WO2007045126A1 - A high speed downlink package access flow control device and method in wcdma system - Google Patents

A high speed downlink package access flow control device and method in wcdma system Download PDF

Info

Publication number
WO2007045126A1
WO2007045126A1 PCT/CN2005/001734 CN2005001734W WO2007045126A1 WO 2007045126 A1 WO2007045126 A1 WO 2007045126A1 CN 2005001734 W CN2005001734 W CN 2005001734W WO 2007045126 A1 WO2007045126 A1 WO 2007045126A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
radio link
link control
service
control
Prior art date
Application number
PCT/CN2005/001734
Other languages
French (fr)
Chinese (zh)
Inventor
Focai Peng
Zhiyuan Xia
Hong Sheng
Zhuo Yang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2005/001734 priority Critical patent/WO2007045126A1/en
Priority to CN2005800496699A priority patent/CN101167288B/en
Publication of WO2007045126A1 publication Critical patent/WO2007045126A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the invention relates to a flow control technology in a wideband code division multiple access (WCDMA-) mobile communication system, in particular to a flow control of a High Speed Downlink Package Access (HSDPA) in a WCDMA system.
  • WCDMA- wideband code division multiple access
  • HSDPA High Speed Downlink Package Access
  • the 3GPP Release 5 adds a Media Access Control-High Speed Downlink Packet Access Entity to the Base Station (Node B) (MAC-HSDPA; MAC-hs).
  • HSDPA's packet scheduler is implemented in MAC-hs.
  • the packet data scheduled by the HSDPA scheduler comes from the Media Access Control of the Radio Network Controller (RNC) - Private (MAC-d) or Media Access Control Entity - Public / Shared (MAC-c/sh).
  • the MAC-d/c/sh data comes from the RNC's Radio Link Control Sublayer (RLC), as shown in Figure 1.
  • RNC Radio Network Controller
  • RLC Radio Link Control Sublayer
  • the general procedure for flow control is that MAC-d (or MAC-c/sh) sends a flow control request (HS-DSCH CAPACITY REQUEST) to the MAC-hs based on its buffer status.
  • the MAC hs sends a certain format of the flow control allocation frame (HS-DSCH CAPACITY ALLOCATION) according to the flow control policy, or does not send the flow control allocation frame to let the RNC wait.
  • the MAC-d After receiving the flow control allocation frame, the MAC-d sends a corresponding packet data frame (HS-DSCH DATA FRAME) to the MAC-hs according to a certain policy.
  • the existing traffic control has not yet comprehensively considered the three factors of the RLC mode, the user service type, and the service HS-DSCH cell change, and the UE service is more effectively realized while ensuring the system capacity as high as possible. Continuous processing strategy.
  • the technical problem to be solved by the present invention is to provide a high-speed downlink packet access flow control device and method in a WCDMA system. While providing the WCDM system with the highest possible system capacity, it can ensure that HSDPA can maintain continuous coverage to achieve continuity of UE services.
  • the present invention provides the following solutions:
  • a flow control device for high-speed downlink packet access in a wideband code division multiple access system located at a base station medium access control layer-high speed sub-layer, comprising:
  • a radio link control layer mode data classification unit configured to distinguish a high speed downlink packet access data mode of the user equipment
  • a radio link control-acknowledgment mode data extracting unit configured to extract radio link control-acknowledgment mode data
  • a radio link control-non-acknowledgement mode data extracting unit configured to extract radio link control-non-confirmation mode data
  • Radio link control-non-acknowledge mode data service type prediction unit which is used to predict the type of service of the wireless link control-non-confirmation mode data
  • a service high speed downlink shared channel cell change prediction unit configured to predict a service high speed downlink shared channel cell change of the user equipment
  • a flow control capability allocation frame data generating unit configured to generate a flow control capability allocation frame;
  • the radio link control layer mode data classification unit obtains data from the Iub interface, and after distinguishing the high speed downlink packet access data mode of the user equipment, the data is Transmitted to the radio link control-acknowledgment mode data extracting unit and the radio link control-non-acknowledgement mode data extracting unit;
  • the radio link control-acknowledgment mode data extracting unit extracts radio link control-acknowledgment mode data And outputting data to the flow control capability allocation frame data generating unit;
  • the radio link control-non-acknowledge mode data extracting unit extracts the radio link control-non-acknowledgment mode data, and outputs the data to the radio link control-non-acknowledge mode a data service type prediction unit;
  • the radio link control-non-acknowledge mode data service type prediction unit predicts a service type of the radio link control-non-confirm mode data, and outputs the data to
  • the flow control system includes:
  • NBAP Base Station Application Part
  • FP Frame Protocol
  • N, k, ?, i, / are fixed constants; service type and service speed generated after performing service prediction processing according to radio link control-determination mode data or radio link control-non-confirmation mode data
  • the possibility of changing the downlink shared channel cell, generating a flow control capability allocation frame further includes the following steps:
  • a threshold factor ThresholdFactor is generated; a high-speed downlink shared channel quota for generating a flow control capability allocation frame:
  • the flow control method of the present invention can enable the base station to provide a high system throughput rate for the HSDPA system and reduce the service HS- while not having the service type information unit of the user equipment and the environment/location conditions of the user equipment. Packet data loss caused by DSCH cell change.
  • Figure 1 is a structural diagram of a flow control system between MAC-d (MAC-c/sh) and MAC-hs in the 3GPP Release 5 communication specification;
  • FIG. 2 is a structural diagram of a flow control device according to the present invention.
  • FIG. 3 is a flowchart of an embodiment of a flow control method according to the present invention.
  • FIG. 4 is a schematic diagram of determining a current upper and lower threshold of a single queue/the entire high speed medium access control buffer according to the present invention
  • FIG. 5 is a flowchart of an embodiment of generating a flow control capability allocation frame in the method according to the present invention.
  • HSDPA will maintain continuous coverage while providing the highest possible system capacity for WCDMA systems. For example, it is covered with the 3GPP Release 99 cell.
  • Techniques such as power control, adaptive modulation coding (AMC), hybrid automatic repeat request (HARQ), channel switching (such as HS-DSCH and DCH switching, or HS-DSCH and FACH switching) can do this.
  • AMC adaptive modulation coding
  • HARQ hybrid automatic repeat request
  • channel switching such as HS-DSCH and DCH switching, or HS-DSCH and FACH switching
  • the common pilot channel (CPICH), the downlink dedicated control physical channel (DL-DPCCH), and the high-speed shared control channel (HS-SCCH) have high reliability due to processing gain. Very big.
  • the high-speed downlink shared physical channel (HS-PDSCH) has lower reliability of correct decoding due to smaller processing gain.
  • Radio Link Control-No Acknowledgement Mode (RCC-UM) data that has been transmitted to the MAC-hs but has not been successfully received by the UE will be lost.
  • Radio Link Control-Acknowledgment Mode (RLC-AM) data is not affected.
  • the present invention mainly focuses on predicting the type of service of the UE and predicting the possibility of the UE performing the service HS-DSCH cell change in time. This not only ensures the continuity of the UE service, but also maximizes the system capacity.
  • FIG. 2 is a structural diagram of a flow control device according to the present invention.
  • An apparatus for implementing the method which is disposed in a base station medium access control sublayer, where the apparatus includes:
  • the radio link control layer mode data classification unit 1 is configured to distinguish the HSDPA data mode of the UE.
  • the input data is from the data on the Iub interface, including base station application part data (NBAP) and frame protocol (FP) data; the processed data is respectively given to the radio link control-acknowledgment mode data extracting unit 2 and the radio link control-non The mode data extracting unit 3 is confirmed.
  • NBAP base station application part data
  • FP frame protocol
  • the radio link control-confirmation mode data extracting unit 2 is configured to extract RLC-AM mode data.
  • the input data is from the radio link control layer mode data classification unit 1; the output data is supplied to the flow control capability to allocate the frame data generating unit 6.
  • Radio link control - Non-acknowledge mode data extracting unit 3 for extracting RLC-UM mode data.
  • the input data is from the radio link control layer mode data classification unit 1; the output data is sent to the radio link control-non-acknowledge mode data service type prediction unit 4.
  • the radio link control-non-acknowledge mode data service type prediction unit 4 is used to predict the service type of the RLC-UM mode data.
  • the input data comes from the radio link control-non-acknowledge mode data extracting unit 3, and the output data is supplied to the flow control capability allocation frame data generating unit 6.
  • the serving high speed downlink shared channel cell change prediction unit 5 is configured to predict a possible HS-DSCH cell change of the UE.
  • the input data comes from the scheduler, the MAC-hs buffer, and the physical layer; and the output data is allocated to the flow control capability allocation frame data generating unit 6.
  • the flow control capability allocation frame data generating unit 6 is configured to generate a flow control capability allocation frame (CAPACITY ALLOCATION Frame ).
  • the input data is from the radio link control-acknowledgment mode data extracting unit 2, the radio link control-non-acknowledge mode data service type predicting unit 4, and the serving high speed downlink shared channel cell change predicting unit 5; the data is output to the Iub interface.
  • base station application part (NBAP) and frame protocol (FP) data are obtained from the Iub interface (step 11);
  • step 12 it is judged whether the HSDPA data transmitted to the UE is RLC-AM mode data or RLOUM mode data. If it is RLC-AM mode data, go directly to step 16. Otherwise go to step 13 (step 12);
  • the traffic prediction algorithm is as follows, after which, the process proceeds to step 16 (step 13);
  • TrqffwType is a service type. Currently, only 4 types are listed. Actually, there are more types. Background is a background service, Interactive is an interactive service, Video Streaming is a video stream, and VoIP is running on an Internet protocol. Voice service on IP); P 0 nyO/T C is the service priority of packet data; 73 ⁇ 4—Pnl - 73 ⁇ 4— ⁇ 3 is a preset priority threshold, which is a fixed constant.
  • step 14 Generating according to NBAP and FP data; receiving throughput rate of UE from packet scheduler, physical layer, etc., channel quality indicator (CQI) of UE, carrier-to-interference ratio (SIR) of uplink dedicated control channel (UL-DPCCH), uplink dedicated Data such as the TPC command on the control channel (UL-DPCCH) and the transmit power of the downlink dedicated control channel (DL-DPCCH) (step 14); Performing the service HS-DSCH cell change prediction process on the data provided in step 14; the change prediction algorithm is as follows: Thereafter, the process proceeds to step 16 (step 15);
  • Po DL-DPCCH is sent to each UE
  • the carrier-to-interference ratio is then processed according to the data provided in steps 12, 13, and 15, to generate a CAPACITY ALLOCATION Frame; after that, the process ends.
  • steps 14 and 15 are independent of steps 11, 12, 13 and steps 14 and 15 can be performed prior to steps 11, 12, 13 without affecting operation result step 16.
  • Step 16 also includes the following five steps, as shown in Figures 4 and 5:
  • step 62 Determine if the current height of a single queue/entire MAC-hs buffer is between the upper and lower thresholds. If it is between the upper and lower thresholds, the subroutine ends; otherwise, go to step 63 (step 62); generate a threshold factor ThresholdFactor (step 63);
  • the HS-DSCH quota for generating the medium flow control capability allocation frame (HS-DSCHCrediO;
  • (int) represents the rounding operation
  • Throughput is the throughput of the UE
  • TrafficFactor is a business factor and is related to various predicted services
  • m»wm 4C—L3 ⁇ 4e «gt/z is the largest MAC-d protocol data unit (PDU) size for various services
  • ThresholdFactor is the threshold factor
  • P _CellCh an ge is ⁇ m
  • Other parameters of the flow control capability allocation frame may also be generated, for example, media access control - dedicated protocol data unit maximum length (Maximum MAC-d PDU) Length), high-speed downlink shared channel transmission time interval (HS-DSCH Interval) and high-speed downlink shared channel transmission repetition period (HS-DS Repetition Period).
  • Media access control - dedicated protocol data unit maximum length Maximum MAC-d PDU
  • HS-DSCH Interval high-speed downlink shared channel transmission time interval
  • HS-DS Repetition Period high-speed downlink shared channel transmission repetition period
  • the base station application part (NBAP) and frame protocol (FP) data are obtained from the Iub interface (step 21);
  • step 22 it is determined whether the HSDPA data sent to the UE is RLC-AM mode data or RLC-UM mode data; if it is RLC-AM mode data, go directly to step 26; otherwise, go to step 23 (step 22);
  • the transmit power of the downlink dedicated control channel (DL-DPCCH) (step 24)
  • step 24 The data provided in step 24 is serviced HS-DSCH cell change prediction process, and the change prediction algorithm is as follows; thereafter, the process proceeds to step 26 (step 25);
  • Power-DT-DPCCH is the transmit power of the downlink dedicated control channel sent to each UE;
  • TPC-UL-DPCCH is the uplink dedicated
  • steps 24 and 25 are independent of steps 21, 22, and 23, and steps 24 and 25 can be performed before steps 21, 22, and 23 without affecting the result of the operation.
  • Step 26 also includes the following five steps, as shown in FIG. 4 and FIG. 5:
  • step 163 Determining whether the current height of the single queue/entire MAC-hs buffer is between the upper and lower thresholds; if it is between the upper and lower thresholds, the subroutine ends; otherwise, going to step 163 (step 162); generating a threshold factor ThresholdFactor (step 163);
  • the HS-DSCH quota (HS_DSCHCredit) of the medium flow control capability allocation frame is generated (step 164), and Throughput ⁇ ⁇ afficFactor ThresholdFactor.
  • (int) represents the rounding operation
  • Throughput is the throughput of the UE
  • Traff i cFac tor is the business factor, which is related to various predicted services
  • ThresholdFactor is the threshold factor
  • P_CellChange is the possibility for the UE to serve the HS-DSCH cell change; here, it is also possible to generate other flow control capability allocation frames.
  • Parameters such as media access control - Maximum MAC-d PDU Length, high-speed downlink Shared channel transmission time interval (HS-DSCH Interval) and high-speed downlink shared channel transmission repetition period (HS-DS Repetition Period).
  • the high-speed downlink packet access flow control device and method in the WCDMA system of the present invention are not limited to the applications listed in the specification and the embodiment, and can be fully applied to various fields suitable for the present invention.
  • Other advantages and modifications may be readily made by those skilled in the art, and the invention is not limited to the specific details and representative, without departing from the spirit and scope of the general concept as defined by the appended claims.

Abstract

A high speed downlink package access flow control device and method in WCDMA system, comprises: data classification unit of wireless link control layer mode, for distinguishing UE high speed downlink package access data mode; data extraction unit of wireless link control-affirmance mode, for extracting wireless link control- affirmance mode data; data extraction unit of wireless link control-nonaffirmance mode, for extracting wireless link control-nonaffirmance mode data; data service type prediction unit of wireless link control-nonaffirmance mode, for predicting wireless link control-nonaffirmance mode data service type; cell change prediction unit of service high speed downlink sharing channel, for predicting the possible service HS-DSCH cell change of UE; data generation unit of flow control capability distribution frame, for generating flow control capability distribution frame. The present invention can improve the capability of the system, at the same time, it can ensure the continuous overcast of HSDPA, and realize the continuity of UE service.

Description

WCDMA系统中高速下行分组接入流量控制装 及方法 技术领域  High-speed downlink packet access flow control device and method in WCDMA system
本发明涉及一种宽带码分多址 (WCDMA-) 移动通信系统中的流量控制 技术, 具体地说, 是涉及 WCDMA 系统中高速下行分组接入(High Speed Downl ink Package Access , HSDPA ) 的流量控制装置及方法。 背景技木  The invention relates to a flow control technology in a wideband code division multiple access (WCDMA-) mobile communication system, in particular to a flow control of a High Speed Downlink Package Access (HSDPA) in a WCDMA system. Apparatus and method. Background technique
相对于 3GPP Release 99版本 ("第三代合作伙伴计划"组织于 1999 年发表的无线通信规范) , 3GPP Release 5在基站 (Node B ) 上增加了 媒体接入控制 -高速下行分组接入实体 (MAC- HSDPA ; MAC-hs ) 。 HSDPA 的分组调度器在 MAC-hs中实现。 受 HSDPA调度器调度的分组数据来自无 线网络控制器 (RNC) 的媒体接入控制 -专用 (MAC- d ) 或经媒体接入控制 实体-公共 /共享 (MAC-c/sh ) 。 MAC- d/c/sh的数据来自 RNC的无线链路 控制子层 (RLC ) , 如图 1所示。  Compared to the 3GPP Release 99 version (the "Third Generation Partnership Project" organization published in 1999, the 3GPP Release 5 adds a Media Access Control-High Speed Downlink Packet Access Entity to the Base Station (Node B) ( MAC-HSDPA; MAC-hs). HSDPA's packet scheduler is implemented in MAC-hs. The packet data scheduled by the HSDPA scheduler comes from the Media Access Control of the Radio Network Controller (RNC) - Private (MAC-d) or Media Access Control Entity - Public / Shared (MAC-c/sh). The MAC-d/c/sh data comes from the RNC's Radio Link Control Sublayer (RLC), as shown in Figure 1.
流控的一般过程是, MAC- d (或 MAC- c/sh ) 根据其缓冲区状况向 MAC- hs发送流控请求 (HS-DSCH CAPACITY REQUEST ) 。 MAC hs根据流控 策略发送一定格式的流控分配帧 (HS- DSCH CAPACITY ALLOCATION) , 或 者不发送流控分配帧而让 RNC等待。 MAC- d在收到流控分配帧之后, 根据 一定策略发送相应的分组数据帧 (HS-DSCH DATA FRAME) 给 MAC- hs。  The general procedure for flow control is that MAC-d (or MAC-c/sh) sends a flow control request (HS-DSCH CAPACITY REQUEST) to the MAC-hs based on its buffer status. The MAC hs sends a certain format of the flow control allocation frame (HS-DSCH CAPACITY ALLOCATION) according to the flow control policy, or does not send the flow control allocation frame to let the RNC wait. After receiving the flow control allocation frame, the MAC-d sends a corresponding packet data frame (HS-DSCH DATA FRAME) to the MAC-hs according to a certain policy.
但现有的流量控制, 还没有通过综合考虑 RLC模式、 用户业务类型、 及服务 HS-DSCH 小区变更这三个因素, 在尽可能高的保证系统容量的同 时, 来更有效的实现确保 UE业务连续性的处理策略。  However, the existing traffic control has not yet comprehensively considered the three factors of the RLC mode, the user service type, and the service HS-DSCH cell change, and the UE service is more effectively realized while ensuring the system capacity as high as possible. Continuous processing strategy.
发明内容 Summary of the invention
本发明所要解决的技术问题是提供一种 WCDMA 系统中高速下行分组 接入流量控制装置及方法。 在为 WCDM系统提供尽可能高的系统容量的同 时, 来保证 HSDPA能够保持连续覆盖, 以实现 UE业务的连续性。 为解决上述技术问题, 本发明提供方案如下: The technical problem to be solved by the present invention is to provide a high-speed downlink packet access flow control device and method in a WCDMA system. While providing the WCDM system with the highest possible system capacity, it can ensure that HSDPA can maintain continuous coverage to achieve continuity of UE services. In order to solve the above technical problems, the present invention provides the following solutions:
一种宽带码分多址 系统中高速下行分组接入的流量控制装置, 位于 基站媒体接入控制层 -高速子, 包括:  A flow control device for high-speed downlink packet access in a wideband code division multiple access system, located at a base station medium access control layer-high speed sub-layer, comprising:
无线链路控制层模式数据分类单元,用于区分用户设备的高速下行分 组接入数据模式;  a radio link control layer mode data classification unit, configured to distinguish a high speed downlink packet access data mode of the user equipment;
无线链路控制 -确认模式数据提取单元, 用于提取无线链路控制-确 认模式数据;  a radio link control-acknowledgment mode data extracting unit, configured to extract radio link control-acknowledgment mode data;
无线链路控制-非确认模式数据提取单元, 用于提取无线链路控制- 非确认模式数据;  a radio link control-non-acknowledgement mode data extracting unit, configured to extract radio link control-non-confirmation mode data;
无线链路控制-非确认模式数据业务类型预测单元, 用来预测无线链 路控制 -非确认模式数据的业务类型;  Radio link control-non-acknowledge mode data service type prediction unit, which is used to predict the type of service of the wireless link control-non-confirmation mode data;
服务高速下行共享信道小区变更预测单元,用来预测用户设备可能的 服务高速下行共享信道小区变更;  a service high speed downlink shared channel cell change prediction unit, configured to predict a service high speed downlink shared channel cell change of the user equipment;
流控能力分配帧数据产生单元, 用来产生流控能力分配帧; 所述无线链路控制层模式数据分类单元从 Iub 接口获得数据, 区分 用户设备的高速下行分组接入数据模式后, 将数据传给所述无线链路控 制-确认模式数据提取单元和所述无线链路控制-非确认模式数据提取单 元; 所述无线链路控制-确认模式数据提取单元提取无线链路控制 -确认 模式数据, 并输出数据给流控能力分配帧数据产生单元; 所述无线链路 控制-非确认模式数据提取单元提取无线链路控制 -非确认模式数据, 并 输出数据给无线链路控制-非确认模式数据业务类型预测单元; 所述无线 链路控制-非确认模式数据业务类型预测单元预测无线链路控制-非确认 模式数据的业务类型, 并输出数据给流控能力分配帧数据产生单元; 所 述服务高速下行共享信道小区变更预测单元根据从分组调度器、 高速媒 体接入控制缓冲区及物理层得到的数据预测用户设备可能的服务高速下 行共享信道小区变更, 并输出数据给流控能力分配帧数据产生单元, 所 述流控能力分配帧数据产生单元输出流控能力分配帧至 Iub接口。  a flow control capability allocation frame data generating unit, configured to generate a flow control capability allocation frame; the radio link control layer mode data classification unit obtains data from the Iub interface, and after distinguishing the high speed downlink packet access data mode of the user equipment, the data is Transmitted to the radio link control-acknowledgment mode data extracting unit and the radio link control-non-acknowledgement mode data extracting unit; the radio link control-acknowledgment mode data extracting unit extracts radio link control-acknowledgment mode data And outputting data to the flow control capability allocation frame data generating unit; the radio link control-non-acknowledge mode data extracting unit extracts the radio link control-non-acknowledgment mode data, and outputs the data to the radio link control-non-acknowledge mode a data service type prediction unit; the radio link control-non-acknowledge mode data service type prediction unit predicts a service type of the radio link control-non-confirm mode data, and outputs the data to the flow control capability allocation frame data generating unit; Service high speed downlink shared channel cell change prediction unit according to slave packet The data obtained by the metric device, the high-speed medium access control buffer, and the physical layer predicts the user service high-speed downlink shared channel cell change, and outputs data to the flow control capability allocation frame data generating unit, where the flow control capability allocates frame data. The generating unit outputs a flow control capability allocation frame to the Iub interface.
一种宽带码分多址 系统中高速下行分组接入的流量控制方法, 用于 所述流量控制系统, 包括: Traffic control method for high speed downlink packet access in wideband code division multiple access system, The flow control system includes:
从 Iub 接口上获得基站应用部分 (NBAP) 和帧协议 (FP) 数据, 判 断发送给用户设备的高速下行分组接入的无线链路控制模式数据类型为 无线'链路控制-确认模式或无线链路控制-非确认模式数据, 对无线链路 控制-非确认模式数据进行业务类型预测处理来得到预测业务类型; 从分组调度器、物理层及高速媒体接入控制缓冲区接收用户设备的吞 吐率 Throughpu 用户设备的信道质量指示 CQI、 上行专用控制信道的 载干比 S R— _ PCCH、 上行专用控制信道上的发射功率控制命令 TPCJJL— DPCCH、 下行专用控制信道的发射功率 ¾^^— i^— D CCH , 计 算服务高速下行共享信道小区变更的可能性:  Obtaining Base Station Application Part (NBAP) and Frame Protocol (FP) data from the Iub interface, and determining that the radio link control mode data type of the high speed downlink packet access sent to the user equipment is a wireless 'link control-acknowledgement mode or a wireless chain The path control-non-acknowledgment mode data is subjected to service type prediction processing for the radio link control-non-acknowledgment mode data to obtain the predicted service type; and the throughput of the user equipment is received from the packet scheduler, the physical layer, and the high-speed medium access control buffer. The channel quality indicator CQI of the Throughpu user equipment, the carrier-to-interference ratio of the uplink dedicated control channel SR__PCCH, the transmit power control command TPCJJL-DPCCH on the uplink dedicated control channel, and the transmit power of the downlink dedicated control channel 3⁄4^^—i^— D CCH , the possibility of calculating the service high-speed downlink shared channel cell change:
N  N
Powe _ DL_ DPCCH + a ∑ TPC _UL _ DPCCH(i)  Powe _ DL_ DPCCH + a ∑ TPC _UL _ DPCCH(i)
P CellChange = « 100% P CellChange = « 100%
- k + β Throughput + λ CQI + μ SIR— UL— DPCCH - k + β Throughput + λ CQI + μ SIR— UL— DPCCH
其中, a, N, k, ?, i, /为固定常数; 根据无线链路控制-确汄模式数据或对无线链路控制-非确认模式数 据进行业务预测处理后产生的业务类型及服务高速下行共享信道小区变 更的可能性, 产生流控能力分配帧, 进一步包括如下步骤: Where a, N, k, ?, i, / are fixed constants; service type and service speed generated after performing service prediction processing according to radio link control-determination mode data or radio link control-non-confirmation mode data The possibility of changing the downlink shared channel cell, generating a flow control capability allocation frame, further includes the following steps:
统计单个队列 /整个高速媒体接入控制缓冲区的当前使用状况; 判断单个队列 /整个高速媒体接入控制缓冲区的当前高度是否在上下 门限之外;  Count the current usage of the single queue/the entire high-speed media access control buffer; determine whether the current height of the single queue/the entire high-speed media access control buffer is outside the upper and lower thresholds;
将单个队列 /整个高速媒体接入控制缓冲区的当前高度在上下门限之 外的, 则产生门限因子 ThresholdFactor; 产生中流控能力分配帧的高速下行共享信道额度: If the current height of the single queue/the entire high-speed media access control buffer is outside the upper and lower thresholds, a threshold factor ThresholdFactor is generated; a high-speed downlink shared channel quota for generating a flow control capability allocation frame:
HS DSCHCred!t ^mtX Thr→Put TrafficFactor · ThresholdFactor ) , 进 ― MaximumMAC _ dPDULength φ + Ρ _ CellChange 行流量控制; 其中, int表示取整运算; TrafficFactor 为业务因子; ∞mWm 4C_ DM:e t/7为各种业务最大的专用媒体接入控制协议数据 单元大小; 为固定常数。 与现有技术相比, 本发明的优点在于: HS DSCHCred!t ^mtX Thr →P ut TrafficFactor · ThresholdFactor ) , into - MaximumMAC _ dPDULength φ + Ρ _ CellChange line flow control; where int represents the rounding operation; TrafficFactor is the business factor; ∞m W m 4C_ DM:et /7 is the largest dedicated media access control protocol data unit size for various services; it is a fixed constant. The advantages of the present invention over the prior art are:
本发明所述的流量控制方法,可以使基站在没有用户设备的业务类型 信息单元和用户设备所处环境 /位置条件下, 在为 HSDPA系统提供高系统 吞吐率的同时, 减少了由于服务 HS- DSCH 小区变更而带来的分组数据丢 失。  The flow control method of the present invention can enable the base station to provide a high system throughput rate for the HSDPA system and reduce the service HS- while not having the service type information unit of the user equipment and the environment/location conditions of the user equipment. Packet data loss caused by DSCH cell change.
本发明所要解决的技术问题、技术方案要点及有益效果,将结合实施 例, 参照附图作进一步的说明。 附图概述  The technical problems, technical points, and advantageous effects to be solved by the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments. BRIEF abstract
图 1为 3GPP Release 5通信规范中 MAC- d (MAC- c/sh ) 与 MAC- hs之 间的流量控制系统结构图;  Figure 1 is a structural diagram of a flow control system between MAC-d (MAC-c/sh) and MAC-hs in the 3GPP Release 5 communication specification;
图 2为本发明所述流量控制装置的结构图;  2 is a structural diagram of a flow control device according to the present invention;
图 3为本发明所述流量控制方法实施例的流程图;  3 is a flowchart of an embodiment of a flow control method according to the present invention;
图 4为本发明所述判断单个队列 /整个高速媒体接入控制缓冲区的当 前高度上下门限的示意图;  4 is a schematic diagram of determining a current upper and lower threshold of a single queue/the entire high speed medium access control buffer according to the present invention;
图 5为本发明所述方法中产生流控能力分配帧实施例的流程图。 本发明的最佳实施方式  FIG. 5 is a flowchart of an embodiment of generating a flow control capability allocation frame in the method according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
我们希望 HSDPA在为 WCDMA系统提供尽可能高的系统容量的同时, HSDPA能够保持连续覆盖。 如, 与 3GPP Release 99小区同覆盖。 功率控 制、 自适应调制编码(AMC )、混合自动重传请求(HARQ )、 信道切换(如 HS-DSCH与 DCH的切换或 HS- DSCH与 FACH的切换等) 等技术都能够做到 这一点。  We hope that HSDPA will maintain continuous coverage while providing the highest possible system capacity for WCDMA systems. For example, it is covered with the 3GPP Release 99 cell. Techniques such as power control, adaptive modulation coding (AMC), hybrid automatic repeat request (HARQ), channel switching (such as HS-DSCH and DCH switching, or HS-DSCH and FACH switching) can do this.
当 UE接近或到达小区边缘时, 公共导频信道 (CPICH ) 、 下行专用 控制物理信道 (DL- DPCCH) 和高速共享控制信道 (HS- SCCH) 等由于处理 增益较大, 其正确解码的可靠性很大。 而高速下行共享物理信道 (HS-PDSCH) 由于处理增益较小, 其正确解码的可靠性较低。 为使 UE的 业务在 UE向小区边缘移动时能保持连续,我们可以采取两种有效的办法: 通过 MAC把 UE的服务速率 (吞吐率) 降下来, 等信道好的日l候在提高上 去; 或者通过信道切换技术将 HS-DSCH上的业务切换到 D H上去, 利用 DCH的快速功率控制、 软切换等保持 UE业务的连续性。 无论哪种方式, 已经传输到 MAC-hs 但仍未为 UE成功接收的无线链路控制 -非确认模式 ( RLC-UM) 数据都将丢失。 无线链路控制 -确认模式 (RLC-AM) 数据不受 影响。 When the UE approaches or reaches the cell edge, the common pilot channel (CPICH), the downlink dedicated control physical channel (DL-DPCCH), and the high-speed shared control channel (HS-SCCH) have high reliability due to processing gain. Very big. The high-speed downlink shared physical channel (HS-PDSCH) has lower reliability of correct decoding due to smaller processing gain. In order to keep the UE's service continuous when the UE moves to the cell edge, we can adopt two effective methods: lower the UE's service rate (throughput rate) by MAC, and improve the channel time. Or; to switch the service on the HS-DSCH to the DH through the channel switching technology, and maintain the continuity of the UE service by using the fast power control of the DCH, the soft handover, and the like. Either way, the Radio Link Control-No Acknowledgement Mode (RCC-UM) data that has been transmitted to the MAC-hs but has not been successfully received by the UE will be lost. Radio Link Control-Acknowledgment Mode (RLC-AM) data is not affected.
本发明主要在于预测 UE 的业务类型以及及时地预测 UE进行服务 HS - DSCH小区变更的可能性。 这不但可以保证 UE业务的连续性, 而且可 以使系统容量最大化。  The present invention mainly focuses on predicting the type of service of the UE and predicting the possibility of the UE performing the service HS-DSCH cell change in time. This not only ensures the continuity of the UE service, but also maximizes the system capacity.
如图 2所示, 为本发明所述流量控制装置的结构图。  2 is a structural diagram of a flow control device according to the present invention.
一种实现所述方法的装置,其设置在基站媒体接入控制子层中,其中, 所述装置包括:  An apparatus for implementing the method, which is disposed in a base station medium access control sublayer, where the apparatus includes:
无线链路控制层模式数据分类单元 1 , 用于区分 UE的 HSDPA数据模 式。 其输入数据来自 Iub接口上的数据, 包括基站应用部分数据 (NBAP ) 和帧协议 (FP ) 数据; 处理后的数据分别给无线链路控制-确认模式数据 提取单元 2和无线链路控制 -非确认模式数据提取单元 3。  The radio link control layer mode data classification unit 1 is configured to distinguish the HSDPA data mode of the UE. The input data is from the data on the Iub interface, including base station application part data (NBAP) and frame protocol (FP) data; the processed data is respectively given to the radio link control-acknowledgment mode data extracting unit 2 and the radio link control-non The mode data extracting unit 3 is confirmed.
无线链路控制 -确认模式数据提取单元 2,用于提取 RLC-AM模式数据。 输入数据来自无线链路控制层模式数据分类单元 1 ;输出数据给流控能力 分配帧数据产生单元 6。  The radio link control-confirmation mode data extracting unit 2 is configured to extract RLC-AM mode data. The input data is from the radio link control layer mode data classification unit 1; the output data is supplied to the flow control capability to allocate the frame data generating unit 6.
无线链路控制 -非确认模式数据提取单元 3,用于提取 RLC-UM模式数 据。输入数据来自无线链路控制层模式数据分类单元 1 ; 输出数据给无线 链路控制-非确认模式数据业务类型预测单元 4。  Radio link control - Non-acknowledge mode data extracting unit 3 for extracting RLC-UM mode data. The input data is from the radio link control layer mode data classification unit 1; the output data is sent to the radio link control-non-acknowledge mode data service type prediction unit 4.
无线链路控制-非确认模式数据业务类型预测单元 4, 用来预测 RLC-UM模式数据的业务类型。输入数据来自无线链路控制-非确认模式数 据提取单元 3, 输出数据给流控能力分配帧数据产生单元 6。  The radio link control-non-acknowledge mode data service type prediction unit 4 is used to predict the service type of the RLC-UM mode data. The input data comes from the radio link control-non-acknowledge mode data extracting unit 3, and the output data is supplied to the flow control capability allocation frame data generating unit 6.
服务高速下行共享信道小区变更预测单元 5, 用来预测 UE可能的服 务 HS-DSCH小区变更。 输入数据来自调度器、 MAC- hs缓冲区、 物理层; 输出数据给流控能力分配帧数据产生单元 6。  The serving high speed downlink shared channel cell change prediction unit 5 is configured to predict a possible HS-DSCH cell change of the UE. The input data comes from the scheduler, the MAC-hs buffer, and the physical layer; and the output data is allocated to the flow control capability allocation frame data generating unit 6.
流控能力分配帧数据产生单元 6, 用来产生流控能力分配帧 (CAPACITY ALLOCATION Frame ) 。 输入数据来自无线链路控制-确认模 式数据提取单元 2、 无线链路控制-非确认模式数据业务类型预测单元 4 和服务高速下行共享信道小区变更预测单元 5; 输出数据到 Iub接口。 The flow control capability allocation frame data generating unit 6 is configured to generate a flow control capability allocation frame (CAPACITY ALLOCATION Frame ). The input data is from the radio link control-acknowledgment mode data extracting unit 2, the radio link control-non-acknowledge mode data service type predicting unit 4, and the serving high speed downlink shared channel cell change predicting unit 5; the data is output to the Iub interface.
对于, 有较多的信道切换而有较少的服务 HS- DSCH小区变更的情况, 如图 3所示。  For the case where there are more channel switching and there are fewer service HS-DSCH cells, as shown in Figure 3.
首先, 从 Iub 接口上获得基站应用部分 (NBAP) 和帧协议 (FP) 数 据 (步骤 11) ;  First, base station application part (NBAP) and frame protocol (FP) data are obtained from the Iub interface (step 11);
然后, 判断发送给 UE的 HSDPA数据是 RLC-AM模式数据还是 RLOUM 模式数据。 如果是 RLC-AM模式数据, 则直接转向步骤 16。 否则转向步骤 13 (步骤 12) ;  Then, it is judged whether the HSDPA data transmitted to the UE is RLC-AM mode data or RLOUM mode data. If it is RLC-AM mode data, go directly to step 16. Otherwise go to step 13 (step 12);
对 RLC-UM模式数据进行业务预测处理, 业务预测算法如下, 之后, 转向步骤 16 (步骤 13) ;  Performing traffic prediction processing on the RLC-UM mode data, the traffic prediction algorithm is as follows, after which, the process proceeds to step 16 (step 13);
Background, if (Priority OfTraffw < 7¾— Prd) Background, if (Priority OfTraffw < 73⁄4— Prd)
Interactive, if (7¾ _ Pr iol≤ Pr writyOfTraffic <Th_Pr i2) (式 Interactive, if (73⁄4 _ Pr iol ≤ Pr writyOfTraffic <Th_Pr i2)
TrafficType = TrafficType =
Video Streaming. if (Th _ Pr w2≤ Pr writyOfTraffic <Th_?r i3)  Video Streaming. if (Th _ Pr w2 ≤ Pr writyOfTraffic <Th_?r i3)
VoIP, if (Pr writyOfTraffic≥Th_Pri3)  VoIP, if (Pr writyOfTraffic≥Th_Pri3)
1) 其中, TrqffwType为业务类型, 目前只列出 4种类型, 实际可以有更 多的种类; Background为背景类业务, Interactive为互动类业务, Video Streaming为视频流, VoIP 为运行在因特网协议 (IP) 上的话音业务; P 0nyO/T C为分组数据的业务优先级; 7¾— Pnl - 7¾— Ρ 3为预先设定 的优先级门限, 均为固定常数。
Figure imgf000008_0001
根据 NBAP和 FP数据来产 生; 从分组调度器、物理层等接收 UE的吞吐率、 UE的信道质量指示 (CQI)、 上行专用控制信道 (UL-DPCCH) 的载干比 (SIR) 、 上行专用控制信道 (UL-DPCCH) 上的 TPC命令、 下行专用控制信道 (DL-DPCCH) 的发射功 率等数据 (步骤 14) ; 对步骤 14提供的数据进行服务 HS-DSCH小区变更预测处理; 变更预 测算法如下: 之后, 转向步骤 16 (步骤 15 ) ;
1) TrqffwType is a service type. Currently, only 4 types are listed. Actually, there are more types. Background is a background service, Interactive is an interactive service, Video Streaming is a video stream, and VoIP is running on an Internet protocol. Voice service on IP); P 0 nyO/T C is the service priority of packet data; 73⁄4—Pnl - 73⁄4— Ρ 3 is a preset priority threshold, which is a fixed constant.
Figure imgf000008_0001
Generating according to NBAP and FP data; receiving throughput rate of UE from packet scheduler, physical layer, etc., channel quality indicator (CQI) of UE, carrier-to-interference ratio (SIR) of uplink dedicated control channel (UL-DPCCH), uplink dedicated Data such as the TPC command on the control channel (UL-DPCCH) and the transmit power of the downlink dedicated control channel (DL-DPCCH) (step 14); Performing the service HS-DSCH cell change prediction process on the data provided in step 14; the change prediction algorithm is as follows: Thereafter, the process proceeds to step 16 (step 15);
3  3
Power _ DL _ DPCCH + ^ TPC JJL _ DPCCH W  Power _ DL _ DPCCH + ^ TPC JJL _ DPCCH W
P CellChange = ^ · 100% (式 P CellChange = ^ · 100%
- 1 + Throughput + CQI + SIR JJL _ DPCCH - 1 + Throughput + CQI + SIR JJL _ DPCCH
2 ) 其中, —(^/(^。"^为 UE进行服务 HS-DSCH小区变更的可能性 (可 以大于 100%, 表示小区变更的趋势非常明显); Po DL— DPCCH为发 送给各个 UE的下行专用控制信道的发射功率; T C UL DPCCH为上行专 用控制信道上的 TPC命令; Throughput为 UE的吞吐率; CQI 为 UE的 f 道质量指示; H?— ra— D CCH为上行专用控制信道的载干比; 然后, 根据步骤 12、 13、 15 提供的数据进行处理, 产生 CAPACITY ALLOCATION Frame (流控能力分配帧) ; 之后, 结束本流程。  2) where -(^/(^."^ is the possibility for the UE to perform the HS-DSCH cell change (may be greater than 100%, indicating that the cell change trend is very obvious); Po DL-DPCCH is sent to each UE The transmit power of the downlink dedicated control channel; TC UL DPCCH is the TPC command on the uplink dedicated control channel; Throughput is the throughput rate of the UE; CQI is the f-channel quality indication of the UE; H?-ra-D CCH is the uplink dedicated control channel The carrier-to-interference ratio is then processed according to the data provided in steps 12, 13, and 15, to generate a CAPACITY ALLOCATION Frame; after that, the process ends.
应注意, 步骤 14和 15相对步骤 11、 12、 13是独立的, 步骤 14和 15可以在步骤 11、 12、 13之前执行, 并不影响操作结果步骤 16。  It should be noted that steps 14 and 15 are independent of steps 11, 12, 13 and steps 14 and 15 can be performed prior to steps 11, 12, 13 without affecting operation result step 16.
其中, 步骤 16还包括下列五个步骤, 如图 4、 5所示:  Step 16 also includes the following five steps, as shown in Figures 4 and 5:
计算 (或统计) 单个队列 /整个 MAC-hs 缓沖区的当前使用状况 (步 骤 61 ) ;  Calculate (or count) the current usage of a single queue/entire MAC-hs buffer (step 61);
判断单个队列 /整个 MAC-hs缓冲区的当前高度是否在上下门限之间。 如果是在上下门限之间, 则该子流程结束; 否则转到步骤 63 (步骤 62 ) ; 产生门限因子 ThresholdFactor (步骤 63) ;  Determine if the current height of a single queue/entire MAC-hs buffer is between the upper and lower thresholds. If it is between the upper and lower thresholds, the subroutine ends; otherwise, go to step 63 (step 62); generate a threshold factor ThresholdFactor (step 63);
产生中流控能力分配帧的 HS-DSCH额度 (HS— DSCHCrediO ;  The HS-DSCH quota for generating the medium flow control capability allocation frame (HS-DSCHCrediO;
HS DSCHCred!t = (mt)( Thr→Put TrafficFactor · ThresholdFactor ) (式 HS DSCHCred!t = (mt)( Thr →P ut TrafficFactor · ThresholdFactor )
MaximumMAC— dPDULength 2 +尸— CellChange  MaximumMAC—dPDULength 2 + corpse — CellChange
3 ) 其中, (int ) 表示取整运算; Throughput 为 UE 的吞吐率; TrafficFactor 为 业务 因 子 , 与各种预测 的 业务相 关 ; m»wm 4C— L¾e«gt/z为各种业务最大的 MAC- d协议数据单元 (PDU) 大小; ThresholdFactor为门限因子; P _CellChange为 \m进行服务 HS- DSCH 小区变更的可能性 (步骤 64) ; 这里, 还可以产生流控能力分配帧的其他参数, 如, 媒体接入控制- 专用协议数据单元最大长度 (Maximum MAC- d PDU Length) 、 高速下行 共享信道传输时间间隔 (HS-DSCH Interval) 和高速下行共享信道传输 重复周期 (HS-DS Repetition Period) 。 3) where (int) represents the rounding operation; Throughput is the throughput of the UE; TrafficFactor is a business factor and is related to various predicted services; m»wm 4C—L3⁄4e«gt/z is the largest MAC-d protocol data unit (PDU) size for various services; ThresholdFactor is the threshold factor; P _CellCh an ge is \mThe possibility of serving the HS-DSCH cell change (step 64); here, other parameters of the flow control capability allocation frame may also be generated, for example, media access control - dedicated protocol data unit maximum length (Maximum MAC-d PDU) Length), high-speed downlink shared channel transmission time interval (HS-DSCH Interval) and high-speed downlink shared channel transmission repetition period (HS-DS Repetition Period).
对于, 有较少的信道切换而有较多的服务 HS-DSCH小区变更的情况: 首先, 从 Iub 接口上获得基站应用部分 (NBAP) 和帧协议 (FP) 数 据 (步骤 21) ;  For the case where there are fewer channel switching and there are more services HS-DSCH cell change: First, the base station application part (NBAP) and frame protocol (FP) data are obtained from the Iub interface (step 21);
然后, 判断发送给 UE的 HSDPA数据是 RLC-AM模式数据还是 RLC - UM 模式数据; 如果是 RLC-AM模式数据, 则直接转向步骤 26; 否则转向步骤 23 (步骤 22) ;  Then, it is determined whether the HSDPA data sent to the UE is RLC-AM mode data or RLC-UM mode data; if it is RLC-AM mode data, go directly to step 26; otherwise, go to step 23 (step 22);
对 RLC- UM模式数据进行业务预测处理; 业务预测算法如式 1所示。 之后, 转向步骤 26 (步骤 23) ;  Perform traffic prediction processing on RLC-UM mode data; the service prediction algorithm is as shown in Equation 1. After that, go to step 26 (step 23);
从分组调度器、物理层等接收 UE的吞吐率、 UE的信道质量指示 (CQI )、 上行专用控制信道 (UL- DPCCH) 的载干比 (SIR) 、 上行专用控制信道 (UL-DPCCH) 上的 TPC命令、 下行专用控制信道 (DL-DPCCH) 的发射功 率等数据 (步骤 24)  Receiving the throughput rate of the UE, the channel quality indicator (CQI) of the UE, the carrier-to-interference ratio (SIR) of the uplink dedicated control channel (UL-DPCCH), and the uplink dedicated control channel (UL-DPCCH) from the packet scheduler, the physical layer, and the like Data of the TPC command, the transmit power of the downlink dedicated control channel (DL-DPCCH) (step 24)
对步骤 24提供的数据进行服务 HS- DSCH小区变更预测处理, 变更预 测算法如下; 之后, 转向步骤 26 (步骤 25) ;  The data provided in step 24 is serviced HS-DSCH cell change prediction process, and the change prediction algorithm is as follows; thereafter, the process proceeds to step 26 (step 25);
3  3
Power _DL_ DPCCH +∑ TPC— UL— DPCCH{i)  Power _DL_ DPCCH +∑ TPC—UL— DPCCH{i)
P CellChange = ^ ·100% (式 一 1 + 5 Throughput + CQI + SIR _UL_ DPCCH  P CellChange = ^ ·100% (Formula 1 + 5 Throughput + CQI + SIR _UL_ DPCCH
4) 其中, 0/ ^^为 1¾进行服务 HS- DSCH小区变更的司能性 (可 以大于 100 % , 表示小区变更的趋势非常明显); Power— D T—DPCCH为发 送给各个 UE的下行专用控制信道的发射功率; TPC— UL— DPCCH为上行专 4) where 0/^^ is 13⁄4 for serving the HS-DSCH cell change (can be With more than 100%, the trend of cell change is very obvious); Power-DT-DPCCH is the transmit power of the downlink dedicated control channel sent to each UE; TPC-UL-DPCCH is the uplink dedicated
'■ .. 用控制信道上的 TPC命令; Throughput为 UE的吞吐率; CQI 为 UE的 f 道质量指示; — f/ — PCCH为上行专用控制信道的载干比; 根据步骤 22、23、25提供的数据进行处理,产生 CAPACITY ALLOCATION '■ .. Use the TPC command on the control channel; Throughput is the throughput rate of the UE; CQI is the f-channel quality indication of the UE; – f/ – PCCH is the carrier-to-interference ratio of the uplink dedicated control channel; according to steps 22, 23, 25 The data provided is processed to produce CAPACITY ALLOCATION
Frame (流控能力分配帧) (步骤 26) 。 Frame (flow control capability allocation frame) (step 2 6).
应注意, 步骤 24和 25相对步骤 21、 22、 23是独立的, 步骤 24和 25可以在步骤 21、 22、 23之前执行, 并不影响操作结果。  It should be noted that steps 24 and 25 are independent of steps 21, 22, and 23, and steps 24 and 25 can be performed before steps 21, 22, and 23 without affecting the result of the operation.
其中, 步骤 26还包括下列五个步骤, 如图 4和图 5所示:  Step 26 also includes the following five steps, as shown in FIG. 4 and FIG. 5:
计算 (或统计) 单个队列 /整个 MAC-hs 缓冲区的当前使用状况 (步 骤 161 )  Calculate (or count) the current usage of a single queue/entire MAC-hs buffer (step 161)
判断单个队列 /整个 MAC-hs缓冲区的当前高度是否在上下门限之间; 如果是在上下门限之间,则该子流程结束;否则转到步骤 163 (步骤 162) ; 产生门限因子 ThresholdFactor (步骤 163) ;  Determining whether the current height of the single queue/entire MAC-hs buffer is between the upper and lower thresholds; if it is between the upper and lower thresholds, the subroutine ends; otherwise, going to step 163 (step 162); generating a threshold factor ThresholdFactor (step 163);
产生中流控能力分配帧的 HS- DSCH额度(HS_DSCHCredit ) (步骤 164) 、, Throughput Τγ afficFactor ThresholdFactor .  The HS-DSCH quota (HS_DSCHCredit) of the medium flow control capability allocation frame is generated (step 164), and Throughput Τ γ afficFactor ThresholdFactor.
HS— DSCHCredit = (int)( ― ·― ) ( ¾ HS— DSCHCredit = (int)( ― ·― ) ( 3⁄4
― MaximumMA C _ dPD ULength \ + P _ CellChange ― MaximumMA C _ dPD ULength \ + P _ CellChange
5) 其中, (int ) 表示取整运算; Throughput 为 UE 的吞吐率; Traff i cFac tor 为 业务 因 子 , 与 各种预测 的 业务相 关 ;
Figure imgf000011_0001
为各种业务最大的 MAC-d协议数据单元 (PDU ) 大小; ThresholdFactor为门限因子; P _ CellChange为 UE进行服务 HS- DSCH 小区变更的可能性; 这里, 还可以产生流控能力分配帧的其他参数, 如, 媒体接入控制- 专用协议数据单元最大长度 (Maximum MAC-d PDU Length) 、 高速下行 共享信道传输时间间隔 (HS- DSCH Interval) 和高速下行共享信道传输 重复周期 (HS-DS Repetition Period) 。
5) where (int) represents the rounding operation; Throughput is the throughput of the UE; Traff i cFac tor is the business factor, which is related to various predicted services;
Figure imgf000011_0001
The maximum MAC-d protocol data unit (PDU) size for various services; ThresholdFactor is the threshold factor; P_CellChange is the possibility for the UE to serve the HS-DSCH cell change; here, it is also possible to generate other flow control capability allocation frames. Parameters, such as media access control - Maximum MAC-d PDU Length, high-speed downlink Shared channel transmission time interval (HS-DSCH Interval) and high-speed downlink shared channel transmission repetition period (HS-DS Repetition Period).
本发明所述的一种 WCDMA 系统中高速下行分组接入流量控制装置及 方法, 并不仅仅限于说明书和实施方式中所列运用, 它完全可以被适用 于各种适合本发明之领域, 对于熟悉本领域的人员而言可容易地实现另 外的优点和进行修改, 因此在不背离权利要求及等同范围所限定的一般 概念的精神和范围的情况下, 本发明并不限于特定的细节、 代表性的设 备和这里示出与描述的图示示例。  The high-speed downlink packet access flow control device and method in the WCDMA system of the present invention are not limited to the applications listed in the specification and the embodiment, and can be fully applied to various fields suitable for the present invention. Other advantages and modifications may be readily made by those skilled in the art, and the invention is not limited to the specific details and representative, without departing from the spirit and scope of the general concept as defined by the appended claims. The device and the illustrated example shown and described herein.

Claims

权 利 要 求 书 Claim
1、 一种宽带码分多址 系统中高速下行分组接入的流量控制装 置, 位于基站媒体接入控制 -高速子层, 其特征在于包括: A flow control device for high-speed downlink packet access in a wideband code division multiple access system, located at a base station medium access control-high speed sublayer, characterized by:
无线链路控制层模式数据分类单元 (1 ) , 用于区分用户设备的高速 下行分组接入数据模式;  a radio link control layer mode data classification unit (1), configured to distinguish a high-speed downlink packet access data mode of the user equipment;
无线链路控制 -确认模式数据提取单元(2) , 用于提取无线链路控制 -确汄模式数据;  a radio link control-acknowledgment mode data extracting unit (2) for extracting radio link control-determination mode data;
无线链路控制 -非确认模式数据提取单元(3 ) , 用于提取无线链路控 制 -非确认模式数据;  Radio link control - non-acknowledge mode data extracting unit (3) for extracting radio link control - unacknowledged mode data;
无线链路控制-非确认模式数据业务类型预测单元(4) , 用来预测无 线链路控制-非确认模式数据的业务类型;  a radio link control-non-acknowledgement mode data service type prediction unit (4) for predicting the type of service of the wireless link control-non-acknowledgment mode data;
服务高速下行共享信道小区变更预测单元 (5 ) , 用来预测用户设备 司能的服务高速下行共享信道小区变更;  a service high speed downlink shared channel cell change prediction unit (5) for predicting a service high speed downlink shared channel cell change of the user equipment;
流控能力分配帧数据产生单元 (6 ) , 用来产生流控能力分配帧; 所述无线链路控制层模式数据分类单元 (1 ) 从 Iub接口获得数据, 区分用户设备的高速下行分组接入数据模式后,将数据传给所述无线链路 控制-确认模式数据提取单元 (2) 和所述无线链路控制 -非确认模式数据 提取单元 (3 ) ; 所述无线链路控制-确认模式数据提取单元 (2 ) 提取无 线链路控制-确认模式数据, 并输出数据给流控能力分配帧数据产生单元 (6 ) ; 所述无线链路控制 -非确认模式数据提取单元 (3) 提取无线链路 控制-非确 模式数据,并输出数据给无线链路控制-非确认模式数据业务 类型预测单元(4) ; 所述无线链路控制 -非确认模式数据业务类型预测单 元(4)预测无线链路控制-非确认模式数据的业务类型, 并输出数据给流 控能力分配帧数据产生单元 (6 ) ; 所述服务高速下行共享信道小区变更 预测单元 (5 ) 根据从分组调度器、 高速媒体接入控制缓冲区及物理层得 到的数据预测用户设备可能的服务高速下行共享信道小区变更,并输出数 据给流控能力分配帧数据产生单元 (6 ) , 所述流控能力分配帧数据产生 单元 (6) 输出流控能力分配帧至 Iub接口。 a flow control capability allocation frame data generating unit (6) for generating a flow control capability allocation frame; the radio link control layer mode data classification unit (1) obtaining data from the Iub interface, and distinguishing high-speed downlink packet access of the user equipment After the data mode, the data is transmitted to the radio link control-acknowledgment mode data extracting unit (2) and the radio link control-non-acknowledgment mode data extracting unit (3); the radio link control-acknowledge mode The data extracting unit (2) extracts the radio link control-acknowledgment mode data, and outputs the data to the flow control capability allocation frame data generating unit (6); the radio link control-non-confirm mode data extracting unit (3) extracts the radio Link control-non-confirm mode data, and output data to radio link control-non-acknowledge mode data service type prediction unit (4); radio link control-non-acknowledge mode data service type prediction unit (4) predictive radio Link control - the service type of the non-acknowledged mode data, and outputting the data to the flow control capability allocation frame data generating unit (6); the service high speed downlink sharing The channel change prediction unit (5) predicts the service high-speed downlink shared channel cell change of the user equipment according to the data obtained from the packet scheduler, the high-speed medium access control buffer, and the physical layer, and outputs data to the flow control capability to allocate frame data. a generating unit (6), the flow control capability allocation frame data generating unit (6) outputs a flow control capability allocation frame to the Iub interface.
2、 根据权利要求 1所述的装置, 其特征在于: 2. Apparatus according to claim 1 wherein:
所述无线链路控制层模式数据分类单元 (1 Γ从 Iub接口获得的数据 包括基站应用部分数据、 帧协议数据。  The radio link control layer mode data classification unit (1) data obtained from the Iub interface includes base station application part data and frame protocol data.
3、 根据权利要求 1所述的装置, 其特征在于:  3. Apparatus according to claim 1 wherein:
所述服务高速下行共享信道小区变更预测单元 (5 ) 根据从分组调度 器、 高速媒体接入控制缓冲区及物理层得到的数据是用户设备的吞吐率、 用户设备的信道质量指示、上行专用控制信道的载干比、 上行专用控制信 道上的发射功率控制命令、 下行专用控制信道的发射功率。  The service high speed downlink shared channel cell change prediction unit (5) is based on the throughput of the user equipment, the channel quality indicator of the user equipment, and the uplink dedicated control according to the data obtained from the packet scheduler, the high speed medium access control buffer, and the physical layer. The carrier-to-interference ratio of the channel, the transmit power control command on the uplink dedicated control channel, and the transmit power of the downlink dedicated control channel.
4、 一种宽带码分多址 系统中高速下行分组接入的流量控制方 法, 用于所述流量控制系统, 其特征在于包括:  4. A flow control method for high speed downlink packet access in a wideband code division multiple access system, used in the flow control system, characterized in that:
从 Iub接口上获得基站应用部分和帧协议数据,判断发送给用户设备 的高速下行分组接入的无线链路控制模式数据类型为无线链路控制-确认 模式或无线链路控制 -非确认模式数据,对无线链路控制-非确认模式数据 进行业务类型预测处理来得到预测业务类型;  Obtaining the base station application part and the frame protocol data from the Iub interface, and determining that the radio link control mode data type of the high speed downlink packet access sent to the user equipment is a radio link control-acknowledgement mode or a radio link control-non-confirmation mode data. Performing traffic type prediction processing on the radio link control-non-confirmation mode data to obtain a predicted service type;
从分组调度器、物理层及高速媒体接入控制缓冲区接收用户设备的吞 吐率 Throughpu 用户设备的信道质量指示 CQI、上行专用控制信道的载 干比 S/?— t/Z_D CCH、 上行专用控制信道上的发射功率控制命令 TPC JL _ DPCCH、 下行专用控制信道的发射功率 Power _ DL— DPCCH, 计 算服务高速下行共享信道小区变更的可能性:  Receiving the throughput rate of the user equipment from the packet scheduler, the physical layer, and the high-speed medium access control buffer. The channel quality indication CQI of the user equipment, the carrier-to-interference ratio of the uplink dedicated control channel, the S/?-t/Z_D CCH, and the uplink dedicated control The transmit power control command TPC JL_DPCCH on the channel and the transmit power Power_DL_DPCCH of the downlink dedicated control channel calculate the possibility of changing the service high-speed downlink shared channel cell:
N  N
Power— DL— DPCCH + a ^ TPC _UL _ DPCCH(i)  Power— DL— DPCCH + a ^ TPC _UL _ DPCCH(i)
P CellChange = ^ · 100% P CellChange = ^ · 100%
- k + β Throughput + λ CQI + μ SIR— UL— DPCCH - k + β Throughput + λ CQI + μ SIR— UL— DPCCH
其中, α, ΝΛ, Α Α, ;"为固定常数, Where α, ΝΛ, Α Α, ;" is a fixed constant,
根据无线链路控制-确认模式数据或对无线链路控制-非确认模式数 据进行业务预测处理后产生的业务类型及服务高速下行共享信道小区变 更的可能性, 产生流控能力分配帧, 进一步包括如下步骤:  Generating a flow control capability allocation frame according to the radio link control-acknowledgment mode data or the service type generated after the service prediction processing of the radio link control-non-acknowledgment mode data and the possibility of changing the high-speed downlink shared channel cell, further including The following steps:
统计单个队列 /整个高速媒体接入控制缓冲区的当前使用状况; 判断单个队列 /整个高速媒体接入控制缓冲区的当前高度是否在上下 门限之外; 将单个队列 /整个高速媒体接入控制缓冲区的当前高度在上下门限之 外的, 则产生门限因子 ThresholdFactor; 产生中流控能力分配帧的高速下行共享信道额度:Counting the current usage status of the single queue/the entire high-speed media access control buffer; determining whether the current height of the single queue/the entire high-speed media access control buffer is outside the upper and lower thresholds; If the current height of the single queue/the entire high-speed media access control buffer is outside the upper and lower thresholds, a threshold factor ThresholdFactor is generated; and the high-speed downlink shared channel quota of the medium flow control capability allocation frame is generated:
HS DSCHCredlt = (mt)( Thr→Put TrafficFactor · ThresholdF actor ) , 进HS DSCHC re d lt = ( m t)( Thr →P ut TrafficFactor · ThresholdF actor ) ,
― MaximumMA C _ dPDULength φ + P— CellChange ― MaximumMA C _ dPDULength φ + P— CellChange
行流量控制; 其中, int 表示取整运算; TrafficFactor 为业务因子; ∞/z,M4C— DC/^gt/i为各种业务最大的专用媒体接入控制协议数据 单元大小; 为固定常数。 Line flow control; where int represents the rounding operation; TrafficFactor is the traffic factor; ∞/z, M4C_DC/^gt/i is the largest dedicated media access control protocol data unit size for various services;
5、 根据权利要求 4所述的方法, 其特征在于: 所述对无线链路控制-非确认模式数据进行业务类型预测处理过 程如下: 预先设定优先级门限 7¾— Pr l〈7¾— Prz2<77z_Prz3, 7¾— Przl、 Th— P 2、 7¾— Pn3为固定常数, 如果分组数据业务优先级小于优先级门限 7¾— Prd, 则业务类型为 背景类业务; 如果分组数据业务优先级小于优先级门限 ¾_Pn2, 且大于或等于 优先级门限 7¾— Pnl, 则业务类型为互动类业务; 如果分组数据业务优先级小于优先级门限 7¾— Pn3, 且大于或等于 优先级门限 7 z_P 2, 则业务类型为视频流; 如果分组数据业务优先级大于或等于优先级门限 7¾— Ρ 3, 则业务 类型为运行在因特网协议上的话音业务。 5. The method according to claim 4, wherein: the service type prediction processing process for the radio link control-non-acknowledgment mode data is as follows: Pre-set priority thresholds 73⁄4 - Pr l<73⁄4 - Prz2< 77z_Prz3, 73⁄4— Przl, Th_P 2, 73⁄4—Pn3 is a fixed constant. If the packet data service priority is less than the priority threshold 73⁄4—Prd, the service type is background-type service; if the packet data service priority is less than the priority threshold 3⁄4_Pn2, and greater than or equal to the priority threshold 73⁄4—Pnl, the service type is an interactive service; if the packet data service priority is less than the priority threshold 73⁄4—Pn3, and is greater than or equal to the priority threshold 7 z_P 2, the service type is Video stream; If the packet data service priority is greater than or equal to the priority threshold 73⁄4 - Ρ 3, the service type is a voice service running on the Internet Protocol.
6、 根据权利要求 4所述的方法, 其特征在于: 所述对无线链路控制-非确认模式数据进行业务类型预测是根据 保证比特率速率、 丢弃时间、 队列优先级来进行预测的。 6. The method according to claim 4, wherein: the performing traffic type prediction on the radio link control-non-acknowledgment mode data is performed according to a guaranteed bit rate rate, a discarding time, and a queue priority.
7、 根据权利要求 4所述的方法, 其特征在于: 7. The method of claim 4 wherein:
当判断单个队列 /整个高速媒体接入控制缓冲区的当前高度在上下门 限之间吋, 则直接结束。  When it is judged that the current height of the single queue/the entire high-speed media access control buffer is between the upper and lower thresholds, it ends directly.
8、 根据权利要求 4所述的方法, 其特征在于:  8. The method of claim 4 wherein:
所述产生中流控能力分配帧的高速下行共享信道额度,进行流量控制 时, 同日 ΐΐ产生媒体接入控制-专用协议数据单元最大长度、 高速下行共享 信道传输时间间隔和高速下行共享信道传输重复周期。  The high-speed downlink shared channel quota for generating the medium flow control capability allocation frame, when performing flow control, generating media access control-dedicated protocol data unit maximum length, high-speed downlink shared channel transmission time interval, and high-speed downlink shared channel transmission repetition period on the same day .
PCT/CN2005/001734 2005-10-21 2005-10-21 A high speed downlink package access flow control device and method in wcdma system WO2007045126A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2005/001734 WO2007045126A1 (en) 2005-10-21 2005-10-21 A high speed downlink package access flow control device and method in wcdma system
CN2005800496699A CN101167288B (en) 2005-10-21 2005-10-21 High-speed downlink packet access flux control device and method in WCDMA system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/001734 WO2007045126A1 (en) 2005-10-21 2005-10-21 A high speed downlink package access flow control device and method in wcdma system

Publications (1)

Publication Number Publication Date
WO2007045126A1 true WO2007045126A1 (en) 2007-04-26

Family

ID=37962178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001734 WO2007045126A1 (en) 2005-10-21 2005-10-21 A high speed downlink package access flow control device and method in wcdma system

Country Status (2)

Country Link
CN (1) CN101167288B (en)
WO (1) WO2007045126A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165530A1 (en) * 2003-02-25 2004-08-26 Bedekar Anand S. Flow control in a packet data communication system
CN1529437A (en) * 2003-10-17 2004-09-15 中兴通讯股份有限公司 Flow control method for WCDMA system wireless network control tier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165530A1 (en) * 2003-02-25 2004-08-26 Bedekar Anand S. Flow control in a packet data communication system
CN1529437A (en) * 2003-10-17 2004-09-15 中兴通讯股份有限公司 Flow control method for WCDMA system wireless network control tier

Also Published As

Publication number Publication date
CN101167288B (en) 2011-05-18
CN101167288A (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4971444B2 (en) High-speed downlink packet access (HSDPA) channel coverage improvement
RU2385540C2 (en) PLANNING WITH ACCOUNT OF QUALITY OF SERVICE (QoS) FOR TRANSFERS IN ASCENDING COMMUNICATION LINE ALONG DEDICATED CHANNELS
KR100929145B1 (en) Low Speed MAC-E for High Speed Uplink Packet Access (HSSPA) Autonomous Transmission with Service-Specific Transmission Time Control
JP4223039B2 (en) Base station equipment
JP4397928B2 (en) A method for allocating resources of a wireless communication network to traffic to be transmitted to user equipment over a network channel
US7710922B2 (en) Flow control at cell change for high-speed downlink packet access
EP1892899B1 (en) Data flow amount control device and method
US8406199B2 (en) Data flow amount control device and data flow amount control method
US7899459B2 (en) Call admission control device and call admission control method
JP2006135985A (en) Method and device for scheduling transmission of uplink data for terminal unit located in soft handover region in mobile communications system
JP5518851B2 (en) Method and apparatus for controlling discontinuous transmission
US20070010281A1 (en) Scheduling information at serving cell change
US9565673B2 (en) Method and arrangement for controlling transmission of delay sensitive data in a packet data communication network
EP2292059B1 (en) Distribution of downlink e-dch power usage
JP2008543134A (en) Method for scheduling packets in a wireless access system
JP2009005385A (en) Base station apparatus
EP2114038B1 (en) Radio base station and mobile communication method
KR20060082734A (en) Method and apparatus for reporting buffer status of ue in mobile telecommunication system
WO2007045126A1 (en) A high speed downlink package access flow control device and method in wcdma system
Wanstedt et al. The effect of F-DPCH on VoIP over HSDPA Capacity
WO2006126461A1 (en) Communication terminal apparatus, network apparatus and communication method
Folke et al. An NS module for simulation of HSDPA
WO2006094429A1 (en) High speed downlink shared channel admission control method
Luton et al. Support of mobile TV over an HSPA network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580049669.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05802189

Country of ref document: EP

Kind code of ref document: A1