共重合体;などが挙げられる。これらの材質のうち、ポリエステル系 榭脂、(メタ)アクリル系榭脂、ラ外ン環含有榭脂、ポリカーボネート系榭脂が好適で あり、ポリエチレンテレフタレート、ラタトン環含有榭脂、ポリカーボネート系榭脂が特 に好適である。 In the light diffusing sheet of the present invention, the transparent film is made of, for example, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate; a (meth) acrylic resin such as polymethyl methacrylate; 2- (hydroxyalkyl) acrylic Rataton ring-containing resins containing latatone ring structural units derived from acid esters; polycarbonate-based resins; olefin-based resins such as polyethylene and polypropylene; cyclic olefin-based resins such as norbornene resins; salt-bulls Examples thereof include fats; salty vinyl-redene-based resins; styrene-based resins; polyamide-based resins such as polyamide 6 and polyamide 66; cellulose derivatives such as triacetyl cellulose; and copolymers thereof. Of these materials, polyester-based resins, (meth) acrylic-based resins, outer ring-containing resins, and polycarbonate-based resins are suitable. In particular, polyethylene terephthalate, latton ring-containing resin, and polycarbonate resin are particularly suitable.
[0096] 透明フィルムは、単一の材質から形成されていても 2種以上の材質から形成されて いてもよぐまた、単一の層から構成されていても複数の層から構成されていてもよい  [0096] The transparent film may be formed of a single material or two or more kinds of materials, and may be formed of a single layer or a plurality of layers. Good
[0097] 透明フィルムの厚さは、好ましくは 5 μ m以上、 500 μ m以下、より好ましくは 10 μ m 以上、 400 μ m以下、さらに好ましくは 20 μ m以上、 300 μ m以下である。透明フィ ルムの厚さが 5 m未満であると、光拡散シートの機械的強度が低下することがある。 逆に、透明フィルムの厚さが 500 mを超えると、透明フィルムを通過する光量が減 少し、全光線透過率および輝度が低下することがある。 [0097] The thickness of the transparent film is preferably 5 μm or more and 500 μm or less, more preferably 10 μm or more and 400 μm or less, and further preferably 20 μm or more and 300 μm or less. If the thickness of the transparent film is less than 5 m, the mechanical strength of the light diffusing sheet may decrease. Conversely, if the thickness of the transparent film exceeds 500 m, the amount of light passing through the transparent film decreases, and the total light transmittance and brightness may decrease.
[0098] 透明フィルムは、ヘイズが好ましくは 0%以上、 20%以下、より好ましくは 0%以上、 10%以下、さらに好ましくは 0%以上、 5%以下であり、および Zまたは、全光線透過 率が好ましくは 70%以上、 100%以下、より好ましくは 80%以上、 100%以下である 。なお、ヘイズおよび全光線透過率は、濁度計 (例えば、 NDH—1001DP、日本電 色工業 (株)製)を用いて、 JIS K7105に準拠した測定法により測定した値である。  [0098] The transparent film preferably has a haze of 0% or more and 20% or less, more preferably 0% or more and 10% or less, still more preferably 0% or more and 5% or less, and Z or all light transmission. The rate is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less. The haze and total light transmittance are values measured by a measurement method based on JIS K7105 using a turbidimeter (for example, NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.).
[0099] なお、透明フィルムや光拡散層のように光源力 の光を直接受ける部材は、紫外線 の影響を防止するために、これらの部材に紫外線防止剤を含有させておくか、あるい は光源力もの光を受ける面に紫外線防止層を設けておいてもよぐまた、透明フィル ムゃ光拡散層、集光層のように空気層と接触する部材は、空気中の塵埃の影響を防 止するために、これらの部材に帯電防止剤を含有させておくか、あるいは空気層と接 触する面に帯電防止層を設けておいてもよい。  [0099] Members that directly receive light of light source power, such as a transparent film or a light diffusion layer, may contain an ultraviolet inhibitor in these members in order to prevent the influence of ultraviolet rays. It is also possible to provide a UV protection layer on the surface that receives light from the light source, and members that come into contact with the air layer, such as transparent films, light diffusion layers, and condensing layers, are not affected by dust in the air. In order to prevent this, an antistatic agent may be contained in these members, or an antistatic layer may be provided on the surface in contact with the air layer.
[0100] また、光拡散層と集光層または光拡散層が透明フィルムの片面に形成されている 場合、通常、透明フィルムの裏面は、平滑面であるが、例えば、エンボス加工などを 施して、光拡散性ゃステイツキング防止性を付与する力、あるいは、透明フィルムの裏 面に、ステイツキング防止層を設けてもよい。ステイツキング防止層は、例えば、上記 のような透光性榭脂に上記のような微粒子群を混練した組成物を透明フィルムの裏 面に直接コーティングすることにより形成される。ただし、ステイツキング防止層に分散 させる微粒子群の平均粒子径は、好ましくは 0. 5 μ m以上、 20 μ m以下、より好まし くは 1 μ m以上、 15 m以下である。なお、微粒子群の平均粒子径は、粒度分布測 定装置 (例えば、マルチサイザ一 II型、コールター (株)製)を用いて測定した体積平 均粒子径である。ステイツキング防止層の厚さは、好ましくは 0. 5 μ m以上、 20 m 以下、より好ましくは 1 m以上、 15 m以下である。透光性榭脂中における微粒子 群の含有量は、特に限定されるものではないが、比較的少量であり、微粒子群を構 成する各微粒子が互いに離隔して透光性榭脂中に分散し、微粒子群の一部が透光 性榭脂から部分的に突出している程度であればよい。 [0100] Further, when the light diffusion layer and the light condensing layer or the light diffusion layer are formed on one side of the transparent film, the back surface of the transparent film is usually a smooth surface, but for example, embossing is performed. In addition, the light diffusing property may be a force imparting anti-sticking property, or a anti-sticking layer may be provided on the back surface of the transparent film. The anti-sticking layer is formed, for example, by directly coating the back surface of a transparent film with a composition obtained by kneading the above-described fine particle group in the above-described translucent resin. However, the average particle size of the fine particle group dispersed in the anti-sticking layer is preferably 0.5 μm or more and 20 μm or less, and more preferably. 1 μm or more and 15 m or less. The average particle size of the fine particle group is a volume average particle size measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter Co., Ltd.). The thickness of the anti-sticking layer is preferably 0.5 μm or more and 20 m or less, more preferably 1 m or more and 15 m or less. The content of the fine particle group in the translucent resin is not particularly limited, but is relatively small, and the fine particles constituting the fine particle group are separated from each other and dispersed in the translucent resin. However, it is sufficient that a part of the fine particle group partially protrudes from the translucent resin.
[0101] <光拡散シートの構成例 >  [0101] <Configuration example of light diffusion sheet>
ここで、本発明の光拡散シートの具体的な構成例を図 1〜6に示す。なお、図 1は、 透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形 成された光拡散シートに対応している。図 2は、透明フィルムの表面および裏面に、 透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成された光拡散シート に対応している。図 3は、透明フィルムの表面に、透光性榭脂に 2種類の微粒子群を 分散させた光拡散 ·集光層が形成された光拡散シートに対応している。図 4は、透明 フィルムの表面および裏面に、透光性榭脂に 2種類の微粒子群を分散させた光拡散 '集光層が形成された光拡散シートに対応している。図 5は、透明フィルムの表面に、 透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成され、該光拡散層上 に、透光性榭脂に 1種類の微粒子群を埋設させた集光層が形成された光拡散シート に対応している。図 6は、透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を 埋設させた集光層が形成され、該透明フィルムの裏面に、透光性榭脂に 1種類の微 粒子群を分散させた光拡散層が形成された光拡散シートに対応している。  Here, the specific structural example of the light-diffusion sheet of this invention is shown to FIGS. Note that FIG. 1 corresponds to a light diffusing sheet in which a light diffusing layer in which one kind of fine particle group is dispersed in a translucent resin is formed on the surface of a transparent film. Fig. 2 corresponds to a light diffusing sheet in which a light diffusing layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the front and back surfaces of a transparent film. Fig. 3 corresponds to a light diffusing sheet in which a light diffusing / condensing layer is formed by dispersing two types of fine particle groups in a translucent resin on the surface of a transparent film. Figure 4 corresponds to a light diffusing sheet in which a light diffusing and condensing layer is formed on the front and back surfaces of a transparent film, in which two types of fine particles are dispersed in a translucent resin. FIG. 5 shows that a light diffusion layer in which one kind of fine particle group is dispersed in a transparent film is formed on the surface of the transparent film, and one kind of fine particle group in the light transparent resin is formed on the light diffusion layer. It corresponds to a light diffusion sheet with a light condensing layer embedded. Fig. 6 shows a condensing layer in which one type of fine particle group is embedded in a transparent film on the surface of the transparent film, and one type of fine particle in the transparent film on the back surface of the transparent film. This corresponds to a light diffusion sheet in which a light diffusion layer in which groups are dispersed is formed.
[0102] このほか、図示していないが、透明フィルムの表面に、透光性榭脂に 2種類または 3 種類以上の微粒子群を分散させた光拡散'集光層が形成され、透明フィルムの裏面 に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成された光拡散シ ート;透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散 層が形成され、透明フィルムの裏面に、透光性榭脂に 2種類または 3種類以上の微 粒子群を分散させた光拡散'集光層が形成された光拡散シート;などが考えられる。  [0102] In addition, although not shown, a light diffusing condensing layer in which two or more kinds of fine particles are dispersed in a transparent resin is formed on the surface of the transparent film. A light diffusing sheet with a light diffusing layer in which one type of fine particle group is dispersed in a transparent resin on the back; one type of fine particle group is dispersed in a transparent film on the surface of a transparent film A light diffusion layer in which two or more kinds of fine particles are dispersed in a transparent resin on the back surface of the transparent film; a light diffusion sheet in which a light collecting layer is formed; etc. Can be considered.
[0103] 図 1に示す光拡散シート 10は、透明フィルム 11の表面に、透光性榭脂 11に 1種類 の微粒子群 14を分散させた光拡散層 Aが形成されている。微粒子群 14は、光拡散 層 A中に、実質的に均一に分散しており、実質的に全部の微粒子群が透光性榭脂 1 1に埋没した状態である。ここで、透光性榭脂 11と微粒子群 14との屈折率差の絶対 値は 0. 05以上である。また、透光性榭脂 11は、好ましくは、無機超微粒子または有 機無機複合超微粒子を含有する (メタ)アクリル系榭脂である。透明フィルム 11の裏 面に入射した光は、該透明フィルム 11を通過して光拡散層 Aに入射する。光拡散層 Aでは、透光性榭脂 11に分散させた微粒子群 14により充分に拡散された後、拡散 光が出射される。光拡散層 Aの実質的に全体に微粒子群 14が存在するので、より多 くの拡散光が出射されると共に、輝度のムラが減少する。なお、図 1に示す光拡散シ ート 10は、上下を逆にして用いてもよい。 [0103] The light diffusing sheet 10 shown in FIG. 1 has one type of translucent resin 11 on the surface of the transparent film 11. The light diffusion layer A in which the fine particle group 14 is dispersed is formed. The fine particle group 14 is substantially uniformly dispersed in the light diffusion layer A, and substantially all of the fine particle group is embedded in the translucent resin 11. Here, the absolute value of the refractive index difference between the translucent resin 11 and the fine particle group 14 is 0.05 or more. The translucent resin 11 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic / inorganic composite ultrafine particles. The light incident on the back surface of the transparent film 11 passes through the transparent film 11 and enters the light diffusion layer A. In the light diffusion layer A, diffused light is emitted after being sufficiently diffused by the fine particle group 14 dispersed in the translucent resin 11. Since the fine particle group 14 is present substantially over the entire light diffusion layer A, more diffused light is emitted and luminance unevenness is reduced. The light diffusion sheet 10 shown in FIG. 1 may be used upside down.
[0104] 図 2に示す光拡散シート 20は、透明フィルム 21の表面に、透光性榭脂 23に 1種類 の微粒子群 22を分散させた光拡散層 Aが形成され、該透明フィルム 21の裏面に、 同様に、透光性榭脂 23に 1種類の微粒子群 22を分散させた光拡散層 Aが形成され ている。微粒子群 22は、光拡散層 A中に、実質的に均一に分散しており、実質的に 全部の微粒子群が透光性榭脂 23に埋没した状態である。ここで、透光性榭脂 23と 微粒子群 22との屈折率差の絶対値は 0. 05以上である。また、透光性榭脂 23は、好 ましくは、無機超微粒子または有機無機複合超微粒子を含有する (メタ)アクリル系榭 脂である。透明フィルム 21の裏面に形成された光拡散層 Aに入射した光は、透光性 榭脂 23に分散させた微粒子群 22により充分に拡散された後、透明フィルム 21を経 て、該透明フィルム 21の表面に形成された光拡散層 Aに入射する。光拡散層 Aでは 、透光性榭脂 23に分散させた微粒子群 22により充分に拡散された後、拡散光が出 射される。光拡散層 Aの実質的に全体に微粒子群 22が存在するので、より多くの拡 散光が出射されると共に、輝度のムラが減少する。  A light diffusing sheet 20 shown in FIG. 2 has a light diffusing layer A in which one kind of fine particle group 22 is dispersed in a translucent resin 23 formed on the surface of a transparent film 21. Similarly, a light diffusion layer A in which one kind of fine particle group 22 is dispersed in a translucent resin 23 is formed on the back surface. The fine particle group 22 is substantially uniformly dispersed in the light diffusion layer A, and substantially all the fine particle group is embedded in the translucent resin 23. Here, the absolute value of the refractive index difference between the translucent resin 23 and the fine particle group 22 is 0.05 or more. The translucent resin 23 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. The light incident on the light diffusion layer A formed on the back surface of the transparent film 21 is sufficiently diffused by the fine particle group 22 dispersed in the translucent resin 23, and then passes through the transparent film 21 and passes through the transparent film 21. The light enters the light diffusion layer A formed on the surface of 21. In the light diffusion layer A, diffused light is emitted after being sufficiently diffused by the fine particle group 22 dispersed in the translucent resin 23. Since the particle group 22 is present substantially over the entire light diffusion layer A, more diffused light is emitted and luminance unevenness is reduced.
[0105] 図 3に示す光拡散シート 30は、透明フィルム 31の表面に、透光性榭脂 33に 2種類 の微粒子群 34および 35を分散させた光拡散 ·集光層 Bが形成されている。微粒子群 34および 35は、光拡散 ·集光層 B中に、実質的に均一に分散しており、一部の微粒 子群は、光拡散'集光層 Bから部分的に突出している。ここで、透光性榭脂 33と微粒 子群 34との屈折率差の絶対値は 0. 05以上である。また、透光性榭脂 33は、好まし くは、無機超微粒子または有機無機複合超微粒子を含有する (メタ)アクリル系榭脂 である。透明フィルム 31の裏面に入射した光は、該透明フィルム 31を通過して光拡 散'集光層 Bに入射する。光拡散'集光層 Bでは、透光性榭脂 33に分散させた微粒 子群 34により充分に拡散された後、該透光性榭脂 33から部分的に突出した微粒子 群 35の突出部分(凸部)により、光が正面方向に集光される。光拡散'集光層 Bの実 質的に全体に微粒子群 35が存在するので、より多くの光が正面方向に集光されると 共に、輝度のムラが減少する。 The light diffusing sheet 30 shown in FIG. 3 has a light diffusing / condensing layer B in which two kinds of fine particle groups 34 and 35 are dispersed in a transparent resin 33 on the surface of a transparent film 31. Yes. The fine particle groups 34 and 35 are substantially uniformly dispersed in the light diffusion / condensing layer B, and some of the fine particle groups partially protrude from the light diffusion / condensing layer B. Here, the absolute value of the refractive index difference between the translucent resin 33 and the fine particle group 34 is 0.05 or more. Translucent rosin 33 is preferred Or (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. The light incident on the back surface of the transparent film 31 passes through the transparent film 31 and enters the light diffusion / condensing layer B. In the light diffusion / condensation layer B, after being sufficiently diffused by the fine particle group 34 dispersed in the translucent resin 33, the protruding part of the fine particle group 35 partially protruding from the translucent resin 33 The light is collected in the front direction by the (convex portion). Since the particle group 35 exists substantially throughout the light diffusing and condensing layer B, more light is collected in the front direction and luminance unevenness is reduced.
[0106] 図 4に示す光拡散シート 40は、透明フィルム 41の表面に、透光性榭脂 43に 2種類 の微粒子群 44および 45を分散させた光拡散'集光層 Bが形成され、該透明フィルム 41の裏面に、同様に、透光性榭脂 43に 2種類の微粒子群 44および 45を分散させ た光拡散 ·集光層 Bが形成されている。微粒子群 44および 45は、光拡散 ·集光層 B 中に、実質的に均一に分散しており、一部の微粒子群は、光拡散 ·集光層 Bから部 分的に突出している。ここで、透光性榭脂 43と微粒子群 44との屈折率差の絶対値は 0. 05以上である。また、透光性榭脂 43は、好ましくは、無機超微粒子または有機無 機複合超微粒子を含有する (メタ)アクリル系榭脂である。透明フィルム 41の裏面に 形成された光拡散'集光層 Bに入射した光は、一部は透光性榭脂 43に分散させた微 粒子群 44により充分に拡散され、一部は透光性榭脂 43から部分的に突出した微粒 子群 45の突出部分(凸部)により集光された後、透明フィルム 41を経て、該透明フィ ルム 41の表面に形成された光拡散'集光層 Bに入射する。光拡散'集光層 Bでは、 透光性榭脂 43に分散させた微粒子群 45により充分に拡散された後、該透光性榭脂 43から部分的に突出した微粒子群 45の突出部分(凸部)により、光が正面方向に集 光される。光拡散'集光層 Bの実質的に全体に微粒子群 45が存在するので、より多く の光が正面方向に集光されると共に、輝度のムラが減少する。  [0106] The light diffusion sheet 40 shown in FIG. 4 has a light diffusing condensing layer B in which two kinds of fine particle groups 44 and 45 are dispersed in a transparent resin 43 on the surface of a transparent film 41. Similarly, a light diffusing / condensing layer B in which two kinds of fine particle groups 44 and 45 are dispersed in a translucent resin 43 is formed on the back surface of the transparent film 41. The fine particle groups 44 and 45 are substantially uniformly dispersed in the light diffusing / condensing layer B, and some of the fine particle groups partially protrude from the light diffusing / condensing layer B. Here, the absolute value of the refractive index difference between the translucent resin 43 and the fine particle group 44 is 0.05 or more. The translucent resin 43 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic inorganic composite ultrafine particles. Light diffused on the back surface of the transparent film 41 'Light incident on the condensing layer B is partly diffused by the fine particle group 44 dispersed in the translucent resin 43 and partly translucent. After being condensed by the protruding part (convex part) of the fine particle group 45 partially protruding from the synthetic resin 43, it passes through the transparent film 41, and then the light diffusion 'condensing formed on the surface of the transparent film 41 Incident to layer B. In the light diffusing condensing layer B, after being sufficiently diffused by the fine particle group 45 dispersed in the translucent resin 43, the protruding portion of the fine particle group 45 partially protruding from the translucent resin 43 ( The light is collected in the front direction by the convex portion. Since the particle group 45 is present substantially over the entire light diffusion / condensing layer B, more light is condensed in the front direction and luminance unevenness is reduced.
[0107] 図 5に示す光拡散シート 50は、透明フィルム 51の表面に、透光性榭脂 53に 1種類 の微粒子群 54を分散させた光拡散層 Cが形成され、該光拡散層 C上に、透光性榭 脂 55に 5種類の微粒子群 56を埋設させた集光層 Dが形成されている。ここで、透光 性榭脂 53と微粒子群 54との屈折率差の絶対値は 0. 05以上である。また、集光層 D の表面粗さは、好ましくは、算術平均粗さで 0. 5 /z m以上、 7 m以下である。微粒 子群 54は、光拡散層 C中に、実質的に均一に分散しており、微粒子群 56は、集光 層 D力も部分的に突出している。透明フィルム 51の裏面に入射した光は、該透明フィ ルム 51を通過して光拡散層 Cに入射する。光拡散層 Cでは、透光性榭脂 53に分散 させた微粒子群 54により充分に拡散された後、集光層 Dに入射する。集光層 Dでは 、透光性榭脂 55から部分的に突出した微粒子群 56の突出部分 (凸部)により、光が 正面方向に集光される。集光層 Dの実質的に表面全体に微粒子群 56が存在するの で、より多くの光が正面方向に集光されると共に、輝度のムラが減少する。 In the light diffusion sheet 50 shown in FIG. 5, a light diffusion layer C in which one kind of fine particle group 54 is dispersed in a translucent resin 53 is formed on the surface of a transparent film 51, and the light diffusion layer C On top of this, a condensing layer D in which five kinds of fine particle groups 56 are embedded in a translucent resin 55 is formed. Here, the absolute value of the refractive index difference between the translucent resin 53 and the fine particle group 54 is 0.05 or more. The surface roughness of the light collecting layer D is preferably an arithmetic average roughness of 0.5 / zm or more and 7 m or less. Fine particles The subgroups 54 are substantially uniformly dispersed in the light diffusion layer C, and the fine particle group 56 also partially projects the condensing layer D force. The light incident on the back surface of the transparent film 51 passes through the transparent film 51 and enters the light diffusion layer C. In the light diffusion layer C, it is sufficiently diffused by the fine particle group 54 dispersed in the translucent resin 53 and then enters the light condensing layer D. In the condensing layer D, light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group 56 partially protruding from the translucent resin 55. Since the particle group 56 exists on substantially the entire surface of the condensing layer D, more light is condensed in the front direction and luminance unevenness is reduced.
[0108] 図 6に示す光拡散シート 60は、透明フィルム 61の表面に、透光性榭脂 65に 1種類 の微粒子群 66を埋設させた集光層 Dが形成され、該透明フィルム 61の裏面に、透 光性榭脂 63に 1種類の微粒子群 64を分散させた光拡散層 Cが形成されている。ここ で、透光性榭脂 63と微粒子群 64との屈折率差の絶対値は 0. 05以上である。また、 集光層 Dの表面粗さは、好ましくは、算術平均粗さで 0. 以上、 以下であ る。微粒子群 64は、光拡散層 C中に、実質的に均一に分散しており、微粒子群 66は 、集光層 D力も部分的に突出している。透明フィルム 61の裏面に形成された光拡散 層 Cに入射した光は、透光性榭脂 63に分散させた微粒子群 64により充分に拡散さ れた後、透明フィルム 61を経て、該透明フィルム 61の表面に形成された集光層 Dに 入射する。集光層 Dでは、透光性榭脂 65から部分的に突出した微粒子群 66の突出 部分 (凸部)により、光が正面方向に集光される。集光層 Dの実質的に表面全体に微 粒子群 66が存在するので、より多くの光が正面方向に集光されると共に、輝度のムラ が減少する。  A light diffusing sheet 60 shown in FIG. 6 has a light condensing layer D in which one type of fine particle group 66 is embedded in a transparent resin 65 on the surface of a transparent film 61. A light diffusion layer C in which one kind of fine particle group 64 is dispersed in a transparent resin 63 is formed on the back surface. Here, the absolute value of the refractive index difference between the translucent resin 63 and the fine particle group 64 is 0.05 or more. Further, the surface roughness of the light collecting layer D is preferably not less than 0 and not more than the arithmetic average roughness. The fine particle group 64 is substantially uniformly dispersed in the light diffusion layer C, and the fine particle group 66 also partially projects the condensing layer D force. The light incident on the light diffusion layer C formed on the back surface of the transparent film 61 is sufficiently diffused by the fine particle group 64 dispersed in the translucent resin 63, and then passes through the transparent film 61. The light enters the condensing layer D formed on the surface of 61. In the condensing layer D, light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group 66 partially protruding from the translucent resin 65. Since the fine particle group 66 exists on substantially the entire surface of the condensing layer D, more light is condensed in the front direction and luminance unevenness is reduced.
[0109] <光拡散シートの製造方法 >  [0109] <Method for producing light diffusion sheet>
本発明の光拡散シートのうち、例えば、図 1に示す光拡散シート 10は、まず、光拡 散層 Aを構成する透光性榭脂 13に 1種類の微粒子群 14を混練した組成物を透明フ イルム 11の表面に直接コ一ティングした後、該透光性榭脂 13を乾燥させて光拡散層 Aを形成することにより、製造することができる。  Among the light diffusing sheets of the present invention, for example, a light diffusing sheet 10 shown in FIG. 1 is prepared by first mixing a composition obtained by kneading one kind of fine particle group 14 with a light transmitting resin 13 constituting a light diffusing layer A. After coating directly on the surface of the transparent film 11, the light-transmitting resin 13 is dried to form the light diffusion layer A.
[0110] 図 2に示す光拡散シート 20は、まず、光拡散層 Aを構成する透光性榭脂 23に 1種 類の微粒子群 24を混練した組成物を透明フィルム 21の表面に直接コーティングした 後、該透光性榭脂 23を乾燥させて光拡散層 Aを形成し、次いで、上記と同様の組成 物を該透明フィルム 21の裏面に直接コーティングした後、該透光性榭脂 23を乾燥さ せて光拡散層 Aを形成することにより、製造することができる。もちろん、まず、透明フ イルム 21の裏面に光拡散層 Aを形成した後、該透明フィルム 21の表面に光拡散層 A を形成してもよい。 [0110] The light diffusing sheet 20 shown in FIG. 2 is first coated directly on the surface of the transparent film 21 with a composition in which one kind of fine particle group 24 is kneaded with the translucent resin 23 constituting the light diffusing layer A. After that, the translucent resin 23 is dried to form a light diffusion layer A, and then the same composition as above It can be manufactured by directly coating an object on the back surface of the transparent film 21 and then drying the translucent resin 23 to form the light diffusion layer A. Of course, first, after forming the light diffusion layer A on the back surface of the transparent film 21, the light diffusion layer A may be formed on the surface of the transparent film 21.
[0111] 図 3に示す光拡散シート 30は、まず、光拡散'集光層 Bを構成する透光性榭脂 33 に 2種類の微粒子群 34および 35を混練した組成物を透明フィルム 31の表面に直接 コーティングした後、該透光性榭脂 33を乾燥させて光拡散'集光層 Bを形成すること により、製造することができる。  [0111] A light diffusing sheet 30 shown in FIG. 3 is prepared by first mixing a composition obtained by kneading two kinds of fine particle groups 34 and 35 with a light transmissive resin 33 constituting a light diffusing 'condensing layer B. After coating directly on the surface, the light-transmitting resin 33 is dried to form a light diffusing and condensing layer B.
[0112] 図 4に示す光拡散シートは、まず、光拡散'集光層 Bを構成する透光性榭脂 43に 2 種類の微粒子群 44および 45を混練した組成物を透明フィルム 41の表面に直接コー ティングした後、該透光性榭脂 43を乾燥させて光拡散 ·拡散層 Bを形成し、次いで、 上記と同様の組成物を該透明フィルム 41の裏面に直接コーティングした後、該透光 性榭脂 43を乾燥させて光拡散'集光層 Bを形成することにより、製造することができる 。もちろん、まず、透明フィルム 41の裏面に光拡散'集光層 Bを形成した後、該透明 フィルム 41の表面に光拡散 ·集光層 Bを形成してもよ 、。  [0112] The light diffusing sheet shown in FIG. 4 is prepared by first mixing a composition obtained by kneading two kinds of fine particle groups 44 and 45 with the light transmissive resin 43 constituting the light diffusing 'condensing layer B. After coating directly onto the transparent film 41, the light-transmitting resin 43 is dried to form a light diffusion / diffusion layer B, and then the back surface of the transparent film 41 is directly coated with the same composition as above. It can be produced by drying the translucent resin 43 to form the light diffusion / condensing layer B. Of course, first, the light diffusion / condensing layer B may be formed on the back surface of the transparent film 41, and then the light diffusion / condensing layer B may be formed on the surface of the transparent film 41.
[0113] 図 5に示す光拡散シート 50は、まず、光拡散層 Cを構成する透光性榭脂 53に 1種 類の微粒子群 54を混練した組成物を透明フィルム 51の表面に直接コーティングした 後、該透光性榭脂 53を乾燥させて光拡散層 Cを形成し、次いで、集光層 Dを構成す る透光性榭脂 55に 1種類の微粒子群 56を混練した組成物を該光拡散層 C上に直接 コーティングした後、該透光性榭脂 55を乾燥させて集光層 Dを形成することにより、 製造することができる。  [0113] In the light diffusion sheet 50 shown in FIG. 5, first, the surface of the transparent film 51 is directly coated with a composition in which one kind of fine particle group 54 is kneaded with the translucent resin 53 constituting the light diffusion layer C. After that, the light-transmitting resin 53 is dried to form a light diffusion layer C, and then the light-transmitting resin 55 constituting the light-collecting layer D is kneaded with one kind of fine particle group 56. Can be manufactured by coating the light diffusing layer C directly and then drying the translucent resin 55 to form the light collecting layer D.
[0114] 図 6に示す光拡散シート 60は、まず、光拡散層 Cを構成する透光性榭脂 63に 1種 類の微粒子群 64を混練した組成物を透明フィルム 61の裏面に直接コーティングした 後、該透光性榭脂 63を乾燥させて光拡散層 Cを形成し、次いで、集光層 Dを構成す る透光性榭脂 65に 1種類の微粒子群 66を混練した組成物を該透明フィルム 61の表 面に直接コーティングした後、該透光性榭脂 65を乾燥させて集光層 Dを形成するこ とにより、製造することができる。もちろん、まず、透明フィルム 61の表面に集光層 Dを 形成した後、該透明フィルム 61の裏面に光拡散層 Cを形成してもよい。 [0115] なお、透光性榭脂に微粒子群を混練する際に、有機溶剤を用いてもよい。有機溶 剤は、各成分の溶解性、作業性、コストなどを考慮して適宜選択すればよぐ特に限 定されるものではないが、具体的には、例えば、トルエン、キシレンなどの芳香族炭 化水素系溶剤;へキサン、ヘプタンなどの脂肪族炭化水素系溶剤;酢酸ェチル、酢 酸ブチルなどのエステル系溶剤;メチルェチルケトン、メチルイソブチルケトンなどの ケトン系溶剤;イソプロピルアルコール、ブチルアルコールなどのアルコール系溶剤; 脂肪族炭化水素を主成分とする種々の沸点範囲の石油留分;などが挙げられる。こ れらの有機溶剤は、単独で用いても 2種以上を併用してもよ ヽ。 [0114] In the light diffusion sheet 60 shown in FIG. 6, first, the back surface of the transparent film 61 is directly coated with a composition in which one kind of fine particle group 64 is kneaded with the translucent resin 63 constituting the light diffusion layer C. After that, the light transmissive resin 63 is dried to form the light diffusion layer C, and then the light transmissive resin 65 constituting the light condensing layer D is kneaded with one kind of fine particle group 66. Can be produced by directly coating the surface of the transparent film 61 and then drying the light-transmitting resin 65 to form the light-collecting layer D. Of course, first, the light condensing layer D may be formed on the surface of the transparent film 61, and then the light diffusion layer C may be formed on the back surface of the transparent film 61. [0115] An organic solvent may be used when the fine particle group is kneaded with the translucent resin. The organic solvent is not particularly limited as long as it is appropriately selected in consideration of the solubility, workability, cost, etc. of each component. Specifically, for example, aromatic solvents such as toluene and xylene are used. Hydrocarbon solvents; Aliphatic hydrocarbon solvents such as hexane and heptane; Ester solvents such as ethyl acetate and butyl acetate; Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; Isopropyl alcohol and butyl alcohol Alcohol-based solvents such as; petroleum fractions having various boiling points mainly composed of aliphatic hydrocarbons; and the like. These organic solvents may be used alone or in combination of two or more.
[0116] また、透光性榭脂に微粒子群を混練した組成物を直接コーティングする方法として は、従来公知のコーティング技術を採用すればよぐ特に限定されるものではない。 透光性榭脂を乾燥させる方法についても、従来公知の乾燥方法を採用すればよぐ 特に限定されるものではない。  [0116] The method of directly coating the composition obtained by kneading the fine particle group in the translucent resin is not particularly limited as long as a conventionally known coating technique is employed. The method for drying the translucent rosin is not particularly limited as long as a conventionally known drying method is adopted.
[0117] <光拡散シートの用途 >  [0117] <Application of light diffusion sheet>
本発明の光拡散シートは、直下型またはエッジライト型バックライトユニットの光拡散 シートとして、従来公知の直下型またはエッジライト型バックライトユニットに用いても よいが、下記で説明する本発明の直下型バックライトユニットに用いることが好ましい 。また、本発明の光拡散シートは、例えば、投射型表示装置用のスクリーン、プラズマ 表示装置、エレクト口ルミネッセンス表示装置などの視野角を拡大する用途などに幅 広く利用することもできる。  The light diffusion sheet of the present invention may be used in a conventionally known direct type or edge light type backlight unit as a light diffusion sheet of a direct type or edge light type backlight unit. It is preferably used for a type backlight unit. In addition, the light diffusion sheet of the present invention can be widely used for applications such as a screen for a projection display device, a plasma display device, an electoluminescence display device, and the like for expanding the viewing angle.
[0118] 《光拡散板〉〉  [0118] <Light Diffuser>
本発明の光拡散板は、透明支持体の少なくとも片面に、透光性榭脂に少なくとも 1 種類の微粒子群を分散させた光拡散層が形成され、かつ該光拡散層を構成する透 光性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対値が 0. 05以上であるこ とを特徴とするか、あるいは、透明フィルムの片面に、透光性榭脂に少なくとも 1種類 の微粒子群を分散させた光拡散層が形成された光拡散シートが透明支持体の少な くとも片面に接着剤または粘着剤で貼り合わされ、かつ該光拡散層を構成する透光 性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対値が 0. 05以上であること を特徴とする。 [0119] 本発明の光拡散板において、前記光拡散層の少なくとも一方が 2種類の微粒子群 を含有し、かつ該光拡散層の表面粗さが算術平均粗さで 0. 以上、 以下 であることが好ましい。このような光拡散層は、光拡散性に加えて、集光性を有するこ とから、特に「光拡散 ·集光層」ということがある。 The light diffusing plate of the present invention has a light transmissive layer in which at least one surface of a transparent support is formed with a light diffusing layer in which at least one fine particle group is dispersed in a light transmissive resin, and constitutes the light diffusing layer. The absolute value of the refractive index difference between the resin and the group of at least one kind of fine particles is 0.05 or more, or at least one kind of fine particles in the translucent resin on one side of the transparent film. A light diffusing sheet in which a light diffusing layer in which groups are dispersed is bonded to at least one surface of a transparent support with an adhesive or a pressure-sensitive adhesive, and at least 1 It is characterized in that the absolute value of the difference in refractive index from the type of fine particle group is 0.05 or more. [0119] In the light diffusing plate of the present invention, at least one of the light diffusing layers contains two kinds of fine particle groups, and the surface roughness of the light diffusing layer is not less than 0. It is preferable. Such a light diffusing layer has a light condensing property in addition to a light diffusing property, and therefore is sometimes called a “light diffusing / condensing layer”.
[0120] また、前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を分 散させた光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種類の 微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平均粗 さで 0. 5 μ m以上、 7 μ m以下であることが好ましい。  [0120] Further, a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and the translucent resin is formed on the light diffusing layer. It is preferable that a condensing layer in which at least one kind of fine particle group is embedded is formed, and that the surface roughness of the condensing layer is an arithmetic average roughness of 0.5 μm or more and 7 μm or less.
[0121] あるいは、前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を 分散させた光拡散層が形成され、前記透明支持体の反対面に、透光性榭脂に少な くとも 1種類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さ が算術平均粗さで 0. 5 m以上、 7 m以下であることが好ましい。  [0121] Alternatively, a light diffusion layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and the translucent resin is formed on the opposite surface of the transparent support. It is preferable that a condensing layer in which at least one kind of fine particle group is embedded is formed, and that the surface roughness of the condensing layer is an arithmetic average roughness of 0.5 m or more and 7 m or less.
[0122] あるいは、前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を 分散させた光拡散層が形成され、透明フィルムの片面に、透光性榭脂に少なくとも 1 種類の微粒子群を埋設させた集光層が形成された集光シートが前記透明支持体の 反対面に接着剤または粘着剤で貼り付けられ、かつ該集光層の表面粗さが算術平 均粗さで 0. 5 μ m以上、 7 μ m以下であることが好ましい。  [0122] Alternatively, a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and at least 1 of the translucent resin is formed on one surface of the transparent film. A condensing sheet having a condensing layer in which various kinds of fine particle groups are embedded is attached to the opposite surface of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is arithmetically averaged. The roughness is preferably 0.5 μm or more and 7 μm or less.
[0123] あるいは、透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分 散させた光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種類の 微粒子群を埋設させた集光層が形成された光拡散シートが前記透明支持体の片面 に接着剤または粘着剤で貼り合わされ、かつ該集光層の表面粗さが算術平均粗さで 0. 5 m以上、 7 μ m以下であることが好ましい。  [0123] Alternatively, a light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least 1 in the transparent resin is formed on the light diffusing layer. A light diffusing sheet on which a condensing layer in which various kinds of fine particle groups are embedded is formed is bonded to one side of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is an arithmetic average roughness. It is preferably 0.5 m or more and 7 μm or less.
[0124] あるいは、透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分 散させた光拡散層が形成された光拡散シートが前記透明支持体の片面に接着剤ま たは粘着剤で貼り合わされ、前記透明支持体の反対面に、透光性榭脂に少なくとも 1 種類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術 平均粗さで 0. 5 μ m以上、 7 μ m以下であることが好ましい。  [0124] Alternatively, a light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of a transparent film is an adhesive on one side of the transparent support. Is bonded with an adhesive, and a condensing layer is formed on the opposite surface of the transparent support with at least one fine particle group embedded in translucent resin, and the surface roughness of the condensing layer is arithmetic The average roughness is preferably 0.5 μm or more and 7 μm or less.
[0125] あるいは、透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分 散させた光拡散層が形成された光拡散シートが前記透明支持体の片面に接着剤ま たは粘着剤で貼り合わされ、透明フィルムの片面に、透光性榭脂に少なくとも 1種類 の微粒子群を埋設させた集光層が形成された集光シートが前記透明支持体の反対 面に接着剤または粘着剤で貼り付けられ、かつ該集光層の表面粗さが算術平均粗さ で 0. 5 μ m以上、 7 μ m以下であることが好ましい。 [0125] Alternatively, on one side of the transparent film, at least one type of fine particle group is separated in the translucent resin. A light diffusing sheet having a light diffusing layer dispersed thereon is bonded to one side of the transparent support with an adhesive or a pressure-sensitive adhesive, and at least one kind of fine particle group composed of translucent resin on one side of the transparent film. A condensing sheet with a condensing layer embedded therein is attached to the opposite surface of the transparent support with an adhesive or a pressure-sensitive adhesive, and the surface roughness of the condensing layer is an arithmetic average roughness of 0. It is preferably 5 μm or more and 7 μm or less.
[0126] さらに、前記透光性榭脂が無機超微粒子または有機無機複合超微粒子を含有す る (メタ)アクリル榭脂であることが好ま 、。  [0126] Further, it is preferable that the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
[0127] 本発明の光拡散板において、光拡散層や集光層を構成する透光性榭脂および微 粒子群、透光性榭脂に少なくとも 1種類の微粒子群を分散させた光拡散層、透光性 榭脂に少なくとも 1種類の微粒子群を埋設させた集光層、透明フィルムなどについて は、上記で説明した光拡散シートの場合と同様であるので、ここでは説明を省略する 。なお、上記の光拡散シートに関する説明を援用する場合は、「光拡散シート」は、必 要に応じて、「光拡散板」に読み替えるものとする。  [0127] In the light diffusing plate of the present invention, the light diffusing layer and the fine particle group constituting the light diffusing layer and the light condensing layer, and the light diffusing layer in which at least one kind of fine particle group is dispersed in the light transmissive resin. The light condensing layer, transparent film, and the like in which at least one kind of fine particle group is embedded in a translucent resin are the same as in the case of the light diffusion sheet described above, and thus the description thereof is omitted here. In addition, when using the above description regarding the light diffusing sheet, “light diffusing sheet” shall be read as “light diffusing plate” as necessary.
[0128] 本発明の光拡散板は、光拡散層や集光層を構成する透光性榭脂として用いる榭 脂が適度な硬度および靭性を有するので、他の部材との摩擦により、光拡散板およ び接触部材に傷が発生することが少なぐ耐傷付性に優れ、製造時、保管時、運搬 時、使用時などの取り扱いが容易であり、歩留りが向上する。  In the light diffusing plate of the present invention, the resin used as the translucent resin constituting the light diffusing layer and the light collecting layer has an appropriate hardness and toughness. Excellent scratch resistance with few scratches on the plate and contact members, easy handling during production, storage, transportation, use, etc., and yield improvement.
[0129] <透明支持体 >  [0129] <Transparent support>
本発明の光拡散板において、透明支持体の材質としては、例えば、ポリメチルメタ タリレートなどの (メタ)アクリル系榭脂;2— (ヒドロキシアルキル)アクリル酸エステルに 由来するラタトン環構造単位を含有するラタトン環含有榭脂; MS榭脂などのスチレン 系榭脂;ポリエチレンやポリプロピレンなどのォレフィン系榭脂;ノルボルネン榭脂など の環状ォレフィン系榭脂;塩ィ匕ビ二ル系榭脂;塩ィ匕ビ -リデン系榭脂;ポリエチレンテ レフタレートやポリエチレンナフタレートなどのポリエステル系榭脂;ポリカーボネート 系榭脂;これらの共重合体;などの透明熱可塑性榭脂、ならびにガラスなどの無機材 料などが挙げられる。これらの材質のうち、(メタ)アクリル系榭脂、ラ外ン環含有榭脂 、 MS榭脂、環状ォレフィン系榭脂、ポリカーボネート系榭脂、ガラスが好適である。  In the light diffusing plate of the present invention, the transparent support may be made of, for example, a (meth) acrylic resin such as polymethyl methacrylate; a rataton containing a rataton ring structural unit derived from 2- (hydroxyalkyl) acrylate. Ring-containing resin; Styrene resin such as MS resin; Olefin resin such as polyethylene and polypropylene; Cyclic olefin resin such as norbornene resin; Salt vinyl resin; Salt resin -Ridene-based resin; Polyester-based resin such as polyethylene terephthalate and polyethylene naphthalate; Polycarbonate-based resin; Copolymers of these; and other inorganic materials such as glass . Of these materials, (meth) acrylic resin, rubber ring-containing resin, MS resin, cyclic olefin-based resin, polycarbonate-based resin, and glass are preferable.
[0130] 透明支持体の材質のうち、透明熱可塑性榭脂には、例えば、安定化剤、劣化防止 剤、可塑剤、分散剤などの添加剤を配合してもよい。これらの添加剤の配合量は、そ の種類などに応じて適宜調節すればよぐ特に限定されるものではない。 [0130] Among transparent support materials, transparent thermoplastic resins include, for example, stabilizers and prevention of deterioration. You may mix | blend additives, such as an agent, a plasticizer, and a dispersing agent. The blending amount of these additives is not particularly limited as long as it is appropriately adjusted according to the type of the additive.
[0131] 透明支持体は、単一の材質から形成されていても 2種以上の材質から形成されて いてもよぐまた、単一の層から構成されていても複数の層から構成されていてもよい  [0131] The transparent support may be formed of a single material or two or more materials, and may be formed of a single layer or a plurality of layers. May
[0132] 透明支持体の厚さは、透明支持体自体が橈まない、かつ光拡散シートを橈ませな い程度の機械的強度を有する程度であればよぐ特に限定されるものではないが、 好ましくは 0. 3mm以上、 10mm以下、より好ましくは 0. 5mm以上、 7mm以下、さら に好ましくは lmm以上、 5mm以下である。透明支持体の厚さが 0. 3mm未満である と、光拡散板の機械的強度が低下することがある。逆に、透明支持体の厚さが 10m mを超えると、ノ ックライトユニットの厚さが増大することがある。 [0132] The thickness of the transparent support is not particularly limited as long as the transparent support itself does not suffice and has a mechanical strength that does not cause the light diffusion sheet to squeeze. It is preferably 0.3 mm or more and 10 mm or less, more preferably 0.5 mm or more and 7 mm or less, and further preferably lmm or more and 5 mm or less. If the thickness of the transparent support is less than 0.3 mm, the mechanical strength of the light diffusing plate may decrease. Conversely, if the thickness of the transparent support exceeds 10 mm, the thickness of the knocklight unit may increase.
[0133] 透明支持体は、ヘイズが好ましくは 0%以上、 20%以下、より好ましくは 0%以上、 1 0%以下、さらに好ましくは 0%以上、 5%以下であり、および Zまたは、全光線透過 率が好ましくは 70%以上、 100%以下、より好ましくは 80%以上、 100%以下である 。なお、ヘイズおよび全光線透過率は、濁度計 (例えば、 NDH—1001DP、日本電 色工業 (株)製)を用いて、 JIS K7105に準拠した測定法により測定した値である。  [0133] The transparent support preferably has a haze of 0% or more and 20% or less, more preferably 0% or more, 10% or less, more preferably 0% or more and 5% or less, and Z or all The light transmittance is preferably 70% or more and 100% or less, more preferably 80% or more and 100% or less. The haze and total light transmittance are values measured by a measurement method based on JIS K7105 using a turbidimeter (for example, NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.).
[0134] なお、透明支持体や光拡散層のように光源力 の光を直接受ける部材は、紫外線 の影響を防止するために、これらの部材に紫外線吸収剤を含有させておくか、あるい は光源力もの光を受ける面に紫外線吸収層を設けておいてもよぐまた、透明支持体 や光拡散層、集光層のように空気層と接触する部材は、空気中の塵埃の影響を防止 するために、これらの部材に帯電防止剤を含有させておくか、あるいは空気層と接触 する面に帯電防止層を設けてぉ 、てもよ 、。  [0134] It should be noted that members such as a transparent support and a light diffusion layer that directly receive light of light source power may contain an ultraviolet absorber in order to prevent the influence of ultraviolet rays. It is also possible to provide an ultraviolet absorbing layer on the surface that receives light with a strong light source. Members that come into contact with the air layer, such as a transparent support, light diffusing layer, and condensing layer, are affected by dust in the air. In order to prevent this, an antistatic agent may be contained in these members, or an antistatic layer may be provided on the surface in contact with the air layer.
[0135] <光拡散板の構成例 >  [0135] <Configuration example of light diffusing plate>
ここで、本発明の光拡散板の具体的な構成例を図 7〜14に示す。なお、図 7は、透 明支持体の表面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成 された光拡散板に対応している。図 8は、透明支持体の表面に、透光性榭脂に 2種 類の微粒子群を分散させた光拡散層が形成され光拡散板に対応している。図 9は、 透明支持体の表面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形 成され、該光拡散層上に、透光性榭脂に 1種類の微粒子群を埋設させた集光層が 形成された光拡散板に対応している。図 10は、透明支持体の表面に、透光性榭脂 に 1種類の微粒子群を埋設させた集光層が形成され、該透明支持体の裏面に、透光 性榭脂に 1種類の微粒子群を分散させた光拡散層が形成された光拡散板に対応し ている。図 11は、透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を分散さ せた光拡散層が形成された光拡散シートが該透明支持体の表面に接着剤または粘 着剤で貼り合わされた光拡散板に対応している。図 12は、透明フィルムの表面に、 透光性榭脂に 2種類の微粒子群を分散させた光拡散層が形成された光拡散シート が透明支持体の表面に接着剤または粘着剤で貼り合わされた光拡散板に対応して いる。図 13は、透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を分散させ た光拡散層が形成され、該光拡散層上に、透明性榭脂に 1種類の微粒子群を埋設 させた集光層が形成された光拡散シートが透明支持体の表面に接着剤または粘着 剤で貼り合わされた光拡散板に対応している。図 14は、透明フィルムの表面に、透 光性榭脂に 1種類の微粒子群を埋設させた集光層が形成された集光シートが透明 支持体の表面に接着剤または粘着剤で貼り合わされており、透明フィルムの裏面に 、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成された光拡散シート が該透明支持体の裏面に接着剤または粘着剤で貼り合わされた光拡散板に対応し ている。 Here, the concrete structural example of the light diffusing plate of this invention is shown to FIGS. FIG. 7 corresponds to a light diffusing plate in which a light diffusing layer in which one kind of fine particle group is dispersed in a translucent resin is formed on the surface of the transparent support. In FIG. 8, a light diffusing layer in which two kinds of fine particle groups are dispersed in a translucent resin is formed on the surface of the transparent support and corresponds to a light diffusing plate. Fig. 9 shows a light diffusion layer in which a single particle group is dispersed in a transparent resin on the surface of a transparent support. It corresponds to a light diffusing plate formed on the light diffusing layer and having a condensing layer in which one kind of fine particle group is embedded in a light transmissive resin. FIG. 10 shows that a condensing layer in which one type of fine particle group is embedded in a transparent support is formed on the surface of the transparent support, and one type of translucent resin is provided on the back of the transparent support. It corresponds to a light diffusing plate on which a light diffusing layer in which fine particles are dispersed is formed. FIG. 11 shows a light diffusing sheet in which a light diffusing layer in which one type of fine particle group is dispersed in a translucent resin is formed on the surface of a transparent film, and an adhesive or an adhesive on the surface of the transparent support. It corresponds to the light diffusing plate bonded together. Fig. 12 shows that a light diffusing sheet in which a light diffusing layer in which two types of fine particles are dispersed in a transparent resin is formed on the surface of a transparent film is bonded to the surface of the transparent support with an adhesive or an adhesive. It corresponds to the light diffusion plate. Fig. 13 shows that a light diffusing layer in which one kind of fine particle group is dispersed in a transparent film is formed on the surface of the transparent film, and one kind of fine particle group is formed on the light diffusing layer on the light diffusing layer. The light diffusion sheet on which the buried light-collecting layer is formed corresponds to the light diffusion plate bonded to the surface of the transparent support with an adhesive or a pressure-sensitive adhesive. Fig. 14 shows that a condensing sheet in which a condensing layer in which one type of fine particle group is embedded in a transparent film is formed on the surface of a transparent film is bonded to the surface of the transparent support with an adhesive or an adhesive. A light diffusion sheet in which a light diffusion layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the back surface of the transparent film is bonded to the back surface of the transparent support with an adhesive or an adhesive. It corresponds to the light diffusion plate.
このほか、図示していないが、透明支持体の両面に、透光性榭脂に 1種類の微粒 子群を分散させた光拡散層が形成された光拡散板;透明支持体の両面に、透光性 榭脂に 2種類または 3種類以上の微粒子群を分散させた光拡散 ·集光層が形成され た光拡散板;透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を分散させた 光拡散層が形成された光拡散シートが透明支持体の両面に接着剤または粘着剤で 貼り合わされている光拡散板;透明フィルムの表面に、透光性榭脂に 2種類または 3 種類以上の微粒子群を分散させた光拡散'集光層が形成された光拡散シートが透 明支持体の両面に接着剤または粘着剤で貼り合わされている光拡散板;透明支持 体の表面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層を形成され、透 明フィルムの裏面に、透光性榭脂に 1種類の微粒子群を分散させた光拡散層が形成 された光拡散シートが該透明支持体の裏面に接着剤または粘着剤で貼り合わされた 光拡散板;透明フィルムの表面に、透光性榭脂に 1種類の微粒子群を分散させた光 拡散層が形成された光拡散シートが透明支持体の表面に接着剤または粘着剤で貼 り合わされおり、該透明支持体の裏面に、透光性榭脂に 1種類の微粒子群を分散さ せた光拡散層が形成された光拡散板;透明支持体の表面に、透光性榭脂に 2種類ま たは 3種類以上の微粒子群を分散させた光拡散'集光層を形成され、透明フィルム の裏面に、透光性榭脂に 2種類または 3種類以上の微粒子群を分散させた光拡散' 集光層が形成された光拡散シートが該透明支持体の裏面に接着剤または粘着剤で 貼り合わされた光拡散板;透明フィルムの表面に、透光性榭脂に 2種類または 3種類 以上の微粒子群を分散させた光拡散 ·拡散層が形成された光拡散シートが透明支 持体の表面に接着剤または粘着剤で貼り合わされおり、該透明支持体の裏面に、透 光性榭脂に 2種類または 3種類以上の微粒子群を分散させた光拡散 ·拡散層が形成 された光拡散板;透明支持体の表面に、透光性榭脂に 1種類の微粒子群を埋設させ た集光層が形成され、透明フィルムの裏面に、透光性榭脂に 1種類の微粒子群を分 散させた光拡散層が形成された光拡散シートが該透明支持体の裏面に接着剤また は粘着剤で貼り合わされた光拡散板;透明フィルムの表面に、透光性榭脂に 1種類 の微粒子群を埋設させた集光層が形成された集光シートが透明支持体の表面に接 着剤または粘着剤で貼り合わされており、該透明支持体の裏面に、透光性榭脂に 1 種類の微粒子群を分散させた光拡散層が形成された光拡散板;などが考えられる。 In addition, although not shown, a light diffusing plate in which a light diffusing layer in which one kind of fine particle group is dispersed in a transparent resin is formed on both surfaces of the transparent support; on both surfaces of the transparent support, Light diffusing plate in which two or more kinds of fine particles are dispersed in translucent resin; light diffusing plate with condensing layer formed; one kind of fine particles in translucent resin on the surface of transparent film A light diffusing sheet in which a light diffusing layer in which a light diffusing layer is dispersed is bonded to both sides of a transparent support with an adhesive or a pressure sensitive adhesive; two types of translucent resin on the surface of a transparent film, or Light diffusion sheet in which three or more kinds of fine particles are dispersed 'Light diffusion sheet with light condensing layer formed on both sides of transparent support with adhesive or adhesive; surface of transparent support In addition, a light diffusion layer in which one type of fine particle group is dispersed in a transparent resin is formed, and the back of the transparent film is formed. Formed on the surface is a light diffusion layer in which one type of fine particle group is dispersed in translucent resin A light diffusing plate in which the light diffusing sheet is bonded to the back surface of the transparent support with an adhesive or a pressure sensitive adhesive; a light diffusing layer in which one kind of fine particle group is dispersed in a translucent resin on the surface of the transparent film A light diffusing sheet on which is formed is bonded to the surface of a transparent support with an adhesive or a pressure-sensitive adhesive, and light in which one kind of fine particle group is dispersed in a transparent resin on the back surface of the transparent support. A light diffusing plate with a diffusion layer formed on it; a light diffusing condensing layer in which two or more kinds of fine particles are dispersed in a transparent support is formed on the surface of a transparent support, and a transparent film A light diffusing sheet in which two or more kinds of fine particle groups are dispersed in a translucent resin is formed on the back surface of the transparent support with an adhesive or an adhesive on the back surface of the transparent support. Bonded light diffusing plate; 2 or 3 or more kinds of translucent resin on the surface of the transparent film A light diffusion sheet in which a child group is dispersed A light diffusion sheet on which a diffusion layer is formed is bonded to the surface of the transparent support with an adhesive or a pressure-sensitive adhesive, and the transparent support is coated on the back surface of the transparent support. Light diffusing plate in which two or more types of fine particles are dispersed; a light diffusing plate in which a diffusion layer is formed; light condensing with one type of fine particles embedded in a transparent support on the surface of a transparent support A light diffusion sheet in which a light diffusing layer in which one kind of fine particle group is dispersed in a transparent resin is formed on the back surface of the transparent film is formed on the back surface of the transparent support. Light diffusion plate bonded with an adhesive; a light-condensing sheet in which a light-condensing layer in which one type of fine particle group is embedded in a transparent film is formed on the surface of a transparent film is attached to the surface of the transparent support Or, it is bonded with an adhesive, and one kind of fine particle group is added to the transparent resin on the back of the transparent support. A light diffusing plate on which a dispersed light diffusing layer is formed may be considered.
[0137] 図 7に示す光拡散板 70は、透明支持体 72の表面に、透光性榭脂 73に 1種類の微 粒子群 74を分散させた光拡散層 Aが形成されている。微粒子群 74は、光拡散層 A 中に、実質的に均一に分散しており、実質的に全部の微粒子群が透光性榭脂 73に 埋没した状態である。ここで、透光性榭脂 73と微粒子群 74との屈折率差の絶対値は 0. 05以上である。また、透光性榭脂 73は、好ましくは、無機超微粒子または有機無 機複合超微粒子を含有する (メタ)アクリル系榭脂である。透明支持体 72の裏面から 入射した光は、微粒子群 74により充分に拡散された後、液晶表示パネル(図示せず )に向かう。なお、図 7に示す光拡散板 70は、上下を逆にして用いてもよい。  In the light diffusing plate 70 shown in FIG. 7, a light diffusing layer A in which one type of fine particle group 74 is dispersed in a translucent resin 73 is formed on the surface of a transparent support 72. The fine particle group 74 is substantially uniformly dispersed in the light diffusion layer A, and substantially all of the fine particle group is embedded in the translucent resin 73. Here, the absolute value of the refractive index difference between the translucent resin 73 and the fine particle group 74 is 0.05 or more. The translucent resin 73 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic inorganic composite ultrafine particles. Light incident from the back surface of the transparent support 72 is sufficiently diffused by the fine particle group 74 and then travels to a liquid crystal display panel (not shown). Note that the light diffusing plate 70 shown in FIG. 7 may be used upside down.
[0138] 図 8に示す光拡散板 80は、透明支持体 82の表面に、透光性榭脂 83に 2種類の微 粒子群 84および 85を分散させた光拡散 ·集光層 Bが形成されている。微粒子群 84 および 85は、光拡散'集光層 B中に、実質的に均一に分散しており、一部の微粒子 群は、光拡散 ·集光層 Bから部分的に突出している。ここで、透光性榭脂 83と微粒子 群 84との屈折率差の絶対値は 0. 05以上である。また、透光性榭脂 83は、好ましく は、無機超微粒子または有機無機複合超微粒子を含有する (メタ)アクリル系榭脂で ある。さらに、光拡散'集光層 Bの表面粗さは、算術平均粗さで、好ましくは 0. [0138] The light diffusing plate 80 shown in Fig. 8 has two kinds of fine particles on the surface of the transparent support 82 and the translucent resin 83. A light diffusing / condensing layer B in which the particle groups 84 and 85 are dispersed is formed. The fine particle groups 84 and 85 are substantially uniformly dispersed in the light diffusion / condensing layer B, and some of the fine particle groups partially protrude from the light diffusion / condensing layer B. Here, the absolute value of the difference in refractive index between the translucent resin 83 and the fine particle group 84 is 0.05 or more. The translucent resin 83 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. Further, the surface roughness of the light diffusing light condensing layer B is an arithmetic average roughness, preferably 0.
以上、 以下である。透明支持体 82の裏面力も入射した光は、該透明支持体 82 を通過して光拡散'集光層 Bに入射する。光拡散'集光層 Bでは、入射した光が微粒 子群 84により充分に拡散された後、透光性榭脂 83から部分的に突出した微粒子群 85の突出部分(凸部)により正面方向に集光され、液晶表示パネル(図示せず)に向 力う。  This is the following. The light that has also entered the back surface force of the transparent support 82 passes through the transparent support 82 and enters the light diffusion / condensing layer B. In the light diffusion / condensing layer B, the incident light is sufficiently diffused by the fine particle group 84, and then the frontal direction is caused by the protruding portion (convex portion) of the fine particle group 85 partially protruding from the translucent resin 83. The light is focused on the liquid crystal display panel (not shown).
[0139] 図 9に示す光拡散板 90は、透明支持体 92の表面に、透光性榭脂 93に 1種類の微 粒子群 94を分散させた光拡散層 Cが形成され、該光拡散層 C上に、透光性榭脂 95 に 1種類の微粒子群 96を埋設させた集光層 Dが形成されている。ここで、透光性榭 脂 93と微粒子群 94との屈折率差の絶対値は 0. 05以上である。また、集光層 Dの表 面粗さは、好ましくは、算術平均粗さで 0. 5 /z m以上、 7 m以下である。透明支持 体 92の裏面力も入射した光は、該透明支持体 92を通過して光拡散層 Cに入射する 。光拡散層 Cでは、入射した光が微粒子群 94により充分に拡散された後、集光層 D に入射する。集光層 Dでは、透光性榭脂 95から部分的に突出した微粒子群の突出 部分(凸部)により正面方向に集光され、液晶表示パネル(図示せず)に向かう。  [0139] In the light diffusing plate 90 shown in FIG. 9, a light diffusing layer C in which one kind of fine particle group 94 is dispersed in a transparent resin 93 is formed on the surface of a transparent support 92, and the light diffusing layer C is formed. On layer C, a condensing layer D in which one kind of fine particle group 96 is embedded in translucent resin 95 is formed. Here, the absolute value of the refractive index difference between the translucent resin 93 and the fine particle group 94 is 0.05 or more. Further, the surface roughness of the light collecting layer D is preferably an arithmetic average roughness of 0.5 / z m or more and 7 m or less. The light that has also entered the back surface force of the transparent support 92 passes through the transparent support 92 and enters the light diffusion layer C. In the light diffusion layer C, the incident light is sufficiently diffused by the fine particle group 94 and then enters the light condensing layer D. In the light condensing layer D, the light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group partially protruding from the translucent resin 95 and heads toward the liquid crystal display panel (not shown).
[0140] 図 10に示す光拡散板 100は、透明支持体 102の表面に、透光性榭脂 105に 1種 類の微粒子群 106を埋設させた集光層 Dが形成され、該透明支持体 102の裏面に、 透光性榭脂 103に 1種類の微粒子群 104を分散させた光拡散層 Cが形成されている 。ここで、透光性榭脂 103と微粒子群 104との屈折率差の絶対値は 0. 05以上である 。また、集光層 Dの表面粗さは、好ましくは、算術平均粗さで 0. 5 /z m以上、 m以 下である。透明支持体 102の裏面に形成された光拡散層 Cに入射した光は、微粒子 群 104により充分に拡散された後、該透明支持体 102を通過し、該透明支持体の表 面に形成された集光層 Dに入射する。集光層 Dでは、透光性榭脂 105から部分的に 突出した微粒子群の突出部分 (凸部)により正面方向に集光され、液晶表示パネル( 図示せず)に向かう。 [0140] In the light diffusing plate 100 shown in Fig. 10, a condensing layer D in which one kind of fine particle group 106 is embedded in a transparent resin 105 is formed on the surface of a transparent support 102, and the transparent support 102 is formed. On the back surface of the body 102, a light diffusion layer C in which one kind of fine particle group 104 is dispersed in a translucent resin 103 is formed. Here, the absolute value of the refractive index difference between the translucent resin 103 and the fine particle group 104 is 0.05 or more. Further, the surface roughness of the light collecting layer D is preferably an arithmetic average roughness of 0.5 / zm or more and m or less. The light incident on the light diffusion layer C formed on the back surface of the transparent support 102 is sufficiently diffused by the fine particle group 104, passes through the transparent support 102, and is formed on the surface of the transparent support 102. Incident on the condensing layer D. In the condensing layer D, the translucent resin 105 is partially The light is condensed in the front direction by the protruding portion (convex portion) of the protruding fine particle group, and is directed to a liquid crystal display panel (not shown).
[0141] 図 11に示す光拡散板 110は、透明フィルム 111の表面に、透光性榭脂 113に 1種 類の微粒子群 114を分散させた光拡散層 Aが形成された光拡散シートが透明支持 体 112の表面に接着剤または粘着剤 118で貼り合わされて 、る。微粒子群 114は、 光拡散層 A中に、実質的に均一に分散しており、実質的に全部の微粒子群が透光 性榭脂 113に埋没した状態である。ここで、透光性榭脂 113と微粒子群 114との屈 折率差の絶対値は 0. 05以上である。また、透光性榭脂 113は、好ましくは、無機超 微粒子または有機無機複合超微粒子を含有する (メタ)アクリル系榭脂である。透明 支持体 112の裏面カゝら入射した光は、該透明支持体 112、接着剤または粘着剤 118 、透明フィルム 111を通過して、光拡散層 Aに入射する。光拡散層 Aでは、入射した 光が微粒子群 114により充分に拡散された後、液晶表示パネル(図示せず)に向かう  [0141] The light diffusing plate 110 shown in FIG. 11 is a light diffusing sheet in which a light diffusing layer A in which one kind of fine particle group 114 is dispersed in a translucent resin 113 is formed on the surface of a transparent film 111. The transparent support 112 is bonded to the surface with an adhesive or a pressure sensitive adhesive 118. The fine particle group 114 is substantially uniformly dispersed in the light diffusion layer A, and substantially all of the fine particle group is embedded in the translucent resin 113. Here, the absolute value of the refractive index difference between the translucent resin 113 and the fine particle group 114 is 0.05 or more. The translucent resin 113 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. The light incident from the back surface of the transparent support 112 passes through the transparent support 112, the adhesive or pressure-sensitive adhesive 118, and the transparent film 111 and enters the light diffusion layer A. In the light diffusion layer A, the incident light is sufficiently diffused by the fine particle group 114 and then travels to a liquid crystal display panel (not shown).
[0142] 図 12に示す光拡散板 120は、透明フィルム 121の表面に、透光性榭脂 123に 2種 類の微粒子群 124および 125を分散させた光拡散'集光層 Bが形成された光拡散シ ートが透明支持体 122の表面に接着剤または粘着剤 128で貼り合わされている。微 粒子群 124および 125は、光拡散'集光層 B中に、実質的に均一に分散しており、一 部の微粒子群は、光拡散 ·集光層 Bから部分的に突出している。ここで、透光性榭脂 123と微粒子群 124との屈折率差の絶対値は 0. 05以上である。また、透光性榭脂 1 23は、好ましくは、無機超微粒子または有機無機複合超微粒子を含有する (メタ)ァ クリル系榭脂である。透明支持体 122の裏面力も入射した光は、該透明支持体 122 、接着剤または粘着剤 128、および透明フィルム 121を通過し、光拡散'集光層 B〖こ 入射する。光拡散'集光層 Bでは、入射した光が微粒子群 124により充分に拡散され た後、透光性榭脂 123から部分的に突出した微粒子群 125の突出部分 (凸部)によ り正面方向に集光され、液晶表示パネル(図示せず)に向かう。 [0142] In the light diffusing plate 120 shown in FIG. 12, a light diffusing condensing layer B in which two kinds of fine particle groups 124 and 125 are dispersed in a transparent resin 123 is formed on the surface of a transparent film 121. The light diffusion sheet is bonded to the surface of the transparent support 122 with an adhesive or an adhesive 128. The fine particle groups 124 and 125 are substantially uniformly dispersed in the light diffusion / condensing layer B, and some of the fine particle groups partially protrude from the light diffusion / condensing layer B. Here, the absolute value of the refractive index difference between the translucent resin 123 and the fine particle group 124 is 0.05 or more. The translucent resin 123 is preferably a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. The light that has also entered the back surface force of the transparent support 122 passes through the transparent support 122, the adhesive or pressure-sensitive adhesive 128, and the transparent film 121, and enters the light diffusing layer B. In the light diffusion and condensing layer B, the incident light is sufficiently diffused by the fine particle group 124, and then the front surface is projected by the protruding portion (convex portion) of the fine particle group 125 partially protruding from the translucent resin 123. The light is condensed in the direction toward the liquid crystal display panel (not shown).
[0143] 図 13に示す光拡散板 130は、透明フィルム 131の表面に、透光性榭脂 133に 1種 類の微粒子群 134を分散させた光拡散層 Cが形成され、該光拡散層 C上に、透明性 榭脂 135に 1種類の微粒子群 136を埋設させた集光層 Dが形成された光拡散シート が透明支持体 132の表面に接着剤または粘着剤 138で貼り合わされている。ここで 、透光性榭脂 133と微粒子群 134との屈折率差の絶対値は 0. 05以上である。また、 集光層 Dの表面粗さは、好ましくは、算術平均粗さで 0. 以上、 以下であ る。透明支持体 132の裏面力も入射した光は、該透明支持体 132、接着剤または粘 着剤 138、および透明フィルム 131を通過し、光拡散層 Cに入射する。光拡散層じで は、入射した光が微粒子群 134により充分に拡散された後、集光層 Dに入射する。 集光層 Dでは、透光性榭脂 135から部分的に突出した微粒子群の突出部分 (凸部) により正面方向に集光され、液晶表示パネル(図示せず)に向かう。 In the light diffusion plate 130 shown in FIG. 13, a light diffusion layer C in which one kind of fine particle group 134 is dispersed in a transparent resin 133 is formed on the surface of the transparent film 131, and the light diffusion layer A light diffusing sheet with a condensing layer D formed by embedding one type of fine particle group 136 in transparent resin 135 on C Is bonded to the surface of the transparent support 132 with an adhesive or an adhesive 138. Here, the absolute value of the difference in refractive index between the translucent resin 133 and the fine particle group 134 is 0.05 or more. Further, the surface roughness of the light collecting layer D is preferably not less than 0 and not more than the arithmetic average roughness. The light that has also entered the back surface force of the transparent support 132 passes through the transparent support 132, the adhesive or adhesive 138, and the transparent film 131, and enters the light diffusion layer C. In the light diffusion layer, the incident light is sufficiently diffused by the fine particle group 134 and then enters the light condensing layer D. In the light condensing layer D, the light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group partially protruding from the translucent resin 135 and is directed to the liquid crystal display panel (not shown).
[0144] 図 14に示す光拡散板 140は、透明フィルム 141の表面に、透光性榭脂 145に 1種 類の微粒子群 146を埋設させた集光層 Dが形成された集光シートが透明支持体 14 2の表面に接着剤または粘着剤 148で貼り合わされており、透明フィルム 141の裏面 に、透光性榭脂 143に 1種類の微粒子群 144を分散させた光拡散層 Cが形成された 光拡散シートが該透明支持体 142の裏面に接着剤または粘着剤 148で貼り合わさ れている。ここで、透光性榭脂 143と微粒子群 144との屈折率差の絶対値は 0. 05以 上である。また、集光層 Dの表面粗さは、好ましくは、算術平均粗さで 0. 以上、 7 m以下である。透明支持体 142の裏面に貼り合わされた光拡散シートの光拡散 層 Cに入射した光は、微粒子群 143により充分に拡散された後、透明フィルム 141、 接着剤または粘着剤 148、該透明支持体 142、接着剤または粘着剤 148、透明フィ ルム 141を通過して、集光層 Dに入射する。集光層 Dでは、透光性榭脂 145から部 分的に突出した微粒子群の突出部分 (凸部)により正面方向に集光され、液晶表示 パネル(図示せず)に向かう。  [0144] The light diffusing plate 140 shown in FIG. 14 has a condensing sheet in which a condensing layer D in which one kind of fine particle group 146 is embedded in a transparent resin 141 is formed on the surface of a transparent film 141. A light diffusing layer C in which one kind of fine particle group 144 is dispersed in the transparent resin 141 is formed on the back surface of the transparent film 141 by being bonded to the surface of the transparent support 14 2 with an adhesive or an adhesive 148. The light diffusion sheet thus adhered is bonded to the back surface of the transparent support 142 with an adhesive or an adhesive 148. Here, the absolute value of the refractive index difference between the translucent resin 143 and the fine particle group 144 is 0.05 or more. The surface roughness of the light collecting layer D is preferably an arithmetic average roughness of not less than 0 and not more than 7 m. Light incident on the light diffusion layer C of the light diffusion sheet bonded to the back surface of the transparent support 142 is sufficiently diffused by the fine particle group 143, and then the transparent film 141, the adhesive or pressure sensitive adhesive 148, the transparent support Passes through 142, adhesive or adhesive 148, transparent film 141, and enters the light collecting layer D. In the light condensing layer D, the light is condensed in the front direction by the protruding portion (convex portion) of the fine particle group partially protruding from the translucent resin 145 and is directed to the liquid crystal display panel (not shown).
[0145] <光拡散板の製造方法 >  [0145] <Production Method of Light Diffusing Plate>
本発明の光拡散板のうち、例えば、図 7に示す光拡散板は、まず、光拡散層 Aを構 成する透光性榭脂 73に 1種類の微粒子群 74を混練した組成物を透明支持体 72の 表面に直接コーティングした後、該透光性榭脂 73を乾燥させて光拡散層 Aを形成す ることにより、製造することができる。あるいは、透明支持体 72が透明熱可塑性榭脂 カゝら構成されている場合には、透明支持体 72を構成する透明熱可塑性榭脂と、透光 性榭脂 73に 1種類の微粒子群 74を混練した組成物とを共押出して、透明支持体 72 の表面に光拡散層 Aを形成することにより、製造することができる。 Among the light diffusing plates of the present invention, for example, the light diffusing plate shown in FIG. 7 is prepared by first transparently translating a composition in which one kind of fine particle group 74 is kneaded with a light transmitting resin 73 constituting the light diffusing layer A. It can be manufactured by coating the surface of the support 72 directly and then drying the translucent resin 73 to form the light diffusion layer A. Alternatively, when the transparent support 72 is composed of a transparent thermoplastic resin, the transparent thermoplastic resin constituting the transparent support 72 and one kind of fine particle group 74 in the translucent resin 73 Coextruded with the kneaded composition to prepare a transparent support 72 It can be manufactured by forming the light diffusion layer A on the surface.
[0146] 図 8に示す光拡散板は、まず、光拡散'集光層 Bを構成する透光性榭脂 83に 2種 類の微粒子群 84および 85を混練した組成物を透明支持体 82の表面に直接コーテ イングした後、該透光性榭脂 53を乾燥させて光拡散'集光層 Bを形成することにより、 製造することができる。あるいは、透明支持体 82が透明熱可塑性榭脂から構成され ている場合には、透明支持体 82を構成する透明熱可塑性榭脂と、透光性榭脂 83に 2種類の微粒子群 84および 85を混練した組成物とを共押出して、透明支持体 82の 表面に光拡散'集光層 Bを形成することにより、製造することができる。 [0146] In the light diffusing plate shown in FIG. 8, first, a transparent support 82 is prepared by mixing a composition obtained by kneading two kinds of fine particle groups 84 and 85 with a translucent resin 83 constituting a light diffusing 'condensing layer B. After the direct coating on the surface, the light-transmitting resin 53 is dried to form a light diffusion / condensing layer B. Alternatively, when the transparent support 82 is composed of a transparent thermoplastic resin, the transparent thermoplastic resin constituting the transparent support 82 and the translucent resin 83 are divided into two types of fine particle groups 84 and 85. It is possible to manufacture by coextruding a composition obtained by kneading the above and forming the light diffusing and condensing layer B on the surface of the transparent support 82.
[0147] 図 9に示す光拡散板 90は、まず、光拡散層 Cを構成する透光性榭脂 93に微粒子 群 94を混練した組成物を透明支持体 92の表面に直接コーティングした後、該透光 性榭脂 93を乾燥させて光拡散層 Cを形成し、次いで、集光層 Dを構成する透光性榭 脂 95に微粒子群 96を混練した組成物を該光拡散層 C上に直接コーティングした後 、該透光性榭脂 95を乾燥させて集光層 Dを形成することにより、製造することができ る。あるいは、透明支持体 92が透明熱可塑性榭脂から構成されている場合には、ま ず、透明支持体 92を構成する透明熱可塑性榭脂と、透光性榭脂 93に微粒子群 94 を混練した組成物とを共押出することにより、透明支持体 92の表面に光拡散層 Cを 形成し、次いで、集光層 Dを構成する透光性榭脂 95に微粒子群 96を混練した組成 物を該光拡散層 C上に直接コーティングした後、該透光性榭脂 95を乾燥させて集光 層 Dを形成することにより、製造することができる。 [0147] In the light diffusing plate 90 shown in FIG. 9, first, the surface of the transparent support 92 is directly coated with a composition in which the fine particle group 94 is kneaded with the translucent resin 93 constituting the light diffusing layer C. The light transmissive resin 93 is dried to form a light diffusing layer C, and then a composition obtained by kneading the fine particle group 96 with the light transmissive resin 95 constituting the light collecting layer D is placed on the light diffusing layer C. After the direct coating, the light-transmitting resin 95 is dried to form the light-collecting layer D. Alternatively, when the transparent support 92 is made of a transparent thermoplastic resin, the fine particle group 94 is first kneaded with the transparent thermoplastic resin constituting the transparent support 92 and the translucent resin 93. A composition in which the light diffusing layer C is formed on the surface of the transparent support 92 by co-extrusion with the prepared composition, and then the fine-particle group 96 is kneaded with the translucent resin 95 constituting the condensing layer D. Can be manufactured by coating the light diffusing layer C directly and then drying the light transmissive resin 95 to form the light collecting layer D.
[0148] 図 10に示す光拡散板 100は、まず、光拡散層 Cを構成する透光性榭脂 103に微 粒子群 104を混練した組成物を透明支持体 102の裏面に直接コーティングした後、 該透光性榭脂 103を乾燥させて光拡散層 Cを形成し、次いで、集光層 Dを構成する 透光性榭脂 105に微粒子群 106を混練した組成物を該透明支持体 102の表面に直 接コーティングした後、該透光性榭脂 105を乾燥させて集光層 Dを形成することによ り、製造することができる。もちろん、まず、透明支持体 102の表面に集光層 Dを形成 した後、該透明支持体 102の裏面に光拡散層 Cを形成してもよい。あるいは、透明支 持体 102が透明熱可塑性榭脂から構成されている場合には、まず、透明支持体 102 を構成する透明熱可塑性榭脂と、透光性榭脂 103に微粒子群 104を混練した組成 物とを共押出することにより、透明支持体 102の裏面に光拡散層 Cを形成し、次いで 、集光層 Dを構成する透光性榭脂 105に微粒子群 106を混練した組成物を該透明 支持体 102の表面に直接コーティングした後、該透光性榭脂 105を乾燥させて集光 層 Dを形成することにより、製造することができる。 [0148] The light diffusing plate 100 shown in FIG. 10 is obtained by first directly coating the back surface of the transparent support 102 with a composition in which the fine particle group 104 is kneaded with the translucent resin 103 constituting the light diffusing layer C. The light transmissive resin 103 is dried to form the light diffusion layer C, and then the composition obtained by kneading the light transmissive resin 105 constituting the light collecting layer D with the fine particle group 106 is used as the transparent support 102. After the direct coating on the surface, the light-transmitting resin 105 is dried to form the light condensing layer D. Of course, first, the light condensing layer D may be formed on the surface of the transparent support 102, and then the light diffusion layer C may be formed on the back surface of the transparent support 102. Alternatively, when the transparent support 102 is made of a transparent thermoplastic resin, first, the fine particle group 104 is kneaded with the transparent thermoplastic resin constituting the transparent support 102 and the translucent resin 103. Composition By coextruding the product, a light diffusing layer C is formed on the back surface of the transparent support 102, and then a composition obtained by kneading the fine particle group 106 with the translucent resin 105 constituting the condensing layer D is obtained. It can be manufactured by coating the surface of the transparent support 102 directly and then drying the translucent resin 105 to form the light collecting layer D.
[0149] 図 11に示す光拡散板は、まず、光拡散層 Aを構成する透光性榭脂 113に 1種類の 微粒子群 114を混練した組成物を透明フィルム 111の表面に直接コーティングした 後、該透光性榭脂 113を乾燥させて光拡散層 Aを形成することにより、光拡散シート を作製しておき、次いで、この光拡散シートを透明支持体 112の表面に、光拡散シー トの透明フィルム 111が透明支持体 112に対向するようにして、接着剤または粘着剤 118で貼り合せることにより、製造することができる。  [0149] The light diffusing plate shown in FIG. 11 is first coated directly on the surface of the transparent film 111 with a composition in which one kind of fine particle group 114 is kneaded with the translucent resin 113 constituting the light diffusing layer A. The light diffusing sheet A is dried to form a light diffusing layer A, whereby a light diffusing sheet is prepared. Then, the light diffusing sheet is applied to the surface of the transparent support 112. The transparent film 111 can be produced by bonding with an adhesive or pressure-sensitive adhesive 118 so that the transparent film 111 faces the transparent support 112.
[0150] 図 12に示す光拡散板は、まず、光拡散'集光層 Bを構成する透光性榭脂 123に 2 種類の微粒子群 124および 125を混練した組成物を透明フィルム 121の表面に直 接コーティングした後、該透光性榭脂 123を乾燥させて光拡散'集光層 Bを形成する ことにより、光拡散シートを作製しておき、次いで、この光拡散シートを透明支持体 12 2の表面に、光拡散シートの透明フィルム 121が透明支持体 122に対向するようにし て、接着剤または粘着剤 128で貼り合わせることにより、製造することができる。  [0150] The light diffusing plate shown in FIG. 12 is prepared by first mixing a composition obtained by kneading two kinds of fine particle groups 124 and 125 with the light transmissive resin 123 constituting the light diffusing 'condensing layer B. After the direct coating, the light-transmitting resin 123 is dried to form a light diffusing condensing layer B to prepare a light diffusing sheet, and then the light diffusing sheet is used as a transparent support. It can be produced by adhering the transparent film 121 of the light diffusing sheet to the transparent support 122 on the surface of 122 2 with an adhesive or an adhesive 128.
[0151] 図 13に示す光拡散板 130は、まず、光拡散層 Cを構成する透光性榭脂 133に微 粒子群 134を混練した組成物を透明フィルム 131の表面に直接コ一ティングした後、 該透光性榭脂 133を乾燥させて光拡散層 Cを形成し、次いで、集光層 Dを構成する 透光性榭脂 135に微粒子群 136を混練した組成物を該光拡散層 C上に直接コーテ イングした後、該透光性榭脂 135を乾燥させて集光層 Dを形成することにより、光拡 散シートを作製しておき、次いで、この光拡散シートを透明支持体 132の表面に、光 拡散シートの透明フィルム 131が透明支持体 132に対向するようにして、接着剤また は粘着剤 138で貼り合わせることにより、製造することができる。  [0151] In the light diffusing plate 130 shown in FIG. 13, first, a composition obtained by kneading the fine particle group 134 in the translucent resin 133 constituting the light diffusing layer C was directly coated on the surface of the transparent film 131. Thereafter, the light transmissive resin 133 is dried to form a light diffusing layer C, and then a composition obtained by kneading the light transmissive resin 135 constituting the light collecting layer D with the fine particle group 136 is added to the light diffusing layer. After coating directly on C, the light transmissive resin 135 is dried to form a light condensing layer D, whereby a light diffusing sheet is prepared, and then the light diffusing sheet is used as a transparent support. It can be manufactured by adhering the transparent film 131 of the light diffusing sheet to the transparent support 132 on the surface of 132 with an adhesive or an adhesive 138.
[0152] 図 14に示す光拡散板 140は、まず、光拡散層 Cを構成する透光性榭脂 143に微 粒子群 144を混練した組成物を透明フィルム 141の裏面に直接コ一ティングした後、 該透光性榭脂 143を乾燥させて光拡散層 Cを形成することにより、光拡散シートを作 製しておき、かつ、集光層 Dを構成する透光性榭脂 145に微粒子群 146を混練した 組成物を透明フィルム 141の表面に直接コーティングした後、該透光性榭脂 145を 乾燥させて集光層 Dを形成することにより、集光シートを作製しておき、次いで、この 光拡散シートを透明支持体 142の裏面に、光拡散シートの透明フィルム 141が透明 支持体 142に対向するようにして、接着剤または粘着剤 148で貼り合せ、かつ、この 集光シートを透明支持体 142の表面に、集光シートの透明フィルム 141が透明支持 体 142に対向するようにして、接着剤または粘着剤 148で貼り合せることにより、製造 することができる。もちろん、まず、透明支持体 142の表面に、集光シートを貼り合わ せた後、透明支持体 142の裏面に、光拡散シートを貼り合わせてもよい。 [0152] In the light diffusing plate 140 shown in FIG. 14, first, a composition in which the fine particle group 144 was kneaded with the translucent resin 143 constituting the light diffusing layer C was directly coated on the back surface of the transparent film 141. Thereafter, the light-transmitting resin 143 is dried to form a light diffusion layer C, whereby a light diffusion sheet is prepared and fine particles are added to the light-transmitting resin 145 constituting the light-collecting layer D. Group 146 was kneaded After the composition is directly coated on the surface of the transparent film 141, the light-transmitting resin 145 is dried to form the light-collecting layer D, thereby preparing a light-condensing sheet. Is attached to the back surface of the transparent support 142 with an adhesive or an adhesive 148 so that the transparent film 141 of the light diffusion sheet faces the transparent support 142, and this condensing sheet is attached to the transparent support 142. The transparent film 141 of the light condensing sheet is bonded to the surface with an adhesive or a pressure sensitive adhesive 148 so that the transparent film 142 faces the transparent support 142. Of course, first, the light condensing sheet may be bonded to the surface of the transparent support 142, and then the light diffusion sheet may be bonded to the back surface of the transparent support 142.
[0153] なお、透光性榭脂に微粒子群を混練する際に、有機溶剤を用いてもよい。有機溶 剤は、各成分の溶解性、作業性、コストなどを考慮して適宜選択すればよぐ特に限 定されるものではないが、具体的は、例えば、トルエン、キシレンなどの芳香族炭化 水素系溶剤;へキサン、ヘプタンなどの脂肪族炭化水素系溶剤;酢酸ェチル、酢酸 ブチルなどのエステル系溶剤;メチルェチルケトン、メチルイソブチルケトンなどのケト ン系溶剤;イソプロピルアルコール、ブチルアルコールなどのアルコール系溶剤;脂 肪族炭化水素を主成分とする種々の沸点範囲の石油留分;などが挙げられる。これ らの有機溶剤は、単独で用いても 2種以上を併用してもよ ヽ。  [0153] An organic solvent may be used when the fine particle group is kneaded with the translucent resin. The organic solvent is not particularly limited as long as it is appropriately selected in consideration of the solubility, workability, cost, and the like of each component. Specifically, for example, aromatic carbon such as toluene and xylene is used. Hydrogen solvents; Aliphatic hydrocarbon solvents such as hexane and heptane; Ester solvents such as ethyl acetate and butyl acetate; Ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; Isopropyl alcohol and butyl alcohol Alcohol-based solvents; petroleum fractions having various boiling points mainly composed of aliphatic hydrocarbons; and the like. These organic solvents may be used alone or in combination of two or more.
[0154] また、透光性榭脂に微粒子群を混練した組成物を直接コーティングする方法として は、従来公知のコーティング技術を採用すればよぐ特に限定されるものではない。 透光性榭脂を乾燥させる方法についても、従来公知の乾燥方法を採用すればよぐ 特に限定されるものではない。  [0154] The method of directly coating the composition obtained by kneading the fine particle group in the translucent resin is not particularly limited as long as a conventionally known coating technique is employed. The method for drying the translucent rosin is not particularly limited as long as a conventionally known drying method is adopted.
[0155] 光拡散シートや集光シートを貼り合わせるのに用いる接着剤としては、例えば、ァク リル系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリウレタン系接着剤、ィ ソシァネート系接着剤、エポキシ系接着剤などが挙げられる。これらの接着剤は、単 独で用いても 2種以上を併用してもよい。これらの接着剤のうち、ポリウレタン系接着 剤、イソシァネート系接着剤、アクリル系接着剤が好適であり、ポリウレタン系接着剤 が特に好適である。光拡散シートや集光シートを貼り合わせるのに用いる粘着剤とし ては、例えば、アクリル系粘着剤、シリコーン系粘着剤などが挙げられる。これらの粘 着剤は、単独で用いても 2種以上を併用してもよい。これらの粘着剤のうち、アクリル 系粘着剤が特に好適である。 [0155] Examples of the adhesive used to bond the light diffusing sheet and the light collecting sheet include acryl-based adhesives, polyester-based adhesives, polyamide-based adhesives, polyurethane-based adhesives, and isocyanate-based adhesives. And epoxy adhesives. These adhesives may be used alone or in combination of two or more. Of these adhesives, polyurethane adhesives, isocyanate adhesives, and acrylic adhesives are preferable, and polyurethane adhesives are particularly preferable. Examples of the pressure-sensitive adhesive used for bonding the light diffusion sheet and the light collecting sheet include an acrylic pressure-sensitive adhesive and a silicone pressure-sensitive adhesive. These adhesives may be used alone or in combination of two or more. Of these adhesives, acrylic A system-based pressure-sensitive adhesive is particularly suitable.
[0156] <光拡散板の用途 > [0156] <Application of light diffusion plate>
本発明の光拡散板は、直下型バックライトユニットの光拡散板として、従来公知の直 下型バックライトユニットに用いてもよいが、下記で説明する本発明の直下型バックラ イトユニットに用いることが好まし 、。  The light diffusing plate of the present invention may be used in a conventionally known direct type backlight unit as a light diffusing plate of a direct type backlight unit, but is used in the direct type backlight unit of the present invention described below. Is preferred.
[0157] 《バックライトユニット》  [0157] 《Backlight unit》
本発明のバックライトユニットは、光源と、反射シートと、透明支持体と、上記で説明 した本発明の光拡散シートとを有することを特徴とするか、あるいは、光源と、反射シ ートと、上記で説明した本発明の光拡散シートとを有することを特徴とするか、あるい は、光源と、反射シートと、上記で説明した本発明の光拡散板とを有することを特徴と する。本発明の光拡散シートおよび光拡散板は、上記したように、光拡散層による高 い光拡散性および集光層による高い集光性、あるいは、光拡散層による高い光拡散 性を発揮する。それゆえ、このような光拡散シートまたは光拡散板を用いた本発明の バックライトユニットは、光を拡散するための光拡散板や光拡散シート、光を集光する ためのプリズムシートや光拡散シートを用いてなくても、バックライトユニットを構成す ることができる。すなわち、本発明によれば、光拡散性や集光性に優れると共に高い 全光線透過率および輝度が得られると ヽぅ基本的な光学特性を維持しながら、 ソク ライトユニットの部材を削減することができる。  The backlight unit of the present invention has a light source, a reflection sheet, a transparent support, and the light diffusion sheet of the present invention described above, or a light source and a reflection sheet. The light diffusing sheet of the present invention described above is included, or the light diffusing sheet of the present invention described above is characterized by including a light source, a reflective sheet, and the light diffusing plate of the present invention described above. . As described above, the light diffusion sheet and the light diffusion plate of the present invention exhibit high light diffusibility by the light diffusion layer and high light condensing property by the light condensing layer, or high light diffusibility by the light diffusing layer. Therefore, the backlight unit of the present invention using such a light diffusion sheet or light diffusion plate is a light diffusion plate or light diffusion sheet for diffusing light, a prism sheet or light diffusion for condensing light. A backlight unit can be configured without using a sheet. That is, according to the present invention, when the light diffusibility and the light condensing property are excellent and the high total light transmittance and the luminance are obtained, the number of members of the satellite unit can be reduced while maintaining the basic optical characteristics. Can do.
[0158] <光源および反射シート >  [0158] <Light source and reflection sheet>
本発明のバックライトユニットにおいて、光源としては、従来公知のバックライトュ- ットに用いられて ヽる各種の光源の中から適宜選択すればよぐ特に限定されるもの ではないが、例えば、冷陰極蛍光灯 (CCFL)、外部電極蛍光灯 (EEFL)、平面蛍光 灯 (FFL)、発光ダイオード (LED)などが挙げられる。また、反射シートとしては、従 来公知のバックライトユニットに用いられて 、る各種の反射シートの中から適宜選択 すればよぐ特に限定されるものではないが、例えば、酸ィ匕チタンなどの白色顔料を 分散させた合成樹脂シート、光を散乱させるための気泡を分散させた合成樹脂シー ト、表面をマット状に形成した合成樹脂シート、銀やアルミニウムなどの金属または合 金を表面に蒸着した合成樹脂シートなどが挙げられる。 [0159] <透明支持体 > In the backlight unit of the present invention, the light source is not particularly limited as long as it is appropriately selected from various light sources used in conventionally known backlight units. Examples include fluorescent lamps (CCFL), external electrode fluorescent lamps (EEFL), flat fluorescent lamps (FFL), and light emitting diodes (LEDs). Further, the reflection sheet is not particularly limited as long as it is appropriately selected from various reflection sheets used in conventionally known backlight units. Synthetic resin sheet in which white pigment is dispersed, synthetic resin sheet in which bubbles for scattering light are dispersed, synthetic resin sheet in which the surface is formed in a mat shape, metal or alloy such as silver or aluminum is deposited on the surface Synthetic resin sheets and the like. [0159] <Transparent support>
本発明のバックライトユニットにおいて、透明支持体の材質、厚さ、構成、特性など は、本発明の光拡散板を説明した際に記載したものと同様であるので、ここでは説明 を省略する。  In the backlight unit of the present invention, the material, thickness, configuration, characteristics and the like of the transparent support are the same as those described when the light diffusing plate of the present invention is described, and thus the description thereof is omitted here.
[0160] ただし、本発明の光拡散板に用いる透明支持体ではなぐ本発明の光拡散シート を支持するために用いる透明支持体は、光拡散シートに対向する側の表面にパター ン形状を設けてもよい。パターン形状としては、プリズム状 (具体的には、プリズムレン ズ部が略平行に配置された形状)、ピラミッド状 (具体的には、三角錐状または四角 錐状の凸部または凹部が規則的に配置された形状)、半球状 (具体的には、半球状 の凸部または凹部が規則的に配置された形状)などの規則的な形状や、様々なェン ボス模様 (例えば、プリズムレンズ部が不規則に配置された形状、三角錐状または四 角錐状の凸部または凹部が不規則に配置された形状、半球状の凸部または凹部が 不規則に配置された形状、そのほか任意形状の凸部または凹部が不規則に配置さ れた形状)などの不規則形状が挙げられる。これらのパターン形状は、単独で用いて も 2種以上を併用してもよい。なお、パターン形状は、透明支持体の表面全体に設け てもよいし、透明支持体の表面の一部に設けてもよい (すなわち、パターン形状を設 けていない部分があってもよい)。透明支持体の表面に規則的形状を設ければ、光 拡散シートに導かれる光を制御することができるので、光源からの光をより効率的に 拡散することができる。なお、光の拡散は光線シミュレータにより容易にシミュレーショ ンすることができる。また、透明支持体の表面に不規則形状を設ければ、光源からの 光をある程度拡散することができるので、光拡散効果をより一層高めることができる。 透明支持体の表面にパターン形状を設ける方法としては、透明支持体が熱可塑性 榭脂で構成されている場合には、例えば、透明支持体を押出成形する際に、パター ン形状を有するエンボスロールを用いてエンボス加工する方法;パターン形状を有す るグラビアロールで榭脂組成物を塗布して乾燥または硬化させる方法;光硬化性榭 脂を塗布した後、レーザー光干渉法により露光を行ってパターン形状を形成する方 法;などが挙げられ、また、透明支持体が無機材料で構成されている場合には、例え ば、レーザー加工や、湿式または乾式のエッチングカ卩ェなどにより、透明支持体の表 面にパターン形状を形成する方法などが挙げられる。これらの方法は、単独で用い ても 2種以上を併用してもよい。パターン形状が規則的形状の場合、パターン形状の ピッチ ίま、好ましく ίま l m以上、 1, 000 /z m以下、より好ましく ίま 5 m以上、 800 m以下、さらに好ましくは 10 /z m以上、 500 /z m以下である。パターン形状のピッチ 力 m未満であるカゝ、あるいは 1, 000 mを超えると、光源からの光を効率的に拡 散する効果が発揮できな 、ことがある。 [0160] However, the transparent support used for supporting the light diffusing sheet of the present invention, not the transparent support used for the light diffusing plate of the present invention, has a pattern shape on the surface facing the light diffusing sheet. May be. The pattern shape is prismatic (specifically, a shape in which prism lens portions are arranged substantially in parallel), pyramid shape (specifically, a triangular pyramid or quadrangular pyramidal convex or concave portion is regular. Shape), hemisphere (specifically, a shape in which hemispherical convex or concave portions are regularly arranged) and various embossed patterns (for example, prism lenses) Shapes with irregularly arranged parts, shapes with triangular or quadrangular pyramidal projections or recesses irregularly, shapes with irregularly arranged hemispherical projections or recesses, and other arbitrary shapes Irregular shapes such as irregularly arranged convex or concave portions). These pattern shapes may be used alone or in combination of two or more. The pattern shape may be provided on the entire surface of the transparent support, or may be provided on a part of the surface of the transparent support (that is, there may be a portion where the pattern shape is not provided). If a regular shape is provided on the surface of the transparent support, the light guided to the light diffusion sheet can be controlled, so that the light from the light source can be diffused more efficiently. Light diffusion can be easily simulated with a light beam simulator. Further, if an irregular shape is provided on the surface of the transparent support, light from the light source can be diffused to some extent, so that the light diffusion effect can be further enhanced. As a method of providing a pattern shape on the surface of the transparent support, when the transparent support is made of thermoplastic resin, for example, when the transparent support is extruded, an embossing roll having a pattern shape is used. A method of embossing using a gravure roll; A method of applying a resin composition with a gravure roll having a pattern shape and drying or curing; After applying a photocurable resin, a laser light interference method is used for exposure. If the transparent support is composed of an inorganic material, the transparent support can be formed by laser processing, wet or dry etching, etc. Body table Examples thereof include a method of forming a pattern shape on the surface. These methods may be used alone or in combination of two or more. If the pattern shape is a regular shape, the pitch of the pattern shape is ί, preferably ί or more lm to 1,000 / zm, more preferably ί to 5 m or more, 800 m or less, more preferably 10 / zm or more, 500 / zm or less. If the pitch force of the pattern shape is less than m, or if it exceeds 1,000 m, the light from the light source may not be effectively diffused.
[0161] もちろん、本発明の光拡散シートを支持するために用いる透明支持体についても、 紫外線の影響を防止するために、紫外線吸収剤を含有させておくか、あるいは光源 力 の光を受ける面に紫外線吸収層を設けておいてもよぐまた、空気中の塵埃の影 響を防止するために、帯電防止剤を含有させておくか、あるいは空気層と接触する 面に帯電防止層を設けておいてもよい。  [0161] Of course, the transparent support used for supporting the light diffusion sheet of the present invention also contains an ultraviolet absorber or prevents light from the light source power in order to prevent the influence of ultraviolet rays. In order to prevent the influence of dust in the air, an antistatic agent is added or an antistatic layer is provided on the surface in contact with the air layer. You may keep it.
[0162] <光拡散シートおよび光拡散板 >  [0162] <Light diffusion sheet and light diffusion plate>
本発明のバックライトユニットにおいて、光拡散シートとしては、上記で説明した本 発明の光拡散シート (例えば、図 1〜6に示す光拡散シート)が用いられる。また、光 拡散板としては、上記で説明した本発明の光拡散板 (例えば、図 7〜14に示す光拡 散板)が用いられる。なお、本発明のノ ックライトにおいて、本発明の光拡散シートお よび本発明の光拡散板は、いずれか一方を用いても両方を併用してもよぐまた、従 来公知の光拡散シートやプリズムシート、輝度上昇フィルム (例えば、 3M社製の DB EF)を併用してもよい。  In the backlight unit of the present invention, the light diffusion sheet of the present invention described above (for example, the light diffusion sheet shown in FIGS. 1 to 6) is used as the light diffusion sheet. As the light diffusion plate, the light diffusion plate of the present invention described above (for example, the light diffusion plate shown in FIGS. 7 to 14) is used. In the knocklight of the present invention, either the light diffusing sheet of the present invention or the light diffusing plate of the present invention may be used alone, or both may be used together. A prism sheet and a brightness enhancement film (for example, DB EF manufactured by 3M) may be used in combination.
[0163] くバックライトユニットの構成例 >  [0163] Configuration example of the backlight unit>
ここで、本発明のバックライトユニットの具体的な構成例を図 15〜18に示す。なお、 図 15および 16は、光源と、反射シートと、透明支持体と、上記で説明した本発明の 光拡散シートとを有することを特徴とするバックライトユニットに対応している。また、図 17は、光源と、反射シートと、上記で説明した本発明の光拡散シートとを有することを 特徴とするバックライトユニットに対応している。さらに、図 18は、光源と、反射シートと 、上記で説明した本発明の光拡散板とを有するバックライトユニットに対応している。  Here, specific configuration examples of the backlight unit of the present invention are shown in FIGS. 15 and 16 correspond to a backlight unit having a light source, a reflection sheet, a transparent support, and the light diffusion sheet of the present invention described above. FIG. 17 corresponds to a backlight unit having a light source, a reflection sheet, and the light diffusion sheet of the present invention described above. Further, FIG. 18 corresponds to a backlight unit having a light source, a reflection sheet, and the light diffusion plate of the present invention described above.
[0164] 図 15に示すバックライトユニット 150は、光源 151と、反射シート 152と、透明支持 体 153と、光拡散シート 154とを有する。ここで、光拡散シート 154としては、図 1〜6 に示す光拡散シートが用いられる。光源 151から出射した光は、一部は透明支持体 153に向かい、一部は反射シート 152で反射されて力も透明支持体 153に向かう。 透明支持体 153に入射した光は、該透明支持体 153を通過して光拡散シート 154に 入射する。光拡散シート 154に入射した光は、図 1および 2に各々示す光拡散シート 10および 20のように、光拡散層 Aにより充分に拡散される力、あるいは、図 3および 4 に各々示す光拡散シート 30および 40のように、光拡散'集光層 Bにより充分に拡散 され、正面方向に集光されるか、あるいは、図 5および 6に各々示す光拡散シート 50 および 60のように、光拡散層 Cにより充分に拡散された後、集光層 Dにより正面方向 に集光されて、液晶表示パネル(図示せず)に向かう。 A backlight unit 150 shown in FIG. 15 includes a light source 151, a reflection sheet 152, a transparent support 153, and a light diffusion sheet 154. Here, as the light diffusion sheet 154, FIGS. The light diffusion sheet shown in FIG. A part of the light emitted from the light source 151 is directed to the transparent support 153, a part is reflected by the reflection sheet 152, and the force is also directed to the transparent support 153. The light incident on the transparent support 153 passes through the transparent support 153 and enters the light diffusion sheet 154. The light incident on the light diffusion sheet 154 is sufficiently diffused by the light diffusion layer A as shown in the light diffusion sheets 10 and 20 shown in FIGS. 1 and 2, or the light diffusion shown in FIGS. 3 and 4, respectively. As in sheets 30 and 40, the light is diffused sufficiently by the light condensing layer B and condensed in the front direction, or as in the light diffusion sheets 50 and 60 shown in FIGS. 5 and 6, respectively. After being sufficiently diffused by the diffusion layer C, the light is condensed in the front direction by the light condensing layer D and is directed to a liquid crystal display panel (not shown).
[0165] 図 16に示すバックライトユニット 160は、光源 161と、反射シート 162と、透明支持 体 163と、光拡散シート 164とを有する。ここで、光拡散シート 164としては、図 1〜6 に示す光拡散シートが用いられる。光源 161から出射した光は、一部は透明支持体 163に向かい、一部は反射シート 162で反射されて力も透明支持体 163に向かう。 透明支持体 163に入射した光は、該透明支持体 163を通過して行き、該透明支持 体 163の表面に形成されたパターン形状(図 16では、具体例として半球状のパター ン形状を示すが、この形状に限定されることはない)で効率的に拡散された後、光拡 散シート 164に入射する。光拡散シート 164に入射した光は、図 1および 2に各々示 す光拡散シート 10および 20のように、光拡散層 Aにより充分に拡散される力、あるい は、図 3および 4に各々示す光拡散シート 30および 40のように、光拡散'集光層 Bに より充分に拡散され、正面方向に集光されるか、あるいは、図 5および 6に各々示す 光拡散シート 50および 60のように、光拡散層 Cにより充分に拡散された後、集光層 D により正面方向に集光されて、液晶表示パネル(図示せず)に向かう。  The backlight unit 160 shown in FIG. 16 includes a light source 161, a reflection sheet 162, a transparent support 163, and a light diffusion sheet 164. Here, as the light diffusion sheet 164, the light diffusion sheet shown in FIGS. A part of the light emitted from the light source 161 is directed to the transparent support 163, and part of the light is reflected by the reflection sheet 162, and the force is also directed to the transparent support 163. The light incident on the transparent support 163 passes through the transparent support 163 and forms a pattern formed on the surface of the transparent support 163 (FIG. 16 shows a hemispherical pattern as a specific example. However, it is not limited to this shape) and is then incident on the light diffusion sheet 164. The light incident on the light diffusing sheet 164 is sufficiently diffused by the light diffusing layer A, as shown in FIGS. 1 and 2, respectively, or in FIGS. 3 and 4, respectively. As shown in the light diffusion sheets 30 and 40 shown in FIG. 5, it is sufficiently diffused by the light diffusion 'condensing layer B and condensed in the front direction, or the light diffusion sheets 50 and 60 shown in FIGS. 5 and 6 respectively. As described above, after being sufficiently diffused by the light diffusion layer C, the light is condensed in the front direction by the light condensing layer D, and is directed to a liquid crystal display panel (not shown).
[0166] 図 17に示すバックライトユニット 170は、光源 171と、反射シート 172と、光拡散シ ート 174とを有する。ここで、光拡散シート 174としては、図 1〜6に示す光拡散シート 力 S用いられる。なお、光拡散シート 174は、透明支持体を用いずに、支持部材 (図示 せず)により支持されている。光源 171から出射した光は、一部は光拡散シート 174 に向かい、一部は反射シート 172で反射されて力も光拡散シート 174に向かう。光拡 散シート 174に入射した光は、図 1および 2に各々示す光拡散シート 10および 20の ように、光拡散層 Aにより充分に拡散される力、あるいは、図 3および 4に各々示す光 拡散シート 30および 40のように、光拡散'集光層 Bにより充分に拡散され、正面方向 に集光される力 あるいは、図 5および 6に各々示す光拡散シート 50および 60のよう に、光拡散層 Cにより充分に拡散された後、集光層 Dにより正面方向に集光されて、 液晶表示パネル(図示せず)に向かう。 A backlight unit 170 shown in FIG. 17 includes a light source 171, a reflection sheet 172, and a light diffusion sheet 174. Here, as the light diffusion sheet 174, the light diffusion sheet force S shown in FIGS. The light diffusion sheet 174 is supported by a support member (not shown) without using a transparent support. A part of the light emitted from the light source 171 is directed to the light diffusion sheet 174, a part is reflected by the reflection sheet 172, and the force is also directed to the light diffusion sheet 174. Light incident on the light diffusing sheet 174 is reflected by the light diffusing sheets 10 and 20 shown in FIGS. 1 and 2, respectively. Thus, the force sufficiently diffused by the light diffusing layer A, or the light diffusing 'light condensing layer B as shown in FIGS. Condensed force Alternatively, after being sufficiently diffused by the light diffusing layer C, as shown in FIGS. 5 and 6, respectively, after being sufficiently diffused by the light diffusing layer C, the light is condensed in the front direction by the liquid crystal. Head to the display panel (not shown).
[0167] 図 18に示すバックライトユニット 180は、光源 181と、反射シート 182と、光拡散板 1 83とを有する。ここで、光拡散板 183としては、図 7〜14に示す光拡散板が用いられ る。光源 181から出射した光は、一部は光拡散板 183に向力ぃ、一部は反射シート 1 82で反射されて力 光拡散板 183に向かう。光拡散板 183に入射した光は、図 7お よび 11に各々示す光拡散板 70および 110のように、光拡散層 Aにより充分に拡散さ れるか、あるいは、図 8および 12に各々示す光拡散板 80および 120のように、光拡 散 ·集光層 Bにより充分に拡散され、正面方向に集光されるか、あるいは、図 9、 10、 13および 14に各々示す光拡散板 90、 100、 130および 140のように、光拡散層じに より充分に拡散された後、集光層 Dにより正面方向に集光されて、液晶表示パネル( 図示せず)に向かう。 The backlight unit 180 shown in FIG. 18 includes a light source 181, a reflection sheet 182, and a light diffusing plate 183. Here, as the light diffusion plate 183, the light diffusion plate shown in FIGS. A part of the light emitted from the light source 181 is directed to the light diffusing plate 183, and part of the light is reflected by the reflection sheet 182 and travels toward the force light diffusing plate 183. The light incident on the light diffusion plate 183 is sufficiently diffused by the light diffusion layer A as shown in the light diffusion plates 70 and 110 shown in FIGS. 7 and 11, respectively, or the light shown in FIGS. 8 and 12, respectively. Like the diffuser plates 80 and 120, it is sufficiently diffused by the light diffusing / condensing layer B and condensed in the front direction, or the light diffusing plate 90, shown in FIGS. 9, 10, 13 and 14, respectively. After being sufficiently diffused by the light diffusion layer, such as 100, 130, and 140, the light is condensed in the front direction by the light condensing layer D and is directed to a liquid crystal display panel (not shown).
[0168] なお、図 15〜18に示すバックライトユニットでは、本発明の光拡散シートまたは光 拡散板のいずれか一方を用いているが、上記したように、本発明の光拡散シートおよ び光拡散板の両方を併用してもよぐまた、従来公知の光拡散シートやプリズムシー ト、輝度上昇フィルム (例えば、 3M社製の DBEF)を併用してもよい。  [0168] The backlight units shown in Figs. 15 to 18 use either the light diffusion sheet or the light diffusion plate of the present invention. As described above, the light diffusion sheet and the light diffusion sheet of the present invention and Both of the light diffusing plates may be used together, or a conventionally known light diffusing sheet, prism sheet, and brightness enhancement film (for example, DBEF manufactured by 3M) may be used in combination.
[0169] <バックライトユニットの製造方法 >  [0169] <Manufacturing method of backlight unit>
本発明のバックライトユニットは、従来公知のバックライトユニットに用いられている 光拡散板やプリズムシートを必ずしも用いる必要がないこと以外は、少なくとも、光源 と、反射シートと、透明支持体と、光拡散シートとから、あるいは、光源と、反射シート と、光拡散シートとから、あるいは、光源と、反射シートと、光拡散板とから、従来公知 のノ ックライトユニットと同様に組み立てることができる。それゆえ、本発明のバックラ イトユニットの組立方法は、特に限定されるものではない。本発明のバックライトュ-ッ トの場合、光拡散シートや光拡散板が単独で高!ヽ光拡散性および高!ヽ集光性ある ヽ は高い光拡散性を有するので、光拡散シートと光拡散板とを併用したり、プリズムシ ートを用いたり、場合によっては、透明支持体を用いる必要がないことから、ノ ックラ イトユニットの部材を少なくとも 1〜3個削減することができ、ひいては組み立てに要す るコス卜を低減することができる。 The backlight unit of the present invention is at least a light source, a reflection sheet, a transparent support, a light, except that it is not always necessary to use a light diffusing plate or a prism sheet used in a conventionally known backlight unit. It can be assembled from a diffusion sheet, from a light source, a reflection sheet, and a light diffusion sheet, or from a light source, a reflection sheet, and a light diffusion plate in the same manner as a conventionally known knock light unit. Therefore, the method for assembling the backlight unit of the present invention is not particularly limited. In the case of the backlight unit of the present invention, the light diffusing sheet and the light diffusing plate alone have high light diffusing properties and high light collecting properties. Can be used together with Since there is no need to use a sheet or, in some cases, a transparent support, it is possible to reduce at least one to three members of the knock light unit, which in turn reduces the cost of assembly. be able to.
[0170] くバックライトユニットの用途 > [0170] Uses of Backlight Unit>
本発明のバックライトユニットは、透過型液晶表示装置の画像表示用光源として、 特に液晶テレビや液晶ディスプレイなどの用途に好適に使用することができる。  The backlight unit of the present invention can be suitably used as a light source for image display of a transmissive liquid crystal display device, particularly for applications such as liquid crystal televisions and liquid crystal displays.
[0171] 《液晶表示装置〉〉 [0171] <Liquid crystal display device>
本発明の液晶表示装置は、上記で説明した本発明のバックライトユニットを備えて いることを特徴とする。本発明のバックライトユニットは、好ましくは、直下型のバックラ イトユニットであるから、本発明の液晶表示装置は、好ましくは、比較的大きい画面サ ィズを有する。それゆえ、本発明の液晶表示装置は、特に、比較的大きい画面サイ ズを有する液晶テレビや液晶ディスプレイなどの用途に好適に使用することができる  The liquid crystal display device of the present invention includes the backlight unit of the present invention described above. Since the backlight unit of the present invention is preferably a direct type backlight unit, the liquid crystal display device of the present invention preferably has a relatively large screen size. Therefore, the liquid crystal display device of the present invention can be suitably used particularly for applications such as liquid crystal televisions and liquid crystal displays having a relatively large screen size.
[0172] 本発明の液晶表示装置は、ノ ックライトユニットが本発明のノ ックライトユニットであ ること以外は、従来公知の液晶表示装置と同様の構成要素を有する。それゆえ、本 発明の液晶表示装置は、ノ ックライトユニットとして本発明のバックライトユニットを用 いること以外は、従来公知の液晶表示装置と同様にして製造することができる。 [0172] The liquid crystal display device of the present invention has the same components as those of conventionally known liquid crystal display devices, except that the knocklight unit is the knocklight unit of the present invention. Therefore, the liquid crystal display device of the present invention can be manufactured in the same manner as a conventionally known liquid crystal display device except that the backlight unit of the present invention is used as the knock light unit.
[0173] 本発明の液晶表示装置は、本発明のバックライトユニットを用いているので、高い輝 度を示し、表示ムラが少な 、均一で明る!/、表示を与えることができる。  [0173] Since the liquid crystal display device of the present invention uses the backlight unit of the present invention, the liquid crystal display device can provide high brightness, small display unevenness, uniform brightness and display.
実施例  Example
[0174] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例により制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含ま れる。  [0174] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as well as the present invention. It is also possible to carry out with addition, and they are all included in the technical scope of the present invention.
[0175] (1)下記実施例 1 1〜1 4および比較例 1 1〜1 6では、高い性能を有する 光拡散シートを得るには、光拡散層を構成する透光性榭脂と微粒子群との屈折率差 の絶対値が 0. 05以上であるという条件が必要であることを実証する。  (1) In the following Examples 1 1 to 14 and Comparative Examples 1 1 to 16, in order to obtain a light diffusing sheet having high performance, the light transmissive resin and the fine particle group constituting the light diffusing layer It is demonstrated that the condition that the absolute value of the difference in refractive index between and is 0.05 or more is necessary.
[0176] まず、光拡散シートを構成する要素の物性値を測定する方法および光拡散シート の性能を評価する方法につ!、て説明する。 [0176] First, a method for measuring physical properties of elements constituting a light diffusing sheet and a light diffusing sheet I will explain how to evaluate the performance of the!
[0177] <透光性榭脂の屈折率 >  [0177] <Refractive index of translucent resin>
光拡散層を構成する透光性樹脂の屈折率は、透光性樹脂の水酸基 (OH基)と多 官能イソシァネートイ匕合物(デスモジュール N3200、住化バイエルウレタン (株)製) のイソシァネート基 (NCO基)とが OH基 ZNCO基 = 1 (当量比)となるように、透光 性榭脂に多官能イソシァネートイ匕合物を添加した後、バーコ一ターを用いて、厚さ 40 mのフィルムを成形し、このフィルムの屈折率を多波長アッベ屈折計(DR— M2、 ( 株)ァタゴ製)で測定した。測定波長は 589nm、測定温度は 25°Cであった。  The refractive index of the translucent resin constituting the light diffusing layer is the isocyanate group (Desmodur N3200, manufactured by Sumika Bayer Urethane Co., Ltd.), a hydroxyl group (OH group) of the translucent resin and a polyfunctional isocyanate compound (manufactured by Sumika Bayer Urethane Co., Ltd.) After adding the polyfunctional isocyanate compound to the translucent resin so that the NCO group) becomes OH group ZNCO group = 1 (equivalent ratio), a 40 m thick film is used using a bar coater The refractive index of this film was measured with a multiwavelength Abbe refractometer (DR-M2, manufactured by Atago Co., Ltd.). The measurement wavelength was 589 nm and the measurement temperature was 25 ° C.
[0178] <微粒子群の屈折率 >  [0178] <Refractive index of fine particle group>
光拡散層を構成する透光性榭脂に分散させた微粒子群の屈折率は、数種類の力 一ギル標準屈折液 (スタンダードシリーズ、(株)モリテックス製;屈折率範囲 n 25= 1. The refractive index of the fine particle group dispersed in the translucent resin constituting the light diffusing layer has several strengths of a standard refractory liquid (standard series, manufactured by Moritex Corp .; refractive index range n 25 = 1.
D  D
300〜2. 11)を用意し、スライドグラスに微粒子群を載置し、予想される屈折率の標 準屈折液を添加し、カバーガラスで挟んだ後、 25°Cで透過光学顕微鏡 (デジタルマ イクロスコープ VHX— 200、(株)キーエンス製;光源ランプは、 12V、 100Wのハロ ゲンランプ (色温度 3, 100K (最大光量時)))を用いて観察し、微粒子群と標準屈折 液との界面が最も見えにくい時に用いた標準屈折液の屈折率を微粒子群の屈折率 とした。ただし、微粒子群と標準屈折液との界面が最も見えにくい時に用いた標準屈 折液が屈折率の連続した 2種類存在する場合は、それらの屈折率の中間値を微粒 子群の屈折率とし、また、微粒子群の屈折率がカーギル標準屈折液の屈折率範囲 外である場合は、その材質の屈折率を微粒子群の屈折率とした。  300 ~ 2.11), place a group of fine particles on a slide glass, add a standard refractive liquid with the expected refractive index, sandwich it with a cover glass, and then at 25 ° C a transmission optical microscope (digital Microscope VHX-200, manufactured by Keyence Corporation; the light source lamp is a 12V, 100W halogen lamp (color temperature 3, 100K (at maximum light intensity)). The refractive index of the standard refractive liquid used when the interface was most difficult to see was taken as the refractive index of the fine particle group. However, if there are two types of standard refractive liquids used when the interface between the fine particle group and the standard refractive liquid is most difficult to see, the refractive index of the fine particle group is the intermediate value of these refractive indices. In addition, when the refractive index of the fine particle group is outside the refractive index range of Cargill's standard refractive liquid, the refractive index of the material is taken as the refractive index of the fine particle group.
[0179] <集光層の表面粗さ >  [0179] <Surface roughness of condensing layer>
集光層の表面粗さは、表面粗さ計 (Dektak3030、日本真空技術 (株)製)を用い て、各試料あたり無作為に選択した 5個所以上の算術平均粗さを測定し、得られた測 定値の平均値である。  The surface roughness of the condensing layer can be obtained by measuring the arithmetic average roughness at 5 or more points randomly selected for each sample using a surface roughness meter (Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). This is the average of the measured values.
[0180] <集光層の層厚 >  [0180] <Concentration layer thickness>
集光層の層厚は、光拡散シートまたは光拡散板の試料をエポキシ系榭脂で固化し た後、ミクロトームで切断し、得られた断面を電子顕微鏡で観察することにより、各試 料あたり 5点以上で集光層の層厚を測定し、得られた測定値の平均値である。 [0181] <微粒子群の平均粒子径> The thickness of the light condensing layer is determined for each sample by solidifying the sample of the light diffusion sheet or light diffusion plate with an epoxy-based resin, cutting with a microtome, and observing the obtained cross section with an electron microscope. It is the average value of the measured values obtained by measuring the layer thickness of the light collecting layer at 5 points or more. [0181] <Average particle size of fine particle group>
微粒子群の平均粒子径は、粒度分布測定装置 (例えば、マルチサイザ一 II型、コ 一ルター (株)製)を用いて測定した体積平均粒子径である。  The average particle diameter of the fine particle group is a volume average particle diameter measured using a particle size distribution measuring device (for example, Multisizer II type, manufactured by Coulter Co., Ltd.).
[0182] く全光線透過率およびヘイズ > [0182] Total light transmittance and haze>
試料の全光線透過率およびヘイズは、色差計(∑ 90、日本電色工業 (株)製)を用 いて測定した。  The total light transmittance and haze of the sample were measured using a color difference meter (∑90, manufactured by Nippon Denshoku Industries Co., Ltd.).
[0183] <正面輝度 > [0183] <Front brightness>
試料の正面輝度は、光源として、冷陰極管 (光源上輝度:約 10, 000cd,m2)を用 いて、下記の方法により測定した。 The front luminance of the sample was measured by the following method using a cold cathode tube (luminance on the light source: about 10,000 cd, m 2 ) as a light source.
[0184] 測定方法: [0184] Measuring method:
実施例 1 1〜1 4および比較例 1 1〜1 4では、冷陰極管の表面から 5mm 離して厚さ 2mmのポリカーボネート製透明支持体を設置し、その上に試料を載置し た。試料カゝら 50cm離れた位置に輝度計 (BM— 7、(株)トプコン製)を固定し、光源 上の輝度を測定した。  In Examples 1 1 to 14 and Comparative Examples 1 1 to 14, a 2 mm thick polycarbonate transparent support was placed 5 mm away from the surface of the cold cathode tube, and a sample was placed thereon. A luminance meter (BM-7, manufactured by Topcon Corporation) was fixed at a position 50 cm away from the sample cover, and the luminance on the light source was measured.
[0185] 比較例 1 5および 1 6では、冷陰極管の表面から 5mm離して厚さ 2mmの光拡 散板 (シャープ (株)製の液晶テレビ AQUOS LC— 37AD5に用いられて 、る光拡 散板)を設置し、その上に試料を載置した。試料から 50cm離れた位置に輝度計 (B [0185] In Comparative Examples 15 and 16, the light diffusing plate having a thickness of 2 mm, 5 mm away from the surface of the cold-cathode tube (used for the AQUOS LC-37AD5 LCD TV manufactured by Sharp Corporation) A scattering plate) was installed, and a sample was placed thereon. Luminance meter (B
M— 7、(株)トプコン製)を固定し、光源上の輝度を測定した。 M-7, manufactured by Topcon Corporation) was fixed, and the luminance on the light source was measured.
[0186] <光源形状 > [0186] <Light source shape>
正面輝度の測定時に、目視で光源の形状を観察し、下記の基準で評価した。 When measuring the front luminance, the shape of the light source was visually observed and evaluated according to the following criteria.
〇:光源形状が確認できな力つた; ◯: The power source shape could not be confirmed;
△:光源形状がぼやけて 、た;  Δ: The light source shape is blurred;
X:光源形状が明確に確認できた。  X: The light source shape was clearly confirmed.
[0187] 《実施例 1— 1》 [0187] << Example 1-1 >>
ポリエチレンテレフタレートフィルム(コスモシャイン A— 4300、東洋紡績 (株)製;厚 さ 100 m)を透明フィルムとして用 、た。  A polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
[0188] まず、透光性榭脂として、シクロへキシルメタアタリレートに由来する繰り返し単位を 含む特殊アクリル榭脂(ユーダブル S— 2840、(株)日本触媒製;屈折率 1. 49) 100 質量部、微粒子群として、ベンゾグアナミン'ホルムアルデヒド縮合物の球状微粒子( ェポスター M05、(株)日本触媒製;屈折率 1. 66、平均粒子径 5. 2 /ζ πι) 30質量部 、多官能イソシァネートイ匕合物(デスモジュール Ν3200、住化バイエルウレタン (株) 製) 10質量部およびトルエン 40質量部を充分に攪拌混合した後、バーコ一ターを用 いて、透明フィルムの表面に塗布し、乾燥させて、厚さ 19. の光拡散層を形成 した。 [0188] First, as a translucent resin, a special acrylic resin containing a repeating unit derived from cyclohexylmethacrylate (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 100 Part by mass, fine particle group, spherical fine particles of benzoguanamine 'formaldehyde condensate (Epester M05, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.66, average particle size 5.2 / ζ πι) 30 parts by mass, polyfunctional isocyanate Compound (Desmodur Ν3200, manufactured by Sumika Bayer Urethane Co., Ltd.) 10 parts by weight and 40 parts by weight of toluene are thoroughly stirred and mixed, and then applied onto the surface of the transparent film using a bar coater and dried. A light diffusing layer having a thickness of 19. was formed.
[0189] 次いで、透光性榭脂として、シクロへキシルメタアタリレートに由来する繰り返し単位 を含む特殊アクリル榭脂(ユーダブル S— 2840、(株)日本触媒製;屈折率 1. 49) 10 0質量部、微粒子群として、ポリメタクリル酸メチル系架橋物の球状微粒子 (ェポスタ 一 MA1013、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 /z m) 70質量部、 多官能イソシァネートイ匕合物(デスモジュール N3200、住化バイエルウレタン (株)製 ) 10質量部およびトルエン 80質量部を充分に攪拌混合した後、バーコ一ターを用い て、上記で形成した光拡散層上に塗布し、乾燥させて、厚さ 19. 5 mの集光層を形 成した。  [0189] Next, as a translucent resin, a special acrylic resin containing a repeating unit derived from cyclohexyl methacrylate (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 10 0 Particulate mass, fine particle group, polymethyl methacrylate cross-linked spherical microparticles (Eposta MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 / zm) 70 parts by mass, multifunctional Isocyanate compound (Desmodur N3200, manufactured by Sumika Bayer Urethane Co., Ltd.) 10 parts by mass and 80 parts by mass of toluene were sufficiently stirred and mixed, and then on the light diffusion layer formed above using a bar coater. It was applied and dried to form a light collecting layer with a thickness of 19.5 m.
[0190] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成され、該光拡散層上に、透光性榭脂に微粒子群を埋設させた集光層が形成さ れた光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を構成 する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 17であり、該集光層の表面 粗さは 2. 2 mであった。また、該集光層における該微粒子群の平均粒子径に対す る層厚の比率は 1. 4であった。得られた光拡散シートの全光線透過率およびヘイズ は、それぞれ 75%および 93%であった。また、正面輝度は 6755cdZm2であり、光 源形状は確認できな力つた。これらの結果を表 1に示す。 [0190] By force, a light diffusing layer in which fine particles are dispersed in a translucent resin is formed on the surface of the transparent film, and the fine particles are embedded in the translucent resin on the light diffusing layer. A light diffusing sheet on which a condensing layer was formed was obtained. In the obtained light diffusing sheet, the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusing layer is 0.17, and the surface roughness of the light collecting layer is 2.2. m. The ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.4. The total light transmittance and haze of the obtained light diffusion sheet were 75% and 93%, respectively. In addition, the front luminance was 6755cdZm 2 and the shape of the light source could not be confirmed. These results are shown in Table 1.
[0191] さらに、本実施例で得られた光拡散シートを集光層の表面をデジタルマイクロスコ ープ (VHX— 200、(株)キーエンス製;倍率 450倍)で観察した図面代用写真を図 1 9に示す。  [0191] Further, a drawing-substituting photograph in which the surface of the light condensing layer of the light diffusion sheet obtained in this example was observed with a digital microscope (VHX-200, manufactured by Keyence Corporation; magnification 450 times) Shown in 9.
[0192] 《実施例 1— 2》  [0192] <Example 1-2>
実施例 1 1と同様の材料を用いて、透明フィルムの裏面に厚さ 16. の光拡 散層を形成した後、該透明フィルムの表面に厚さ 21. 7 mの集光層を形成した。 [0193] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を埋設させた集光層が形 成され、該透明フィルムの裏面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成された光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を 構成する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 17であり、該集光層の 表面粗さは 2. O /z mであった。また、該集光層における該微粒子群の平均粒子径に 対する層厚の比率は 1. 6であった。得られた光拡散シートの全光線透過率およびへ ィズは、それぞれ 72%および 93%であった。また、正面輝度は 6766cdZm2であり 、光源形状は確認できな力つた。これらの結果を表 1に示す。 A light diffusion layer having a thickness of 16. was formed on the back surface of the transparent film using the same material as in Example 11. Then, a light condensing layer having a thickness of 21.7 m was formed on the surface of the transparent film. . [0193] By force, a condensing layer is formed on the surface of the transparent film, in which fine particles are embedded in translucent resin, and the fine particles are dispersed in translucent resin on the back of the transparent film. A light diffusing sheet having the light diffusing layer formed thereon was obtained. In the obtained light diffusing sheet, the absolute value of the refractive index difference between the translucent resin constituting the light diffusing layer and the fine particle group is 0.17, and the surface roughness of the light collecting layer is 2.O. / zm. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.6. The total light transmittance and haze of the obtained light diffusion sheet were 72% and 93%, respectively. Further, the front luminance was 6766 cdZm 2 , and the shape of the light source could not be confirmed. These results are shown in Table 1.
[0194] 《実施例 1— 3》  [0194] <Example 1-3>
実施例 1—1において、透光性榭脂として、特殊アクリル榭脂(ユーダブル S— 284 0、(株)日本触媒製;屈折率 1. 49)に代えて、オルガノコロイダルシリカを複合したシ クロへキシルメタアタリレートに由来する繰り返し単位を含む特殊アクリル榭脂(ユー ダブル C— 3600、(株)日本触媒製;屈折率 1. 51)を用い、多官能性イソシァネート 化合物(デスモジュール N3200、住化バイエルウレタン (株)製)の配合量を 10質量 部から 16質量部に変更したこと以外は、実施例 1—1と同様にして、透明フィルムの 表面に厚さ 18. 1 mの光拡散層を形成した後、該光拡散層上に厚さ 18. の 集光層を形成した。  In Example 1-1, a cyclohexane compounded with organocolloidal silica was used as the translucent resin instead of special acrylic resin (Udable S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49). A polyfunctional isocyanate compound (Desmodur N3200, Residential module) using a special acrylic resin containing a repeating unit derived from hexylmethacrylate (Udouble C-3600, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51) Except for changing the blending amount of Kabayashi Urethane Co., Ltd. from 10 parts by weight to 16 parts by weight, light diffusion with a thickness of 18.1 m was applied to the surface of the transparent film in the same manner as in Example 1-1. After forming the layer, a light collecting layer having a thickness of 18. was formed on the light diffusion layer.
[0195] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成され、該光拡散層上に、透光性榭脂に微粒子群を埋設させた集光層が形成さ れた光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を構成 する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 15であり、該集光層の表面 粗さは 1. 9 mであった。また、該集光層における該微粒子群の平均粒子径に対す る層厚の比率は 1. 4であった。得られた光拡散シートの全光線透過率およびヘイズ は、それぞれ 84%および 92%であった。また、正面輝度は 6714cdZm2であり、光 源形状は確認できな力つた。これらの結果を表 1に示す。 [0195] By force, a light diffusing layer in which fine particles are dispersed in a translucent resin is formed on the surface of the transparent film, and the fine particles are embedded in the translucent resin on the light diffusing layer. A light diffusing sheet on which a condensing layer was formed was obtained. In the obtained light diffusing sheet, the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusing layer is 0.15, and the surface roughness of the light collecting layer is 1.9. m. The ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.4. The total light transmittance and haze of the obtained light diffusion sheet were 84% and 92%, respectively. Further, the front luminance was 6714CdZm 2, light source shape can be confirmed that ChikaraTsuta. These results are shown in Table 1.
[0196] 《実施例 1—4》  [0196] << Example 1-4 >>
実施例 1—2において、透光性榭脂として、特殊アクリル榭脂(ユーダブル S— 284 0、(株)日本触媒製;屈折率 1. 49)に代えて、オルガノコロイダルシリカを複合した特 殊アクリル榭脂(ユーダブル C— 3600、(株)日本触媒製;屈折率 1. 51)を用いたこ と以外は、実施例 1 2と同様にして、透明フィルムの裏面に厚さ 18. の光拡散 層を形成した後、該透明フィルムの表面に厚さ 24. 7 mの集光層を形成した。 In Example 1-2, as a translucent resin, a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) was used instead of a special compound containing organocolloidal silica. In the same manner as in Example 12 except that acrylic resin (Udable C-3600, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51) was used, a transparent film with a thickness of 18. After the diffusion layer was formed, a light collecting layer having a thickness of 24.7 m was formed on the surface of the transparent film.
[0197] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を埋設させた集光層が形 成され、該透明フィルムの裏面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成された光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を 構成する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 15であり、該集光層の 表面粗さは 2. 2 mであった。また、該集光層における該微粒子群の平均粒子径に 対する層厚の比率は 1. 8であった。得られた光拡散シートの全光線透過率およびへ ィズは、それぞれ 76%および 93%であった。また、正面輝度は 6600cdZm2であり 、光源形状は確認できな力つた。これらの結果を表 1に示す。 [0197] By force, a condensing layer is formed on the surface of the transparent film, in which fine particles are embedded in translucent resin, and the fine particles are dispersed in translucent resin on the back of the transparent film. A light diffusing sheet having the light diffusing layer formed thereon was obtained. In the obtained light diffusion sheet, the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusion layer is 0.15, and the surface roughness of the light collecting layer is 2.2. m. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.8. The total light transmittance and haze of the obtained light diffusion sheet were 76% and 93%, respectively. The front luminance was 6600 cdZm 2 , and the shape of the light source could not be confirmed. These results are shown in Table 1.
[0198] 《比較例 1 1》  [0198] <Comparative Example 1 1>
ポリエチレンテレフタレートフィルム(コスモシャイン A— 4300、東洋紡績 (株)製;厚 さ 100 m)を透明フィルムとして用 、た。  A polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
[0199] まず、透光性榭脂として、特殊アクリル榭脂 (ユーダブル S - 2840、(株)日本触媒 製;屈折率 1. 49) 100質量部、微粒子群として、ポリメタクリル酸メチル系架橋物の 球状微粒子 (ェポスター MA1004、(株)日本触媒製;屈折率 1. 51、平均粒子径 4. 3 m) 30質量部、多官能イソシァネートイ匕合物(デスモジュール N3200、住化バイ エルウレタン (株)製) 10質量部およびトルエン 40質量部を充分に攪拌混合した後、 バーコ一ターを用いて、透明フィルムの表面に塗布し、乾燥させて、厚さ 14. の光拡散層を形成した。  [0199] First, as a translucent resin, a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49), 100 parts by mass, as a fine particle group, a polymethyl methacrylate cross-linked product Spherical fine particles (Poster MA1004, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 4.3 m) 30 parts by mass, polyfunctional isocyanate compound (Desmodur N3200, Sumika Bayer Urethane Co., Ltd. 10 parts by mass and 40 parts by mass of toluene were sufficiently stirred and mixed, and then applied to the surface of the transparent film using a bar coater and dried to form a light diffusion layer having a thickness of 14.
[0200] 次 、で、透光性榭脂として、特殊アクリル榭脂(ユーダブル S— 2840、(株)日本触 媒製;屈折率 1. 49) 100質量部、微粒子群として、ポリメタクリル酸メチル系架橋物 の球状微粒子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 m) 70質量部、多官能イソシァネート化合物(デスモジュール N3200、住化 ノ ィエルウレタン (株)製) 10質量部およびトルエン 80質量部を充分に攪拌混合した 後、バーコ一ターを用いて、上記で形成した光拡散層上に塗布し、乾燥させて、厚さ 24. 8 μ mの集光層を形成した。 [0201] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成され、該光拡散層上に、透光性榭脂に微粒子群を埋設させた集光層が形成さ れた光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を構成 する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 02であり、該集光層の表面 粗さは 2. 1 μ mであった。また、該集光層における該微粒子群の平均粒子径に対す る層厚の比率は 1. 8であった。得られた光拡散シートの全光線透過率およびヘイズ は、それぞれ 91%および 64%であった。また、正面輝度は 8724cdZm2であり、光 源形状は明確に確認できた。これらの結果を表 1に示す。 [0200] Next, as a translucent resin, special acrylic resin (Udouble S-2840, manufactured by Nippon Catalysts Co., Ltd .; refractive index 1.49), 100 parts by mass, as a fine particle group, polymethyl methacrylate Spherical fine particles of epoxy cross-linked product (Poster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 m) )) After mixing 10 parts by mass and 80 parts by mass of toluene sufficiently with a bar coater, it was applied onto the light diffusion layer formed above, dried, and dried to a thickness of 24.8 μm. A light collecting layer was formed. [0201] On the surface of the transparent film, a light diffusing layer in which fine particles are dispersed is formed on the surface of the transparent film, and the fine particles are embedded in the light transmissive resin on the light diffusing layer. A light diffusing sheet on which a condensing layer was formed was obtained. In the obtained light diffusing sheet, the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusing layer is 0.02, and the surface roughness of the light collecting layer is 2.1. μm. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.8. The total light transmittance and haze of the obtained light diffusion sheet were 91% and 64%, respectively. The front luminance was 8724cdZm 2 and the light source shape was clearly confirmed. These results are shown in Table 1.
[0202] 《比較例 1 2》  [0202] << Comparative Example 1 2 >>
比較例 1 1と同様の材料を用いて、透明フィルムの裏面に厚さ 18. の光拡 散層を形成した後、該透明フィルムの表面に厚さ 23. 2 mの集光層を形成した。  A light diffusion layer having a thickness of 18. was formed on the back surface of the transparent film using the same material as in Comparative Example 11 and then a light condensing layer having a thickness of 23.2 m was formed on the surface of the transparent film. .
[0203] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を埋設させた集光層が形 成され、該透明フィルムの裏面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成された光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を 構成する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 02であり、該集光層の 表面粗さは 2. 1 μ mであった。また、該集光層における該微粒子群の平均粒子径に 対する層厚の比率は 1. 7であった。得られた光拡散シートの全光線透過率およびへ ィズは、それぞれ 79%および 89%であった。また、正面輝度は 8527cdZm2であり 、光源形状はぼやけていた。これらの結果を表 1に示す。 [0203] A light condensing layer in which fine particles are embedded in translucent resin is formed on the surface of the transparent film, and the fine particles are dispersed in the transparent film on the back surface of the transparent film. A light diffusing sheet having the light diffusing layer formed thereon was obtained. In the obtained light diffusion sheet, the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusion layer is 0.02, and the surface roughness of the light collecting layer is 2.1. μm. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.7. The total light transmittance and haze of the obtained light diffusion sheet were 79% and 89%, respectively. The front luminance was 8527 cdZm 2 and the light source shape was blurred. These results are shown in Table 1.
[0204] 《比較例 1 3》  [0204] << Comparative Example 1 3 >>
ポリエチレンテレフタレートフィルム(コスモシャイン A— 4300、東洋紡績 (株)製;厚 さ 100 m)を透明フィルムとして用 、た。  A polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
[0205] まず、透光性榭脂として、特殊アクリル榭脂 (ユーダブル S - 2840、(株)日本触媒 製;屈折率 1. 49) 100質量部、微粒子群として、シリカ'アクリル複合ィ匕合物の球状 微粒子 (ソリオスター YS、(株)日本触媒製;屈折率 1. 51、平均粒子径 4. 2 ^ πι) 30 質量部、多官能イソシァネートイ匕合物(デスモジュール Ν3200、住化バイエルウレタ ン (株)製) 10質量部およびトルエン 40質量部を充分に攪拌混合した後、バーコータ 一を用いて、透明フィルムの表面に塗布し、乾燥させて、厚さ 16. の光拡散層 を形成した。 [0205] First, as a translucent resin, a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 100 parts by mass, as a fine particle group, silica acrylic composite Spherical fine particles (Soliostar YS, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 4.2 ^ πι) 30 parts by mass, polyfunctional isocyanate compound (Desmodur Ν3200, Sumika Bayer Ureta) 10 parts by mass and 40 parts by mass of toluene after sufficiently stirring and mixing, using a bar coater, applied to the surface of the transparent film and dried to obtain a light diffusion layer having a thickness of 16. Formed.
[0206] 次 、で、透光性榭脂として、特殊アクリル榭脂(ユーダブル S— 2840、(株)日本触 媒製;屈折率 1. 49) 100質量部、微粒子群として、ポリメタクリル酸メチル系架橋物 の球状微粒子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 m) 70質量部、多官能イソシァネート化合物(デスモジュール N3200、住化 ノィエルウレタン (株)製) 10質量部およびトルエン 80質量部を充分に攪拌混合した 後、バーコ一ターを用いて、上記で形成した光拡散層上に塗布し、乾燥させて、厚さ 18. 9 μ mの集光層を形成した。  [0206] Next, as a translucent resin, a special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49) 100 parts by mass, as a fine particle group, polymethyl methacrylate Spherical fine particles of epoxy cross-linked product (Poster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 m) 70 parts by mass, polyfunctional isocyanate compound (Desmodur N3200, Sumika Neue Urethane ( 10 parts by mass and 80 parts by mass of toluene were sufficiently stirred and mixed, and then applied onto the light diffusion layer formed above using a bar coater and dried to a thickness of 18.9 μm The light condensing layer was formed.
[0207] 力べして、透明フィルムの表面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成され、該光拡散層上に、透光性榭脂に微粒子群を埋設させた集光層が形成さ れた光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を構成 する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 02であり、該集光層の表面 粗さは 2. 1 μ mであった。また、該集光層における該微粒子群の平均粒子径に対す る層厚の比率は 1. 4であった。得られた光拡散シートの全光線透過率およびヘイズ は、それぞれ 93%および 73%であった。また、正面輝度は 8714cdZm2であり、光 源形状は明確に確認できた。これらの結果を表 1に示す。 [0207] On the surface of the transparent film, a light diffusing layer in which fine particles are dispersed in a transparent resin is formed, and the fine particles are embedded in the transparent resin on the light diffusing layer. A light diffusing sheet on which a condensing layer was formed was obtained. In the obtained light diffusing sheet, the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusing layer is 0.02, and the surface roughness of the light collecting layer is 2.1. μm. The ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.4. The total light transmittance and haze of the obtained light diffusion sheet were 93% and 73%, respectively. The front luminance was 8714cdZm 2 and the light source shape was clearly confirmed. These results are shown in Table 1.
[0208] 《比較例 1 4》  [0208] Comparative Example 1 4
比較例 1 3と同様の材料を用いて、透明フィルムの裏面に厚さ 15. の光拡 散層を形成した後、該透明フィルムの表面に厚さ 23. 1 mの集光層を形成した。  A light diffusing layer having a thickness of 15. was formed on the back surface of the transparent film using the same material as in Comparative Example 13 and then a light condensing layer having a thickness of 23.1 m was formed on the surface of the transparent film. .
[0209] カゝくして、透明フィルムの表面に、透光性榭脂に微粒子群を埋設させた集光層が形 成され、該透明フィルムの裏面に、透光性榭脂に微粒子群を分散させた光拡散層が 形成された光拡散シートが得られた。得られた光拡散シートにおいて、該光拡散層を 構成する透光性榭脂と微粒子群との屈折率差の絶対値は 0. 02であり、該集光層の 表面粗さは 2. O /z mであった。また、該集光層における該微粒子群の平均粒子径に 対する層厚の比率は 1. 7であった。得られた光拡散シートの全光線透過率およびへ ィズは、それぞれ 78%および 79%であった。また、正面輝度は 8662cdZm2であり 、光源形状はぼやけていた。これらの結果を表 1に示す。 [0209] A light condensing layer in which fine particles are embedded in a translucent resin is formed on the surface of the transparent film, and the fine particles are added to the transparent film on the back surface of the transparent film. A light diffusing sheet on which a dispersed light diffusing layer was formed was obtained. In the obtained light diffusion sheet, the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group is 0.02, and the surface roughness of the light collecting layer is 2.O. / zm. Further, the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.7. The total light transmittance and haze of the obtained light diffusion sheet were 78% and 79%, respectively. Further, the front luminance was 8662 cdZm 2 and the light source shape was blurred. These results are shown in Table 1.
[0210] 《比較例 1 5》 シャープ (株)製の液晶テレビ AQUOS LC— 37AD5に用いられて 、る光拡散板 を用いて、正面輝度の測定および光源形状の観察を行ったところ、正面輝度は 536 5cdZm2であり、光源形状は確認できな力つた。 [0210] Comparative Example 1 5 When the front luminance was measured and the shape of the light source was measured using a light diffusing plate used for the AQUOS LC-37AD5 LCD TV manufactured by Sharp Corporation, the front luminance was 536 5cdZm 2 and the shape of the light source I couldn't confirm it.
[0211] 《比較例 1 6》  [0211] Comparative Example 1 6
ポリエチレンテレフタレートフィルム(コスモシャイン A— 4300、東洋紡績 (株)製;厚 さ 100 m)を透明フィルムとして用 、た。  A polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) was used as a transparent film.
[0212] 透光性榭脂として、特殊アクリル榭脂 (ユーダブル S— 2840、(株)日本触媒製;屈 折率 1. 49) 100質量部、微粒子群として、ポリメタクリル酸メチル系架橋物の球状微 粒子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 μ m) 70質量部、多官能イソシァネート化合物(デスモジュール N3200、住化バイエル ウレタン (株)製) 10質量部およびトルエン 80質量部を充分に攪拌混合した後、バー コーターを用いて、透明フィルムの表面に塗布し、乾燥させて、厚さ 24. 3 mの集 光層を形成した。  [0212] As a translucent resin, special acrylic resin (Udouble S-2840, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.49), 100 parts by mass, as a fine particle group, a polymethyl methacrylate-based crosslinked product Spherical fine particles (Poster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 μm) 70 parts by mass, polyfunctional isocyanate compound (Desmodur N3200, manufactured by Sumika Bayer Urethane Co., Ltd.) 10 parts by mass and 80 parts by mass of toluene were sufficiently stirred and mixed, and then applied onto the surface of the transparent film using a bar coater and dried to form a light collecting layer having a thickness of 24.3 m.
[0213] カゝくして、透明フィルムの表面に、透光性榭脂に微粒子群を埋設させた集光層だけ が形成された光拡散シートが得られた。得られた光拡散シートにおいて、集光層の表 面粗さは 2. 1 μ mであり、該集光層における該微粒子群の平均粒子径に対する層 厚の比率は 1. 8であった。得られた光拡散シートの全光線透過率およびヘイズは、 それぞれ 81 %および 89%であった。また、正面輝度は 5959cdZm2であり、光源形 状は確認できな力つた。なお、正面輝度は、本比較例で得られた光拡散シートに、比 較例 1 5で用 、た光拡散板を併用して測定した。 [0213] As a result, a light diffusing sheet was obtained in which only the light-collecting layer in which fine particles were embedded in translucent resin was formed on the surface of the transparent film. In the obtained light diffusion sheet, the surface roughness of the light collecting layer was 2.1 μm, and the ratio of the layer thickness to the average particle diameter of the fine particle group in the light collecting layer was 1.8. The total light transmittance and haze of the obtained light diffusion sheet were 81% and 89%, respectively. In addition, the front luminance was 5959cdZm 2 and the light source shape was too strong to confirm. The front luminance was measured by using the light diffusing plate used in Comparative Example 15 in combination with the light diffusing sheet obtained in this Comparative Example.
[0214] [表 1] [0214] [Table 1]
Figure imgf000065_0001
Figure imgf000065_0001
[0215] 表 1から明らかなように、光拡散層を構成する透光性榭脂と微粒子群との屈折率差 の絶対値が 0. 05以上であるという条件を満足する実施例 1 1〜1 4の光拡散シ ートは、充分な全光線透過率と、高いヘイズ、充分な正面輝度を示すので、光拡散 シートとして充分な光拡散性と集光性とを兼ね備えており、また、光源の形状を完全 に消すことができるので、線光源を面光源にする機能を有することがわかる。 [0215] As is apparent from Table 1, Examples 1 1 to 1 satisfying the condition that the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group is 0.05 or more. The light diffusion sheet of 14 shows sufficient total light transmittance, high haze, and sufficient front brightness, so it has both sufficient light diffusibility and light collecting properties as a light diffusion sheet. Since the shape of the light source can be completely erased, it can be seen that it has the function of making the line light source a surface light source.
[0216] これに対し、光拡散層を構成する透光性榭脂と微粒子群との屈折率差の絶対値が 0. 05以上であるという条件を満足しない比較例 1 1〜1 4の光拡散シートは、充 分な全光線透過率および正面輝度を示すが、ヘイズが低いので、光拡散性が充分 でなぐまた、光源の形状を完全に消すことができないので、線光源を面光源にする 機能を有しないことがわかる。さらに、比較例 1—5の従来公知のポリカーボネート製 光拡散板や透明フィルムに集光層だけを形成した比較例 1 6の光拡散シート (従来 公知のポリカーボネート製光拡散板を併用)は、光源の形状を完全に消すことができ るので、線光源を面光源にする機能を有するが、光拡散性や正面輝度が低ぐ光拡 散シートとして満足できるものではな!/、。  [0216] On the other hand, the light of Comparative Examples 1 1 to 14 that does not satisfy the condition that the absolute value of the refractive index difference between the translucent resin and the fine particle group constituting the light diffusion layer is 0.05 or more. The diffuser sheet exhibits sufficient total light transmittance and frontal brightness, but its haze is low, so the light diffusibility is not sufficient, and the shape of the light source cannot be completely erased. It turns out that it does not have a function to do. Furthermore, the light diffusion sheet of Comparative Example 1-5 in which only a light-collecting layer is formed on a conventionally known polycarbonate light diffusion plate of Comparative Example 1-5 or a transparent film (used in combination with a conventionally known polycarbonate light diffusion plate) is a light source. Since the shape of the light source can be completely erased, it has the function of using a line light source as a surface light source, but it is not satisfactory as a light diffusing sheet with low light diffusivity and front brightness! /.
[0217] (2)下記実施例 2— 1〜2— 5および比較例 2— 1〜2— 6では、高い性能を有する 光拡散シートを得るには、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒 子群 (微粒子群 A)との屈折率差の絶対値が 0. 05以上であると 、う条件が必要であ り、特に、耐傷付性および微粒子脱落性に優れた光拡散シートを得るには、該光拡 散層を構成する透光性榭脂が無機超微粒子または有機無機複合超微粒子を含有 する (メタ)アクリル系榭脂であるという条件が必要であることを実証する。なお、下記 実施例 2— 1〜2— 5および比較例 2— 1〜2— 6にお ヽて、透光性榭脂に微粒子群 Aおよび Bを分散させた光拡散層は、光拡散'集光層を意味する。  (2) In the following Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-6, in order to obtain a light diffusing sheet having high performance, a light transmissive film constituting the light diffusing layer is used. If the absolute value of the difference in refractive index between the fat and at least one type of fine particle group (fine particle group A) is 0.05 or more, the condition is necessary, and in particular, it has excellent scratch resistance and fine particle shedding. In order to obtain a light diffusion sheet, it is necessary that the translucent resin constituting the light diffusion layer is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles. Prove that. In the following Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-6, the light diffusion layer in which the fine particle groups A and B are dispersed in the light-transmitting resin is a light diffusion layer. It means the light collecting layer.
[0218] まず、光拡散シートを構成する要素の物性値を測定する方法および光拡散シート の性能を評価する方法につ!、て説明する。  [0218] First, a method for measuring physical properties of elements constituting the light diffusion sheet and a method for evaluating the performance of the light diffusion sheet will be described.
[0219] <微粒子群の平均粒子径>  [0219] <Average particle size of fine particle group>
微粒子群の平均粒子径は、粒度分布測定装置 (マルチサイザ一 II型、コールター( 株)製)を用いて測定した体積平均粒子径である。  The average particle size of the fine particle group is a volume average particle size measured using a particle size distribution analyzer (Multisizer II type, manufactured by Coulter Co., Ltd.).
[0220] <光拡散層の層厚 > 光拡散層の層厚は、厚み測定器 (ダイヤルシックネスゲージ、(株)尾崎製作所製) を用いて、各試料あたり 5点以上で層厚を測定し、得られた測定値の平均値である。 [0220] <Layer thickness of light diffusion layer> The layer thickness of the light diffusing layer is the average value of the measured values obtained by measuring the layer thickness at 5 or more points for each sample using a thickness meter (Dial Thickness Gauge, manufactured by Ozaki Manufacturing Co., Ltd.). .
[0221] <透光性榭脂の屈折率 >  [0221] <Refractive index of translucent resin>
光拡散層を構成する透光性樹脂の屈折率は、透光性樹脂の水酸基 (OH基)と多 官能イソシァネートイ匕合物(デスモジュール N3200、住化バイエルウレタン (株)製) のイソシァネート基 (NCO基)とが OH基 ZNCO基 = 1 (当量比)となるように、透光 性榭脂に多官能イソシァネートイ匕合物を添加した後、バーコ一ターを用いて、厚さ 40 mのフィルムを成形し、このフィルムの屈折率を多波長アッベ屈折計(DR— M2、 ( 株)ァタゴ製)で測定した。測定波長は 589. 3nm、測定温度は 25°Cであった。  The refractive index of the translucent resin constituting the light diffusing layer is the isocyanate group (Desmodur N3200, manufactured by Sumika Bayer Urethane Co., Ltd.), a hydroxyl group (OH group) of the translucent resin and a polyfunctional isocyanate compound (manufactured by Sumika Bayer Urethane Co., Ltd.) After adding the polyfunctional isocyanate compound to the translucent resin so that the NCO group) becomes OH group ZNCO group = 1 (equivalent ratio), a 40 m thick film is used using a bar coater The refractive index of this film was measured with a multiwavelength Abbe refractometer (DR-M2, manufactured by Atago Co., Ltd.). The measurement wavelength was 589.3 nm and the measurement temperature was 25 ° C.
[0222] <微粒子群 Aの屈折率 >  [0222] <Refractive index of fine particle group A>
光拡散層を構成する透光性榭脂に分散させた微粒子群 Aの屈折率は、数種類の カーギル標準屈折液 (スタンダードシリーズ、 (株)モリテックス製;屈折率範囲 n 25= The refractive index of the fine particle group A dispersed in the translucent resin constituting the light diffusion layer is determined by several types of Cargill standard refraction liquids (standard series, manufactured by Moritex Corp .; refractive index range n 25 =
D  D
1. 300〜2. 11)を用意し、スライドグラスに微粒子群 Aを載置し、予想される屈折率 の標準屈折液を添加し、カバーガラスで挟んだ後、 25°Cで透過光学顕微鏡 (デジタ ルマイクロスコープ VHX— 200、(株)キーエンス製;光源ランプは、 12V、 100Wの ノ、ロゲンランプ (色温度 3, 100K (最大光量時)))を用いて観察し、微粒子群 Aと標 準屈折液との界面が最も見えにくい時に用いた標準屈折液の屈折率を微粒子群 A の屈折率とした。ただし、微粒子群 Aと標準屈折液との界面が最も見えにくい時に用 いた標準屈折液が屈折率の連続した 2種類存在する場合は、それらの屈折率の中 間値を微粒子群 Aの屈折率とし、また、微粒子群 Aの屈折率がカーギル標準屈折液 の屈折率範囲外である場合は、その材質の屈折率を微粒子群 Aの屈折率とした。  1. Prepare 300-2.11), place microparticles group A on a slide glass, add a standard refractive solution with the expected refractive index, sandwich it with a cover glass, and then use a transmission optical microscope at 25 ° C. (Digital microscope VHX-200, manufactured by Keyence Corporation; the light source lamp is a 12V, 100W, Rogen lamp (color temperature 3, 100K (at maximum light intensity))). The refractive index of the standard refractive liquid used when the interface with the quasi-refractive liquid is most difficult to see is defined as the refractive index of the fine particle group A. However, if there are two types of standard refractive liquids that have a continuous refractive index when the interface between the fine particle group A and the standard refractive liquid is most difficult to see, the intermediate value of these refractive indices is set to the refractive index of the fine particle group A. In addition, when the refractive index of the fine particle group A is outside the refractive index range of the Cargill standard refraction liquid, the refractive index of the material is taken as the refractive index of the fine particle group A.
[0223] <光拡散層の表面粗さ >  [0223] <Surface roughness of light diffusion layer>
光拡散層の表面粗さは、表面粗さ計 (Dektak3030、日本真空技術 (株)製)を用 いて、各試料あたり無作為に選択した 5個所以上の算術平均粗さを測定し、得られた 測定値の平均値である。  The surface roughness of the light diffusing layer was obtained by measuring the arithmetic average roughness at 5 or more locations randomly selected for each sample using a surface roughness meter (Dektak3030, manufactured by Nippon Vacuum Technology Co., Ltd.). The average value of the measured values.
[0224] <全光線透過率およびヘイズ >  [0224] <Total light transmittance and haze>
試料の全光線透過率およびヘイズは、濁度計 (NDH— 1001DP、日本電色工業( 株)製)を用いて測定した。 [0225] <正面輝度 > The total light transmittance and haze of the sample were measured using a turbidimeter (NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.). [0225] <Front brightness>
試料の正面輝度は、光源として、冷陰極管 (光源上輝度:約 10, 000cd,m2)を用 いて、下記の方法により測定した。 The front luminance of the sample was measured by the following method using a cold cathode tube (luminance on the light source: about 10,000 cd, m 2 ) as a light source.
[0226] 測定方法:  [0226] Measuring method:
冷陰極管の表面から 5mm離して厚さ 2mmのポリカーボネート製透明支持体を設 置し、その上に試料を載置した。試料から 50cm離れた位置に輝度計 (BM— 7、(株 )トプコン製)を固定し、光源上の輝度を測定した。  A 2 mm-thick polycarbonate transparent support was placed 5 mm away from the surface of the cold cathode tube, and a sample was placed on it. A luminance meter (BM-7, manufactured by Topcon Co., Ltd.) was fixed at a position 50 cm away from the sample, and the luminance on the light source was measured.
[0227] <光源形状 >  [0227] <Light source shape>
正面輝度の測定時に、目視で光源の形状を観察し、下記の基準で評価した。 〇:光源形状が確認できな力つた;  When measuring the front luminance, the shape of the light source was visually observed and evaluated according to the following criteria. ◯: The power source shape could not be confirmed;
△:光源形状がぼやけて 、た;  Δ: The light source shape is blurred;
X:光源形状が明確に確認できた。  X: The light source shape was clearly confirmed.
[0228] <耐傷付性〉  [0228] <Scratch resistance>
耐傷付性は、摩擦試験機 (FR— 2型、スガ試験機 (株)製)を用いて評価した。まず 、摩擦試験機の摩擦子摺動面にポリエチレンテレフタレート(PET)フィルム(コスモシ ャイン A— 4300、東洋紡績 (株)製;厚さ 100 /z m)を設置し、その上に光拡散層が対 向するように光拡散シートを載置し、 200gの荷重をかけ、摩擦子を 10回往復させた 。その後、光拡散シートの表面における傷の発生状況を光学顕微鏡 (450倍)で観察 し、 PETフィルムの表面における傷の発生状況を目視で観察することにより、光拡散 シートおよび PETフィルムの耐傷付性を下記の基準で評価した。  The scratch resistance was evaluated using a friction tester (FR-2 type, manufactured by Suga Test Instruments Co., Ltd.). First, a polyethylene terephthalate (PET) film (Cosmo Chain A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 / zm) was installed on the friction surface of the friction tester, and a light diffusion layer was placed on top of it. A light diffusing sheet was placed so as to face, a load of 200 g was applied, and the friction element was reciprocated 10 times. After that, the occurrence of scratches on the surface of the light diffusion sheet is observed with an optical microscope (450 times), and the occurrence of scratches on the surface of the PET film is visually observed. Was evaluated according to the following criteria.
◎:全く傷が観察されな力つた  ◎: No damage was observed
〇:わず力な傷が観察された;  ◯: A strong wound was observed;
△:かなりの傷が観察された;  Δ: considerable scratches observed;
X:著しい傷が観察された。  X: Significant scratches were observed.
[0229] <微粒子脱落性 >  [0229] <Particle shedding>
微粒子群の脱落性は、摩擦試験機 (FR- 2型、スガ試験機 (株)製)を用いて評価 した。まず、摩擦試験機の摩擦子摺動面に不織布 (ベンコット、旭化成 (株)製)を設 置し、その上に光拡散層が対向するように光拡散シートを載置し、 200gの荷重をか け、 10回往復させた。その後、不織布の表面における脱落微粒子の付着状況を光 学顕微鏡 (450倍)で観察し、光拡散シートの微粒子脱落性を下記の基準で評価し た。 The detachability of the fine particle group was evaluated using a friction tester (FR-2, manufactured by Suga Test Instruments Co., Ltd.). First, a non-woven fabric (Bencott, manufactured by Asahi Kasei Co., Ltd.) was placed on the frictional sliding surface of the friction tester, and a light diffusion sheet was placed on top of it so that the light diffusion layer was opposed to it. Or And made 10 round trips. Thereafter, the adhesion state of the drop-off particles on the surface of the nonwoven fabric was observed with an optical microscope (450 times), and the drop-off property of the light diffusion sheet was evaluated according to the following criteria.
◎:脱落微粒子が全く観察されな力つた;  ◎: Dropping fine particles were not observed at all;
〇:微量の脱落微粒子が観察された;  ◯: A small amount of shed particles was observed;
△:少量の脱落微粒子が観察された;  Δ: A small amount of shed particles was observed;
X:多量の脱落微粒子が観察された。  X: A large amount of falling fine particles was observed.
[0230] 次に、実施例および比較例で用いた (メタ)アクリル系榭脂(以下、「共重合体 A」ま たは「共重合体 B」 、うことがある。 )および有機無機複合超微粒子の調製方法につ いて説明する。  [0230] Next, the (meth) acrylic resin (hereinafter referred to as "copolymer A" or "copolymer B") or organic-inorganic composite used in the examples and comparative examples. A method for preparing ultrafine particles will be described.
[0231] <共重合体 Aの調製 >  [0231] <Preparation of copolymer A>
攪拌機、温度計、冷却器、滴下ロートおよび窒素ガス導入管を備えた四つロフラス コに、溶媒として酢酸ブチル 100質量部を入れ、還流温度まで昇温した。次いで、窒 素ガスを導入しながら、単量体としてのシクロへキシルメタタリレート 40質量部、ブチ ノレメタクジレー卜 37. 7質量咅^ブチノレアクジレー卜 7. 3質量咅^ 2 ヒドロキシェチノレメ タクリレート 13. 9質量部、およびメタクリル酸 1. 1質量部、ならびに重合開始剤として の t ブチルパーォキシ 2—ェチルへキサノエート(商品名パーブチル 0、 日本油 脂 (株)製) 3. 0質量部からなる単量体混合物を、 3時間かけて滴下ロートから滴下し た。さらに、 1, 1—ビス(t—ブチルパーォキシ)一3, 3, 5 トリメチルシクロへキサン( 商品名パーへキサ 3M、 日本油脂 (株)製) 0. 2質量部を 30分間間隔で 3回添加し、 還流温度で 2時間保持した。その後、反応溶液を室温まで冷却して共重合体 Aの溶 液を得た。得られた共重合体 Aの固形分濃度は 50. 3%であった。共重合体 Aの分 子量は数平均分子量(Mn)Z重量平均分子量(Mw) = 5, 300/10, 500であった 。 FOXの計算式力 算出した理論的なガラス転移温度は 40°Cであり、また、理論的 な水酸基価は 60であった。  100 parts by mass of butyl acetate was added as a solvent to four Roflascos equipped with a stirrer, thermometer, cooler, dropping funnel and nitrogen gas inlet tube, and the temperature was raised to the reflux temperature. Next, while introducing nitrogen gas, 40 parts by weight of cyclohexyl methacrylate as a monomer, butanol methacrylate 37.7 mass 咅 ^ butynole acrylate 7.3 mass 咅 ^ 2 It consists of 13.9 parts by weight of tacrylate, 1.1 parts by weight of methacrylic acid, and 3.0 parts by weight of t-butylperoxy 2-ethylhexanoate (trade name Perbutyl 0, manufactured by Nippon Oil & Fats Co., Ltd.) as a polymerization initiator. The monomer mixture was dropped from the dropping funnel over 3 hours. Furthermore, 1,1-bis (t-butylperoxy) 1,3,3,5 trimethylcyclohexane (trade name Perhexa 3M, manufactured by NOF Corporation) 0.2 part by mass is added 3 times at 30 minute intervals And held at reflux temperature for 2 hours. Thereafter, the reaction solution was cooled to room temperature to obtain a copolymer A solution. The resulting copolymer A had a solid content concentration of 50.3%. The molecular weight of copolymer A was number average molecular weight (Mn) Z weight average molecular weight (Mw) = 5,300 / 10,500. Formula power of FOX The calculated theoretical glass transition temperature was 40 ° C, and the theoretical hydroxyl value was 60.
[0232] <共重合体 Bの調製 >  [0232] <Preparation of copolymer B>
共重合体 Aの調製において、単量体混合物に含有される単量体の組成を、メチル メタタリレート 37. 2質量部、ブチルメタタリレート 39. 3質量部、 2 ェチルへキシルァ タリレート 8. 5質量部、ヒドロキシェチルメタタリレート 13. 9質量部、およびメタクリル 酸 1. 1質量部に変更したこと以外は、共重合体 Aの調製と同様にして、共重合体 B の溶液を得た。得られた共重合体 Bの固形分濃度は 50. 1%であった。共重合体 B の分子量は数平均分子量(Mn)Z重量平均分子量(Mw) = 5, 700/10, 200で あった。 FOXの計算式力 算出した理論的なガラス転移温度は 40°Cであり、また、 理論的な水酸基価は 60であった。 In the preparation of copolymer A, the composition of the monomer contained in the monomer mixture was changed to 37.2 parts by mass of methyl metatalylate, 39.3 parts by mass of butyl metatalylate, 2 ethylhexyl Copolymer B was prepared in the same manner as Copolymer A, except that 8.5 parts by weight of tallylate, 13.9 parts by weight of hydroxyethyl methacrylate, and 1.1 parts by weight of methacrylic acid were used. A solution was obtained. The resulting copolymer B had a solid content concentration of 50.1%. The molecular weight of copolymer B was number average molecular weight (Mn) Z weight average molecular weight (Mw) = 5,700 / 10,200. Formula force of FOX The calculated theoretical glass transition temperature was 40 ° C, and the theoretical hydroxyl value was 60.
[0233] <有機無機複合超微粒子の調製 >  [0233] <Preparation of organic-inorganic composite ultrafine particles>
特開平 11― 5940号公報の段落 0056〜段落 0061に記載の方法に従って、無機 超微粒子 (シリカ)の表面に有機ポリマー( (メタ)アクリル系榭脂)が固定されてなる有 機無機複合超微粒子 (以下、単に「複合超微粒子」ということがある。)が酢酸ブチル に分散した分散体を得た。複合超微粒子の濃度は 30. 0質量%、複合超微粒子中 の無機物含有量は 57. 8質量%であった。複合超微粒子の平均粒子径は 55nm、 変動係数は 18. 0%であった。複合超微粒子中に存在するアルコキシ基としては、 0 . 12mol/gのメトキシ基が含有されていた。また、複合超微粒子は経時安定性も良 好であった。この複合超微粒子分散体を遠心分離機にかけて得られた上澄み液をゲ ル浸透クロマトグラフィー(GPC)で分析した力 有機ポリマーは検出されな力つた。ま た、上記複合超微粒子分散体の遠心分離後の沈降物である各複合超微粒子をテト ラヒドロフランまたは水で洗浄し、その洗液をゲル浸透クロマトグラフィー(GPC)で分 析したが、有機ポリマーは検出されな力つた。以上の結果は、複合超微粒子におい ては、有機ポリマーが無機超微粒子に単に付着しているのではなぐ強固に固定さ れていることを示している。  Organic inorganic composite ultrafine particles in which an organic polymer ((meth) acrylic resin) is fixed on the surface of inorganic ultrafine particles (silica) according to the method described in JP-A-11-5940, paragraphs 0056 to 0061 (Hereinafter, sometimes simply referred to as “composite ultrafine particles”) was obtained in a dispersion in butyl acetate. The concentration of the composite ultrafine particles was 30.0% by mass, and the inorganic content in the composite ultrafine particles was 57.8% by mass. The composite ultrafine particles had an average particle size of 55 nm and a coefficient of variation of 18.0%. The alkoxy group present in the composite ultrafine particles contained 0.12 mol / g of methoxy group. The composite ultrafine particles also had good stability over time. The force obtained by analyzing the supernatant obtained by centrifuging this composite ultrafine particle dispersion by gel permeation chromatography (GPC) showed that no organic polymer was detected. In addition, each composite ultrafine particle, which is a sediment after centrifugation of the composite ultrafine particle dispersion, was washed with tetrahydrofuran or water, and the washing was analyzed by gel permeation chromatography (GPC). No power was detected. The above results indicate that in the composite ultrafine particles, the organic polymer is firmly fixed rather than simply adhering to the inorganic ultrafine particles.
[0234] なお、複合超微粒子濃度は、複合超微粒子分散体を 1. 33 X 104Pa (100mmHg )の圧力下、 130°Cで 24時間乾燥し、下記の式により算出した。 [0234] The composite ultrafine particle concentration was calculated by the following formula after drying the composite ultrafine particle dispersion at 130 ° C for 24 hours under a pressure of 1.33 X 10 4 Pa (100 mmHg).
複合超微粒子濃度 (質量%) = 100 X D/W  Composite ultrafine particle concentration (mass%) = 100 X D / W
[式中、 Dは乾燥後の複合超微粒子の質量 (g)、 Wは乾燥前の複合超微粒子分散体 の質量 (g)を表す]  [Wherein D represents the mass (g) of the composite ultrafine particles after drying, and W represents the mass (g) of the composite ultrafine particle dispersion before drying]
複合超微粒子中の無機物含有量は、複合超微粒子分散体を 1. 33 X 104Pa (100 mmHg)の圧力下、 130°Cで 24時間乾燥したものについて元素分析を行い、灰分を 複合超微粒子中の無機物含有量とした。 The inorganic content in the composite ultrafine particles was determined by elemental analysis of the composite ultrafine particle dispersion dried at 130 ° C for 24 hours under a pressure of 1.33 X 10 4 Pa (100 mmHg) It was set as the inorganic content in the composite ultrafine particles.
[0235] 複合超微粒子の平均粒子径は、サブミクロン粒子径アナライザー(NICOMPMO DEL370、野崎産業 (株)製)を用いて、動的光散乱測定法により、 23°Cで測定した 。測定した平均粒子径は、体積平均粒子径である。測定試料は、複合超微粒子濃度 が 0. 1〜2. 0質量%であるテトラヒドロフランに分散させた複合超微粒子分散体 (複 合超微粒子中の有機ポリマーがテトラヒドロフランに溶解しない場合には、有機ポリマ 一が溶解する溶媒に分散させた分散体)を用いた。  [0235] The average particle size of the composite ultrafine particles was measured at 23 ° C by a dynamic light scattering measurement method using a submicron particle size analyzer (NICOMPMO DEL370, manufactured by Nozaki Sangyo Co., Ltd.). The measured average particle diameter is a volume average particle diameter. The measurement sample was a composite ultrafine particle dispersion dispersed in tetrahydrofuran having a composite ultrafine particle concentration of 0.1 to 2.0% by mass (if the organic polymer in the composite ultrafine particles does not dissolve in tetrahydrofuran, the organic polymer Dispersed in a solvent in which one is dissolved).
[0236] 複合超微粒子の平均粒子径の変動係数は、下記式により算出した。  [0236] The coefficient of variation of the average particle diameter of the composite ultrafine particles was calculated by the following equation.
変動係数 (%) =複合超微粒子の粒子径の標準偏差 Z複合超微粒子の平均粒子径 複合超微粒子中のアルコキシ基含有量は、複合超微粒子分散体を 1. 33 X 104Pa (lOOmmHg)の圧力下、 130°Cで 24時間乾燥した複合超微粒子 5gを、アセトン 50 g、 2N— NaOH水溶液 50gの混合物に分散させ、室温で 24時間攪拌し、その後、ガ スクロマトグラフィーで分散液中のアルコールを定量して算出した。 Coefficient of variation (%) = Standard deviation of particle diameter of composite ultrafine particles Z Average particle diameter of composite ultrafine particles The content of alkoxy groups in composite ultrafine particles is 1.33 X 10 4 Pa (lOOmmHg) 5 g of composite ultrafine particles dried at 130 ° C for 24 hours under a pressure of 50 μg of acetone and 50 g of 2N-NaOH aqueous solution was dispersed in the mixture and stirred at room temperature for 24 hours. The alcohol was quantitatively calculated.
[0237] 複合超微粒子の経時安定性は、複合超微粒子分散体をガードナー粘度チューブ 中に密閉し、 50°Cで 1ヶ月保存した後、複合超微粒子の凝集や沈降、粘度の上昇な どが認められないものを「良好」とした。  [0237] The composite ultrafine particles are stable over time by sealing the composite ultrafine particle dispersion in a Gardner viscosity tube and storing it at 50 ° C for 1 month, then agglomeration and sedimentation of the composite ultrafine particles, increase in viscosity, etc. What was not recognized was set as "good".
[0238] 《実施例 2— 1》  [Example 2-1]
上記で得られた複合超微粒子の酢酸ブチル分散体 100質量部に対し、上記で得 られた共重合体 Aの溶液 27質量部を混合することにより、固形分中の無機物含有量 力 S40質量%である共重合体 Aと複合超微粒子とを含有する透光性榭脂溶液を得た 。なお、透光性榭脂の屈折率は 1. 51であった。  By mixing 27 parts by mass of the copolymer A solution obtained above with 100 parts by mass of the butyl acetate dispersion of the composite ultrafine particles obtained above, the inorganic substance content in the solid content force S40% by mass Thus, a translucent resin solution containing the copolymer A and the composite ultrafine particles was obtained. The refractive index of the translucent resin was 1.51.
[0239] この透光性榭脂溶液に、微粒子群 Aとして、ベンゾグアナミン'ホルムアルデヒド縮 合物の球状微粒子 (ェポスター MS、(株)日本触媒製;屈折率 1. 66、平均粒子径 1 . 6 /z m)を透光性榭脂溶液に対して 30質量%と、微粒子群 Bとして、ポリメタクリル酸 メチル系架橋物の球状微粒子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 5 1、平均粒子径 13. 5 m)を透光性榭脂溶液に対して 70質量%とを添加した。その 後、この混合物に、多官能イソシァネートイ匕合物(デスモジュール N3200、住化バイ エルウレタン (株)製)を OH基 ZNCO基 = 1 (当量比)となる量だけ秤量して添加した 。得られた榭脂組成物を、バーコ一ターを用いて、透明フィルムとしてのポリエチレン テレフタレートフィルム(コスモシャイン A— 4300、東洋紡績 (株)製;厚さ 100 m) 上に塗布し、室温で 1時間放置した後、 80°Cで 2時間乾燥させ、厚さ 25 mの光拡 散層を有する光拡散シートを得た。なお、光拡散層を構成する透光性榭脂と微粒子 群 Aとの屈折率差の絶対値は 0. 15であり、光拡散層の表面粗さは 1. 55 /z mであつ た。 [0239] In this translucent resin solution, as fine particle group A, spherical fine particles of benzoguanamine 'formaldehyde condensate (Epester MS, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.66, average particle size 1.6 / zm) is 30% by mass with respect to the translucent resin solution, and as microparticles group B, spherical microparticles of polymethyl methacrylate-based crosslinked product (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1. 51, An average particle diameter of 13.5 m) was added to 70% by mass with respect to the translucent resin solution. Thereafter, a polyfunctional isocyanate compound (Desmodur N3200, manufactured by Sumika Bayer Urethane Co., Ltd.) was weighed and added to this mixture in an amount such that OH group ZNCO group = 1 (equivalent ratio). . The obtained resin composition was coated on a polyethylene terephthalate film (Cosmo Shine A-4300, manufactured by Toyobo Co., Ltd .; thickness 100 m) as a transparent film using a bar coater. After standing for a period of time, it was dried at 80 ° C. for 2 hours to obtain a light diffusion sheet having a light diffusion layer having a thickness of 25 m. The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.15, and the surface roughness of the light diffusion layer was 1.55 / zm.
[0240] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 71%および 93 %であった。また、正面輝度は 7, 253cdZm2であり、光源形状は確認できな力つた これらの結果と光拡散シートの性能を表 2に示す。 [0240] The total light transmittance and haze of the obtained light diffusion sheet were 71% and 93%, respectively. The front luminance was 7,253 cdZm 2 and the light source shape could not be confirmed. These results and the performance of the light diffusion sheet are shown in Table 2.
[0241] 《実施例 2— 2》  [0241] <Example 2-2>
実施例 2— 1において、共重合体 Aの溶液に代えて、上記で得られた共重合体 Bの 溶液を用いて、透光性榭脂溶液を調製したこと以外は、実施例 2—1と同様にして、 厚さ 24 /z mの光拡散層を有する光拡散シートを得た。なお、透光性榭脂の屈折率は 1. 51であった。また、光拡散層を構成する透光性榭脂と微粒子群 Aとの屈折率差の 絶対値は 0. 15であり、光拡散層の表面粗さは 1. 52 /z mであった。  In Example 2-1, except that the solution of the copolymer B obtained above was used instead of the solution of the copolymer A, a translucent resin solution was prepared. In the same manner as described above, a light diffusion sheet having a light diffusion layer with a thickness of 24 / zm was obtained. The refractive index of the translucent resin was 1.51. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.15, and the surface roughness of the light diffusion layer was 1.52 / zm.
[0242] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 70%および 94 %であった。また、正面輝度は 7, 186cdZm2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 [0242] The total light transmittance and haze of the obtained light diffusion sheet were 70% and 94%, respectively. In addition, the front luminance was 7,186 cdZm 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0243] 《実施例 2— 3》  [0243] Example 2-3
実施例 2—1において、透光性榭脂溶液に、微粒子群 Aとして、酸化チタン微粒子( TIPAQUE CR— 95、石原産業 (株)製;平均粒子径 250nm)を透光性榭脂溶液 に対して 20質量%と、微粒子群 Bとして、ポリメタクリル酸メチル系架橋物の球状微粒 子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 /z m) を透光性榭脂溶液に対して 70質量%とを添加したこと以外は、実施例 2— 1と同様に して、厚さ 26 mの光拡散層を有する光拡散シートを得た。なお、光拡散層を構成 する透光性榭脂と微粒子群 Aとの屈折率差の絶対値は 1. 20であり、光拡散層の表 面粗さは 1. 49 /z mであった。 [0244] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 46%および 92 %であった。また、正面輝度は 4, 658cdZm2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 In Example 2-1, titanium oxide fine particles (TIPAQUE CR-95, manufactured by Ishihara Sangyo Co., Ltd .; average particle size 250 nm) as fine particle group A were added to the translucent resin solution. As a fine particle group B, a spherical particle of polymethyl methacrylate-based cross-linked product (Epester MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 / zm) is passed through. A light diffusing sheet having a light diffusing layer having a thickness of 26 m was obtained in the same manner as in Example 2-1, except that 70% by mass was added to the light waving solution. The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 1.20, and the surface roughness of the light diffusion layer was 1.49 / zm. [0244] The total light transmittance and haze of the obtained light diffusion sheet were 46% and 92%, respectively. In addition, the front luminance was 4,658 cdZm 2 , and the light source shape could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0245] 《実施例 2— 4》  [Example 2-4]
実施例 2—1において、透光性榭脂溶液に、微粒子群 Aとして、ベンゾグアナミン' ホルムアルデヒド縮合物の球状微粒子 (ェポスター MS、(株)日本触媒製;屈折率 1 . 66、平均粒子径 1. 6 m)を透光性榭脂溶液に対して 30質量%だけ添加したが、 微粒子群 Bとして、ポリメタクリル酸メチル系架橋物の球状微粒子 (ェポスター MA10 13、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 m)を添加しな力つたこと 以外は、実施例 2—1と同様にして、厚さ 23 mの光拡散層を有する光拡散シートを 得た。なお、光拡散層を構成する透光性榭脂と微粒子群 Aとの屈折率差の絶対値は 0. 15であり、光拡散層の表面粗さは 0. 49 mであった。  In Example 2-1, spherical fine particles of benzoguanamine 'formaldehyde condensate as fine particle group A (Poster MS, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.66, average particle size 1. 6 m) was added in an amount of 30% by mass with respect to the translucent resin solution, but as fine particle group B, spherical particles of polymethyl methacrylate-based crosslinked product (Epester MA10 13, manufactured by Nippon Shokubai Co., Ltd .; refractive index) 1. A light diffusing sheet having a light diffusing layer having a thickness of 23 m was obtained in the same manner as in Example 2-1, except that 1.51 and an average particle size of 13.5 m) were added. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.15, and the surface roughness of the light diffusion layer was 0.49 m.
[0246] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 79%および 93 %であった。また、正面輝度は 6, 621cd/m2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 [0246] The total light transmittance and haze of the obtained light diffusing sheet were 79% and 93%, respectively. The front luminance was 6,621 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0247] 《実施例 2— 5》  [Example 2-5]
実施例 2—1において、透光性榭脂溶液に、微粒子群 Aとして、酸ィ匕亜鉛微粒子( LPZINC— 2、堺化学工業 (株)製;屈折率 1. 95、平均粒子径 m)を透光性榭脂 溶液に対して 20質量%と、微粒子群 Bとして、ポリメタクリル酸メチル系架橋物の球状 微粒子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 51、平均粒子径 13. 5 μ m)を透光性榭脂溶液に対して 70質量%とを添加したこと以外は、実施例 2— 1と 同様にして、厚さ 22 mの光拡散層を有する光拡散シートを得た。なお、光拡散層 を構成する透光性榭脂と微粒子群 Aとの屈折率差の絶対値は 0. 44であり、光拡散 層の表面粗さは 1. 48 mであった。  In Example 2-1, the translucent resin solution was mixed with acid zinc fine particles (LPZINC-2, manufactured by Sakai Chemical Industry Co., Ltd .; refractive index 1.95, average particle size m) as the fine particle group A. 20% by mass with respect to the translucent rosin solution, and as microparticles group B, spherical microparticles of polymethyl methacrylate-based cross-linked product (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13 A light diffusion sheet having a light diffusion layer having a thickness of 22 m was prepared in the same manner as in Example 2-1, except that 70% by mass of 5 μm) was added to the translucent resin solution. Obtained. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.44, and the surface roughness of the light diffusion layer was 1.48 m.
[0248] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 70%および 90 %であった。また、正面輝度は 7, 013cd/m2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 [0248] The total light transmittance and haze of the obtained light diffusion sheet were 70% and 90%, respectively. In addition, the front luminance was 7,013 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0249] 《比較例 2— 1》 実施例 2— 1にお ヽて、共重合体 Aの溶液に複合超微粒子を添加せずに透光性榭 脂溶液を調製したこと以外は、実施例 2—1と同様にして、厚さ 24 mの光拡散層を 有する光拡散シートを得た。なお、光拡散層を構成する透光性榭脂と微粒子群 Aと の屈折率差の絶対値は 0. 17であり、光拡散層の表面粗さは 1. 53 /z mであった。 [0249] << Comparative Example 2-1 >> In Example 2-1, the thickness of the film was changed in the same manner as in Example 2-1, except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer A solution. A light diffusion sheet having a light diffusion layer of 24 m was obtained. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.17, and the surface roughness of the light diffusion layer was 1.53 / zm.
[0250] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 70%および 91 %であった。また、正面輝度は 7, 213cd/m2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 [0250] The total light transmittance and haze of the obtained light diffusion sheet were 70% and 91%, respectively. In addition, the front luminance was 7,213 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0251] 《比較例 2— 2》  [0251] Comparative Example 2-2
実施例 2— 2にお ヽて、共重合体 Bの溶液に複合超微粒子を添加せずに透光性榭 脂溶液を調製したこと以外は、実施例 2と同様にして、厚さ 26 mの光拡散層を有す る光拡散シートを得た。なお、光拡散層を構成する透光性榭脂と微粒子群 Aとの屈 折率差の絶対値は 0. 05であり、光拡散層の表面粗さは 1. であった。  In Example 2-2, a thickness of 26 m was obtained in the same manner as in Example 2 except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer B solution. A light diffusing sheet having a light diffusing layer was obtained. The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.05, and the surface roughness of the light diffusion layer was 1.
[0252] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 70%および 92 %であった。また、正面輝度は 7, 159cdZm2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 [0252] The total light transmittance and haze of the obtained light diffusion sheet were 70% and 92%, respectively. In addition, the front luminance was 7,159 cdZm 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0253] 《比較例 2— 3》  [0253] <Comparative Example 2-3>
実施例 2— 3にお ヽて、共重合体 Aの溶液に複合超微粒子を添加せずに透光性榭 脂溶液を調製したこと以外は、実施例 2— 3と同様にして、厚さ の光拡散層を 有する光拡散シートを得た。なお、光拡散層を構成する透光性榭脂と微粒子群 Aと の屈折率差の絶対値は 1. 22であり、光拡散層の表面粗さは 1. であった。  In Example 2-3, the thickness was changed in the same manner as in Example 2-3 except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer A solution. A light diffusing sheet having a light diffusing layer was obtained. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 1.22, and the surface roughness of the light diffusion layer was 1.
[0254] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 45%および 92 %であった。また、正面輝度は 4, 523cdZm2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 1に示す。 [0254] The total light transmittance and haze of the obtained light diffusion sheet were 45% and 92%, respectively. In addition, the front luminance was 4,523 cdZm 2 , and the shape of the light source could not be confirmed. Table 1 shows these results and the performance of the light diffusion sheet.
[0255] 《比較例 2— 4》  [0255] << Comparative Example 2-4 >>
実施例 2— 5にお ヽて、共重合体 Aの溶液に複合超微粒子を添加せずに透光性榭 脂溶液を調製したこと以外は、実施例 2— 5と同様にして、厚さ 21 μ mの光拡散層を 有する光拡散シートを得た。なお、光拡散層を構成する透光性榭脂と微粒子群 Aと の屈折率差の絶対値は 0. 46であり、光拡散層の表面粗さは 1. 46 mであった。 [0256] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 71%および 88 %であった。また、正面輝度は 7, 002cd/m2であり、光源形状は確認できな力つた 。これらの結果と光拡散シートの性能を表 2に示す。 In Example 2-5, the thickness was determined in the same manner as in Example 2-5, except that the translucent resin solution was prepared without adding the composite ultrafine particles to the copolymer A solution. A light diffusion sheet having a 21 μm light diffusion layer was obtained. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.46, and the surface roughness of the light diffusion layer was 1.46 m. [0256] The total light transmittance and haze of the obtained light diffusion sheet were 71% and 88%, respectively. In addition, the front luminance was 7,002 cd / m 2 , and the shape of the light source could not be confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0257] 《比較例 2— 5》  [0257] << Comparative Example 2-5 >>
実施例 2—1において、透光性榭脂溶液に、微粒子群 Aとして、ポリメタクリル酸メチ ル系架橋物の球状微粒子 (ェポスター MA1004、(株)日本触媒製;屈折率 1. 51、 平均粒子径 4. 3 m)を透光性榭脂溶液に対して 30質量%と、微粒子群 Bとして、 ポリメタクリル酸メチル系架橋物の球状微粒子 (ェポスター MA1013、(株)日本触媒 製;屈折率 1. 51、平均粒子径 13. 5 m)を透光性榭脂溶液に対して 70質量%とを 添加したこと以外は、実施例 2—1と同様にして、厚さ 24 mの光拡散層を有する光 拡散シートを得た。なお、光拡散層を構成する透光性榭脂と微粒子群 Aとの屈折率 差の絶対値は 0. 00であり、光拡散層の表面粗さは 1. 58 /z mであった。  In Example 2-1, spherical particles of poly (methacrylic acid) methyl-based cross-linked product as fine particle group A in a translucent resin solution (Epaster MA1004, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle) The diameter of 4.3 m is 30% by mass with respect to the translucent resin solution, and the fine particle group B is a spherical particle of polymethyl methacrylate-based crosslinked product (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1 A light diffusion layer having a thickness of 24 m was obtained in the same manner as in Example 2-1, except that 70% by mass of 51, average particle size of 13.5 m) was added to the translucent resin solution. A light diffusing sheet having The absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.00, and the surface roughness of the light diffusion layer was 1.58 / zm.
[0258] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 75%および 90 %であった。また、正面輝度は 9, 012cdZm2であり、光源形状は明確に確認できた 。これらの結果と光拡散シートの性能を表 2に示す。 [0258] The total light transmittance and haze of the obtained light diffusion sheet were 75% and 90%, respectively. The front luminance was 9,012 cdZm 2 , and the light source shape was clearly confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0259] 《比較例 2— 6》  [0259] Comparative Example 2-6
実施例 2— 4において、透光性榭脂溶液に、微粒子群 Aとして、ポリメタクリル酸メチ ル系架橋物の球状微粒子 (ェポスター MA1004、(株)日本触媒製;屈折率 1. 51、 平均粒子径 4. 3 m)を添加した力 微粒子群 Bとして、ポリメタクリル酸メチル系架 橋物の球状微粒子 (ェポスター MA1013、(株)日本触媒製;屈折率 1. 51、平均粒 子径 13. 5 m)を添加しな力つたこと以外は、実施例 2— 4と同様にして、厚さ 22 mの光拡散層を有する光拡散シートを得た。なお、光拡散層を構成する透光性榭脂 と微粒子群 Aとの屈折率差の絶対値は 0. 00であり、光拡散層の表面粗さは 0. 78 mであった。  In Example 2-4, spherical fine particles of polymethacrylic acid methyl-based cross-linked product as a fine particle group A in a translucent resin solution (Epaster MA1004, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle A spherical particle of polymethyl methacrylate-based bridge as force particle group B with 4.3 m diameter added (Epaster MA1013, manufactured by Nippon Shokubai Co., Ltd .; refractive index 1.51, average particle size 13.5 A light diffusing sheet having a light diffusing layer having a thickness of 22 m was obtained in the same manner as in Example 2-4, except that m) was not added. The absolute value of the difference in refractive index between the translucent resin constituting the light diffusion layer and the fine particle group A was 0.00, and the surface roughness of the light diffusion layer was 0.78 m.
[0260] 得られた光拡散シートの全光線透過率およびヘイズは、それぞれ 78%および 85 %であった。また、正面輝度は 9, 312cdZm2であり、光源形状は明確に確認できた 。これらの結果と光拡散シートの性能を表 2に示す。 [0260] The total light transmittance and haze of the obtained light diffusion sheet were 78% and 85%, respectively. The front luminance was 9, 312 cdZm 2 and the light source shape was clearly confirmed. Table 2 shows these results and the performance of the light diffusion sheet.
[0261] [表 2]
Figure imgf000076_0001
[0261] [Table 2]
Figure imgf000076_0001
[0262] 表 2から明らかなように、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒 子群 (微粒子群 A)との屈折率差の絶対値が 0. 05以上であると 、う条件を満足する 実施例2—1〜2— 5の光拡散シートは、充分な全光線透過率と、高いヘイズ、充分 な正面輝度を示すと共に、光源の形状を完全に消すことができ、線光源を面光源に する機能を有するので、光拡散シートとして充分な光拡散性と集光性とを兼ね備えて いることがわ力る。しかも、光拡散層を構成する透光性榭脂が (メタ)アクリル系榭脂と 有機無機複合超微粒子とを含有する榭脂であり、耐傷付性に優れているので、例え ば、ロール状で保管する場合に、光拡散シートおよび接触部材のいずれをも傷付くこ とがなぐまた、光拡散層を構成する微粒子群が脱落することもなぐ製造時、保管時 、運搬時、使用時などの取り扱いが容易であり、歩留りが向上することがわかる。 [0262] As is apparent from Table 2, the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group (fine particle group A) is 0.05 or more. The light diffusing sheets of Examples 2-1 to 2-5 satisfying the above conditions exhibit a sufficient total light transmittance, high haze, sufficient front luminance, and can completely erase the shape of the light source. In addition, since it has a function of using a line light source as a surface light source, it has a remarkable light diffusivity and light condensing property as a light diffusion sheet. In addition, the translucent resin constituting the light diffusion layer is a resin containing (meth) acrylic resin and organic-inorganic composite ultrafine particles, and has excellent scratch resistance. During storage, the light diffusing sheet and the contact member will not be damaged, and the particles that make up the light diffusing layer will not fall off.Manufacturing, storage, transportation, use, etc. It is easy to handle and it can be seen that the yield is improved.
[0263] これに対し、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子群 (微粒 子群 A)との屈折率差の絶対値が 0. 05以上であるという条件を満足する比較例 2— 1〜2— 4の光拡散シートは、充分な全光線透過率、正面輝度、ヘイズを示すと共に 、光源の形状を完全に消すことができ、線光源を面光源にする機能を有するので、 光拡散シートとして充分な光拡散性と集光性とを兼ね備えているが、光拡散層を構 成する透光性榭脂が無機超微粒子または有機無機複合超微粒子を含有しな!ヽ (メタ )アクリル系榭脂であり、耐傷付性および微粒子脱落性に劣るので、製造時、保管時 、運搬時、使用時などの取り扱いが容易ではなぐ光拡散シートとして実用的ではな いことがわかる。また、光拡散層を構成する透光性榭脂と少なくとも 1種類の微粒子 群 (微粒子群 A)との屈折率差の絶対値が 0. 05以上であると 、う条件を満足しな!ヽ 比較例 5および 6の光拡散シートは、耐傷付性および微粒子脱落性が良好または比 較的良好であるが、充分な全光線透過率、正面輝度、ヘイズを示すにもかかわらず 、光源の形状を完全に消すことができず、線光源を面光源にする機能を有しないの で、光拡散シートとして実用的ではない。 [0263] On the other hand, the condition that the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group (microparticle group A) is 0.05 or more is satisfied. Comparative Example 2-1 to 2-4 The light diffusing sheet has sufficient total light transmittance, front luminance and haze, and can completely erase the shape of the light source, and the function of using a linear light source as a surface light source Therefore, the light diffusing sheet has sufficient light diffusibility and light collecting property, but the translucent resin constituting the light diffusing layer does not contain inorganic ultrafine particles or organic-inorganic composite ultrafine particles. ! ヽ (Meth) acrylic resin, inferior in scratch resistance and fine particle shedding, so it is not practical as a light diffusion sheet that is not easy to handle during production, storage, transportation, use, etc. I understand that. Further, if the absolute value of the refractive index difference between the translucent resin constituting the light diffusion layer and at least one kind of fine particle group (fine particle group A) is 0.05 or more, the above condition is not satisfied! The light diffusing sheets of Comparative Examples 5 and 6 have good or comparatively good scratch resistance and fine particle shedding, but the shape of the light source is good despite showing sufficient total light transmittance, front luminance, and haze. Is not practical as a light diffusing sheet because it cannot be completely extinguished and does not have a function of using a line light source as a surface light source.
産業上の利用可能性  Industrial applicability
[0264] 本発明の光拡散シートおよび光拡散板は、光源形状を完全に消すことができ、線 光源を面光源にする機能を有するので、光拡散性や集光性に優れると共に、高い全 光線透過率および輝度を与えることができるという基本的な光学特性を維持しながら 、ノ ックライトユニットの部材を削減することができ、し力も光拡散層の耐傷付性に優 れ、取り扱いが容易であり、歩留まりを向上させるので、液晶表示装置を用いる幅広 V、分野でコスト低減に多大の貢献をなすものである。 [0264] The light diffusing sheet and the light diffusing plate of the present invention can completely erase the light source shape and have a function of using a line light source as a surface light source. While maintaining the basic optical properties of providing light transmittance and brightness The number of components of the knocklight unit can be reduced, and the force is excellent in the scratch resistance of the light diffusion layer, the handling is easy, and the yield is improved. It makes a great contribution to the reduction.

Claims

請求の範囲 The scope of the claims
[1] 透明フィルムの少なくとも片面に、透光性榭脂に少なくとも 1種類の微粒子群を分 散させた光拡散層が形成された光拡散シートであって、該光拡散層を構成する透光 性榭脂と少なくとも 1種類の微粒子群との屈折率差の絶対値が 0. 05以上であること を特徴とする光拡散シート。  [1] A light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed is formed on at least one surface of a transparent film, and the light transmissive layer constituting the light diffusing layer A light diffusing sheet, characterized in that the absolute value of the difference in refractive index between the synthetic resin and at least one kind of fine particle group is 0.05 or more.
[2] 前記光拡散層の少なくとも一方が 2種類の微粒子群を含有し、かつ該光拡散層の 表面粗さが算術平均粗さで 0. 5 μ m以上、 7 μ m以下である請求項 1記載の光拡散 シート。  [2] At least one of the light diffusion layers contains two kinds of fine particle groups, and the surface roughness of the light diffusion layer is not less than 0.5 μm and not more than 7 μm in arithmetic mean roughness. The light diffusion sheet according to 1.
[3] 前記透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させ た光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種類の微粒子 群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平均粗さで 0. 5 μ m以上、 7 μ m以下である請求項 1記載の光拡散シート。  [3] A light diffusion layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one surface of the transparent film, and at least one kind of transparent resin is formed on the light diffusion layer. 2. The light diffusing sheet according to claim 1, wherein a light condensing layer in which fine particle groups are embedded is formed, and the surface roughness of the light condensing layer is an arithmetic average roughness of 0.5 μm or more and 7 μm or less.
[4] 前記透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させ た光拡散層が形成され、前記透明フィルムの反対面に、透光性榭脂に少なくとも 1種 類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平 均粗さで 0. 以上、 7 m以下である請求項 1記載の光拡散シート。  [4] A light diffusion layer in which at least one type of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least one type of transparent resin is formed on the opposite surface of the transparent film. The light diffusing sheet according to claim 1, wherein a light condensing layer in which a group of fine particles is embedded is formed, and the surface roughness of the light condensing layer is not less than 0 and not more than 7 m in terms of arithmetic average roughness.
[5] 前記透光性榭脂が無機超微粒子または有機無機複合超微粒子を含有する (メタ) アクリル榭脂である請求項 1〜4のいずれか 1項記載の光拡散シート。  5. The light diffusing sheet according to any one of claims 1 to 4, wherein the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
[6] 透明支持体の少なくとも片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散 させた光拡散層が形成され、かつ該光拡散層を構成する透光性榭脂と少なくとも 1種 類の微粒子群との屈折率差の絶対値が 0. 05以上であることを特徴とする光拡散板  [6] A light diffusing layer in which at least one kind of fine particle group is dispersed is formed on at least one surface of the transparent support, and at least 1 A light diffusing plate, characterized in that the absolute value of the difference in refractive index from a group of fine particles is 0.05 or more
[7] 透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させた光 拡散層が形成された光拡散シートが透明支持体の少なくとも片面に接着剤または粘 着剤で貼り合わされ、かつ該光拡散層を構成する透光性榭脂と少なくとも 1種類の微 粒子群との屈折率差の絶対値が 0. 05以上であることを特徴とする光拡散板。 [7] A light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in one side of a transparent film is formed on one side of a transparent film is an adhesive or an adhesive on at least one side of the transparent support. A light diffusing plate, characterized in that the absolute value of the difference in refractive index between the translucent resin and the at least one kind of fine particles that are bonded together and constitute the light diffusing layer is 0.05 or more.
[8] 前記光拡散層の少なくとも一方が 2種類の微粒子群を含有し、かつ該光拡散層の 表面粗さが算術平均粗さで 0. 5 μ m以上、 7 μ m以下である請求項 6または 7記載の 光拡散板。 [8] At least one of the light diffusion layers contains two kinds of fine particle groups, and the surface roughness of the light diffusion layer is not less than 0.5 μm and not more than 7 μm in arithmetic mean roughness. 6 or 7 Light diffusion plate.
[9] 前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させ た光拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種類の微粒子 群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平均粗さで 0. 5 μ m以上、 7 μ m以下である請求項 6記載の光拡散板。  [9] A light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one surface of the transparent support, and at least one kind of transparent resin is formed on the light diffusing layer. The light diffusing plate according to claim 6, wherein a light condensing layer in which the fine particle group is embedded is formed, and the surface roughness of the light condensing layer is an arithmetic average roughness of 0.5 μm or more and 7 μm or less. .
[10] 前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させ た光拡散層が形成され、前記透明支持体の反対面に、透光性榭脂に少なくとも 1種 類の微粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平 均粗さで 0. 以上、 7 m以下である請求項 6記載の光拡散板。  [10] A light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one surface of the transparent support, and at least the translucent resin is formed on the opposite surface of the transparent support. 7. The light diffusing plate according to claim 6, wherein a light condensing layer in which one kind of fine particle group is embedded is formed, and the surface roughness of the light condensing layer is an arithmetic average roughness of not less than 0 and not more than 7 m. .
[11] 前記透明支持体の片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させ た光拡散層が形成され、透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微 粒子群を埋設させた集光層が形成された集光シートが前記透明支持体の反対面に 接着剤または粘着剤で貼り付けられ、かつ該集光層の表面粗さが算術平均粗さで 0 . 5 μ m以上、 7 μ m以下である請求項 6記載の光拡散板。  [11] A light diffusion layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent support, and at least one kind of transparent resin is provided on one side of the transparent film. A condensing sheet having a condensing layer in which fine particles are embedded is attached to the opposite surface of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is an arithmetic average roughness. The light diffusing plate according to claim 6, which is 0.5 μm or more and 7 μm or less.
[12] 透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させた光 拡散層が形成され、該光拡散層上に、透光性榭脂に少なくとも 1種類の微粒子群を 埋設させた集光層が形成された光拡散シートが前記透明支持体の片面に接着剤ま たは粘着剤で貼り合わされ、かつ該集光層の表面粗さが算術平均粗さで 0. 以 上、 7 m以下である請求項 7記載の光拡散板。  [12] A light diffusing layer in which at least one kind of fine particle group is dispersed in a transparent resin is formed on one side of the transparent film, and at least one kind of fine particles in the light transmitting resin is formed on the light diffusing layer. A light diffusing sheet on which a condensing layer in which a group is embedded is formed is bonded to one side of the transparent support with an adhesive or an adhesive, and the surface roughness of the condensing layer is 0 in terms of arithmetic average roughness. The light diffusing plate according to claim 7, which is 7 m or less.
[13] 透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させた光 拡散層が形成された光拡散シートが前記透明支持体の片面に接着剤または粘着剤 で貼り合わされ、前記透明支持体の反対面に、透光性榭脂に少なくとも 1種類の微 粒子群を埋設させた集光層が形成され、かつ該集光層の表面粗さが算術平均粗さ で 0. 5 μ m以上、 7 μ m以下である請求項 7記載の光拡散板。  [13] A light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in a translucent resin is formed on one side of a transparent film is attached to one side of the transparent support with an adhesive or an adhesive. And a condensing layer in which at least one type of fine particle group is embedded in a transparent resin is formed on the opposite surface of the transparent support, and the surface roughness of the condensing layer is an arithmetic average roughness. 8. The light diffusing plate according to claim 7, which is 0.5 μm or more and 7 μm or less.
[14] 透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群を分散させた光 拡散層が形成された光拡散シートが前記透明支持体の片面に接着剤または粘着剤 で貼り合わされ、透明フィルムの片面に、透光性榭脂に少なくとも 1種類の微粒子群 を埋設させた集光層が形成された集光シートが前記透明支持体の反対面に接着剤 または粘着剤で貼り付けられ、かつ該集光層の表面粗さが算術平均粗さで 0. δ μ ηι 以上、 7 m以下である請求項 7記載の光拡散板。 [14] A light diffusing sheet in which a light diffusing layer in which at least one kind of fine particle group is dispersed in one side of a transparent film is formed on one side of a transparent film is attached to one side of the transparent support with an adhesive or an adhesive. And a condensing sheet having a condensing layer in which at least one kind of fine particle group is embedded in a transparent resin is formed on one side of the transparent film. 8. The light diffusing plate according to claim 7, wherein the light diffusing plate is attached with an adhesive, and the surface roughness of the light condensing layer is not less than 0.
[15] 前記透光性榭脂が無機超微粒子または有機無機複合超微粒子を含有する (メタ) アクリル榭脂である請求項 6〜 14のいずれか 1項記載の光拡散板。 [15] The light diffusing plate according to any one of [6] to [14], wherein the translucent resin is a (meth) acrylic resin containing inorganic ultrafine particles or organic-inorganic composite ultrafine particles.
[16] 光源と、反射シートと、透明支持体と、請求項 1〜5のいずれか 1項記載の光拡散シ 一トとを有することを特徴とするノ ックライトユニット。 [16] A knocklight unit comprising a light source, a reflective sheet, a transparent support, and the light diffusion sheet according to any one of claims 1 to 5.
[17] 光源と、反射シートと、請求項 1〜5のいずれか 1項記載の光拡散シートとを有する ことを特徴とするバックライトユニット。 [17] A backlight unit comprising a light source, a reflection sheet, and the light diffusion sheet according to any one of claims 1 to 5.
[18] 光源と、反射シートと、請求項 6〜15のいずれか 1項記載の光拡散板とを有すること を特徴とするノ ックライトユニット。 [18] A knock light unit comprising a light source, a reflective sheet, and the light diffusing plate according to any one of claims 6 to 15.
[19] 請求項 16〜18のいずれか 1項記載のバックライトユニットを備えていることを特徴と する液晶表示装置。 [19] A liquid crystal display device comprising the backlight unit according to any one of claims 16 to 18.
PCT/JP2006/325374 2005-12-21 2006-12-20 Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using them WO2007072856A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-368425 2005-12-21
JP2005368425 2005-12-21
JP2006-025946 2006-02-02
JP2006025946 2006-02-02
JP2006060196 2006-03-06
JP2006-060196 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007072856A1 true WO2007072856A1 (en) 2007-06-28

Family

ID=38188632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325374 WO2007072856A1 (en) 2005-12-21 2006-12-20 Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using them

Country Status (2)

Country Link
TW (1) TW200730886A (en)
WO (1) WO2007072856A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033571A1 (en) * 2008-09-17 2010-03-25 3M Innovative Properties Company Optical adhesive with diffusive properties
CN102520549A (en) * 2011-10-24 2012-06-27 友达光电股份有限公司 Transparent display
CN103207523A (en) * 2012-01-16 2013-07-17 东洋油墨Sc控股株式会社 Resin compositions for light-scattering layer, light-scattering layer and organic electro luminescence device
EP2674442A3 (en) * 2012-06-12 2014-01-22 Toyo Ink SC Holdings Co., Ltd. Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device
EP2151878B1 (en) * 2008-07-15 2018-09-26 UDC Ireland Limited Method for producing a light emitting device
US10416360B2 (en) 2014-10-24 2019-09-17 Mitsubishi Gas Chemical Company, Inc. Light diffusion film
WO2019223929A1 (en) * 2018-05-24 2019-11-28 Robert Bosch Gmbh Optical element for light concentration and production method for an optical element for light concentration
US10581020B2 (en) 2011-02-08 2020-03-03 Vitro Flat Glass Llc Light extracting substrate for organic light emitting diode
CN113189687A (en) * 2021-05-18 2021-07-30 合肥翰博星辰高新材料有限公司 Diffusion film, backlight module and display device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384283B (en) * 2007-10-04 2013-02-01 Au Optronics Corp Backlight module with light emitting diode
TW201015159A (en) * 2008-10-02 2010-04-16 Gigastorage Corp Structure for multi-layer coating composite optical film
JP4756100B2 (en) * 2009-03-26 2011-08-24 日東電工株式会社 Manufacturing method of light diffusing element, light diffusing element, polarizing plate with light diffusing element, and manufacturing method of liquid crystal display device
JP5008734B2 (en) 2010-03-18 2012-08-22 大日本印刷株式会社 Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP6275935B2 (en) 2010-09-17 2018-02-07 日東電工株式会社 Light diffusing element, polarizing plate with light diffusing element, and liquid crystal display using the same
JP6275934B2 (en) 2010-09-17 2018-02-07 日東電工株式会社 Light diffusing element, polarizing plate with light diffusing element, polarizing element, and liquid crystal display using the same
JP5883598B2 (en) * 2010-09-17 2016-03-15 日東電工株式会社 LIGHT DIFFUSING ELEMENT, MANUFACTURING METHOD FOR POLARIZING PLATE WITH LIGHT DIFFUSING ELEMENT, LIGHT DIFFUSING ELEMENT AND POLARIZING PLATE WITH LIGHT DIFFUSING ELEMENT OBTAINED BY THE METHOD
JP2012083744A (en) * 2010-09-17 2012-04-26 Nitto Denko Corp Light-diffusing element and polarizing plate with light-diffusing element
JP6275936B2 (en) 2010-09-17 2018-02-07 日東電工株式会社 Light diffusing film, polarizing plate with light diffusing film, liquid crystal display device and lighting apparatus
JP6046367B2 (en) * 2011-04-12 2016-12-14 恵和株式会社 Optical unit, backlight unit, and liquid crystal display device
JP2013037164A (en) * 2011-08-08 2013-02-21 Sony Corp Diffusion sheet, backlight, liquid-crystal display and diffusion sheet manufacturing method
CN106233166B (en) * 2014-04-21 2020-03-13 松下知识产权经营株式会社 Optical member and lighting cover
CN113406739B (en) * 2021-07-15 2023-04-25 江西古川胶带有限公司 Optical diffusion film and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273762A (en) * 1993-03-19 1994-09-30 Tanaka Kikinzoku Kogyo Kk Light diffusion sheet for back light and its production
JPH09113708A (en) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd Light-diffusing film
JP2001318210A (en) * 2000-05-11 2001-11-16 Keiwa Inc Light diffusion sheet and backlight unit using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273762A (en) * 1993-03-19 1994-09-30 Tanaka Kikinzoku Kogyo Kk Light diffusion sheet for back light and its production
JPH09113708A (en) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd Light-diffusing film
JP2001318210A (en) * 2000-05-11 2001-11-16 Keiwa Inc Light diffusion sheet and backlight unit using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151878B1 (en) * 2008-07-15 2018-09-26 UDC Ireland Limited Method for producing a light emitting device
CN102159659B (en) * 2008-09-17 2014-10-15 3M创新有限公司 Optical adhesive with diffusive properties
CN102159659A (en) * 2008-09-17 2011-08-17 3M创新有限公司 Optical adhesive with diffusive properties
WO2010033571A1 (en) * 2008-09-17 2010-03-25 3M Innovative Properties Company Optical adhesive with diffusive properties
US10581020B2 (en) 2011-02-08 2020-03-03 Vitro Flat Glass Llc Light extracting substrate for organic light emitting diode
US11943960B2 (en) 2011-02-08 2024-03-26 Vitro Flat Glass Llc Light extracting substrate for organic light emitting diode
CN102520549A (en) * 2011-10-24 2012-06-27 友达光电股份有限公司 Transparent display
CN103207523A (en) * 2012-01-16 2013-07-17 东洋油墨Sc控股株式会社 Resin compositions for light-scattering layer, light-scattering layer and organic electro luminescence device
EP2674442A3 (en) * 2012-06-12 2014-01-22 Toyo Ink SC Holdings Co., Ltd. Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device
US10416360B2 (en) 2014-10-24 2019-09-17 Mitsubishi Gas Chemical Company, Inc. Light diffusion film
WO2019223929A1 (en) * 2018-05-24 2019-11-28 Robert Bosch Gmbh Optical element for light concentration and production method for an optical element for light concentration
CN112189128A (en) * 2018-05-24 2021-01-05 罗伯特·博世有限公司 Optical element for light collection and method for manufacturing optical element for light collection
US11867890B2 (en) 2018-05-24 2024-01-09 Robert Bosch Gmbh Optical element for light concentration and production method for an optical element for light concentration
CN113189687A (en) * 2021-05-18 2021-07-30 合肥翰博星辰高新材料有限公司 Diffusion film, backlight module and display device

Also Published As

Publication number Publication date
TW200730886A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
WO2007072856A1 (en) Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using them
JP2007272208A (en) Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using the same
JP5313898B2 (en) Backlight suitable for display devices
US7924368B2 (en) Diffuse multilayer optical assembly
KR101551588B1 (en) Resin composition for optical sheet, optical sheet, and process for producing the optical sheet
JP2007133173A (en) Light diffusing sheet, complex light diffusing plate, and back light unit using those
US20090220742A1 (en) Brightness enhancement reflective film
KR100447671B1 (en) Optical seat and method for manufacturing the same
JP4695071B2 (en) Light control sheet and surface light source using the same
JP2007233343A (en) Light diffusing sheet and composite light diffusing plate, and backlight unit and liquid crystal display device using them
KR101450020B1 (en) Diffusion sheet and back lighting unit using same
JP2009543134A (en) Optical article comprising a bead layer
TW200916844A (en) Prism sheet, backlight unit and liquid crystal display device using the same
JPWO2006093087A1 (en) Light diffusion film, surface light source element using the same, and liquid crystal display device
JP2010033053A (en) White reflective film
JP2007086775A (en) Reflector having high light diffusion
CN102834742A (en) Light-diffusing film for led lamp
CN102576166A (en) Lenticular film and backlight modules for use therewith
JP5532799B2 (en) White reflective film
CN101131443A (en) Optical thin film of organic particle with narrow particle size distribution
KR101227304B1 (en) Optical sheet
JP2001356207A (en) Light diffusing member
JP2008286907A (en) Laminate for reflection
KR100544518B1 (en) Prismatic film for minimizing loss of light source
JP2016090946A (en) Optical member, method for manufacturing optical member, method for manufacturing original plate for forming adhesion preventive layer, surface light source device, image source unit, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06842928

Country of ref document: EP

Kind code of ref document: A1