WO2007055041A1 - Membrane of block copolymer with oriented cylinder structure and process for producing the same - Google Patents

Membrane of block copolymer with oriented cylinder structure and process for producing the same Download PDF

Info

Publication number
WO2007055041A1
WO2007055041A1 PCT/JP2006/309321 JP2006309321W WO2007055041A1 WO 2007055041 A1 WO2007055041 A1 WO 2007055041A1 JP 2006309321 W JP2006309321 W JP 2006309321W WO 2007055041 A1 WO2007055041 A1 WO 2007055041A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
copolymer film
film according
cylinder structure
cylinder
Prior art date
Application number
PCT/JP2006/309321
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Sakurai
Yoshihiro Tsuji
Tsunehisa Kimura
Masafumi Yamato
Fumiko Kimura
Original Assignee
National University Corporation Kyoto Institute Of Technology
Tokyo Metropolitan University
Independent Administrative Institution National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kyoto Institute Of Technology, Tokyo Metropolitan University, Independent Administrative Institution National Institute For Materials Science filed Critical National University Corporation Kyoto Institute Of Technology
Publication of WO2007055041A1 publication Critical patent/WO2007055041A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a block copolymer film having an oriented cylinder structure. Specifically, the present invention relates to a block copolymer film having a cylinder structure oriented in one predetermined direction, particularly in one direction parallel to the film surface, and a method for producing the same.
  • a technology that imparts a fine structure to a material and uses its unique functions and physical properties is generally referred to as nanotechnology. In recent years, it has been applied not only to the electronics field but also to a wide range of fields such as energy and the environment. Expected!
  • Patent Document 2 A pattern material containing a block copolymer or a graft copolymer having a chain and forming a microphase-separated structure is known (Patent Document 2).
  • Patent Document 1 a technique for freely controlling the orientation direction of the cylinder structure is not studied, but, for example, in Patent Document 1, a spherical microphase separation structure is packed in a hexagonal close-packed state in a thin film having a thickness of about the diameter of a sphere. It is just a disclosure of the applied technology of the phenomenon (self-organization ability).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-151834
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-279616
  • Non-Patent Documents 1 and 2 disclose a method of orienting a lamella cylinder in a diblock copolymer or a triblock copolymer in parallel to the film surface using a flow field. However, these methods cannot form fine streaks on the surface of the block copolymer film.
  • Non-Patent Document 1 Spherulite formation rrom microphase- separated lamellae in semi-cry stalline diblock copolymer comprising polyethylene and atactic polypropylene blocks; M. Ueda, K. Sakurai, S. Okamoto, DJ Lohse, WJ MacKnight, S. Shinkai, S. S akurai, S. Nomura (2003, Polymer, 44, pp. 6995-7005)
  • Non-Patent Document 2 "Synchrotron Small-Angle X-ray Scattering Studies on Flow-Induced
  • a block copolymer film having a vertically aligned lamella structure is produced by placing a block copolymer resin on a substrate having a predetermined characteristic surface roughness or higher and heat-treating the resin.
  • the method is also known (Patent Document 3).
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-99667
  • Patent Document 3 is a method of orienting the lamella structure perpendicularly to the film surface, and has the disadvantage that the arrangement of the lamella structure in the obtained film surface cannot be defined. It was.
  • Non-Patent Document 4 a method of casting a polystyrene-polymethyl methacrylate diblock copolymer to form a cylinder structure standing perpendicular to the surface Is also known (Non-Patent Document 4).
  • this method is not only complicated, but the resulting diblock copolymer film is extremely thin with a film thickness of 30 nm or less, and thus has a low utility value as a material.
  • the cylinders were vertically oriented, the arrangement (arrangement of the circular cross section of the cylinder) when viewed in the film plane was random.
  • Non-Patent Document 4 K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuom inen, C. J. Hawker, T. P. Russell, Nano Letters, 2, 933 (2002)
  • Patent Document 4 it has been proposed to prepare a vertically aligned mesoporous silica film by using a novel polysilicate as an intermediate.
  • Patent Document 4 it is difficult to dissolve it in an organic solvent or to thermally decompose it, so that it is not suitable for a vertical application such as a nano template.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-335516
  • this method has the disadvantage that the cylinder structure can be oriented in the direction perpendicular to the film surface, but cannot be oriented freely in the parallel direction or other directions.
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-124088
  • Non-Patent Document 5 Same document Discloses that a transition from a spherical shape to a cylindrical microphase-separated structure is caused by the heat treatment. When the spheres coalesce to form a cylinder, the cylinder is oriented perpendicular to the film surface. A method for producing a vertically-oriented cylinder material using the property is disclosed.
  • the cylinder structure can be oriented in a direction perpendicular to the film surface, but cannot be easily oriented in a parallel direction.
  • Non-Patent Document 5 Influence of Microphase Separation Structure on Mechanical Properties of Styrene-Ethylene Butylene-Styrene Triblock Copolymer Films ”; Hideo Hamada, Sakae Aida, Shinichi Sakurai, Yutaka Kitagawa, Yoshikazu Suda, Junzo Masamoto , Haruji Nomura (1997, Journal of Japanese Society of Rheology, Vol. 25, pp. 217-220)
  • Patent Document 6 it has been shown that in order to produce a magnetic torque large enough to enable magnetic field orientation, the microcrystalline region must grow to a size on the order of submicron, In such a high molecular weight material, a domain that enables such a magnetic field orientation is not formed. Therefore, the use of a magnetic field has not been studied.
  • Patent Document 6 Japanese Patent Laid-Open No. 2005-68249
  • Patent Document 7 US Patent No. 6893705
  • the present inventors have studied the use of a magnetic field to control the orientation direction of the cylinder structure by overcoming the above technical problem.
  • the magnetic field was applied to a sample having a thickness of 10 nm to 50 m.
  • a block copolymer film having a cylindrical structure oriented in one predetermined direction and having streaky irregularities on the film surface is formed. Succeeded in getting.
  • An object of the present invention is to solve the disadvantages in the prior art and to provide a block copolymer film having a thin film thickness and having a cylinder structure oriented in a predetermined direction.
  • the present invention is a block copolymer film having a cylinder structure oriented in a predetermined direction, having a thickness of 10 ⁇ to 50 / ⁇ ⁇ , and having streaky surface irregularities
  • the present invention relates to a copolymer film.
  • the block structure is characterized in that the cylinder structure has an absolute value force of 0 ° or less of an orientation angle disturbance with respect to an orientation direction, which is defined by a small oblique incidence X-ray scattering measurement.
  • the present invention relates to a polymer film.
  • the present invention relates to the block copolymer film having a cylinder structure oriented in one direction parallel to the film surface.
  • the present invention relates to a block copolymer comprising a transition to a predetermined unidirectionally oriented cylinder structure by applying a magnetic field to a disordered microphase-separated structure formed from a block copolymer.
  • the present invention relates to a method for producing a combined membrane.
  • a block copolymer film having a thin film thickness and a cylinder structure oriented in a predetermined direction can be produced.
  • the cylinder structure can be oriented in one direction parallel to the film surface with the force existing at least on the film surface in the thin film with the force that could not be realized so far.
  • the present invention it is possible to design highly functional materials in a wide range of fields.
  • highly functional materials include nanowires.
  • the powerful high-functional material can be used for applications such as a high-functional optical material such as an optical retardation film.
  • FIG. 1 is a diagram showing an atomic force microscope observation image by a tapping mode method of a sample before applying a magnetic field (heat treated at 180 ° C. for 12 hours) in Example 1 in Example 1.
  • FIG. 2 is an atomic force microscope image of a sample obtained by applying a magnetic field of 30 Tesla at 180 ° C. for 3 hours in Example 1 using a tapping mode method.
  • Fig. 3 is an atomic force microscope image of the sample of Example 1 which was only heat-treated at 180 ° C for 3 hours without applying a magnetic field, by the tapping mode method.
  • Fig. 4 is a diagram showing the results of measurement of oblique angle of incidence and small angle X-ray scattering of a sample obtained by applying a magnetic field parallel to the surface of the thin film in Example 1.
  • Figure 5 shows a two-dimensional scattered image (left) and the variation of the scattering intensity in the direction of the scattering vector shown in the figure, and the logarithm of the scattering intensity is plotted as a function of the scattering vector magnitude q. (Right)
  • FIG. 6 is a diagram in which the area of the primary peak shown in FIG. 5 is obtained and plotted with respect to the sample rotation angle ⁇ (azimuth angle) as ⁇ ( ⁇ ).
  • the block copolymer constituting the block copolymer film of the present invention is not limited as long as it does not depart from the object of the present invention, and any well-known block copolymer may be used.
  • X represents a polyfunctional functional group (atom group) that causes branching, and a star block copolymer having a B moiety as a bond center, represented by).
  • AB type or ABA type block copolymers are preferred, and ABA type triblock copolymers are particularly preferred.
  • two or more of the above block copolymers may be blended and used.
  • block copolymer of the present invention is further blended with the above-mentioned one or more block copolymers with a homopolymer having a component (for example, A component and Z or B component) constituting each block.
  • a membrane can also be constructed.
  • the block copolymer in the present invention comprises two or more, more preferably two types of repeating mono
  • the block chain (polymer component) formed from at least one repeating monomer unit A is in a glassy state at 23 ° C, which corresponds to the normal casting temperature. Preferred because it is easy to freeze (immobilize). Further, in one embodiment of the present invention, it is preferred that the polymer component to be formed is a rubber state at 23 ° C. /.
  • the volume fraction of the polymer component (glass component) formed from the above repeating monomer unit A and the above repeating monomer unit B force formed polymer component (for example, rubber component) is either 0.1 to 0.4. Therefore, a component having a small volume fraction that is effective and preferable for forming a cylinder structure can form a cylinder structure, and a component having a large volume fraction can form a matrix phase.
  • the volume fraction is preferably 0.11 to 0.35, more preferably 0.12 to 0.3 force, and particularly preferably 0.13 to 0.25. It is preferable to set the volume fraction of the polymer component (glass component) formed from repeating monomer units A to 0.1 to 0.4 because it is easy to form a cylinder structure. 11 to 0.35 is more preferable than force S, 0.12 to 0.3 force S is more preferable, 0.13 to 0.25 is particularly preferable, and 0.15 to 0.24 is most preferable. .
  • the two or more kinds of repeating monomer units are preferably aromatic vinyl and a conjugation hydrogen partially or completely hydrogenated because it is easy to align in a magnetic field.
  • Monomers that serve as the base for such aromatic bullets include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene, t-butylstyrene, o-ethylstyrene, o-chlorostyrene, p-chlorostyrene, o, p-dichlorostyrene, p-bromostyrene, 2, 4, 5-tribromostyrene, and the like.
  • styrene power is particularly preferred because it is available at the lowest cost.
  • the conjugate gen in the present invention originates from a monomer having a conjugated double bond in the same molecule, and the monomer serving as the base of the conjugate gen is not particularly limited.
  • Conjugate Jen can be incorporated into the main chain of the polymer molecule (14 bonds) or into the side chain (1 to 2 bonds), but the ratio of both in the polymer molecule is There is no particular limitation.
  • conjugated gen-based polymer polybutadiene, polyisoprene, and styrene-butadiene random copolymer are suitable.
  • a partially or completely hydrogenated conjugated diene as a repeating monomer unit is obtained by a conventional hydrogenation method of a conjugated gen-based polymer (for example, see JP-A-62-207303). It can be introduced into the block copolymer.
  • the aromatic bul unit is a unit derived from styrene
  • the partially or completely hydrogenated conjugation unit is a unit derived from butadiene.
  • the block copolymer of the present invention has a molecular weight that is at least equal to or higher than a molecular weight capable of microphase separation, and that can easily achieve a thermodynamic equilibrium or quasi-equilibrium state in a short time. It is important to have From such a viewpoint, the number average molecular weight is preferably in the range of 10,000 to 1,000,000. The number average molecular weight is more preferably 20,000 or more, more preferably 30,000 or more, and even more preferably 50,000 or more. Further, the number average molecular weight is more preferably 750,000 or less, more preferably 500,000 or less, still more preferably 200,000 or less.
  • the block copolymer film of the present invention has a cylinder structure oriented in a predetermined direction. That is, an important feature of the present invention includes that the block copolymer film has a cylinder structure and the cylinder structure is oriented in a predetermined direction. By imparting such characteristics to the block copolymer film, it becomes possible to design highly functional materials in a wide range of materials as described above.
  • the predetermined one direction is an arbitrarily set direction, for example, one direction parallel to the film surface, a direction perpendicular to the film surface, and an arbitrary fixed angle (for example, 30 °). , 45 °, 60 °, etc.).
  • the production of a film having anisotropic nano-surface irregularities, and further, the obtained film is usually used.
  • This method is particularly suitable for use in producing a substrate by decomposing and dissolving a polymer after performing metal vapor deposition by the method.
  • the film thickness is in a specific range of 10 nm to 50 ⁇ m.
  • the film thickness is preferably 10 m or less, more preferably 5 / zm or less, still more preferably 1 ⁇ m or less, and particularly preferably lOOnm or less.
  • the film thickness can be measured by selecting an appropriate method according to the size range. For example, X-ray and neutron reflectivity measurement (about lOOnm or less), atomic force microscope (about 1 m or less), and ellipsometry (about 1 ⁇ m or less).
  • the above-described cylinder structure oriented in one direction parallel to the film surface can be present at least on the film surface.
  • the cylinder structure exist on the film surface, it is possible to obtain a block copolymer film having a liquid crystal alignment-inducing surface and a streaky surface unevenness difference of 2 to 20 nm.
  • the liquid crystal orientation inducing property means a property that liquid crystal molecules are spontaneously aligned in the axial direction and the parallel direction of the cylinder only by dropping a liquid crystal compound on the film.
  • the presence of liquid crystal alignment-inducing properties can be confirmed by observing whether or not the dropped liquid crystal compound forms a monodomain aligned in one direction by using a polarizing microscope with an oblique incidence X-ray scattering (diffraction) method. it can.
  • the height difference of the streaky surface irregularities is more preferably 2 to 15 nm, particularly preferably 2 to 10 nm.
  • the height difference is preferably 15 to 40%, more preferably 15 to 30% with respect to the cylinder diameter.
  • the cylinder structure is preferably present at a depth of 5 to 50 nm, more preferably 5 to 25 nm from the film surface.
  • the depth of the film surface force, and the height difference of the surface irregularities can be determined by visual angle incidence small angle X-ray scattering and atomic force microscope observation or transmission electron microscope observation. Can be measured.
  • the orientation direction of the cylinder structure is defined by the direction of the applied magnetic field.
  • the absolute value of the disorder of the orientation angle with respect to a given direction is 40 ° or less.
  • the disorder of the orientation angle of a given unidirectional force on the film surface is a reaction caused by the regularity of the arrangement of the cylinder structure in the film surface, which is obtained when the oblique oblique incidence X-ray scattering measurement is performed.
  • the maximum reflected spot intensity force when the azimuth angle deviation is 0 ° is completely reduced. It is defined as the amount of change in the azimuth angle. Therefore, when the cylinder is oriented in a certain principal axis direction, a reflection spot appears that maximizes the azimuth angle position. Therefore, the azimuth angle that is completely reduced is regarded as a disorder of the orientation angle.
  • the absolute value of the disorder of the orientation angle is more preferably 20 ° or less, even more preferably 10 ° or less, and particularly preferably 5 ° or less.
  • the lower limit of the absolute value of the disorder of the orientation angle is most preferably a force of 0 ° which can be about 0.5 °.
  • the cylinder structure is preferably arranged in a hexagonal lattice, and the viewpoint power of maximizing the number of filled cylinders is also preferred.
  • the cylinder structure is preferably a cylinder having a diameter of 3 to 50 nm from the viewpoint of forming streaky surface irregularities having a height difference of 2 to 20 nm.
  • the diameter of the cylinder is more preferably 3 to 20 nm.
  • the cylinders are preferably arranged at a distance of 5 to 120 nm, more preferably 5 to 50 nm. Force From the viewpoint of maximizing the number of cylinders oriented parallel to a specific orientation.
  • the cylinder diameter and the distance between the cylinders can be measured by transmission electron microscope observation, small-angle X-ray scattering method, and the like.
  • the component constituting the cylinder structure is a polymer component formed from repeated monomer units A, that is, a polymer component in a glassy state at 23 ° C. preferable.
  • a block copolymer sample e.g., styrene ethylene butylene styrene triblock copolymer: SEBS
  • SEBS styrene ethylene butylene styrene triblock copolymer
  • Precisely preferably at a temperature above the glass transition temperature of the glass component (in this case, the polystyrene component) in the coalescence, preferably at least 80 ° C higher than the glass transition temperature of the polymer component constituting the cylinder.
  • the relationship force between the cylinder orientation direction and the magnetic field application direction given to the block copolymer sample is particularly important. That is, it is important to apply a magnetic field in parallel to a predetermined direction in which the cylinder should be oriented.
  • the strength of the applied magnetic field is preferably 30 Tesla or lower, and a superconducting electromagnet more preferably 10 Tesla or lower is not required in order to apply a magnetic field at a low cost, which is preferably 2 Tesla or lower. Is particularly preferred.
  • the strength of the applied magnetic field is preferably 0.1 Tesla or more.
  • the present invention also includes a transition to a cylinder structure oriented in a predetermined direction by applying a magnetic field to a disordered microphase-separated structure formed from a block copolymer.
  • the present invention also relates to a method for producing a copolymer film.
  • the structure of the block copolymer before application of a magnetic field is preferably a disordered microphase separation structure from the viewpoint of easy transition to a cylinder and easy orientation.
  • the structure of the block copolymer before application of the magnetic field is preferably in a completely compatible state after microphase separation, and the point force for reducing the disorder of the orientation angle is particularly preferable.
  • the heat treatment is performed under precise temperature control.
  • a temperature not lower than the glass transition temperature of polystyrene for example, 150 ° C
  • the temperature is 100 ° C or higher, particularly preferably 110 ° C or higher, and precisely (preferably ⁇ 1 ° C, more preferably 0.5 ° C).
  • Heat treatment is performed so as to achieve a uniform temperature distribution as much as possible so that temperature unevenness and temperature gradient do not occur for a predetermined time (for example, 3 hours).
  • a cylinder structure oriented in a predetermined direction which is defined by the direction of the applied magnetic field, and preferably parallel to the direction of the applied magnetic field, is formed.
  • a thin film is prepared by dropping 0.1 to 1 ml of a polymer solution (concentration 0.1 to 1% by weight) onto a silicon wafer placed on a stage rotating at a speed of 1000 rpm or more.
  • the thickness of the thin film can be adjusted in the range of 10 nm to 100 nm depending on the rotational speed, the concentration of the polymer solution, and the amount of the dropped solution.
  • the optical material includes a polarizing plate protective film used for a display such as a liquid crystal display, a plasma display, an organic EL display, a field emission display, and a rear projection television, and a phase such as a 1Z4 wavelength plate and a 1Z2 wavelength plate.
  • Examples include a liquid crystal optical compensation film such as a difference plate, a viewing angle control film, a display front plate, a display substrate, a lens, and a transparent substrate used for solar cells.
  • the block copolymer film of the present invention can be particularly suitably used for these optical materials.
  • the matrix phase on the surface of the block copolymer film of the present invention is subjected to the same method as described above.
  • the nanocylinder alignment film can be obtained by removing by decomposition or dissolution.
  • the depth of the surface to be removed is preferably 2 nm or more, more preferably 5 nm or more, and 25 nm or less, more preferably 15 nm or less.
  • Such a nanocylinder alignment film preferably has a liquid crystal alignment-inducing surface.
  • the liquid crystal alignment inducing property means a property that liquid crystal molecules are spontaneously aligned in a direction parallel to the axial direction of the cylinder only by dropping a liquid crystal compound onto the film.
  • the existence of liquid crystal orientation-inducing properties is observed by observing whether the dropped liquid crystal compound forms a monodomain oriented in one direction by using a polarizing microscope with an oblique incidence X-ray scattering (diffraction) method. Can be confirmed.
  • a block copolymer sample is spin-cast on the surface of the above-mentioned nanocylinder alignment film, and this is further heat-treated, whereby a laminate including at least the nanocylinder alignment film and the block copolymer film of the present invention.
  • a nanocylinder-oriented retardation film having a structure can be obtained.
  • Such a nanocylinder-oriented retardation film is a laminated film having a uniform cylinder orientation direction.
  • a laminated film having a thickness of preferably 100 to 200 nm is obtained, which is particularly useful as a nanocylinder-oriented retardation film for optical materials.
  • the selective solvent refers to a solvent that corresponds to a selective good solvent for a certain type of polymer component, and that corresponds to a selective poor solvent for another type of polymer component.
  • the polymer solution is concentrated to completely evaporate the selective solvent to form an absolutely dry cast film.
  • nanowires can be obtained.
  • the decomposition method is not particularly limited, and a force that can employ a conventionally known method, for example, a method such as ozonolysis or ion beam etching is recommended.
  • the dissolution method is not particularly limited, and a conventionally known method can be adopted.
  • a solvent capable of dissolving only one of the polymers forming the cylinder or the matrix for example, the glass component dissolves but the rubber component Do not dissolve the solvent, A method using a solvent that dissolves the rubber component but not the glass component, or a method using an acid or alkali is recommended.
  • the nanowire obtained in this manner is preferably an elongated wire-like material having a diameter of about 1 to 100 nm, and has a length of 10 to LOOO times the diameter. Nanowires imparted with conductivity by using a conductive polymer as the block copolymer in the present invention are extremely useful. Example
  • the disorder of the orientation angle of the specific azimuth force of the cylinder structure on the film surface was determined according to the following method.
  • Disturbance of the orientation angle with a specific azimuth force on the film surface indicates the reflection spot intensity resulting from the regularity of the arrangement of the cylinder structure, which is obtained when X-ray scattering measurement is performed at a small oblique angle of incidence.
  • it is defined as the amount of change in azimuth angle when the maximum reflection spot intensity is completely reduced when the azimuth angle deviation is 0 °. Therefore, when the cylinder is oriented in a certain principal axis direction, the reflection spot intensity appears so that the position of the azimuth angle becomes the maximum value, so that the orientation angle is disordered with the azimuth angle completely reduced.
  • the irradiation X-ray beam size at the sample position is 1. Omm in the horizontal direction, 0.7 mm in the vertical direction (rectangular beam cross section), the wavelength is 0.1499 nm, and the incident angle of X-rays to the sample surface is 0.15. ° Using the imaging plate (Fuji film) at the beam line BL40B2 of the Research Center for High-Intensity Optical Science (SPring-8). Fuji BAS2000 was used for reading. The resolution (size) of one pixel was 100 m ⁇ 100 m.
  • the disorder of the orientation angle was determined as follows. That is, the reflection spot intensity is plotted against the azimuth as shown in Fig. 6, and the following formula:
  • is the disorder of the orientation angle.
  • Whether the cylinder structure is oriented in one predetermined direction was confirmed as follows. That is, it was confirmed that the reflection spot intensity obtained when X-rays were incident at an oblique angle from the direction parallel to the magnetic field application direction was the strongest. That is, as shown in FIG. 6, the case where the azimuth angle is zero degrees corresponds to that.
  • the distance between the cylinders was measured according to the following method.
  • d is the distance between the reflecting surfaces
  • is the scattering angle
  • represents the X-ray wavelength
  • the cylinder diameter was measured according to the following method.
  • styrene-ethylenebutylene-styrene triblock copolymer (Tuftec (registered trademark) H1062 manufactured by Asahi Kasei Chemicals Corporation) was used.
  • Sample is , Volume fraction 10.16 polystyrene (PS), the number-average molecular weight (M) is 6. 6 X 10 4, polydispersity index of the molecular weight distribution (M / M) is 1.03, polyethylene butylene (PEB) Chain Inside
  • the mole fraction of chain was 0.41.
  • the sample was dissolved in toluene so that the polymer concentration was 1% by weight, and a thin film having a thickness of 20 nm was prepared on a silicon wafer by spin casting at room temperature (23 ° C). That is, 0.1 ml of the polymer solution was dropped on a silicon wafer placed on a stage rotating at a speed of 3000 revolutions per minute, and the rotation was continued for 60 seconds to completely evaporate the solvent and prepare a thin film.
  • the silicon wafer was manufactured by Laco and was cut out into a 6 mm X 8 mm rectangle without any surface treatment as it was purchased.
  • the thickness of the thin film was measured by an atomic force microscope observation by a tapping mode method.
  • the depth of the damaged groove was analyzed by damaging the thin film attached on the silicon wafer with an injection needle and observing the portion with an atomic force microscope (uneven image).
  • the depth of the groove thus obtained corresponds to the thickness of the thin film.
  • Nanoscope Ilia manufactured by Digital Instruments was used for atomic force microscope observation by the tapping mode method. The surface of a thin film sample on a silicon wafer was observed at room temperature while vibrating a probe with a length of 124 m and a panel constant of 66 NZm 2 at a resonance frequency of 3 95 kHz. Image) and images corresponding to the softness (phase image) were obtained.
  • the obtained spin cast sample was heat-treated in an oven under reduced pressure for 12 hours at 180 ° C. Using this sample, a magnetic field of 30 Tesla was applied while heat-treating at 180 ° C for 3 hours.
  • the equipment used was a hybrid magnet installed at the Strong Magnetic Field Research Center of the National Institute for Materials Science. This hybrid magnet has a bore with a diameter of 52 mm, and the sample holder is heated by a heater embedded in the inner wall of the bore. The temperature of the sample was measured with a resistance temperature detector.
  • a thin film sample obtained by spin casting was inserted into the sample holder together with the silicon wafer, and a magnetic field application heat treatment was performed. The spin-cast silicon wafer with a thin film sample was inserted vertically into the sample holder.
  • Figure 1 shows an atomic force microscope image of the sample before magnetic field application (heat treated at 180 ° C for 12 hours) by the tapping mode method. Observation was performed at room temperature (23 ° C). It should be noted that the thickness of the thin film is 20 nm, which is slightly larger than the cylinder diameter of 13 nm, but that the conditions are such that multiple cylinders do not stack in the thickness direction of the film.
  • the stripe pattern observed in Fig. 1 indicates that the cylinders are arranged parallel to the silicon wafer surface, that is, the surface of the thin film. Locally, the cylinders are arranged at regular intervals, but the orientation direction is not limited to one direction.
  • the concavo-convex image and the phase image correspond to each other, it can be seen that a single cylinder structure formed of a hard and polystyrene component protrudes slightly on the surface.
  • the cylinder in the case of applying a magnetic field of 30 Tesla for 3 hours at 180 ° C, the cylinder is oriented along the direction of the applied magnetic field.
  • Figure 4 shows the results of small-angle X-ray scattering measurement of the sample with a magnetic field applied parallel to the surface of the thin film. The measurement was performed at room temperature (23 ° C). In order to clarify the relationship between the direction of the applied magnetic field and the orientation direction of the cylinder, the sample was rotated with the normal direction of the sample surface as the rotation axis. By this operation, the measurement result was obtained every 10 ° from parallel (rotation angle 0 °) to vertical (rotation angle 90 °).
  • Fig. 4 shows excerpts of rotation angles of 0 °, 50 ° and 90 °. In either result, a pair of strong reflection spots can be confirmed in the horizontal direction.
  • the intensity of the primary reflection spot is the maximum at a rotation angle of 0 ° (when the X-ray incident direction is parallel to the magnetic field application direction), which is defined by the direction of the applied magnetic field in the cylinder structure. This indicates that the film is oriented in one direction. In addition, it reached an almost constant value at a rotation angle of 34 °.
  • the film thickness of the block copolymer film (magnetic field applied sample) obtained in Example 1 was 20 nm, the disorder of the orientation angle was 34 °, the cylinder diameter was 13.2 nm, and the distance between the cylinders was 30.2 nm.
  • a film material useful as a liquid crystal alignment-inducing film having surface irregularities of several nanometers was obtained. When the surface was observed with an atomic force microscope, the surface irregularities were streaks, and the difference in height was 2.0 to 2.2 nm.
  • Fig. 3 is clearly different from Fig. 2, and it was found that the orientation direction of the cylinder is not defined in one direction. Therefore, the results in Figure 2 are pure and not influenced by gravity. In other words, it is the effect of applying a magnetic field.
  • the block copolymer comprises at least two types of repeating monomer unit forces, and the polymer component formed from at least one type of repeating monomer unit A is in a glassy state at 23 ° C. 7].
  • the block copolymer film according to any one of the above.
  • [17] A nano-cylinder alignment film that is removed by matrix force decomposition or dissolution on the surface of the block copolymer film according to any one of [1] to [16].
  • nanocylinder alignment film according to [17] which has a liquid crystal alignment-inducing surface.
  • a nanocylinder having a laminated structure including at least the nanocylinder alignment film according to [17] or [18] and the block copolymer film according to any one of [1] to [15] Oriented retardation film.
  • [20] A nanowire obtained by removing the matrix phase from the block copolymer film according to any one of [1] to [16] by decomposition or dissolution.
  • the present invention is oriented in a predetermined direction, preferably in one direction parallel to the surface of the thin film, preferably has a cylinder structure with a small disorder of the orientation angle, and has streaky surface irregularities. It is possible to produce a block copolymer film having
  • high-performance materials can be designed in a wide range of fields.
  • highly functional materials include nanowires.
  • the highly functional material that can be used can be used for applications such as a highly functional optical material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A process for producing a membrane of block copolymer with cylinder structure oriented in a given single direction. There is provided a membrane of block copolymer with cylinder structure having a membrane thickness of 10 nm to 50 μm and oriented in a given single direction, preferably exhibiting an absolute value of turbulence of orientation angle against orientation direction, regulated by the dependence on orientation angle of reflection spot strength according to glancing angle incidence small-angle X-ray scattering measurement, of 40° or less. Further, there is provided a process for producing the membrane of block copolymer with cylinder structure.

Description

明 細 書  Specification
配向したシリンダー構造を有するブロック共重合体膜およびその製造方 法  Block copolymer film having oriented cylinder structure and method for producing the same
技術分野  Technical field
[0001] 本特許出願は、 日本国特許出願第 2005— 326221号(2005年 11月 10日出願、 発明の名称「配向したシリンダー構造を有するブロック共重合体膜およびその製造方 法」)に基づくパリ条約上の優先権を主張するものであり、ここに引用することによって 、上記出願に記載された内容の全体は、本明細書の一部分を構成する。  [0001] This patent application is based on Japanese Patent Application No. 2005-326221 (filed on Nov. 10, 2005, the name of the invention "block copolymer film having an oriented cylinder structure and its manufacturing method"). The priority of the Paris Convention is claimed, and the content described in the above application is incorporated herein by reference.
本発明は、配向したシリンダー構造を有するブロック共重合体膜に関する。詳しくは 、本発明は、所定の一方向、とりわけ膜面に対して平行な一方向に配向したシリンダ 一構造を有するブロック共重合体膜及びその製造方法に関する。  The present invention relates to a block copolymer film having an oriented cylinder structure. Specifically, the present invention relates to a block copolymer film having a cylinder structure oriented in one predetermined direction, particularly in one direction parallel to the film surface, and a method for producing the same.
背景技術  Background art
[0002] 材料に微細構造を付与しその特有の機能や物性を利用する技術は、一般にナノテ クノロジ一と称され、近年、エレクトロニクス分野のみならず、エネルギー ·環境等、広 範な分野への応用が期待されて!、る。  [0002] A technology that imparts a fine structure to a material and uses its unique functions and physical properties is generally referred to as nanotechnology. In recent years, it has been applied not only to the electronics field but also to a wide range of fields such as energy and the environment. Expected!
基板上にナノメーターオーダーのパターンを自己組織的に形成させ、磁気記録媒 体、太陽電池、発光素子、精密フィルターなどの製造に適用が可能な材料として、芳 香環含有ポリマー鎖とアクリル系ポリマー鎖とを有するブロックコポリマーまたはグラフ トコポリマーを含有しミクロ相分離構造を形成するパターン材料が知られて ヽる (特許 文献 2)。し力しながら、シリンダー構造の配向方向を自在にコントロールする技術 については検討されておらず、例えば特許文献 1においては、球状ミクロ相分離構造 が球の直径程度の厚みの薄膜中で六方細密充填する現象 (自己組織ィ匕能力)の応 用技術を開示したものに過ぎない。  As materials that can be applied to the manufacture of magnetic recording media, solar cells, light-emitting elements, precision filters, etc. by forming nanometer-order patterns on a substrate in a self-organized manner, aromatic ring-containing polymer chains and acrylic polymers A pattern material containing a block copolymer or a graft copolymer having a chain and forming a microphase-separated structure is known (Patent Document 2). However, a technique for freely controlling the orientation direction of the cylinder structure is not studied, but, for example, in Patent Document 1, a spherical microphase separation structure is packed in a hexagonal close-packed state in a thin film having a thickness of about the diameter of a sphere. It is just a disclosure of the applied technology of the phenomenon (self-organization ability).
特許文献 1:特開 2001— 151834号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-151834
特許文献 2 :特開 2002— 279616号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-279616
[0003] 一方、非特許文献 1及び 2は、流動場を用いて、ジブロック共重合体またはトリプロ ック共重合体中に、膜面に平行にラメラゃシリンダーを配向させる方法を開示する。 しかしながら、これらの方法では、ブロック共重合体の膜表面に微細な筋状凹凸を形 成させることはできない。 [0003] On the other hand, Non-Patent Documents 1 and 2 disclose a method of orienting a lamella cylinder in a diblock copolymer or a triblock copolymer in parallel to the film surface using a flow field. However, these methods cannot form fine streaks on the surface of the block copolymer film.
非特許文献 1: Spherulite formation rrom microphase- separated lamellae in semi-cry stalline diblock copolymer comprising polyethylene and atactic polypropylene blocks ; M. Ueda, K. Sakurai, S. Okamoto, D. J. Lohse, W. J. MacKnight, S. Shinkai, S. S akurai, S. Nomura (2003, Polymer, 44, pp. 6995 - 7005)  Non-Patent Document 1: Spherulite formation rrom microphase- separated lamellae in semi-cry stalline diblock copolymer comprising polyethylene and atactic polypropylene blocks; M. Ueda, K. Sakurai, S. Okamoto, DJ Lohse, WJ MacKnight, S. Shinkai, S. S akurai, S. Nomura (2003, Polymer, 44, pp. 6995-7005)
非特許文献 2: "Synchrotron Small-Angle X- ray Scattering Studies on Flow-Induced Non-Patent Document 2: "Synchrotron Small-Angle X-ray Scattering Studies on Flow-Induced
Gyroid to Cylinder Transition in an Elastomeric SBS Triblock Copolymer〃; S. Sakur ai, T. Kota, D. Isobe, S. Okamoto, K. Sakurai, T. Ono, K. Imaizumi, S. Nomura (20Gyroid to Cylinder Transition in an Elastomeric SBS Triblock Copolymer〃; S. Sakur ai, T. Kota, D. Isobe, S. Okamoto, K. Sakurai, T. Ono, K. Imaizumi, S. Nomura (20
04, J. Macromol. Sci" Physics, B43, pp. 1-11) 04, J. Macromol. Sci "Physics, B43, pp. 1-11)
[0004] また、所定の特性表面粗さ以上の基板上にブロック共重合体榭脂を載置し、該榭 脂に熱処理することにより垂直配向ラメラ構造を有するブロック共重合体膜を作製す る方法も知られて ヽる(特許文献 3)。 [0004] Also, a block copolymer film having a vertically aligned lamella structure is produced by placing a block copolymer resin on a substrate having a predetermined characteristic surface roughness or higher and heat-treating the resin. The method is also known (Patent Document 3).
特許文献 3:特開 2004— 99667号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-99667
[0005] し力しながら、特許文献 3に記載の方法はラメラ構造を膜面に垂直に配向させる方 法であって、得られた膜面内のラメラ構造の配列を規定できないという不都合があつ た。また、シリンダー構造の場合のように後加工によってナノポア (微細孔)を作り出 すなどの応用がほとんどできな 、、 t 、う不都合があった。 [0005] However, the method described in Patent Document 3 is a method of orienting the lamella structure perpendicularly to the film surface, and has the disadvantage that the arrangement of the lamella structure in the obtained film surface cannot be defined. It was. In addition, as in the case of a cylinder structure, there is an inconvenience that it can hardly be applied to create nanopores (micropores) by post-processing.
そこで、以下のように、垂直配向シリンダー構造を付与するための検討も行われて いる。  In view of this, studies have been conducted to provide a vertically aligned cylinder structure as follows.
[0006] 例えば、ポリスチレンーポリメタクリル酸メチルジブロック共重合体膜を電極板上に キャストして、 30〜40¥7 111の直流電圧を165°〇で14時間印加すると、ポリメタタリ ル酸メチルカ なるシリンダーが垂直配向することが報告されて 、る(非特許文献 3) 。し力しながら、得られるジブロック共重合体膜は、膜厚が: L m以下と極めて薄いも のであるため、材料としての利用価値が小さ力つた。また、この方法によれば電場の 印加という煩雑な処理を要するうえ、電場に応答しないポリマーに対してはこの方法 を適用できな力つた。  [0006] For example, when a polystyrene-polymethyl methacrylate diblock copolymer film is cast on an electrode plate and a DC voltage of 30 to 40 ¥ 7 111 is applied for 14 hours at 165 °, it becomes polymethyl methacrylate. It has been reported that the cylinder is vertically aligned (Non-patent Document 3). However, since the obtained diblock copolymer film has a very thin film thickness: L m or less, its utility value as a material was small. In addition, according to this method, a complicated process of applying an electric field is required, and this method cannot be applied to a polymer that does not respond to an electric field.
特干文献 3: Ultrahigh— Density Nanowire Arravs Grown in ¾elf— Assembled Diblock Copolymer Templates, T. Thurn— Albrecht, J. Schotter, G. A. Kaestle, N. Emley, T . Shibauchi, L. Krusin— Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science Dec 15 2000: 2126-2129 Special Reference 3: Ultrahigh— Density Nanowire Arravs Grown in ¾elf— Assembled Diblock Copolymer Templates, T. Thurn— Albrecht, J. Schotter, GA Kaestle, N. Emley, T. Shibauchi, L. Krusin— Elbaum, K. Guarini, CT Black, MT Tuominen, and TP Russell, Science Dec 15 2000: 2126 -2129
[0007] また、スチレンーメタクリル酸メチルのランダム共重合体をグラフトした後に、ポリスチ レンーポリメタクリル酸メチルジブロック共重合体をキャストし、表面に垂直に立ったシ リンダ一構造を形成させる方法も知られている(非特許文献 4)。しカゝしながら、この方 法は煩雑であるのみならず、得られるジブロック共重合体膜は、膜厚が 30nm以下と 極めて薄いものであるため、材料としての利用価値が小さ力つた。また、シリンダーは 垂直配向しているものの、膜面内で見た時の配列(シリンダーの円形状断面の配置 状態)はランダムであった。 [0007] Also, after grafting a random copolymer of styrene-methyl methacrylate, a method of casting a polystyrene-polymethyl methacrylate diblock copolymer to form a cylinder structure standing perpendicular to the surface Is also known (Non-Patent Document 4). However, this method is not only complicated, but the resulting diblock copolymer film is extremely thin with a film thickness of 30 nm or less, and thus has a low utility value as a material. In addition, although the cylinders were vertically oriented, the arrangement (arrangement of the circular cross section of the cylinder) when viewed in the film plane was random.
非特許文献 4: K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuom inen, C. J. Hawker, T. P. Russell, Nano Letters, 2, 933 (2002)  Non-Patent Document 4: K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuom inen, C. J. Hawker, T. P. Russell, Nano Letters, 2, 933 (2002)
[0008] また、新規ポリシリケートを中間体とすることによって垂直配向メソポーラスシリカ膜 を作成することが提案されている(特許文献 4)。しカゝしながら、このような材料の場合 は有機溶媒へ溶解させたり熱分解させることが困難であるため、ナノテンプレート等 の铸型用途としては不適であった。  [0008] In addition, it has been proposed to prepare a vertically aligned mesoporous silica film by using a novel polysilicate as an intermediate (Patent Document 4). However, in the case of such a material, it is difficult to dissolve it in an organic solvent or to thermally decompose it, so that it is not suitable for a vertical application such as a nano template.
特許文献 4:特開 2003— 335516号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2003-335516
[0009] また、配向方向のそろったミクロ相分離構造膜を得るために、親水性ポリマー成分( A)及び疎水性ポリマー成分 (B)力 なるブロック共重合体における各ポリマー成分 の分子量分布 (Mw/Mn)を 1. 3以下に調整する方法が提案されて ヽる(特許文献 5)。  [0009] In addition, in order to obtain a microphase-separated structure film with a uniform orientation, the molecular weight distribution (Mw) of each polymer component in the block copolymer consisting of a hydrophilic polymer component (A) and a hydrophobic polymer component (B) A method for adjusting / Mn) to 1.3 or less has been proposed (Patent Document 5).
し力しながら、この方法では、シリンダー構造は膜面に対して垂直方向に配向させ ることはできるが、平行方向やそれら以外の方向に自在に配向させることはできない という不都合があった。  However, this method has the disadvantage that the cylinder structure can be oriented in the direction perpendicular to the film surface, but cannot be oriented freely in the parallel direction or other directions.
特許文献 5:特開 2004 - 124088号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-124088
[0010] 本発明者らは、所定のスチレン エチレンブチレン スチレントリブロック共重合体 を用い、選択溶媒を用いた溶液キャスト法によって球状ミクロ相分離構造を形成させ 、これを 150°Cの温度で 10時間熱処理する方法を提案した (非特許文献 5)。同文献 には、上記熱処理によって、球状からシリンダー状のミクロ相分離構造へ転移したこと が開示されている。球が合体してシリンダーが形成する際、シリンダーが膜面に対し て垂直に配向する。その性質を利用して、垂直配向シリンダー材料を作製する方法 が開示されている。 [0010] The inventors of the present invention used a predetermined styrene ethylene butylene styrene triblock copolymer to form a spherical microphase separation structure by a solution casting method using a selective solvent, and this was formed at a temperature of 150 ° C. A method of time heat treatment was proposed (Non-Patent Document 5). Same document Discloses that a transition from a spherical shape to a cylindrical microphase-separated structure is caused by the heat treatment. When the spheres coalesce to form a cylinder, the cylinder is oriented perpendicular to the film surface. A method for producing a vertically-oriented cylinder material using the property is disclosed.
し力しながら、この方法では、シリンダー構造は膜面に対して垂直方向に配向させ ることはできるが、容易には平行方向に配向させることはできな力つた。  However, in this method, the cylinder structure can be oriented in a direction perpendicular to the film surface, but cannot be easily oriented in a parallel direction.
非特許文献 5:〃スチレン一エチレンブチレン一スチレントリブロック共重合体フィルム の力学特性に与えるミクロ相分離構造の影響";楳田英雄、相田栄、櫻井伸一、北川 裕ー、須田義和、正本順三、野村春治(1997、日本レオロジ一学会誌、 Vol. 25, pp. 217-220)  Non-Patent Document 5: Influence of Microphase Separation Structure on Mechanical Properties of Styrene-Ethylene Butylene-Styrene Triblock Copolymer Films ”; Hideo Hamada, Sakae Aida, Shinichi Sakurai, Yutaka Kitagawa, Yoshikazu Suda, Junzo Masamoto , Haruji Nomura (1997, Journal of Japanese Society of Rheology, Vol. 25, pp. 217-220)
[0011] 一方、磁場印加によって結晶性高分子材料中の微結晶領域を配向させることがで きることが知られており、その性質を利用した結晶性高分子材料の磁気プロセッシン グが提案されている (特許文献 6)。し力しながら、磁場配向を可能にするほど十分に 大きな磁気トルクを生み出すためには、微結晶領域がサブミクロン程度の大きさに成 長していなければならないことが示されており、非結晶性高分子材料中には、そのよ うな磁場配向を可能にするドメインが形成されな 、ため、磁場の利用は検討されてこ なかった。  [0011] On the other hand, it is known that a microcrystalline region in a crystalline polymer material can be oriented by applying a magnetic field, and magnetic processing of a crystalline polymer material using this property has been proposed. (Patent Document 6). However, it has been shown that in order to produce a magnetic torque large enough to enable magnetic field orientation, the microcrystalline region must grow to a size on the order of submicron, In such a high molecular weight material, a domain that enables such a magnetic field orientation is not formed. Therefore, the use of a magnetic field has not been studied.
特許文献 6:特開 2005 - 68249号公報  Patent Document 6: Japanese Patent Laid-Open No. 2005-68249
[0012] また、急速固化によってブロックコポリマーを薄膜内で配向させ、垂直シリンダー構 造などを形成する方法が知られている(特許文献 7)。し力しながら、同文献に記載の 方法では、膜表面に筋状の凹凸を形成させることはできない。 [0012] Further, a method is known in which a block copolymer is oriented in a thin film by rapid solidification to form a vertical cylinder structure or the like (Patent Document 7). However, the method described in this document cannot form streak irregularities on the film surface.
特許文献 7:米国特許第 6893705号公報  Patent Document 7: US Patent No. 6893705
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] そこで、本発明者らは上記技術的な課題を克服して、シリンダー構造の配向方向を コントロールすべぐ磁場利用について検討を行った結果、膜厚 10nm〜50 mの 試料について、磁場を所定の方法で印加することによって、所定の一方向に配向し たシリンダー構造を有し、かつ、膜表面に筋状の凹凸を有するブロック共重合体膜を 得ることに成功した。 [0013] Therefore, the present inventors have studied the use of a magnetic field to control the orientation direction of the cylinder structure by overcoming the above technical problem. As a result, the magnetic field was applied to a sample having a thickness of 10 nm to 50 m. By applying a predetermined method, a block copolymer film having a cylindrical structure oriented in one predetermined direction and having streaky irregularities on the film surface is formed. Succeeded in getting.
[0014] 本発明は、前記従来技術における不都合を解決し、薄い膜厚を有し、所定の一方 向に配向したシリンダー構造を有するブロック共重合体膜を提供することを課題とす る。  [0014] An object of the present invention is to solve the disadvantages in the prior art and to provide a block copolymer film having a thin film thickness and having a cylinder structure oriented in a predetermined direction.
課題を解決するための手段  Means for solving the problem
[0015] 本発明は、所定の一方向に配向したシリンダー構造を有するブロック共重合体膜で あって、 10ηπι〜50 /ζ πιの膜厚を有し、かつ、筋状表面凹凸を有する、ブロック共重 合体膜に関する。 [0015] The present invention is a block copolymer film having a cylinder structure oriented in a predetermined direction, having a thickness of 10ηπι to 50 / ζ πι, and having streaky surface irregularities The present invention relates to a copolymer film.
また、本発明は、前記シリンダー構造は、視斜角入射小角 X線散乱測定によって規 定される、配向方向に対する配向角度の乱れの絶対値力 0° 以下であることを特徴 とする前記ブロック共重合体膜に関する。  Further, in the present invention, the block structure is characterized in that the cylinder structure has an absolute value force of 0 ° or less of an orientation angle disturbance with respect to an orientation direction, which is defined by a small oblique incidence X-ray scattering measurement. The present invention relates to a polymer film.
更に、本発明は、とりわけ、膜面に対して平行な一方向に配向したシリンダー構造 を有する前記ブロック共重合体膜に関する。  Furthermore, the present invention relates to the block copolymer film having a cylinder structure oriented in one direction parallel to the film surface.
更にまた、本発明は、ブロック共重合体から形成される無秩序なミクロ相分離構造 に磁場を印加することにより、所定の一方向に配向したシリンダー構造へ転移させる ことを含んで成る、ブロック共重合体膜の製造方法に関する。  Furthermore, the present invention relates to a block copolymer comprising a transition to a predetermined unidirectionally oriented cylinder structure by applying a magnetic field to a disordered microphase-separated structure formed from a block copolymer. The present invention relates to a method for producing a combined membrane.
発明の効果  The invention's effect
[0016] 本発明によれば、薄い膜厚を有し、所定の一方向に配向したシリンダー構造を有 するブロック共重合体膜を、製造することができる。  [0016] According to the present invention, a block copolymer film having a thin film thickness and a cylinder structure oriented in a predetermined direction can be produced.
また、本発明によれば、とりわけ、これまで実現できな力つた、薄膜中に、シリンダー 構造を、し力も少なくとも膜表面に存在させて、膜面に対して平行な一方向に配向さ せることが、磁場印加による方法を採用することによって実現できる。その結果、膜表 面に、特定の微細な筋状の表面凹凸を有するブロック共重合体膜を得ることが可能 となる。  In addition, according to the present invention, in particular, the cylinder structure can be oriented in one direction parallel to the film surface with the force existing at least on the film surface in the thin film with the force that could not be realized so far. However, it is realizable by employ | adopting the method by a magnetic field application. As a result, it is possible to obtain a block copolymer film having specific fine streaky surface irregularities on the film surface.
従って、本発明に従うと、広範な分野における高機能材料の設計が可能となる。高 機能材料の例としては、ナノワイヤー等が挙げられる。また、力かる高機能材料は、 例えば、光学位相差フィルム等の高機能光学材料などの用途に使用し得る。  Therefore, according to the present invention, it is possible to design highly functional materials in a wide range of fields. Examples of highly functional materials include nanowires. Further, the powerful high-functional material can be used for applications such as a high-functional optical material such as an optical retardation film.
図面の簡単な説明 [0017] [図 1]図 1は、実施例 1において、磁場印加前の試料(180°Cで 12時間の熱処理済み )のタッピングモード法による原子間力顕微鏡観察像を示す図である。 Brief Description of Drawings FIG. 1 is a diagram showing an atomic force microscope observation image by a tapping mode method of a sample before applying a magnetic field (heat treated at 180 ° C. for 12 hours) in Example 1 in Example 1.
[図 2]図 2は、実施例 1において、 30テスラの磁場印加を 180°Cで 3時間かけて施した 試料のタッピングモード法による原子間力顕微鏡観察像を示す図である。  FIG. 2 is an atomic force microscope image of a sample obtained by applying a magnetic field of 30 Tesla at 180 ° C. for 3 hours in Example 1 using a tapping mode method.
[図 3]図 3は、実施例 1において、磁場印加なしに 180°Cで 3時間かけて熱処理のみ を施した試料のタッピングモード法による原子間力顕微鏡観察像を示す図である。  [Fig. 3] Fig. 3 is an atomic force microscope image of the sample of Example 1 which was only heat-treated at 180 ° C for 3 hours without applying a magnetic field, by the tapping mode method.
[図 4]図 4は、実施例 1において、薄膜の表面と平行に磁場を印カロした試料の視斜角 入射小角 X線散乱測定結果を示す図である。  [Fig. 4] Fig. 4 is a diagram showing the results of measurement of oblique angle of incidence and small angle X-ray scattering of a sample obtained by applying a magnetic field parallel to the surface of the thin film in Example 1.
[図 5]図 5は、 2次元散乱像 (左)とその中に示した散乱ベクトル方向に散乱強度の変 化を調べ、散乱強度の対数を散乱ベクトルの大きさ qの関数としてプロットした図 (右) である。  [Figure 5] Figure 5 shows a two-dimensional scattered image (left) and the variation of the scattering intensity in the direction of the scattering vector shown in the figure, and the logarithm of the scattering intensity is plotted as a function of the scattering vector magnitude q. (Right)
[図 6]図 6は、図 5に示した 1次ピークの面積を求め、それを Ι ( φ )として試料回転角度 Φ (方位角)に対してプロットした図である。  [FIG. 6] FIG. 6 is a diagram in which the area of the primary peak shown in FIG. 5 is obtained and plotted with respect to the sample rotation angle Φ (azimuth angle) as Ι (φ).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明のブロック共重合体膜を構成するブロック共重合体は、本発明の目的を逸 脱しない限り何ら限定されず、従来公知の 、かなるブロック共重合体も使用し得る。 ブロック共重合体のブロック構造としては、 ΑΒ型、 Α(ΒΑ)η型(ここで、 ηは自然数を 表し、好ましくは η= 1〜3である。)、 A(BAB)m、(mは自然数を表し、好ましくは m= 1〜2である。)の直鎖状ブロック共重合体や、(AB)pX (但し、 pは自然数を表し、好 ましくは p = 3〜5である。 Xは枝分かれを生じる多官能性官能基 (原子団)を表す。 ) で表示される、 B部分を結合中心とする星型ブロック共重合体が挙げられる。このな かでも、分岐や湾曲のない明確なシリンダーを形成させるためには、 AB型又は ABA 型のブロック共重合体が好ましぐとりわけ、 ABA型のトリブロック共重合体が好まし い。また、上記のブロック共重合体の 2種以上をブレンドして使用しても構わない。  [0018] The block copolymer constituting the block copolymer film of the present invention is not limited as long as it does not depart from the object of the present invention, and any well-known block copolymer may be used. As block structures of the block copolymer, ΑΒ type, Α (ΒΑ) η type (where η represents a natural number, preferably η = 1 to 3), A (BAB) m, (m is A linear block copolymer represented by a natural number, preferably m = 1-2, or (AB) pX (where p represents a natural number, and preferably p = 3-5). X represents a polyfunctional functional group (atom group) that causes branching, and a star block copolymer having a B moiety as a bond center, represented by). Among these, in order to form a clear cylinder without branching or bending, AB type or ABA type block copolymers are preferred, and ABA type triblock copolymers are particularly preferred. Further, two or more of the above block copolymers may be blended and used.
[0019] また、上記の 1種以上のブロック共重合体へ、各ブロックを構成する成分 (例えば A 成分及び Z又は B成分)力 なるホモポリマーを更にブレンドして、本発明のブロック 共重合体膜を構成することもできる。  [0019] Further, the block copolymer of the present invention is further blended with the above-mentioned one or more block copolymers with a homopolymer having a component (for example, A component and Z or B component) constituting each block. A membrane can also be constructed.
[0020] 本発明におけるブロック共重合体は、 2種以上の、より好ましくは 2種の繰り返しモノ マー単位力 成り、少なくとも 1種の繰り返しモノマー単位 Aから形成されるブロック鎖 (ポリマー成分)は通常のキャスト温度に相当する 23°Cでガラス状態であることが、ミク 口相分離構造をガラス化によって凍結(固定化)することが容易であるため好まし 、。 また、本発明のある実施態様においては、他の少なくとも 1種の繰り返しモノマー単 位 B力 形成されるポリマー成分は、 23°Cでゴム状態であることが好まし!/、。 [0020] The block copolymer in the present invention comprises two or more, more preferably two types of repeating mono The block chain (polymer component) formed from at least one repeating monomer unit A is in a glassy state at 23 ° C, which corresponds to the normal casting temperature. Preferred because it is easy to freeze (immobilize). Further, in one embodiment of the present invention, it is preferred that the polymer component to be formed is a rubber state at 23 ° C. /.
上記の繰り返しモノマー単位 Aから形成されるポリマー成分 (ガラス成分)と上記の 繰り返しモノマー単位 B力 形成されるポリマー成分 (例えばゴム成分)の体積分率は 、いずれかを 0. 1〜0. 4とすることが、シリンダー構造を形成させるために有効であつ て好ましぐ体積分率の小さな成分がシリンダー構造を、体積分率の大きな成分がマ トリックス相を、それぞれ形成し得る。上記の体積分率は、 0. 11〜0. 35とすることが より好ましく、 0. 12〜0. 3力更に好ましく、 0. 13〜0. 25が特に好ましい。繰り返し モノマー単位 Aから形成されるポリマー成分 (ガラス成分)のブロック共重合体に対す る体積分率を 0. 1〜0. 4とすることが、シリンダー構造を形成させ易いため好ましぐ 0. 11〜0. 35とすること力 Sより好ましく、 0. 12〜0. 3力 S更に好ましく、 0. 13〜0. 25 が特に好ましぐ 0. 15〜0. 24とすることが最も好ましい。  The volume fraction of the polymer component (glass component) formed from the above repeating monomer unit A and the above repeating monomer unit B force formed polymer component (for example, rubber component) is either 0.1 to 0.4. Therefore, a component having a small volume fraction that is effective and preferable for forming a cylinder structure can form a cylinder structure, and a component having a large volume fraction can form a matrix phase. The volume fraction is preferably 0.11 to 0.35, more preferably 0.12 to 0.3 force, and particularly preferably 0.13 to 0.25. It is preferable to set the volume fraction of the polymer component (glass component) formed from repeating monomer units A to 0.1 to 0.4 because it is easy to form a cylinder structure. 11 to 0.35 is more preferable than force S, 0.12 to 0.3 force S is more preferable, 0.13 to 0.25 is particularly preferable, and 0.15 to 0.24 is most preferable. .
[0021] 繰り返しモノマー単位力 形成されるブロック鎖 (ポリマー成分)がガラス状態とゴム 状態のいずれである力、並びに該ポリマー成分のガラス転移温度については、ガラス 転移温度の一般的な測定方法、例えば、示差走査熱量分析 (DSC)、動的粘弾性 測定などによって確認することができる。 [0021] Repetitive monomer unit force Regarding the force with which the formed block chain (polymer component) is in a glass state or a rubber state, and the glass transition temperature of the polymer component, a general method for measuring the glass transition temperature, for example, It can be confirmed by differential scanning calorimetry (DSC) and dynamic viscoelasticity measurement.
[0022] 前記の 2種以上の繰り返しモノマー単位は、芳香族ビニル及び部分的に或いは完 全に水素添加された共役ジェンであることが、磁場配向させ易いため好ましい。 このような芳香族ビュルのベースとなる単量体としては、スチレン、 α—メチルスチ レン、 ρ—メチルスチレン、ビニルトルエン、 t—ブチルスチレン、 o—ェチルスチレン、 o—クロロスチレン、 p—クロロスチレン、 o, p—ジクロロスチレン、 p—ブロモスチレン、 2, 4, 5—トリブロモスチレンなどが挙げられる。これらの中でもスチレン力 最も安価 に入手が可能であり特に好ま 、。 [0022] The two or more kinds of repeating monomer units are preferably aromatic vinyl and a conjugation hydrogen partially or completely hydrogenated because it is easy to align in a magnetic field. Monomers that serve as the base for such aromatic bullets include styrene, α-methylstyrene, ρ-methylstyrene, vinyltoluene, t-butylstyrene, o-ethylstyrene, o-chlorostyrene, p-chlorostyrene, o, p-dichlorostyrene, p-bromostyrene, 2, 4, 5-tribromostyrene, and the like. Of these, styrene power is particularly preferred because it is available at the lowest cost.
また、本発明における共役ジェンは、同一分子内に共役二重結合を有する単量体 に起因するものであり、共役ジェンのベースとなる単量体は特に限定されない。共役 ジェンは、重合体分子の主鎖中に組み込まれる場合(1 4結合)と側鎖中に組み込 まれる場合(1— 2結合)とがあるが、重合体分子中での両者の比率は特に限定され ない。共役ジェン系ポリマーとしては、ポリブタジエン、ポリイソプレン、スチレンーブタ ジェンランダムコポリマーが好適である。本発明において、繰り返しモノマー単位とし ての部分的に或いは完全に水素添加された共役ジェンは、共役ジェン系ポリマーの 通常の水添法 (例えば、特開昭 62— 207303号公報を参照)によって、ブロック共重 合体中に導入することができる。 In addition, the conjugate gen in the present invention originates from a monomer having a conjugated double bond in the same molecule, and the monomer serving as the base of the conjugate gen is not particularly limited. Conjugate Jen can be incorporated into the main chain of the polymer molecule (14 bonds) or into the side chain (1 to 2 bonds), but the ratio of both in the polymer molecule is There is no particular limitation. As the conjugated gen-based polymer, polybutadiene, polyisoprene, and styrene-butadiene random copolymer are suitable. In the present invention, a partially or completely hydrogenated conjugated diene as a repeating monomer unit is obtained by a conventional hydrogenation method of a conjugated gen-based polymer (for example, see JP-A-62-207303). It can be introduced into the block copolymer.
本発明においては、芳香族ビュル単位はスチレンに由来する単位であり、部分的 に或いは完全に水素添加された共役ジェンの単位はブタジエンに由来する単位で あることが特に好ましい。  In the present invention, it is particularly preferred that the aromatic bul unit is a unit derived from styrene, and the partially or completely hydrogenated conjugation unit is a unit derived from butadiene.
[0023] 本発明におけるブロック共重合体は、ミクロ相分離することが少なくとも可能な分子 量以上であって、かつ、短時間に、熱力学的平衡ないしは準平衡状態を達成しやす い程度の分子量を有することが重要である。このような観点から、数平均分子量は 1 万〜 100万の範囲であることが好ましい。数平均分子量は 2万以上であることがより 好ましぐ 3万以上であることが更に好ましぐ 5万以上であることが特に好ましい。また 、数平均分子量は 75万以下であることがより好ましぐ 50万以下であることが更に好 ましぐ 20万以下であることが特に好ましい。  [0023] The block copolymer of the present invention has a molecular weight that is at least equal to or higher than a molecular weight capable of microphase separation, and that can easily achieve a thermodynamic equilibrium or quasi-equilibrium state in a short time. It is important to have From such a viewpoint, the number average molecular weight is preferably in the range of 10,000 to 1,000,000. The number average molecular weight is more preferably 20,000 or more, more preferably 30,000 or more, and even more preferably 50,000 or more. Further, the number average molecular weight is more preferably 750,000 or less, more preferably 500,000 or less, still more preferably 200,000 or less.
[0024] 本発明のブロック共重合体膜は、所定の一方向に配向したシリンダー構造を有して いる。すなわち、本発明の重要な特徴は、ブロック共重合体膜がシリンダー構造を有 し、しかもシリンダー構造が所定の一方向に配向していることを含む。ブロック共重合 体膜にこのような特徴を付与することにより、前記したように、広範な材料分野での高 機能材料の設計が可能となる。  [0024] The block copolymer film of the present invention has a cylinder structure oriented in a predetermined direction. That is, an important feature of the present invention includes that the block copolymer film has a cylinder structure and the cylinder structure is oriented in a predetermined direction. By imparting such characteristics to the block copolymer film, it becomes possible to design highly functional materials in a wide range of materials as described above.
ここで、所定の一方向とは、任意に設定された一方向であって、例えば、膜面に平 行な一方向、膜面に垂直方向、膜面に対し任意の一定角度 (例えば 30° 、45° 、6 0° など)を有する一方向が含まれる。なかでも、垂直以外の方向、とりわけ膜面に平 行な一方向に配向したシリンダー構造を有する場合、異方性のナノ表面凹凸を有す る膜の製造、更には、得られた膜に常法により金属蒸着を施した後、ポリマーを分解 、溶解して基板を製造する用途において、特に好適である。 [0025] 本発明の別の重要な特徴は、その膜厚が 10nm〜50 μ mという特定の範囲にある ことである。後述する本発明の製造方法を採用することにより、従来得ることのできな かった、前記の各高機能材料に好適で、膜厚の小さなブロック共重合体膜を製造す ることが可能となった。膜厚は、 10 m以下であることが好ましぐより好ましくは 5 /z m以下、更に好ましくは 1 μ m以下、特に好ましくは lOOnm以下である。 Here, the predetermined one direction is an arbitrarily set direction, for example, one direction parallel to the film surface, a direction perpendicular to the film surface, and an arbitrary fixed angle (for example, 30 °). , 45 °, 60 °, etc.). In particular, in the case of having a cylinder structure oriented in a direction other than perpendicular, particularly in one direction parallel to the film surface, the production of a film having anisotropic nano-surface irregularities, and further, the obtained film is usually used. This method is particularly suitable for use in producing a substrate by decomposing and dissolving a polymer after performing metal vapor deposition by the method. [0025] Another important feature of the present invention is that the film thickness is in a specific range of 10 nm to 50 μm. By adopting the production method of the present invention described later, it becomes possible to produce a block copolymer film having a small film thickness that is suitable for each of the above-mentioned highly functional materials, which could not be obtained conventionally. It was. The film thickness is preferably 10 m or less, more preferably 5 / zm or less, still more preferably 1 μm or less, and particularly preferably lOOnm or less.
[0026] 本発明において、膜厚の測定は、そのサイズ範囲に応じて適切な方法を選択して 行い得る。例えば、 X線や中性子線の反射率測定(lOOnm程度以下)、原子間カ顕 微鏡(1 m程度以下)、エリプソメトリー(1 μ m程度以下)などが挙げられる。 In the present invention, the film thickness can be measured by selecting an appropriate method according to the size range. For example, X-ray and neutron reflectivity measurement (about lOOnm or less), atomic force microscope (about 1 m or less), and ellipsometry (about 1 μm or less).
[0027] 本発明の方法によれば、前記のような、膜面に対して平行な一方向に配向したシリ ンダー構造を、とりわけ、少なくとも膜表面に存在させることが可能である。シリンダー 構造を膜表面に存在させることにより、液晶配向誘発性の表面を有し、筋状表面凹 凸の高低差が 2〜20nmであるブロック共重合体膜を得ることができる。ここで、液晶 配向誘発性とは、液晶化合物を膜上に滴下させるだけで、シリンダーの軸方向と平 行方向に液晶分子が自発的に配向するような性質を意味する。液晶配向誘発性の 存在は、滴下した液晶化合物が一方向に配向したモノドメインを形成するかどうかを 偏光顕微鏡ゃ視斜角入射 X線散乱(回折)法で観察することによって、確認すること ができる。筋状表面凹凸の高低差は、より好適には 2〜15nm、特に好適には 2〜10 nmである。また、かかる高低差は、シリンダー直径に対して、好適には 15〜40%、よ り好適には 15〜30%の範囲内であることが望ましい。  [0027] According to the method of the present invention, the above-described cylinder structure oriented in one direction parallel to the film surface can be present at least on the film surface. By making the cylinder structure exist on the film surface, it is possible to obtain a block copolymer film having a liquid crystal alignment-inducing surface and a streaky surface unevenness difference of 2 to 20 nm. Here, the liquid crystal orientation inducing property means a property that liquid crystal molecules are spontaneously aligned in the axial direction and the parallel direction of the cylinder only by dropping a liquid crystal compound on the film. The presence of liquid crystal alignment-inducing properties can be confirmed by observing whether or not the dropped liquid crystal compound forms a monodomain aligned in one direction by using a polarizing microscope with an oblique incidence X-ray scattering (diffraction) method. it can. The height difference of the streaky surface irregularities is more preferably 2 to 15 nm, particularly preferably 2 to 10 nm. The height difference is preferably 15 to 40%, more preferably 15 to 30% with respect to the cylinder diameter.
また、シリンダー構造は、好適には膜表面から 5〜50nmの深さ、より好適には 5〜2 5nmの深さに存在する。  The cylinder structure is preferably present at a depth of 5 to 50 nm, more preferably 5 to 25 nm from the film surface.
シリンダー構造が膜表面に存在しているかどうか、膜表面力もの深さ、および表面 凹凸の高低差は、視斜角入射小角 X線散乱および原子間力顕微鏡観察あるいは透 過型電子顕微鏡観察などを用いて測定し得る。  Whether or not the cylinder structure exists on the film surface, the depth of the film surface force, and the height difference of the surface irregularities can be determined by visual angle incidence small angle X-ray scattering and atomic force microscope observation or transmission electron microscope observation. Can be measured.
[0028] 本発明においては、薄膜において、所定の一方向に、とりわけ膜面に平行な一方 向にシリンダーを配向させることが、極めて重要である。即ち、薄膜において所定の 一方向に、とりわけ膜面に平行な一方向にシリンダーを配向させるための方法として は、後述するような磁場の印加による方法を採用するのが効果的である。従って、本 発明の好適なブロック共重合体膜は、シリンダー構造の配向方向が、印加磁場の方 向によって規定されるものである。 In the present invention, in the thin film, it is extremely important to orient the cylinder in a predetermined direction, particularly in one direction parallel to the film surface. That is, as a method for orienting the cylinder in a predetermined direction in the thin film, particularly in a direction parallel to the film surface, it is effective to adopt a method by applying a magnetic field as described later. Therefore, the book In a preferred block copolymer film of the invention, the orientation direction of the cylinder structure is defined by the direction of the applied magnetic field.
一般に、膜厚が大きい場合には、流動場の印加によって膜面に平行にシリンダー を配向させることは可能であるが、例えば、膜厚が 10 m以下の薄膜に流動場を印 加することは極めて困難である。また、電場印加や温度勾配の付与、あるいはゾーン 加熱などの方法によって、薄膜中でシリンダー構造を膜面に垂直に配向させることは 可能であったとしても、垂直以外の方向、とりわけ膜面に平行な一方向にシリンダー を配向させるために、これらの方法を薄膜に適用することは困難を極める。  In general, when the film thickness is large, it is possible to orient the cylinder parallel to the film surface by applying a flow field, but for example, applying a flow field to a thin film with a film thickness of 10 m or less is not possible. It is extremely difficult. Even if it is possible to orient the cylinder structure perpendicular to the film surface in the thin film by applying an electric field, applying a temperature gradient, or zone heating, etc., it is possible to align it in a direction other than perpendicular, particularly parallel to the film surface. It is extremely difficult to apply these methods to thin films to orient the cylinder in one direction.
[0029] 本発明においては、所定の一方向、例えば垂直以外の方向、とりわけ膜面に平行 な一方向にシリンダー構造を配向させ、その乱れを低減させるという観点から、好適 には、シリンダー構造の所定の一方向に対する配向角度の乱れ (視斜角入射小角 X 線散乱測定によって以下のように規定される)の絶対値は 40° 以下である。  [0029] In the present invention, from the viewpoint of orienting the cylinder structure in a predetermined direction, for example, a direction other than vertical, in particular, one direction parallel to the film surface, and reducing the disturbance, The absolute value of the disorder of the orientation angle with respect to a given direction (specified by the oblique angle of incidence small-angle X-ray scattering measurement) is 40 ° or less.
膜表面での所定の一方向力 の配向角度の乱れは、視斜角入射小角 X線散乱測 定を行った際に得られる、膜面内でのシリンダー構造の配列の規則性に起因する反 射斑点強度を方位角(膜面に平行な一方向からの方位角のずれ)〖こ対してプロットし たとき、方位角のずれ 0° の場合の最大反射斑点強度力も完全に減少しきった際の 方位角の変化量と定義される。従って、ある主軸方向にシリンダーが配向している場 合、その方位角の位置が最大値となるような反射斑点が現れるため、それが完全に 減少しきった方位角をもって配向角度の乱れとする。  The disorder of the orientation angle of a given unidirectional force on the film surface is a reaction caused by the regularity of the arrangement of the cylinder structure in the film surface, which is obtained when the oblique oblique incidence X-ray scattering measurement is performed. When plotting the spot intensity against the azimuth angle (azimuth angle deviation from one direction parallel to the film surface), the maximum reflected spot intensity force when the azimuth angle deviation is 0 ° is completely reduced. It is defined as the amount of change in the azimuth angle. Therefore, when the cylinder is oriented in a certain principal axis direction, a reflection spot appears that maximizes the azimuth angle position. Therefore, the azimuth angle that is completely reduced is regarded as a disorder of the orientation angle.
配向角度の乱れの絶対値は 20° 以下であることがより好ましぐ更には 10° 以下 であること、特に 5° 以下であることが好ましい。配向角度の乱れの絶対値の下限は 0. 5° 程度であり得る力 0° であることが最も好ましい。  The absolute value of the disorder of the orientation angle is more preferably 20 ° or less, even more preferably 10 ° or less, and particularly preferably 5 ° or less. The lower limit of the absolute value of the disorder of the orientation angle is most preferably a force of 0 ° which can be about 0.5 °.
[0030] また、本発明のブロック共重合体膜において、シリンダー構造は、六方格子上に配 列していること力 配向したシリンダーの充填本数を最大にするという観点力も好まし い。  [0030] In addition, in the block copolymer film of the present invention, the cylinder structure is preferably arranged in a hexagonal lattice, and the viewpoint power of maximizing the number of filled cylinders is also preferred.
[0031] 本発明のブロック共重合体膜において、シリンダー構造は、直径が 3〜50nmのシ リンダ一力も成ることが、高低差 2〜20nmの筋状表面凹凸を形成させる点から好ま しい。シリンダーの直径は 3〜20nmであることがより好ましい。また、そのようなシリン ダ一は、好ましくは 5〜120nm、より好ましくは 5〜50nmの距離で配列していること 力 特定の方位に平行に配向したシリンダーの充填本数を最大にするという観点から 好ましい。シリンダー径及びシリンダー間の距離は、透過型電子顕微鏡観察、小角 X 線散乱法などによって測定し得る。 [0031] In the block copolymer film of the present invention, the cylinder structure is preferably a cylinder having a diameter of 3 to 50 nm from the viewpoint of forming streaky surface irregularities having a height difference of 2 to 20 nm. The diameter of the cylinder is more preferably 3 to 20 nm. Also such Syrin The cylinders are preferably arranged at a distance of 5 to 120 nm, more preferably 5 to 50 nm. Force From the viewpoint of maximizing the number of cylinders oriented parallel to a specific orientation. The cylinder diameter and the distance between the cylinders can be measured by transmission electron microscope observation, small-angle X-ray scattering method, and the like.
本発明のブロック共重合体膜において、シリンダー構造を構成する成分は、前記の とおり、繰り返しモノマー単位 Aから形成されるポリマー成分であること、すなわち 23 °Cでガラス状態のポリマー成分であることが好ましい。  In the block copolymer film of the present invention, as described above, the component constituting the cylinder structure is a polymer component formed from repeated monomer units A, that is, a polymer component in a glassy state at 23 ° C. preferable.
[0032] 次に、本発明のブロック共重合体膜を製造する好ましい方法について詳述する。  Next, a preferable method for producing the block copolymer film of the present invention will be described in detail.
本発明の好適な実施態様において、シリンダー状ミクロ相分離構造を本質的に形 成し得るブロック共重合体試料 (例えば、スチレン エチレンブチレン スチレントリ ブロック共重合体: SEBS)を用いて、ブロック共重合体中のガラス成分 (この場合、ポ リスチレン成分)のガラス転移温度以上の温度、好適にはシリンダーを構成するポリ マー成分のガラス転移温度より 80°C以上高い温度で、精密に (好適には、 ± 1°Cの 温度精度で)、かつ、熱処理試料の温度が均一となるように磁場中で熱処理を行うこ とによって、シリンダーを印加磁場の方向に対して平行に配向させることができる。  In a preferred embodiment of the present invention, a block copolymer sample (e.g., styrene ethylene butylene styrene triblock copolymer: SEBS) that can essentially form a cylindrical microphase separation structure is used. Precisely (preferably at a temperature above the glass transition temperature of the glass component (in this case, the polystyrene component) in the coalescence, preferably at least 80 ° C higher than the glass transition temperature of the polymer component constituting the cylinder. By performing heat treatment in a magnetic field so that the temperature of the heat-treated sample is uniform, the cylinder can be oriented parallel to the direction of the applied magnetic field.
[0033] 本発明のブロック共重合体膜の製造においては、ブロック共重合体試料に与えるシ リンダ一配向方向と磁場印加方向の関係力 特に重要である。即ち、磁場の印加は 、シリンダーを配向させるべき所定の方向に対して、平行に磁場を印加することが重 要である。  [0033] In the production of the block copolymer film of the present invention, the relationship force between the cylinder orientation direction and the magnetic field application direction given to the block copolymer sample is particularly important. That is, it is important to apply a magnetic field in parallel to a predetermined direction in which the cylinder should be oriented.
[0034] 印加磁場の強度は、 30テスラ以下であることが好ましぐ低コストで磁場印加を行う ために、 10テスラ以下であることがより好ましぐ超伝導電磁石を必要としない 2テスラ 以下が特に好ましい。また、シリンダーを配向させるために十分な磁気トルクを生み 出すために、印加磁場の強度は、 0. 1テスラ以上であることが好ましい。  [0034] The strength of the applied magnetic field is preferably 30 Tesla or lower, and a superconducting electromagnet more preferably 10 Tesla or lower is not required in order to apply a magnetic field at a low cost, which is preferably 2 Tesla or lower. Is particularly preferred. In order to generate a sufficient magnetic torque for orienting the cylinder, the strength of the applied magnetic field is preferably 0.1 Tesla or more.
[0035] 前記方法にお!、て、磁場印加中に該ブロック共重合体の自己組織化能力による構 造転移を利用してシリンダーを形成させることも可能である。従って、本発明はまた、 ブロック共重合体から形成される無秩序なミクロ相分離構造に磁場を印加すること〖こ より、所定の一方向に配向したシリンダー構造へ転移させることを含んで成る、ブロッ ク共重合体膜の製造方法にも関する。 [0036] ここで、磁場印加前のブロック共重合体の構造は、無秩序なミクロ相分離構造であ ることが、シリンダーへの転移の容易さと配向させ易さの点から好ましい。更に、磁場 印加前のブロック共重合体の構造は、ミクロ相分離して 、な 、完全相溶状態であるこ とが、配向角度の乱れを低減させる点力も特に好ましい。 [0035] In the above method, it is also possible to form a cylinder by utilizing the structural transition due to the self-organization ability of the block copolymer during application of a magnetic field. Therefore, the present invention also includes a transition to a cylinder structure oriented in a predetermined direction by applying a magnetic field to a disordered microphase-separated structure formed from a block copolymer. The present invention also relates to a method for producing a copolymer film. Here, the structure of the block copolymer before application of a magnetic field is preferably a disordered microphase separation structure from the viewpoint of easy transition to a cylinder and easy orientation. Further, the structure of the block copolymer before application of the magnetic field is preferably in a completely compatible state after microphase separation, and the point force for reducing the disorder of the orientation angle is particularly preferable.
[0037] 本発明のブロック共重合体膜の製造においては、熱処理は精密な温度制御下に 行うことが重要である。例えば、ポリスチレンのガラス転移温度以上の温度 (例えば、 150°C)で、好適にはシリンダーを構成するポリマー成分のガラス転移温度より 80°C 以上高い温度、より好適には 90°C以上高い温度、更に好適には 100°C以上高い温 度、特に好適には 110°C以上高い温度で、精密に (好適には ± 1°C、より好適には士 0. 5°Cの温度精度で)、所定時間(例えば、 3時間)、温度むらや温度勾配が生じな いように、可能な限り均一な温度分布を達成するように熱処理を行う。その結果、印 加磁場の方向によって規定される、好適には印加磁場の方向に平行な、所定の一 方向に配向したシリンダー構造が形成される。  [0037] In the production of the block copolymer film of the present invention, it is important to perform the heat treatment under precise temperature control. For example, at a temperature not lower than the glass transition temperature of polystyrene (for example, 150 ° C), preferably at least 80 ° C higher than the glass transition temperature of the polymer component constituting the cylinder, more preferably higher than 90 ° C. More preferably, the temperature is 100 ° C or higher, particularly preferably 110 ° C or higher, and precisely (preferably ± 1 ° C, more preferably 0.5 ° C). ), Heat treatment is performed so as to achieve a uniform temperature distribution as much as possible so that temperature unevenness and temperature gradient do not occur for a predetermined time (for example, 3 hours). As a result, a cylinder structure oriented in a predetermined direction, which is defined by the direction of the applied magnetic field, and preferably parallel to the direction of the applied magnetic field, is formed.
[0038] 更にまた、ポリマー溶液力も薄膜を調製する場合には、スピンキャスト法を用いるこ とが好ましい。すなわち、毎分 1000回転以上の速度で回転するステージに設置した シリコンウェハ上にポリマー溶液 (濃度 0. 1〜1重量%)を 0. 1〜1ミリリットル滴下して 薄膜を調製する。薄膜の厚みは、回転数、ポリマー溶液の濃度、滴下溶液量によつ て 10nm〜100nmの範囲で調節可能である。  [0038] Furthermore, in the case of preparing a thin film with a polymer solution strength, it is preferable to use a spin casting method. That is, a thin film is prepared by dropping 0.1 to 1 ml of a polymer solution (concentration 0.1 to 1% by weight) onto a silicon wafer placed on a stage rotating at a speed of 1000 rpm or more. The thickness of the thin film can be adjusted in the range of 10 nm to 100 nm depending on the rotational speed, the concentration of the polymer solution, and the amount of the dropped solution.
[0039] 本発明に従うと、前記のとおり、広範な分野における高機能材料の設計が可能とな る。高機能材料の例としては、ナノワイヤー等が挙げられる。また、かかる高機能材料 は、例えば、光学位相差フィルム等の高機能光学材料などの用途に使用し得る。 本発明において、光学材料には、液晶ディスプレイ、プラズマディスプレイ、有機 E Lディスプレイ、フィールドェミッションディスプレイ、リアプロジェクシヨンテレビ等のデ イスプレイに用いられる偏光板保護フィルム、 1Z4波長板や 1Z2波長板などの位相 差板、視野角制御フィルム等の液晶光学補償フィルム、ディスプレイ前面板、デイス プレイ基盤、レンズなど、また、太陽電池等に用いられる透明基盤などが含まれる。 本発明のブロック共重合体膜は、これらの光学材料に特に好適に使用し得る。  [0039] According to the present invention, as described above, it is possible to design highly functional materials in a wide range of fields. Examples of the high-functional material include nanowires. Further, such a high-functional material can be used for applications such as a high-functional optical material such as an optical retardation film. In the present invention, the optical material includes a polarizing plate protective film used for a display such as a liquid crystal display, a plasma display, an organic EL display, a field emission display, and a rear projection television, and a phase such as a 1Z4 wavelength plate and a 1Z2 wavelength plate. Examples include a liquid crystal optical compensation film such as a difference plate, a viewing angle control film, a display front plate, a display substrate, a lens, and a transparent substrate used for solar cells. The block copolymer film of the present invention can be particularly suitably used for these optical materials.
[0040] 本発明のブロック共重合体膜の表面におけるマトリックス相を、前記と同様の方法 で分解または溶解によって除去するとナノシリンダー配向膜を得ることができる。ここ で、最表面のナノシリンダー構造の配向と配列の規則性が乱れないようにすることが 重要である。そのために、除去すべき表面の深さは、好ましくは、 2nm以上、より好ま しくは 5nm以上であって、 25nm以下、より好ましくは 15nm以下である。 [0040] The matrix phase on the surface of the block copolymer film of the present invention is subjected to the same method as described above. The nanocylinder alignment film can be obtained by removing by decomposition or dissolution. Here, it is important that the orientation and alignment of the outermost nanocylinder structure are not disturbed. Therefore, the depth of the surface to be removed is preferably 2 nm or more, more preferably 5 nm or more, and 25 nm or less, more preferably 15 nm or less.
このようなナノシリンダー配向膜は、液晶配向誘発性の表面を有して 、ることが好適 である。ここで、液晶配向誘発性とは、液晶化合物を膜上に滴下させるだけで、シリン ダ一の軸方向と平行方向に液晶分子が自発的に配向するような性質を意味する。液 晶配向誘発性の存在は、滴下した液晶化合物が一方向に配向したモノドメインを形 成するかどうかを偏光顕微鏡ゃ視斜角入射 X線散乱(回折)法で観察することによつ て、確認することができる。  Such a nanocylinder alignment film preferably has a liquid crystal alignment-inducing surface. Here, the liquid crystal alignment inducing property means a property that liquid crystal molecules are spontaneously aligned in a direction parallel to the axial direction of the cylinder only by dropping a liquid crystal compound onto the film. The existence of liquid crystal orientation-inducing properties is observed by observing whether the dropped liquid crystal compound forms a monodomain oriented in one direction by using a polarizing microscope with an oblique incidence X-ray scattering (diffraction) method. Can be confirmed.
[0041] また、上記のナノシリンダー配向膜の表面にブロック共重合体試料をスピンキャスト して、更にこれを熱処理することにより、ナノシリンダー配向膜と本発明のブロック共 重合体膜を少なくとも含む積層構造を有するナノシリンダー配向性位相差膜が得ら れる。このようなナノシリンダー配向性位相差膜は、シリンダー配向方向の揃った積 層膜である。ここで、スピンキャストを行う際に、マトリックス相を形成している成分を溶 解させない選択溶媒を用いることが好適である。また、この積層化を繰り返すことによ つて、好ましくは厚みが 100〜200nmの積層膜が得られ、光学材料用のナノシリン ダー配向性位相差膜として、特に有用である。  [0041] Also, a block copolymer sample is spin-cast on the surface of the above-mentioned nanocylinder alignment film, and this is further heat-treated, whereby a laminate including at least the nanocylinder alignment film and the block copolymer film of the present invention. A nanocylinder-oriented retardation film having a structure can be obtained. Such a nanocylinder-oriented retardation film is a laminated film having a uniform cylinder orientation direction. Here, it is preferable to use a selective solvent that does not dissolve the components forming the matrix phase when performing spin casting. Further, by repeating this lamination, a laminated film having a thickness of preferably 100 to 200 nm is obtained, which is particularly useful as a nanocylinder-oriented retardation film for optical materials.
[0042] ここで、選択溶媒とは、ある種類のポリマー成分に対しては選択的良溶媒に該当し 、かつ他の種類のポリマー成分に対しては選択的貧溶媒に該当する溶媒をいう。 また、ポリマー溶液カも該選択溶媒を除去する場合には、ポリマー溶液を濃縮して 完全に選択溶媒を蒸発させて絶乾ァズキャスト膜とすることが好ましい。  Here, the selective solvent refers to a solvent that corresponds to a selective good solvent for a certain type of polymer component, and that corresponds to a selective poor solvent for another type of polymer component. In the case of removing the selective solvent from the polymer solution, it is preferable that the polymer solution is concentrated to completely evaporate the selective solvent to form an absolutely dry cast film.
[0043] また、本発明のブロック共重合体膜からマトリックス相を分解または溶解することによ つて除去すると、ナノワイヤーを得ることができる。分解方法は特に限定されず、従来 公知の方法を採用し得る力 例えば、オゾン分解或いはイオンビームエッチングなど の方法が推奨される。また、溶解方法についても特に限定されず、従来公知の方法 を採用し得るが、例えば、シリンダーまたはマトリックスを形成するポリマーの一方の みを溶解し得る溶媒 (例えば、ガラス成分は溶解するがゴム成分を溶解しな 、溶媒、 ゴム成分は溶解するがガラス成分を溶解しな ヽ溶媒)を用いる方法、酸やアルカリを 用いて処理する方法などが推奨される。このようにして得られるナノワイヤーは、好適 には、 l〜100nm程度の直径の細長いワイヤー状材料であって、直径の 10〜: LOOO 倍の長さを有するものである。本発明におけるブロック共重合体として導電性ポリマ 一を使用することによって導電性の付与されたナノワイヤーは、極めて有用である。 実施例 [0043] When the matrix phase is removed from the block copolymer film of the present invention by decomposition or dissolution, nanowires can be obtained. The decomposition method is not particularly limited, and a force that can employ a conventionally known method, for example, a method such as ozonolysis or ion beam etching is recommended. Also, the dissolution method is not particularly limited, and a conventionally known method can be adopted.For example, a solvent capable of dissolving only one of the polymers forming the cylinder or the matrix (for example, the glass component dissolves but the rubber component Do not dissolve the solvent, A method using a solvent that dissolves the rubber component but not the glass component, or a method using an acid or alkali is recommended. The nanowire obtained in this manner is preferably an elongated wire-like material having a diameter of about 1 to 100 nm, and has a length of 10 to LOOO times the diameter. Nanowires imparted with conductivity by using a conductive polymer as the block copolymer in the present invention are extremely useful. Example
[0044] 以下、本発明の有効性について実施例を挙げて説明する力 本発明はこれらに限 定されるものではない。なお、以下の実施例における物性の評価方法は以下の通り である。  [0044] Hereinafter, the effectiveness of the present invention will be described with reference to examples. The present invention is not limited to these examples. The methods for evaluating physical properties in the following examples are as follows.
[0045] 1.配向角度の乱れ  [0045] 1. Disturbance of orientation angle
膜表面でのシリンダー構造の特定方位力 の配向角度の乱れは、以下の方法に従 つて柳』定した。  The disorder of the orientation angle of the specific azimuth force of the cylinder structure on the film surface was determined according to the following method.
膜表面での特定方位力もの配向角度の乱れは、視斜角入射小角 X線散乱測定を 行った際に得られる、シリンダー構造の配列の規則性に起因する反射斑点強度を方 位角(特定方位からの方位角のずれ)に対してプロットしたとき、方位角のずれ 0° の 場合の最大反射斑点強度から完全に減少しきった際の方位角の変化量と定義され る。従って、ある主軸方向にシリンダーが配向している場合、その方位角の位置が最 大値となるような反射斑点強度が現れるため、それが完全に減少しきった方位角をも つて配向角度の乱れとする。  Disturbance of the orientation angle with a specific azimuth force on the film surface indicates the reflection spot intensity resulting from the regularity of the arrangement of the cylinder structure, which is obtained when X-ray scattering measurement is performed at a small oblique angle of incidence. When plotted against azimuth angle deviation from azimuth), it is defined as the amount of change in azimuth angle when the maximum reflection spot intensity is completely reduced when the azimuth angle deviation is 0 °. Therefore, when the cylinder is oriented in a certain principal axis direction, the reflection spot intensity appears so that the position of the azimuth angle becomes the maximum value, so that the orientation angle is disordered with the azimuth angle completely reduced. And
測定は、試料位置での照射 X線ビームサイズを、水平方向 1. Omm,鉛直方向 0. 7mm (長方形状ビーム断面)、波長を 0. 1499nm、試料表面に対する X線の入射角 は 0. 15° 、高輝度光科学研究センター(SPring-8)のビームライン BL40B2にて、ィメ 一ジングプレート(フジフィルム)を用いて行った。読み取りには、 Fuji BAS2000を用い た。 1ピクセルの分解能(サイズ)は、 100 m X 100 mであった。  For measurement, the irradiation X-ray beam size at the sample position is 1. Omm in the horizontal direction, 0.7 mm in the vertical direction (rectangular beam cross section), the wavelength is 0.1499 nm, and the incident angle of X-rays to the sample surface is 0.15. ° Using the imaging plate (Fuji film) at the beam line BL40B2 of the Research Center for High-Intensity Optical Science (SPring-8). Fuji BAS2000 was used for reading. The resolution (size) of one pixel was 100 m × 100 m.
配向角度の乱れは、以下のようにして求めた。即ち、反射斑点強度を方位角に対し て図 6のようにプロットし、下記式:  The disorder of the orientation angle was determined as follows. That is, the reflection spot intensity is plotted against the azimuth as shown in Fig. 6, and the following formula:
ΐ ( ) =ΑΐΒη!ι[ Γ ( - Δ ) + 1] +Β  ΐ () = ΑΐΒη! ι [Γ (-Δ) + 1] + Β
〔ここで φは方位角、 I ( φ )は反射斑点強度であり、 Α、 Βおよび Γは、フィッティング ノ ラメータである。〕 [Where φ is the azimuth angle, I (φ) is the reflection spot intensity, Α, Β and Γ are fittings It is a parameter. ]
に示す双曲線正接関数を用いてパラメータフィッティングすることによって決定される Determined by parameter fitting using the hyperbolic tangent function shown in
Δ φが配向角度の乱れである。 Δφ is the disorder of the orientation angle.
なお、シリンダー構造が所定の一方向に配向しているかどうかは、以下のようにして 確認した。即ち、磁場印加方向と平行の方向から X線を視斜角入射させた場合に得 られた上記反射斑点強度が最も強いことが確認出来た。すなわち、図 6に示すように 、方位角ゼロ度の場合が、それに相当する。  Whether the cylinder structure is oriented in one predetermined direction was confirmed as follows. That is, it was confirmed that the reflection spot intensity obtained when X-rays were incident at an oblique angle from the direction parallel to the magnetic field application direction was the strongest. That is, as shown in FIG. 6, the case where the azimuth angle is zero degrees corresponds to that.
[0046] 2.シリンダー間の距離 [0046] 2. Distance between cylinders
シリンダー間の距離は、以下の方法に従って測定した。  The distance between the cylinders was measured according to the following method.
小角 X線散乱測定を行い、散乱強度の散乱角度依存性をプロットし、現れる格子散 乱因子の 1次ピーク (最も散乱角度が小さい位置に現れるピーク)の位置から、その 散乱角 Θを求めた。これをブラッグ (Bragg)の反射条件式:  Small angle X-ray scattering measurement was performed, the scattering angle dependence of the scattering intensity was plotted, and the scattering angle Θ was determined from the position of the first peak of the lattice scattering factor that appeared (the peak that appeared at the position where the scattering angle was the smallest). . This is Bragg's reflection condition formula:
2d· sin ( Θ /2) =η λ  2d sin (Θ / 2) = η λ
(式中、 dは反射面の面間隔、 Θは散乱角、 nは自然数 (ここでは、特に 1次ピークに ついて計算するので、 n= 1)、 λは X線波長を表す)  (In the formula, d is the distance between the reflecting surfaces, Θ is the scattering angle, n is a natural number (here, especially for the first-order peak, n = 1), and λ represents the X-ray wavelength)
に代入することにより、反射面の面間隔 dを求めた。 dとシリンダー間の距離 Lとの関 係式:  By substituting into, the distance d between the reflecting surfaces was obtained. Relationship between d and distance between cylinders L:
L= (2/30 5) X d L = (2/3 0 5 ) X d
を用いて、シリンダー間の距離を求めた。  Was used to determine the distance between the cylinders.
[0047] 3.シリンダー直径 [0047] 3. Cylinder diameter
シリンダー直径は、以下の方法に従って測定した。  The cylinder diameter was measured according to the following method.
散乱強度の散乱角度依存性をプロットし、現れる粒子散乱因子の 1次ピークの位置 から、その散乱角 0 を求めた。これを式:  The scattering angle dependence of the scattering intensity was plotted, and the scattering angle 0 was obtained from the position of the primary peak of the particle scattering factor that appeared. This is the formula:
P  P
(4 π / λ ) 5ίη ( Θ /2) =4. 98/R  (4 π / λ) 5ίη (Θ / 2) = 4. 98 / R
Ρ  Ρ
に代入して、シリンダー半径 Rを算出し、シリンダー直径を求めた。  Substituting into, the cylinder radius R was calculated to determine the cylinder diameter.
[0048] [実施例 1] [0048] [Example 1]
ブロック共重合体として、スチレン-エチレンブチレン-スチレントリブロック共重合体 (SEBS) (旭化成ケミカルズ (株)製タフテック (登録商標) H1062)を用いた。試料は 、ポリスチレン(PS)の体積分率が 0. 16、数平均分子量(M )が 6. 6 X 104、分子量 分布の多分散指数(M /M )が 1. 03、ポリエチレンブチレン(PEB)鎖中のブチレ As the block copolymer, styrene-ethylenebutylene-styrene triblock copolymer (SEBS) (Tuftec (registered trademark) H1062 manufactured by Asahi Kasei Chemicals Corporation) was used. Sample is , Volume fraction 10.16 polystyrene (PS), the number-average molecular weight (M) is 6. 6 X 10 4, polydispersity index of the molecular weight distribution (M / M) is 1.03, polyethylene butylene (PEB) Chain Inside
w n  w n
ン鎖のモル分率が 0. 41であった。  The mole fraction of chain was 0.41.
試料は、ポリマー濃度が 1重量%となるようにトルエンに溶解させ、室温(23°C)でス ピンキャスト法によりシリコンウェハ上に厚みが 20nmの薄膜を調製した。すなわち、 毎分 3000回転の速度で回転するステージに設置したシリコンウェハ上に該ポリマー 溶液を 0. 1ミリリットル滴下して 60秒間回転を継続させて、溶媒を完全に蒸発させ、 薄膜を調製した。シリコンウェハは、 -ラコ製であり、購入した状態のまま、何も表面処 理せずに、 6mm X 8mmの長方形に切り出して使用した。  The sample was dissolved in toluene so that the polymer concentration was 1% by weight, and a thin film having a thickness of 20 nm was prepared on a silicon wafer by spin casting at room temperature (23 ° C). That is, 0.1 ml of the polymer solution was dropped on a silicon wafer placed on a stage rotating at a speed of 3000 revolutions per minute, and the rotation was continued for 60 seconds to completely evaporate the solvent and prepare a thin film. The silicon wafer was manufactured by Laco and was cut out into a 6 mm X 8 mm rectangle without any surface treatment as it was purchased.
[0049] 薄膜の厚みは、タッピングモード法による原子間力顕微鏡観察によって測定した。  [0049] The thickness of the thin film was measured by an atomic force microscope observation by a tapping mode method.
すなわち、シリコンウェハ上に貼り付いた該薄膜を注射針で傷つけ、その部分を原子 間力顕微鏡観察(凹凸像)することによって傷つけた溝の深さを解析した。このように して得られた溝の深さが薄膜の厚みに相当する。  That is, the depth of the damaged groove was analyzed by damaging the thin film attached on the silicon wafer with an injection needle and observing the portion with an atomic force microscope (uneven image). The depth of the groove thus obtained corresponds to the thickness of the thin film.
[0050] タッピングモード法による原子間力顕微鏡観察には、ディジタルインスツルメント製 N anoScope Iliaを用いた。長さ 124 mでパネ定数が 66NZm2の探針を共振周波数 3 95kHzで振動させながら、室温にて、シリコンウェハ上の薄膜試料の表面を観察し、 試料表面の凹凸度に対応した像(凹凸イメージ)と硬軟度に対応した像 (位相ィメー ジ)を得た。 [0050] Nanoscope Ilia manufactured by Digital Instruments was used for atomic force microscope observation by the tapping mode method. The surface of a thin film sample on a silicon wafer was observed at room temperature while vibrating a probe with a length of 124 m and a panel constant of 66 NZm 2 at a resonance frequency of 3 95 kHz. Image) and images corresponding to the softness (phase image) were obtained.
得られたスピンキャスト試料を 180°Cで 12時間、減圧下オーブン中で熱処理した。 この試料を用いて、 180°Cで 3時間熱処理しながら、 30テスラの磁場印加を行った。 装置は、独立行政法人物質'材料研究機構の強磁場研究センターに設置されてい るハイブリッドマグネットを用いた。このハイブリッドマグネットには直径 52mmのボア が開けられており、ボアの内壁面に埋入されたヒーターにより、試料ホルダーを加熱 する仕組みである。試料の温度は、測温抵抗体により計測した。この試料ホルダーに 、スピンキャストした薄膜試料をシリコンウェハごと挿入し、磁場印加'熱処理を行った 。なお、スピンキャストした薄膜試料付きシリコンウェハは、鉛直に立てて試料ホルダ 一に挿入した。磁場の方向は鉛直方向であるので、試料表面に対して平行な一方向 に磁場を印加したことになる。 これらの試料につ!、て、タッピングモード法による原子間力顕微鏡観察ならびに高 輝度光科学研究センター (SPring-8)のビームライン BL40B2にて、視斜角入射小角 X 線散乱測定を行った。 The obtained spin cast sample was heat-treated in an oven under reduced pressure for 12 hours at 180 ° C. Using this sample, a magnetic field of 30 Tesla was applied while heat-treating at 180 ° C for 3 hours. The equipment used was a hybrid magnet installed at the Strong Magnetic Field Research Center of the National Institute for Materials Science. This hybrid magnet has a bore with a diameter of 52 mm, and the sample holder is heated by a heater embedded in the inner wall of the bore. The temperature of the sample was measured with a resistance temperature detector. A thin film sample obtained by spin casting was inserted into the sample holder together with the silicon wafer, and a magnetic field application heat treatment was performed. The spin-cast silicon wafer with a thin film sample was inserted vertically into the sample holder. Since the direction of the magnetic field is vertical, the magnetic field is applied in one direction parallel to the sample surface. These specimens were observed by atomic force microscopy using the tapping mode method and small angle X-ray scattering measurement of oblique oblique incidence at the beam line BL40B2 of the High Brightness Optical Science Research Center (SPring-8).
[0051] 〔磁場印加前の試料〕 [0051] [Sample before magnetic field application]
図 1に、磁場印加前の試料(180°Cで 12時間熱処理済み)のタッピングモード法に よる原子間力顕微鏡観察像を示す。観察は室温 (23°C)で行った。薄膜の厚みは 20 nmであり、シリンダーの直径 13nmよりも若干大きいものの、膜の厚み方向にシリン ダ一が複数本積み重ならないような条件であることに注意すべきである。図 1に観察 されるストライプ模様は、シリコンウェハ面、すなわち、薄膜の表面に対してシリンダー が平行に配列していることを示している。局所的にはシリンダーは一定の間隔で並ん でいるが、配向方向は一方向に規定されている訳ではない。ここで、凹凸イメージと 位相イメージが対応して 、ることから、硬 、ポリスチレン成分から形成されるシリンダ 一構造が表面に少し突起して 、ることがわかる。  Figure 1 shows an atomic force microscope image of the sample before magnetic field application (heat treated at 180 ° C for 12 hours) by the tapping mode method. Observation was performed at room temperature (23 ° C). It should be noted that the thickness of the thin film is 20 nm, which is slightly larger than the cylinder diameter of 13 nm, but that the conditions are such that multiple cylinders do not stack in the thickness direction of the film. The stripe pattern observed in Fig. 1 indicates that the cylinders are arranged parallel to the silicon wafer surface, that is, the surface of the thin film. Locally, the cylinders are arranged at regular intervals, but the orientation direction is not limited to one direction. Here, since the concavo-convex image and the phase image correspond to each other, it can be seen that a single cylinder structure formed of a hard and polystyrene component protrudes slightly on the surface.
[0052] 〔磁場印加後の試料〕 [Sample after magnetic field application]
これに対して、 30テスラの磁場印加を 180°Cで 3時間かけて施した試料では、図 2 に示すように、印加磁場方向に沿ってシリンダーが配向して 、ることがわ力る。  On the other hand, as shown in Fig. 2, in the case of applying a magnetic field of 30 Tesla for 3 hours at 180 ° C, the cylinder is oriented along the direction of the applied magnetic field.
[0053] 〔視斜角入射小角 X線散乱測定〕 [0053] [Small angle X-ray scattering measurement of oblique viewing angle]
実際に、シリンダーが印加磁場方向に平行に配向しているかどうかを明らかにする ため、視斜角入射小角 X線散乱測定を行った。この測定は、印加磁場方向に対する 配向角度を定量ィ匕することによってその乱れを評価することも目的としている。  In order to clarify whether the cylinder is actually oriented parallel to the direction of the applied magnetic field, small-angle X-ray scattering measurements were performed. The purpose of this measurement is to evaluate the disturbance by quantitatively determining the orientation angle with respect to the applied magnetic field direction.
図 4に、薄膜の表面と平行に磁場を印カロした試料の視斜角入射小角 X線散乱測定 結果を示す。測定は室温(23°C)で行った。印加磁場の方向とシリンダーの配向方 向の関係を明確にするため、試料表面の法線方向を回転軸として、試料を回転した 。この操作により、印加磁場の方向と入射 X線方向を平行(回転角度 0° )から垂直( 回転角度 90° )まで 10° おきに測定結果を得た。図 4には回転角度 0° 、50° 、90 ° を抜粋して示した。いずれの結果においても、水平方向に一対の強い反射斑点を 確認することができる。これは、薄膜試料表面に平行に、かつ、入射 X線方向に平行 なシリンダーが一定の間隔で規則正しく配列していることを示している。回転角度を 0 ° 力 90° へ増加させると、反射斑点強度は減少することも見て取れる。この傾向を 定量的に評価するために、図 5の 2次元散乱像中に示した散乱ベクトル方向に、散 乱強度の変化を調べた。 Figure 4 shows the results of small-angle X-ray scattering measurement of the sample with a magnetic field applied parallel to the surface of the thin film. The measurement was performed at room temperature (23 ° C). In order to clarify the relationship between the direction of the applied magnetic field and the orientation direction of the cylinder, the sample was rotated with the normal direction of the sample surface as the rotation axis. By this operation, the measurement result was obtained every 10 ° from parallel (rotation angle 0 °) to vertical (rotation angle 90 °). Fig. 4 shows excerpts of rotation angles of 0 °, 50 ° and 90 °. In either result, a pair of strong reflection spots can be confirmed in the horizontal direction. This indicates that cylinders parallel to the surface of the thin film sample and parallel to the incident X-ray direction are regularly arranged at regular intervals. Rotation angle is 0 It can also be seen that the reflection spot intensity decreases when the force is increased to 90 °. In order to quantitatively evaluate this tendency, the change in the scattering intensity in the direction of the scattering vector shown in the two-dimensional scattering image in Fig. 5 was examined.
[0054] 散乱強度の対数を散乱ベクトルの大きさ qの関数として図 5にプロットした。上力も順 に、回転角度力 0° 、 10° 、 20° 、 30° 、 40° 、 50° 、 60° 、 70° 、 80° 、 90° の各場合について得られた結果である。なお、散乱ベクトルの大きさ qは、式: q= (4 w Z sin( 0 Z2) [0054] The logarithm of the scattering intensity was plotted in FIG. 5 as a function of the scattering vector magnitude q. The upper force is also the result obtained for each of the rotational angle forces of 0 °, 10 °, 20 °, 30 °, 40 °, 50 °, 60 °, 70 °, 80 °, and 90 °. The size of the scattering vector q is given by the equation: q = (4 w Z sin (0 Z2)
〔ここで、 λは X線の波長、 Θは散乱角を示す。〕  [Where λ is the X-ray wavelength and Θ is the scattering angle. ]
により定義される。回転角度 0° では 2次の反射も確認でき、シリンダーの配列の規 則性が高いことがわかる。 1次ピークからバックグラウンドの強度を除去するため、ピ ーク分離を行い、ピークの面積を求めた。  Defined by When the rotation angle is 0 °, secondary reflection can be confirmed, indicating that the regularity of the cylinder arrangement is high. In order to remove background intensity from the primary peak, peak separation was performed to obtain the peak area.
ピーク面積を回転角度 (すなわち X線の入射方向と磁場印加方向との成す角)に対 してプロットしたところ、図 6に示すような依存性を示した。すなわち、 1次の反射斑点 の強度は回転角度 0° (X線の入射方向が磁場印加方向と平行の場合)が最大であ り、このことは、シリンダー構造が印加磁場の方向によって規定される一方向に配向 していることを示すものである。また、回転角度 34° でほぼ一定値に達した。  When the peak area was plotted against the rotation angle (that is, the angle between the X-ray incident direction and the magnetic field application direction), the dependence shown in Fig. 6 was shown. That is, the intensity of the primary reflection spot is the maximum at a rotation angle of 0 ° (when the X-ray incident direction is parallel to the magnetic field application direction), which is defined by the direction of the applied magnetic field in the cylinder structure. This indicates that the film is oriented in one direction. In addition, it reached an almost constant value at a rotation angle of 34 °.
従って、この結果から、シリンダーの配向角度の乱れは 34° であると判断した。  Therefore, from this result, it was determined that the disorder of the orientation angle of the cylinder was 34 °.
[0055] 実施例 1で得られたブロック共重合体膜 (磁場印加試料)の膜厚は 20nm、配向角 度の乱れは 34° 、シリンダーの直径は 13. 2nm、シリンダー間距離は 30. 2nmであ り、特に数ナノメータの表面凹凸を有する液晶配向誘発性膜として有用な膜材料が 得られた。原子間力顕微鏡によって表面を観察したところ、上記表面凹凸は筋状で あって、その高低差は 2. 0〜2. 2nmであった。  [0055] The film thickness of the block copolymer film (magnetic field applied sample) obtained in Example 1 was 20 nm, the disorder of the orientation angle was 34 °, the cylinder diameter was 13.2 nm, and the distance between the cylinders was 30.2 nm. In particular, a film material useful as a liquid crystal alignment-inducing film having surface irregularities of several nanometers was obtained. When the surface was observed with an atomic force microscope, the surface irregularities were streaks, and the difference in height was 2.0 to 2.2 nm.
[0056] [比較例 1]  [0056] [Comparative Example 1]
薄膜試料が貼付いたシリコンウェハは、鉛直に立てて磁場内に設置しているので、 重力の影響が心配される。そこで、他の条件は全く同一で、磁場は印加せずに熱処 理だけを施した試料を作製した。その結果を図 3に示す。  Silicon wafers with thin film samples are placed vertically in a magnetic field, so there is concern about the effects of gravity. Therefore, the other conditions were exactly the same, and a sample was prepared that was only heat-treated without applying a magnetic field. The results are shown in Fig. 3.
図 3は図 2とは明らかに異なり、シリンダーの配向方向は一方向に規定されていな いことが判明した。従って、図 2の結果は、重力の影響を受けている訳ではなぐ純粋 に磁場印加の効果であると 、える。 Fig. 3 is clearly different from Fig. 2, and it was found that the orientation direction of the cylinder is not defined in one direction. Therefore, the results in Figure 2 are pure and not influenced by gravity. In other words, it is the effect of applying a magnetic field.
以下、本発明の主たる態様および好ましい態様を列記する。  The main aspects and preferred aspects of the present invention are listed below.
〔1〕所定の一方向に配向したシリンダー構造を有するブロック共重合体膜であって、 ΙΟηπ!〜 の膜厚を有し、かつ、筋状表面凹凸を有する、ブロック共重合体膜。 〔2〕前記シリンダー構造は、視斜角入射小角 X線散乱測定によって規定される、配向 方向に対する配向角度の乱れの絶対値力 0° 以下であることを特徴とする上記〔1〕 に記載のブロック共重合体膜。  [1] A block copolymer film having a cylinder structure oriented in a predetermined direction, and ΙΟηπ! A block copolymer film having a film thickness of ~ and having streaky surface irregularities. [2] The cylinder structure according to [1], wherein the absolute value force of the disorder of the orientation angle with respect to the orientation direction is 0 ° or less as defined by the oblique incidence small-angle X-ray scattering measurement. Block copolymer film.
〔3〕膜面に対して平行な一方向に配向したシリンダー構造を有する上記〔1〕または〔 2〕に記載のブロック共重合体膜。  [3] The block copolymer film according to the above [1] or [2], which has a cylinder structure oriented in one direction parallel to the film surface.
〔4〕膜面に対して平行な一方向に配向したシリンダー構造は、少なくとも膜表面に存 在する上記〔3〕に記載のブロック共重合体膜。  [4] The block copolymer film according to [3], wherein the cylinder structure oriented in one direction parallel to the film surface exists at least on the film surface.
〔5〕液晶配向誘発性の表面を有し、筋状表面凹凸の高低差は 2〜20nmである、上 記〔1〕〜〔4〕の 、ずれかに記載のブロック共重合体膜。  [5] The block copolymer film according to any one of the above [1] to [4], which has a liquid crystal alignment-inducing surface and the height difference between the streaky surface irregularities is 2 to 20 nm.
〔6〕シリンダー構造の配向方向は、印加磁場の方向によって規定される上記〔1〕〜〔 5〕の 、ずれかに記載のブロック共重合体膜。  [6] The block copolymer film according to any one of [1] to [5], wherein the orientation direction of the cylinder structure is defined by the direction of the applied magnetic field.
〔7〕前記シリンダー構造は、六方格子上に配列して 、る上記〔1〕〜〔6〕の 、ずれかに 記載のブロック共重合体膜。  [7] The block copolymer film according to any one of [1] to [6], wherein the cylinder structure is arranged on a hexagonal lattice.
〔8〕前記ブロック共重合体は少なくとも 2種の繰り返しモノマー単位力 成り、少なくと も 1種の繰り返しモノマー単位 Aから形成されるポリマー成分は 23°Cでガラス状態で ある上記〔1〕〜〔7〕の 、ずれかに記載のブロック共重合体膜。  [8] The block copolymer comprises at least two types of repeating monomer unit forces, and the polymer component formed from at least one type of repeating monomer unit A is in a glassy state at 23 ° C. 7]. The block copolymer film according to any one of the above.
〔9〕前記の繰り返しモノマー単位 A力 形成されるポリマー成分のブロック共重合体 に対する体積分率は 0. 1〜0. 4である上記〔8〕に記載のブロック共重合体膜。 [9] The block copolymer film according to the above [8], wherein the volume fraction of the polymer component formed with respect to the block copolymer of the repeating monomer unit A force is 0.1 to 0.4.
〔10〕前記シリンダー構造を構成する成分は、繰り返しモノマー単位 Aカゝら形成される ポリマー成分である上記〔9〕に記載のブロック共重合体膜。 [10] The block copolymer film according to the above [9], wherein the component constituting the cylinder structure is a polymer component formed repeatedly from monomer unit A.
〔11〕前記シリンダー構造は、直径が 3〜50nmのシリンダー力も成る上記〔1〕〜〔10 〕の 、ずれかに記載のブロック共重合体膜。  [11] The block copolymer film according to any one of [1] to [10], wherein the cylinder structure has a cylinder force with a diameter of 3 to 50 nm.
〔12〕前記シリンダーは、 5〜120nmの間隔で配列している上記〔11〕に記載のブロ ック共重合体膜。 〔13〕前記少なくとも 2種の繰り返しモノマー単位は、芳香族ビュル単位及び部分的 に或いは完全に水素添加された共役ジェンの単位である上記〔8〕〜〔12〕のいずれ かに記載のブロック共重合体膜。 [12] The block copolymer film according to [11], wherein the cylinders are arranged at intervals of 5 to 120 nm. [13] The block copolymer according to any one of [8] to [12], wherein the at least two types of repeating monomer units are an aromatic bul unit and a partially or completely hydrogenated conjugation unit. Polymer film.
〔14〕芳香族ビュル単位はスチレンに由来する単位であり、部分的に或 ヽは完全に 水素添加された共役ジェンの単位はブタジエンに由来する単位である上記〔13〕に 記載のブロック共重合体膜。  [14] The block co-polymer according to [13], wherein the aromatic bul unit is a unit derived from styrene, and the partially or completely hydrogenated conjugation unit is a unit derived from butadiene. Combined membrane.
〔15〕ブロック共重合体の数平均分子量は 1万〜 100万である上記〔1〕〜〔14〕のい ずれかに記載のブロック共重合体膜。  [15] The block copolymer film according to any one of [1] to [14] above, wherein the number average molecular weight of the block copolymer is 10,000 to 1,000,000.
〔16〕配向方向に対する配向角度の乱れの絶対値は 10° 以下である上記〔2〕〜〔1 5〕の 、ずれかに記載のブロック共重合体膜。  [16] The block copolymer film according to any one of [2] to [15], wherein the absolute value of the disorder of the orientation angle with respect to the orientation direction is 10 ° or less.
〔17〕上記〔1〕〜〔16〕のいずれかに記載のブロック共重合体膜の表面におけるマトリ ックス相力 分解または溶解によって除去されて成るナノシリンダー配向膜。  [17] A nano-cylinder alignment film that is removed by matrix force decomposition or dissolution on the surface of the block copolymer film according to any one of [1] to [16].
〔18〕液晶配向誘発性の表面を有する上記〔 17〕に記載のナノシリンダー配向膜。 〔19〕少なくとも、上記〔17〕または〔18〕に記載のナノシリンダー配向膜と、上記〔1〕〜 〔15〕のいずれかに記載のブロック共重合体膜を含む積層構造を有するナノシリンダ 一配向性位相差膜。 [18] The nanocylinder alignment film according to [17], which has a liquid crystal alignment-inducing surface. [19] A nanocylinder having a laminated structure including at least the nanocylinder alignment film according to [17] or [18] and the block copolymer film according to any one of [1] to [15] Oriented retardation film.
〔20〕上記〔1〕〜〔16〕のいずれかに記載のブロック共重合体膜からマトリックス相が 分解または溶解によって除去されて成るナノワイヤー。  [20] A nanowire obtained by removing the matrix phase from the block copolymer film according to any one of [1] to [16] by decomposition or dissolution.
〔21〕ブロック共重合体から形成される無秩序なミクロ相分離構造に磁場を印加する ことにより、所定の一方向に配向したシリンダー構造へ転移させることを含んで成る、 上記〔1〕〜〔15〕の 、ずれかに記載のブロック共重合体膜の製造方法。  [21] The above-mentioned [1] to [15], comprising applying a magnetic field to a disordered microphase-separated structure formed from a block copolymer, thereby causing a transition to a cylinder structure oriented in a predetermined direction. ] The manufacturing method of the block copolymer film | membrane in any one of.
[22]無秩序なミクロ相分離構造力 シリンダー構造への転移は、該ブロック共重合 体の自己組織ィ匕能力によって生じる上記〔21〕に記載のブロック共重合体膜の製造 方法。  [22] Disordered microphase separation structural force The method for producing a block copolymer film as described in [21] above, wherein the transition to the cylinder structure is caused by the self-organization ability of the block copolymer.
〔23〕磁場を印加する方向にシリンダー構造を配向させることを含んで成る上記〔21〕 〜〔22〕の ヽずれかに記載のブロック共重合体膜の製造方法。  [23] The method for producing a block copolymer film according to any one of the above [21] to [22], which comprises orienting the cylinder structure in a direction in which a magnetic field is applied.
〔24〕磁場の印加を、シリンダーを構成するポリマー成分のガラス転移温度以上の温 度で施す上記〔21〕〜〔23〕の 、ずれかに記載の方法。 〔25〕磁場の印加を、シリンダーを構成するポリマー成分のガラス転移温度より 80°C 以上高い温度であって、かつ ± 1°Cの温度精度で施す上記〔24〕に記載の方法。 産業上の利用可能性 [24] The method according to any one of [21] to [23], wherein the magnetic field is applied at a temperature not lower than the glass transition temperature of the polymer component constituting the cylinder. [25] The method described in [24] above, wherein the magnetic field is applied with a temperature accuracy of ± 1 ° C that is 80 ° C or higher than the glass transition temperature of the polymer component constituting the cylinder. Industrial applicability
本発明によれば、所定の一方向に配向、好適には薄膜表面に対して平行な一方 向に配向し、好適には配向角度の乱れの小さなシリンダー構造を有し、かつ、筋状 表面凹凸を有するブロック共重合体膜を製造することができる。  According to the present invention, it is oriented in a predetermined direction, preferably in one direction parallel to the surface of the thin film, preferably has a cylinder structure with a small disorder of the orientation angle, and has streaky surface irregularities. It is possible to produce a block copolymer film having
本発明に従うと、広範な分野における高機能材料の設計が可能となる。高機能材 料の例としては、ナノワイヤー等が挙げられる。また、力かる高機能材料は、例えば、 高機能光学材料などの用途に使用し得る。  According to the present invention, high-performance materials can be designed in a wide range of fields. Examples of highly functional materials include nanowires. Moreover, the highly functional material that can be used can be used for applications such as a highly functional optical material.

Claims

請求の範囲 The scope of the claims
[I] 所定の一方向に配向したシリンダー構造を有するブロック共重合体膜であって、 10 ηπ!〜 50 mの膜厚を有し、かつ、筋状表面凹凸を有する、ブロック共重合体膜。  [I] A block copolymer film having a cylinder structure oriented in a predetermined direction, 10 ηπ! A block copolymer film having a film thickness of ˜50 m and having streaky surface irregularities.
[2] 前記シリンダー構造は、視斜角入射小角 X線散乱測定によって規定される、配向 方向に対する配向角度の乱れの絶対値力 0° 以下であることを特徴とする請求項 1 に記載のブロック共重合体膜。  [2] The block according to claim 1, wherein the cylinder structure has an absolute value force of 0 ° or less of disorder of the orientation angle with respect to the orientation direction, which is defined by a small angle of incidence X-ray scattering measurement. Copolymer film.
[3] 膜面に対して平行な一方向に配向したシリンダー構造を有する請求項 1または 2に 記載のブロック共重合体膜。 [3] The block copolymer film according to [1] or [2] having a cylinder structure oriented in one direction parallel to the film surface.
[4] 膜面に対して平行な一方向に配向したシリンダー構造は、少なくとも膜表面に存在 する請求項 3に記載のブロック共重合体膜。 4. The block copolymer film according to claim 3, wherein the cylinder structure oriented in one direction parallel to the film surface exists at least on the film surface.
[5] 液晶配向誘発性の表面を有し、筋状表面凹凸の高低差は 2〜20nmである、請求 項 1〜4のいずれかに記載のブロック共重合体膜。 [5] The block copolymer film according to any one of [1] to [4], wherein the block copolymer film has a liquid crystal alignment-inducing surface, and the height difference between the streaky surface irregularities is 2 to 20 nm.
[6] シリンダー構造の配向方向は、印加磁場の方向によって規定される請求項 1〜5の[6] The orientation direction of the cylinder structure is defined by the direction of the applied magnetic field.
V、ずれかに記載のブロック共重合体膜。 V, block copolymer film according to any of the above.
[7] 前記シリンダー構造は、六方格子上に配列している請求項 1〜6のいずれかに記 載のブロック共重合体膜。 [7] The block copolymer film according to any one of [1] to [6], wherein the cylinder structures are arranged on a hexagonal lattice.
[8] 前記ブロック共重合体は少なくとも 2種の繰り返しモノマー単位力 成り、少なくとも [8] The block copolymer comprises at least two types of repeating monomer unit forces,
1種の繰り返しモノマー単位 A力も形成されるポリマー成分は 23°Cでガラス状態であ る請求項 1〜7のいずれかに記載のブロック共重合体膜。 The block copolymer film according to any one of claims 1 to 7, wherein the polymer component in which one kind of repeating monomer unit A force is formed is in a glass state at 23 ° C.
[9] 前記の繰り返しモノマー単位 A力 形成されるポリマー成分のブロック共重合体に 対する体積分率は 0. 1〜0. 4である請求項 8に記載のブロック共重合体膜。 [9] The block copolymer film according to [8], wherein the volume fraction of the repeating monomer unit A force formed with respect to the block copolymer of the polymer component is 0.1 to 0.4.
[10] 前記シリンダー構造を構成する成分は、繰り返しモノマー単位 Aカゝら形成されるポリ マー成分である請求項 9に記載のブロック共重合体膜。 10. The block copolymer film according to claim 9, wherein the component constituting the cylinder structure is a polymer component formed repeatedly from monomer unit A.
[II] 前記シリンダー構造は、直径が 3〜50nmのシリンダー力も成る請求項 1〜10のい ずれかに記載のブロック共重合体膜。  [II] The block copolymer film according to any one of claims 1 to 10, wherein the cylinder structure has a cylinder force with a diameter of 3 to 50 nm.
[12] 前記シリンダーは、 5〜120nmの間隔で配列している請求項 11に記載のブロック 共重合体膜。  12. The block copolymer film according to claim 11, wherein the cylinders are arranged at intervals of 5 to 120 nm.
[13] 前記少なくとも 2種の繰り返しモノマー単位は、芳香族ビュル単位及び部分的に或 いは完全に水素添加された共役ジェンの単位である請求項 8〜 12のいずれかに記 載のブロック共重合体膜。 [13] The at least two types of repeating monomer units may be aromatic bull units and partially or The block copolymer film according to any one of claims 8 to 12, which is a unit of conjugation hydrogen completely hydrogenated.
[14] 芳香族ビュル単位はスチレンに由来する単位であり、部分的に或いは完全に水素 添加された共役ジェンの単位はブタジエンに由来する単位である請求項 13に記載 のブロック共重合体膜。  14. The block copolymer film according to claim 13, wherein the aromatic bul unit is a unit derived from styrene, and the partially or completely hydrogenated conjugation unit is a unit derived from butadiene.
[15] ブロック共重合体の数平均分子量は 1万〜 100万である請求項 1〜14のいずれか に記載のブロック共重合体膜。  [15] The block copolymer film according to any one of [1] to [14], wherein the block copolymer has a number average molecular weight of 10,000 to 1,000,000.
[16] 配向方向に対する配向角度の乱れの絶対値は 10° 以下である請求項 2〜15のい ずれかに記載のブロック共重合体膜。 [16] The block copolymer film according to any one of [2] to [15], wherein the absolute value of the disorder of the orientation angle relative to the orientation direction is 10 ° or less.
[17] 請求項 1〜16のいずれかに記載のブロック共重合体膜の表面におけるマトリックス 相が、分解または溶解によって除去されて成るナノシリンダー配向膜。 [17] A nanocylinder alignment film obtained by removing the matrix phase on the surface of the block copolymer film according to any one of claims 1 to 16 by decomposition or dissolution.
[18] 液晶配向誘発性の表面を有する請求項 17に記載のナノシリンダー配向膜。 18. The nanocylinder alignment film according to claim 17, which has a liquid crystal alignment inducing surface.
[19] 少なくとも、請求項 17または 18に記載のナノシリンダー配向膜と、請求項 1〜15の いずれかに記載のブロック共重合体膜を含む積層構造を有するナノシリンダー配向 性位相差膜。 [19] A nanocylinder alignment retardation film having a laminated structure including at least the nanocylinder alignment film according to claim 17 or 18 and the block copolymer film according to any one of claims 1 to 15.
[20] 請求項 1〜16のいずれかに記載のブロック共重合体膜からマトリックス相が分解ま たは溶解によって除去されて成るナノワイヤー。  [20] A nanowire obtained by removing the matrix phase from the block copolymer film according to any one of claims 1 to 16 by decomposition or dissolution.
[21] ブロック共重合体から形成される無秩序なミクロ相分離構造に磁場を印加すること により、所定の一方向に配向したシリンダー構造へ転移させることを含んで成る、請 求項 1〜15のいずれかに記載のブロック共重合体膜の製造方法。 [21] According to any one of claims 1 to 15, comprising applying a magnetic field to a disordered microphase-separated structure formed from a block copolymer to transfer to a predetermined unidirectionally oriented cylinder structure. The manufacturing method of the block copolymer film | membrane in any one.
[22] 無秩序なミクロ相分離構造力 シリンダー構造への転移は、該ブロック共重合体の 自己組織化能力によって生じる請求項 21に記載のブロック共重合体膜の製造方法 [22] The method for producing a block copolymer film according to claim 21, wherein the disordered microphase separation structural force is caused by the self-assembly ability of the block copolymer.
[23] 磁場を印加する方向にシリンダー構造を配向させることを含んで成る請求項 21〜2[23] The method according to claim 21, comprising orienting the cylinder structure in a direction in which a magnetic field is applied.
2のいずれかに記載のブロック共重合体膜の製造方法。 3. The method for producing a block copolymer film according to any one of 2 above.
[24] 磁場の印加を、シリンダーを構成するポリマー成分のガラス転移温度以上の温度で 施す請求項 21〜23のいずれかに記載の方法。 24. The method according to any one of claims 21 to 23, wherein the magnetic field is applied at a temperature not lower than the glass transition temperature of the polymer component constituting the cylinder.
[25] 磁場の印加を、シリンダーを構成するポリマー成分のガラス転移温度より 80°C以上 高い温度であって、かつ ± 1°Cの温度精度で施す請求項 24に記載の方法。 [25] Apply a magnetic field of 80 ° C or more from the glass transition temperature of the polymer components that make up the cylinder. 25. The method of claim 24, wherein the method is performed at a high temperature and with a temperature accuracy of ± 1 ° C.
PCT/JP2006/309321 2005-11-10 2006-05-09 Membrane of block copolymer with oriented cylinder structure and process for producing the same WO2007055041A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005326221 2005-11-10
JP2005-326221 2005-11-10

Publications (1)

Publication Number Publication Date
WO2007055041A1 true WO2007055041A1 (en) 2007-05-18

Family

ID=38023051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309321 WO2007055041A1 (en) 2005-11-10 2006-05-09 Membrane of block copolymer with oriented cylinder structure and process for producing the same

Country Status (1)

Country Link
WO (1) WO2007055041A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145204A1 (en) * 2008-05-30 2009-12-03 Canon Kabushiki Kaisha Block copolymer film and method of producing the same
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
JP2012103277A (en) * 2010-11-05 2012-05-31 Hamamatsu Photonics Kk Optical element and manufacturing method of the same
US8283258B2 (en) 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8450418B2 (en) 2010-08-20 2013-05-28 Micron Technology, Inc. Methods of forming block copolymers, and block copolymer compositions
US8551808B2 (en) 2007-06-21 2013-10-08 Micron Technology, Inc. Methods of patterning a substrate including multilayer antireflection coatings
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8669645B2 (en) 2008-10-28 2014-03-11 Micron Technology, Inc. Semiconductor structures including polymer material permeated with metal oxide
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
JP2015033753A (en) * 2013-08-09 2015-02-19 東京応化工業株式会社 Method for producing structural body including phase separation structure, phase separation structure and block polymer composition
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
JP7384066B2 (en) 2020-02-17 2023-11-21 日本ゼオン株式会社 Method for manufacturing resin film and method for manufacturing optical film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2001350023A (en) * 2000-04-05 2001-12-21 Toray Ind Inc Polarization separating film, polarization separating lamented film and liquid crystal display device
US20030118800A1 (en) * 2001-05-25 2003-06-26 Thomas Edwin L. Large area orientation of block copolymer microdomains in thin films
JP2004502554A (en) * 2000-03-22 2004-01-29 ユニバーシティー オブ マサチューセッツ Nano cylinder array
JP2004527905A (en) * 2001-03-14 2004-09-09 ユニバーシティー オブ マサチューセッツ Nano manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151834A (en) * 1999-06-07 2001-06-05 Toshiba Corp Pattern formation material, method for producing porous structure, method for forming pattern, electrochemical cell, hollow fiber filter, method for producing porous carbon structure, method for producing capacitor and method for producing catalytic layer of fuel cell
JP2004502554A (en) * 2000-03-22 2004-01-29 ユニバーシティー オブ マサチューセッツ Nano cylinder array
JP2001350023A (en) * 2000-04-05 2001-12-21 Toray Ind Inc Polarization separating film, polarization separating lamented film and liquid crystal display device
JP2004527905A (en) * 2001-03-14 2004-09-09 ユニバーシティー オブ マサチューセッツ Nano manufacturing
US20030118800A1 (en) * 2001-05-25 2003-06-26 Thomas Edwin L. Large area orientation of block copolymer microdomains in thin films

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512846B2 (en) 2007-01-24 2013-08-20 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8409449B2 (en) 2007-03-06 2013-04-02 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8753738B2 (en) 2007-03-06 2014-06-17 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8801894B2 (en) 2007-03-22 2014-08-12 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8784974B2 (en) 2007-03-22 2014-07-22 Micron Technology, Inc. Sub-10 NM line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US9768021B2 (en) 2007-04-18 2017-09-19 Micron Technology, Inc. Methods of forming semiconductor device structures including metal oxide structures
US9276059B2 (en) 2007-04-18 2016-03-01 Micron Technology, Inc. Semiconductor device structures including metal oxide structures
US8956713B2 (en) 2007-04-18 2015-02-17 Micron Technology, Inc. Methods of forming a stamp and a stamp
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US9142420B2 (en) 2007-04-20 2015-09-22 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8609221B2 (en) 2007-06-12 2013-12-17 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US9257256B2 (en) 2007-06-12 2016-02-09 Micron Technology, Inc. Templates including self-assembled block copolymer films
US8785559B2 (en) 2007-06-19 2014-07-22 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8513359B2 (en) 2007-06-19 2013-08-20 Micron Technology, Inc. Crosslinkable graft polymer non preferentially wetted by polystyrene and polyethylene oxide
US8445592B2 (en) 2007-06-19 2013-05-21 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8551808B2 (en) 2007-06-21 2013-10-08 Micron Technology, Inc. Methods of patterning a substrate including multilayer antireflection coatings
US8283258B2 (en) 2007-08-16 2012-10-09 Micron Technology, Inc. Selective wet etching of hafnium aluminum oxide films
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US10005308B2 (en) 2008-02-05 2018-06-26 Micron Technology, Inc. Stamps and methods of forming a pattern on a substrate
US11560009B2 (en) 2008-02-05 2023-01-24 Micron Technology, Inc. Stamps including a self-assembled block copolymer material, and related methods
US10828924B2 (en) 2008-02-05 2020-11-10 Micron Technology, Inc. Methods of forming a self-assembled block copolymer material
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8642157B2 (en) 2008-02-13 2014-02-04 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US11282741B2 (en) 2008-03-21 2022-03-22 Micron Technology, Inc. Methods of forming a semiconductor device using block copolymer materials
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US10153200B2 (en) 2008-03-21 2018-12-11 Micron Technology, Inc. Methods of forming a nanostructured polymer material including block copolymer materials
US8633112B2 (en) 2008-03-21 2014-01-21 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US9682857B2 (en) 2008-03-21 2017-06-20 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids and materials produced therefrom
US9315609B2 (en) 2008-03-21 2016-04-19 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8641914B2 (en) 2008-03-21 2014-02-04 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
US8455082B2 (en) 2008-04-21 2013-06-04 Micron Technology, Inc. Polymer materials for formation of registered arrays of cylindrical pores
US8993088B2 (en) 2008-05-02 2015-03-31 Micron Technology, Inc. Polymeric materials in self-assembled arrays and semiconductor structures comprising polymeric materials
US8518275B2 (en) 2008-05-02 2013-08-27 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
WO2009145204A1 (en) * 2008-05-30 2009-12-03 Canon Kabushiki Kaisha Block copolymer film and method of producing the same
US8669645B2 (en) 2008-10-28 2014-03-11 Micron Technology, Inc. Semiconductor structures including polymer material permeated with metal oxide
US8450418B2 (en) 2010-08-20 2013-05-28 Micron Technology, Inc. Methods of forming block copolymers, and block copolymer compositions
JP2012103277A (en) * 2010-11-05 2012-05-31 Hamamatsu Photonics Kk Optical element and manufacturing method of the same
US9431605B2 (en) 2011-11-02 2016-08-30 Micron Technology, Inc. Methods of forming semiconductor device structures
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
US9087699B2 (en) 2012-10-05 2015-07-21 Micron Technology, Inc. Methods of forming an array of openings in a substrate, and related methods of forming a semiconductor device structure
US9229328B2 (en) 2013-05-02 2016-01-05 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures
JP2015033753A (en) * 2013-08-09 2015-02-19 東京応化工業株式会社 Method for producing structural body including phase separation structure, phase separation structure and block polymer composition
US10049874B2 (en) 2013-09-27 2018-08-14 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
US11532477B2 (en) 2013-09-27 2022-12-20 Micron Technology, Inc. Self-assembled nanostructures including metal oxides and semiconductor structures comprised thereof
JP7384066B2 (en) 2020-02-17 2023-11-21 日本ゼオン株式会社 Method for manufacturing resin film and method for manufacturing optical film

Similar Documents

Publication Publication Date Title
WO2007055041A1 (en) Membrane of block copolymer with oriented cylinder structure and process for producing the same
Zhu et al. Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline− amorphous diblock copolymer
Xu et al. Electric field alignment of symmetric diblock copolymer thin films
Huang et al. Mixed lamellar films: evolution, commensurability effects, and preferential defect formation
Temple et al. Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly (styrene‐b‐ferrocenylsilane)
Tang et al. Robust control of microdomain orientation in thin films of block copolymers by zone casting
Bai et al. Thin film morphologies of bulk-gyroid polystyrene-block-polydimethylsiloxane under solvent vapor annealing
Olszowka et al. Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism
Kim et al. Spontaneous Lamellar Alignment in Thickness‐Modulated Block Copolymer Films
Ree Probing the Self‐Assembled Nanostructures of Functional Polymers with Synchrotron Grazing Incidence X‐Ray Scattering
Metwalli et al. In situ GISAXS investigation of gold sputtering onto a polymer template
Grigorova et al. Magnetic field induced orientation in diblock copolymers with one crystallizable block
Kim et al. Morphological behavior of A2B block copolymers in thin films
Zhang et al. Organic− Inorganic Hybrid Materials by Self-Gelation of Block Copolymer Assembly and Nanoobjects with Controlled Shapes Thereof
US9156682B2 (en) Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles
Sohn et al. Surface effects on the thin film morphology of block copolymers with bulk order− order transitions
Cao et al. Methacrylic block copolymers containing liquid crystalline and fluorinated side chains capable of fast formation of 4 nm domains
Morimitsu et al. “Structurally Neutral” Densely Packed Homopolymer-Adsorbed Chains for Directed Self-Assembly of Block Copolymer Thin Films
Metwalli et al. Polymer-template-assisted growth of gold nanowires using a novel flow-stream technique
Park et al. Molecular and microdomain orientation in semicrystalline block copolymer thin films by directional crystallization of the solvent and epitaxy
Kim et al. Highly ordered defect arrays of 8CB (4′-n-octyl-4-cyano-biphenyl) liquid crystal via template-assisted self-assembly
Yarysheva et al. Polyethylene–poly (ethylene oxide) hybrid films obtained by crazing and their structural peculiarities
Ishige et al. Fully liquid-crystalline ABA triblock copolymer of fluorinated side-chain liquid-crystalline A block and main-chain liquid-crystalline B block: Higher order structure in bulk and thin film states
Yao et al. Self-assembly of diblock copolymer–maghemite nanoparticle hybrid thin films
Shin et al. Order-to-order transitions of block copolymer in film geometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06746152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP