WO2007001084A1 - Biochemical analyzer and carrier for biochemical analyzer - Google Patents

Biochemical analyzer and carrier for biochemical analyzer Download PDF

Info

Publication number
WO2007001084A1
WO2007001084A1 PCT/JP2006/313341 JP2006313341W WO2007001084A1 WO 2007001084 A1 WO2007001084 A1 WO 2007001084A1 JP 2006313341 W JP2006313341 W JP 2006313341W WO 2007001084 A1 WO2007001084 A1 WO 2007001084A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
biochemical
light
biochemical analyzer
reagent
Prior art date
Application number
PCT/JP2006/313341
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Hamada
Hiroyuki Hasebe
Shigeo Yamashita
Original Assignee
Kabushikikaisya Advance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005187638A external-priority patent/JP2007010322A/en
Priority claimed from JP2005187592A external-priority patent/JP2007010319A/en
Priority claimed from JP2005187621A external-priority patent/JP2007010320A/en
Priority claimed from JP2005225531A external-priority patent/JP2007040833A/en
Application filed by Kabushikikaisya Advance filed Critical Kabushikikaisya Advance
Publication of WO2007001084A1 publication Critical patent/WO2007001084A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0444Rotary sample carriers, i.e. carousels for cuvettes or reaction vessels

Definitions

  • the present invention relates to a biochemical analyzer for measuring a carrier having a plurality of sites exhibiting a biochemical reaction, and a carrier used therefor.
  • the present invention also provides
  • a body fluid such as blood, urine, sweat, etc.
  • an enzyme reagent are colored and reacted to receive reflected or transmitted light, and the received light is measured.
  • the electrolyte items, tumor markers, infection items, thyroid items, endocrine items, and other immune items, glucose, total cholesterol In the component analyzer to be measured, it is necessary to electrically recognize the color development data of each reagent reaction tank when measuring a single carrier in which a plurality of reagent reaction tanks are arranged. There is a point.
  • the received light is separated into RGB three primary colors and the light intensity is obtained from each light, or the reaction tank is irradiated with the light previously separated into the three primary colors and transmitted or reflected.
  • a technique is used in which the absorbance is obtained from the received light of the three primary colors.
  • the absorbance of each reaction vessel may be output as time-series data while rotating a single carrier in which a plurality of reagent reaction vessels are arranged. In this case, it is necessary to accurately detect the base point in one circle in order to identify multiple reaction vessels. In the past, it was necessary to provide a means for mechanically, electrically, and optically detecting this base point separately from the means for measuring the absorbance of the reaction vessel.
  • Japanese Laid-Open Patent Publication No. 5-2 0 9 8 3 6 the Japanese National Patent Publication No. 10-0-5 1 0 3 62, Japanese Laid-Open Patent Publication No. 3-2 5 3 5 1 No. 2, Japanese Laid-Open Patent Publication No. 2 0 0 3 —2 0 7 4 5 4, Japanese Laid-Open Patent Publication No. 5 —2 4 0 8 6 9, and the like.
  • each light is subjected to photoelectric conversion to form parallel electrical signals and these parallel signals Therefore, a circuit configuration such as a multiplexer for converting to a serial signal string is required.
  • Japanese National Standard Heisei 1 0-5 1 0 3 6 2 discloses that a reference substance such as water is placed in a reaction tank of blood and a reagent to form a reference tank, and is based on the wavelength of light transmitted through the reference tank. It describes that the light obtained through the reagent reaction tank is calibrated.
  • Japanese Patent Application Laid-Open No. 3-25315 1 describes that light that has passed through detection of bubbles mixed in a nozzle-shaped reagent reaction vessel is photoelectrically converted and then differentiated and detected. However, in the optical detection in a reagent reaction tank having a smaller measurement surface and moving instantaneously, there is no description of a method for determining a necessary measurement region.
  • Japanese Patent Application Laid-Open No. 3-25315 1 describes that light that has passed through detection of bubbles mixed in a nozzle-shaped reagent reaction vessel is photoelectrically converted and then differentiated and detected.
  • Japanese Patent Application Laid-Open No. 2 0 0 3-2 0 7 4 5 4 describes that the surface of the chip is painted black for measurement of transmitted light.
  • a device such as applying a black paint with absorptivity is disclosed, but in fact, the light from the light source at the boundary between the transmitted light measurement part and the black part is disclosed. Leakage becomes a problem.
  • errors contained in the received light signal prevent accurate component analysis and reduce the overall analysis capability of the device.
  • the temperature must be kept constant at around 37 ° C to 38 ° C in order to effectively and effectively react with the reagents.
  • a means for heating the carrier itself by operating an electric heater using a nichrome wire or the like in a heat insulating space is used.
  • Japanese Patent Application Laid-Open No. 2 0 0 1 — 2 6 4 3 3 7 discloses a sample and a reagent.
  • a sample and a reagent By arranging a number of containers with etc. on the turntable, irradiating each container with a halogen lamp etc. and heating it, and measuring the temperature of the heated container at the opposite part on the turntable, It is described that the container is maintained at a constant temperature.
  • this method of heating the entire container requires a sufficiently large heating lamp, which increases power consumption.
  • a carrier that detects a minute amount of a sample by forming a channel on a mouth or sheet-like carrier uses a smaller amount of sample, and has a minute space. Therefore, it is often not easy to mix liquid and solid by simply mixing them, and some kind of stirring configuration is required. In addition, it is necessary to store the diluted solution stably and prevent leakage to the outside. Furthermore, in order to prevent the specimen from leaking out, it is desired to simplify the mechanical coupling between the carrier and the reading device. '
  • JP 7-0500 7 9 4 discloses that a dilution container is arranged in the center, and dilution is performed by utilizing a deviation that occurs when the rotor is mounted on the core material that fixes the low angle. A configuration for breaking the container is described.
  • U.S. Pat. No. 5,160,702 describes a connection configuration and a chucking configuration between a rotor and a rotating device.
  • the Internet explains the blood collection and transportation process in an easy-to-understand manner, and then collects blood by itself and transports it to the hospital for measurement of blood and body fluid components. This is because it can be checked.
  • the system including actual blood transport is time-consuming and extremely complicated because it is necessary to prepare a cold storage environment in advance.
  • Miniaturization of specimens is preferable for patients and collectors, and the miniaturization of carriers and analyzers that can be used in a wide range of applications at home and outdoors.
  • the space for mixing solids such as specimens and reagents is narrower, it is difficult to perform stirring operations, and it is necessary to deal with actions that have not been regarded as problematic so far, such as viscosity, capillary force, static electricity, etc. It becomes.
  • the difference in specific gravity is large and difficult. It is.
  • the present invention has been completed in view of the problems and problems of the prior art as described above.
  • the present invention can be roughly classified into the following four inventions.
  • the first invention is a first invention.
  • a carrier having a plurality of reaction sites exhibiting a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other, and the carrier
  • a carrier having a plurality of reaction sites showing a biochemical reaction, a reading means for reading the biochemical reaction, a detecting means for detecting the information at a predetermined time, and the detecting means
  • An optical unit in the reagent reaction tank has a combined configuration including a calculation unit that calculates a predetermined number of the obtained information for a predetermined time and a determination unit that determines a reference part from the signal output from the calculation unit. This makes it possible to detect a more accurate reference position without being confused with information.
  • a change amount converter that converts biochemical signals into signals indicating the amount of change.
  • the combination of the measurement range determination means for determining the measurement range from the signal obtained by the change amount conversion means allows a plurality of reagent reaction vessels to move at a predetermined speed, so that the plurality of reagent reaction vessels When measured at regular intervals, the effective measurement area can be determined instantaneously, enabling efficient component measurement.
  • a carrier comprising a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive the sample.
  • an absorbing member that absorbs light having a constant window is disposed in a direction of an irradiation surface that irradiates measurement light to the reagent reaction tank, and the area of the measurement window is the reagent.
  • a carrier composed of a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive the sample.
  • a biochemical analyzer for measuring a component by providing a reference portion for permeation measurement in the carrier, signal drift caused by an electric circuit mixed in a received light signal or due to uneven manufacturing of the carrier This makes it possible to obtain accurate data.
  • a carrier having a plurality of reaction sites showing a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other, and on the carrier A biochemical analyzer arranged such that an interval between reaction sites is different from an interval between the plurality of reading units.
  • the interval between the reading sections is the interval between reaction sites on the carrier.
  • the biochemical analyzer according to 1 above which is different from an interval multiplied by an integer.
  • reaction site is a site that causes a color reaction of a body fluid such as blood or urine according to a component.
  • a carrier having a plurality of reaction sites showing a biochemical reaction, biochemical reaction information acquisition means for obtaining biochemical reaction information from a plurality of reaction sites of the carrier, and acquiring the biochemical reaction information at a predetermined time Detecting means for detecting biochemical reaction information obtained from the means; computing means for computing a predetermined number of information obtained by the detecting means for a predetermined period of time; serving as a reference from a signal output from the computing means A biochemical analyzer consisting of judging means for judging the part.
  • a storage unit that temporarily stores information obtained by the biochemical reaction information acquisition unit is provided, and when determining a reference site, data is read from the storage unit for determination.
  • Chemical analyzer is provided, and when determining a reference site, data is read from the storage unit for determination.
  • reaction site is arranged in a state having an orbit, and includes a slit in a part thereof, and the non-light-absorbing region is a reference region.
  • a biochemical analyzer having a change amount conversion means for converting a biochemical signal into a signal indicating a change amount, and a measurement range determination means for determining a measurement range from the signal obtained by the change amount conversion means.
  • the biochemical analyzer according to 1 wherein the signal indicating the amount of change is a differential signal. 1 2. The biochemical analysis means according to 10, wherein the measurement range is between peaks of the signal indicating the amount of change.
  • the biochemical signal is a carrier in which a plurality of reagent reaction tanks that perform a color reaction between a reagent and a specimen are arranged at equal intervals, and the reagent reaction tank is irradiated with measurement light from the outside to be reflected or reflected. 10.
  • the biochemical analyzer according to the above item 10, which measures biochemical components by measuring transmitted light.
  • a reagent reaction tank detection means for detecting a part of the reagent reaction tank, and an interval of the parts detected by the reagent reaction tank detection means is a predetermined interval or more.
  • a carrier composed of a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive the sample.
  • the reagent reaction In a biochemical analyzer that measures components, the reagent reaction. Absorbing members such as a film that absorbs light, a printed surface, and a painted surface are provided in the direction of the irradiation surface that irradiates measurement light to the tank.
  • a biochemical analyzer that is disposed and has an area of the measurement window smaller than an area of the measurement light irradiation surface of the reagent reaction tank.
  • a carrier consisting of a translucent member having a plurality of reagent reaction vessels, and the reagent reaction vessel to which the sample is supplied is irradiated with measurement light from the outside by relative movement, and is arranged on the orbit of the measurement light.
  • a biochemical analyzer that receives light obtained through a reagent reaction tank and measures a sample component, wherein the carrier is provided with a reference site for permeation measurement.
  • the reference region is one or more of a black surface, a through-hole, a 'reference liquid tank, an empty reagent reaction tank, a dilution liquid tank, a measurement sample (plasma, etc.), and a sealed tank. 19 The biochemical analyzer according to 9.
  • the present invention can form an input electric signal by simply mixing a color signal obtained spectroscopically without requiring a special circuit configuration. Reading can obtain individual spectroscopic data just by taking the timing from the rotation speed and array position, and therefore, it is possible to perform rapid signal processing, etc., although it has a simpler configuration. Has an effect.
  • a predetermined reference position can be set on a carrier simply by providing a through hole having a specific shape in the arrangement of reagent reaction vessels. In addition to simplification, an accurate reference position can be detected.
  • the biochemistry over multiple items can be performed more quickly by grasping the accurate measurement region based on the differential signal.
  • the component can be measured.
  • the present invention enables stable optical measurement even in smaller reagent reaction vessels, and enables automatic and simple biochemical component measurement.
  • a heating means for heating a part of one surface of the rotating carrier, a temperature measuring means for measuring a portion facing the portion of the heating means, and a temperature measured by the temperature measuring means.
  • the combined configuration of the control means for adjusting and controlling the heating amount of the heating means enables accurate temperature control while using the heating means with less power consumption.
  • a heating means for heating a part of the carrier, a temperature measuring means for measuring a portion facing the portion of the heating means, and the heating means based on the temperature measured by the temperature measuring means
  • a biochemical analyzer consisting of a control means that adjusts and controls the amount of heating.
  • a heating means for heating a part of the carrier, a temperature measuring means for measuring the surface of the carrier, and a heating amount of the heating means is adjusted and controlled based on the temperature measured by the temperature measuring means.
  • a biochemical analyzer comprising: control means for performing heating by the heating means; and performing the temperature measurement means at different timings.
  • the present invention can further reduce the consumption of electric energy in a body fluid analyzer that can measure body fluid components in a more compact and multi-functional manner. To reduce power consumption and reduce size.
  • the third invention is (1) After supplying the specimen, the carrier is arranged to be processed to perform a plurality of examinations, and a dilution member for diluting the specimen is arranged vertically movable in the carrier. When the diluting member moves downward, the diluting member is arranged on the lower side of the diluting member to prevent the leakage of diluting liquid when not in use. Realizes stable storage of liquids.
  • an annular concavo-convex member formed entirely of continuous concavo-convex portions, and a combination of a vibration member that vibrates a portion requiring stirring of the carrier when contacting the annular concavo-convex member.
  • the carrier After supplying the specimen, the carrier is processed and arranged in a state for performing a plurality of examinations.
  • the carrier is contained in the carrier and contained in the portion requiring stirring. Due to the combined structure of stirring members that are deformed inward by the rotation of-, sufficient mixing of the reagent and the sample is achieved with only centrifugal force.
  • a dilution member for diluting the specimen is arranged vertically movable in the carrier, and when the dilution member moves downward, an opening state is formed in the downward direction of the dilution member.
  • a carrier for a biochemical analyzer comprising an opening member.
  • the dilution member has a configuration in which an opening surface of a cup member containing a diluent is covered with a thin film sheet, and the opening member is formed by a biochemical analysis formed by a puncture device capable of puncturing the thin film sheet.
  • Device carrier capable of puncturing the thin film sheet.
  • a biochemical analyzer comprising: an annular concavo-convex member formed by forming continuous concavo-convex portions; and a vibration member that contacts the annular concavo-convex member and vibrates a portion requiring stirring of the carrier.
  • the carrier placed in a state for performing a plurality of examinations by supplying a specimen after supplying a specimen, the carrier is accommodated in a portion of the carrier that requires stirring, and is rotated inward by rotation of the carrier.
  • Biochemical analyzer consisting of a stirring member that transforms into ..
  • a biochemical analysis apparatus comprising: a metal member disposed on the surface; a friction member that forms a contact surface between the rotating body and the carrier; and a magnetic member that provides magnetic coupling to the metal member in a non-contact manner.
  • a horizontal contact surface between the carrier and the rotating body is a friction member provided on the rotating body and a bottom surface of the carrier.
  • the metal member is embedded in a bottom surface of the carrier.
  • the present invention can facilitate the handling of the diluent while ensuring the storage stability of the diluted solution.
  • the sample and the sample can be agitated by a simple method. Almost connect the carrier and the operating device, while having the effect of strong coupling, etc., so that multiple components can be tested from a small amount of sample on a single carrier. In this case, it is possible to construct a simple and simple carrier.
  • the centrifugal force does not occur in a relatively short time, and the necessary acceleration is increased over time to a given time, and then the opposite direction is reached.
  • separation of the center does not occur, and the necessary acceleration is increased over time to a given time, and this is repeated until the difference in specific gravity is large. Also realized easy mixing.
  • the liquid in the minute space to be mixed is given acceleration in one direction or alternately in the other direction periodically and intermittently.
  • Rotational drive, linear drive, furiko drive, etc. can be used.
  • the present invention is a method for mixing substances having different specific gravities arranged in the direction of the outer peripheral edge on the rotating body, and for supplying the quantitative sample to the measurement unit for measuring the result.
  • a quantification supply channel extending in the circumferential direction, a finite first recovery channel extending in the circumferential direction, and a second recovery channel extending in the circumferential direction.
  • the present invention is a part for optical measurement, and in the part where the reagent and the sample are mixed, an air reservoir is formed in the central direction of the rotating body, so that optical measurement using transmitted light or the like is not hindered.
  • a carrier that can sufficiently cope with reactions that require oxygen has been realized.
  • the present invention is a flow path having a capillary force, and at least from the input port, the output port has a linear portion parallel to the diameter, or forms a flow channel extending in the circumferential direction.
  • the aerobic reaction tank has an elliptical shape or a gourd shape having a long axis in the central direction, so that the carrier is rotated and an air reservoir is formed in the central direction portion, thereby providing a stable measurement optical path. It can be secured.
  • a carrier having a micro space for mixing two or more different substances, and a rotational speed at which the carrier is not centrifuged in a relatively short time and a necessary acceleration is given for a predetermined time.
  • a liquid mixing apparatus comprising driving means for applying angular acceleration to the carrier so as to increase or decrease rotation over time.
  • a carrier having a mixing section for mixing substances having different specific gravities, and a rotation speed at which the support is rotated so that centrifugal separation does not occur in a relatively short time and a necessary acceleration is given to the substance for a predetermined time. In the opposite direction, centrifugal separation does not occur in a relatively short time, and the necessary acceleration for the substance is increased over time until the rotation speed is given for a certain period of time.
  • a measuring unit that mixes substances with different specific gravity arranged in the direction of the outer peripheral edge on the rotating body and measures the reaction state and results such as absorbance, and a quantifying unit for supplying a quantitative sample to the measuring unit
  • a carrier for a biochemical analyzer comprising a recovery unit for recovering surplus samples.
  • connection part of the first recovery channel and the second recovery channel of the connection channel is formed with an acute angle.
  • the carrier is not centrifuged in a relatively short time, and the required angular acceleration is increased over time to a value that can be given for a predetermined time- 8.
  • Carrier for biochemical analysis equipment is not centrifuged in a relatively short time, and the required angular acceleration is increased over time to a value that can be given for a predetermined time- 8.
  • Biochemical flow that has a capillary force, and that moves and stops the liquid by adjusting the number of rotations of the carrier with a configuration in which the calorie that exits at least from the input port extends in the circumferential direction.
  • Carrier for analyzer. ⁇ -As can be easily understood from the following detailed description, the present invention is capable of quantifying a very small amount of sample, mixing reagents of different specific gravity such as reagents, and adjusting the rotation speed and rotation direction. This makes it possible to easily perform body fluid tests, and to realize body fluid diagnosis in a wider area.
  • FIG. 1A and FIG. 1-B are schematic diagrams showing a preferred embodiment of the present invention, respectively.
  • FIG. 2 is a waveform diagram showing the operation of one preferred embodiment of the present invention.
  • FIG. 3 is a waveform diagram showing the operation of one preferred embodiment of the present invention.
  • Fig. 4 is an enlarged cross-sectional view along line X-X 'in Fig. 1A.
  • FIG. 5 is a cross-sectional view showing another preferred embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing the operation of one preferred embodiment of the present invention.
  • FIG. 7 is a perspective view showing a preferred embodiment of the present invention
  • FIG. 8 is a circuit diagram showing the operation of another preferred embodiment of the present invention.
  • FIG. 9 is a waveform diagram showing the operation of another preferred embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing the operation of another preferred embodiment of the present invention.
  • FIGS. 11A and 11B are schematic cross-sectional views showing another preferred embodiment of the present invention, respectively.
  • FIG. 12 is a waveform diagram showing the operation of the cold application shown in FIG.
  • FIG. 13 is a circuit diagram showing the operation of one preferred embodiment of the present invention.
  • FIG. 14 is a waveform diagram showing the operation of the embodiment shown in FIG.
  • FIG. 15 is a schematic diagram showing another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view along the line X-X 'in Fig. 15;
  • FIG. 17 is a circuit diagram showing the operation of another preferred embodiment of the present invention.
  • FIGS. 18A to 18C are enlarged sectional views respectively showing another preferred embodiment of the present invention.
  • FIG. 19 is a perspective view showing another preferred embodiment of the present invention.
  • FIG. 20 is a waveform diagram showing the operation of another preferred embodiment of the present invention.
  • FIG. 21 is a schematic diagram illustrating another preferred embodiment of the present invention.
  • FIG. 2 2 is a perspective view showing one preferred embodiment of the present invention
  • FIG. 2 3 is a perspective view explaining the operation of one preferred embodiment of the present invention
  • FIG. 24 is a cross-sectional view taken along the line segment 'in FIG. 23, and FIG. 25A and FIG. 25B are perspective views showing a preferred embodiment of the present invention, respectively.
  • FIG. 26A is a circuit diagram showing the operation of one preferred embodiment of the present invention.
  • FIG. 26B is a schematic diagram showing an example of a drive circuit for the heat source shown in FIG. 26A.
  • FIG. 27 is a circuit diagram showing the operation of one preferred embodiment of the present invention. Yes,
  • FIG. 28 is a waveform diagram showing the operation of a preferred embodiment of the present invention.
  • FIG. 29 is a graph plotting the relationship between time and voltage in one preferred embodiment of the present invention.
  • FIGS. 30A to 30C are each a preferred embodiment of the present invention. It is sectional drawing which shows an example,
  • FIG. 3 1 is a perspective view showing one preferred embodiment of the present invention
  • FIG. 3 2 is a schematic view showing one preferred embodiment of the present invention
  • FIGS. 3 3 A to 3 3 C Each figure is an enlarged schematic view showing a preferred embodiment of the present invention.
  • FIGS. 3 4 A to 3 4 C are schematic views showing a preferred embodiment of the present invention, respectively.
  • FIGS. 35A and 35B are enlarged sectional views showing a preferred embodiment of the present invention, respectively.
  • FIGS. 36A to 36C are schematic views showing a preferred embodiment of the present invention, respectively.
  • FIGS. 37A and 37B are enlarged sectional views showing a preferred embodiment of the present invention, respectively.
  • FIGS. 38A to 38C are schematic views respectively showing a preferred embodiment of the present invention.
  • FIGS. 39A to 39E are schematic diagrams showing a preferred embodiment of the present invention, respectively.
  • FIGS. 40.about.0 to 40.degree. C are respective changes in the rotational speed over time. Is a graph showing
  • FIG. 41 is a schematic diagram showing one preferred embodiment of the present invention
  • FIGS. 4 2 and 4 2 are schematic diagrams showing one preferred embodiment of the present invention.
  • FIG. 43 is a schematic diagram showing one preferred embodiment of the present invention.
  • FIG. 44 is a perspective view showing a preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Subsequently, the present invention (first to fourth inventions) will be described with respect to preferred embodiments thereof, particularly with reference to the accompanying drawings. It should be understood that the present invention is not limited to the following embodiments. If necessary, the first to fourth inventions can be arbitrarily combined.
  • the present invention includes at least a carrier having a plurality of reaction sites exhibiting a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other.
  • a tabletop device can be easily realized, and body fluid components easily in various places Can be measured.
  • the biochemical reaction includes blood, urine, sweat, and other body fluids and reagents.
  • Examples are reactions that optically measure components related to the living body, such as color development reactions and fluorescence reactions utilizing immune responses.
  • reagents used to measure blood components include GPT, albumin, ALP, urea nitrogen (BUN), total protein, total pyrilvin, glucose, total cholesterol, GOT, and amylase in body fluid components. Enzymes for measurement are shown.
  • the carrier has a disk shape, a rectangular shape, or a sheet shape, and has a reaction tank containing or supplied with a reagent on the surface thereof arranged at regular intervals at an unspecified interval, and at least externally. Examples are those that have translucency in a region where photometry is possible.
  • the carrier there may be other parts such as a separation part that separates unnecessary blood cells for blood, and a quantitative supply part that supplies a certain amount of body fluid to the reagent reaction tank.
  • the plurality of reading units are the color development in the reagent reaction tank. It is only necessary to measure the color development information of the reagent, and a light source that outputs electromagnetic waves of visible light, ultraviolet light, infrared light, etc., such as lasers and light emitting diodes, and various lights output from the light source pass through the reagent reaction tank or Examples include a light receiving unit that receives light obtained by reflection and photoelectrically converts the light.
  • absorbance, colorimetry, and frequency components are measured from the obtained light, and it is only necessary to know how dark the color is developed and how the color value changes, and the signal processing configuration is also measured. It is adjusted appropriately depending on the subject.
  • the plurality of light sources need not be one, and examples include 2, 3, 4 or more light sources corresponding to the wavelength of the color spectrum of the reagent.
  • the 'A combination configuration in which the distance between the reaction sites on the carrier and the distance between the plurality of reading units in the present invention is different is, for example, that one light source irradiates light to one reading unit. In the evening measurement, the other reading units indicate that the color values in the reaction tank cannot be read.
  • all the reading units do not have to coincide with the position of the reaction tank.
  • the other reading units receive the coloring information. In some cases, it may be unreadable.
  • the reading unit and the carrier need only be relatively moved, and the carrier is rotating or sliding on the stationary reading unit, or vice versa, and the stationary carrier.
  • the reading part is shown rotating or sliding.
  • the arrangement angle from the center of the reagent reaction tank is ⁇
  • the biochemical reaction information includes visible or invisible color values, absorbance, frequency characteristics, etc. obtained by the reaction between the body fluid and the reagent.
  • the biochemical reaction information acquisition means includes a reagent reaction. Examples include a combination of a light transmitting element and a light receiving element obtained by transmitting or reflecting through a tank, a combination of electromagnetic wave transmission and reception means.
  • the “predetermined time” of the detection means for detecting the biochemical reaction information obtained from the biochemical reaction information acquisition means at a predetermined time is, for example, two times at constant intervals before and after the center time T n. For example, as shown in FIG. 9 (c), four time intervals of tnl ⁇ ; 6, tnl ⁇ ⁇ , tn 1 + ⁇ , tnl +; 6 are set for the time tn.
  • the biochemical reaction information obtained from the biochemical reaction information acquisition means is, for example, an amplitude value, a frequency component, etc. of a signal at a predetermined time after converting an optical output into an electrical signal. Either digital processing or analog processing may be used.
  • the "predetermined time” in the calculation means for calculating the information obtained by the detection means for a predetermined time and a predetermined number is the time It is a width and is a time width proportional to the size of the reference part, and the predetermined number only indicates the number of time intervals to be detected in this case, but is not limited to this.
  • the “calculation means” includes, for example, multiplying or integrating the information obtained in the time interval.
  • the arithmetic means is exemplified by a logic gate if it is digital, and an analog arithmetic unit if it is analog.
  • the determination means for determining a reference part from the signal output from the calculation means is, for example, when there is an output of the calculation means at a predetermined time interval. For example, at time tn, an output indicating that the current position is the reference position or a case where the output of the calculation means exceeds a certain threshold at a predetermined time interval is exemplified.
  • the amount of change in the present invention indicates the amount of change in the electrical signal after the biochemical signal is converted into the electrical signal, and examples thereof include differentiation, integration signal, and other secondary differential signals.
  • a signal having a high peak is output at least when the photometric position between the reagent reaction tank and the optical unit is reached and when the photometric position has passed. Between the end of the high peak and the beginning of the last high peak, and during that time, when the peak of a certain amount of height appears, it is a state where unnecessary optical interference such as bubble contamination has occurred, By removing this part, an accurate measurement area can be recognized.
  • the position of the reagent reaction tank from the light reception signal, but if the reagent reaction results in a very dark color and the amount of transmitted light is too small to detect the position of the reagent reaction tank, it is less.
  • the signal indicating the position of the reagent reaction tank that was detected before and the position of the reagent reaction tank that was detected next are calculated, and the part of the reagent reaction tank that could not be detected is predicted, and the information on that part is detected. It may be a thing. '
  • the prediction range can be found if the reagent reaction chamber part of the chip and the rotation speed of the carrier are known in advance. In this case, since a reaction tank that cannot be measured will come out, it is more reliable to obtain the position of the reagent reaction tank that cannot be detected arithmetically from the position of the reagent reaction tank that can be detected as described above. Can be detected.
  • various reference parts are provided on a carrier, and the reference part is used as so-called calibration information or reference information.
  • Factors that can cause calibration include light intensity error of light sources such as laser diodes and LEDs, sensitivity error of photodiodes, DC offset voltage caused by errors in electrical circuits such as amplifier circuits, and unevenness of materials forming the carrier. Uneven processing at the bottom of the reagent reaction tank, adhesive intervening on the interface between the carrier and the lid, diffuse reflection of light in the adhesive, refraction, absorption, individual differences in body fluid components, component differences in diluent, measurement component errors Etc. are exemplified.
  • the received light signal can be corrected ⁇ calibrated.
  • the through hole may be used as a reference portion.
  • the bottom surface and top surface can be removed, and accurate calibration values such as uneven processing on the bottom surface of the reagent reaction tank can be obtained.
  • the absorbance of the diluted solution can be obtained and used to calibrate the actual color value.
  • optical measurement of plasma alone can be used to measure the state of the subject's body, which changes every moment, and to calibrate the color value with the reagent.
  • These calibration target areas can be expressed by optical measurement results of transmitted light through the reagent reaction vessel containing only the respective media, for example, the size of the D value.
  • Penetrating light (0D value 0) ⁇ Air (diluent) ⁇ Plasma only ⁇ Plasma + Reagent reaction Black ( ⁇ ) ''.
  • the measured values of air (diluent) or plasma only are used to correct the intensity of the light source, the sensitivity deviation of the receiver, and the absorbance of the carrier itself.
  • the black (completely shaded) part is used to correct the offset value (measured output value when there is no incident light) of the photoreceptor and the electrical circuit that amplifies its output.
  • FIG. 1A and 1B show an embodiment of the present invention, and the present invention will be described in detail.
  • FIG. 1A is a diagram for explaining the combination relationship between a carrier in a state where the housing of the measuring device is omitted for explanation and the reading portion.
  • FIG. B is a view of the carrier 10 viewed from above.
  • 10 is a carrier, which is made of polyester, PMMA, PC, PS, PET, PDMS, glass, etc., and has a concave portion corresponding to a flow channel, reaction tank, etc. formed on the surface, and a sheet made of the same material from above. It has a shape in which the lid is bonded by pressure-sensitive adhesive, adhesive, or self-adsorption ability.
  • the carrier 10 is configured to perform the operation of separating the blood supplied to the center, mixing the diluent, etc., and supplying a fixed amount to the reaction tank based on the relationship between the centrifugal force generated by the rotation and the capillary force of the flow path. Illustrated.
  • the configuration includes a blood cell separation chamber, a dilution / mixing chamber, plasma quantification, etc., but any configuration can be adopted, and the detailed configuration is omitted.
  • a concave portion 1 1 ′ for inserting and fixing to the connecting shaft on the reading device is formed at the center through the joining metal plate 1 1 from the back side of the carrier 1 0 and partially through the carrier 1 0. Yes. .
  • the operation unit 12 is arranged in the outer circumferential direction of the carrier 10 0 by adjusting the capillary force and centrifugal force generated in the flow path and reaction tank in the carrier 10 by arbitrarily rotating and controlling the carrier ⁇ 0.
  • the reagent reaction tank row 15 a to 15 h blood cells are separated, and a conditioned sample such as quantified plasma is supplied.
  • 1 3 is a sample supply unit that supplies body fluids such as blood from the outside, and is composed of a concave liquid tank or flow path for the supply unit so that the sample does not leak to the outside as necessary.
  • a lid may be provided.
  • the 14 is a distribution flow path, and is a flow path for supplying adjusted specimens to individual reagent reaction tanks 15 a to .15 h.
  • 1 8 shows one of the supply channels, the distribution channel 14 and the respective reagent reaction tanks 15 15 For connecting to 5 h, a plurality of supply channels may be provided for one reagent reaction tank. In some cases, the volume of the supply channel 18 is a quantitative value of the processed specimen.
  • 15 a to 15 h are examples of a reagent reaction tank, in which a target reagent is contained in a cylindrical recess in a dry, gel, or liquid state.
  • the size is about 1 mm in diameter and 3 mm in depth,
  • light sources 1 6 a to l 6 c are light sources that output three primary colors.
  • light source 1 6 a is a red R laser
  • light source 1 6 b is a green G laser.
  • 1 6 c shows a blue B laser.
  • 1 7 a to 1 7 c are photoreceptors, and photodiodes, phototransmissions, etc. are used.
  • the distribution channel 14 and the reagent reaction tanks 15 a to 15 h are covered with a cover made of a translucent sheet such as polyacryl or PET when in use.
  • FIG. 1B is a view of the positional relationship between the reagent reaction tanks 15 a to 15 g shown in FIG. 1A and the light sources 16 a to 16 c as viewed from above.
  • the individual reagent reaction tanks are arranged at intervals of 15 degrees from the center 0 of the carrier 10 to the reagent reaction tank 15 a, and the light sources are arranged at intervals of 40 degrees with the light source 16 a as the center. Yes. .
  • FIG. 4 shows the relationship between the light source, the light receiving section, and the reagent reaction tank of the carrier.
  • FIG. 4 is a cross-sectional view taken along a line ⁇ _ ⁇ ′ in FIG. 1A. In Fig. 4, some of the readers omitted in Fig. 1A are also shown.
  • FIG. 4 the same components as those in the embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof is omitted.
  • Figure 4 the same components as those in the embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof is omitted.
  • Reference numeral 19 denotes a lid portion, which is formed so as to cover the flow path or the like of the carrier 10.
  • the lid part 19 is composed of the distribution channel 14 shown in Fig. 1A, the supply channel 1 8 It covers the upper part of the reagent reaction tank 15a, etc., and is formed of a light-transmitting member for measurement by reflected light or transmitted light.
  • a light-shielding portion which is formed on the back surface of the carrier 10, and is mainly formed by covering or coloring a sheet formed in black or a color close to it, a light source, and a reagent reaction tank It is arranged other than the optical path through the passage hole between them.
  • the passage hole 25 may have an area smaller than that of the light source 16a to suppress reflected light and scattered light generated when light is irradiated from the light source to the reagent reaction tank.
  • the 2 1 is an electric lead wire on the light source side for electrically connecting the light source 16 a to the power source and the light source control circuit.
  • the electrical lead wire 21 is connected to the electrical connection wire 3 2 6 shown in FIG.
  • 2 2 is an electric lead wire on the light receiving side for electrically connecting the light receiving body 17 a to the signal processing circuit.
  • 2 3 is a measuring device lid, which is equipped with a light receiving element 17 a etc., for example, a part that can be moved to take out the carrier to the outside
  • the carrier mounting part 24 is the carrier mounting part of the measuring device, for example, the light source 16 6a is inscribed so that it comes directly under the reagent reaction tank of the carrier, the carrier is placed, the motor that is chucked and rotated, etc. Is housed.
  • the overall shape of the carrier mounting portion 24 is shown in FIG.
  • FIG. 6 shows an example of a circuit configuration for processing signals received by the photoreceptors 17a to 17c shown in FIG. 1A.
  • 3 1 0 a to 3 1 0 c are light sources of three primary colors, and correspond to the light sources 16 a to 16 c in FIG. 1A, for example.
  • 3 1 1 schematically shows the reagent reaction tank on the carrier 10 shown in FIG. 1A. is doing.
  • the carrier 10 shown in FIG. 1A rotates and each of the reagent reaction tanks passes through between the light source and the light receiving unit.
  • Reference numerals 3 1 2 a to 3 1 2 c denote light-receiving portions, which indicate a state in which an optical path is formed with each of the three primary color light sources 3 1 0 a to 3 i 0c.
  • the light receiving unit is also a part that converts the received light signal into an electrical signal.
  • the light receiving sections 3 1 2 a to 3 1 2 c correspond to the light receiving bodies 17 a to 17 c shown in FIG. 1A, respectively.
  • 3 1 3 a to 3 1 3 c are composed of an amplifier circuit and filter circuit using an OP amplifier, etc., and are electrically connected to the individual light receiving parts 3 1 2 a to 3 1 2 c respectively. Amplify, filter, etc. to make it electrically processable.
  • 3 14 is a mixing unit, which is mainly composed of an adder circuit, and the received light signals individually amplified by the amplifying units 3 1 3 a to 3 1 3 c are multiplexed on, for example, one signal line. It is a part for mixing.
  • the mixing unit 3 14 is composed of an analog addition circuit using an operational amplifier or the like, for example.
  • -.3: 1 5 is a filter that passes the frequency band required for measurement in the received light signal and removes aliasing noise caused by sampling.
  • 3 1 6 is an A / D converter (AZD converter), which includes a sampling circuit, a quantization circuit, etc., and converts received light signals into digital signals.
  • a / D converter A / D converter
  • 3 1 7 is ROM, which stores programs, parameters, etc. for operating CPU 3 24 etc .:
  • R A M which is a part for storing temporary data etc. during program execution.
  • 3 1 9 is a display unit, a print interface, RS— 2 3 2 C, Monitor, Speaker, Wireless LAN interface, Infrared and other wireless output unit, Modem, etc. This part is for displaying, transmitting, and transmitting the obtained blood information.
  • 3 2 0 is a bus, which is a transmission path for transmitting command signals, data signals, and the like used in CPU, ROM, RAM, and the like.
  • 3 2 1 is a rotation control unit, which is a drive driver for rotating the carrier left and right or in a shifting manner. .
  • 3 2 2 is a temperature control unit, and blood and reagents operate effectively at around 38 ° C. Therefore, the carrier is heated by controlling the heating of a heater such as a halogen heater to keep it constant. It is a circuit for keeping the temperature at
  • Reference numeral 3 2 3 denotes a drive unit that controls an electrical output for causing the light sources 3 1 0 a to 3 1 0 c to emit light. For example, when measurement is not required, the control is such that the electrical output to the light source is stopped.
  • 3 2 4 is a CPU, which transmits control signals to the rotation control unit 3 2 1, temperature control unit 3 2 2, etc. via the bus 3 2 0 based on the program stored in R 3 This is to control the operation of the element.
  • 3 2.5 is an electrical lead wire, which is formed by jumper wires, board wiring, etc., and has a configuration in which the filter 3 1 5 and the A / D converter 3 1 6 are electrically connected. .
  • FIG. 3 26 is an electrical connection line, and has a configuration in which the individual light sources 3 10 a to 3 10 c and the drive unit 3 2 3 are electrically connected separately as described above.
  • the lid is provided as required, and may not be necessary if the supply section has a smaller diameter.
  • the carrier 10 to which the specimen has been supplied is placed, for example, on the carrier mounting portion 24 of the measuring apparatus shown in FIG.
  • 1 1 a is a rotating body, provided with a rotating shaft 1 1 b at the center, a concentric magnetic member, and a friction member 1 I d on the outer side.
  • the size of the reader shown in FIG. 7 is, for example, an accessory for a personal computer.
  • the external or built-in type CD-ROM reader is shown.
  • a CPU, ROM, RAM, and a liquid crystal display may be directly incorporated in the reading device to make a stand-alone type.
  • the CPU 3 24 shown in FIG. 6 outputs control signals to the temperature control unit 3 2 2, the rotation control unit 3 2 1, and the drive unit 3 2 3, and controls the temperature of the carrier 10 shown in FIG. Adjust the rotation of the carrier while keeping it around.
  • the blood supplied to the center is controlled by the centrifugal force generated by the rotational force and the capillary force, and the blood cells are first separated by the blood cell separation unit.
  • the amount of blood is small, a dilute solution that has been sealed in advance is released from the sealed body for the dilution operation with effective physiological saline.
  • centrifugal force generated by the rotation of the carrier 10 shown in FIG. Plasma obtained by separating blood cells by the action of capillary force generated by the miniaturization of the tract is mixed with the centrifugal force that changes the dilution.
  • the diluted plasma is quantitatively supplied to the individual reagent reaction tanks through, for example, the distribution channel 14 and the supply channel 18 shown in FIG. 1A by centrifugal force and capillary force generated by the rotational force.
  • each reagent reaction tank the diluted plasma fluid and the reagent are mixed, a color reaction occurs, and measurement of absorbance, etc. is started.
  • the color development time varies, so it may be preferable to measure in order of color development.
  • C PU 3 2 4 shown in FIG. 6 drives the drive unit 3 2 3, and the light sources 3 1 0 a to 3 1 0 c output laser light by the drive of the drive unit 3 2 3.
  • the light source 1 6a shown in Fig. 1A and the photoreceptor 1 7a coincide with the transmission part of the reagent reaction tank 15 5a
  • the light emitted from the light source 1 6a is the reagent reaction tank 1 5 Passes through a and is received by photoreceptor 1 ⁇ a.
  • an electrical signal as shown by R 1 in Fig. 2 (a) is output from photoreceptor 17 a shown in Fig. 1A.
  • the light sources 16 b and 16 c shown in FIG. 1A are blocked by the light shielding portion 20 shown in FIG. 4, and the light receivers 17 b and 17 c receive the light. It is not in the state.
  • the light receiving unit 3 1 2 a receives the received light as an electrical signal. Is amplified by the amplifying unit 3 1 3 a, and the signal shown in FIG. 2 (a) is output at the connection point 3 a. At this time, the output light of the light source 3 1 O b is blocked by the light blocking portion 20 shown in FIG. 4, and the light receiving portion 3 1 2 b does not receive the light from the light source 3 1 O b. At connection point 3b, there is no output as shown in Fig. 2 (b).
  • the output light of the light source 3 1 0 c is also blocked by the light shielding portion 20 shown in FIG. 4, and there is no output at the connection point 3 c shown in FIG. 6 as shown in FIG. 2 (c). .
  • the mixing unit 3 1 4 shown in FIG. 6 inputs the amplification signals of the individual amplification units 3 1 3 a to 3 1 3 c, but as shown in FIG. 2 (d), the amplification unit 3 1 3 b Only the light reception signal R1 from is output.
  • the red laser light output from the light source 16a shown in FIG. 1A is blocked by the light shielding unit 20 shown in FIG. 4, and the green laser light output from the light source 16b shown in FIG. Pass through the inside of tank 1 5 e.
  • the photoreceptor 17b receives the light through the reaction reagent; after it is converted into an electric signal, it is amplified by the amplification unit 3 1 3b shown in FIG. 6, and the amplification unit 3 1 3
  • the signal amplified at b is output to the mixing unit 3 14 as the signal G 5 shown in Fig. 2 (b) via the connection point 31).
  • the other photoreceptors 1 7 a and 1 7 are blocked by the light output from the light sources 1 68 and 16 c, so there is no output from the light receivers 3 1 2 a and 3 1 2 c.
  • the output of 3 1 4 is the signal of G 5 only.
  • the green laser light output from the light source 16 b shown in FIG. 1A and the red laser light output from the light source 16 a are blocked by the light shielding portion 20 shown in FIG. 4, and the light source 16 c shown in FIG. 1A
  • the blue laser light output from the reagent reaction Pass through the inside of tank 1 5 h.
  • Photoreceptor 17 c receives the light that has passed through the reaction reagent and converted it into an electrical signal, which is then amplified by amplification section 3 1 3 c shown in FIG. 6 and the signal that appears at connection point 3 c 2
  • the signal B 1 0 shown in Fig. 2 (c) is output to the mixing unit 3 1 4.
  • the other photoreceptors 1 7 b and 1 7 a shown in FIG. 1A have the light receiving parts 3 1 shown in FIG. 6 because the light output from the light sources 16 b and 16 a is blocked in the same manner as described above. 2 b and 3 1 2 a have no output, and as shown in FIG. 2 (d), the output of the mixing unit 3 14 is only a signal of B 1 0.
  • the output of the mixing unit 3 14 shown in FIG. 6 is extracted by the single filter 3 1 5 only in the frequency band necessary for analysis, and input to the A / D converter 3 1 6.
  • AZD Comparator 3 1 6 is an A / D conversion operation performed by the control signal from CPU 3 2 4 transmitted via bus 3 2 0, and the output signal of mixing unit 3.1 4 is converted into a digital signal. , Temporarily store in RAM318 etc. '
  • FIG. 3 is a signal output diagram when 12 types of coloring reagents are used.
  • FIG. 2 is an enlarged view of a part of the signal train of FIG. 3.
  • the output waveform of the amplifier 3 1 3 a appearing at the output end 3 a of FIG. 6 is, for example, FIG. ) Indicates the red laser light reception signal sequence, and the numbers are the numbers assigned to the reagent reaction vessels.
  • Fig. 3 (a) is a signal appearing at connection point 3a, which is a signal sequence obtained by measuring light with a red laser from the first arbitrarily determined number in the reagent reaction tank.
  • the output waveform of amplifier 3 1 3 b appearing at connection point 3b in Fig. 6 shows the green laser light reception signal train shown in Fig. 3 (b), and the numbers in the figure are the numbers assigned to the reagent reaction vessels .
  • Fig. 3 (b) shows that, for example, photometry is performed with the green laser from No. 5 in the reagent reaction tank.
  • the output waveform of the amplifier 3 1 3 c appearing at the connection point 3 c shown in Fig. 6 is shown in Fig. 3 (c), showing the blue laser light reception signal string, and the numbers in the figure are attached to the reagent reaction tank Number.
  • Figure 3 (c) shows that photometry is performed from the 5th reagent reaction tank using a green laser.
  • the output of the mixing section 3 14 that appears at the connection point 3d shown in FIG. 6 is a composite signal sequence as shown in FIG. 3 (d).
  • the symbols R, G, and B in the figure indicate red, green, and blue, respectively, and the numbers indicate the numbers assigned to the reagent reaction tanks.
  • the absorbance of the reagent reaction vessel to be measured first is measured by electrical and electrical processing such as picking up the pulsed signals R1, G1, B1 from the signal sequence at a predetermined timing and superimposing them. can get.
  • R 1 Since the rotation of the carrier is constant, R 1 can be detected at a fixed timing, so that the red light receptions R 2 and R 3 in other test reaction vessels can also be picked up at a fixed timing.
  • the green laser light reception signal for example, in the case of Fig. 1B, it is the 4th reagent reaction tank from the beginning, and with respect to the green laser of the other reagent reaction tanks at regular intervals with reference to this first signal. You can get a light reception overnight.
  • a blue laser light reception signal for example, in Fig. 1B, it starts from the 7th glaze reaction tank from the beginning, and the data is picked up at regular time intervals based on this first signal.
  • Other reagents It is possible to obtain light reception for the blue laser in the reaction vessel.
  • the CPU 3 2 4 shown in FIG. 6 only needs to process one signal sequence shown in FIG. 3 (d), as shown in FIGS. 3 (a), (b), and (c).
  • the pulse interval is constant and the same because it corresponds to the distance between the reagent reaction vessels. If a pulse at every interval is picked up, it is possible to easily obtain the light reception pulse for each spectral light source shown in FIGS. 3 (a), (b), and (c) again.
  • a reference tank capable of obtaining a specific light receiving pulse is provided in the row of reagent reaction tanks, and the light receiving pulse indicating this reference tank may be the first pulse.
  • the processing of the signal sequence shown in Fig. 3 is performed by temporarily storing data in a storage medium such as a memory or heart disk every rotation or every several rotations, and reading and processing the data at the timing required for processing. It is also possible to perform sequential processing.
  • three pairs of R (red), G (green), and B (blue) primary light emitting portions and light receiving portions are arranged at a predetermined interval. (6 5 nm) may be used, or a pair of four photometric units consisting of a light-emitting part and a light-receiving part may be arranged at the above-mentioned intervals. In addition, there may be a case where four or more pairs of photometric units are used.
  • Figs. 1A and 1B show a disk-shaped carrier, which is rotated to perform sample and sample mixing, quantification, and other component measurement, while Fig. 5 shows the measurement device, Measure by sliding the carrier relatively! ) Show the configuration. The sliding may be repeated left and right.
  • the carrier 2 1 0 is made of polyacrylic material having light permeability, P It is formed of ET or the like and has a rod shape or a rectangular parallelepiped shape.
  • Reference numeral 2 19 denotes a lid, which has translucency, and is bonded to the carrier 2 10 by an adhesive, an adhesive, a self-adsorption ability, and the like.
  • 2 1 5 a to 2 1 5 h are reagent reaction tanks, in which a reagent is enclosed in advance, and when a sample such as blood is quantitatively supplied from the outside, a color reaction is performed.
  • Reference numeral 2 20 denotes a light-shielding portion, which is colored with black and has a sheet, and light-transmitting holes 2 25 a to 2 25 h are formed only in the portion located at the bottom of each reagent reaction tank.
  • 2 2 1 a to 2 2 1 c are electrical connection lines, and correspond to, for example, the electrical connection lines 3 2 6 in FIG.
  • 2 2 2 2 a to 2 2 2 c are electrical connection lines, and correspond to, for example, a portion that electrically connects the light receiving unit 3 1 2 a and the amplification unit 3 1 3 a in FIG.
  • 2 1 6 a to 2 1 6 c are light sources, for example, lasers that emit light of individual colors of R G B, L E D, and the like.
  • 2 1 7 a to 2 1 7 c are photoreceptors, and are composed of, for example, phototransistors, CDS, and the like.
  • the carrier 2 10 is placed on the carrier mounting portion 2 2 4 and the reading device lid portion 2 2 3 is closed. '
  • 0 1 is a photoelectric conversion means, which consists of a combination of a laser light source and a light receiving semiconductor, etc., and receives a color value obtained by mixing and developing reagents and a sample to receive transmitted light and reflected light and convert them into electrical signals. It is means to do.
  • an amplifying means which is a combination of an amplifier circuit, a filter, etc. for filtering noise and amplifying a necessary frequency band from an electrical signal obtained by photoelectric conversion. Become.
  • '1 0 3 is an AZD conversion unit, which is a circuit for converting the obtained electrical signal into a digital signal for digital processing, and is mainly composed of an AZD comparator.
  • 1 0 4 is a control unit that controls other output signals such as a storage unit 1 0 5 and a read signal output unit 1 0 6, and is configured by a CPU or the like.
  • 1 0 5 is a memory unit, and is mainly composed of a storage medium such as RAM, DVD-R, RW, CD-R, RWS D card, etc., and RAM is suitable because it is often stored temporarily.
  • 1 0 6 is a read signal output unit, which is composed of a clock output unit and a pulse output unit with other time adjustment, and is a signal output unit for sequentially reading data stored in the storage unit, and a reference This signal is necessary to set the time width for determining whether or not it is a part.
  • 1 0 7 a is a first detection unit that detects optical data at a timing of 1; 6 hours with respect to the reading time tn as a digital signal or a quantized signal.
  • Reference numeral 10 7b denotes a second detection unit that converts optical data at a certain timing with respect to the reading time tn into a digital signal or a predetermined time width. Detected as a quantized signal with a fixed time width.
  • 1 0 7 c is a third detection unit, which detects + time-determining optical data as a digital signal or a quantized signal with respect to the reading time t n.
  • 1 0 7 d is a fourth detection unit, which detects optical data of + ⁇ 6 hours of evening imaging with respect to the reading time t n as a digital signal or a quantized signal.
  • 1 0 8 is a multiplication unit for multiplying the signals obtained by the first detection unit 1 0 7a to the fourth detection unit 1 0 7d in the previous stage, for example, the first detection unit
  • the signal output from 1 0 7 a to the fourth detection unit 1 0 7 d is a digital signal
  • a combination of logic such as an AND gate may be sufficient.
  • 1 0 9 is a time width setting unit.
  • a time width signal from + jS to __ / 3 is shown, for example, as shown in FIG. 9 (e). This is a part for forming and outputting a waveform.
  • 1 1 0 is a decision unit for judging the reference signal from the multiplication signal obtained by the previous multiplication unit 1 0 8 and the time width setting unit 1 0 9 in the previous stage and outputting the decision signal. It is a part of.
  • the output signal of the judgment unit 110 appearing at the output terminal 10 g is used for the recognition of the reagent reaction tank.
  • control unit 104 may include all or a part of these configurations.
  • the storage unit 105 may be unnecessary when processing in real time simultaneously with optical measurement.
  • FIG. 9 (a) shows a part of the carrier and shows a rectangular shape, but when it has a rotor shape as shown in FIG. 1A, it is formed in an arc shape, and the reagent reaction tank Are formed as part of the column.
  • FIG. 9 (b) shows a cross section along the line XX ′ in FIG. 9 (a).
  • the lid 1 1 7 is omitted.
  • 1 1 1 a and 1 1 1 b are reagent reaction tanks, which are formed by forming a recess on a base material 1 16 such as polycarbonate, and contain the reagent therein. ing.
  • the reagent reaction tank is connected to a flow path for supplying a sample from the outside and a supply path 1 1 2 a and 1 1 2 b such as a capillary tube. 'The supply path may be unnecessary depending on the type of sample or reagent and the supply form.
  • 1 1 3 is a slit, and at least a non-translucent member is formed.
  • the thickness of the slit 1 13 is not particularly limited as long as the non-translucent portion is formed.
  • Small slit: 1 1 3 may be formed integrally with the base material -1 1 6 or may be joined separately.
  • the air gap 1 1 4 is a gap, and is formed in the same size on both sides across the slit 1 1 3.
  • the air gap 1 1 4 is preferable because it is more conspicuous in terms of measurement than the sample reaction tank 1 1 la ′ and 1 1 1 b, but it is preferable in terms of measurement. As long as the size is detected at a distance of the gut.
  • a slit 1 13 and a gap 1 1 4 are combined to form a reference portion 1 15.
  • Reference numeral 1 17 shown in FIG. 9 (b) denotes a lid, which may be formed of the same material as that of the base material 1 16 and has a translucency as a whole.
  • the lid 1 1 7 and the substrate 1 1 6 are preferably joined by, for example, an adhesive, a pressure-sensitive adhesive, or a self-adsorption ability.
  • the non-translucent member 118 is preferably, for example, in a seal shape or a thin plate shape, and is bonded with an adhesive, an adhesive, or a self-adsorption ability.
  • the quantitative sample supplied to the reagent reaction tanks 1 1 1 a and 1 1 1 b via the supply channels 1 1 2 a and 1 1 2 b is the reagent previously stored in the reagent reaction tank.
  • To develop a color reaction When the reaction is stable, irradiate each reagent reaction tank with laser light or other visible light.
  • the optical signal reflected or transmitted through the reaction solution in the reagent reaction tank is received by the photoelectric conversion means 10 1 shown in FIG.
  • the photoelectric conversion means 101 converts the received optical signal into an electrical signal, and then amplifies and filters the amplified signal, and the amplified and filtered signal is sent to the A / D conversion section 103. Supply.
  • the signal output to the connection point 10 a in FIG. 8 is, for example, as shown in FIG. 9 (c).
  • the AZD conversion unit 103 shown in Fig. 8 converts the input analog signal into a digital signal, and then outputs this digital signal to the storage unit 10 5.
  • Control unit 104 causes read signal output unit 106 to start outputting a read signal.
  • the control unit 10 04 detects the digital data at the time of ⁇ ⁇ , saturating i6 time with respect to the time signal tn output from the read signal output unit 10 06, and each detection unit 1 0 7 a to '1 0 7 Control to detect with d.
  • the time signal tn is output continuously according to the clock.
  • the first detection unit 107 7a detects the digital received light waveform at the time signal tn— ⁇ .
  • the second detector 1 0 7 b detects the digital received light waveform for the time signal tn- ⁇
  • the third detector 1 0 7 c detects the digital received light waveform for the time signal tn +
  • the fourth detector 1 0 7 d detects the digital light reception waveform at time signal tn + ⁇ 8.
  • the received waveform is digital data, and once quantized it is shown in Fig. 9 (d).
  • Each detection unit does not necessarily need to be restored until quantization, and may be a code signal as long as the signal can be multiplied by a multiplication unit and the signal is not noise but an actual received light signal. .
  • each detection unit converts a digital value output from the storage unit 105 shown in FIG. 8 and outputs a pulse as a light reception signal when a predetermined threshold value is exceeded. good.
  • the tnl, tn2, and tn3 shown on the time axis in Fig. 9 (c) are given as samples for explanation, and the actual time tn moves continuously over time in the time axis direction.
  • the detection unit detects the received light signal stored in the storage unit every time of ⁇ , ⁇ / 3 along with the movement.
  • the first detection unit 10 07a shown in FIG. 8 reads from the storage unit 105.
  • the light signal value at the time of 120 a in Fig. 9 (c) is detected, and the output shown in Fig. 9 (d) is output at the connection point 10 b in Fig. 8 Do.
  • the first detection unit 1 0 7 b shown in Fig. 8 detects the received light signal value at the time of 1 2 O b in Fig. 9 (c) among the received light signals read from the storage unit 1 0 5. Then, the output shown in FIG. 9 (d) is output at the connection point 10c in FIG.
  • the first detection unit 1 07 c shown in FIG. 8 detects the received light signal value at the time 1 2 0 c of FIG. 9 (c) from among the received light signals read from the storage unit 10 5.
  • the output shown in Fig. 9 (d) is made at the connection point 10d in Fig. 8.
  • the first detection unit 10 07 d shown in FIG. 8 receives the received light signal read from the storage unit 105. Among these signals, the received light signal value at the time 1 2 0 d in Fig. 9 (c) is detected, and the output shown in Fig. 9 (d) is performed at the connection point 10 e in Fig. 8.
  • the time width setting unit 10 9 receives the time width signal having tn ⁇ i6 as the pulse width as shown in FIG. 9 (c) from the output signal of the read signal detection unit 10 6 as shown in FIG. 1 0 Output to judgment unit 1 1 0 via ⁇ .
  • the determination unit 1 1 0 checks whether or not there is an output from the multiplication unit 1 0 8 based on the time width signal from the time width setting unit 1 0 9, but the output of the multiplication unit 1 0 8 at time tnl is Since it is 0, the determination unit 1 1 0 determines that this is not the reference unit, and outputs a signal to that effect to the output terminal 10 g.
  • the first detection unit 10 07a receives the light received from the storage unit 105.
  • the received light signal at the time position indicated by 1 2 1 a is detected and output to the connection point 1 Ob shown in FIG. .
  • the first detector 1 0 ⁇ b detects the received light signal at the time position indicated by 1 2 1 b in Fig. 9 (c) among the received optical signals read from the storage unit 105. Output to connection point 1 0 c shown in Fig. 8.
  • the first detection unit 1 0 7 c detects the light reception signal at the time position indicated by 1 2 1 c in FIG. 9 (c) among the light reception signals read from the storage unit 10 5. Is output to the connection point 1 0 d indicated by.
  • the first detection unit 1 07 d outputs the received light signal at the time position indicated by 1 2 1 d in FIG. 9 (c) among the received light signals read from the storage unit 1 0 5; Output to terminal 10 e shown in the figure.
  • the determination unit 110 detects t n2 from the time width signal input from the time width setting unit 10 9, and FIG. As shown by), a pulse indicating that it is the reference position is output at that position.
  • the first detection unit 1 0 7 shown in FIG. a detects the received light signal at the time position indicated by 1 2 2 a in FIG. 9 (c) among the received light signals read from the storage unit 105, and the connection point 1 0 shown in FIG. Output to b.
  • the first detection unit 1 0 7 b detects the light reception signal at the time position indicated by 1 2 2 b in FIG. 9 (c) among the light reception signals read from the storage unit 1 0 5. It outputs to the connection point 1 0 c shown by.
  • the first detection unit 10.7 c detects the light reception signal at the time position indicated by 1 2 2 c in FIG. 9 (c) among the light reception signals read from the storage unit 105, Output to connection point 10 d shown in the figure.
  • the first detection unit 10 07 d detects the light reception signal at the time position indicated by 1 2 2 d in FIG. 9 (c) among the light reception signals read from the storage unit 10 5. Is output to the connection point 1 0 e indicated by.
  • the output signals indicated by the connection points 10 b to 10 0 e are input to the multiplication unit 10 8 and multiplied, but at this time, as shown in FIG. 9 (d), the first detection unit 10 Since the outputs of 7 a and the second detection unit 1 0 7 b are 0, the multiplication unit 1 0 8 shown in FIG. 8 outputs a signal that is 0 as a result of the multiplication.
  • the determiner 1 1 0 Since the signal input from the multiplier 1 0 8 is 0 for a predetermined time width, the determiner 1 1 0 outputs a signal indicating that it is not the reference unit as shown in FIG. 9 (f). To do. As described above, since the reference portion is detected computationally, the accurate reference portion can be electrically confirmed.
  • FIG. 10 is a block diagram showing an embodiment of the present invention.
  • 1 3 0 1 is an amplifying means for inputting a biochemical signal obtained by photoelectric conversion from an input terminal la, amplifying and filtering.
  • '1 3 0 2 is a differentiating means for differentiating the amplified biochemical signal.
  • Differentiating means 1 3 0 2 have at least two output terminals, one is connected to the means for determining the measurement area, and the other is the averaging means, adding average, integral restoration, etc. Connected with the means to be.
  • 1 3 0 3 is a full-wave rectifier, and is a circuit for setting the peak of the differential signal to either + or-polarity.
  • 1 3 0 4 is a measurement area detection means, which is a measurement determined by the measurement width determination means 1 3 0 6 Inputs a signal indicating the width, detects and outputs the measurement area based on the measurement width Is for the purpose.
  • 1 3 0 5 is a peak detection means for detecting the peak value of an input signal, such as a Schmitt trigger circuit that detects a peak pulse that exceeds a certain threshold value. It may be.
  • Reference numeral 1 3 06 denotes measurement width determination means, which may detect the measurement region from the pulse width and pulse interval of the peak pulse input from the preceding peak detection means 1 3 0 5.
  • a threshold of a predetermined height is further set. It may be fixed.
  • 1 3 0 7 is an averaging means, and is a means for outputting the differential signal output from the measurement area detecting means 1 3 0 4 as a signal obtained by averaging the averaging signals. 1 3 0 7 An averaging means for converting to an integral signal may be used.
  • FIG. 11A shows another example of the configuration of the same part as FIG.
  • Reference numeral 401 denotes a carrier, which is made of a translucent plastic material such as PET or polyacrylic, a glass material, or the like, and has a disk shape or a sheet shape in which one or more reagent tanks are formed.
  • 4 0 2 is a lid, which is the same material as the carrier, for example, and is bonded to the carrier by an adhesive, an adhesive, and self-adsorption.
  • Reference numeral 40 3 denotes a light-absorbing member, which is formed of black or a gray sheet close to black, and a measurement window 40 4 formed of a circular through-hole is formed immediately below the reagent reaction tank 45. Has been.
  • the light-absorbing member 40 3 may be disposed at least near the reagent reaction tank 45 at least.
  • the area of the measurement window 40 4 is preferably, for example, an area slightly smaller than the measurement area of the reagent reaction tank 4 5. This is because light leaking to the side surface of the reagent reaction tank may reach the light receiving element if the area is the same as the measurement surface area of the reagent reaction tank 45.
  • reagent reaction tank 405 is a portion where solid or liquid reagent is sealed in advance and reacts with body fluid supplied from outside, such as a supply channel, and develops color.
  • a 4 0 6 is a light source, which includes a laser light source, an LED, a UV light source, and the like.
  • Reference numeral 40 7 denotes a first lens body, which is an ordinary lens, formed in a spherical shape, and mainly has an arrangement shape for condensing light in the reagent reaction tank 45 5, and forms parallel rays. The shape and arrangement are correct.
  • Reference numeral 40 8 denotes a second lens body for converting the diffused light beam into a light beam suitable for light reception by the light receiving element 40 9 by condensing or collimating it.
  • One or both of the first lens body 4007 and the second lens body 4008 may be unnecessary depending on the performance and shape of the light source 4006 and the light receiving element 4009.
  • 409 is a light-receiving element that converts an optical signal into an electrical signal, and is made of a semiconductor such as a CDS, a photodiode, a diode, or a diode.
  • Reference numeral 4 10 denotes a supply flow path port, which is a connection part with a flow path for supplying a liquid specimen to the reagent reaction tank 4 0 5 preferably, preferably quantitatively.
  • 4 1 1 is an electrical lead wire for the light source, and is a supply path for supplying electrical energy for driving the light source 4 0 6.
  • the carriers 401 may be arranged at equal intervals on the outer periphery of a disc-shaped carrier as shown in FIG.
  • the carrier 40 01 shown in FIG. 11 is a rotating body, and the quantitative sample is supplied from the supply channel 4 10 to the reagent reaction tank 4 0 5, and is colored after stirring and mixing. For example, it rotates at a speed of about 600 rpm.
  • the measurement light output from the light source 4 0 6 passes through the first lens body 4 0 7, and from the measurement window 4 0 4,
  • the second lens body 4 8 8 receives light that is converted into parallel light and condensed light for the light receiving element 4 0 9.
  • Light is received by element 4 0 9.
  • 4 1 3 shows an example of the optical path.
  • the light receiving element 4 0 9 inputs the photoelectrically converted signal to the input terminal 1 a shown in FIG. 10 via the light receiving electrical lead 4 1 2.
  • the electrical signal input to this input terminal is amplified and filtered by the amplification means 1 3 0 1 and input to the differentiation means 1 3 0 2 as the signal shown in Fig. 2 (a) at connection point 1 M. Is done.
  • FIG. 12 (a) is an example of a peak generated when bubbles are present in the reagent reaction tank.
  • Differentiating means 1 3 0 2 outputs the differential signal shown in Fig. 1 2 (b), and this differential signal is the full-wave rectifying means 1 3 0 3 shown in Fig. 1 0 and measurement area detecting means 1 3 0 Enter 4 'sa-':
  • the differential signal is full-wave rectified, and then as a full-wave rectification signal shown in FIG. Supplied to 5.
  • the peak detection means 1 3 0 5 sets the threshold value REF 1 and converts the portion exceeding this threshold value into a pulse with a constant amplitude as shown in Fig. 12 (d).
  • Measurement width determination means 1 3 0 6 uses the pulse shown in Fig. 12 (e) as the connection area, with the rising edge of the next pulse from the falling edge of the first pulse as a stable area width for measurement analysis. 1 ⁇ Output.
  • the pulse is The detection range until the rise of the cell is preferably a case where a provisional range determined based on the rotation speed of the carrier and a predetermined timing of the reagent reaction tank is calculated in advance and included in the range.
  • the measurement area detection means 1 3 0 4 allows the output of the differentiation means to pass between the measurement width pulses obtained by the measurement width determination means shown in FIG. 1 2 (e), and to the averaging means 1 3 0 7 Input the passage amount.
  • Averaging means 1 3 0 7 integrates and averages the passages to obtain the true measurement area (3 1 b, 3 lc) as shown in Fig. 12 ( ⁇ ). Output to.
  • FIG. 11 B shows an example in which the optical measurement state is further improved by protecting the part corresponding to the optical path for handling.
  • FIG. 11B the same components as those in FIG. 11A are denoted by the same reference numerals and description thereof is omitted.
  • the area of the recess 4 14 is preferably at least equivalent to the width of the light passing through the light source 40 6 and the first lens body 40 7. -
  • the height of the recess 4 1 4 may be such that the recess 4 1 4 prevents the attachment of fingerprints when the user handles the carrier 4 0 1. Examples are about 5 to 1 mm.
  • the light-shielding printed surface 4 15 is a light-shielding printing surface, which is formed by a screen printing method or the like.
  • the light-shielding printed surface 4 15 may be other colors having a density that does not transmit light at least in addition to black printing.
  • 4 1 6 is an adhesive tape, which is a transparent tape having a pressure-sensitive adhesive formed on one side, and a double-sided adhesive tape formed of a translucent tape with the pressure-sensitive adhesive exposed on only one side.
  • 4 1 7 is a fitting lid, the same material as the carrier 4 0 1, thickness Is about 1mm and may or may not be translucent.
  • Reference numeral 4 18 denotes a hole, which is formed by a through-hole having an area sufficient to allow the light that has passed through the reagent reaction tank 45 to pass therethrough.
  • Reference numeral 4 19 denotes a fitting hole, which is formed in the carrier 40 1, and is formed so that the fitting portion is difficult to be removed by forming the diameter of the lower portion slightly larger than that of the upper portion.
  • it may be a through hole.
  • Reference numeral 4 2 0 denotes a fitting protrusion, which is formed integrally with the fitting lid 4 15, and the tip portion forms a fitting tip portion 4 2 1 that can be contracted laterally 1 1 1
  • an adhesive tape 4 1 6 is applied to the carrier 4 0 1, and further, the fitting lid 4 1 7 is covered from above, and the fitting hole 4 1 9 on the carrier 4 0 1 is covered.
  • the portion corresponding to the optical path is covered with the concave portion 4 1 4 and the hole portion 4 1 8 so that the user's fingertip does not touch the optical path surface. Loss of transmitted light due to fingerprints is reduced.
  • the light output from the light source 40 6 is collected by the first lens body 40 7 and passes through the reagent reaction tank 4 0 5 from the recess 4 1 4 to the hole 4 1 8, the second lens body. Light is received by the light receiving element 4 0 9 through 4 0 8.
  • the second lens body is not required and may not be required.
  • the light-shielding printing surface 4 15 is a thin film but does not allow light to pass therethrough, it is possible to prevent mixing of irregularly reflected light and the like into the transmitted light.
  • Fig. 13 shows the reaction in the reagent reaction tank in addition to the configuration shown in Fig. 10. This is an embodiment with a configuration to enable detection of optical information even when the amount of received light is small, such as when the light is not sufficiently transmitted and the amplitude of the electrical signal is small because the result is too dark. .
  • 1 3 27 is a peak interval detection means for detecting the interval time of the peak signal output from the preceding peak detection means 1 3 0 5.
  • 1 3 2 8 is a comparison means, which compares the preset interval signal with the peak interval signal output by the peak interval detection means 1 3 2 7 and outputs a mismatch signal if they do not match roughly To do.
  • the output signal from the comparison circuit 1.3 28 is output from the peak interval detection means 1 3 2 7.
  • the value obtained by dividing the length by the preset interval signal is a value n (where n ⁇ 1)
  • n the value obtained by dividing the length by the preset interval signal
  • control element such as a one-chip microcomputer.
  • FIG. 13 Next, the operation of FIG. 13 will be described in detail with reference to FIG.
  • the transmitted light signal input to the amplifying means .1 130 shown in FIG. 13 is amplified and filtered to output the signal shown in FIG. 14 (a).
  • 3 0 a and 3 O b are transmitted light generated through the periphery without passing through the inside of the reaction tank, and are noise.
  • Fig. 14 (b) is noise generated by bubbles generated in the reagent reaction vessel.
  • the signal outputted from the amplifying means 1 3 0 1 is differentiated by the differentiating means, and the differential waveform shown in Fig. 14 (b) is outputted to the connection point lc.
  • full-wave rectification is performed by the full-wave rectification means 130, and a waveform as shown in Fig. 14 (c) is output to the connection point Id.
  • the peak detection means 1 3 0 5 shown in FIG. 13 outputs a pulse at a portion exceeding the threshold REF 2 shown in FIG.
  • the peak interval detection means 1 3 2 7 shown in FIG. 13 stores this pulse, and when the next peak is inputted, for example, with reference to the rise of the pulse, the peak interval 11 shown in FIG. 14 is detected, Output to comparison means 1 3 2 8 shown in Fig. 13.
  • the measurement width determination means 1 3 0 6 receives the signal output from the comparison means 1 3 2 8, and sets a preset width 13 for each preset interval 12 by the number of values of n. Output.
  • the measurement region 13 is set after a predetermined time interval 12, and then the measurement region 13 is set after a predetermined time interval 12.
  • the measurement area detection means 1 3 0 4 allows the differential signal to pass through the preset time interval 13 and the averaging means 1 3 0 7 is an average with higher sensitivity than other parts. To do.
  • FIG. 16 is a cross-sectional view taken along line X—X ′ in FIG.
  • Reference numeral 401 denotes a carrier, which is made of a translucent plastic material such as PET or polyacrylic, a glass material, or the like, and has a disk shape or a sheet shape in which one or more reagent tanks are formed.
  • Reference numeral 400 denotes a lid, which is made of, for example, the same material as the carrier and is bonded to the carrier by an adhesive, an adhesive, or self-adsorption.
  • '4 0 3 is a light absorbing member, which is formed of black or a gray sheet close to black, and immediately below the reagent reaction tank 4 0 5 is a measurement window 4 0 4 consisting of a circular through hole. Is formed.
  • Reference numeral 400 denotes a reagent reaction tank, which is formed in a cylindrical shape on the carrier 4 0 1.
  • Reference numeral 4 10 denotes a supply channel, which is formed in a concave shape on the carrier 4 0 1 and is used for supplying a sample from the outside for a fixed amount.
  • 4 2 2 is a distribution channel for supplying specimens to individual reagent reaction vessels.
  • the diameter of the bottom 30 g of the reagent reaction tank shown in Fig. 16 is about 1.5 mm, whereas the diameter 30 0 f of the measuring window is about lmm.
  • Reference numeral 5 0 1 denotes a photoelectric conversion means for converting the transmitted light that has passed through the reagent reaction tank into an electric signal and outputting it by a combination of a laser, a LED light source, and a light receiving element.
  • 5 0 2 is an amplifying means, for example, for amplifying an input photoelectric conversion signal in an analog manner, filtering it, and outputting it.
  • Offset value correction means 5 0 3 connects the calibrated signal by performing operations such as removing the input offset signal from the signal related to the transmitted light that has passed through the reagent reaction tank.
  • the calculation for calibration which is a means to output to the point 5c, is, for example, a method of calculating after converting it to a digital signal and an analog calculation method, but depending on the size, speed, etc. of the device It is selected appropriately.
  • Reference numeral 5 0 4 is an offset value determining means for discriminatingly selecting a received light signal obtained from the calibration region of the carrier, forming an offset signal, and outputting it to the offset value correcting means 5 0 3 belongs to.
  • 0 5 is a timing signal forming means that detects the timing when the measurement unit and the reagent reaction tank coincide with each other in synchronization with the state in which the carrier and the measurement unit are relatively moving, and outputs a coincidence signal. Is for.
  • Reference numeral 56 denotes reference data forming means, for example, means for temporarily storing the results of optical measurement using transmitted light in a reagent reaction tank containing a diluent, pure water, and the like.
  • Reference numeral 5 07 denotes calibration means, which is corrected by subtracting the stored value from the optical measurement result of each reaction tank. Calibration includes the meanings of correction and correction.
  • the timing signal may be obtained by detecting the reference portion of the carrier and then oscillating predictably from the rotational speed and a fixed arrangement angle of the reagent reaction tank. If the reagent reaction tank position is detected from the amplitude value of the signal, etc., and the color density drops out during the process, the detected reagent reaction tank position signal and the predetermined diameter of the reagent reaction tank are arranged. It may be obtained predictively based on the distance (angle).
  • an AZ D converter or the like may be newly added and executed by a single microcomputer storing the program.
  • FIG. Fig. 19 shows only the parts that are considered necessary for the explanation.
  • the part where blood and diluent are mixed, the part that is quantified, the blood inlet, etc. are omitted.
  • the carrier 500 is formed of a translucent member such as polyacrylic or PET.
  • 5 0 a is a red light receiver, and 5 O b is a red light source.
  • 5 1 a is a green photoreceptor, and 5 l b is a green light source.
  • 5 2 a is a blue light receiver, and 5 2 b is a blue light source.
  • Examples of the light source include lasers and LEDs, and examples of the light receiver include CDs and phototransistors.
  • 5 3 a to 53 h are a part of the reagent reaction tank, for example, cylindrical bodies having a diameter of about 1 mm are arranged at equal intervals.
  • Each reagent reaction vessel is filled with different reagents in liquid or solid form.
  • These reagent reaction tanks are a part, and in addition, reagent reaction tanks of the same size in which other reagents are enclosed are arranged at equal intervals on the optical path.
  • 5 4 indicates the calibration area provided for calibration and correction.
  • Reference numerals 5 4 a and 5 4 b are calibration medium storage units, for example, provided with a reagent reaction tank in a diluted liquid only, plasma only, pure water, and empty state. Although two of these calibration medium storage units are shown, they may be increased by the number of necessary calibration information.
  • the calibration medium container is also an example, and other calibration medium containers may be arranged at equal intervals.
  • 5 4 c is the black region, which is black with the same area as the reagent reaction tank.
  • the reference area 5 4 d is a reference area, which is a hole that penetrates vertically, and is slit in the diameter direction.
  • the reference area 5 4 d is a part that serves as various reference points such as the start point, end point, and position recognition point for measurement in the reagent reaction tank, and uses a point that is penetrating light to receive light from the light source.
  • a reference value for measuring the maximum amount of light received between bodies may be obtained.
  • 5 5 a is a flow channel for distribution
  • 5 5 b is a flow channel for supply having quantitativeness.
  • 5 6 shows, for example, two chucking holes for coupling with the reading device.
  • the body fluid supply to the body fluid supply port 57 is preferably performed using a simple injection tool such as a microphone port pipette or a spot.
  • the configuration from the body fluid supply port 57 to the various reagent reaction tanks is composed of a mixture of body fluid and diluent, and a part for separating unnecessary blood cells from the body fluid. But this part was omitted.
  • the body fluid is supplied to the carrier 500 which is a rotating body from the central blood inlet, and unnecessary components such as blood cells are removed by centrifugation and mixed with the diluted solution.
  • a diluted mixed plasma solution is quantitatively supplied and mixed. These actions are preferably performed by rotation and capillary force.
  • Quantitative mixture fluid is in each reagent reaction tank 5 3 a-5 3 h
  • the carrier 500 is rotated to form a state in which the reagent reaction tank, the calibration medium storage unit, and the reference unit move between each light source and the photoreceptor.
  • FIG. 18A is a cross-sectional view along the line XX ′ in FIG.
  • FIG. 18A shows an arrangement in which the carrier 50 0 0 is actually installed in the reader, and the photoreceptor 5 0 a and the light source 5 Ob reach the vertical direction of the reagent reaction vessel 5 3 a.
  • the same configuration as in Fig. 4 is shown.
  • 5 O l a is the upper part of the reading device, and a light receiver 50 0 a is attached.
  • An electrical lead wire 50 c for transmitting an electrical signal to the outside is connected to the photoreceptor 50 a.
  • Reference numeral 5 0 1 b denotes a lower part of the reading device, and a light source 50 b is arranged in a portion corresponding to a portion immediately below the photoreceptor 50 a.
  • An electric lead wire 50 d for supplying electric energy is connected to the light source 50 b.
  • the reagent reaction vessel 5 3 a is filled with a plasma component-reagent mixed solution 5 0 1 c.
  • the carrier 5 0 0 is formed by forming various flow paths with a reagent reaction tank as a recess, and a lid 5 0 Connect O b with adhesive, adhesive, and self-adsorption ability.
  • a light absorbing member 500 c is applied and connected in addition to the optical path passing through the reagent reaction tank.
  • FIG. 18B shows a state in which the carrier 50 0 0 further rotates and the calibration medium container 5 4 a is placed between the red light source 5 0 b and the red light receiver 5 0 a. Diluent 5 2 a is contained inside.
  • the supply channel is not connected because it has been pre-injected, when supplying blood and developing the diluted solution, supply only the diluted solution to the calibration medium container 54a. May be.
  • FIG. 18 C shows a state in which the black region 54c is placed between the red light source 50b and the red photoreceptor 50a.
  • the black area 5 4 c does not necessarily have a reagent reaction tank.
  • a light-absorbing member 500 c is disposed at the bottom of the carrier 500.
  • a plasma component is quantitatively supplied to the reagent reaction tank containing the reagent on the carrier 500 shown in FIG. 19 via the supply channel.
  • the quantitative sample is agitated by a change in rotation in the reagent reaction tank and reacts with the reagent.
  • the carrier 5 0 0 is rotated at a rotational speed of about 6 0 0 rpm, and the reference region 5 4 d on the carrier 5 0 0 is a red light source 5 O b and a red photoreceptor 5
  • the reference region 5 4 d on the carrier 5 0 0 is a red light source 5 O b and a red photoreceptor 5
  • green light source 5 lb and green light receiver 5 1 When light passes through the optical path of 1 a and blue light source 5 2 b and blue light receiver 5 2 a, the light reception measurement is performed.
  • Figure 21 shows the light reception waveform of one of the three light receiving units.
  • 5 10 S is a waveform when the reference region 54 d shown in FIG. 19 is received, and the center slit indicates two bilateral signals. is doing.
  • the reference signal 5 10 S is converted into an electric signal by the photoelectric conversion means 5 0 1 shown in FIG. 17 and then input to the timing signal forming means 5 5.
  • a signal sequence as shown in FIG. 20 is output to the connection point 5a in FIG.
  • the signal sequence in FIG. 20 is the combination of the red light source 5 O b and the red light receiver 50 0 a shown in FIG. 19, the combination of the green light source 5 lb and the green light receiver 5 la, and the blue light source.
  • the electric signal train obtained from one of the combinations of 5 2 b and blue light receiver 5 2 a is shown.
  • V o if is the offset voltage, which is a voltage generated from the characteristics of the element.
  • the timing signal forming means 5 0 5 is based on 5 1 OS shown in Fig. 2 1, and for example, performs 5 M of free-running pulse output as shown in (b). This pulse interval is equally spaced. This corresponds to the distance between the arranged reagent reaction vessels, and the pulse width corresponds to the area in the optical path typified by the reagent reaction vessel.
  • Fig. 21 (a) shows the output signal sequence when the reagent reaction vessels 5 1 1 a to 5 1 1 e are measured at regular intervals with 5 10 S as the reference site.
  • Fig. 21 (1) In the signal sequence shown in Fig. 21 (a), 5 1 1 a to 5 1 1 e receive the transmitted light that has passed through the colored state in the reagent reaction tank containing the actual reagent and photoelectrically convert it. It is a subsequent signal sequence.
  • the photoelectric conversion means 51 1 1 receives the black region and converts it into an electric signal, and then amplifies and filters it by the amplification means 50 2.
  • the output signal of the amplification unit 5 0 2 is shown in 5 1 2 &, 5 1 2 b, 5 1 2 c in Fig. 2 1).
  • the reagent reaction vessel 53 a shown in FIG. 19 is replaced by the photoelectric conversion means 50 01 shown in FIG. 17 (for example, between the light source 50 b and the light receiving element 50 a shown in FIG. 19).
  • the color reaction reaction obtained by the light receiving element 50a is amplified by the amplifying means 502, and input to the offset value correcting means 5.03.
  • the offset value correction means 50 3 reduces the offset voltage VoH input from the offset value determination means 50 4 to the amplified color development reaction, thereby reducing the error with a smaller error. Evening (for example, V 5 11 shown in FIG. 21 (a)) is obtained and outputted to the connection point 5c and also outputted to the correcting means 507 and the reference data forming means 5106.
  • the reference de-evening means 5 0 6 shows that the reagent reaction tank filled with only water and diluent passes through the photoelectric conversion means 5 0 1 according to the timing signal from the timing signal forming means 5 0 5. Then, it is detected that the calibration data calibrated by the offset value correction means 50 3 is output to the connection point 5 c, and the value is temporarily stored (for example, FIG. 21 (a)). All of 5 1 3 a to 5 1 3 c shown in).
  • optical data of only the diluted solution adjacent to each other is stored for each rotation, and added up and averaged, and attenuation data due to reflection and scattered light generated by the carrier. It is preferable to memorize the evening and convert it into an OD value after averaging (for example, Vt shown in Fig. 21 (a)) and memorize it.
  • the reference data forming means 50 06 shown in FIG. 17 stores the optical data 0D value of the penetrating light from the reference area 54 d shown in FIG. A value (for example, the value related to Vmax shown in Fig. 21 (a)) is obtained.
  • ⁇ D value is indicated by, for example, loglO (V in / Vout).
  • the light reception signal V 5 11 shown in FIG. 21 (a) relating to the light transmitted through the reagent reaction vessel 53 3a shown in FIG. 19 is converted into the photoelectric conversion means 5 0 1 and the offset value correction means shown in FIG.
  • the reference data forming means 5 0 6 shows the carrier attenuation data Vg shown in FIG. 21 (a) in FIG. Output to correction means 5 0 7.
  • the Isseki optical de relates to a reagent and OD-value conversion, by adding the carrier attenuation de Isseki Vg of the 2nd 1 view (a), values that are produced by 1 loss of carrier Complementing V 5 11+ Vg makes it possible to obtain a true color and color.
  • the optical data of only the sample filled in the reaction tank that does not contain the reagent is converted into a D value and used as reference data (add the carrier attenuation value Vg). It is also possible to obtain a more accurate color reaction value by calculating.
  • 2nd invention-2nd invention is the temperature which measures the temperature of the part which heats a part of one surface of the support
  • heating means in the present invention include those that irradiate infrared rays and far infrared rays, infrared lamps, halogen lamps, and the like.
  • the temperature measuring means in the present invention is exemplified by a non-contact type temperature sensor (thermopile etc.).
  • the heating unit and the temperature measuring unit may be located at different positions on one carrier, but are preferably arranged diagonally.
  • the distance between the heating means and the carrier is exemplified as 5 to 10 mm, and the distance between the temperature measuring means and the carrier is exemplified as 5 to 10 mm.
  • the heat-absorbing member in the present invention is a black material or a member that absorbs and holds heat, and examples include a member formed by applying a solution or a gel material on the back surface of the carrier or attaching a black sheet.
  • the upper surface of the carrier is first heated, and the heat-absorbing member is heated by passing through the inner part of the carrier. Since the carrier rotates, the entire carrier is heated from both sides.
  • a disk-shaped carrier having a thickness of several millimeters made of a hard polymer such as polyacryl is exemplified, but in addition, a sheet-like carrier and the like, in which a reagent reaction tank is arranged in the longitudinal direction, etc. Is exemplified.
  • a thin and compact reading device can be realized by arranging a heat absorbing member on the back surface of the carrier, heating a part of the front surface, and measuring the temperature of the opposite part of the carrier.
  • a built-in CD-ROM drive device of a personal computer a built-in personal computer is illustrated as an example, and a stable environment can be formed.
  • Fig. 22 shows the combined arrangement configuration with the heat generating member, temperature sensor, and photoreceptor removed
  • Fig. 23 shows the actual lid closed
  • Fig. 24 shows the second 3
  • 25A and 25B show the carrier
  • FIG. 25A shows the front surface
  • FIG. 25B shows the back surface.
  • 2500 is a carrier and is composed of a rotating body made of polyester, PMMA, PC, PS, PET, PDMS, glass, etc., for example, blood in the center
  • Each reagent reaction tank 2 5 0 is provided via a supply port, a diluent storage part, etc., and a blood cell separation part, a mixing part, a quantification part, a distribution flow path 2 5 0 1 f and a supply flow path 2 5 0 1 c It has a configuration in which a fixed amount of mixed liquid is supplied to lb by adjusting the rotation speed and direction.
  • the lid portion 25 O la is translucent, and is made of a double-sided adhesive tape, a single-sided adhesive tape, etc., which has a single-sided shape and has a backing member peeled off only on one side, but preferably has a degree of non-deformability. It has a plate shape with a thickness of around 1 mm.
  • the lid 250 1 a and the carrier 2 5 0 1 shown in FIG. 25A are provided with a supply port for supplying blood from the outside.
  • 25 O l d shown in FIG. 25B is an endothermic member, which indicates a black sheet, a state of black coloration, etc., and at least a color that can form an endothermic state is arranged.
  • 2 5 0 1 e is a measurement hole drilled to optically measure the bottom surface of the reagent reaction tank, and is a window having a diameter slightly smaller than the diameter of the reagent reaction tank.
  • 2 5 1 2 is a metal member for chucking that acts on the magnetic member to attract and repel any member, such as steel, ferrite, other ceramics, plastic, etc. Non-metal and metal composites are shown.
  • 2 5 1 2 a is a recess and extends to the inside of the carrier 2 5 0 1 as shown in FIG.
  • the lower portion 2 5 0 9 and the upper portion 2 5 10 of the reading device shown in FIG. 24 and the like include a heat insulating member such as a resin to keep the inside warm.
  • reference numerals 2 5 02 a to 2 5 0 2 c denote light sources, which are composed of laser light, LED, etc., and a plurality of light sources are arranged for each primary color.
  • 2 5 0 2 a is composed of a red light source
  • 2 5 0 2 b is composed of a green light source
  • 2 5 0 2 c is composed of a blue light source.
  • Shown in 3c. 2 5 0 3 a is a red light receiver
  • 2 5 0 3 b is a green light receiver
  • 2 5 0 3 c is a blue light receiver.
  • These light sources and an optical unit having a pair of photoreceptors are arranged at regular intervals.
  • 2 5 04 is a heat generating member, and has a configuration in which, for example, a halogen lamp is arranged in a light shielding cover having a visible light blocking film 2 5 0 4 b in the irradiation direction.
  • Reference numeral 2 5 0 5 is a temperature sensor, which measures the surface temperature in a non-contact manner (for example, thermopile).
  • 2 and 5 06 are rotating bodies, and the center part of the upper surface is formed with a rotating shaft 2 5 0 6 c and an annular magnetic member 2 5 0 6 b on the outer peripheral portion Are joined mechanically or by an adhesive or the like, and friction members 25 0 6 a are concentrically formed on the outer periphery.
  • the height of the friction member 2 5 0 6 a is configured to be higher than the height of the magnetic member 2 5 0 6 b, and when the carrier 2 5 1 2 is mounted on the rotating body 2 5 0 6, the metal member 2 for chucking 5 1 2 and the magnetic member 2 5 0 6 b are not in contact with each other.
  • the rotating body 2 5 0 6 includes a rotating motor, a transmission and the like as shown in FIG. Connected to the drive means 2 5 1 1.
  • 2 5 0 7 is a heating element lead wire for supplying electric energy to the heating element.
  • 2 5 0 8 is a sensor lead wire for supplying an electrical signal obtained by the temperature sensor to a signal processing device, a microcomputer control conversion means, and the like.
  • the lead wire for the heating element and the lead wire for the sensor need only be wired in the device, but in these figures, they are extended to the outside for explanation.
  • a sample such as blood or urine is supplied to the carrier 2500 shown in FIG. 25A, and a diluent is also supplied as necessary.
  • the concave portion 2 of the carrier 2 5 0 1 is placed on the rotating shaft 2 5 0 6 c on the rotating body 2 5 0 6 of the lower part 2 5 0 9 of the reading device. Insert the 5 1 2 a together.
  • the magnetic member 2 5 Q 6 b of the rotating body 2 5 0 6 and the metal member for chucking 2 5 1 2 try to couple by magnetic force, but the friction member 2 5 0 6 a is the metal member for chucking 2 5 1 2, or carrier 2 5 0 1 Since it contacts the back surface, it is fixed in a non-contact state.
  • the driving means 2 '5 1 1 drives the rotating body 2 5 0 6 to rotate.
  • the friction member 2 5 06 a rotates the carrier 2 5 0 1 to separate blood cells, quantitate, and supply a blood sample to each reagent reaction tank.
  • electric energy is supplied to the heat generating member 2 5 0 4 via the heating element lead wire 2 5 0 7 and joined to the support 2 5 0 1 by the temperature sensor 2 5 0 5.
  • Lid 2 5 0 1 Temperature suitable for the reagent reaction while measuring the surface temperature of the heating element 36.5 ° C to 37.5 ° C Electric energy to 5 0 4 is controlled.
  • a heat absorbing member 2 5 0 1 d is attached to the carrier 2 5 0 1, and heat is generated on the surface due to local heat generated by the heat generating member from the upper surface. Reaching the target temperature is achieved relatively quickly because it generates heat at 2 5 0 I d.
  • FIG. 26 shows a specific example of feedback control means for controlling the amount of heat generated by the heat generating member based on the temperature value obtained by the temperature sensor.
  • 2 0 5 0 a is a sensor and corresponds to the temperature sensor 2 5 0 5 shown in FIG.
  • '2 0 5 0 b is an AZD conversion unit for converting an input analog signal into a digital signal.
  • 2 0 5 0 c is a feedback control unit for comparing the digital voltage information related to the temperature information inputted before and after with the digital voltage information related to the predetermined temperature information to perform feedback output. It is.
  • FIG. 1 A specific example of the feedback control unit 20 50 is shown in FIG.
  • 2 0 0 5 a is an input unit and corresponds to the input unit of the feedback control unit 2 0 5 0 c in FIG.
  • 2 0 5 1 a is an adder for adding the previous digital signal value to the currently input digital signal value.
  • 2 0 5 1 b, 2 0 5 1 d, 2 0 5 1 f are multipliers, each of which multiplies the input signal by a set coefficient K1 to K3 and outputs it. is there.
  • 2 0 5 1 c is a storage unit for temporarily storing an input signal.
  • 2 0 5 1 a, 2 0 5 1 b, 2 0 5 1 c, and 2 0 5 1 d constitute a first-order low-pass digital filter.
  • 2 0 50 0 d is a D / A converter for converting the feedback digital signal into an analog signal and outputting it, for example, the output of the PWM output unit at the subsequent stage Analog output that controls the pulse width.
  • 2 0 5 0 e is a PWM output unit for adjusting and controlling the pulse width according to the input analog signal value.
  • the PWM output unit 205 0 e shows a combination of a free-running oscillator that oscillates a sawtooth wave or a triangular wave, a Schmitt circuit having a variable threshold input, and a comparison circuit.
  • the DZA conversion unit 2500 d and the PWM output unit 2 0500 e can be replaced by one digital PWM circuit 2500 as shown by the dotted line in the figure.
  • the PWM circuit may be a single program type that is made into a single chip and has an internal memory and CPU. Based on the program, the heating value indication value output from the feedback controller It is effective in that the desired PWM signal can be output directly by outputting the Duty F actor's digital value (eg, 0 to 5 volts), which is almost proportional to, and the circuit can be made compact.
  • the Duty F actor's digital value eg, 0 to 5 volts
  • 2 0 50 0 f is a heat source, for example, a halogen lamp, a heating wire, a resistor, or the like disposed inside the heat generating member 2 5 0 4 in FIG.
  • Fig. 26B shows an example of the drive circuit for the heat source 20 5 0 when the digital PWM circuit 2 5 0 0 is used.
  • 2 5 0 0 a is the feed pack controller shown in Fig. 2 7 2 0 5 0 c 2 5 0 Ob indicates a switching element such as an FET or a transistor.
  • the switching element 2 5 0 0 b is turned on / off by the pulse of the digital PWM circuit 2 5 0 0, and current flows from the power input terminal V d to the heat source 2 0 5 0 f during the period when the switching element 2 5 0 0 b is turned on. It generates heat and has a configuration capable of controlling the amount of heat generation by intermittently repeating this heat generation.
  • the amount of heat generated by the heat source 2500f can be adjusted variably by simply turning on / off the switching element 2500b.
  • the frequency of the digital pulse output from the digital PWM circuit 2500 is preferably selected, for example, from 10 to 100 kHz, but the heat source, heat generation adjustment, and other Other ranges may be possible due to differences in the elements.
  • FIGS. 26A, 26B and 27 • Next, the operation of the embodiment shown in FIGS. 26A, 26B and 27 will be described with reference to FIGS. 28 and 29.
  • FIG. 28
  • the analog sensor signal output from the sensor 20 0 50 a is converted into a digital signal value by the AZD conversion unit 2 0 5 0 b and input to the feedback control unit 2 0 5 0 c.
  • the temperature data X n input to the input unit 2 0 0 5 a shown in Fig. 2 7 is added to the data obtained by multiplying the previously input temperature data by the coefficient K1 in the addition unit 2 0 5 la. Is output to the multiplication unit 205 I d as the addition temperature data yn.
  • the temperature data yn added and output from the previous temperature data in the adding unit 2 0 5 1 a is temporarily stored in the storage unit 2 0 5 1 c and the previous temperature data yn--1 Is input to the multiplier 2 0 5 lb, multiplied by the coefficient K1, and output to the adder 2 0 5 la.
  • the multiplier 2 0 5 1 d forms a multiplication data K2 * yn by further multiplying the input temperature data yn by a coefficient K 2 and outputs the result to the subtraction circuit 2 0 5 1 e.
  • the multiplication data K2 * yn is subtracted from the preset reference voltage Vref, and further multiplied by the coefficient K3 in the multiplication section 2 0 5 1 ⁇ , and the output section 2 0 0 5 b is multiplied by the multiplication data (K3 * (Vref- (K 2 * yn))) is output.
  • the D / A conversion unit 20 50 d shown in FIG. 26 A performs DZA conversion on the feedback data output from the feedback control unit 20 50 c and is shown in FIG. 28 (a).
  • the PWM output section 2 0 5 0 e shown in Fig. 26 A shows a pulse signal whose pulse width is adjusted based on this analog feedback data (see Fig. 28 (b)). ) Is output to the heat source 2 0 5 Of shown in Fig. 26 A.
  • Fig. 2-9 shows the output voltage of the sensor (thermopile) 2 0 5 0 a and DZA conversion The relationship of the output voltage of the part 2 0 5 0 d is shown.
  • the output voltage of the D / A converter 2 0 50 0 d shown in Fig. 26 A is the maximum voltage, and the pulse width of the output pulse from the PWM converter 2 0 5 0 e is large.
  • the output of the D / A converter 2 0 5 0 d also decreases, and the output pulse width from the PWM converter 2 0 5 0 e also decreases. Then, the heat generation amount of the heat source 2 0 50 0 f is reduced to a predetermined temperature 37. C Adjust to around 38 ° C.
  • heat generation from the heat source is performed for a predetermined time (for example, 25 seconds to 30 seconds), then the heat generation is stopped, and temperature measurement using a sensor, for example, is performed for 1 second to 5 seconds. Next, the temperature measurement of the sensor is interrupted and heat generation from the heat source is resumed.
  • a predetermined time for example, 25 seconds to 30 seconds
  • the method of repeating this is preferably applied to the present invention.
  • the positional relationship between the heat generation source and the sensor may not be particularly limited.
  • the third invention has the following features.
  • the diluent in the present invention is blood
  • examples thereof include physiological saline, saline, and other solutions for dilution.
  • the diluting member in the present invention includes, for example, an opening edge of a cup-shaped hard member enclosing a diluting solution, a heat-bonding of a puncturable flexible sheet, ultrasonic welding, a bonding configuration using an adhesive, and the like.
  • the one in which a diluent is put into a bag-like body formed by sex sheet is shown.
  • the diluting member for diluting the specimen is arranged vertically movable in the carrier” means, for example, that a part of the lid formed on the carrier is integrally or separately in a thin sheet shape.
  • a configuration in which a circular bellows is formed physically and the center of the bellows is connected to the side opposite to the opening target portion of the diluent reservoir, or an extending member is arranged on a part of the lid portion is shown.
  • the opening member for forming an opening state in the downward direction of the diluting member is, for example, a puncturing member provided for a puncturable region of the diluting member.
  • a puncturing member provided for a puncturable region of the diluting member.
  • Stirring structure 1 an annular concavo-convex member formed by forming unevenness partially or entirely on one or a plurality of one or more of the side surface, top surface and bottom surface " Triangular, rectangular or circular pitches on the surface of the carrier, at least in the vicinity of the part where mixing and stirring are performed, showing continuous or partially continuous irregularities formed depending on the magnitude of vibration. Therefore, it is preferable that these irregularities have such a height that the magnitude of vibration does not affect other components.
  • a vibrating body that touches the unevenness and vibrates is in contact with the unevenness only when necessary. It is preferable that a touching state is formed, and it is preferable that a moving means that moves only at the timing is also provided, but there may be a case where it is manual.
  • the stirring member that is deformed inward by the rotation of the carrier in the portion that needs to be stirred accommodated in the carrier has a portion that can be moved by centrifugal force at least in the region where mixing and stirring is performed. If there is no centrifugal force, or if it is below a certain rotation (eg 700 RPM or less), it is preferable that the original position is restored and fixed so that there is no hindrance to the measurement.
  • a certain rotation eg 700 RPM or less
  • the stirring member is preferably formed in a state in which it is movably attached to the inside of the stirring member with, for example, rubber or resin.
  • an iron ball, a plastic ball or the like having a different mass is connected to the rotatable portion.
  • the metal member in the present invention may be any member (such as a stainless plate or a copper plate) that can be coupled to the magnetic member. ''
  • the magnetic member in the present invention is preferably annular around the rotating body, but may be a part of the magnetic member when the magnetic force is strong.
  • the friction member in the present invention may be formed of natural rubber, artificial rubber, resin, or the like, and may be a metal member or a member having a large friction with the carrier surface.
  • the annular convex member in the present invention may be any member that has at least a height and an inner area so as to uniformly contact the side surface of the rotating body, and is preferably formed integrally with the carrier.
  • the metal member on the bottom surface of the carrier only needs to have an attractive force between the magnetic material, steel, magnetic stainless steel, etc., metal-ceramic composite, metal-plastic composite, magnetic metal, magnetic metal , Plastic, 'paper, ceramics, composites with non-magnetic metals.
  • the contact portion between the carrier and the rotating body is formed by a friction member, and the coupling is performed by the magnetic force acting between the magnetic member and the metal member in a non-contact state.
  • the distance between the magnetic member and the metal is 0.1 to 1.0 mm is exemplified.
  • FIG. 3 O A to FIG. 30 C are sectional views showing an embodiment of the present invention.
  • 3 1 0 1 is a sheet-like lid, which is made of a translucent member such as PP, PET, or polyester, or a semi-translucent member, and uniformly covers the surface of the blood analysis carrier. It can be pasted with materials, etc.
  • a transparent double-sided tape or a single-sided tape is preferable in terms of easy handling.
  • 3 1 0 2 is a carrier substrate, which is made of a translucent member such as PP, PET, or polyester, or a semi-translucent member, and is formed by a groove formed on the surface. Configure the flow path, mixing tank, etc.
  • FIGS. 3A to 30C only the diluent reservoir holding space is shown.
  • 3 1 0 3 is a bellows portion, and a part of the collar portion 3 1 0 1 is processed into a concentric bellows.
  • 3 1 0 4 is a diluent reservoir, a hard force cup 3 1 0 6 that opens downward, and a thin film that is connected to the periphery of the opening surface of this hard cup by thermocompression bonding or adhesive 3 1 0 7 has a combined structure.
  • 3 1 0 5 is a diluting solution and consists of physiological saline. Contains various additives such as preservatives.
  • 3 10 8 is a locking member, which is formed integrally with the carrier, and can be deformed outward from the center, and can be inserted into the diluent reservoir in two directions, four directions, Provided in other directions.
  • 3 10 9 is a puncture member, preferably constructed integrally with a carrier, and preferably has a hardness and an acute angle that can puncture and break the thin film 10 7.
  • 3 1 10 is a flow path for the diluent, and is exemplified by a groove shape and a flow path that is somewhat wide.
  • the diluent reservoir is fixed to the inside of the distal end of the locking member 3 10 8 while being coupled to the central portion of the bellows 3 1 0 3.
  • the upper part of the diluent reservoir 3 10 4- is pressed (F) as shown in FIG. 30B.
  • the pressing force F causes the edge of the diluent reservoir 3 1 0 4 to push the locking member 3 1 0 8 outward and open the diluent reservoir 3 1 0 4 to the piercing member 3 1 0 Press in the 9 direction.
  • the bellows 3 1 0 3 extends, the diluent reservoir 3 1 0 4 moves, and the thin film 3 1 0 7 of the diluent reservoir 3 1 0 4 is punctured by the puncture member 3 1 0 9 At the same time, it is locked and fixed inside the locking member 3 1 0 8.
  • the carrier substrate 3 1 0 2 rotates around the central axis 0.
  • the thin film 3 1 0 7 is broken, and the diluent B is exposed to the outside and moved outward by centrifugal force.
  • Example 3-2 Since the carrier substrate 3 1 0 2 and the lid 3 1 0 1 were originally sealed, the thin film 3 1 0 7 of the dilution reservoir 3 1 0 4 was broken and the internal dilution was exposed. However, it is safe and stable without leaking outside.
  • Example 3-2 Since the carrier substrate 3 1 0 2 and the lid 3 1 0 1 were originally sealed, the thin film 3 1 0 7 of the dilution reservoir 3 1 0 4 was broken and the internal dilution was exposed. However, it is safe and stable without leaking outside.
  • Example 3-2 Example 3-2
  • FIG. 31 is a schematic diagram showing another embodiment of the present invention.
  • 3 2 0 1 is a disc-shaped carrier, which has a blood supply part in the center, a blood cell separation part, a mixing part with diluent, a quantification part, a blood cell separation part, and a reagent reaction tank 3 2 O la There are several.
  • Reference numeral 3 2 0 2 is a coupling hole for coupling to the carrier operating device, and is drilled twice at a predetermined interval from the center.
  • 3 2 0 3 is a concavo-convex portion, and has, for example, a sawtooth wave shape and a triangular wave shape.
  • the pitch and height of the unevenness are not particularly limited, but if the pitch is short, fine vibrations can be generated, and if the pitch is long, large vibrations can be generated.
  • 3 2 0 4 is a drive unit for slidingly driving a vibrating body composed of a combination of a vibration convex part 3 2 0 5 and a leaf spring-like elastic member 3 2 0 6. The state which incorporated etc. is shown.
  • the combination of the convex portions for vibration 3 2 0 5 of the vibrator and the elastic members is merely an example, and various shapes are appropriately selected depending on the size of the carrier reader.
  • drive part 3 2 0 4 is driven to bring vibrator's vibration convex part 3 2 0 5 into contact with uneven part 3 2 0 3 (see Fig. 3 (b)) .
  • FIG. 32 is a schematic diagram showing another embodiment of the present invention.
  • FIG. 32 (a) is, for example, the back surface of the blood analysis carrier 3 201 shown in FIG. 31 (a), and a black member having absorptivity and endotherm in the region around the reagent reaction tank. 3 2 1 0 is arranged, and an observation window 3 2 1 0 a for allowing measurement light to pass is provided immediately below the reagent reaction tank.
  • FIG. 3 2 0 7 shown in FIG. 3 2 is an annular concavo-convex portion, and a part thereof is shown in FIG. 3 2 (b).
  • FIGS. 32 (b) and 32 (c) are views of the carrier 3220 from the side.
  • 3 2 0 9 shown in FIG. 3 2 (c) is a vibration convex portion, and 3 2 0 8 is an elastic member.
  • this embodiment also has a moving portion for bringing the vibrating convex portion 3 2 0 9 into contact with the annular concave and convex portion 3 2 0 7. Omitted in Figure 32. .
  • the vibration convex portion 3 2 0 9 moves on the surface of the annular uneven portion 3 2 0 7 (FIG. 3 2 (d )), And the convex part of the annular concavo-convex part 3 2 0 7 pushes the vibration convex part 3 2 0 9 (see FIG.
  • the reagent and the plasma component can be agitated and mixed reliably by applying vibration to the carrier.
  • FIGS. 3A to 3C are other embodiments of the present invention.
  • FIGS. 3A to 3C show an enlarged state of the reagent reaction tank 3 2 0 1 a shown in FIG. 3 1, for example.
  • 3 3 0 1 is a reagent reaction tank, which is formed as a cylindrical recess in the carrier.
  • the size is exemplified by a diameter of 1 and a depth of about 2 mm, and a supply channel 3 300 for supplying a sample such as plasma is connected to the inner surface in the center direction.
  • the reagent reaction vessel contains reagent powder, granules, liquid, etc. in advance.
  • 3 30 3 is a stirring ring formed of an elastic material such as rubber or resin, and connected and fixed to the inner periphery of the reagent reaction tank 3 30 1 except for a part in the center direction.
  • 3 3 0 4 is a metal particle composed of relatively heavy particles such as metal, and is embedded and arranged in a site that receives the centrifugal force most effectively generated by the rotation of the carrier.
  • the cross section indicated by the line XX 'in Fig. 3 3B is shown in Fig. 3 3C.
  • the stirring ring 3 3 0 3 is disposed between the bottom surface of the reagent reaction tank 3 3 0 1 and the flow channel opening of the supply flow channel 3 3 0 2.
  • Reference numeral 3 3 0 5 denotes a lid, which is made of a translucent member such as PP or PET, or a semi-translucent member.
  • Reference numeral 3 3 06 is a black sheet, which has endothermic and light absorbing properties, and an observation hole 3 3 0 7 for allowing measurement light to pass therethrough is formed immediately below the reagent reaction tank.
  • FIGS. 3 3A to 3 3 C will be described.
  • the sample is supplied into the reagent reaction tank 3 30 1 and comes into contact with the pre-arranged reagent to start dissolution.
  • 3 0 3 is a part that is not joined in the reagent reaction tank due to centrifugal force And the part containing the metal particles 3 3 0 4 moves in the centrifugal direction. At that time, as shown in FIG. 3 3 B, a gap is formed in the stirring ring 3 3 0 3 and the reagent reaction tank 3 3 0 1, and the sample or the like flows into this portion. .
  • stirring can be easily performed without any problem in optical measurement.
  • Embodiment 3-5 a portion where a carrier according to an embodiment of the present invention is attached to a carrier reader, that is, a chucking configuration will be described in detail.
  • 3 4 0 1 is a carrier, in which a blood supply port, a diluent storage part, a blood cell separation part, a mixing and stirring part, a quantitative distribution part, a reagent reaction tank, etc. are formed in a groove shape or a concave shape on a disk-shaped substrate. ing.
  • a light-transmitting lid is disposed so as to cover the whole.
  • FIG. 34 shows an example of the reagent reaction vessel 3 4 0 4 among the constituent elements configured on the carrier 3 4 0 1.
  • Reference numeral 34 0 2 denotes an annular convex portion, which is an annular body having an inner diameter that coincides with the side surface of the rotating body 3 4 0 5, and is preferably formed integrally with the carrier 3 4 0 1.
  • 3 4 0 3 ' is a metal member, which is made of a thin plate of metal, ceramic, or other composite material that can be combined with a magnetic material, and is the bottom surface of the carrier 3 4 0 1, which is an annular convex portion 3 4 0
  • the inside of 2 is connected by adhesive, mechanical fitting, etc.
  • the metal member 3 4 0 3 preferably has a high friction coefficient. It is preferable to have a rough surface.
  • the rotating body 3 4 0 5 is a rotating body, and is connected to a motor gear, a transmission gear, etc. on the bottom surface.
  • the rotating body 3 4 0 5 is formed of resin or plastic, and it is preferable to reduce the weight.
  • the rotating body 3 4 0 5 is arranged in a reading device (not shown), and a part thereof is shown in FIGS. 3 4 A to 3 4 C.
  • 3 4 0 6 is a friction member, which is formed of an annular rubber, vinyl resin, etc., and protrudes uniformly from the upper part of the rotating body 3 4 0 5 and is bonded and arranged by an adhesive, mechanical fitting, etc. . If the width of the annular friction member 3 4 0 6 is wide, the contact area with the carrier 3 4 0 1 will be wide and the frictional force will be strong, but about 1 to 3 mm is preferable for driving the carrier.
  • 3 4 0 7 is a magnetic member, which is formed of a permanent magnet or an electromagnet formed in an annular shape. If the width of the magnetic member 3 4 0 7 is wide, the bond with the carrier becomes dense, but 2 to 4 mm is suitable for easy handling.
  • the width of the magnetic member 3 4 0 7 and the width of the friction member 3 4 0 6 are more suitable than the above ranges depending on the surface condition of the carrier, the material of the magnetic member, and the like.
  • the height of the magnetic member 3 4 0 7 is lower than that of the friction member 3 4 0 6, and even when the carrier is mounted as shown in FIG. 3 4 B, the metal member of the carrier is in a non-contact state. Forming.
  • 3 4 0 8 is a rotating body convex portion, and is formed integrally with the rotating body 3 4 0 5, and the outer peripheral side thereof is in contact with and coupled to the inner peripheral side surface of the annular convex portion 3 4 0 2.
  • the vertical reference plane 3 4 0 8 a is formed.
  • a contact surface between the upper surface of the rotating body projection 3 4 0 8 and the metal member 3 4 0 3 forms a horizontal reference surface 3 4 0 8 b.
  • the rotating body 3 4 0 5 in the reader is inserted inside the annular projection 3 4 0 2 of the carrier 3 4 0 1, and the vertical reference Surface 3 4 0 8 a and inner surface of annular projection 3 4 0 2 and horizontal reference surface 3
  • the rotating body 3 4 0 5 and the carrier 3 4 0 1 in the reading device are coupled and fixed.
  • Figure 34 shows the combined state. At that time, stable rotation is performed by uniform contact of the vertical reference plane 3 4 0 8 a and the horizontal reference plane 3 4 0 8 b to the respective carriers 3 4 0 1, and the rotating body 3 4 0 5 Also in the case of rotation, the carrier 3 4 0 1 rotates without slipping due to the contact friction of the friction member 3 4 0 6.
  • FIGS. 35A and 35B are the same as those shown in FIGS. 34A to 34C except that the carrier 3 4 0 1 provided with the annular projection 3 4 0 2 is used. An example of is shown.
  • FIG. 3 5 Stepped coupling portion 3 4 0 9 is formed on the outer periphery of rotating body 3 4 0 5 shown in FIG. 3A, and the lower surface of coupling portion 3 4 0 9 and the tip of annular projection 3 4 0 2
  • the end plane part comes into contact to form the horizontal reference plane 3 4 0 9 a shown in FIG. 3 6 B, and the side part of the coupling part 3 4 0 9 and the inner side part of the annular convex part 3 4 0 2 are in contact with each other
  • the vertical reference plane 3 4 0 9 b shown in FIG. 3 6 B is formed.
  • 3 4 0 6 is a friction member, which has the same configuration as that shown in FIGS.
  • 3 4 A to 3 4 C, and 3 4 0 7 is an annular magnetic member, It has the same configuration as that shown in FIGS. 34A to 34C.
  • the height of the magnetic member 304 is preferably maintained at such a level that it does not come into contact with the metal member 304 even when the friction member 304 is coupled and contracted.
  • FIG. 35B shows a state in which the carrier 3 4 0 1 and the rotating body 3 4 0 5 are combined. Although it is a simple coupling relationship, the coupling force due to the coupling of the magnetic member 3 4 0 7 and the metal member 3 4 0 3 and the frictional force between the friction member 3 4 0 6 and the bottom surface of the carrier can be used even in a severe rotational environment. Stable rotation is achieved without slipping.
  • FIGS. 35A and 35B simplifies the configuration of the horizontal reference plane and the vertical reference plane more than the embodiment shown in FIGS. 34A to 34C.
  • the carrier 3 4 0 1 can be easily coupled to or detached from the rotating body 3 4 0 5.
  • FIGS. 36A to 36C are diagrams showing another example of the chucking configuration of the present invention.
  • 3 4 0 1 is a carrier, and has the same structure as that shown in FIGS. 3 4 A to 3 4 C. As shown in Fig. C, it consists of a combination of reagent reaction tank 3 4 1 3 and distribution channel.
  • 3 4 1 1 is a metal member, and is preferably embedded in the bottom surface of the carrier 3 4 0 1. In the center of the metal member 3 4 1 1, a soot entrance 3 4 1 0 is formed which partially communicates with the carrier 3 4 0 1.
  • the rotating shaft 3 4 1 6 of the rotating body 3 4 1 2 can be inserted.
  • 3 4 1 2 is a rotating body, and the projecting rotating shaft 3 4 1 6 is at the center. Is formed.
  • the side surface of the rotating shaft 3 4 1 6 forms a vertical reference surface 3 4 1 6 a shown in FIG. 3 6 B in the state of being inserted into and contacted with the insertion port 3 4 10.
  • 3 4 1 7 is a friction member, which is formed of a material having a high coefficient of friction and elasticity, rubber, natural resin, synthetic resin, and the like.
  • the friction member 3 4 1 7 in this example is a portion where the friction member 3 4 1 7 and the bottom surface of the carrier 3 4 0 1 are in contact with each other.
  • the horizontal reference surface 3 4 shown in FIG. In order to form 17a, it is preferable to have non-deformability as much as possible, and a harder member is preferable.
  • a friction member 3 17 having a relatively wide width is disposed as compared with the other embodiments, and the width is exemplified by a width of 3 to 5 mm, for example. It may be set outside this range depending on the state and size of the bottom surface.
  • 3 4 1 4 is a magnetic member, which is formed by a permanent magnet and an electromagnet, and is arranged at a height lower than that of the friction member 3 4 1 7.
  • FIGS. 36A to 36C is a simplified version of the embodiment shown in FIGS. 34A to 34C and FIGS. 35A and 35B. is there.
  • the rotating shaft 3 4 1 6 of the rotating body 3 4 1 2 is inserted into the insertion port 3 4 1 0 of the carrier 3 4 0 1, the magnetic coupling between the metal member 3 4 1 1 and the magnetic member 3 4 1 4 is in a non-contact state.
  • FIGS. 37A and 37B are sectional views showing another embodiment of the present invention.
  • the carrier 3400 is the same as the carrier in FIGS. 36A to 36C, and the same reference numerals are given and description thereof is omitted. .
  • the same numbers are assigned to the same parts as in the other embodiments, and the description thereof is omitted.
  • An annular projection 3 4 1 8 is attached to the upper outer peripheral surface of the rotating body 3 4 1 2.
  • the friction member 3 4 1 9 is the same as the friction member of the embodiment shown in FIGS. 3 4 A to 3 4 C, 3 5 A and 3 5 B.
  • the magnetic member 3 4 1 4 is also the carrier 3 4 0
  • Metal member 3 4 1 1 Keep in a non-contact state.
  • the side surface of the rotating shaft 3 4 1 6 formed integrally with the center of the rotating body 3 4 1 2 is inserted into the inlet 3 4 1 0 of the carrier 3 4 0 1.
  • the vertical reference surface 3 4 1 6 a is formed.
  • FIGS. 37A and 37B The embodiment shown in FIGS. 37A and 37B is similar to that shown in FIGS. 36A to 36C.
  • the magnetic member 3 4 1 4 and the metal member 3 4 1 1 are coupled by magnetic coupling, and as shown in Fig. 3 7 B, the rotating body 3
  • the horizontal reference surface 3 4 1 8 a is formed, and the side surface of the rotating shaft 3 4 1 6 Since the contact surface with the inner peripheral surface of the inlet 3 4 10 forms the vertical reference surface 3 1 6 a, the stable support and the rotating body can be coupled. 4th invention
  • the micro space in the invention of (4) is, for example, a cylindrical reagent reaction tank of a type in which a reagent is stored, a quantitative specimen is supplied from the outside, and color is developed by mixing,
  • the present invention is not limited to this, and the present invention is not limited to this, but can be applied to a part intended only for mixing.
  • Substances with different specific gravities include, for example, body fluids such as blood, body fluids and urine, and solids
  • Examples include mixing of powdered and granular reagents, and other liquids having different concentrations.
  • Centrifugation does not occur in a relatively short time
  • the rotation speed at which the acceleration required for stirring is given for a predetermined time is the rotation speed at which centrifugation does not occur in a relatively short time.
  • the predetermined time is approximately 1 Examples are around seconds.
  • this rotational speed indicates the vicinity of the rotational speed boundary where separation by centrifugal force occurs in a relatively short time
  • the rotational speed at the boundary is the degree of difference in specific gravity, viscosity, from the rotational center. Although it depends on the distance, etc., it is sufficient that the number of rotations is at least so that the centrifugal separation does not occur immediately.
  • the “opposite direction” indicates counterclockwise rotation when the previous rotation is clockwise.
  • the rotation speed is increased from a state where the target rotational speed is reached to a rotational speed in which the direction is different and the rotational speed is such that separation by centrifugal force does not occur in a relatively short time.
  • the target number of revolutions is adjusted as appropriate according to the substance to be mixed, the difference in specific gravity, and the mixing time. It is arranged and not limited. .
  • the number of rotations is first increased clockwise from 0 rpm to 200 rpm. Then, after the rotation speed reaches 2 00 rpm, this is continuously increased counterclockwise until 2 0 00 rpm, and after reaching 2 0 00 rpm, it switches to reverse rotation again. It is shown that the change is continuously increased to 200 rpm in a clockwise direction, and this is repeated at intervals of several hundred msec to several sec.
  • the time from the maximum rotational speed in one direction to the maximum rotational speed in the opposite direction is from 0.1 msec to 2 sec, preferably from 0.5 sec to L sec (in terms of relatively gentle mechanical conditions. This is preferable in that an inexpensive apparatus is used.
  • the shape of the reaction / measurement chamber for example, when measuring while rotating at 600 rpm or higher, liquid collects or sticks to a part of the measurement chamber (like the outer wall). If measurement is enabled and rotation is stopped (or the rotation speed is reduced), the liquid spreads to the bottom of the measurement chamber, and this change in the shape of the liquid is repeated. And allows measurement during rotation.
  • the number of recovery channels is not particularly limited as long as it is two or more, but two may be sufficient depending on the case where the carrier is smaller or the purpose of use.
  • the “circumferential supply channel” refers to, for example, a tangential direction with respect to the circumference, and is not limited to being perpendicular to the radial direction, but approximately ⁇ 30 ° with respect to the vertical. If it is the range.
  • a flow path having a capillary force, and at least from the input port, the output port has a linear portion parallel to the diameter, and the liquid is moved and stopped by adjusting the rotation speed of the carrier.
  • Means diametrically Flow paths on parallel straight lines are shown. It should be noted that at least the center of rotation of the carrier may be parallel to the diametrical direction, and there may be a bent portion that faces in all directions before and after that.
  • a flow path having a capillary force can be stopped and started by adjusting the number of revolutions even when the output port extends in the circumferential direction from at least the input port.
  • the direction extending in the circumferential direction is a flow path having the same curvature as the circumference, and indicates a state of extending on the circumference, but the curvature does not necessarily have to coincide with the circumference. Even if the curvature is somewhat large and vice versa, it can be used as a switch to control the flow of liquid.
  • FIG. 38 is a schematic diagram for explaining one embodiment of the present invention.
  • FIG. 4 1 1 8 is a first supply flow path, and a plurality of reagent reaction tanks 4 1 1 6 are connected to each other in the outer circumferential direction through a quantitative tank 4 1 1 4 and a quantitative supply path 4 1 1 5.
  • Figures 38A to 38C show an example of the overall configuration of one of the reagent reaction tanks, as shown in Figure 43. At this time, the diameter of the outermost periphery of the carrier 4 1 0 0 is 6 0 Din! About 70 mm.
  • Figures 3 A to 3 & C are part of it, so they have the same number.
  • 38 1, 4 1 1 4 shown in FIG. 3A is a quantification tank, and is a part for securing a volume of specimen together with the volume of the quantification supply channel 4 1 1 5.
  • . 4 1 1 5 is a constant supply channel, extending in the circumferential direction.
  • the direction of the fixed supply flow path is exemplified by a tangential direction, but is not limited thereto, and may be inclined at about + 0 ° to 30 ° with respect to the tangential line. ⁇
  • 4 1 1 6 is a reagent reaction tank in which dry or liquid reagent SY is enclosed in advance or supplied at the time of use.
  • 4 1 1 6 a is a reaction region, which is formed by a cylindrical recess as shown in FIG. 3 8 B.
  • the size is, for example, 1 mm in diameter and about 3 mm in height.
  • 4 1 1 6 b is an air reservoir, and the height is about half the height of the reaction region, and is formed in the same range as the reaction region.
  • FIGS. 39A to 39E illustrate an example of a state in which the specimen is quantitatively supplied to the reagent reaction region.
  • the carrier rotates in one direction, and the specimen 3 A flowing through the first supply channel 4 1 1 8 is filled in the quantification tank 4 1 1 4 according to the rotational force ( (See Figure 39 A).
  • the sample supply path 4 1 1 5 is also filled with the specimen 3 B, and the state shown in FIG. 39B is formed.
  • the volume of the specimen 3 B quantified at this time is an amount satisfying the reaction region 4 1 1 6 a, but may be smaller than an amount satisfying all 4 1 1 6 a and 4 1 1 6 b.
  • part of the necessary reagent is also enclosed in this quantification tank, and mixing with the supplied sample or primary reaction is performed. It may be performed in a quantification tank.
  • a so-called two-reagent reaction system that is stored in a physically or chemically separated state in order to prevent conflict between reagent components during storage is assumed.
  • the rotational speed is increased to about 5 0 0 0 to 6 0 0 0 r pm.
  • the specimen 3 C is filled into the reagent reaction region as if it was pushed (see FIG. 39C).
  • the carrier is rotated as shown in FIGS. 40A to 40C.
  • the rotation shown in Fig. 4 OA is initially clockwise. Rotate the body.
  • the rotational speed is decreased at the predetermined angular acceleration, and when the rotational speed reaches 0, the counterclockwise direction is 1
  • the rotational speed is decreased at a predetermined angular acceleration to zero, and then rotated clockwise. Repeat. Thereby, sufficient mixing is performed for 10 to 120 seconds.
  • the period P 1 at this time is an appropriate force for 1 to 2 sec. As shown in Fig. 40B, even if the period P 2 is lengthened, the time until stirring and mixing is slightly increased. In some cases, sufficient mixing can be expected, and it is adjusted appropriately according to the size of the reaction vessel.
  • the shift to the above-described rotation speed and the shift to the lower limit rotation speed based on the predetermined angular acceleration may be performed by linear increase, decrease, and exponential increase / decrease.
  • the expression by angular acceleration is an example, and at least rotation from the lower limit rotation speed to the upper limit rotation speed or from the upper limit rotation speed to the lower limit rotation speed in the above-described manner in a manner as described above. Anything that can be achieved.
  • FIG. 40C there may be a case in which strength is increased with a predetermined angular acceleration in one direction of clockwise or counterclockwise without alternating.
  • a positive acceleration and a negative acceleration may be added alternately.
  • the waveform indicating the change in rotation in FIGS. 40A to 40C is shown as a sawtooth DC or alternating wave, but is not limited to this, and is rectangular, triangular function wave, intermittent triangle. It may be a change in the number of rotations corresponding to a waveform such as a wave, intermittent rectangular wave, intermittent sine wave, direct current or alternating wave.
  • Figures 40A to 40C show that the angular acceleration is continuous and constant. In some cases, however, it may be possible to stop the rotation once after increasing to a certain rotation and then increase it again to a certain rotation in the opposite direction. At this time, the range of acceleration given to the liquid in the reaction tank is preferably 10 to 500 m / s 2, but is not particularly limited.
  • FIG. 38 The shape of the embodiment shown in FIG. For example, an elliptical reagent reaction vessel 4116f as shown in Fig. 38C may be used.
  • the sample volume to be quantified is filled slightly less than the volume of 4 1 1 6 f, so that the 3 8 As shown by 4 1 1 6 fa in Fig. C, an air reservoir can be created, and the optical path length can be secured for optical measurement using the optical unit arranged in the outer circumference.
  • simple stirring can be realized by increasing the amount of empty space remaining in the reagent reaction tank and increasing or decreasing the number of rotations.
  • Figures 39D and 39E show cross sections along line Y—Y 'in Figure 38C.
  • TA is a carrier and is similar to the carrier 4 100 shown in FIG. 43, and is made of transparent, translucent acrylic, PET, PP, polyester resin, or the like.
  • FT is a lid, made of the same material as the carrier TA, and made of an acrylic thin plate coated with double-sided or single-sided adhesive tape, adhesive, and adhesive.
  • Fig. 39D shows the state in which the sample 4 1 1 6 fb is rotated at a low speed (rotation of 600 rpm or less) with all or part of the reagent reaction vessel 4 1 1 6 supplied. It is in a stationary state.
  • 4 1 1 6 fa is a reservoir and SY is a solid reagent, for example. is there.
  • Specimen 4 1 1 6 f b is biased to the outer wall surface of reagent reaction vessel 4 1 1 6 ⁇ by centrifugal force as shown in Fig. 39E.
  • the reagent S Y and the sample 4 1 1 6 f b can be efficiently stirred.
  • the influence of the capillary force of the quantitative supply channel 4 1 1 5 on the sample 4 1 1 6 fb is lower due to the air in the air reservoir 4 1 1 6 fa, so the sample moves to the quantitative supply channel 4 1 1 5 Without mixing, the sample is mixed only by centrifugal force.
  • Fig. 39D and Fig. 39E show the method of mixing by causing the liquid to move due to the change in centrifugal force generated by increasing / decreasing the number of revolutions.
  • rotation with angular acceleration that rotates in the opposite direction may be given to the carrier, or it may be temporarily stopped.
  • the relationship between the increase / decrease of the rotation speed and the increase period and the decrease period may be performed with the same value as in the other examples, and at least the same acceleration may be given to the liquid.
  • FIG. 41 and FIGS. 4 2A and 4 2B An embodiment of the present invention will be described with reference to FIG. 41 and FIGS. 4 2A and 4 2B.
  • FIG. 41, FIG. 4 2 A, and FIG. 4 2 B show part of the overall configuration of the carrier shown in FIG.
  • 4 1 1 8 is the first supply flow path, which is substantially concentric with the disc-shaped carrier. It is formed by an arcuate channel. Since it is a substantially concentric arc, it is not always necessary to have a concentric curvature, as long as it can obtain a good distribution of plasma components during carrier rotation.
  • the outer wall of the first supply channel 4 1 1 8 be concentric with the center of rotation of the carrier when discharging excess samples or performing quantification in the quantification tank.
  • 4 1 1 7 a is a surplus sample storage part for storing a surplus sample after each quantification tank 4 1 1 4 is filled with a sample, and has two substantially arcuate shapes in the outer circumferential direction.
  • the first surplus accommodating part 4 1 1 7 aa and the second surplus accommodating part 4 1 1 7 ac and the connecting path 4 1 1 7 ab connecting these accommodating parts are located at the end of the supply channel. One or both of them are connected via a flow path 4 1 1 7 ad for the excess storage section.
  • the position of the excessively diluted mixed liquid container 4 1 1 7 a is not limited to the end of the supply flow path, but may be in the center or the like.
  • the connecting channel 4 1 1 7 ab is sharpened at the connection point with each surplus accommodating portion, and prevents leakage of surplus liquid due to backflow into the first supply channel 4 1 1 8.
  • 4 1 1 4 shows one of each of the quantification tanks, arranged at equal intervals or unequal intervals on the outer periphery of the first supply channel 4 1 1 8, and the volume indicates the target liquid amount .
  • 4 1 1 5 is a fixed supply channel, which extends in the circumferential direction and substantially tangentially.
  • 4 1 1 6 a is a reaction area, a reagent is arranged inside, and is connected to the quantitative supply channel 4 1 1 5 through an air reservoir 4 1 1 6 b.
  • the configuration from the quantification tank 4 1 1 4 to the reaction zone 4 1 1 6 a has a configuration as shown in FIG. 38B, for example.
  • FIG. 4 Operation of the configuration shown in Fig. 1 is shown in Fig. 4 2 A and 4 2 B. This will be described in detail with reference to the drawings.
  • the sample supplied to the first supply channel 4 1 1 8 is in a state where the carrier is rotating, and the remaining sample that is filled and held in the quantification tank 4 1 1 4 by centrifugal force or the like is stored in excess. 4 1 1 7 a via the second surplus storage section 4 1 1 7 ac through the ad and to the first surplus storage section 4 1 1 7 aa through the connection path 4 1 1 7 ab Is done.
  • any sample tank 4 1 1 4 is filled with the sample, and the sample supply channel 4 1 1 5 is also filled with the sample, the rotation speed is increased and the sample is supplied to the reaction region 4 1 1 6 a. To do.
  • Fig. 43 shows a disk-shaped carrier 4100 formed of transparent, translucent acrylic, PET, PP, polyester resin, etc., forming grooves and recesses on the channel, reservoir, and excess storage
  • Reference numeral 4 1 0 1 is a blood reservoir, which is a part for supplying blood collected by a pipet or other holders from blood collected from a human body or the like. 4
  • the side of the storage tank is not provided with an acute angle, and has a shape that reduces residual blood.
  • Reference numeral 4 1 0 2 denotes a diluent storage part that stores the diluent leaked to the outside by, for example, destroying the sealed diluent-containing bouch.
  • the blood reservoir 4 10 1 has an open upper surface, and the adjacent diluent reservoir 4 1 0 2 is stored in the bouch and arranged in advance. At the top is a lid.
  • the lid When used, blood is supplied to the blood reservoir 4 10 1 by a pipette or the like, or a porous material in which body fluid is immersed in cancer is inserted, and the lid is slid to slide the blood reservoir Cover the upper surface of 4 1 0 1 with a lid, and move the inside of the dilution reservoir 4 10 0 2 due to the sliding of the lid, destroy it, and dilute the diluent 4 1 0
  • a configuration that enables supply from 2 to the outside is preferable.
  • the configuration of Japanese Patent Application No. 2 0 0 5-1 6 8 8 8 5 is preferably used.
  • the grooves provided on both sides of the blood reservoir 4 1 0 1 and the diluent reservoir 4 1 0 2 are guides that allow the lid to slide slidably. It can be used as a groove.
  • Reference numeral 4 1 0 3 denotes a blood distribution unit, which includes a blood quantitative supply channel for supplying blood toward the two blood cell separation units.
  • 4 1 0 4 is a surplus blood reservoir for storing the blood that has overflowed after the blood has filled the first blood cell separator 4 1 0 6 and the second blood cell separator 4 1 0 7. It is a part of.
  • 4 1 0 5 is a flow channel for the surplus part, and after the first blood cell separation unit 4 10 6 and the second blood cell separation unit 4 1 0 7 are filled with blood, the excess blood is removed. This is a flow path for flowing into the excess blood reservoir 4 10 4.
  • 4 10 06 is a first blood cell separation unit
  • 4 10 07 is a second blood cell separation unit.
  • the volume of each space is formed to indicate the required amount of liquid.
  • 4 1 0 8 is the first blood cell storage unit, which is connected to the second blood cell separation unit 4 1 0 7 via a relatively narrow channel
  • 4 1 0 9 is the second blood cell storage unit, It connects with the 1st blood cell separation part 4106 through a thin channel.
  • Such a connection by a relatively narrow channel prevents the blood cells from flowing backward when the centrifugal force weakens, such as when the carrier rotates at a low speed or when the direction of rotation is alternated.
  • 4 1 1 1 is a first flow path having a bent portion in the center direction, and connects the second blood cell separation portion 4 1 0 7 and the mixing portion 4 1 1 2.
  • 4 1 1 3 is a second flow path having a bent portion in the center direction, and is for connecting the first blood cell separating portion 4 10 6 and the adjustment tank 4 1 1 0.
  • 4 1 1 4 shows one each of the quantification tanks, and has the same configuration as in FIGS. 3 8 A to 38 C, and is equidistant from the outer periphery of the first supply channel 4 1 1 8 Or they are arranged at unequal intervals, and their volumes indicate the target liquid volume
  • 4 1 1 5 is a quantitative supply channel, which has the same configuration as that shown in FIGS. 38A to 38C and extends in the circumferential direction.
  • tank 4 1 1 6 is a quantitative supply channel, which has the same configuration as that shown in FIGS. 38A to 38C and extends in the circumferential direction.
  • 4 1 1 6 is a reagent reaction tank, which has the same configuration as that shown in FIGS. 38A to 38C, and is formed in a substantially tangential direction of the carrier, as shown in FIG. 38 and the like.
  • the reagent is arranged inside. If oxygen is required for the color reaction, depending on the type of B-type drug, the reagent reaction tank 4 1 1 6 has the third 3 8
  • An air reservoir as shown in Fig. B may be provided.
  • 4 1 1 7 a to 4 1 1 7 d are redundant shapes having the same shape and size. As shown in Fig. 41, it is a superdiluted liquid mixture storage part, and is constructed by connecting concentric first surplus storage part and second surplus storage part at the connecting part.
  • Reference numeral 4 1 1 8 denotes a first supply channel, which is concentrically formed, and a plurality of reagent reaction tanks 4 1 1 6 having a quantitative tank 4 1 1 4 are arranged in the outer circumferential direction.
  • 4 1 1 9, 4 1 2 1 and 4 1 2 7 are deaeration ports, a mixing part that prevents liquid movement in the flow path, and an opening part for releasing the air in the buffer part to the outside .
  • 4 1 2 0 is a third flow path, which has a bent portion in the middle “L” direction, and is used to connect the adjustment tank 4 1 1 0 and the first supply flow path 4 1 1 8.
  • 4 1 2 2 is a fourth flow path for connecting the mixing section 4 1 1 2 and the second supply flow path 4 1 3 0 with a bent portion in the center direction.
  • Reference numeral 4 1 2 3 denotes a fifth flow path, which is a straight flow path for connecting the diluent storage section 4 10 0 2 and the diluent measurement section 4 1 2 4.
  • 4 1 2 4 is a diluent quantification unit, one end of the sixth channel 4 1 2 5 is connected in the center direction, and the other end of the sixth channel 4 1 2 5 is the surplus dilution solution storage unit 4 1 2 6 connects.
  • 4 1 2 6 is a surplus dilution liquid storage part, and a part for storing the dilution liquid overflowing in the dilution liquid determination part 4 1 2 4.
  • 4 1 2 8 is a preparatory tank, which uses the concentricity of the liquid surface remaining in the preparatory tank 4 1 2 8 by applying centrifugal force, and quantifies the liquid quantified by the dilution liquid quantification unit 4 1 2 4 This is to improve the accuracy and is connected to the diluent quantification unit 4 1 2 4 in the outer circumferential direction.
  • 4 1 2 9 is a seventh flow path that extends parallel to the diameter direction and is connected to the mixing portion 4 1 1 2 through two bent portions.
  • FIG. 44 shows an example of a reading device.
  • 4 1 3 2 is a lower part of the apparatus, and a recess for accommodating the carrier 4 1 0 0 0 is formed in the center.
  • the two chucking holes 4 1 3 1 and 4 1 3 Rotating body 4 1 34 having projections 4 1 3 5 and 4 1 3 5 for insertion and fixing to 1 and 2 is provided.
  • the rotating body 4 1 3 4 is connected to a stepping motor, a transmission gear or the like.
  • 4 1 3 3 is the upper part of the device and is connected to the lower part of the device 4 1 3 2 so that one side can rotate.
  • 4 1 3 6 a to 4 1 3 6 c are primary color light sources, which are formed by laser light, LED, infrared light source, etc., and 4 1 3 7 a to 4 1 3 7 c are light receiving elements. , And are respectively disposed at portions facing the light source.
  • the blood in the blood reservoir 4 10 1 is supplied to the first blood cell separator 4 10 6 and the second blood cell separator 4 1 0 7 via the two channels of the blood distributor 4 1 0 3.
  • the dilution liquid in the dilution liquid storage 4 1 0 2 is the fifth flow path 4 1 2 3 Is supplied to the diluent storage unit 4 1 2 4.
  • the blood supplied to the first blood cell separation unit 4 10 6 and the second blood cell separation unit 4 1 0 7 passes through the first blood cell storage unit 4 1 0 8 and the second blood cell storage unit 4 1 0 9 by centrifugal force. While filling, the first blood cell separation unit 4 10 6 and the second blood cell separation unit 4 1 0 7 are filled, and the surplus is stored in the surplus blood storage unit 4 1 via the surplus portion channel 4 1 0 5. Housed in 0-4. This configuration requires a small excess blood reservoir while having two or more quantifiers, and proposes a simplified configuration.
  • the diluent supplied to the diluent quantification unit 4 1 2 4 gradually fills the diluent quantification unit while filling the spare tank 4 1 2 8, and the surplus is passed through the sixth channel 4 1 2 5. It is stored in the surplus dilution liquid storage section 4 1 2 6.
  • the blood supplied to the blood cell separation unit tries to move to fill the first channel 4 1 1 1 and the second channel 4 1 1 3 by capillary force, but the movement is hindered by centrifugal force. It is in the state.
  • the diluent also tries to move due to the capillary force of the seventh flow path 4 1 2 9, but the movement is blocked by the centrifugal force.
  • the blood cells in the first blood cell separation unit 4 1 0 6 and the second blood cell separation unit 4 1 0 7 are moved to the first blood cell storage unit 4 1 0 8 and 4 1 0 9, Perform blood cell separation. Since the blood cell separation part and the blood cell storage part are connected by a thin flow path, the blood cells that have once entered the blood cell storage part are held and do not flow backward even by low-speed rotation.
  • the rotation of the carrier 4 1 0 0 is lowered.
  • the centrifugal force is weakened, and the blood in the first flow path 4 1 1 1 and the second flow path 4 1 1 3 moves to fill the flow path, and in the seventh flow path 4 1 2 9
  • the dilute solution in the same way also moves in the mixing section 4 1 1 2 direction.
  • the output port is located farther from the center of rotation than the input ports of the first channel 4 1 1 1, second channel 4 1 1 3, and seventh channel 4 1 2 9
  • the plasma and the diluted solution quantified by the blood cell separation units 10 6 and 10 7 and the diluted solution quantification unit 4 1 2 4 move to the mixing unit 4 1 1 2 and the control tank 4 1 1 0.
  • the mixed solution fills the fourth flow path 4 1 2 2 connected to the mixing section 4 1 1 2, and the plasma fills the third flow path 4 1 2 0. .
  • the surplus portion is stored in the excess diluted mixed solution storage portions 4 1 1 7 a to 4 1 1 7 d. Increase the rotation speed to about 2500 rpm.
  • each solution in each quantification tank 4 1 1 4 and 4 1 1 4 ′ is supplied to the reagent reaction tank 4 1 1 6, 4 1 1 6 ′, the number of rotations of the carrier is further increased (5 0 0 0 r pm to 6 0 0 0 r pm).
  • the carrier is caused to rotate alternately up to a predetermined number of rotations over time.
  • the primary color light sources 4 1 3 6 a to 4 1 3 6 c irradiate each reagent reaction tank with laser light, and the light receiving elements 4 1 3 7 a to 4 1 3 7 c receive the transmitted light and absorb the absorbance. Is measured electronically and the concentration of blood components is measured.
  • the first invention enables a simpler and quicker apparatus that can perform signal processing, so that a patient or a healthy person can easily diagnose himself / herself in a place close to his / her life such as a lifestyle-related disease.
  • the first invention makes it possible to spread the diagnosis of lifestyle-related diseases that are a problem in modern society. Therefore, even when measuring various multiple components, electrical processing can be performed accurately, and it can be used for automatic measurement of body fluid components that are small and easy to use at home. Contributes greatly to the realization of equipment. ,
  • optical measurement when a plurality of biological components are measured on a single carrier, optical measurement can be performed easily and stably, so that an automated body fluid component measuring device can be reduced in size and simplified.
  • biochemical analyzers such as blood tests and infection tests can eliminate signal drift and other errors, more accurate biochemical information can be obtained quickly.
  • a faster biochemical analyzer can be constructed.
  • the second invention is smaller and simpler, but has many items. It is possible to measure information on the components in the body that cross, and to propose a detection device for more familiar in-vivo information.
  • biochemical analyzers such as blood tests and infection tests can quickly obtain more accurate biochemical information. it can.

Abstract

This invention provides a biochemical analyzer comprising a carrier having a plurality of reaction sites showing a biochemical reaction and a plurality of reading parts for reading the biochemical reaction. The carrier and the reading parts are disposed so that they are in a mutually movable state and the spacing between the reaction sites on the carrier is different from the spacing between the plurality of reading parts. According to this biochemical analyzer, optical measurement in a plurality of reagent reaction tanks corresponding to a very small amount of body fluid can be realized in a proper and quick manner in a simpler measurement circuit, and a smaller-size and simpler apparatus, which can be put in a place closer to patients or healthy people, for example, in diagnosis of life-style related diseases, can be realized. Obtaining a proper accurate reference points in the measurement of multiple item sample component on a single carrier and obtaining an accurate sample position in the measurement of multiple item sample component on a single carrier can be realized.

Description

生化学分析装置及び生化学分析装置用担体 Biochemical analyzer and carrier for biochemical analyzer
技術分野 Technical field
本発明は、 生化学反応を示す部位を複数有する担体を計測する生 化学分析装置及びそれに使.用する担体に関する。 本発明はまた、 特 明  The present invention relates to a biochemical analyzer for measuring a carrier having a plurality of sites exhibiting a biochemical reaction, and a carrier used therefor. The present invention also provides
に生化学分析装置において有用な、 液体混合方法及び装置に関する 糸 書 背景技術 Background of the Invention Related to Liquid Mixing Methods and Devices Useful in Biochemical Analyzers
今般、 糖尿病、 がん、 脳梗塞など生活習慣にかかわる疾病は、 食 生活、 ス トレス等、 生活上の要件が深くかかわることから、 これら の疾病の早期発見の為に、 血液、 尿などの体液成分を多項目にわた つて迅速に計測でき、 診断できる環境がより身近なところで実現さ れることが希求されている。 また、 この様な体液を分析して診断す る装置は、 特殊な操作をしなくても、 体液成分さえ、 供給すれば在 宅での利用や、 設備がない場所でも、 手軽に短時間で診断可能とな 'る事が好ましい。 '  Recently, diseases related to lifestyle such as diabetes, cancer, and cerebral infarction are closely related to lifestyle requirements such as eating habits, stress, etc. There is a demand for an environment where components can be measured quickly and diagnosed in a number of ways, and where diagnosis is possible. In addition, this type of device that analyzes and diagnoses body fluids can be used at home or in places where there are no facilities. It is preferable to be able to diagnose. '
生体成分計測において、 代表される血液、 尿、 汗等の体液と酵素 試薬とを発色反応させた反応槽に光を照射して、 反射光又は透過光 を受光し、 受光した光を計測して、 吸光度を求めることで、 電解質 項目、 腫瘍マーカー、 感染症項目、 甲状腺項目、 内分泌項目等の免 疫項目、 グルコース、 総コレステロール、. クレアチニン、 低比重リ ポ蛋白質、 総ピリルビン成分濃度を光学的に計測する成分分析装置 では、 複数の試薬反応槽を配列した一つの担体について、 計測を行 う際、 個々の試薬反応槽の発色データについて電気的に認識する必 要がある。 In biological component measurement, light is radiated to a reaction tank in which a body fluid such as blood, urine, sweat, etc., and an enzyme reagent are colored and reacted to receive reflected or transmitted light, and the received light is measured. By obtaining the absorbance, the electrolyte items, tumor markers, infection items, thyroid items, endocrine items, and other immune items, glucose, total cholesterol, In the component analyzer to be measured, it is necessary to electrically recognize the color development data of each reagent reaction tank when measuring a single carrier in which a plurality of reagent reaction tanks are arranged. There is a point.
ところで、 従来の生体成分計測には多くの問題点がある。 例えば 、 生体成分計測において、 代表される血液、 尿、 汗等の体液と酵素 試薬とを発色反応させた反応槽に光を照射して、 反射光又は透過光 を受光し、 受光した光を計測して、 吸光度を求めることで、 ダルコ ース、 総コレステロール、 クレアチニン、 低比重リポ蛋白質、 総ビ リルビン成分濃度を光学的に計測する成分分析装置では、 特開平 5 - 2 0 9 8 3 6号公報で示.すような受光した光を R G Bの三原色光 に分離し、 個々の光 ίこついて吸光度を求める手法や、 予め 3原色に 分離した光を上述した反応槽に照射し、 透過または反射した 3原色 の受光光から吸光度を求めるといった手法が用いられている。  However, there are many problems with conventional biological component measurement. For example, in biological component measurement, light is irradiated to a reaction tank in which a body fluid such as blood, urine, sweat, etc., and an enzyme reagent are colored and reacted to receive reflected or transmitted light, and the received light is measured. In a component analyzer that optically measures the concentration of dalcose, total cholesterol, creatinine, low-density lipoprotein, and total bilirubin component by determining the absorbance, Japanese Patent Application Laid-Open No. 5-2009836 As shown in the official gazette, the received light is separated into RGB three primary colors and the light intensity is obtained from each light, or the reaction tank is irradiated with the light previously separated into the three primary colors and transmitted or reflected. A technique is used in which the absorbance is obtained from the received light of the three primary colors.
この様な光学的計測により複数の成分値をもとめて、 診断情報と して用いる機器に関して、 以下の点を考慮する必要があった。  It was necessary to consider the following points regarding the equipment used as diagnostic information by obtaining multiple component values by such optical measurement.
( 1 ) 複数の試薬反応槽を配列した一つの担体を回転させながら 各反応槽の吸光度が時系列データとして出力されることがある。 こ の場合複数の反応槽を特定するために一周内の基点を正確に検出す る必要がある。 従来はこの基点を機械的、 電気的、 光学的に検出す るための手段を反応槽の吸光度を測定する手段とは別個に設ける必 要があった。  (1) The absorbance of each reaction vessel may be output as time-series data while rotating a single carrier in which a plurality of reagent reaction vessels are arranged. In this case, it is necessary to accurately detect the base point in one circle in order to identify multiple reaction vessels. In the past, it was necessary to provide a means for mechanically, electrically, and optically detecting this base point separately from the means for measuring the absorbance of the reaction vessel.
( 2 ) 生化学分析装置が、 より少量の検体で駆動す.ると共に、 検 体の供給から、 光学的計測までを自動的に行う場合等は、 試薬反応 槽への気泡の混入により、 光学的計測の不安定化等が問題になった  (2) When the biochemical analyzer is driven by a smaller amount of sample, and from the sample supply to the optical measurement automatically, the optical reaction is caused by mixing bubbles in the reagent reaction tank. Destabilization of mechanical measurement became a problem
( 3 ) 光学的計測は、 光路に、 乱反射部分がないほうが好ましく 、 又検体と試薬が反応した部位への有効な光の照射が望まれる。 (3) In optical measurement, it is preferable that there is no irregular reflection part in the optical path, and effective irradiation of light to the site where the specimen and the reagent have reacted is desired.
( 4 ) 少量の検体で、 多項目の生体成分を計測しょうとすると、 個々の項目の計測に用いる検体がより少量となり、 校正される担体 を製造する際の微小な製造誤差、 透過光路中に生じるバリ、 或いは 、 担体又は光学計測ヘッ ドの移動,時における移動誤差、 材質による 光の吸収、 乱反射、 による誤差の影響は、 非常に大きくなる。 (4) When trying to measure multiple components of biological components with a small amount of sample, the amount of sample used to measure each item becomes smaller and the carrier to be calibrated The effects of small manufacturing errors, burrs that occur in the transmission optical path, or movement errors of the carrier or optical measurement head, movement errors at times, light absorption by materials, and diffuse reflections are very large. Become.
なお、 このようなことについては、 上記した特開平 5 — 2 0 9 8 3 6号公報の他、 特表平 1 0 — 5 1 0 3 6 2号公報、 特開平 3 — 2 5 3 5 1号公報、 特開 2 0 0 3 — 2 0 7 4 5 4号公報、 特開平 5 — 2 4 0 8 6 9号公報などにも記載されている。  In addition to this, in addition to the above-mentioned Japanese Laid-Open Patent Publication No. 5-2 0 9 8 3 6, the Japanese National Patent Publication No. 10-0-5 1 0 3 62, Japanese Laid-Open Patent Publication No. 3-2 5 3 5 1 No. 2, Japanese Laid-Open Patent Publication No. 2 0 0 3 —2 0 7 4 5 4, Japanese Laid-Open Patent Publication No. 5 —2 4 0 8 6 9, and the like.
また、 以上に指摘した点についてより具体的に説明すると、 次の 通りである。 ―  The points pointed out above are explained in more detail as follows. -
' 一つの反応槽から同時に複数の光を受光したり、 受光後、 3原色 に分光したり した後、 個々の光に対し光電変換を行ってパラレルな 電気信号を形成すると共にこれらパラレルな信号を、 シリアルな信 号列へ変換するためのマルチプレクサのような回路構成が必要とな る。  '' After receiving multiple lights from one reaction tank at the same time, or after receiving the light and splitting it into the three primary colors, each light is subjected to photoelectric conversion to form parallel electrical signals and these parallel signals Therefore, a circuit configuration such as a multiplexer for converting to a serial signal string is required.
一つの反応槽に、 複数の光を透過する場合、 反応槽の口径が小さ くなると、 光源の位置、 大きさが制限される他、 より精密な集光部 が必要になり、 高価で煩雑さが伴うようになる。  When multiple light beams are transmitted through a single reaction tank, if the diameter of the reaction tank is reduced, the position and size of the light source are limited, and a more precise condensing unit is required, which is expensive and cumbersome. Will come along.
クロック信号を利用する等して得られるタイミング信号を必要と するマルチプレクサの利用は、 反応槽の反応が早い場合にたいし、 最適な時間での切替ができず、 遅延や、 波形に歪みが生じる等、 同 時に必要とする分光信号の全ての正確な信号の検出ができない場合 がある。  Use of a multiplexer that requires a timing signal obtained by using a clock signal, etc. cannot be switched at an optimal time, and delays and distortion occur in the waveform, compared to when the reaction of the reaction vessel is fast. In some cases, it may not be possible to detect all of the spectral signals required at the same time.
また、 この様な処理を施すための回路を付加することは、 装置自 体の煩雑さを増すことになり、 より処理能力の大きいマイコンのよ うな高価な半導体チップを必要とし、 装置自体の大きさ、 価格にも 影響をあたえることとなり、 生活習慣病の診断のよう 、 患者に身 近なところにある装置を実現するためには不向きである。 特表平 1 0 — 5 1 0 3 6 2号公報には、 血液と試薬との反応槽に 水等の基準物質を入れて基準槽とし、 この基準槽を透過する光の波 長に基づいて、 試薬反応槽を透過して得られた光の校正を行う こと が記載されている。 In addition, adding a circuit for performing such processing increases the complexity of the device itself, requires an expensive semiconductor chip such as a microcomputer having a larger processing capability, and the size of the device itself. It also affects the price and is not suitable for realizing a device that is close to the patient, such as diagnosis of lifestyle-related diseases. Japanese National Standard Heisei 1 0-5 1 0 3 6 2 discloses that a reference substance such as water is placed in a reaction tank of blood and a reagent to form a reference tank, and is based on the wavelength of light transmitted through the reference tank. It describes that the light obtained through the reagent reaction tank is calibrated.
特表平 1 0— 5 1 0 3 6 2号公報で示す基準物質の利用は、 体液 と試薬との発色反応の測定に支障になってはならない範囲で、 確実 に検出できるものでなければならず、 又、 保存性にも注意を払わな ければならない場合が多い。  The use of the reference substance shown in the Japanese National Standard Heisei 10-5 1 0 3 6 2 publication must be able to reliably detect the color development reaction between the body fluid and the reagent as long as it does not interfere with the measurement. In addition, it is often necessary to pay attention to preservability.
特開平 3 — 2 5 3 5 1号公報には、 ノズル管状の試薬反応槽に混 入した気泡の検出を透過してきた光を光電変換した後、 微分して検 出することが記載されているが、 より小さな測定面を有する試薬反 応槽であって、 瞬時に移動してしまう形態における光学的検出にお いて、 必要とする測定領域の決定のための手法はなんら記載されて いない。 ' 特開 2 0 0 3— 2 0 7 4 5 4号公報には、 透過光計測のため、 チ ップの面を黒く塗ることが記載されている。  Japanese Patent Application Laid-Open No. 3-25315 1 describes that light that has passed through detection of bubbles mixed in a nozzle-shaped reagent reaction vessel is photoelectrically converted and then differentiated and detected. However, in the optical detection in a reagent reaction tank having a smaller measurement surface and moving instantaneously, there is no description of a method for determining a necessary measurement region. 'Japanese Laid-Open Patent Publication No. 2 0 0 3-2 0 7 4 5 4 describes that the surface of the chip is painted black for measurement of transmitted light.
又、 透過光計測を安定して行うために、 吸光性を有する黒色塗料 を塗る等の工夫が開示されているが、 実際、 透過光計測部位と、 黒 色部位の境界部分での光源からの漏れが問題になる。  In addition, in order to stably measure the transmitted light, a device such as applying a black paint with absorptivity is disclosed, but in fact, the light from the light source at the boundary between the transmitted light measurement part and the black part is disclosed. Leakage becomes a problem.
又、 受光信号に含まれる誤差は正確な成分分析を妨げ、 装置全体 の分析能力を低下させてしまう。  In addition, errors contained in the received light signal prevent accurate component analysis and reduce the overall analysis capability of the device.
さらに加えて、 これらの生化学分析装置において、 試薬との反応 .を有効に且つ効果的に行うためには、 温度を 3 7 °C 38°C前後で 定に保たなければならない。 そのための手法としては、 ニクロム線' 等を利用した電熱器を保温空間上で、 動作させて、 担体そのものを 暖める手段が利用される。  In addition, in these biochemical analyzers, the temperature must be kept constant at around 37 ° C to 38 ° C in order to effectively and effectively react with the reagents. As a technique for that purpose, a means for heating the carrier itself by operating an electric heater using a nichrome wire or the like in a heat insulating space is used.
ところで、 特開 2 0 0 1 — 2 6 4 3 3 7号公報には、 検体と試薬 等が入った多数の容器をターンテーブル上に配列し、 個々の容器に 対しハロゲンランプ等を照射して加熱し、 ターンテーブル上の対向 する部位で加熱した容器を測温することで、 個々の容器内を一定の 温度に維持することが記載されている。 しかし、 容器全体をこのよ うに加熱する手法は、 十分に大きな加熱用のランプを要することと なり、 消費電力が大きくなつてしまう。 By the way, Japanese Patent Application Laid-Open No. 2 0 0 1 — 2 6 4 3 3 7 discloses a sample and a reagent. By arranging a number of containers with etc. on the turntable, irradiating each container with a halogen lamp etc. and heating it, and measuring the temperature of the heated container at the opposite part on the turntable, It is described that the container is maintained at a constant temperature. However, this method of heating the entire container requires a sufficiently large heating lamp, which increases power consumption.
また、 これらの生化学分析装置において、 口一夕状又はシート状 の担体に、 流路を形成して微量定量した検体の検查を行う担体は、 より微量な検体を利用し、 微小な空間で均一に混合しなければなら ないことから、 単に液体と固体を混ぜただけでは容易には混ざらな い場合が多く、 何らかの撹拌構成が必要である。 又、 希釈液の安定 保存と、 外部への漏れ出しの防止を図ったりする必要がある。 更に 、 検体の漏れだし等を防止するため担体と読み取り装置との機械的 結合の簡易さが希求される。 '  Further, in these biochemical analyzers, a carrier that detects a minute amount of a sample by forming a channel on a mouth or sheet-like carrier uses a smaller amount of sample, and has a minute space. Therefore, it is often not easy to mix liquid and solid by simply mixing them, and some kind of stirring configuration is required. In addition, it is necessary to store the diluted solution stably and prevent leakage to the outside. Furthermore, in order to prevent the specimen from leaking out, it is desired to simplify the mechanical coupling between the carrier and the reading device. '
ところで、 米国特許第 5 , 1 6 0 , 7 0 2号明細書及び特表平 1 0 — 5 0 1 3 4 0号公報には、 何れも円盤状の体液分析装置が記載 され、 毛管力、 遠心力を駆使して、 血球分離、 定量希釈、 定量分配 を行い複数の試薬反応槽に血漿成分を定量供給して発色反応させ、 外部から個々の発色値を計測し、 その計測値から成分の分析を行う ことが記載されている。  By the way, in US Pat. Nos. 5, 1600, 702, and JP 10-0500 1340, both of them describe a disk-shaped body fluid analyzer, and the capillary force, Using centrifugal force, blood cell separation, quantitative dilution, and quantitative distribution are performed, and plasma components are quantitatively supplied to multiple reagent reaction tanks to cause color reactions, and individual color values are measured externally. The analysis is described as being performed.
また、 特表平 7 — 5 0 3 7 9 4号公報には、 中心部に、 希釈容器 を配置し、 ロー夕を固定する芯材にロータが装着される際に生じる ずれを利用して希釈容器を破壌する構成が記載されている。  In addition, JP 7-0500 7 9 4 discloses that a dilution container is arranged in the center, and dilution is performed by utilizing a deviation that occurs when the rotor is mounted on the core material that fixes the low angle. A configuration for breaking the container is described.
さらに、 米国特許第 5 , 1 6 0 , 7 0 2号明細書には、 ロータと 回転装置の接続構成、 チヤッキング構成が記載されている。  Further, U.S. Pat. No. 5,160,702 describes a connection configuration and a chucking configuration between a rotor and a rotating device.
しかし、 これらの特許文献に記載されている手法は、 より頑強な 結合を図るべく、 複雑な構成を採るなど、 シンプルな構成とは言い 難い。 However, the methods described in these patent documents are not simple configurations, such as adopting a complicated configuration in order to achieve a more robust connection. hard.
さらに、 体液の採取量を減らすことで患者の負担を軽減させるこ とは、 病院等の医療施設はもちろん、 在宅における診断においては 重要な要素である。 少量の検体により計測が可能となれば、 計測の 為の担体も小さくなると共に分析装置もより小型化されていくので ある。  Furthermore, reducing the burden on patients by reducing the amount of collected body fluid is an important factor in diagnosis at home as well as in medical facilities such as hospitals. If measurement is possible with a small amount of sample, the carrier for measurement becomes smaller and the analyzer becomes smaller.
今般、 インタ一ネッ ト等汎用タイプの公衆ネッ トワークを通信手 段として利用し、 自己採血による健康チェックを行う病院、 機関、 団体が増えてきた。 インターネッ トにより、 わかりやすく血液採取 搬送工程が説明された上で、 自ら採血し、 これを病院へ搬送して血 液成分、 体液成分を計測してもらいことができ、 よって、 簡便に健 康のチェックをすることができるからである。 しかしながら、 実際 の血液の搬送を含むシステムは、 予め保冷環境を整えなければなら ない等、 手間がかかり、 極めて煩雑な作業が必要である。  Recently, an increasing number of hospitals, institutions, and organizations use a general-purpose public network such as the Internet as a means of communication to perform health checks through self-collection. The Internet explains the blood collection and transportation process in an easy-to-understand manner, and then collects blood by itself and transports it to the hospital for measurement of blood and body fluid components. This is because it can be checked. However, the system including actual blood transport is time-consuming and extremely complicated because it is necessary to prepare a cold storage environment in advance.
在宅を含めた医療における体液分析の状況において、 希求される 体液分析のシステムの簡素化、 診断の簡便化、 迅速化は、 体液採取 の少量化を促す方向へ向かいつつある。 なお、 このような手法に関 しては、 例えば、 特表 2 0 0 1 ^ 5 1 0 5 6 8号公報、 特開 2 0 0 1 — 1 6 5 9 3 9号公報、 特開„平 9一 4 7 5 9 3 2号公報などを参 照されたい。  In the situation of body fluid analysis in medical treatment, including at home, simplification of the body fluid analysis system, simplification of diagnosis, and speeding up are required to promote the reduction of body fluid collection. Regarding such a method, for example, JP 2 0 0 1 ^ 5 1 0 5 6 8, JP 2 0 0 1 — 1 6 5 9 3 9, JP 9 1 4 7 5 9 3 Please refer to gazettes.
検体の少量化は、 患者にとって、 又、 採取者にとって好ましいこ とではあり、 そのことによる担体、 分析装置の小型化は、 在宅、 野 外での使用など幅広い利用が可能となるが、 少量の検体と、 試薬な どの固体を混合するための空間がより狭くなる環境では、 撹袢操作 が困難なばかりか粘性、 毛管力、 静電気等、 いままであまり問題視 されていなかった作用に対する対応が必要となる。 特に試薬等の固 体と血漿のような液体を混合する場合は、 比重の差が大きく、 困難 である。 Miniaturization of specimens is preferable for patients and collectors, and the miniaturization of carriers and analyzers that can be used in a wide range of applications at home and outdoors. In an environment where the space for mixing solids such as specimens and reagents is narrower, it is difficult to perform stirring operations, and it is necessary to deal with actions that have not been regarded as problematic so far, such as viscosity, capillary force, static electricity, etc. It becomes. Especially when mixing solids such as reagents and liquids such as plasma, the difference in specific gravity is large and difficult. It is.
又、 化学反応に酸素が必要な場合等も、 反応空間が狭く しかも、 光学的計測をその空間で行う場合においては、 酸素の供給方法が課 題となる。 発明の開示  Also, when oxygen is required for a chemical reaction, the reaction space is narrow, and when optical measurement is performed in that space, the oxygen supply method becomes a problem. Disclosure of the invention
以上のような従来技術の問題点や課題に鑑みて、 本発明が完成さ れた。 本発明は、 概略すると、 次のような 4発明に分類することが できる。  The present invention has been completed in view of the problems and problems of the prior art as described above. The present invention can be roughly classified into the following four inventions.
索 1 の発明 : Invention of cord 1
第 1 の発明は、  The first invention is
( 1 ) 生化学的反応を示す反応部位を複数有する担体、 前記生化 学的反 を読み取る為の複数の読み取り部、 及び前記担体と前記読 み取り部とは互いに可動状態を有し、 前記担体上の反応部位間の間 隔と前記複数の読み取り部間の間隔が異なるような組み合わせ構成 とすることで、 構成が簡単でしかも、 計測処理の向上を実現する。  (1) a carrier having a plurality of reaction sites exhibiting a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other, and the carrier By adopting a combination configuration in which the interval between the reaction sites and the interval between the plurality of reading units are different, the configuration is simple and the measurement process is improved.
( 2 ) 基点検出手段を別個に設けることなく反応槽の吸光度を測 定する手段を用いて担体上の基点を抽出ずるための特別な識別槽の 形状を規定し、 それを確実に抽出するためのアルゴリズムを提供す る. すなわち生化学的反応を示す反応部位を複数有する担体、 前記 生化学的反応を読み取る為の読み取り手段、 所定の時間において前 記情報を検出する検出手段、 前記検出手段で得られた情報を所定時 間、 所定数だけ演算する演算手段、 前記演算手段から出力された信 号から基準となる部位を判定する判定手段よりなる組み合わせ構成 により、 試薬反'応槽における光学的情報と混同することなくより確 実な基準位置 検出することを可能とする。  (2) To define the shape of a special identification tank for extracting the base point on the carrier using means for measuring the absorbance of the reaction tank without providing a separate base point detection means, and to extract it reliably. In other words, a carrier having a plurality of reaction sites showing a biochemical reaction, a reading means for reading the biochemical reaction, a detecting means for detecting the information at a predetermined time, and the detecting means An optical unit in the reagent reaction tank has a combined configuration including a calculation unit that calculates a predetermined number of the obtained information for a predetermined time and a determination unit that determines a reference part from the signal output from the calculation unit. This makes it possible to detect a more accurate reference position without being confused with information.
( 3 ) 生化学的信号を変化量を示す信号に変換する変化量変換手 段、 前記変化量変換手段で得られた信号から測定範囲を決定する測 定範囲決定手段の組み合わせ構成により、 複数の試薬反応槽が、 所 定の速度で移動し、 複数個の試薬反応槽が、 一定間隔毎に計測され る場合、 有効な測定領域を、 瞬時に判断でき、 効率の良い成分測定 が可能となる。 (3) A change amount converter that converts biochemical signals into signals indicating the amount of change. The combination of the measurement range determination means for determining the measurement range from the signal obtained by the change amount conversion means allows a plurality of reagent reaction vessels to move at a predetermined speed, so that the plurality of reagent reaction vessels When measured at regular intervals, the effective measurement area can be determined instantaneously, enabling efficient component measurement.
( 4 ) 試薬反応槽を具えた透光性部材からなる担体、 検体を供給 した前記試薬反応槽に対し外部から測定光を照射し、 試薬反応槽を 介して得られた光を受光して検体成分を測定する生化学分析装置に おいて、 前記試薬反応槽に対する測定光を照射する照射面方向に、 定窓を設けた光を吸収する吸収部材を配置し、 前記測定窓の面積 が前記試薬反応槽の測定光照射面の面積より小さくすることで、 試 薬反応槽以外の部位から光が漏れることを防止し、 誤差の少ない計 測領域を確保することを可能とする。  (4) A carrier comprising a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive the sample. In a biochemical analyzer for measuring a component, an absorbing member that absorbs light having a constant window is disposed in a direction of an irradiation surface that irradiates measurement light to the reagent reaction tank, and the area of the measurement window is the reagent. By making it smaller than the area of the measurement light irradiation surface of the reaction tank, it is possible to prevent light from leaking from parts other than the reagent reaction tank and to secure a measurement area with few errors.
( 5 ) 試薬反応槽を具えた透光性部材からなる担体、 検体を供給 した前記試薬反応槽に対し外部から測定光を照射し、 試薬反応槽を 介して得られた光を受光して検体成分を測定する生化学分析装置に おいて、 前記担体に透過計測のための基準部位を設けることにより 、 受光信号に混入される電気回路に起因する又は、 担体の製造むら に起因する信号のドリフ トを解消し、 正確なデータを得ることを可 能とする。  (5) A carrier composed of a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive the sample. In a biochemical analyzer for measuring a component, by providing a reference portion for permeation measurement in the carrier, signal drift caused by an electric circuit mixed in a received light signal or due to uneven manufacturing of the carrier This makes it possible to obtain accurate data.
ここで、 本発明を要約すると、 次の通りである。 ,  Here, the present invention is summarized as follows. ,
1 . 生化学的反応を示す反応部位を複数有する担体、 前記生化学 的反応を読み取る為の複数の読み取り部、 及び前記担体と前記読み 取り部とは互いに可動状態を有し、 前記担体上の反応部位間の間隔 と前記複数の読み取り部間め間隔が異なるように配置された生化学 分析装置。  1. a carrier having a plurality of reaction sites showing a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other, and on the carrier A biochemical analyzer arranged such that an interval between reaction sites is different from an interval between the plurality of reading units.
2 . 前記読み取り部間の間隔は、 前記担体上の反応部位間の間隔 の整数倍した間隔と異なる上記 1 に記載の生化学分析装置。 2. The interval between the reading sections is the interval between reaction sites on the carrier. The biochemical analyzer according to 1 above, which is different from an interval multiplied by an integer.
3 . 前記反応部位が、 血液、 尿等の体液を成分に応じて発色反応 させる部位である上記 1 に記載の生化学分析装置。  3. The biochemical analyzer according to 1 above, wherein the reaction site is a site that causes a color reaction of a body fluid such as blood or urine according to a component.
4 . 前記担体は円盤状であって、 前記反応部位が外周に等間隔に 配置されている上記 1 に記載の生化学分析装置。  4. The biochemical analyzer according to 1 above, wherein the carrier has a disk shape, and the reaction sites are arranged on the outer periphery at equal intervals.
5 . 生化学的反応を示す反応部位を複数有する担体、 前記担体の 複数の反応部位から生化学的反応情報を得る為の生化学反応情報取 得手段、 所定の時間において前記生化学反応情報取得手段から得ら れた生化学反応情報を検出す'る検出手段、 前記検出手段で得られた 情報を所定時間、 所定数だけ演算する演算手段、 前記演算手段から 出力された信号から基準となる部位を判定する判定手段よりなる生 化学分析装置。  5. A carrier having a plurality of reaction sites showing a biochemical reaction, biochemical reaction information acquisition means for obtaining biochemical reaction information from a plurality of reaction sites of the carrier, and acquiring the biochemical reaction information at a predetermined time Detecting means for detecting biochemical reaction information obtained from the means; computing means for computing a predetermined number of information obtained by the detecting means for a predetermined period of time; serving as a reference from a signal output from the computing means A biochemical analyzer consisting of judging means for judging the part.
6 . 前記生化学反応情報取得手段で得られた情報を一時的に記憶 する記憶部を具え、 基準となる部位を判定する際、 前記記憶部から 、 データを読み取り判定する上記 5 に記載の生化学分析装置。  6. A storage unit that temporarily stores information obtained by the biochemical reaction information acquisition unit is provided, and when determining a reference site, data is read from the storage unit for determination. Chemical analyzer.
. 7 . 前記反応部位は、 軌道を有した状態で配列され、 その一部に スリ ッ トを含む、 非吸光性領域を基準領域とする上記 5に記載の生 化学分析装置。 7. The biochemical analyzer according to 5 above, wherein the reaction site is arranged in a state having an orbit, and includes a slit in a part thereof, and the non-light-absorbing region is a reference region.
8 . 前記所定の時間が、 中心時間に対し、 先後所定の時間である 上記 5に記載の生化学分析装置。  8. The biochemical analyzer according to 5 above, wherein the predetermined time is a predetermined time ahead of the central time.
9 . 前記読み取られた情報が、 試薬と体液の発色反応に係る電気 信号である上記 5に記載の生化学分析装置。  9. The biochemical analyzer according to 5 above, wherein the read information is an electrical signal relating to a color reaction between a reagent and a body fluid.
1 0 . 生化学的信号を変化量を示す信号に変換する変化量変換手 段、 前記変化量変換手段で得られた信号から測定範囲を決定する測 定範囲決定手段を有する生化学分析装置。  10. A biochemical analyzer having a change amount conversion means for converting a biochemical signal into a signal indicating a change amount, and a measurement range determination means for determining a measurement range from the signal obtained by the change amount conversion means.
1 1 . 前記変化量を示す信号が微分信号である上記 1 0 に記載の 生化学分析装置。 1 2 . 前記測定範囲が、 前記変化量を示す信号のピーク間である 上記 1 0に記載の生化学分析手段。 1 1. The biochemical analyzer according to 1 0, wherein the signal indicating the amount of change is a differential signal. 1 2. The biochemical analysis means according to 10, wherein the measurement range is between peaks of the signal indicating the amount of change.
1 3 . 前記生化学的信号が、 試薬と検体の発色反応を行う試薬反 応槽を等間隔で、 複数配列した担体であって、 試薬反応槽に、 外部 から測定光を照射し、 反射乃至透過した光を計測して生化学成分を 計測する上記 1 0 に記載の生化学分析装置。  1 3. The biochemical signal is a carrier in which a plurality of reagent reaction tanks that perform a color reaction between a reagent and a specimen are arranged at equal intervals, and the reagent reaction tank is irradiated with measurement light from the outside to be reflected or reflected. 10. The biochemical analyzer according to the above item 10, which measures biochemical components by measuring transmitted light.
1 4 . 複数の試薬反応槽が同一軌道上に配列された担体、 前記試 薬反応槽に対し光学的に成分計測する計測ュニッ トを具え、 前記計 測ユニッ トと担体が相対的に移動することで、 個々の前記試薬反応 槽内の 分を計測する生化学分析装置である上記 1 0に記載の生化 学分析装置。  1 4. A carrier in which a plurality of reagent reaction vessels are arranged on the same orbit, a measurement unit for optically measuring the components in the reagent reaction vessel, and the measurement unit and the carrier move relatively. The biochemical analyzer according to the above 10, which is a biochemical analyzer that measures the amount in each of the reagent reaction tanks.
1 5 , 試薬反応槽の部位を検出する試薬反応槽検出手段、 前記試 薬反応槽検出手段で検出された部位の間隔が、 所定以上の間隔であ る場合.、 前記間隔を予測間隔で除した値一 1力 以上の場合、 所定 間隔を試薬反応槽の部位と決定する試薬反応槽部位決定手段を更に 有する上記 1 4に記載の生化学分析装置。  1 5, a reagent reaction tank detection means for detecting a part of the reagent reaction tank, and an interval of the parts detected by the reagent reaction tank detection means is a predetermined interval or more. 15. The biochemical analyzer according to 14 above, further comprising reagent reaction vessel site determination means for determining a predetermined interval as a site of the reagent reaction vessel when the measured value is 11 force or more.
1 6 . 試薬反応槽を具えた透光性部材からなる担体、 検体を供給 した前記試薬 応槽に対し外部から測定光を照射し、 試薬反応槽を 介して得られた光を受光して検体成分を測定する'生化学分析装置に おいて、 前記試薬反応.槽に対する測定光を照射する照射面方向に、 測定窓を設けた光を吸収する膜、 印刷面、 塗装面等の吸光部材を配 置し、 前記測定窓の面積が前記試薬反応槽の測定光照射面の面積よ り小さい生化学分析装置。  1 6. A carrier composed of a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive the sample. In a biochemical analyzer that measures components, the reagent reaction. Absorbing members such as a film that absorbs light, a printed surface, and a painted surface are provided in the direction of the irradiation surface that irradiates measurement light to the tank. A biochemical analyzer that is disposed and has an area of the measurement window smaller than an area of the measurement light irradiation surface of the reagent reaction tank.
1 7 . 前記測定窓の面積は、 試薬反応槽の照射面の面積より小さ く して上記反応層の中心部分のみを測定光が通過するようにした上 記 1 6に記載の生化学分析装置。  17. The biochemical analyzer according to claim 16, wherein the area of the measurement window is smaller than the area of the irradiation surface of the reagent reaction tank so that the measurement light passes only through the central portion of the reaction layer. .
1 8 . 前記測定窓が凹状に形成されている上記 1 6に記載の生化 学分析装置。 1 8. Biomass according to 16 above, wherein the measurement window is formed in a concave shape. Scientific analysis equipment.
1 9 . 複数の試薬反応槽を具えた透光性部材からなる担体、 検体 を供給した前記試薬反応槽に対し外部から相対的移動によつて測定 光を照射し、 測定光の軌道上に配列した試薬反応槽を介して得られ た光を受光して検体成分を測定する生化学分析装置において、 前記 担体に透過計測のための基準部位を設ける生化学分析装置。  1 9. A carrier consisting of a translucent member having a plurality of reagent reaction vessels, and the reagent reaction vessel to which the sample is supplied is irradiated with measurement light from the outside by relative movement, and is arranged on the orbit of the measurement light. A biochemical analyzer that receives light obtained through a reagent reaction tank and measures a sample component, wherein the carrier is provided with a reference site for permeation measurement.
2 0 . 前記基準部位が、 黒色面、 貫通孔、'基準液体槽、 空の試薬 反応槽、 希釈液槽、 測定検体(血漿等)のみ、 封入された槽の何れか 1又は複数である上記 1 9に記載の生化学分析装置。  2 0. The above, wherein the reference region is one or more of a black surface, a through-hole, a 'reference liquid tank, an empty reagent reaction tank, a dilution liquid tank, a measurement sample (plasma, etc.), and a sealed tank. 19 The biochemical analyzer according to 9.
' 2 1 . 前記基準部位が黒色であって、 前記黒色の際の受光信号に 基づいて、 オフセッ ト校正を行う校正手段を更に設ける上記 1 9 に 記載の生化学分析装置。  21. The biochemical analyzer according to 19 above, further comprising calibration means for performing offset calibration based on a light reception signal when the reference site is black.
以下の詳細な説明から容易に理解できるように、 本発明は、 特殊 な回路構成を必要とすることなく、 分光的に得られる発色信号を混 合するだけで、 入力電気信号が形成でき、 しかも読み取りは、 回転 数、 配列位置からタイミングをとるだけで、 個々の分光データを得 ることができるこ.とから、 より簡単な構成でありなが.ら、 迅速な信 号処理ができる等の効果を有する。 - 本発明は、 試薬反応槽の配列中に、 特定の形状の貫通孔を設ける だけで、 担体上に所定の基準位置を設定することができることから 、 多項目の体液成分を計測する担体をより簡素化できると共に、 正 確な基準位置が検出できる。  As can be easily understood from the following detailed description, the present invention can form an input electric signal by simply mixing a color signal obtained spectroscopically without requiring a special circuit configuration. Reading can obtain individual spectroscopic data just by taking the timing from the rotation speed and array position, and therefore, it is possible to perform rapid signal processing, etc., although it has a simpler configuration. Has an effect. -In the present invention, a predetermined reference position can be set on a carrier simply by providing a through hole having a specific shape in the arrangement of reagent reaction vessels. In addition to simplification, an accurate reference position can be detected.
本発明は、 複数の試薬反応槽内の発色反応を、 経時的に光学的に 連続して計測する場合、 微分信号に基づいた正確な測定領域の把握 により、 より迅速に多項目に渡る生化学成分を計測可能とする。 本発明は、 より小さい試薬反応槽でも安定した光学測定を可能と し、 自動的で簡易的な生化学成分測定を可能とする。 第 2 の発明 : In the present invention, when the color development reactions in a plurality of reagent reaction vessels are optically continuously measured over time, the biochemistry over multiple items can be performed more quickly by grasping the accurate measurement region based on the differential signal. The component can be measured. The present invention enables stable optical measurement even in smaller reagent reaction vessels, and enables automatic and simple biochemical component measurement. Second invention:
第 2の発明は、 回転する担体の一面の一部を加温する加温手段、 前記加温手段の部位と対向する部位を測温する測温手段、 前記測温 手段で測温した温度に基づいて、 前記加温手段の加温量を調節制御 する制御手段なる組み合わせ構成により、 より消費電力の少ない加 熱手段を用いながら、 的確な温度制御を可能とする。  According to a second aspect of the present invention, there is provided a heating means for heating a part of one surface of the rotating carrier, a temperature measuring means for measuring a portion facing the portion of the heating means, and a temperature measured by the temperature measuring means. On the basis of this, the combined configuration of the control means for adjusting and controlling the heating amount of the heating means enables accurate temperature control while using the heating means with less power consumption.
ここで、 本発明を要約すると、 次の通りである。  Here, the present invention is summarized as follows.
1 . 担体の一部を加温する加温手段、 前記加温手段の部位と対向 する部位を測温する測温手段、 前記測温手段で測温した温度に基づ いて、 前記加温手段の加温量を調節制御する制御手段よりなる生化 学分析装置。 '  1. a heating means for heating a part of the carrier, a temperature measuring means for measuring a portion facing the portion of the heating means, and the heating means based on the temperature measured by the temperature measuring means A biochemical analyzer consisting of a control means that adjusts and controls the amount of heating. '
2 . 前記担体の他面に吸熱部材を配置してなる上記 1 に記載の生 化学分析装置。  2. The biochemical analyzer according to 1 above, wherein an endothermic member is disposed on the other surface of the carrier.
3 . 前記加温手段がハロゲンランプょりなる上記 1 に記載の生化 学分析装置。  3. The biochemical analyzer according to 1 above, wherein the heating means is a halogen lamp.
4 . 前記担体は、 規則性を有する運動を行う上記 1 に記載の生化 学分析装置。  4. The biochemical analyzer according to 1 above, wherein the carrier performs exercise having regularity.
5 . 担体の一部を加温する加温手段、 前記担体の表面を測温する 測温手段、 前記測温手段で測温した温度に基づいて、 前記加温手段 の加温量を調節制御する制御手段よりなり前記加温手段による加温 と、 前記測温手段を異なるタイミングで行う生化学分析装置。  5. A heating means for heating a part of the carrier, a temperature measuring means for measuring the surface of the carrier, and a heating amount of the heating means is adjusted and controlled based on the temperature measured by the temperature measuring means. A biochemical analyzer comprising: control means for performing heating by the heating means; and performing the temperature measurement means at different timings.
以下の詳細な説明から容易に理.解できるように、 本発明は、 より コンパク トで、 より多項目の体液成分を測定できる体液分析装置に おいて、 更に電気エネルギーの消費をより低減させることを可能と し、 消費電力の低下と、 小型化を図る。  As can be easily understood from the following detailed description, the present invention can further reduce the consumption of electric energy in a body fluid analyzer that can measure body fluid components in a more compact and multi-functional manner. To reduce power consumption and reduce size.
第 3 の発明 : Third invention:
第 3 の発明は、 ( 1 ) 検体を供給した後、 これを加工操作して、 複数の検査を行 うための状態に配置する担体において、 前記検体を希釈する為の希 釈部材を担体内に上下可動に配置し、 前記希釈部材が下方向に移動 したとき、 希釈部材の下方向に開口状態を形成するための開口部材 を配置することで、 未使用時の希釈液の漏れを防ぎながら、 担体上 での希釈液の安定的保存を実現する。 The third invention is (1) After supplying the specimen, the carrier is arranged to be processed to perform a plurality of examinations, and a dilution member for diluting the specimen is arranged vertically movable in the carrier. When the diluting member moves downward, the diluting member is arranged on the lower side of the diluting member to prevent the leakage of diluting liquid when not in use. Realizes stable storage of liquids.
( 2 ) 検体を供給した後、 これを加工操作して、 複数の検査を行 うための状態に配置する担体の側面、 上面又は底面のうち、 いずれ か一面又は複数面に対しその一部、 又は全部が連続した凹凸を形成 してなる環状凹凸部材、 前記環状凹凸部材に接触する際、 前記担体 の撹拌を要する部位に振動を与える振動用部材の組み合わせ構成に より、 簡単な操作で担体に振動を与えることで、 試薬と検体との混 合を充分に行う ことを可能とする。  (2) After supplying the specimen, it is processed and processed, and a part of one or more of the side, top, or bottom of the carrier placed in a state for performing a plurality of tests, Alternatively, an annular concavo-convex member formed entirely of continuous concavo-convex portions, and a combination of a vibration member that vibrates a portion requiring stirring of the carrier when contacting the annular concavo-convex member. By applying vibration, it is possible to mix the reagent and specimen sufficiently.
( 3 ) 検体を供給した後、 これを加工操作して、 複数の検査を行 うための状態に配置する担体において、 前記担体内に収.容された撹 拌を要する部位内に、 前記担体の回転によって内側方向へ変形する 撹拌部材ょりなる組み合わせ構成により、- 遠心力だけで、 試薬と検 体の十分な混合を実現する。  (3) After supplying the specimen, the carrier is processed and arranged in a state for performing a plurality of examinations. The carrier is contained in the carrier and contained in the portion requiring stirring. Due to the combined structure of stirring members that are deformed inward by the rotation of-, sufficient mixing of the reagent and the sample is achieved with only centrifugal force.
' ( 4 ) 検体を供給した後、 加工操作して'、 複数の検査を行うため の状態に配置する担.体、 前記担体を回転させるための回転体、 前記 担体の裏.面の前記回転体と接触する部位に配置された金属部材、 前 記回転体と前記担体との接触面を形成する摩擦部材、 前記金属部材 に対し磁力的結合を非接触的に与える磁性部材を有する構成により 、 回転体上に担体を簡単に装着できながら、 両者の結合は強く、 取 り外しも手軽に行えるようなチヤッキング構成を実現する。  '(4) After supplying the specimen, process it' and place it in a state for performing a plurality of examinations.Rotating body for rotating the carrier, The rotation of the back surface of the carrier A metal member disposed at a site in contact with the body; a friction member that forms a contact surface between the rotating body and the carrier; and a magnetic member that provides magnetic coupling to the metal member in a non-contact manner. While the carrier can be easily mounted on the rotating body, the coupling between the two is strong, and a chucking configuration that can be easily removed is realized.
ここで、 本発明を要約すると、 次の通りである。  Here, the present invention is summarized as follows.
1 . 検体を供給した後、 加工操作して、 複数の検査を行うための 状態に配置する担体において、 前記検体を希釈する為の希釈部材を 担体内に上下可動に配置し、 前記希釈部材が下方向に移動したとき 、 希釈部材の下方向に開口状態を形成するための開口部材を配置し てなる生化学分析装置用担体。 1. After supplying the sample, it is necessary to process it and perform multiple tests. In the carrier arranged in a state, a dilution member for diluting the specimen is arranged vertically movable in the carrier, and when the dilution member moves downward, an opening state is formed in the downward direction of the dilution member. A carrier for a biochemical analyzer comprising an opening member.
2 . 前記希釈部材は、 蛇腹状等の押圧可能なシ一ト部剤を介して 担体内に収容されている上記 1 に記載の生化学分析装置用担体。  2. The biochemical analyzer carrier according to 1 above, wherein the diluting member is housed in the carrier via a pressable sheet member such as a bellows.
3 . 前記希釈部材は、 希釈液を収容したカップ部材の開口面を薄 膜シートで覆う構成を有し、 前記開口部材は、 前記薄膜シートを穿 剌可能な穿刺具で形成される生化学分析装置用担体。  3. The dilution member has a configuration in which an opening surface of a cup member containing a diluent is covered with a thin film sheet, and the opening member is formed by a biochemical analysis formed by a puncture device capable of puncturing the thin film sheet. Device carrier.
' 4 . 検体を供給した後、 加工操作して、 複数の検査を行うための 状態に配置する担体の側面、 上面又は底面のうち、 いずれか一面又 は複数面に対しその一部、 又は全部が連続した凹凸を形成してなる 環状凹凸部材、 前記環状凹凸部材に接触して、 前記担体の撹拌を要 する部位に振動を与える振動用部材よりなる生化学分析装置。  '4. After supplying the specimen, process it and place it in a state for performing multiple tests. One or all of the side, top, or bottom of the carrier are placed on the side, top, or bottom. A biochemical analyzer comprising: an annular concavo-convex member formed by forming continuous concavo-convex portions; and a vibration member that contacts the annular concavo-convex member and vibrates a portion requiring stirring of the carrier.
5 . 検体を供給した後、 加工操作して、 複数の検査を行うための 状態に配置する担体において、 前記担体内に収容された撹拌を要す る部位内に、 前記担体の回転によって内側方向へ変形する撹拌部材 よりなる生化学分析装置。 . .  5. In a carrier placed in a state for performing a plurality of examinations by supplying a specimen after supplying a specimen, the carrier is accommodated in a portion of the carrier that requires stirring, and is rotated inward by rotation of the carrier. Biochemical analyzer consisting of a stirring member that transforms into ..
6 . 検体を供給した後、 加工操作して、 複数の検査を行うための 状態に配脣する担体、 前記担体を回転させるための回転体、 前記担 体の裏面の前記回転体と接触する部位に配置された金属部材、 前記 回転体と前記担体との接触面を形成する摩擦部材、 前記金属部材に 対し磁力的結合を非接触的に与える磁性部材を有する生化学分析装 置。  6. After supplying the specimen, a processing operation is performed and a carrier arranged in a state for performing a plurality of examinations, a rotating body for rotating the carrier, and a part in contact with the rotating body on the back surface of the supporting body A biochemical analysis apparatus comprising: a metal member disposed on the surface; a friction member that forms a contact surface between the rotating body and the carrier; and a magnetic member that provides magnetic coupling to the metal member in a non-contact manner.
7 . 前記担体と、 前記回転体との水平接触面が前記回転体上に設 けられた摩擦部材と前記担体の底面である上記 6に記載の生化学分 析装置。 8 . 前記金属部材は、 前記担体の底面に埋め込まれている上記 6 に記載の生化学分析装置。 7. The biochemical analyzer according to 6 above, wherein a horizontal contact surface between the carrier and the rotating body is a friction member provided on the rotating body and a bottom surface of the carrier. 8. The biochemical analyzer according to 6 above, wherein the metal member is embedded in a bottom surface of the carrier.
以下の詳細な説明から容易に理解できるように、 本発明は、 希釈 液の保存性を確保しながら、 その取り扱いを容易にすることができ 、 また、 簡易な手法で、 検体と試料の撹拌を容易に行い、 また担体 と、 操作装置との接続を容易に行いながら、 強固な結合が行われる 等の効果を有することから一枚の担体上で微量な検体から、 多項目 の成分検査を行う際、 手軽で、 簡易な担体を構成可能とする。  As can be easily understood from the following detailed description, the present invention can facilitate the handling of the diluent while ensuring the storage stability of the diluted solution. In addition, the sample and the sample can be agitated by a simple method. Easily connect the carrier and the operating device, while having the effect of strong coupling, etc., so that multiple components can be tested from a small amount of sample on a single carrier. In this case, it is possible to construct a simple and simple carrier.
第 4の発明 : Fourth invention:
' 第 4の発明は、 異なる物質を混合する際、 比較的短時間では遠心 分離が起こらず、 かつ、 必要な加速度を所定時間与えられるような 回転数まで経時的に増加させた後、 反対方向に比較的短時間では遠 心分離が起こらず、 かつ、 必要な加速度を所定時間与えられるよう な回転数まで経時的に増加させ、 これを繰り返すことで、 比重の差 が大きいもの同士であっても容易に混合できることを実現した。  '' In the fourth invention, when mixing different substances, the centrifugal force does not occur in a relatively short time, and the necessary acceleration is increased over time to a given time, and then the opposite direction is reached. In a relatively short period of time, separation of the center does not occur, and the necessary acceleration is increased over time to a given time, and this is repeated until the difference in specific gravity is large. Also realized easy mixing.
尚、 本発明は、 混合しょう とする微小空間内の液体に一方向又は 、 交番的に他の方向への周期的に、 断続的に加速度を与えられれば 良く、 その為の微小空間を有する担体に対する駆動は、 回転駆動、 直線駆動、 ふり こ駆'動等も利用可能である。 · ' 更に本発明は、 回転体上で、 外周縁部方向に配置した比重の異な る物質を混合し、 その結果を測定する測定部、 前記測定部に定量検 体を供給するための.定量部、 前記定量部に検体を供給する流路であ つて円周方向に延びた定量供給流路、 円周方向にのびた有限の第 1 回収流路と第 2回収流路を設け、 前記第 1回収流路と、 前記第 2回 収流路を結ぶ連結流路によってなり前記定量供給流路と接続し余剰 検体を回収する回収部を設けることにより、 様々な回転、 移動を行 う担体上で、 測定対象となる溶液や余剰分の検体溶液等を他の構成 に漏れ出すことなく独立させることを実現した。 In the present invention, it is sufficient that the liquid in the minute space to be mixed is given acceleration in one direction or alternately in the other direction periodically and intermittently. Rotational drive, linear drive, furiko drive, etc. can be used. Furthermore, the present invention is a method for mixing substances having different specific gravities arranged in the direction of the outer peripheral edge on the rotating body, and for supplying the quantitative sample to the measurement unit for measuring the result. A quantification supply channel extending in the circumferential direction, a finite first recovery channel extending in the circumferential direction, and a second recovery channel extending in the circumferential direction. On a carrier that performs various rotations and movements by providing a recovery channel that consists of a recovery channel and a connecting channel that connects the second recovery channel and that connects to the quantitative supply channel and recovers surplus samples. , The solution to be measured and the extra sample solution, etc. It was realized to be independent without leaking.
更に本発明は、 光学計測を行う部位であって、 試薬と検体との混 合を行う部位において、 回転体の中心方向に空気溜を形成すること で、 透過光等による光学的計測に支障なく、 しかも酸素を必要とす る反応にも充分対応できる担体を実現した。  Furthermore, the present invention is a part for optical measurement, and in the part where the reagent and the sample are mixed, an air reservoir is formed in the central direction of the rotating body, so that optical measurement using transmitted light or the like is not hindered. In addition, a carrier that can sufficiently cope with reactions that require oxygen has been realized.
又、 本発明は、 毛管力を有する流路であって、 少なぐとも入力口 から、 出力口が、 直径と平行な直線部を有するか、 又は、 円周方向 に延びた流路を形成することにより、 いわゆるサイホンのような複 雑な流路を要することなく、 その流路の断面積もしくは長さに合わ せて回転数を調整するだけで、 液体の移動及び停止を実現した。  Further, the present invention is a flow path having a capillary force, and at least from the input port, the output port has a linear portion parallel to the diameter, or forms a flow channel extending in the circumferential direction. As a result, the movement and stoppage of the liquid was realized by adjusting the number of revolutions according to the cross-sectional area or length of the flow path without requiring a complicated flow path such as a so-called siphon.
又、 本発明では、 有酸素反応槽を、 中心方向に長軸を有する楕円 状、 ひょうたん状とすることで、 担体を回転させ、 中心方向部位に 空気溜を形成しながら、 安定した計測光路が確保できる。  In the present invention, the aerobic reaction tank has an elliptical shape or a gourd shape having a long axis in the central direction, so that the carrier is rotated and an air reservoir is formed in the central direction portion, thereby providing a stable measurement optical path. It can be secured.
楕円状、 ひょうたん状でなく とも、 中心方向に多少突出した部位 が形成されればよい場合もある。  Even if it is not oval or gourd, it may be sufficient to form a portion that protrudes slightly toward the center.
ここで、 本発明を要約すると、 次の通りである。  Here, the present invention is summarized as follows.
1 . 微小空間において、 異なる 2種以上の物質を混合する際、 比 較的短時間では遠心分離が生じず、 かつ、 必要な加速度を所定時間 与えられるような回転数まで経時的に回転を増加 (正の加速度) ま たは減少 (負の加速度) させるように角加速度を印加させる液体混 合方法。  1. When mixing two or more different substances in a minute space, centrifugation does not occur in a relatively short period of time, and the rotation increases over time until the required acceleration is given for a predetermined time. Liquid mixing method in which angular acceleration is applied so that (positive acceleration) or decreases (negative acceleration).
2 . 相異なる 2種以上の物質を混合するための微小空間を具えた 担体、 前記担体に対し、 比較的短時間では遠心分離が生じず、 かつ 必要な加速度を所定時間与えられるような回転数まで経時的に回転 を増加または減少させるように前記担体に対し角加速度を印加させ る駆動手段を具えた液体混合装置。  2. A carrier having a micro space for mixing two or more different substances, and a rotational speed at which the carrier is not centrifuged in a relatively short time and a necessary acceleration is given for a predetermined time. A liquid mixing apparatus comprising driving means for applying angular acceleration to the carrier so as to increase or decrease rotation over time.
3 . 微小空間において、 比重の異なる物質を混合する際、 比較的 短時間では遠心分離が生じず、 かつ、 物質に対し必要な加速度を所 定時間与えられるような回転数まで経時的に増加させた後、 反対方 向に比較的短時間では遠心分離が生じず、 かつ、 物質に対し必要な. 加速度を所定時間与えられるような回転数まで経時的に増加させ、 これ 繰り返すことを特徴とする上記 1 に記載の液体混合方法。 3. When mixing substances with different specific gravity in a minute space, Centrifugation does not occur in a short time, and after increasing the number of revolutions over time so that the required acceleration can be given to the substance for a specified time, centrifugation does not occur in the opposite direction in a relatively short time. 2. The liquid mixing method according to 1 above, wherein the acceleration is increased over time to a rotational speed that can be given for a predetermined time, and this is repeated.
4 . 比重の異なる物質を混合させる混合部を有する担体、 前記担 体を回転させ、 比較的短時間では遠心分離が生じず、 かつ、 物質に 対し必要な加速度を所定時間与えられるような回転数まで経時的に 増加させた後、 反対方向に比較的短時間では遠心分離が生じず、 か つ、 物質に対し必要な加速度を所.定時間与えられるような回転数ま で経時的に増加させ、 これを繰り返す回転手段を有する上記 2に記 載の液体混合装置。  4. A carrier having a mixing section for mixing substances having different specific gravities, and a rotation speed at which the support is rotated so that centrifugal separation does not occur in a relatively short time and a necessary acceleration is given to the substance for a predetermined time. In the opposite direction, centrifugal separation does not occur in a relatively short time, and the necessary acceleration for the substance is increased over time until the rotation speed is given for a certain period of time. 2. The liquid mixing apparatus as described in 2 above, which has a rotating means for repeating this.
5 . 担体中の微小空間の 2種以上の物質を混合する際、 比較的短 時間では遠心分離が生じず、 かつ、 物質に対し必要な加速度を所定 時間与える為に担体を駆動させる駆動手段を有する生化学分析装置  5. When mixing two or more substances in a minute space in the carrier, centrifugal separation does not occur in a relatively short time, and a driving means for driving the carrier to give the substance the necessary acceleration for a predetermined time is provided. Biochemical analyzer with
6 . 前記回転数が 2 0 0 ひ r p m以下である上記 1 〜 4のいずれ か 1項に記載の液体混合方法及び装置。 6. The liquid mixing method and apparatus according to any one of 1 to 4 above, wherein the number of rotations is 2 000 rpm or less.
. 7 . 前記一方向の最大回転数から、 反対方向の最大回転数までの 時間が、 0 . 5〜 2秒である上記 1 〜 4のいずれか 1項に記載の液 体混合方法及び装置。  7. The liquid mixing method and apparatus according to any one of 1 to 4 above, wherein a time from the maximum rotational speed in one direction to the maximum rotational speed in the opposite direction is 0.5 to 2 seconds.
8 . 回転体上で、 外周縁部方向に配置した比重の異なる物質を混 合し、 吸光度等、 反応の状態や結果を測定する測定部、 前記測定部 に定量検体を供給するための定量部、 前記定量部に検体を供給する 流路であって円周方向に延びた定量供給流路、 同心円状にのびた有 限の第 1回収流路と他の回収流路を設け、 前記第 1回収流路と、 前 記他の回収流路を結ぶ連結流路によってなり前記定量供給流路と接 続し余剰検体を回収する回収部よりなる生化学分析装置用担体。8. A measuring unit that mixes substances with different specific gravity arranged in the direction of the outer peripheral edge on the rotating body and measures the reaction state and results such as absorbance, and a quantifying unit for supplying a quantitative sample to the measuring unit A flow path for supplying a sample to the quantification unit, a quantitative supply flow path extending in the circumferential direction, a limited first collection flow path extending concentrically, and another collection flow path, and the first collection flow path. It consists of a flow path and a connecting flow path connecting the other recovery flow paths mentioned above and is in contact with the quantitative supply flow path. A carrier for a biochemical analyzer comprising a recovery unit for recovering surplus samples.
9 . 前記連結流路の第 1回収流路と第 2回収流路の接続部が鋭角 状に形成されてなる上記 8 に記載の生化学分析装置用担体。 9. The carrier for a biochemical analyzer according to 8 above, wherein the connection part of the first recovery channel and the second recovery channel of the connection channel is formed with an acute angle.
1 0 . 前記測定部と前記定量部は、 円周方向に延びた流路によつ て接続している上記 8に記載の生化学分析装置用担体。  10. The carrier for a biochemical analyzer according to 8, wherein the measurement unit and the quantification unit are connected by a flow path extending in a circumferential direction.
1 1 . 前記測定部において、 中心方向に空気貯留部が形成される 上記 8 に記載の生化学分析装置用担体。  11. The carrier for a biochemical analyzer according to the above 8, wherein an air reservoir is formed in a central direction in the measurement unit.
1 2 . 前記担体に対し、 比較的短時間では遠心分離が生じず、 か つ、 必要な角加速度を所定時間与 - 1 , 8えられるような回転数まで経時的 に増加させた後、 反対方向に比較的短時間では遠心分離が生じず、 かつ、 必要な角加速度を所定時間与えられるような回転数まで経時 的に増加させ、 これを繰り返すための回転装置をさらに設けた上記 8 に記載の生化学分析装置用担体。  1 2. The carrier is not centrifuged in a relatively short time, and the required angular acceleration is increased over time to a value that can be given for a predetermined time- 8. The method according to 8 above, further comprising a rotating device for increasing the rotational speed over time so that the required angular acceleration can be given for a predetermined time without repeating the centrifugation in a relatively short time in the direction, and repeating this. Carrier for biochemical analysis equipment.
1 3 . 毛管力を有する流路であって、 少なく とも入力口から、 出 カロが、 直径と平行な直線部を有する構成により、 担体の回転数を 調整して液体の移動及び停止を行う生化学分析装置用担体。  1 3. A flow path having a capillary force, in which at least the output from the input port has a linear portion parallel to the diameter, the liquid is moved and stopped by adjusting the rotation speed of the carrier. Carrier for chemical analysis equipment.
1 4 . 毛管力を有する流路であって、 少なく とも入力口から、 出 カロが、 円周方向に延びた構成により、 担体の回転数を調整して液 体の移動及 停止を行う生化学分析装置用担体。 〜 - 以下の詳細な説明から容易に理解できるように、 本発明は、 微量 な検体の定量、 試薬など比重の異なる物同士の混合を回転数、 及び 回転方向を調整する.だけで多数の検査を可能とすることから、 手軽 な体液検査を可能とし、 より広い方面での体液診断を実現する。 図面の簡単な説明  1 4. Biochemical flow that has a capillary force, and that moves and stops the liquid by adjusting the number of rotations of the carrier with a configuration in which the calorie that exits at least from the input port extends in the circumferential direction. Carrier for analyzer. ~-As can be easily understood from the following detailed description, the present invention is capable of quantifying a very small amount of sample, mixing reagents of different specific gravity such as reagents, and adjusting the rotation speed and rotation direction. This makes it possible to easily perform body fluid tests, and to realize body fluid diagnosis in a wider area. Brief Description of Drawings
第 1 A図及び第 1- B図は、 それぞれ、 本発明の好ましい 1実施例 を示す模式図.であり、 2図は、 本発明の好ましい 1実施例の動作を示す波形図でありFIG. 1A and FIG. 1-B are schematic diagrams showing a preferred embodiment of the present invention, respectively. FIG. 2 is a waveform diagram showing the operation of one preferred embodiment of the present invention.
,
第 3図は、 ·本発明の好ましい 1実施例の動作を示す波形図であり FIG. 3 is a waveform diagram showing the operation of one preferred embodiment of the present invention.
,
第 4図は、 第 1 A図の線分 X - X ' に沿つた拡大断面図であり、 Fig. 4 is an enlarged cross-sectional view along line X-X 'in Fig. 1A.
5図は、 本発明のもう 1つの好ましい実施例を示す断面図であFIG. 5 is a cross-sectional view showing another preferred embodiment of the present invention.
V 、 V,
6図は、 本発明の好ましい 1実施例の動作を示す回路図であり FIG. 6 is a circuit diagram showing the operation of one preferred embodiment of the present invention.
,
第 7図は、 本発明の好ましい 1実施例を示す斜視図であり、 第 8図は、 本発明のもう 1つの好ましい実施例の動作を示す回路 図であり 、  FIG. 7 is a perspective view showing a preferred embodiment of the present invention, and FIG. 8 is a circuit diagram showing the operation of another preferred embodiment of the present invention.
第 9図は、 本発明のもう 1つの好ましい実施例の動作を示す波形 図であ Ό 、  FIG. 9 is a waveform diagram showing the operation of another preferred embodiment of the present invention.
第 1 0図は 、 本発明のもう 1つの好ましい実施例の動作を示す回 路図であ Ό、  FIG. 10 is a circuit diagram showing the operation of another preferred embodiment of the present invention.
第 1 1 A図及び第 1 1 B図は、 それぞれ 、 本発明のもう 1つの好 ましい実施例を示す模式断面図であり、  FIGS. 11A and 11B are schematic cross-sectional views showing another preferred embodiment of the present invention, respectively.
1 2図は 、 第 1 0図に示した寒施例の動作を示す波形図であり 第  FIG. 12 is a waveform diagram showing the operation of the cold application shown in FIG.
 ,
第 1 3図は 、 本発明のも 1つの好ましい実施例の動作を示す回 路図であり、  FIG. 13 is a circuit diagram showing the operation of one preferred embodiment of the present invention,
第 1 4図は 、 第 1 3図に示した実施例の動作を示す波形図であり FIG. 14 is a waveform diagram showing the operation of the embodiment shown in FIG.
,
第 1 5図は 、 本発明のもう 1つの好ましい実施例を示す模式図で あり 、  FIG. 15 is a schematic diagram showing another preferred embodiment of the present invention,
1 6図は 、 第 1 5図の線分 X— X ' に沿った断面図であり、 第 1 7図は、 本発明のもう 1つの好ましい実施例の動作を示す回 路図であり、 Fig. 6 is a cross-sectional view along the line X-X 'in Fig. 15; FIG. 17 is a circuit diagram showing the operation of another preferred embodiment of the present invention.
第 1 8 A図〜第 1 8 C図は、 それぞれ、 本発明のもう 1つの好ま しい実施例を示す拡大断面図であり、  FIGS. 18A to 18C are enlarged sectional views respectively showing another preferred embodiment of the present invention.
第 1 9図は、 本発明のもう · 1つの好ましい実施例を示す斜視図で あり、  FIG. 19 is a perspective view showing another preferred embodiment of the present invention,
第 2 0図は、 本発明のもう 1つの好ましい実施例の動作を示す波 形図であり、  FIG. 20 is a waveform diagram showing the operation of another preferred embodiment of the present invention,
第 2 1 図は、 本発明のもう 1つの好ましい実施例を説明する模式 図であり、  FIG. 21 is a schematic diagram illustrating another preferred embodiment of the present invention.
第 2 2図は、 本発明の好ましい 1実施例を示す斜視図であり、 第 2 3図は、 本発明の好ましい 1実施例の動作を説明した斜視図 であり、  FIG. 2 2 is a perspective view showing one preferred embodiment of the present invention, FIG. 2 3 is a perspective view explaining the operation of one preferred embodiment of the present invention,
第 2 4図は、 第 2 3図の線分 — ' に沿った断面図であり、 第 2 5 A図及び第 2 5 B図は、 それぞれ、 本発明の好ましい 1実 施例を示す斜視図であり、  FIG. 24 is a cross-sectional view taken along the line segment 'in FIG. 23, and FIG. 25A and FIG. 25B are perspective views showing a preferred embodiment of the present invention, respectively. And
第 2 6 A図は、 本発明の好ましい 1実施例の動作を示す回路図で あり、  FIG. 26A is a circuit diagram showing the operation of one preferred embodiment of the present invention,
第 2 6 B図は、 第 2 6 A図に示した熱源の駆動回路例を示した模 式図であり、 - 第 2 7図は、 本発明の好ましい 1実施例の動作を示す回路図であ り、  FIG. 26B is a schematic diagram showing an example of a drive circuit for the heat source shown in FIG. 26A. FIG. 27 is a circuit diagram showing the operation of one preferred embodiment of the present invention. Yes,
第 2 8図は、 '本発明の好ましい 1実施例の動作を示す波形図であ Ό、  FIG. 28 is a waveform diagram showing the operation of a preferred embodiment of the present invention.
第 2 9図は、 本発明の好ましい 1実施例における時間一電圧の関 係をプロッ 卜したグラフであり、  FIG. 29 is a graph plotting the relationship between time and voltage in one preferred embodiment of the present invention,
第 3 0 A図〜第 3 0 C図は、 それぞれ、 本発明の好ましい 1実施 例を示す断面図であり、 FIGS. 30A to 30C are each a preferred embodiment of the present invention. It is sectional drawing which shows an example,
第 3 1図は、 本発明の好ましい 1実施例を示す斜視図であり、 第 3 2図は、 本発明の好ましい 1実施例を示す模式図であり、 第 3 3 A図〜第 3 3 C図は、 それぞれ、 本発明の好ましい 1実施 例を示す拡大模式図であり、  FIG. 3 1 is a perspective view showing one preferred embodiment of the present invention, FIG. 3 2 is a schematic view showing one preferred embodiment of the present invention, and FIGS. 3 3 A to 3 3 C Each figure is an enlarged schematic view showing a preferred embodiment of the present invention.
第 3 4 A図〜第 3 4 C図は、 それぞれ、 本発明の好ましい 1実施 例を示す模式図であり、  FIGS. 3 4 A to 3 4 C are schematic views showing a preferred embodiment of the present invention, respectively.
第 3 5 A図及び第 3 5 B図は、 それぞれ、 本発明の好ましい 1実 施例を示す拡大断面図であり、  FIGS. 35A and 35B are enlarged sectional views showing a preferred embodiment of the present invention, respectively.
第 3 6 A図〜第 3 6 C図は、 それぞれ、 本発明の好ましい 1実施 例を示す模式図であり、  FIGS. 36A to 36C are schematic views showing a preferred embodiment of the present invention, respectively.
第 3 7 A図及び第 3 7 B図は、 それぞれ、 本発明の好ましい 1実 施例を示す拡大断面図であり、  FIGS. 37A and 37B are enlarged sectional views showing a preferred embodiment of the present invention, respectively.
第 3 8 A図〜第 3 8 C図は、 それぞれ、 本発明の好ましい 1実施 例を示す模式図であり、  FIGS. 38A to 38C are schematic views respectively showing a preferred embodiment of the present invention.
第 3 9 A図〜第 3 9 E図は、 それぞれ、 本発明の好ましい 1実施 例を示す模式図であり、 - 第 4 0 Α ϋ〜第 4 0 C図は、 それぞれ、 回転数の経時変化を示す グラフであり、  FIGS. 39A to 39E are schematic diagrams showing a preferred embodiment of the present invention, respectively. FIGS. 40.about.0 to 40.degree. C are respective changes in the rotational speed over time. Is a graph showing
第 4 1図は、 本発明の好ましい 1実施例を示す模式図であり、 第 4 2 Α図及び第 4 2 Β図は、 それぞれ、 本発明の好ましい 1実 施例を示す模式図であり、  FIG. 41 is a schematic diagram showing one preferred embodiment of the present invention, and FIGS. 4 2 and 4 2 are schematic diagrams showing one preferred embodiment of the present invention.
第 4 3図は、 本発明の好ましい 1実施例を示す模式図であり、 そ して  FIG. 43 is a schematic diagram showing one preferred embodiment of the present invention, and
第 4 4図は、 本発明の好ましい 1実施例を示す斜視図である。 発明を実施するための最良の形態 引き続いて、 本発明 (第 1の発明〜第 4の発明) をその好ましい 態様に関して、 特に添付の図面を参照しながら説明する。 なお、 本 発明は、 下記の実施態様によって限定されるものではないことを理 解されたい。 また、 必要ならば、 第 1 の発明〜第 4の発明を任意に 組み合わせることも可能である。 FIG. 44 is a perspective view showing a preferred embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Subsequently, the present invention (first to fourth inventions) will be described with respect to preferred embodiments thereof, particularly with reference to the accompanying drawings. It should be understood that the present invention is not limited to the following embodiments. If necessary, the first to fourth inventions can be arbitrarily combined.
第 1 の発明 1st invention
• 本発明 、 少なく とも、 生化学的反応を示す反応部位を複数有す る担体、 前記生化学的反応を読み取る為の複数の読み取り部、 及び 前記担体と前記読み取り部とは互いに可動状態を有し、 前記担体上 の反応部位間の間隔と前記複数の読み取り部間の間隔が異なるよう な組み合わせ構成を有することで、 卓上型の装置を容易に実現でき 、 様々な場所で、 手軽に体液成分の測定が可能と'なる。  • The present invention includes at least a carrier having a plurality of reaction sites exhibiting a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other. In addition, by having a combined configuration in which the intervals between the reaction sites on the carrier and the intervals between the plurality of reading units are different, a tabletop device can be easily realized, and body fluid components easily in various places Can be measured.
本発明における生化学的反応は、 血液、 尿、 汗等の体液と試薬と  In the present invention, the biochemical reaction includes blood, urine, sweat, and other body fluids and reagents.
■ ノ  ■ No
の発色反応、 免疫応答を利用した蛍光反応等、 光学的に生体に関連 する成分を計測する反応が例示される。 Examples are reactions that optically measure components related to the living body, such as color development reactions and fluorescence reactions utilizing immune responses.
血液成分の測定に用いられる試薬としては、 例えば、 体液成分中 、 G P T、 アルブミン、 A L P、 尿素窒素. (B U N ) 、 総タンパク 、 総ピリルビン、 グルコース、 総コレステロール、 G〇 T、 ァミラ 一ゼ等を計測するための酵素類が示される。  Examples of reagents used to measure blood components include GPT, albumin, ALP, urea nitrogen (BUN), total protein, total pyrilvin, glucose, total cholesterol, GOT, and amylase in body fluid components. Enzymes for measurement are shown.
当該担体とは、 円盤状、 直方状、 シート状を有するものであって 、 その表面に、 試薬を収容又は供給した反応槽を一定、 不特定間隔 毎に配置したものであって、 少なく とも外部から測光可能な部位に 透光性を具えたものが例示される。  The carrier has a disk shape, a rectangular shape, or a sheet shape, and has a reaction tank containing or supplied with a reagent on the surface thereof arranged at regular intervals at an unspecified interval, and at least externally. Examples are those that have translucency in a region where photometry is possible.
担体上には、 その他、 血液であれば、 不要な血球を分離する分離 部、 体液を一定量だけ、 試薬反応槽へ供給する、 定量供給部等が設 けられている場合がある。  On the carrier, there may be other parts such as a separation part that separates unnecessary blood cells for blood, and a quantitative supply part that supplies a certain amount of body fluid to the reagent reaction tank.
本発明における複数の読み取り部は、 前記、 試薬反応槽内の発色 した試薬の発色情報を計測できればよく、 レーザ、 発光ダイオード 等の可視光、 紫外光、 赤外光の電磁波等を出力する光源と、 光源よ り出力された各種光が試薬反応槽を通過し又は、 反射して得られた 光を受光し、 光電変換する受光部を具えたものが例示される。 In the present invention, the plurality of reading units are the color development in the reagent reaction tank. It is only necessary to measure the color development information of the reagent, and a light source that outputs electromagnetic waves of visible light, ultraviolet light, infrared light, etc., such as lasers and light emitting diodes, and various lights output from the light source pass through the reagent reaction tank or Examples include a light receiving unit that receives light obtained by reflection and photoelectrically converts the light.
尚、 得られた光から吸光度、 測色、 周波数成分が計測され、 どの ような濃さの発色がされたか、 発色値がどのように変化したかがわ かれば良く、 信号処理の構成も計測対象によって適宜調整される。  In addition, absorbance, colorimetry, and frequency components are measured from the obtained light, and it is only necessary to know how dark the color is developed and how the color value changes, and the signal processing configuration is also measured. It is adjusted appropriately depending on the subject.
当該複数とは、 一つでなければ良く、 試薬の発色スペク トルの波 長に対応した 2、 3、 4またはそれ以上の光源が例示される。  The plurality of light sources need not be one, and examples include 2, 3, 4 or more light sources corresponding to the wavelength of the color spectrum of the reagent.
' 本発明における前記担体上の反応部位間の間隔と前記複数の読み 取り部間の間隔が異なるような組み合わせ構成とは、 例えば、 一つ ' の読み取り部に一つの光源が光を照射して計測がされている夕イミ ングで、 その他の読み取り部は、 反応槽内の発色値を読み取れない 位置にあること.を示すものである。  'A combination configuration in which the distance between the reaction sites on the carrier and the distance between the plurality of reading units in the present invention is different is, for example, that one light source irradiates light to one reading unit. In the evening measurement, the other reading units indicate that the color values in the reaction tank cannot be read.
尚、 読み取り部全てが、 反応槽の位置に一致していなければよく 、 例えば、 2つの読み取り部が、 反応槽内の発色情報を同時に得て いる状態で、 その他の読み取り部が、 発色情報を読み取れない状態 であってもよい場合もある。  It should be noted that all the reading units do not have to coincide with the position of the reaction tank. For example, in the state where the two reading units simultaneously obtain the coloring information in the reaction tank, the other reading units receive the coloring information. In some cases, it may be unreadable.
例えば読み取り部と、 担体は、 相対的に移動関係にあればよく、 静止している読み取り部上を担体が回転又は摺動している状態、 又 はその逆であって、 静止している担体に対し、 読み取り部が回転又 は摺動している状態が示される。  For example, the reading unit and the carrier need only be relatively moved, and the carrier is rotating or sliding on the stationary reading unit, or vice versa, and the stationary carrier. On the other hand, the reading part is shown rotating or sliding.
本発明において、 担体が回転体、 いわゆるロー夕の場合、 試薬反 応槽 の中心からの配置角度を Θ、 nは任意の整数 (n= l , 2 , 3 , 4 · · · ) 、 mは、 光源の数 (m = 1 , 2 , 3 · · · ) とすると計 測ユニッ トの中心からの配置角度 Kは、 In the present invention, when the carrier is a rotating body, so-called low evening, the arrangement angle from the center of the reagent reaction tank is Θ, n is an arbitrary integer (n = l, 2, 3, 4,...), M is If the number of light sources (m = 1, 2, 3, ···), the arrangement angle K from the center of the measurement unit is
= θ X n - Θ / m で表される。 この式によれば、 円'盤状の担体の大きさと、 試薬反応 槽の配置位置及び、 光測定部の位置を効率よく測定できる。 = θ X n-Θ / m It is represented by According to this equation, the size of the disk-shaped carrier, the arrangement position of the reagent reaction tank, and the position of the light measurement unit can be measured efficiently.
本発明において、 生化学的反応情報とは、 体液と試薬との反応に より得られる可視又は不可視の発色値、 吸光度、 周波数特性等が例 示され、 生化学反応情報取得手段としては、 試薬反応槽を透過、 又 は反射して得られる送光素子と受光素子の組み合わせ、 電磁波送信 、 受信手段の組み合わせ等が例示される。  In the present invention, the biochemical reaction information includes visible or invisible color values, absorbance, frequency characteristics, etc. obtained by the reaction between the body fluid and the reagent. The biochemical reaction information acquisition means includes a reagent reaction. Examples include a combination of a light transmitting element and a light receiving element obtained by transmitting or reflecting through a tank, a combination of electromagnetic wave transmission and reception means.
所定時間において、 前記生化学反応情報取得手段から得られた生 化学反応情報を検出する検出手段の 「所定時間」 とは、 例えば、 中 心時間 T nに対し、 前後一定間隔の 2つの時間を示すものであって、 例えば第 9図 (c)で示す様に時間 t nに対し、 t n l -;6 、 t n l - α、 t n 1 + α、 t n l + ;6の 4つの時間間隔を設定する。  The “predetermined time” of the detection means for detecting the biochemical reaction information obtained from the biochemical reaction information acquisition means at a predetermined time is, for example, two times at constant intervals before and after the center time T n. For example, as shown in FIG. 9 (c), four time intervals of tnl −; 6, tnl − α, tn 1 + α, tnl +; 6 are set for the time tn.
また、 「前記生化学反応情報取得手段から得られた生化学反応情 報丄 とは、 例えば光学的出力を電気的信号に変換した後、 所定時間 における信号の振幅値、 周波数成分等であって、 デジタル処理、 ァ ナログ処理何れの処理であっても良い。  Further, “the biochemical reaction information obtained from the biochemical reaction information acquisition means is, for example, an amplitude value, a frequency component, etc. of a signal at a predetermined time after converting an optical output into an electrical signal. Either digital processing or analog processing may be used.
' 前記検出手段で得られた情報を所定時間、 所定数だけ演算する演 算手段における 「所定時間」 とは、 例えば第 9図 (c)の場合では、 t n l - j8から t n l + i6までの時間幅であり、· 基準部位の大きさに比例す る時間幅であって、 所定数だけとは、 この場合、 検出する時間間隔 の数 4を示すものであるが、 これにかぎるものではない。 また 「演 算手段」 とは、 例えば、 前記時間間隔に得られる情報を乗算したり 、 積分したりすることが例示される。  'In the case of Fig. 9 (c), for example, in the case of Fig. 9 (c), the "predetermined time" in the calculation means for calculating the information obtained by the detection means for a predetermined time and a predetermined number is the time It is a width and is a time width proportional to the size of the reference part, and the predetermined number only indicates the number of time intervals to be detected in this case, but is not limited to this. The “calculation means” includes, for example, multiplying or integrating the information obtained in the time interval.
演算手段は、 デジタルであれば、 論理ゲート、 アナログであれば 、 アナログ演算器等が例示される。  The arithmetic means is exemplified by a logic gate if it is digital, and an analog arithmetic unit if it is analog.
前記演算手段から出力された信号から基準となる部位を判定する 判定手段とは、 例えば、 所定時間間隔で、 演算手段の出力がある場 合は、 時間 t nにおいて、 基準位置である旨の出力をしたり、 所定時 間間隔で演算手段の出力が一定の閾値を超えている場合等が例示さ れる。 The determination means for determining a reference part from the signal output from the calculation means is, for example, when there is an output of the calculation means at a predetermined time interval. For example, at time tn, an output indicating that the current position is the reference position or a case where the output of the calculation means exceeds a certain threshold at a predetermined time interval is exemplified.
本発明における変化量とは、 生化学信号を電気信号に変換した後 の電気信号の変化量を示すものであって、 微分、 積分信号、 その他 2次微分信号等を例示する。  The amount of change in the present invention indicates the amount of change in the electrical signal after the biochemical signal is converted into the electrical signal, and examples thereof include differentiation, integration signal, and other secondary differential signals.
本発明は、 少なく とも、 試薬反応槽と光学ユニッ トとの測光位置 に到達する時点、 測光位置を経過した時点において、 高いピークを 持つ信号が出力されることから、 測光量域を、 最初の高いピークの 終わり と最後の高いピークの最初の間とし、 その間に、 所定量の高 さのピークが出現した時点が、 気泡の混入等の不要な光学的妨害が 発生した状態であることから、 この部分を除去することで、 正確な 測定領域を認識できる。  In the present invention, a signal having a high peak is output at least when the photometric position between the reagent reaction tank and the optical unit is reached and when the photometric position has passed. Between the end of the high peak and the beginning of the last high peak, and during that time, when the peak of a certain amount of height appears, it is a state where unnecessary optical interference such as bubble contamination has occurred, By removing this part, an accurate measurement area can be recognized.
本発明では、 試薬反応槽の位置を受光信号から得る事が好ましい が、 もし仮に試薬.反応の結果、 極めて色が濃く、 透過光量が小さす ぎて試薬反応槽の位置が検出できない場合、 少なく とも、 前に検出 できた試薬反応槽の位置を示す信号と > 次に検出できた試薬反応槽 の位置から計算によって、 検出できなかった試薬反応槽部位を予測 し、 その部分の情報を検出するものであってもよい。 '  In the present invention, it is preferable to obtain the position of the reagent reaction tank from the light reception signal, but if the reagent reaction results in a very dark color and the amount of transmitted light is too small to detect the position of the reagent reaction tank, it is less. In both cases, the signal indicating the position of the reagent reaction tank that was detected before and the position of the reagent reaction tank that was detected next are calculated, and the part of the reagent reaction tank that could not be detected is predicted, and the information on that part is detected. It may be a thing. '
これは、 予めチップの試薬反応槽の部位と、 担体の回転数がわか つていれば、 予測範囲を見当つけることができるが、 担体の回転数 にばらつきがあるため、 全ての部位を予測した場合は.、 計測できな い反応槽が出てきてしまうため、 上述のような検出可能な試薬反応 槽の位置から、 算術的に検出できない試薬反応槽の位置を得る方が 確実な試薬反応槽の検出が可能となる。  This is because the prediction range can be found if the reagent reaction chamber part of the chip and the rotation speed of the carrier are known in advance. In this case, since a reaction tank that cannot be measured will come out, it is more reliable to obtain the position of the reagent reaction tank that cannot be detected arithmetically from the position of the reagent reaction tank that can be detected as described above. Can be detected.
本発明は、 担体上に様々な基準部位を設けると共に、 当該基準部 位を、 いわゆる校正情報又は基準情報として使用する。 校正の要因となる要件としては、 レーザーダイオード、 L E D等 の光源の発光強度誤差、 フォ トダイオードの感度誤差、 増幅回路等 電気回路上の誤差によって生じる直流オフセッ ト電圧、 担体を形成 する素材むら、 試薬反応槽底部の加工むら、 担体及び蓋との接合面 に介在する接着剤、 粘着剤における光の乱反射、 屈折、 吸収、 また 、 体液成分の個体差、 希釈液の成分差、 計測成分の誤差等が例示さ れる。 In the present invention, various reference parts are provided on a carrier, and the reference part is used as so-called calibration information or reference information. Factors that can cause calibration include light intensity error of light sources such as laser diodes and LEDs, sensitivity error of photodiodes, DC offset voltage caused by errors in electrical circuits such as amplifier circuits, and unevenness of materials forming the carrier. Uneven processing at the bottom of the reagent reaction tank, adhesive intervening on the interface between the carrier and the lid, diffuse reflection of light in the adhesive, refraction, absorption, individual differences in body fluid components, component differences in diluent, measurement component errors Etc. are exemplified.
この様な誤差要因に対して、 例えば、 担体の光学的計測部位に相 当する部位に、 以下の構成を付加することで、 受光信号に対し補正 ^校正ができる。  For such error factors, for example, by adding the following configuration to the part corresponding to the optical measurement part of the carrier, the received light signal can be corrected ^ calibrated.
1 . 試薬反応槽と同じかそれ以上の面積の黒色パターンを配置す る。  1. Place a black pattern with the same or larger area as the reagent reaction tank.
当該黒色パターンを光学的に計測することで、 増幅回路等で生じ るオフセッ ト情報を計測可能とし、 実際得られる試薬反応槽の光学 的情報から、 このオフセッ ト情報を除する等することで、 正確な、 成分情報が得られる。  By measuring the black pattern optically, it is possible to measure the offset information generated in the amplification circuit, etc., and by removing this offset information from the optical information of the reagent reaction tank actually obtained, etc. Accurate component information can be obtained.
2 . 試薬反応槽と同じかそれ以上の貫通孔を形成する。  2. Form a through-hole equal to or larger than the reagent reaction tank.
貫通孔を.通過した光源から出力される光を受光することで実際の 強度、 波..長等がわかることから、 計測.される発色値の補正を可能と する。 なお、 当該貫通孔は、 基準部位として用いても良い場合もあ る。  By receiving the light output from the light source that has passed through the through-hole, the actual intensity, wave length, etc. can be known, so that the measured color value can be corrected. Note that the through hole may be used as a reference portion.
3 . 試薬反応槽内を空にしたものを配置する。  3. Place an empty reagent reaction tank.
空の試薬反応槽においては、 槽の底部の加工むらによる計測光の 状態が計測され、 真の光学情報を得られる計測値の検証的に求める ことが可能になる。  In an empty reagent reaction tank, the state of measurement light due to processing irregularities at the bottom of the tank is measured, and it is possible to verify the measurement value that can obtain true optical information.
4 . また、 純度の高い水を充填させることで、 底面、 上面の曇り を取り除き、 試薬反応槽底面の加工むら等の正確な校正値が得られ る。 4. Also, by filling high-purity water, the bottom surface and top surface can be removed, and accurate calibration values such as uneven processing on the bottom surface of the reagent reaction tank can be obtained. The
5 . 試薬反応槽内に希釈液を充填したものを配置する。  5. Place a reagent reaction tank filled with diluent.
希釈液の吸光度が得られ、 実際の発色値を校正するために利用さ れる。  The absorbance of the diluted solution can be obtained and used to calibrate the actual color value.
6 . 試薬反応槽内に血漿成分を充填しただけのものを配置する。 これは、 他の試薬反応槽に血漿が供給される時の血漿と同じものが 好ましい。  6. Place a reagent reaction tank filled with plasma components. This is preferably the same as the plasma when plasma is supplied to other reagent reaction vessels.
血漿のみの光学的測定により、 刻々変化する被験者の体の状態を 測ると共に、 試薬との発色値の校正に利用できる。  The optical measurement of plasma alone can be used to measure the state of the subject's body, which changes every moment, and to calibrate the color value with the reagent.
これらの校正を目的とする領域は、 それぞれの媒体のみを封入し た試薬反応槽に対する透過光による光学的計測結果例えば〇 D値の 大きさで表すと  These calibration target areas can be expressed by optical measurement results of transmitted light through the reagent reaction vessel containing only the respective media, for example, the size of the D value.
貫通光(0D値 0 ) <空気 (希釈液) <血漿のみ <血漿 +試薬反応ぐ 黒色 (∞) ' ' である。 空気(希釈液)または血漿のみの計測値は、 光源の強度ゃ受 光体の感度の偏差を補正すると共に担体自身の吸光度を補正するた めに用いる.。 黒色 (完全遮光) 部は、 受光体及びその出力を増幅す る電気回路のオフセッ ト値 (入射光が全くない場合の計測出力値) を補正するために用いる。  Penetrating light (0D value 0) <Air (diluent) <Plasma only <Plasma + Reagent reaction Black (∞) ''. The measured values of air (diluent) or plasma only are used to correct the intensity of the light source, the sensitivity deviation of the receiver, and the absorbance of the carrier itself. The black (completely shaded) part is used to correct the offset value (measured output value when there is no incident light) of the photoreceptor and the electrical circuit that amplifies its output.
' 尚、 空の試薬反応槽の計測は、 残留する水蒸気による、 底部の曇 り等があるため、 同様の O D値を有する希釈液の利用が実測の場合 は好ましい。  'Note that the measurement in an empty reagent reaction tank is due to residual water vapor and clouding of the bottom, etc., so it is preferable to use a diluent having the same OD value when actually measured.
実施例 1 — 1 Example 1 — 1
第 1 A図及び第 1 B図に本発明の一実施例を示し、 本発明につい て詳細に説明する。  1A and 1B show an embodiment of the present invention, and the present invention will be described in detail.
第 1 A図は、 説明のために測定装置の筐体を省略した状態の担体 と、 読み取り部分の組み合わせ関係を説明する為の図であり、 第 1 B図は、 担体 1 0 を上面から見た図である。 FIG. 1A is a diagram for explaining the combination relationship between a carrier in a state where the housing of the measuring device is omitted for explanation and the reading portion. FIG. B is a view of the carrier 10 viewed from above.
1 0は、 担体であって、 ポリエステル、 PMMA、 PC , PS、 PET、 P D M S、 ガラス等よりなり、 表面に流路、 反応槽等に相当する凹部 が形成され、 その上から同材よりなるシート蓋を、 粘着剤、 接着剤 、 又は自己吸着能により接合させた形状を有する。  10 is a carrier, which is made of polyester, PMMA, PC, PS, PET, PDMS, glass, etc., and has a concave portion corresponding to a flow channel, reaction tank, etc. formed on the surface, and a sheet made of the same material from above. It has a shape in which the lid is bonded by pressure-sensitive adhesive, adhesive, or self-adsorption ability.
担体 10は、 回転によって生じる遠心力と流路の毛管力の関係によ つて、 中央に供給された血液を、 分離、 希釈液等混合、 反応槽へ、 定量供給する動作を行うような構成が例示される。  The carrier 10 is configured to perform the operation of separating the blood supplied to the center, mixing the diluent, etc., and supplying a fixed amount to the reaction tank based on the relationship between the centrifugal force generated by the rotation and the capillary force of the flow path. Illustrated.
当該構成は、 血液であれば、 血球分離室、 希釈混合室、 血漿定量 等が含まれているが如何様な構成も取り得るためその詳細な構成 は省略した。  In the case of blood, the configuration includes a blood cell separation chamber, a dilution / mixing chamber, plasma quantification, etc., but any configuration can be adopted, and the detailed configuration is omitted.
1 1は、 読み取り装置との接合用金属板であり、 担体 1 0の裏面 に好ましくは一部埋入するような状態で表出して配置されている。 中心に読み取り装置上の接続軸に挿入固定される為の凹部 1 1 ' が 担体 1 0の裏面方向から接合用金属板 1 1 を貫通し、 担体 1 0 を一 部貫通した状態で形成されている。 .  11 is a metal plate for joining with the reading device, and is preferably arranged so as to be partially embedded in the back surface of the carrier 10. A concave portion 1 1 ′ for inserting and fixing to the connecting shaft on the reading device is formed at the center through the joining metal plate 1 1 from the back side of the carrier 1 0 and partially through the carrier 1 0. Yes. .
1 2は、 操作部の一例であり、 希釈液等の混合槽等を例示する。 操作部 1 2は、 担体 Γ 0が任意に回転.制御すること.で、 担体 1 0内 の流路、 反応槽において生じる毛管力と遠心力を調整し、 担体 1 0 の外周方向に配置された試薬反応槽列 1 5 a〜 1 5 hに、 血球分離し. 、 定量化した血漿等の調整された検体を供給する。  1 2 is an example of the operation unit, and illustrates a mixing tank for a diluent and the like. The operation unit 12 is arranged in the outer circumferential direction of the carrier 10 0 by adjusting the capillary force and centrifugal force generated in the flow path and reaction tank in the carrier 10 by arbitrarily rotating and controlling the carrier Γ 0. In the reagent reaction tank row 15 a to 15 h, blood cells are separated, and a conditioned sample such as quantified plasma is supplied.
1 3は、 検体供給部であり、 外部より血液等の体液を供給する部 分であって、 凹状の液槽或いは流路よりなり、 必要に応じて外部へ 検体が漏れないように供給部用蓋が設けられる場合もある。  1 3 is a sample supply unit that supplies body fluids such as blood from the outside, and is composed of a concave liquid tank or flow path for the supply unit so that the sample does not leak to the outside as necessary. A lid may be provided.
1 4は、 分配流路であり、 個々の試薬反応槽 1 5 a〜 .1 5 h等へ、 調整された検体を供給する流路である。. 1 8は、 供給流路の一つを 示すものであり、 分配流路 1 4と、 それぞれの試薬反応槽 1 5 a〜 1 5 hとを接続するためのものであり、 供給流路は、 一つの試薬反 応槽に対し、 複数設けても良い。 又、 供給流路 1 8の体積が、 加工 された検体を定量値である場合もある。 14 is a distribution flow path, and is a flow path for supplying adjusted specimens to individual reagent reaction tanks 15 a to .15 h. 1 8 shows one of the supply channels, the distribution channel 14 and the respective reagent reaction tanks 15 15 For connecting to 5 h, a plurality of supply channels may be provided for one reagent reaction tank. In some cases, the volume of the supply channel 18 is a quantitative value of the processed specimen.
1 5 a〜 1 5 hは、 試薬反応槽の一例であって、 円筒状の凹部内部 に目的の試薬が乾燥状、 ゲル状、 液状で収容されている。 大きさは 、 例えば直径 1 mm、 深さ 3 mm位であり、  15 a to 15 h are examples of a reagent reaction tank, in which a target reagent is contained in a cylindrical recess in a dry, gel, or liquid state. For example, the size is about 1 mm in diameter and 3 mm in depth,
1 6 a〜 l 6 cは、 それぞれ、 3原色を出力する光源であり、 例え ば光源 1 6 aは、 赤色 Rレーザ、 光源 1 6 bは、 緑色 Gレーザ、 光源 1 6 a to l 6 c are light sources that output three primary colors. For example, light source 1 6 a is a red R laser, and light source 1 6 b is a green G laser.
1 6 cは、 青色 Bレーザが示される。 1 6 c shows a blue B laser.
1 7 a〜 1 7 cは、 受光体であり、 フォ トダイオード、 フォ ト トラ ンジス夕等が用いられる。  1 7 a to 1 7 c are photoreceptors, and photodiodes, phototransmissions, etc. are used.
分配流路 1 4 , 試薬反応槽 1 5 a〜 1 5 hは、 使用時、 ポリアクリ ル、 P E T等の透光性シートによる蓋部によって、 覆われた状態と なっている。  The distribution channel 14 and the reagent reaction tanks 15 a to 15 h are covered with a cover made of a translucent sheet such as polyacryl or PET when in use.
第 1 B図は、 第 1A図で示した試薬反応槽 1 5 a〜 1 5 gと、 各光 源 1 6 a〜 1 6 cの配置関係を上方から見た図である。  FIG. 1B is a view of the positional relationship between the reagent reaction tanks 15 a to 15 g shown in FIG. 1A and the light sources 16 a to 16 c as viewed from above.
個々の試薬反応槽は、 担体 1 0の中心〇から試薬反応槽 1 5 aを 中心として 15度間隔で配置されると共に、 光源は、 光源 1 6 aを中 心として 40度間隔で配置されている。 .  The individual reagent reaction tanks are arranged at intervals of 15 degrees from the center 0 of the carrier 10 to the reagent reaction tank 15 a, and the light sources are arranged at intervals of 40 degrees with the light source 16 a as the center. Yes. .
光源と受光部及び担体の試薬反応槽との関係を第 4図に示した。 第 4図は、 第 1A図の線分 Χ_Χ' の部位で切断した断面図である。 第 4図では、 第 1 A図で省略している読み取り装置の一部も併せて 示した。  Fig. 4 shows the relationship between the light source, the light receiving section, and the reagent reaction tank of the carrier. FIG. 4 is a cross-sectional view taken along a line Χ_Χ ′ in FIG. 1A. In Fig. 4, some of the readers omitted in Fig. 1A are also shown.
第 4図において、 第 1 Α図で示した実施例と同一の構成について は、 同一の番号を付して説明は省略した。 第 4図において、  In FIG. 4, the same components as those in the embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof is omitted. In Figure 4,
1 9は、 蓋部'であり、 担体 10の流路等の上に覆うような形で形成 される。 蓋部 1 9は、 第 1 A図で示す分配流路 1 4、 供給流路 1 8 、 試薬反応槽 1 5 a等の上部を覆い、 反射光、 透過光による測定の 場合の為、 透光性を有する部材で形成されている。 Reference numeral 19 denotes a lid portion, which is formed so as to cover the flow path or the like of the carrier 10. The lid part 19 is composed of the distribution channel 14 shown in Fig. 1A, the supply channel 1 8 It covers the upper part of the reagent reaction tank 15a, etc., and is formed of a light-transmitting member for measurement by reflected light or transmitted light.
2 0は、 遮光部であり、 担体 1 0の裏面に形成されたものであり 、 主に黒色又はそれに近い色で形成されたシートの被覆又は着色状 態で形成され、 光源と、 試薬反応槽間の通過孔を介した光路以外に 配置されている。  20 is a light-shielding portion, which is formed on the back surface of the carrier 10, and is mainly formed by covering or coloring a sheet formed in black or a color close to it, a light source, and a reagent reaction tank It is arranged other than the optical path through the passage hole between them.
通過孔 2 5は、 光源 1 6 aの面積よりも小さい面積として、 光源 から試薬反応槽へ光を照射する際生じる反射光、 散乱光を抑制する 場合もある。  The passage hole 25 may have an area smaller than that of the light source 16a to suppress reflected light and scattered light generated when light is irradiated from the light source to the reagent reaction tank.
2 1は、 光源側の電気リード線であり、 光源 1 6 aと、 電源、 光 源制御回路と電気的に接続するためのものである。 電気リード線 2 1は、 例えば、 第 6図で示す電気接続線 3 2 6 に接続する。  2 1 is an electric lead wire on the light source side for electrically connecting the light source 16 a to the power source and the light source control circuit. For example, the electrical lead wire 21 is connected to the electrical connection wire 3 2 6 shown in FIG.
2 2は、 受光側の電気リード線であり、 受光体 1 7 aと、 信号処 理回路を電気的に接続するためのものである。  2 2 is an electric lead wire on the light receiving side for electrically connecting the light receiving body 17 a to the signal processing circuit.
2 3は、 測定装置蓋部であり、 受光素子 1 7 a等を装着しており 、 例えば、 担体を外部へ取り出すために可動したりする部分である  2 3 is a measuring device lid, which is equipped with a light receiving element 17 a etc., for example, a part that can be moved to take out the carrier to the outside
2 4は.、 測定装置の担体装着.部であり、 例えば、 光源 1 6 aを担 体の試薬反応槽直下に来るように内接し、 担体を置く据置部、 チヤ ッキングして回転させるモータ等を収容している。 担体装着部 2 4 の全体的な形状を、 第 7図に示した。 24 is the carrier mounting part of the measuring device, for example, the light source 16 6a is inscribed so that it comes directly under the reagent reaction tank of the carrier, the carrier is placed, the motor that is chucked and rotated, etc. Is housed. The overall shape of the carrier mounting portion 24 is shown in FIG.
次に、 第 1 A図で示した受光体 17 a〜 1 7 cで受光した信号を処理 するための回路構成の一例を第 6図に示し説明する。  Next, FIG. 6 shows an example of a circuit configuration for processing signals received by the photoreceptors 17a to 17c shown in FIG. 1A.
第 6図において、  In Figure 6,
3 1 0 a〜 3 1 0 cは、 3原色の光源であり、 例えば第 1 A図の光 源 1 6 a〜 1 6 cにそれぞれ対応する。  3 1 0 a to 3 1 0 c are light sources of three primary colors, and correspond to the light sources 16 a to 16 c in FIG. 1A, for example.
3 1 1 は、 第 1 A図で示す担体 1 0上の試薬反応槽を模式的に示 している。 第 1 A図で示す担体 10が、 回転して、 試薬反応槽のそれ ぞれが、 光源と受光部間を通過する状態を示している。 3 1 1 schematically shows the reagent reaction tank on the carrier 10 shown in FIG. 1A. is doing. The carrier 10 shown in FIG. 1A rotates and each of the reagent reaction tanks passes through between the light source and the light receiving unit.
3 1 2 a〜 3 1 2 cは、 受光部であり、 個々の 3原色光源 3 1 0 a〜 3 i 0cのそれぞれと光路を形成するような状態を示している。 受 光部は、 受光信号を電気信号に変換する部分でもある。 受光部 3 1 2 a〜 3 1 2cは、 第 1 A図で示す受光体 1 7 a〜 1 7 cにそれぞれ対 応する。  Reference numerals 3 1 2 a to 3 1 2 c denote light-receiving portions, which indicate a state in which an optical path is formed with each of the three primary color light sources 3 1 0 a to 3 i 0c. The light receiving unit is also a part that converts the received light signal into an electrical signal. The light receiving sections 3 1 2 a to 3 1 2 c correspond to the light receiving bodies 17 a to 17 c shown in FIG. 1A, respectively.
3 1 3 a〜 3 1 3 cは、 O Pアンプ等を用いた増幅回路、 フィルタ 回路で構成され、 個々の受光部 3 1 2 a〜 3 1 2 cとそれぞれ電気的 に接続し、 受光電気信号を増幅、 ろ波等して、 電気的に処理可能な 状態にしょうとするものである。  3 1 3 a to 3 1 3 c are composed of an amplifier circuit and filter circuit using an OP amplifier, etc., and are electrically connected to the individual light receiving parts 3 1 2 a to 3 1 2 c respectively. Amplify, filter, etc. to make it electrically processable.
3 1 4は、'混合部であり、 主に加算回路により構成され、 増幅部 3 1 3 a〜 3 1 3 cで個々に増幅された受光電気信号を、 例えば一つ の信号線に多重的に混合するための部分である。 一  3 14 is a mixing unit, which is mainly composed of an adder circuit, and the received light signals individually amplified by the amplifying units 3 1 3 a to 3 1 3 c are multiplexed on, for example, one signal line. It is a part for mixing. One
混合部 3 1 4は、 例えば、 オペアンプ等を用いたアナログ加算回 路で構成される。  The mixing unit 3 14 is composed of an analog addition circuit using an operational amplifier or the like, for example.
-.3: 1 5は、 フィルタであり、 受光信号中、 計測に必要な周波数帯 を通過させると共にサンプリングによる折り返しノイズを除去する ためのものである。 - -.3: 1 5 is a filter that passes the frequency band required for measurement in the received light signal and removes aliasing noise caused by sampling. -
3 1 6は、 A/D変換器(A ZDコンバータ) であり、 サンプリ ング回路、 .量子化回路等を含み、 受光電気信号を、 デジタル信号に 変換するためのものである。 3 1 6 is an A / D converter (AZD converter), which includes a sampling circuit, a quantization circuit, etc., and converts received light signals into digital signals.
3 1 7は、 ROMであり、 C PU 3 24等を動作させるためのプ ログラム、 パラメータ等が記憶されている:  3 1 7 is ROM, which stores programs, parameters, etc. for operating CPU 3 24 etc .:
3 1 8は、 : R A Mであり、 プログラム実行時に.おける一時的なデ 一夕等を記憶する為の部分である。  3 1 8 is: R A M, which is a part for storing temporary data etc. during program execution.
3 1 9は、 表示部であって、 プリ ン夕用インタフェース、 R S— 2 3 2 C、 モニタ、 スピーカ、 無線 LANインタフェース、 赤外線等 の無線出力部、 モデム等よりなり、 得られた血液情報を表^、 伝達 、 するための部分である。 3 1 9 is a display unit, a print interface, RS— 2 3 2 C, Monitor, Speaker, Wireless LAN interface, Infrared and other wireless output unit, Modem, etc. This part is for displaying, transmitting, and transmitting the obtained blood information.
3 2 0は、 バスであり、 C P U、 R OM, RAM等で用いられる 命令信号、 データ信号等の伝達を行うための伝送路である。  3 2 0 is a bus, which is a transmission path for transmitting command signals, data signals, and the like used in CPU, ROM, RAM, and the like.
3 2 1 は、 回転制御部であり、 担体を左右に又は変速的に回転さ せるための駆動ドライバである。.  3 2 1 is a rotation control unit, which is a drive driver for rotating the carrier left and right or in a shifting manner. .
3 2 2は、 温度制御部であり、 血液や試薬が 3 8度前後で、 有効 に動作するため、 担体をハロゲンヒータ等の加温器を制御的に発熱 させて加温して、 常に一定の温度に保っための回路である。  3 2 2 is a temperature control unit, and blood and reagents operate effectively at around 38 ° C. Therefore, the carrier is heated by controlling the heating of a heater such as a halogen heater to keep it constant. It is a circuit for keeping the temperature at
3 2 3は、 駆動部であり、 光源 3 1 0 a〜 3 1 0 cへ発光させるた めの電気出力を制御的に行う。 例えば、 計測が不要な場合は、 光源 に対して電気出力を停止させるような制御である。  Reference numeral 3 2 3 denotes a drive unit that controls an electrical output for causing the light sources 3 1 0 a to 3 1 0 c to emit light. For example, when measurement is not required, the control is such that the electrical output to the light source is stopped.
3 2 4は、 C P Uであり、 Rひ Μ3Πで記憶したプログラムに基 づいて制御信号をバス 3 2 0 を介して回転制御部 3 2 1、 温度制御 部 3 2 2等に伝達して、 個々の素子の動作を制御するためのもので ある。  3 2 4 is a CPU, which transmits control signals to the rotation control unit 3 2 1, temperature control unit 3 2 2, etc. via the bus 3 2 0 based on the program stored in R 3 This is to control the operation of the element.
3 2.5は、. 電気リード線であり、 ジャンパー線、 基板配線等で形 成され、 フィル.タ 3 1 5 と' A / Dコンバータ 3 1 6 とを電気的に接 続するような構成を有する。  3 2.5 is an electrical lead wire, which is formed by jumper wires, board wiring, etc., and has a configuration in which the filter 3 1 5 and the A / D converter 3 1 6 are electrically connected. .
3 2 6は、 電気接続線であり、 上述と同様、 個々の光源 3 1 0 a 〜 3 1 0 cと駆動部 3 2 3 と別々に電気的に接続するような構成を 有する。 ' 次に、 第 1 A図で示した実施例の動作を他の図面を参照して詳細 に説明する。  3 26 is an electrical connection line, and has a configuration in which the individual light sources 3 10 a to 3 10 c and the drive unit 3 2 3 are electrically connected separately as described above. Next, the operation of the embodiment shown in FIG. 1A will be described in detail with reference to other drawings.
第 1 A図において、  In Figure 1A,
検体供給部 1 3 に血液を供給し供給口を閉じるための蓋をする。 蓋は、 必要に応じて設けられているもので、 供給部がより小さい口 径の場合は、 必要が無い場合もある。 Cover the specimen supply unit 1 3 with blood to supply blood and close the supply port. The lid is provided as required, and may not be necessary if the supply section has a smaller diameter.
検体を供給した担体 1 0 を例えば第 7図で示す計測装置の担体装 着部 2 4に置く。  The carrier 10 to which the specimen has been supplied is placed, for example, on the carrier mounting portion 24 of the measuring apparatus shown in FIG.
第 7図において、  In Figure 7,
1 1 aは、 回転体であり、 中心に回転軸 1 1 bを設け、 同心円状に 磁性部材、 さらに外側に摩擦部材 1 I dが形成されている。  1 1 a is a rotating body, provided with a rotating shaft 1 1 b at the center, a concentric magnetic member, and a friction member 1 I d on the outer side.
担体 1 0の凹部 1 1 ' を回転軸 1 l bに挿入すると、 担体 10の接 合用金属板 1 1 と磁性部材 1 1 cとが磁力により引きつけ合うが、 摩擦部材 1 1 dが磁性部材 1 l cよりも多少高く設けられてあるため 、 非接触状態でありながら、 回転体 1 1 aと担体 10は強く結合する 第 7図で示す読み取り装置の大きさは、 例えば、 パーソナルコン ピュー夕の付属品である外付け又は内蔵タイプの CD- ROM読み取り装 置程度が示される。  When the concave portion 1 1 ′ of the carrier 10 is inserted into the rotating shaft 1 lb, the joining metal plate 1 1 of the carrier 10 and the magnetic member 1 1 c attract each other by magnetic force, but the friction member 1 1 d becomes the magnetic member 1 lc. Since the rotating body 1 1 a and the carrier 10 are strongly coupled with each other because they are in a non-contact state, the size of the reader shown in FIG. 7 is, for example, an accessory for a personal computer. The external or built-in type CD-ROM reader is shown.
尚、 読み取り装置内に、 C P U、 R O M、 RAM及び液晶ディスプ レイを直接組み込み、 スタンドアローンタイプにしても良い。  In addition, a CPU, ROM, RAM, and a liquid crystal display may be directly incorporated in the reading device to make a stand-alone type.
測定装置蓋部 2 3 と担体装着部 2 4とを閉めると内部は、 第 1 A 図で示すような状態となる。  When the measuring device lid portion 2 3 and the carrier mounting portion 24 are closed, the inside is in a state as shown in FIG. 1A.
第 6図で示す C P U 3 2 4は、 温度制御部 3 2 2 , 回転制御部 3 2 1、 駆動部 3 2 3に制御信号を出力し、 第 1 A図で示す担体 1 0 の温度を 38度前後に保ちながら担体の回転を調整する。  The CPU 3 24 shown in FIG. 6 outputs control signals to the temperature control unit 3 2 2, the rotation control unit 3 2 1, and the drive unit 3 2 3, and controls the temperature of the carrier 10 shown in FIG. Adjust the rotation of the carrier while keeping it around.
中央に供給された血液は、 回転力によって生じる遠心力と、 毛管 力により制御的に移動し、 最初、 血球分離部で血球が分離される。 他方、 血液が少量な場合、 有効な生理食塩水との希釈操作のため 、 予め密閉されていた希釈液が密閉体から放出される。  The blood supplied to the center is controlled by the centrifugal force generated by the rotational force and the capillary force, and the blood cells are first separated by the blood cell separation unit. On the other hand, when the amount of blood is small, a dilute solution that has been sealed in advance is released from the sealed body for the dilution operation with effective physiological saline.
更に第 1 A図で示す担体 1 0の回転によって生じる遠心力と、 流 路の微小化によって生じる毛管力の作用によって血球が分離されて 得られた血漿と、 希釈液が変化する遠心力により混合される。 Furthermore, the centrifugal force generated by the rotation of the carrier 10 shown in FIG. Plasma obtained by separating blood cells by the action of capillary force generated by the miniaturization of the tract is mixed with the centrifugal force that changes the dilution.
希釈された血漿は、 回転力によって生じる遠心力と毛管力により 例えば第 1A図で示す分配流路 1 4、 供給流路 1 8 を介して個々の 試薬反応槽に定量的に供給される。  The diluted plasma is quantitatively supplied to the individual reagent reaction tanks through, for example, the distribution channel 14 and the supply channel 18 shown in FIG. 1A by centrifugal force and capillary force generated by the rotational force.
個々の試薬反応槽では、 希釈された血漿液と、 試薬とが混ざり、 発色反応が生じ、 吸光度等の計測が開始される。  In each reagent reaction tank, the diluted plasma fluid and the reagent are mixed, a color reaction occurs, and measurement of absorbance, etc. is started.
尚、 試薬に応じて、 発色時期が異なるため、 発色が速い順に計測 する事が好ましい場合もある。  Depending on the reagent, the color development time varies, so it may be preferable to measure in order of color development.
最初、 第 1A図で示す光源 1 6 aと受光体 1 7 aで形成される測定 光路上に試薬反応槽 1 5 aがあり、 計測可能な状態を形成している 場合から説明を始める。 '  First, the description starts when there is a reagent reaction tank 15a on the measurement optical path formed by the light source 16a and the photoreceptor 17a shown in FIG. '
第 6図で示す C P U 3 2 4は、 駆動部 3 2 3 を駆動させ、 駆動部 3 2 3の駆動により、 光源 3 1 0 a〜 3 1 0 cは—、 レーザ光を出力す る。  C PU 3 2 4 shown in FIG. 6 drives the drive unit 3 2 3, and the light sources 3 1 0 a to 3 1 0 c output laser light by the drive of the drive unit 3 2 3.
第 1A図で示す光源 1 6 aと、 受光体 1 7 aは、 試薬反応槽 1 5 aの 透過部分に一致しているため、 光源 1 6 aから発せられた光は、 試 薬反応槽 1 5 aを通過し、 受光体 1 Ί aで受光され、 例えば第 2図 ( a)の R 1で示すよう-な、 電気信号が第 1A図で示す受光体 1 7 aから 出力される。  Since the light source 1 6a shown in Fig. 1A and the photoreceptor 1 7a coincide with the transmission part of the reagent reaction tank 15 5a, the light emitted from the light source 1 6a is the reagent reaction tank 1 5 Passes through a and is received by photoreceptor 1 Ί a. For example, an electrical signal as shown by R 1 in Fig. 2 (a) is output from photoreceptor 17 a shown in Fig. 1A.
この時、 第 1A図で示す光源 1 6 b及び 1 6 cは、 第 4図で示す遮光 部 2 0に光を遮られており、 受光体 1 7 b、 1 7 cは、 光を受光して いない状態である。  At this time, the light sources 16 b and 16 c shown in FIG. 1A are blocked by the light shielding portion 20 shown in FIG. 4, and the light receivers 17 b and 17 c receive the light. It is not in the state.
第 6図で示す光源 3 1 0 aの出力光は、 試薬反応槽 3 Ί 1 を介し て受光部 3 1 2 aに受光されると、 受光部 3 1 2 aは、 受光した光を 電気信号に変換して、 増幅部 3 1 3 aで増幅され、 接続点 3 aでは、 第 2図 (a) で示す信号が出力される。 この時点で、 光源 3 1 O bの出力光は、 第 4図で示す遮光部 2 0 によって遮られており、 受光部 3 1 2 bは、 光源 3 1 O bからの光を 受光せず、 接続点 3 bでは第 2図 (b)で示すように出力が無い状態 である。 When the output light of the light source 3 1 0 a shown in Fig. 6 is received by the light receiving unit 3 1 2 a via the reagent reaction tank 3 Ί 1, the light receiving unit 3 1 2 a receives the received light as an electrical signal. Is amplified by the amplifying unit 3 1 3 a, and the signal shown in FIG. 2 (a) is output at the connection point 3 a. At this time, the output light of the light source 3 1 O b is blocked by the light blocking portion 20 shown in FIG. 4, and the light receiving portion 3 1 2 b does not receive the light from the light source 3 1 O b. At connection point 3b, there is no output as shown in Fig. 2 (b).
光源 3 1 0 cの出力光も図 4で示す遮光部 2 0で遮られており、 第 6図で示す接続点 3 cでは、 第 2図 (c)で示すように出力がない 状態である。  The output light of the light source 3 1 0 c is also blocked by the light shielding portion 20 shown in FIG. 4, and there is no output at the connection point 3 c shown in FIG. 6 as shown in FIG. 2 (c). .
第 6図で示す混合部 3 1 4は、 個々の増幅部 3 1 3 a〜 3 1 3 cの 増幅信号を入力するが、 第 2図 (d)で示すように、 増幅部 3 1 3 b からの受光信号 R 1だけが出力される。  The mixing unit 3 1 4 shown in FIG. 6 inputs the amplification signals of the individual amplification units 3 1 3 a to 3 1 3 c, but as shown in FIG. 2 (d), the amplification unit 3 1 3 b Only the light reception signal R1 from is output.
次に、 第 1A図で示す担体 1 0が中心点 Oを中心として時計回り に回転すると、  Next, when the carrier 10 shown in FIG. 1A rotates clockwise around the center point O,
第 1A図で示す光源 1 6 aから出力した赤色レーザ光は、 第 4図で 示す遮光部 2 0で遮られ、 第 1A図で示す光源 1 6 bから出力した緑 色レーザ光が、 試薬反応槽 1 5 eの内部を通過する。  The red laser light output from the light source 16a shown in FIG. 1A is blocked by the light shielding unit 20 shown in FIG. 4, and the green laser light output from the light source 16b shown in FIG. Pass through the inside of tank 1 5 e.
この透光によって、 受光体 1 7 bは、 反応試薬を介した光を受光 し; 電気信号に変換した後、 第 6図で示す増幅部 3 1 3 bで増幅さ れ、 増幅部 3 1 3 bで増幅された信号が接続点 31) 介して第 2図 ( b)で示す信号 G 5 として混合部 3 1 4へ出力される。 その他の受光 体 1 7 a、 1 7じは、 光源 1 68、 1 6 cから出力された光が遮られる ため、 受光部 3 1 2 a、 3 1 2 cに出力がないことから、 混合部 3 1 4の出力は、 G 5のみの信号となる。  By this light transmission, the photoreceptor 17b receives the light through the reaction reagent; after it is converted into an electric signal, it is amplified by the amplification unit 3 1 3b shown in FIG. 6, and the amplification unit 3 1 3 The signal amplified at b is output to the mixing unit 3 14 as the signal G 5 shown in Fig. 2 (b) via the connection point 31). The other photoreceptors 1 7 a and 1 7 are blocked by the light output from the light sources 1 68 and 16 c, so there is no output from the light receivers 3 1 2 a and 3 1 2 c. The output of 3 1 4 is the signal of G 5 only.
次に、 第 1A図で示す担体 1 0が中心点〇を中心として時計回り に回転すると、  Next, when the carrier 10 shown in FIG. 1A rotates clockwise around the center point 0,
第 1A図で示す光源 1 6 bから出力した緑色レーザ光及び光源 1 6 aから出力した赤色レーザ光は、 第 4図で示す遮光部 2 0で遮られ 、 第 1A図で示す光源 1 6 cから出力した青色レーザ光が、 試薬反応 槽 1 5 hの内部を通過する。 The green laser light output from the light source 16 b shown in FIG. 1A and the red laser light output from the light source 16 a are blocked by the light shielding portion 20 shown in FIG. 4, and the light source 16 c shown in FIG. 1A The blue laser light output from the reagent reaction Pass through the inside of tank 1 5 h.
受光体 1 7 cは、 反応試薬を介した光を受光し、 電気信号に変換 した後、 第 6図で示す増幅部 3 1 3 cで増幅され、 接続点 3 cで表れ る信号は、 第 2図 (c)で示す信号 B 1 0 となり混合部 3 1 4へ出力 される。 第 1A図で示すその他の受光体 1 7 b、 1 7 aは、 光源 1 6 b 、 1 6 aから出力された光が前記と同様に遮られるため、 第 6図で示 す受光部 3 1 2 b、 3 1 2 aには出力がなく、 第 2図 (d)で示すよう に混合部 3 1 4の出力は、 B 1 0のみの信号となる。  Photoreceptor 17 c receives the light that has passed through the reaction reagent and converted it into an electrical signal, which is then amplified by amplification section 3 1 3 c shown in FIG. 6 and the signal that appears at connection point 3 c 2 The signal B 1 0 shown in Fig. 2 (c) is output to the mixing unit 3 1 4. The other photoreceptors 1 7 b and 1 7 a shown in FIG. 1A have the light receiving parts 3 1 shown in FIG. 6 because the light output from the light sources 16 b and 16 a is blocked in the same manner as described above. 2 b and 3 1 2 a have no output, and as shown in FIG. 2 (d), the output of the mixing unit 3 14 is only a signal of B 1 0.
担体は、 以上の様な回転を繰り返すことで、 接続点 3 dに表れる 混合部 3 1 4の出力は、 第 2図 (d)に示すような 1本の信号列とな る。  By repeating the rotation as described above, the output of the mixing section 3 14 that appears at the connection point 3d becomes a single signal sequence as shown in FIG. 2 (d).
第 6図で示す混合部 3 1 4の出力は、 一つのフィルタ 3 1 5で、 分析に必要な周波数帯のみ抽出され、 A/Dコンバータ 3 1 6に入 力される。  The output of the mixing unit 3 14 shown in FIG. 6 is extracted by the single filter 3 1 5 only in the frequency band necessary for analysis, and input to the A / D converter 3 1 6.
AZDコンパ一夕 3 1 6は、 バス 3 2 0 を介して伝達される C P U 3 2 4からの制御信号により、 A/D変換動作を行いデジタル信 号化された混合部 3.1 4の出力信号は、 R AM318等に一時的に記 憶する。 '  AZD Comparator 3 1 6 is an A / D conversion operation performed by the control signal from CPU 3 2 4 transmitted via bus 3 2 0, and the output signal of mixing unit 3.1 4 is converted into a digital signal. , Temporarily store in RAM318 etc. '
第 3図は、 発色試薬の種類を 12種類とした場合の信号出力図であ る。 第 2図は、 第 3図の信号列の一部を拡大して示したものである 第 6図の出力端 3 aで表れる増幅器 3 1 3 aの出力波形は、 例えば 、 第 3図 (a) で示され、 赤色レーザ受光信号列を示し、 数字は、 試 薬反応槽に付した番号である。  FIG. 3 is a signal output diagram when 12 types of coloring reagents are used. FIG. 2 is an enlarged view of a part of the signal train of FIG. 3. The output waveform of the amplifier 3 1 3 a appearing at the output end 3 a of FIG. 6 is, for example, FIG. ) Indicates the red laser light reception signal sequence, and the numbers are the numbers assigned to the reagent reaction vessels.
第 3図 (a)は 、 接続点 3 aに表れる信号であって、 試薬反応槽の 任意に決めた最初の 1番から赤色レーザにより測光して得られる信 号列である。 第 6図の接続点 3 bで表れる増幅器 3 1 3 bの出力波形は、 第 3図 ( b)で示す緑色レーザ受光信号列を示し、 図中の数字は試薬反応槽 に付した番号である。 Fig. 3 (a) is a signal appearing at connection point 3a, which is a signal sequence obtained by measuring light with a red laser from the first arbitrarily determined number in the reagent reaction tank. The output waveform of amplifier 3 1 3 b appearing at connection point 3b in Fig. 6 shows the green laser light reception signal train shown in Fig. 3 (b), and the numbers in the figure are the numbers assigned to the reagent reaction vessels .
第 3図 (b)は、 例えば、 試薬反応槽の 5番から緑色レーザにより 測光している事が示される。  Fig. 3 (b) shows that, for example, photometry is performed with the green laser from No. 5 in the reagent reaction tank.
第 6図で示す接続点 3 cで表れる増幅器 3 1 3 cの出力波形は、 第 3 図 (c)で示され、 青色レーザ受光信号列を示し、 図中の数字は試薬 反応槽に付した番号である。  The output waveform of the amplifier 3 1 3 c appearing at the connection point 3 c shown in Fig. 6 is shown in Fig. 3 (c), showing the blue laser light reception signal string, and the numbers in the figure are attached to the reagent reaction tank Number.
第 3図 (c)は、 試薬反応槽の 5番から緑色レーザにより測光して いる事が示される。  Figure 3 (c) shows that photometry is performed from the 5th reagent reaction tank using a green laser.
第 6図で示す接続点 3 dに表れる混合部 3 1 4の出力は、 第 3図 ( d)で示すような複合的な信号列となる。 図中の符号 R、 G、 Bは、 赤色、 緑色、 青色をそれぞれ示し、 番号は、 試薬反応槽に付された 番号を示している。  The output of the mixing section 3 14 that appears at the connection point 3d shown in FIG. 6 is a composite signal sequence as shown in FIG. 3 (d). The symbols R, G, and B in the figure indicate red, green, and blue, respectively, and the numbers indicate the numbers assigned to the reagent reaction tanks.
最初に測定する試薬反応槽の吸光度は、 パルス状の信号 R l、 G 1、 B 1 を信号列から所定のタイミングをとつてピックアップして これを重ね合わせる等の電.気的処理を施して得られる。  The absorbance of the reagent reaction vessel to be measured first is measured by electrical and electrical processing such as picking up the pulsed signals R1, G1, B1 from the signal sequence at a predetermined timing and superimposing them. can get.
担体の回転が一定であるため、 一定のタイミングで、 R 1 を検出一 できることから、 その他の試槳反応槽の赤色による受光デ一夕 R 2 、 R 3 も、 一定のタイミングでピックアップができる。  Since the rotation of the carrier is constant, R 1 can be detected at a fixed timing, so that the red light receptions R 2 and R 3 in other test reaction vessels can also be picked up at a fixed timing.
緑色レーザ受光信号の場合は、 例えば第 1 B図の場合、 最初から 4番目の試薬反応槽であり、 この最初の信号を基準に一定の時間間 隔で、 その他の試薬反応槽の緑色レーザに対する受光デ一夕を得る ことができる。  In the case of the green laser light reception signal, for example, in the case of Fig. 1B, it is the 4th reagent reaction tank from the beginning, and with respect to the green laser of the other reagent reaction tanks at regular intervals with reference to this first signal. You can get a light reception overnight.
青色レーザの受光信号の場合、 例えば第 1 B図の場合は、 最初か ら 7番目の弒薬反応槽から始まり、 この最初の信号を基準として一 定の時間間隔で、 データをピックアップすることで、 その他の試薬 反応槽の青色レーザに対する受光デ一夕を得ることができる。 In the case of a blue laser light reception signal, for example, in Fig. 1B, it starts from the 7th glaze reaction tank from the beginning, and the data is picked up at regular time intervals based on this first signal. Other reagents It is possible to obtain light reception for the blue laser in the reaction vessel.
この様に第 6図で示す C P U 3 2 4は、 第 3図 (d)で示す 1本の信 号列を処理すればよく、 第 3図 (a)、 (b)、 (c)で示すように、 パ ルス間隔は、 試薬反応槽間の距離に対応することから一定で同一で あるため、 第 3図 (d)において、 個々の受光部から得られた最初の パルスを基準として、 所定間隔毎のパルスをピックアップすれば、 再び、 第 3図 (a)、 (b)、 (c)で示す分光光源毎の受光パルスを得 ることが容易にできる。  In this way, the CPU 3 2 4 shown in FIG. 6 only needs to process one signal sequence shown in FIG. 3 (d), as shown in FIGS. 3 (a), (b), and (c). As shown in Fig. 3 (d), the pulse interval is constant and the same because it corresponds to the distance between the reagent reaction vessels. If a pulse at every interval is picked up, it is possible to easily obtain the light reception pulse for each spectral light source shown in FIGS. 3 (a), (b), and (c) again.
尚、 試薬反応槽の列に特異な受光パルスが得られる基準槽を設け 、' この基準槽を示す受光パルスを最初のパルスとしてもよい。  It should be noted that a reference tank capable of obtaining a specific light receiving pulse is provided in the row of reagent reaction tanks, and the light receiving pulse indicating this reference tank may be the first pulse.
第 3図で示す信号列の処理は、 一回転毎或いは数回転毎にデータ をメモリ、 ハートディスク等の記憶媒体に一時的に蓄えておき、 処 理に必要なタイミングで読み出してデータを処理しても良いし、 逐 次処理を行っても良い。  The processing of the signal sequence shown in Fig. 3 is performed by temporarily storing data in a storage medium such as a memory or heart disk every rotation or every several rotations, and reading and processing the data at the timing required for processing. It is also possible to perform sequential processing.
本実施例では、 R (赤) 、 G (緑) 、 B (青) の 3原色的な発光 部と受光部の 3対を所定の間隔で配置するものであるが、 更に紫外 線 U V ( 3 6 5 n m ) を含めた 4波長を利用するものであってもよ く、 発光部と受光部からなる 1対の測光ユニッ ト 4つを上述した間 隔で配置したものであってもよく、 更に 4対以上の測光ュニッ 卜を 利用したものであっても良い場合もある。  In this embodiment, three pairs of R (red), G (green), and B (blue) primary light emitting portions and light receiving portions are arranged at a predetermined interval. (6 5 nm) may be used, or a pair of four photometric units consisting of a light-emitting part and a light-receiving part may be arranged at the above-mentioned intervals. In addition, there may be a case where four or more pairs of photometric units are used.
実施例 1 一 2 Example 1 1 2
その他の実施例を第 5図に示して説明する。  Another embodiment will be described with reference to FIG.
第 1 A図及び第 1 B図が円盤状の担体であって、 これを回転させて 検体 ¾混合、 定量等の操作をし、 成分計測するのに対し、 第 5図は 、 計測装置と、 担体を相対的に摺動させて計測す!)構成を示す。 摺 動は、 左右に繰り返し行ってもよい。  Figs. 1A and 1B show a disk-shaped carrier, which is rotated to perform sample and sample mixing, quantification, and other component measurement, while Fig. 5 shows the measurement device, Measure by sliding the carrier relatively! ) Show the configuration. The sliding may be repeated left and right.
担体 2 1 0は、 上述と同様、 光透過性を有するポリアクリル、 P E T等で形成され、 棒状、 直方体状であり、 読み取り装置側も、 担 体 2 1 0の形状に合わせた形状及び駆動構成を有する。 The carrier 2 1 0 is made of polyacrylic material having light permeability, P It is formed of ET or the like and has a rod shape or a rectangular parallelepiped shape.
2 1 9は、 蓋部であり、 透光性を有するものであって、 担体 2 1 0 と粘着剤、 接着剤、 自己吸着能等により結合される。  Reference numeral 2 19 denotes a lid, which has translucency, and is bonded to the carrier 2 10 by an adhesive, an adhesive, a self-adsorption ability, and the like.
2 1 5 a〜 2 1 5 hは、 試薬反応槽であり、 内部に予め試薬が封入 され、 外部より血液等の検体が定量供給されると発色反応を行う。  2 1 5 a to 2 1 5 h are reagent reaction tanks, in which a reagent is enclosed in advance, and when a sample such as blood is quantitatively supplied from the outside, a color reaction is performed.
2 2 0は遮光部であり、 黒色の着色、 シートが賦され、 個々の試 薬反応槽の底に位置する部分だけ透光用孔 2 2 5 a〜 2 2 5 hが形成 されている。  Reference numeral 2 20 denotes a light-shielding portion, which is colored with black and has a sheet, and light-transmitting holes 2 25 a to 2 25 h are formed only in the portion located at the bottom of each reagent reaction tank.
2 2 1 a〜 2 2 1 cは、 電気接続線であり、 例えば、 第 6図の電気 接続線 3 2 6に相当する。  2 2 1 a to 2 2 1 c are electrical connection lines, and correspond to, for example, the electrical connection lines 3 2 6 in FIG.
2 2 2 a〜 2 2 2 cは、 電気接続線であり、 例えば第 6図の受光部 3 1 2 aと増幅部 3 1 3 aを電気的に接続する部分に相当する。  2 2 2 a to 2 2 2 c are electrical connection lines, and correspond to, for example, a portion that electrically connects the light receiving unit 3 1 2 a and the amplification unit 3 1 3 a in FIG.
2 1 6 a〜 2 1 6 cは.、 光源であり、 例えば、 R G Bの個々の色の 発光を行うレーザ、 L E D等である。  2 1 6 a to 2 1 6 c are light sources, for example, lasers that emit light of individual colors of R G B, L E D, and the like.
2 1 7 a〜 2 1 7 cは、 受光体であり、 例えば、 フォ ト トランジス 夕、 C D S等により構成される。  2 1 7 a to 2 1 7 c are photoreceptors, and are composed of, for example, phototransistors, CDS, and the like.
本実施例は、 担体 2 1 0 を、 担体装着部 2 2 4に置き、 読取り装 置蓋部 2 2 3 を閉じた状態を'形成する。 '  In this embodiment, the carrier 2 10 is placed on the carrier mounting portion 2 2 4 and the reading device lid portion 2 2 3 is closed. '
最初の試薬反応槽 2 1 5 aを基準として、 光源 2 1 6 aと、 受光体 2 1 7 aが配置されると、 光源 2 1 6 bと受光体 2 1 7 b及び光源 2 1 6 cと受光体 2 1 7 cは、 それぞれ試薬反応槽の直下からずれた位 置関係となり、 第 1 A図で示す状態と同じ様な状態となる。  When light source 2 1 6 a and photoreceptor 2 1 7 a are arranged with reference to the first reagent reaction tank 2 1 5 a, light source 2 1 6 b, photoreceptor 2 1 7 b and light source 2 1 6 c And the photoreceptor 2 1 7 c are in a positional relationship shifted from directly below the reagent reaction tank, and are in the same state as shown in FIG. 1A.
担体 2 1 0を一定の速度で摺動させることで、 第 3図 (d)で示す 一本の信号列を形成可能とする。  By sliding the carrier 2 10 at a constant speed, it is possible to form a single signal sequence shown in FIG. 3 (d).
一回の摺動で測定が可能な場合は、 回転構成よりも、 より構成が 簡単になる場合がある。 実施例 1一 3 If measurement is possible with a single slide, the configuration may be simpler than the rotating configuration. Example 1 1 3
本発明の他の実施例を第 8図等を参照して詳細に説明する。  Another embodiment of the present invention will be described in detail with reference to FIG.
第 8図において、  In Figure 8,
1 0 1は、 光電変換手段であり、 レーザ光源と、 受光半導体の組 み合わせ等よりなり、 試薬類と検体とが混合発色した発色値を透過 光、 反射光を受光し、 電気信号に変換する手段である。  1 0 1 is a photoelectric conversion means, which consists of a combination of a laser light source and a light receiving semiconductor, etc., and receives a color value obtained by mixing and developing reagents and a sample to receive transmitted light and reflected light and convert them into electrical signals. It is means to do.
1 0 2は、 増幅手段であり、 光電変換して得られた、 電気信号か ら、 雑音をろ波し、 必要な周波数帯を増幅する為の、 増幅回路、 フ ィル夕等の組み合わせよりなる。  1 0 2 is an amplifying means, which is a combination of an amplifier circuit, a filter, etc. for filtering noise and amplifying a necessary frequency band from an electrical signal obtained by photoelectric conversion. Become.
' 1 0 3は、 AZD変換部であり、 得られた電気信号をデジタル処 理するために、 デジタル信号に変換するための回路であって、 主に AZDコンパ一夕より構成される。  '1 0 3 is an AZD conversion unit, which is a circuit for converting the obtained electrical signal into a digital signal for digital processing, and is mainly composed of an AZD comparator.
1 0 4は、 制御部であり、 記憶部 1 0 5、 読出信号出力部 1 0 6 等その他の構成の出力信号を制御したりするものであって、 C PU 等で構成される。  1 0 4 is a control unit that controls other output signals such as a storage unit 1 0 5 and a read signal output unit 1 0 6, and is configured by a CPU or the like.
1 0 5は、 憶部であり.、 主に RAM、 DVD-R, RW、 CD 一 R、 R W S Dカード等記憶媒体で構成され、 一時的に記憶する 場合が多いことから RAMが好適である。  1 0 5 is a memory unit, and is mainly composed of a storage medium such as RAM, DVD-R, RW, CD-R, RWS D card, etc., and RAM is suitable because it is often stored temporarily.
1 0 6は、 読出信号出力部であり、 -.クロック発振部、 その他時間 調整されたパルス出力部よりなり、 前記記憶部に記憶されたデータ を順次読み出すための信号出力部であるほか、 基準部位であるかど うか判定する為の時間幅を設定する為に必要な信号である。  1 0 6 is a read signal output unit, which is composed of a clock output unit and a pulse output unit with other time adjustment, and is a signal output unit for sequentially reading data stored in the storage unit, and a reference This signal is necessary to set the time width for determining whether or not it is a part.
1 0 7 aは、 第 1検出部であり、 読み取り時間 tnに対し、 一 ;6時 間のタイミングの光学データをデジタル信号又は量子化信号的に検 出する。  1 0 7 a is a first detection unit that detects optical data at a timing of 1; 6 hours with respect to the reading time tn as a digital signal or a quantized signal.
1 0 7bは、 第 2検出部であり、 読み取り時間 tnに対し、 一 ひ時 間のタイミングの光学データを所定の時間幅のデジタル信号又は所 定時間幅の量子化信号として検出する。 Reference numeral 10 7b denotes a second detection unit that converts optical data at a certain timing with respect to the reading time tn into a digital signal or a predetermined time width. Detected as a quantized signal with a fixed time width.
1 0 7 cは、 第 3検出部であり、 読み取り時間 t nに対し、 + ひ時 間の夕イミングの光学データをデジタル信号又は量子化信号的に検 出する。  1 0 7 c is a third detection unit, which detects + time-determining optical data as a digital signal or a quantized signal with respect to the reading time t n.
1 0 7 dは、 第 4検出部であり、 読み取り時間 t nに対し、 + ^6時 間の夕イミングの光学データをデジタル信号又は量子化信号的に検 出する。  1 0 7 d is a fourth detection unit, which detects optical data of + ^ 6 hours of evening imaging with respect to the reading time t n as a digital signal or a quantized signal.
1 0 8は、 乗算部であり、 前段の第 1検出部 1 0 7 aから第 4検出 部 1 0 7 dで得られた信号に乗算を施すための部分であり、 例えば 、 第 1検出部 1 0 7 aから第 4検出部 1 0 7 dで出力された信号がデジ タル信号の場合は、 A N Dゲート等のロジックの組み合わせで良い 場合もある。  1 0 8 is a multiplication unit for multiplying the signals obtained by the first detection unit 1 0 7a to the fourth detection unit 1 0 7d in the previous stage, for example, the first detection unit When the signal output from 1 0 7 a to the fourth detection unit 1 0 7 d is a digital signal, a combination of logic such as an AND gate may be sufficient.
1 0 9は、 時間幅設定部であり、 読出信号出力部 1 0 6から出力 された信号 tnに対し + jSから _ /3までの時間幅信号を例えば第 9図 ( e)で示す様な波形を形成して出力するための部分である。  1 0 9 is a time width setting unit. For the signal tn output from the read signal output unit 10 6, a time width signal from + jS to __ / 3 is shown, for example, as shown in FIG. 9 (e). This is a part for forming and outputting a waveform.
1 1 0は、 判定部であり、 前段の乗算部 1 0 8で得られた乗算信 号と、 前段の時間幅設定部 1 0 9 とから、 基準信号を判定し、 判定 信号を出力する為の部分である。  1 1 0 is a decision unit for judging the reference signal from the multiplication signal obtained by the previous multiplication unit 1 0 8 and the time width setting unit 1 0 9 in the previous stage and outputting the decision signal. It is a part of.
出力端 1 0 gに表れる判定部 1 1 0の出力信号は、 試薬反応槽の 認識等に利用される。  The output signal of the judgment unit 110 appearing at the output terminal 10 g is used for the recognition of the reagent reaction tank.
以上の構成は、 説明の為に形成したものであり、 制御部 1 0 4が これら構成の全部又は一部を包含する場合もある。 記憶部 1 0 5は 、 光学計測と同時にリアルタイムで処理をする場合は、 不要な場合 もあり得る。  The above configuration is formed for explanation, and the control unit 104 may include all or a part of these configurations. The storage unit 105 may be unnecessary when processing in real time simultaneously with optical measurement.
本実施例では、 基準部位を検出するための動作だけ説明する為、 試薬反応槽が、 10個以上円周上に等間隔に配列した状態の担体を例 示するが、 その一部を第 9図 (a)に示した。 第 9図 (a)は、 担体の一部を示し、 長方形状を示しているが、 第 1 A図で示す様なロータ形状を有している場合は、 円弧状に形成され 、 試薬反応槽の列の一部として形成されている。 In this example, in order to explain only the operation for detecting the reference site, an example of a carrier in which 10 or more reagent reaction vessels are arranged at equal intervals on the circumference is shown. This is shown in Fig. (A). FIG. 9 (a) shows a part of the carrier and shows a rectangular shape, but when it has a rotor shape as shown in FIG. 1A, it is formed in an arc shape, and the reagent reaction tank Are formed as part of the column.
第 9図 (b)は、 第 9図 (a)の線分 X— X ' に沿った断面を示して いる。 第 9図 (a) では、 蓋部 1 1 7 を省略した状態で示した。  FIG. 9 (b) shows a cross section along the line XX ′ in FIG. 9 (a). In FIG. 9 (a), the lid 1 1 7 is omitted.
第 9図 (a) において、 1 1 1 a、 1 1 1 bは、 試薬反応槽であり 、 ポリカーボネート等の基材 1 1 6上に凹部を形成することで形成 され、 内部に試薬が収容されている。 試薬反応槽は、 外部からの検 · 体供給用の流路、 毛管等の供給路 1 1 2 a、 1 1 2 bと接続している 。' 供給路は、 検体又は試薬の種類、 供給形態により不要とする場合 もある。  In FIG. 9 (a), 1 1 1 a and 1 1 1 b are reagent reaction tanks, which are formed by forming a recess on a base material 1 16 such as polycarbonate, and contain the reagent therein. ing. The reagent reaction tank is connected to a flow path for supplying a sample from the outside and a supply path 1 1 2 a and 1 1 2 b such as a capillary tube. 'The supply path may be unnecessary depending on the type of sample or reagent and the supply form.
1 1 3は、 スリ ッ トであり、 少なく とも非透光性部材ょり形成さ れている。 スリッ ト 1 1 3の厚みは、 特に限定されることなく、 非 透光部が形成さ ればよい。 スリ ツ小 : 1 1 3は、 基材 -1 1 6 と一体 的に形成されてもよく、 別途接合しても良い。  1 1 3 is a slit, and at least a non-translucent member is formed. The thickness of the slit 1 13 is not particularly limited as long as the non-translucent portion is formed. Small slit: 1 1 3 may be formed integrally with the base material -1 1 6 or may be joined separately.
1 1 4は、 空隙部であり、 スリッ ト 1 1 3を挟んで、 両側に同じ 大きさだけ形成されている。 空隙部 1 1 4は、 試蕖反応槽 1 1 l a ' 、 1 1 1 bより一回りから二回り程度大きく設定されているほう計 測上目立つ点で好ましいが、 少なく とも、 2つのパルスがスリ ッ ト の距離をおいて検出される程度の大きさであれば良い。  1 1 4 is a gap, and is formed in the same size on both sides across the slit 1 1 3. The air gap 1 1 4 is preferable because it is more conspicuous in terms of measurement than the sample reaction tank 1 1 la ′ and 1 1 1 b, but it is preferable in terms of measurement. As long as the size is detected at a distance of the gut.
第 9図 ) では、 スリ ッ ト 1 13及び空隙部 1 1 4を併せて基準部 1 1 5が形成されている。  In FIG. 9), a slit 1 13 and a gap 1 1 4 are combined to form a reference portion 1 15.
第 9図 (b)で示す 1 1 7は、 蓋 であり、 基材 1 1 6 と同様の材 料で形成され、 全体的に透光性を有しているものであって.もよい。  Reference numeral 1 17 shown in FIG. 9 (b) denotes a lid, which may be formed of the same material as that of the base material 1 16 and has a translucency as a whole.
蓋部 1 1 7 と、 基材 1 1 6 の接合は、 例えば、 接着剤、 粘着剤、 自 己吸着能により行われることが好ましい。 The lid 1 1 7 and the substrate 1 1 6 are preferably joined by, for example, an adhesive, a pressure-sensitive adhesive, or a self-adsorption ability.
1 1 8は、 非透光性部材であり、 黒色又はそれに相当する配色が なされ、 光を透過しないような部材である。 非透光性部材 1 1 8は 、 例えばシール状、 薄板状で、 粘着剤、 接着剤、 自己吸着能で接合 されることが好ましい。 1 1 8 is a non-translucent member, black or equivalent color scheme It is a member that does not transmit light. The non-translucent member 118 is preferably, for example, in a seal shape or a thin plate shape, and is bonded with an adhesive, an adhesive, or a self-adsorption ability.
次に、 第 8図で示した実施例の動作について、 第 9図を参照して 詳細に説明する。 .  Next, the operation of the embodiment shown in FIG. 8 will be described in detail with reference to FIG. .
第 9図において、 供給路 1 1 2 a、 1 1 2 bを介して、 試薬反応槽 1 1 1 a, 1 1 1 bに供給された定量検体は、 試薬反応槽に予め収容 されていた試薬と混合し発色反応を生じさせる。 反応が安定した時 点で個々の試薬反応槽に対してレーザ光、 その他可視光等を照射す る。 試薬反応槽内の反応液を反射又は透過た光信号は、 第 8図で示 す光電変換手段 1 0 1 に受光される。 光電変換手段 1 0 1は、 受信 した光信号を、 電気信号に変換した後、 増幅手段 1 0 2で増幅及び ろ波し、 増幅及びろ波された信号を A/D変換部 1 0 3へ供給する 。 第 8図の接続点 1 0 aに出力される信号は、 例えば第 9図 (c)で示 すような出力となる。  In FIG. 9, the quantitative sample supplied to the reagent reaction tanks 1 1 1 a and 1 1 1 b via the supply channels 1 1 2 a and 1 1 2 b is the reagent previously stored in the reagent reaction tank. To develop a color reaction. When the reaction is stable, irradiate each reagent reaction tank with laser light or other visible light. The optical signal reflected or transmitted through the reaction solution in the reagent reaction tank is received by the photoelectric conversion means 10 1 shown in FIG. The photoelectric conversion means 101 converts the received optical signal into an electrical signal, and then amplifies and filters the amplified signal, and the amplified and filtered signal is sent to the A / D conversion section 103. Supply. The signal output to the connection point 10 a in FIG. 8 is, for example, as shown in FIG. 9 (c).
'第 8図で示す AZD変換部 1 0 3は、 入力されたアナログ信号を デジタル信号に変換した後、 このデジタル信号を、 記憶部 1 0 5 に 出力する.。  'The AZD conversion unit 103 shown in Fig. 8 converts the input analog signal into a digital signal, and then outputs this digital signal to the storage unit 10 5.
記憶部 1 0 5は、 第 9図 (a);で示す試薬反応槽列の軌道を一巡し たデータを一時的に又は継続的に記録する。 Storage unit 1 0 5, FIG. 9 (a); temporarily or continuously records the data round the orbit of reagent reaction vessel train indicated by.
制御部 1 0 4は、 読出信号出力部 1 0 6に読出信号の出力を開始 させる。  Control unit 104 causes read signal output unit 106 to start outputting a read signal.
制御部 1 0 4は、 読出信号出力部 1 0 6から出力された時間信号 tnに対し、 ± α、 土 i6時間経過時のデジタルデータをそれぞれの検 出部 1 0 7 a〜' 1 0 7 dで検出させる様な制御を行う。  The control unit 10 04 detects the digital data at the time of ± α, saturating i6 time with respect to the time signal tn output from the read signal output unit 10 06, and each detection unit 1 0 7 a to '1 0 7 Control to detect with d.
時間信号 tnは、 クロックに従って連続して出力されるものであり 、 第 1検出部 1 0 7 aは、 時間信号 tn— ^時のデジタル受光波形を検 出し、 第 2検出部 1 0 7 bは、 時間信号 tn— α時のデジタル受光波 形を検出し、 第 3検出部 1 0 7 cは、 時間信号 tn+ひ時のデジタル 受光波形を検出し、 第 4検出部 1 0 7 dは、 時間信号 tn+ ^8時のデ ジタル受光波形を検出する。 The time signal tn is output continuously according to the clock. The first detection unit 107 7a detects the digital received light waveform at the time signal tn— ^. The second detector 1 0 7 b detects the digital received light waveform for the time signal tn-α, and the third detector 1 0 7 c detects the digital received light waveform for the time signal tn + The fourth detector 1 0 7 d detects the digital light reception waveform at time signal tn + ^ 8.
受光した波形は、 デジタルデータであって、 これを一度量子化し たものを第 9図 (d)に示す。 個々の検出部は、 量子化まで復元する 必要は必ずしも無く、 乗算部で乗算可能な信号であって、 その信号 が、 雑音ではなく、 実際の受光信号であれば、 符号信号であっても 良い。  The received waveform is digital data, and once quantized it is shown in Fig. 9 (d). Each detection unit does not necessarily need to be restored until quantization, and may be a code signal as long as the signal can be multiplied by a multiplication unit and the signal is not noise but an actual received light signal. .
例えば、 個々の検出部は、 第 8図で示す記憶部 1 0 5から出力さ れたデジタル値を換算し、 所定の閾値を越えた場合、 受光信号であ るとして、 パルスを出力しても良い。  For example, each detection unit converts a digital value output from the storage unit 105 shown in FIG. 8 and outputs a pulse as a light reception signal when a predetermined threshold value is exceeded. good.
第 9図 (c) の時間軸で示す tnl、 tn2、 tn3は、 説明上、 サンプル 的に付したもので、 実際の時間 tnは、 時間軸方向に、 経時的に連続 して移動し、 その移動に併せて ± 、 ± /3の時間毎に検出部は、 記 憶部に記憶された受光信号を検出する。  The tnl, tn2, and tn3 shown on the time axis in Fig. 9 (c) are given as samples for explanation, and the actual time tn moves continuously over time in the time axis direction. The detection unit detects the received light signal stored in the storage unit every time of ±, ± / 3 along with the movement.
例えば、 第 8図で示す読出信号出力部 1 0 6が時間 tnl信号を記 憶部 1 0.5に出力すると、 第 8図で示す第 1検出部 1 0 7 aは、 記憶 部 1 0 5から読み出された受光信号の内、 第 9図 (c) の 1 2 0 aの 時間の受光信号値を検出し、 第 8図の接続点 1 0 bに第 9図 (d)で示 す出力を行う。 第 8図で示す第 1検出部 1 0 7 bは、 記憶部 1 0 5か ら読み出された受光信号の内、 第 9図 (c) の 1 2 O bの時間の受光 信号値を検出し、 第 8図の接続点 1 0 cに第 9図 (d)で示す出力を行 う。 第 8図で示す第 1検出部 1 0 7 cは、 記憶部 1 0 5から読み出さ れた受光信号の内、 第 9図 (c) の 1 2 0 cの時間の受光信号値を検 出し、 第 8図の接続点 1 0 dに第 9図 (d)で示す出力を行う。 第 8図 で示す第 1検出部 1 0 7 dは、 記憶部 1 0 5から読み出された受光信 号の内、 第 9図 (c) の 1 2 0 dの時間の受光信号値を検出し、 第 8 図の接続点 1 0 eに第 9図 (d) で示す出力を行う。 For example, when the read signal output unit 106 shown in FIG. 8 outputs the time tnl signal to the storage unit 10.5, the first detection unit 10 07a shown in FIG. 8 reads from the storage unit 105. Among the received light signals, the light signal value at the time of 120 a in Fig. 9 (c) is detected, and the output shown in Fig. 9 (d) is output at the connection point 10 b in Fig. 8 Do. The first detection unit 1 0 7 b shown in Fig. 8 detects the received light signal value at the time of 1 2 O b in Fig. 9 (c) among the received light signals read from the storage unit 1 0 5. Then, the output shown in FIG. 9 (d) is output at the connection point 10c in FIG. The first detection unit 1 07 c shown in FIG. 8 detects the received light signal value at the time 1 2 0 c of FIG. 9 (c) from among the received light signals read from the storage unit 10 5. The output shown in Fig. 9 (d) is made at the connection point 10d in Fig. 8. The first detection unit 10 07 d shown in FIG. 8 receives the received light signal read from the storage unit 105. Among these signals, the received light signal value at the time 1 2 0 d in Fig. 9 (c) is detected, and the output shown in Fig. 9 (d) is performed at the connection point 10 e in Fig. 8.
この 4つの信号は、 第 8図で示す乗算部 1 0 8 に入力され、 乗算 部 1 0 8は論理乗算を行う。 第 9図 (c)の最初に到来する受光パル スの場合、 第 8図で示す第 3検出部 1 0 7 cと第 4検出部 1 0 7 dの出 力が 0であることから、 乗算部 1 0 8の出力は、 0 となる。  These four signals are input to a multiplication unit 10 8 shown in FIG. 8, and the multiplication unit 1 0 8 performs logical multiplication. In the case of the first incoming light pulse in Fig. 9 (c), the outputs of the third detector 1 0 7 c and the fourth detector 1 0 7 d shown in Fig. 8 are 0. The output of the unit 1 0 8 is 0.
時間幅設定部 1 0 9は、 読出信号検出部 1 0 6 の出力信号から、 第 9図 (c)で示すような tn± i6をパルス幅とする時間幅信号を第 8 図で示す接続点 1 0 ίを介して判定部 1 1 0に出力する。  The time width setting unit 10 9 receives the time width signal having tn ± i6 as the pulse width as shown in FIG. 9 (c) from the output signal of the read signal detection unit 10 6 as shown in FIG. 1 0 Output to judgment unit 1 1 0 via ί.
判定部 1 1 0は、 時間幅設定部 1 0 9からの時間幅信号に基づい て乗算部 1 0 8からの出力の有無を調べるが、 時間 tnlの場合の乗 算部 1 0 8の出力が 0であるため、 判定部 1 1 0は、 これが基準部 でないことを判定し、 その旨の信号を出力端 1 0 gへ出力する。 次に、 第 8図で示す読出信号出力部 1 0 6から順次出力された時 間信号の内 tn2の時、 第 1検出部 1 0 7 aは、 記憶部 1 0 5から読み 出された受光信号の内 1 2 1 aで示す時間位置の受光信号を検出し 、 第 8図で示す接続点 1 O bに出力する。 .  The determination unit 1 1 0 checks whether or not there is an output from the multiplication unit 1 0 8 based on the time width signal from the time width setting unit 1 0 9, but the output of the multiplication unit 1 0 8 at time tnl is Since it is 0, the determination unit 1 1 0 determines that this is not the reference unit, and outputs a signal to that effect to the output terminal 10 g. Next, at time tn2 among the time signals sequentially output from the readout signal output unit 106 shown in FIG. 8, the first detection unit 10 07a receives the light received from the storage unit 105. The received light signal at the time position indicated by 1 2 1 a is detected and output to the connection point 1 Ob shown in FIG. .
'第 1検出部 1 0 Ί bは、 記憶部 1 0 5から読み出された受'光信号の 内、 第 9図 (c)の 1 2 1 bで示す時間位置の受光信号を検出し、 第 8 図で示す接続点 1 0 cに出力する。  'The first detector 1 0 Ί b detects the received light signal at the time position indicated by 1 2 1 b in Fig. 9 (c) among the received optical signals read from the storage unit 105. Output to connection point 1 0 c shown in Fig. 8.
第 1検出部 1 0 7 cは、 記憶部 1 0 5から読み出された受光信号の 内、 第 9図 (c)の 1 2 1 cで示す時間位置の受光信号を検出し、 第 8 図で示す接続点 1 0 dに出力する。  The first detection unit 1 0 7 c detects the light reception signal at the time position indicated by 1 2 1 c in FIG. 9 (c) among the light reception signals read from the storage unit 10 5. Is output to the connection point 1 0 d indicated by.
第 1検出部 1 0 7 dは、 記憶部 1 0 5から読み出された受光信号の 内、 第 9図 (c)の 1 2 1 dで示す時間位置の受光信号を; ^出し、 第 8 図で示す端子 1 0 eに出力する。  The first detection unit 1 07 d outputs the received light signal at the time position indicated by 1 2 1 d in FIG. 9 (c) among the received light signals read from the storage unit 1 0 5; Output to terminal 10 e shown in the figure.
接続点 1 0!)〜 1 0 eで示された出力信号は、 乗算部 1 0 8 に入力 され、 乗算されるが、 この時全てが 1 に相当するので、 出力は 1 と なる。 Connection point 1 0! ) ~ 1 0 e The output signal indicated by e is input to the multiplier 1 0 8 Are multiplied, but at this time all correspond to 1, so the output is 1.
乗算部 1 0 8 の出力 1が判定部に入力されると、 判定部 1 1 0は 、 時間幅設定部 1 0 9から入力された時間幅信号から t n2を検出し 、 第 9図 (ί)で示すように、 その位置に基準位置である旨のパルス を出力する。  When the output 1 of the multiplication unit 10 8 is input to the determination unit, the determination unit 110 detects t n2 from the time width signal input from the time width setting unit 10 9, and FIG. As shown by), a pulse indicating that it is the reference position is output at that position.
次に、 第 8図で示す読出信号出力部 1 0 6から出力する時間信号 t nの内、 第 9図 (c)で示す時間 t n3の場合、 第 8図で示す第 1検出部 1 0 7 aは、 記憶部 1 0 5から読み出された受光信号の内、 第 9図 ( c)の 1 2 2 aで示す時間位置の受光信号を検出し、 第 8図で示す接 続点 1 0 bに出力する。  Next, in the case of the time tn3 shown in FIG. 9 (c) among the time signals tn output from the readout signal output unit 106 shown in FIG. 8, the first detection unit 1 0 7 shown in FIG. a detects the received light signal at the time position indicated by 1 2 2 a in FIG. 9 (c) among the received light signals read from the storage unit 105, and the connection point 1 0 shown in FIG. Output to b.
第 1検出部 1 0 7 bは、 記憶部 1 0 5から読み出された受光信号の 内、 第 9図 (c)の 1 2 2 bで示す時間位置の受光信号を検出し、 第 8 図で示す接続点 1 0 cに出力する。  The first detection unit 1 0 7 b detects the light reception signal at the time position indicated by 1 2 2 b in FIG. 9 (c) among the light reception signals read from the storage unit 1 0 5. It outputs to the connection point 1 0 c shown by.
第 1検出部 1 0 .7 cは、 記憶部 1 0 5から読み出された受光信号の 内、 第 9図 (c)の 1 2 2 cで示す時間位置の受光信号を検出し、 第 8 図で示す接続点 1 0 dに出力する。  The first detection unit 10.7 c detects the light reception signal at the time position indicated by 1 2 2 c in FIG. 9 (c) among the light reception signals read from the storage unit 105, Output to connection point 10 d shown in the figure.
第 1検出部 1 0 7 dは、 記憶部 1 0 5から読み出された受光信号の 内、 第 9図 (c)の 1 2 2 dで示す時間位置の受光信号を検出し、 第 8 図で示す接続点 1 0 eに出力する。  The first detection unit 10 07 d detects the light reception signal at the time position indicated by 1 2 2 d in FIG. 9 (c) among the light reception signals read from the storage unit 10 5. Is output to the connection point 1 0 e indicated by.
接続点 1 0 b〜 1 0 eで示された出力信号は、 乗算部 1 0 8 に入力 され、 乗算されるが、 この時、 第 9図 (d)で示すように第 1検出部 1 0 7 aと、 第 2検出部 1 0 7 bの出力が 0であるため、 第 8図で示す乗 算部 1 0 8は、 乗算の結果 0 となる信号を出力する。  The output signals indicated by the connection points 10 b to 10 0 e are input to the multiplication unit 10 8 and multiplied, but at this time, as shown in FIG. 9 (d), the first detection unit 10 Since the outputs of 7 a and the second detection unit 1 0 7 b are 0, the multiplication unit 1 0 8 shown in FIG. 8 outputs a signal that is 0 as a result of the multiplication.
判定部 1 1 0は、 乗算部 1 0 8から入力した信号が、 所定時間幅 で 0であるため、 判定部は、 基準部で無い旨の信号を第 9図 (f ) で示すように出力する。 以上の説明の様に、 基準部位を演算的に検出することから、 正確 な基準部位を電気的に確認できる。 Since the signal input from the multiplier 1 0 8 is 0 for a predetermined time width, the determiner 1 1 0 outputs a signal indicating that it is not the reference unit as shown in FIG. 9 (f). To do. As described above, since the reference portion is detected computationally, the accurate reference portion can be electrically confirmed.
実施例 1 一 4 Example 1 1 4
' 本発明における試薬反応槽を通過した通過光から成分計測をする 際、 有効な計測地点を得る為の一実施例を図面を参照して詳細に説 明する。  'An embodiment for obtaining an effective measurement point when measuring components from light passing through a reagent reaction tank in the present invention will be described in detail with reference to the drawings.
第 1 0図は、 本発明の一実施例を示すブロック図である。  FIG. 10 is a block diagram showing an embodiment of the present invention.
1 3 0 1 は、 増幅手段であって、 光電変換された生化学信号を入 力端 l aから入力し、 増幅、 ろ波する手段である。  1 3 0 1 is an amplifying means for inputting a biochemical signal obtained by photoelectric conversion from an input terminal la, amplifying and filtering.
' 1 3 0 2は、 微分手段であり、 増幅された生化学信号を微分する 手段である。  '1 3 0 2 is a differentiating means for differentiating the amplified biochemical signal.
微分手段 1 3 0 2の出力端は、 少なく とも 2つ設けられ、 一つは 、 測定領域を決定するための手段と接続され、 もう一つは、 平均化 手段により、 加算平均、 積分復元等がされる手段と接続される。  Differentiating means 1 3 0 2 have at least two output terminals, one is connected to the means for determining the measurement area, and the other is the averaging means, adding average, integral restoration, etc. Connected with the means to be.
1 3 0 3は、 全波整流手段であり、 微分信号のピークを +—いず れかの極性とするための回路である。  1 3 0 3 is a full-wave rectifier, and is a circuit for setting the peak of the differential signal to either + or-polarity.
1 3 0 4は、 測定領域検出手段であり、 測定幅決定手段 1 3 0 6 で決定された測定.幅を示す信号を入力し、 当該測定幅に基づいた、 測定領域を検出し、 出力する為のものである。  1 3 0 4 is a measurement area detection means, which is a measurement determined by the measurement width determination means 1 3 0 6 Inputs a signal indicating the width, detects and outputs the measurement area based on the measurement width Is for the purpose.
1 3 0 5は、 ピーク検出手段であり、 入力する信号のピーク値を 検出するものであって、 シュミツ ト トリガ回路のようなある一定の 閾値を超えた分をピークパルスとして検出するような回路であって もよい。  1 3 0 5 is a peak detection means for detecting the peak value of an input signal, such as a Schmitt trigger circuit that detects a peak pulse that exceeds a certain threshold value. It may be.
1 3 0 6は、 測定幅決定手段であり、 前段のピーク検出手段 1 3 0 5から入力されてくるピークパルスのパルス幅、 パルス間隔から 、 測定領域を検出するものであっても良い。 尚、 気泡等の異物の混 入によるピークの発生を検出するため、 所定の高さの閾値を更に設 定しても良い。 Reference numeral 1 3 06 denotes measurement width determination means, which may detect the measurement region from the pulse width and pulse interval of the peak pulse input from the preceding peak detection means 1 3 0 5. In addition, in order to detect the occurrence of peaks due to the introduction of foreign substances such as bubbles, a threshold of a predetermined height is further set. It may be fixed.
1 3 0 7は、 平均化手段であり、 測定領域検出手段 1 3 0 4から 出力した微分信号を加算平均化した信号として出力する手段である 尚、 平均化手段 1 3 0 7は、 その他、 積分信号に変換する平均化 手段であっても良い。  1 3 0 7 is an averaging means, and is a means for outputting the differential signal output from the measurement area detecting means 1 3 0 4 as a signal obtained by averaging the averaging signals. 1 3 0 7 An averaging means for converting to an integral signal may be used.
また当該分析回路と接続される担体の構成の一例を、 第 1 1 A図 に示す。 第 1 1 A図は、 第 4図と同一の部位についての他の一構成 例を示すものでもある。  An example of the structure of the carrier connected to the analysis circuit is shown in Fig. 11A. FIG. 11A shows another example of the configuration of the same part as FIG.
4 0 1は、 担体であり、 P E T、 ポリアクリル等の透光性プラス チック材、 ガラス材等よりなり、 1ないし複数の試薬槽が形成され た円盤状、 シート状を有する。  Reference numeral 401 denotes a carrier, which is made of a translucent plastic material such as PET or polyacrylic, a glass material, or the like, and has a disk shape or a sheet shape in which one or more reagent tanks are formed.
4 0 2は、 蓋部であり、 例えば担体と同一材ょりなり、 接着剤、 粘着材、 自己吸着性により、 担体と接合する。  4 0 2 is a lid, which is the same material as the carrier, for example, and is bonded to the carrier by an adhesive, an adhesive, and self-adsorption.
4 0 3は、 吸光部材であり、 黒色、 あるいは黒色に近い灰色のシ ートで形成され、 試薬反応槽 4 0 5の直下は、 円状の貫通孔よりな る測定窓 4 0 4が形成されている。  Reference numeral 40 3 denotes a light-absorbing member, which is formed of black or a gray sheet close to black, and a measurement window 40 4 formed of a circular through-hole is formed immediately below the reagent reaction tank 45. Has been.
吸光部材 4 0 3は、 .少なく とも、 試薬反応槽 4 0 5の直下近傍に 配置されていればよい。  The light-absorbing member 40 3 may be disposed at least near the reagent reaction tank 45 at least.
4 0 4は、 測定窓であり、 測定窓 4 0 4の面積は、 例えば、 試薬 反応槽 4 0 5の測定面積より多少小さい面積のものが好適である。 これは、 試薬反応槽 4 0 5の測定面の面積と同じ面積にすると、 試 薬反応槽の側面に漏れた光が受光素子に、 到達する場合があるから である。  40 4 is a measurement window, and the area of the measurement window 40 4 is preferably, for example, an area slightly smaller than the measurement area of the reagent reaction tank 4 5. This is because light leaking to the side surface of the reagent reaction tank may reach the light receiving element if the area is the same as the measurement surface area of the reagent reaction tank 45.
4 0 5は、 試薬反応槽であり、 内部に固形、 液状の試薬が予め封 入された状態でおかれ、 供給流路等、 外部から供給された体液と接 触反応し発色する部分である。 4 0 6は、 光源であり、 レーザ光源、 L E D、 U V光源等よりな る。 405 is a reagent reaction tank, which is a portion where solid or liquid reagent is sealed in advance and reacts with body fluid supplied from outside, such as a supply channel, and develops color. . 4 0 6 is a light source, which includes a laser light source, an LED, a UV light source, and the like.
4 0 7は、 第 1レンズ体であり、 通常のレンズ、 球状で形成され 、 主に、 試薬反応槽 4 0 5内で、 集光するような配置形状を有する 他、 平行光線を形成する様な形状、 配置がされている。  Reference numeral 40 7 denotes a first lens body, which is an ordinary lens, formed in a spherical shape, and mainly has an arrangement shape for condensing light in the reagent reaction tank 45 5, and forms parallel rays. The shape and arrangement are correct.
4 0 8は、 第 2レンズ体であり、 拡散した光線を、 集光させたり 、 平行化させたり して、 受光素子 4 0 9の受光に適した光線に変換 するためのものである。  Reference numeral 40 8 denotes a second lens body for converting the diffused light beam into a light beam suitable for light reception by the light receiving element 40 9 by condensing or collimating it.
第 1レンズ体 4 0 7、 第 2レンズ体 4 0 8は、 光源 4 0 6, 受光素 子 4 0 9の性能、 形状に応じ、 その一方又は両方が不要な場合もあ る。  One or both of the first lens body 4007 and the second lens body 4008 may be unnecessary depending on the performance and shape of the light source 4006 and the light receiving element 4009.
4 0 9は、 受光素子であり、 光信号を電気信号に変換するもので あって、 C D S、 フォ 卜 卜ランジス夕、 ダイオード等の半導体によ りなる。  409 is a light-receiving element that converts an optical signal into an electrical signal, and is made of a semiconductor such as a CDS, a photodiode, a diode, or a diode.
4 1 0は、 供給流路口であり、 試薬反応槽 4 0 5に液状の検体を 好ましくは定量的に供給するための流路との接続部である。  Reference numeral 4 10 denotes a supply flow path port, which is a connection part with a flow path for supplying a liquid specimen to the reagent reaction tank 4 0 5 preferably, preferably quantitatively.
4 1 1 は、 光源用電気リ一ド線であり、 光源 4 0 6 を駆動するた めの電気エネルギーを供給するための供給路である。  4 1 1 is an electrical lead wire for the light source, and is a supply path for supplying electrical energy for driving the light source 4 0 6.
4 1 2は、 受光側電気リード線であり、 受光素子で、 光電変換さ れた信号を第 1 0図の入力端 1 aに供給するためのものである。 担体 4 0 1は、 例えば、 第 1 5図で示すような円盤状の担体の外 周に等間隔で配列されても良い。  4 1 2 is a light receiving side electric lead wire, which is a light receiving element for supplying a photoelectrically converted signal to the input terminal 1 a in FIG. For example, the carriers 401 may be arranged at equal intervals on the outer periphery of a disc-shaped carrier as shown in FIG.
次に、 第 1 0図及び第 1 1 A図で示す実施例の動作を第 1 2図を 参照して詳細に説明する。  Next, the operation of the embodiment shown in FIG. 10 and FIG. 11A will be described in detail with reference to FIG.
第 1 1 A図で示す担体 4 0 1 は、 回転体であり、 定量検体が、 供 給用流路 4 1 0から、 試薬反応槽 4 0 5に供給され、 撹拌混合動作 後、 発色しながら例えば 6 0 0 rpm位の速度で回転している。 試薬反応槽 4 0 5が光源 4 0 6の直下に来たとき、 光源 4 0 6か ら出力された測定光は、 第 1レンズ体 4 0 7 を通過して、 測定窓 4 0 4から、 担体 4 0 1、 試薬反応槽 4 0 5、 蓋部 4 0 2 を通過して 、 第 2レンズ体 4 0 8で、 受光素子 4 0 9用に、 平行光、 集光光化 されて、 受光素子 4 0 9に受光される。 4 1 3は、 光路の一例を示 す。 The carrier 40 01 shown in FIG. 11 is a rotating body, and the quantitative sample is supplied from the supply channel 4 10 to the reagent reaction tank 4 0 5, and is colored after stirring and mixing. For example, it rotates at a speed of about 600 rpm. When the reagent reaction tank 4 0 5 comes directly under the light source 4 0 6, the measurement light output from the light source 4 0 6 passes through the first lens body 4 0 7, and from the measurement window 4 0 4, After passing through the carrier 40 1, the reagent reaction tank 4 0 5, the lid 4 0 2, the second lens body 4 8 8 receives light that is converted into parallel light and condensed light for the light receiving element 4 0 9. Light is received by element 4 0 9. 4 1 3 shows an example of the optical path.
受光素子 4 0 9は、 光電変換した信号を、 受光用電気リード線 4 1 2を介して第 1 0図で示す入力端 1 aに入力する。  The light receiving element 4 0 9 inputs the photoelectrically converted signal to the input terminal 1 a shown in FIG. 10 via the light receiving electrical lead 4 1 2.
第 1 0図において、  In Figure 10
この入力端に入力された電気信号は、 増幅手段 1 3 0 1で、 増幅 及びろ波され、 接続点 1 Mこ第 1 2図 (a) で示す信号として、 微分 手段 1 3 0 2に入力される。  The electrical signal input to this input terminal is amplified and filtered by the amplification means 1 3 0 1 and input to the differentiation means 1 3 0 2 as the signal shown in Fig. 2 (a) at connection point 1 M. Is done.
第 1 2図 (a)で示す 3 1 aは、 試薬反応槽内に、 気泡が介在した 場合に生じるピークの一例である。  3 1 a shown in FIG. 12 (a) is an example of a peak generated when bubbles are present in the reagent reaction tank.
微分手段 1 3 0 2は、 第 1 2図 (b)で示す微分信号を出力し、 こ の微分信号は第 1 0図で示す全波整流手段 1 3 0 3及び測定領域検 出手段 1 3 0 4に入力 'さ-'れ :  Differentiating means 1 3 0 2 outputs the differential signal shown in Fig. 1 2 (b), and this differential signal is the full-wave rectifying means 1 3 0 3 shown in Fig. 1 0 and measurement area detecting means 1 3 0 Enter 4 'sa-':
全波整流手段 1 3 0 3で、 微分信号は、 全波整流された後、 第 1 2図 (c)で示す全波整流信号として接続点 1 dを介して、 ピーク輪 出手段 1 3 0 5に供給される。  After the full-wave rectification means 1 3 0 3, the differential signal is full-wave rectified, and then as a full-wave rectification signal shown in FIG. Supplied to 5.
ピーク検出手段 1 3 0 5は、 閾値 REF 1を設定し、 これを越えた部 分を第 1 2図 (d)で示すような一定振幅のパルスに変換して、 第 10 図で示す接続点 l eを介して測定幅決定手段 1 3 0 6に出力する。 測定幅決定手段 1 3 0 6は、 このパルスの内最初のパルスの立ち 下がりから、 次のパルスの立ち上がりを、 測定分析上安定した領域 幅として第 1 2図 (e)で示すパルスを接続点 1 Πこ出力する。  The peak detection means 1 3 0 5 sets the threshold value REF 1 and converts the portion exceeding this threshold value into a pulse with a constant amplitude as shown in Fig. 12 (d). Output to measurement width determining means 1 3 0 6 via le. Measurement width determination means 1 3 0 6 uses the pulse shown in Fig. 12 (e) as the connection area, with the rising edge of the next pulse from the falling edge of the first pulse as a stable area width for measurement analysis. 1 Π Output.
尚、 この測定領域幅を決定する際、 パルスの立ち下がりからパル スの立ち上がりまでの検出の範囲は、 担体の回転数と、 試薬反応槽 の所定のタイミングに基づいて決定される仮の範囲を予め算出して その範囲に含まれる場合であることが好ましい。 When determining the width of this measurement area, the pulse is The detection range until the rise of the cell is preferably a case where a provisional range determined based on the rotation speed of the carrier and a predetermined timing of the reagent reaction tank is calculated in advance and included in the range.
測定領域検出手段 1 3 0 4は、 第 1 2図 (e)で示す測定幅決定手 段で得られた測定幅パルス間で、 微分手段の出力を通過させ、 平均 化手段 1 3 0 7にその通過分を入力させる。  The measurement area detection means 1 3 0 4 allows the output of the differentiation means to pass between the measurement width pulses obtained by the measurement width determination means shown in FIG. 1 2 (e), and to the averaging means 1 3 0 7 Input the passage amount.
平均化手段 1 3 0 7は、 この通過分を積分、 加算平均等して、 第 1 2図 (ί ) で示すような、 真の測定領域 ( 3 1 b、 3 l c)を出力端 1 gに出力する。  Averaging means 1 3 0 7 integrates and averages the passages to obtain the true measurement area (3 1 b, 3 lc) as shown in Fig. 12 (ί). Output to.
' 第 1 1 B図は、 取り扱い上、 光路に該当する部位を保護し、 光学 的計測状態をより改良した実施例を示す。  'Fig. 11 B shows an example in which the optical measurement state is further improved by protecting the part corresponding to the optical path for handling.
第 1 1 B図において、 第 1 1 A図と同一の構成については、 同一 の番号を付して説明を省略する。  In FIG. 11B, the same components as those in FIG. 11A are denoted by the same reference numerals and description thereof is omitted.
4 1 4は、 担体 4 0 1 の底面であって、 試薬反応槽 4 0 ' 5の直下 に相当する部位に形成された凹部である。 凹部 4 1 4の面積は、 少 なく とも光源 4 0 6、 第 1レンズ体 4 0 7 を介して通過する光の幅 に相当する事が好ましい。 ―  4 14 is a recess formed at the bottom surface of the carrier 4 0 1 and corresponding to the portion immediately below the reagent reaction vessel 4 0 ′ 5. The area of the recess 4 14 is preferably at least equivalent to the width of the light passing through the light source 40 6 and the first lens body 40 7. -
.凹部 4 1 4の高さは、 凹部 4 1 4が、 担体 4 0 1 を利用者が取り 扱う際、 指紋の付着を阻止する程度であれば良く、 その範囲で適宜 選択される力 例えば 0 . 5 〜 1 m m程度が例示される。  The height of the recess 4 1 4 may be such that the recess 4 1 4 prevents the attachment of fingerprints when the user handles the carrier 4 0 1. Examples are about 5 to 1 mm.
4 1 5は、 遮光印刷面であり、 スクリーン印刷手法等により形成 されている。 遮光印刷面 4 1 5は、 黒色印刷の他、 少なく とも光を 透過させない濃度を持った他の色であってもよい。  4 1 5 is a light-shielding printing surface, which is formed by a screen printing method or the like. The light-shielding printed surface 4 15 may be other colors having a density that does not transmit light at least in addition to black printing.
4 1 6は、 接着テープであり、 片面に粘着剤が形成された透明テ ープ、 両面接着テープであって、 片面のみ粘着剤が露出した透光性 テープによって形成されている。  4 1 6 is an adhesive tape, which is a transparent tape having a pressure-sensitive adhesive formed on one side, and a double-sided adhesive tape formed of a translucent tape with the pressure-sensitive adhesive exposed on only one side.
4 1 7は、 嵌合蓋であり、 担体 4 0 1 と同じ部材ょりなり、 厚み が 1mm程度で、 透光性を有していてもいなくても良い。 4 1 7 is a fitting lid, the same material as the carrier 4 0 1, thickness Is about 1mm and may or may not be translucent.
4 1 8は、 孔部であり、 試薬反応槽 4 0 5を通過した光を通過さ せるに十分な面積を有する程度の貫通孔によって形成されている。  Reference numeral 4 18 denotes a hole, which is formed by a through-hole having an area sufficient to allow the light that has passed through the reagent reaction tank 45 to pass therethrough.
4 1 9は、 嵌合用孔であり、 担体 4 0 1 に形成され、 下方部の直 径が上方部よりもやや大きく形成することで嵌合部が抜けにくいよ うに成レている。 尚、 成型で作る場合は、 貫通穴とする場合もある  Reference numeral 4 19 denotes a fitting hole, which is formed in the carrier 40 1, and is formed so that the fitting portion is difficult to be removed by forming the diameter of the lower portion slightly larger than that of the upper portion. In addition, when making by molding, it may be a through hole.
4 2 0は、 嵌合突起であり、 嵌合蓋 4 1 5に一体的に形成されて おり、 先端部は、 横に収縮可能な嵌合先端部 4 2 1 を形成している 第 1 1 B図で示す実施例は、 担体 4 0 1上に接着テープ 4 1 6 を 貼り付け、 更にその上から、 嵌合蓋 4 1 7 を覆い、 担体 4 0 1上の 嵌合用孔 4 1 9に嵌合突起 4 2 0 を挿入して、 嵌合先端部 4 2 1が 、 嵌合用孔 4 1 9の先端部で、 外側方向に開く ことで、 嵌合蓋 4 1 7 と、 担体 4 0 1は、 機械的に結合する。 Reference numeral 4 2 0 denotes a fitting protrusion, which is formed integrally with the fitting lid 4 15, and the tip portion forms a fitting tip portion 4 2 1 that can be contracted laterally 1 1 1 In the embodiment shown in FIG. B, an adhesive tape 4 1 6 is applied to the carrier 4 0 1, and further, the fitting lid 4 1 7 is covered from above, and the fitting hole 4 1 9 on the carrier 4 0 1 is covered. By inserting the fitting protrusion 4 2 0 and opening the fitting tip 4 2 1 outward at the tip of the fitting hole 4 1 9, the fitting lid 4 1 7 and the carrier 4 0 1 Is mechanically coupled.
試薬反応槽 4 0 5の上下方向であって、 光路に相当する部分は、 凹部 4 1 4及び孔部 4 1 8 によって、 利用者の指先が、 光学的通路 面に触れることが無く、 汚れや指紋による透過光の損失は低減され る。  In the vertical direction of the reagent reaction tank 4 0 5, the portion corresponding to the optical path is covered with the concave portion 4 1 4 and the hole portion 4 1 8 so that the user's fingertip does not touch the optical path surface. Loss of transmitted light due to fingerprints is reduced.
光源 4 0 6から出力した光は、 第 1レンズ体 4 0 7で集光されて 、 凹部 4 1 4から、 試薬反応槽 4 0 5を通過して、 孔部 4 1 8、 第 2 レンズ体 4 0 8 を介して受光素子 4 0 9に受光される。 第 2 レン ズ体は必要とされるものではなく、 なくても良い場合がある。  The light output from the light source 40 6 is collected by the first lens body 40 7 and passes through the reagent reaction tank 4 0 5 from the recess 4 1 4 to the hole 4 1 8, the second lens body. Light is received by the light receiving element 4 0 9 through 4 0 8. The second lens body is not required and may not be required.
遮光印刷面 4 1 5は、 薄膜でありながら、 光を通過させないため 、 透過光に乱反射光等の混入を防ぐことができる。  Since the light-shielding printing surface 4 15 is a thin film but does not allow light to pass therethrough, it is possible to prevent mixing of irregularly reflected light and the like into the transmitted light.
次に、 他の実施例を第 1 3図に示し説明する。  Next, another embodiment will be described with reference to FIG.
第 1 3図'は、 第 1 0図で示した構成に更に、 試薬反応槽での反応 結果が濃すぎることから、 光の透過が不十分となり電気信号の振幅 も小さくなる場合等、 受光量が少ない時でも、 光学的情報の検出を 可能とするための構成を付加した実施例である。 Fig. 13 'shows the reaction in the reagent reaction tank in addition to the configuration shown in Fig. 10. This is an embodiment with a configuration to enable detection of optical information even when the amount of received light is small, such as when the light is not sufficiently transmitted and the amplitude of the electrical signal is small because the result is too dark. .
1 3 2 7は、 ピーク間隔検出手段であり、 前段のピーク検出手段 1 3 0 5から出力されるピーク信号の間隔時間を検出する為の手段 である。  1 3 27 is a peak interval detection means for detecting the interval time of the peak signal output from the preceding peak detection means 1 3 0 5.
1 3 2 8は、 比較手段であり、 前記ピーク間隔検出手段 1 3 2 7 で出力されたピーク間隔信号に対し、 予め設定された間隔信号を比 較し、 おおよそ一致しない場合、 不一致信号を出力する。  1 3 2 8 is a comparison means, which compares the preset interval signal with the peak interval signal output by the peak interval detection means 1 3 2 7 and outputs a mismatch signal if they do not match roughly To do.
' 1 3 0 6は、 測定幅決定手段であり、 第 1 0図で説明した機能の 他、 比較回路 1 .3 2 8からの出力信号において、 ピーク間隔検出手 段 1 3 2 7から出力したピーク間隔信号が、 予め設定された間隔信 号より長い場合の不一致信号のとき、 その長さを予め設定.された間 隔信号で除した値を一 1 レた値 n (但し n≥ 1 ) だけ、 予め設定され たピーク間隔と予め設定した測定幅の信号を組み合わせて出力する ものである。  '1 3 0 6 is a measurement width determination means. In addition to the functions described in FIG. 10, the output signal from the comparison circuit 1.3 28 is output from the peak interval detection means 1 3 2 7. When the peak interval signal is a mismatch signal when the interval signal is longer than the preset interval signal, the value obtained by dividing the length by the preset interval signal is a value n (where n≥ 1) However, only a preset peak interval and a preset measurement width signal are output in combination.
これら 動作は、 ワンチップマイコン等の制御素子によって実現 可能としても良い。 ·  These operations may be realized by a control element such as a one-chip microcomputer. ·
次に、 第 1 3図の動作を第 1 4図を用いて詳細に説明する。  Next, the operation of FIG. 13 will be described in detail with reference to FIG.
第 13図で示す増幅手段 .1 3 0 1 に入力された透過光信号は、 増幅 ろ波されて、 第 1 4図 (a)で示す信号を出力する。  The transmitted light signal input to the amplifying means .1 130 shown in FIG. 13 is amplified and filtered to output the signal shown in FIG. 14 (a).
3 0 a、 3 O bは、 反応槽内部を透過せず周辺を透過してきて生じ た透過光であり雑音である。  3 0 a and 3 O b are transmitted light generated through the periphery without passing through the inside of the reaction tank, and are noise.
3 0 cは、 試薬反応槽内部に生じた気泡によって生じた雑音であ る。 - 増幅手段 1 3 0 1から出力された信号は、 微分手段で微分され、 接続点 l cには、 第 1 4図 (b)で示す微分波形が出力される。 その後、 全波整流手段 1 3 0 3で全波整流され、 接続点 I dに第 1 4図 (c)で示すような波形が出力される。 30 0 c is noise generated by bubbles generated in the reagent reaction vessel. -The signal outputted from the amplifying means 1 3 0 1 is differentiated by the differentiating means, and the differential waveform shown in Fig. 14 (b) is outputted to the connection point lc. After that, full-wave rectification is performed by the full-wave rectification means 130, and a waveform as shown in Fig. 14 (c) is output to the connection point Id.
第 13図で示すピーク検出手段 1 3 0 5は、 第 14図で示す閾値 REF 2より越えた部分でパルスを出力する。  The peak detection means 1 3 0 5 shown in FIG. 13 outputs a pulse at a portion exceeding the threshold REF 2 shown in FIG.
第 13図で示すピーク間隔検出手段 1 3 2 7は、 このパルスを記憶 し、 次のピークが入力された時、 例えばパルスの立ち上がりを基準 として、 第 14図で示すピーク間隔 11を検出し、 第 13図で示す比較手 段 1 3 2 8に出力する。  The peak interval detection means 1 3 2 7 shown in FIG. 13 stores this pulse, and when the next peak is inputted, for example, with reference to the rise of the pulse, the peak interval 11 shown in FIG. 14 is detected, Output to comparison means 1 3 2 8 shown in Fig. 13.
第 1 3図で示す比較手段 1 3 2 8は、 第 14図で示すピーク間隔 11 と予め予測される試薬反応槽の間隔 12とを比較し、 n=ll/12-lが、 0≤η< 1の場合は、 正しい試薬反応槽間隔であるとし、 1以上の 場合、 試薬反応槽に未検出部分があるとする信号を出力する。  The comparison means 1 3 2 8 shown in FIG. 13 compares the peak interval 11 shown in FIG. 14 with the reagent reaction vessel interval 12 predicted in advance, and n = ll / 12−l is 0≤η If <1, the correct reagent reaction tank interval is assumed, and if it is 1 or more, a signal indicating that there is an undetected part in the reagent reaction tank is output.
測定幅決定手段 1 3 0 6は、 比較手段 1 3 2 8から出力された信 号を入力し、 nの値の数だけ、 予め設定された間隔 12毎に、 予め設 定された幅 13を出力する。  The measurement width determination means 1 3 0 6 receives the signal output from the comparison means 1 3 2 8, and sets a preset width 13 for each preset interval 12 by the number of values of n. Output.
第 1 4図で示す場合は、 n=lであるため、 予め設定された間隔 12 後に予め担体の移動速度と、 試薬反応槽の測定面の直径から得られ る所定の時間幅 13を測定幅とした信号を出力する (第 1 4図(f)を 参照) 。  In the case shown in FIG. 14, since n = l, a predetermined time width 13 obtained from the moving speed of the carrier and the diameter of the measurement surface of the reagent reaction tank after a predetermined interval 12 is measured. (See Fig. 14 (f)).
例えば nが 2の場合は、 所定の時間間隔 12後、 測定領域 13を設定 し、 その後、 更に所定時間間隔 12後、 測定領域 13を設定する。  For example, when n is 2, the measurement region 13 is set after a predetermined time interval 12, and then the measurement region 13 is set after a predetermined time interval 12.
測定領域検出手段 1 3 0 4は、 この予め設定された時間幅 13の間 隔だけ、 微分信号を通過させ、 平均化手段 1 3 0 7で、 その他の部 位よりはより感度を上げた平均化を行う。  The measurement area detection means 1 3 0 4 allows the differential signal to pass through the preset time interval 13 and the averaging means 1 3 0 7 is an average with higher sensitivity than other parts. To do.
第 1 4図に、 測定範囲となる部分を点線の四角形で示した。  In Fig. 14, the measurement range is indicated by a dotted rectangle.
以上の操作により、 たとえ、 試薬反応槽の反応濃度が大きく、 透 過光が得られない場合でも、 安定した濃度測定範囲が実現できる。 実施例 1 一 5 By the above operation, a stable concentration measurement range can be realized even when the reaction concentration in the reagent reaction tank is large and no transmitted light can be obtained. Example 1 1 5
次に、 試薬反応槽に光を照射する際、 散乱光等により生じる雑音 を除去する為の実施例を第 15図及び第 1 6図を参照して詳細に説明 する。 第 1 5図の線分 X— X ' に沿った断面図が第 1 6図である。  Next, an embodiment for removing noise caused by scattered light or the like when irradiating light to the reagent reaction tank will be described in detail with reference to FIG. 15 and FIG. FIG. 16 is a cross-sectional view taken along line X—X ′ in FIG.
4 0 1は、 担体であり、 P E T、 ポリアクリル等の透光性プラス チック材、 ガラス材等よりなり、 1ないし複数の試薬槽が形成され た円盤状、 シート状を有する。  Reference numeral 401 denotes a carrier, which is made of a translucent plastic material such as PET or polyacrylic, a glass material, or the like, and has a disk shape or a sheet shape in which one or more reagent tanks are formed.
4 0 2は、 蓋部であり、 例えば担体と同一材よりなり、 接着剤、 粘着材、 自己吸着性により、 担体と接合する。  Reference numeral 400 denotes a lid, which is made of, for example, the same material as the carrier and is bonded to the carrier by an adhesive, an adhesive, or self-adsorption.
' 4 0 3は、 吸光部材であり、 黒色、 あるいは黒色に近い灰色のシ 一トで形成され、 試薬反応槽 4 0 5の直下は、 円状の貫通孔よりな る測定窓 4 0 4が形成されている。  '4 0 3 is a light absorbing member, which is formed of black or a gray sheet close to black, and immediately below the reagent reaction tank 4 0 5 is a measurement window 4 0 4 consisting of a circular through hole. Is formed.
4 0 5は、 試薬反応槽であり、 担体 4 0 1 に円柱状として形成さ れている。  Reference numeral 400 denotes a reagent reaction tank, which is formed in a cylindrical shape on the carrier 4 0 1.
4 1 0は、 供給流路であり、 担体 4 0 1上に凹状に形成され、 検 体を定量分外部から供給するためのものである。  Reference numeral 4 10 denotes a supply channel, which is formed in a concave shape on the carrier 4 0 1 and is used for supplying a sample from the outside for a fixed amount.
4 2 2は、 分配流路であり、 個々の試薬反応槽に検体を供給する ためのものである。  4 2 2 is a distribution channel for supplying specimens to individual reagent reaction vessels.
第 1 6図で示す試薬反応槽の、 底面 3 0 gの直径は約 1. 5匪である のに対し、 測定窓は 4 0 4の直径 3 0 fは、 約 lmmである。  The diameter of the bottom 30 g of the reagent reaction tank shown in Fig. 16 is about 1.5 mm, whereas the diameter 30 0 f of the measuring window is about lmm.
この様な状態で、 上述した試薬反応槽への下からの測定光の透過 の際、 第 1 4図 ( a)で示すひげ 3 0 a、 3 0 bが生じず、 安定した波 形が得られるのである。  In this state, when measuring light is transmitted from below into the reagent reaction vessel described above, the whiskers 30a and 30b shown in Fig. 14 (a) do not occur, and a stable waveform is obtained. It is done.
実施例 1 一 6 Example 1 1 6
次に、 回路、 担体の形状、 加工状態によって生じる不要な信号を 除去する為の本発明の他の実施例につき第 1 7図以降を用いて詳細 に説明する。 第 1 7図において、 Next, another embodiment of the present invention for removing unnecessary signals generated depending on the circuit, the shape of the carrier, and the processing state will be described in detail with reference to FIGS. In Figure 17
5 0 1 は、 光電変換手段であり、 レーザ、 L E D光源と、 受光素 子の組み合わせにより、 試薬反応槽を透過した透過光を電気信号に 変換して出力するためのものである。  Reference numeral 5 0 1 denotes a photoelectric conversion means for converting the transmitted light that has passed through the reagent reaction tank into an electric signal and outputting it by a combination of a laser, a LED light source, and a light receiving element.
5 0 2は、 増幅手段であり、 例えば、 入力された光電変換信号を アナログ的に増幅し、 ろ波して出力するためのものである。  5 0 2 is an amplifying means, for example, for amplifying an input photoelectric conversion signal in an analog manner, filtering it, and outputting it.
5 0 3は、 オフセッ ト値補正手段であり、 試薬反応槽を透過した 透過光に係る信号に対し、 入力されるオフセッ ト信号等を除する等 の演算をして、 校正された信号を接続点 5 cに出力する手段である 校正のための演算は、 例えば、 一度デジタル信号にした後、 演算 する手法や、 アナログ演算的な手法が示されるが、 装置の大きさ、 スピード等に応じて適宜選択される。  Offset value correction means 5 0 3 connects the calibrated signal by performing operations such as removing the input offset signal from the signal related to the transmitted light that has passed through the reagent reaction tank. The calculation for calibration, which is a means to output to the point 5c, is, for example, a method of calculating after converting it to a digital signal and an analog calculation method, but depending on the size, speed, etc. of the device It is selected appropriately.
5 0 4は、 オフセッ ト値決定手段であり、 担体の校正領域から得 られる受光信号を弁別的に選択して、 オフセッ ト信号を形成し、 ォ フセッ ト値補正手段 5 0 3に出力するためのものである。  Reference numeral 5 0 4 is an offset value determining means for discriminatingly selecting a received light signal obtained from the calibration region of the carrier, forming an offset signal, and outputting it to the offset value correcting means 5 0 3 belongs to.
5 0 5は、 タイミング信号形成手段であり、 担体と計測部が相対 的に移動している状態に同期し、 計測部と試薬反応槽が一致する夕 イミングを検出して、 一致信号を出力するためのものである。  5 0 5 is a timing signal forming means that detects the timing when the measurement unit and the reagent reaction tank coincide with each other in synchronization with the state in which the carrier and the measurement unit are relatively moving, and outputs a coincidence signal. Is for.
5 0 6は、 基準データ形成手段であり、 例えば、 希釈液、 純水等 が入った試薬反応槽に対し、 透過光による光学的測定を行った結果 を一次的記憶する手段である。  Reference numeral 56 denotes reference data forming means, for example, means for temporarily storing the results of optical measurement using transmitted light in a reagent reaction tank containing a diluent, pure water, and the like.
尚、 同様の計測を複数回行って加算平均した値を記憶する事が好 ましい場合もある。  In some cases, it may be preferable to memorize the value obtained by performing the same measurement multiple times and averaging.
その他、 血漿のみの光学的計測結果の値等を記憶する場合もある この様な記憶は、 0D値として記憶し、 その数値を OD = 0の基準値と する。 In addition, there are cases where the value of optical measurement results of plasma only, etc. is stored. Such memory is stored as a 0D value, and that value is used as the reference value for OD = 0. To do.
5 0 7は、 校正手段であり、 各反応槽の光学的測定結果から上記 記憶値を減ずることによって補正がなされる。 尚、 校正は、 補正 、 修正等の意味を含むものである。  Reference numeral 5 07 denotes calibration means, which is corrected by subtracting the stored value from the optical measurement result of each reaction tank. Calibration includes the meanings of correction and correction.
尚、 タイミング信号は、 担体の基準部を検出した後、 回転速度と 、 試薬反応槽の一定の配置角度から予測的に発振させるものであつ ても良いが、 光電変換手段 5 0 1から得られる信号の振幅値等から 試薬反応槽の位置を検出していき、 途中発色濃度が高く抜ける場合 は、 検出された試薬反応槽の位置信号を予め決定されている試薬反 応槽の口径と、 配置距離 (角度) に基づいて、 予測的に得るもので あってもよい。  The timing signal may be obtained by detecting the reference portion of the carrier and then oscillating predictably from the rotational speed and a fixed arrangement angle of the reagent reaction tank. If the reagent reaction tank position is detected from the amplitude value of the signal, etc., and the color density drops out during the process, the detected reagent reaction tank position signal and the predetermined diameter of the reagent reaction tank are arranged. It may be obtained predictively based on the distance (angle).
又、 増幅手段より後段をデジタル処理の為の手段とする場合は、 A Z D変換器等を新たに追加し、 プログラムを記憶した一つのマイ コンにより実行しても良い場合もある。  In addition, when a stage subsequent to the amplification means is used as a means for digital processing, an AZ D converter or the like may be newly added and executed by a single microcomputer storing the program.
担体の一例を第 1 9図に示す。 第 1 9図は、 説明上、 必要と思わ れる部分だけ示しており、 その他、 血液と希釈液が混合する部分、 定量化する部分.、 血液投入口等は省略した。  An example of the carrier is shown in FIG. Fig. 19 shows only the parts that are considered necessary for the explanation. In addition, the part where blood and diluent are mixed, the part that is quantified, the blood inlet, etc. are omitted.
担体 5 0 0は.、 ポリアクリル、 P E T等の透光性部材で形成され る。  The carrier 500 is formed of a translucent member such as polyacrylic or PET.
5 0 aは、 赤色受光体であり、 5 O bは、 赤色光源である。 5 1 a は、 緑色受光体であり、 5 l bは、 緑色光源である。 5 2 aは青色受 光体であり、 5 2 bは、 青色光源である。  5 0 a is a red light receiver, and 5 O b is a red light source. 5 1 a is a green photoreceptor, and 5 l b is a green light source. 5 2 a is a blue light receiver, and 5 2 b is a blue light source.
光源は、 レーザ、 L E D等が例示され、 受光体としては、 C D s 、 フォ ト トランジスタ等が例示される。  Examples of the light source include lasers and LEDs, and examples of the light receiver include CDs and phototransistors.
5 3 a〜 5 3 hは試薬反応槽の一部であり、 例えば直径 1 mmく らい の円筒状体のものが、 等間隔で配列されている。 個々の試薬反応槽 には、 それぞれ異なる試薬が液状又は固形状で封入されている。 尚、 これらの試薬反応槽は、 一部であり、 その他にも、 光学的軌 道上には、 他の試薬を封入した同じ大きさの試薬反応槽が、 等間隔 に配置されている。 5 3 a to 53 h are a part of the reagent reaction tank, for example, cylindrical bodies having a diameter of about 1 mm are arranged at equal intervals. Each reagent reaction vessel is filled with different reagents in liquid or solid form. These reagent reaction tanks are a part, and in addition, reagent reaction tanks of the same size in which other reagents are enclosed are arranged at equal intervals on the optical path.
5 4は、 校正や修正のために設けられた校正領域を示す。  5 4 indicates the calibration area provided for calibration and correction.
校正領域 5 4において、  In calibration area 54,
5 4 a、 5 4 bは、 校正用媒体収容部であり、 例えば希釈液のみ、 血漿のみ、 純水、 空の状態の試薬反応槽が設けられている。 これら 校正用媒体収容部は、 2つ示しているが、 必要な校正情報の数だけ 増やしても良い。 校正用媒体収容部も、 一例であり、 その他の校正 媒体を収容したものが、 等間隔に配列されている場合もある。  Reference numerals 5 4 a and 5 4 b are calibration medium storage units, for example, provided with a reagent reaction tank in a diluted liquid only, plasma only, pure water, and empty state. Although two of these calibration medium storage units are shown, they may be increased by the number of necessary calibration information. The calibration medium container is also an example, and other calibration medium containers may be arranged at equal intervals.
5 4 cは、 黒色領域であり、 試薬反応槽と同程度以上の面積の黒 色が付されている。  5 4 c is the black region, which is black with the same area as the reagent reaction tank.
5 4 dは,基準領域であり、 上下貫通した孔部であって、 直径方向 にスリ ッ トが施されている。 基準領域 5 4 dは、 試薬反応槽内の計 測の為の出発点、 終了点、 位置の認識点等様々な基準となる部位で あるとともに、 貫通光である点を利用し、 光源と受光体間の最大受 光光量を計測する為の、 基準値を得るものであっても良い。  5 4 d is a reference area, which is a hole that penetrates vertically, and is slit in the diameter direction. The reference area 5 4 d is a part that serves as various reference points such as the start point, end point, and position recognition point for measurement in the reagent reaction tank, and uses a point that is penetrating light to receive light from the light source. A reference value for measuring the maximum amount of light received between bodies may be obtained.
5 5 aは、 分配用の流路であり、 5 5 bは、 定量性を有する供給用 流路である。  5 5 a is a flow channel for distribution, and 5 5 b is a flow channel for supply having quantitativeness.
5 6は、 読み取り装置と結合するための例えば 2つのチヤツキン グ用孔を示すものである。  5 6 shows, for example, two chucking holes for coupling with the reading device.
5 7は、 体液供給口であり、 外部より体液を供給する為にもちい られる孔部である。 当該体液供給口 5 7への体液の供給は、 マイク 口ピペッ ト、 スポイ ト等の簡易な注入具を利用して行われることが 好ましい。  5 7 is a body fluid supply port, which is a hole used for supplying body fluid from the outside. The body fluid supply to the body fluid supply port 57 is preferably performed using a simple injection tool such as a microphone port pipette or a spot.
体液供給口 5 7から、 各種試薬反応槽迄の構成は、 体液と希釈液 との混合、 体液から不要な血球を分離する部位等が形成されている が、 この部分は省略した。 The configuration from the body fluid supply port 57 to the various reagent reaction tanks is composed of a mixture of body fluid and diluent, and a part for separating unnecessary blood cells from the body fluid. But this part was omitted.
回転体である担体 5 0 0に体液が中央の血液投入口から供給され 、 血球等の不要な成分が遠心分離除去されると共に、 希釈液との混 合が行われ、 各試薬反応槽へ、 定量的に希釈混合血漿液が供給され 混合される。 これらの行為は、 回転と毛管力によって行われる事が 好ましい。  The body fluid is supplied to the carrier 500 which is a rotating body from the central blood inlet, and unnecessary components such as blood cells are removed by centrifugation and mixed with the diluted solution. A diluted mixed plasma solution is quantitatively supplied and mixed. These actions are preferably performed by rotation and capillary force.
定量的な混合体液が各試薬反応槽 5 3 a〜 5 3 hその他、 希釈液、 計測のための体液が必要な校正領域 5 4のいずれかに分配流路 5 5 a、 供給用流路 5 5 bを介して供給され、 試薬反応槽内の液状、 粒子 状の試薬と混合し、 発色反応を生じさせる。  Quantitative mixture fluid is in each reagent reaction tank 5 3 a-5 3 h Other distribution channels 5 5 a, supply channels 5 5 Supplied through b and mixed with liquid, particulate reagent in the reagent reaction tank to cause a color reaction.
担体 5 0 0は、 回転し、 各光源と受光体との間を、 試薬反応槽、 校正媒体収容部、 基準部が移動していく状態が形成される。  The carrier 500 is rotated to form a state in which the reagent reaction tank, the calibration medium storage unit, and the reference unit move between each light source and the photoreceptor.
第 1 8 A図は、 第 1 9図における線分 X— X ' に沿った断面図で ある。 第 1 8 A図は、 実際担体 5 0 0 を読み取り装置内に装着した 状態であって、 試薬反応槽 5 3 aの上下方向に受光体 5 0 a及び光源 5 O bが到達した状態の配置を示しており、 例えば第 4図と同様の 構成を示す。  FIG. 18A is a cross-sectional view along the line XX ′ in FIG. FIG. 18A shows an arrangement in which the carrier 50 0 0 is actually installed in the reader, and the photoreceptor 5 0 a and the light source 5 Ob reach the vertical direction of the reagent reaction vessel 5 3 a. For example, the same configuration as in Fig. 4 is shown.
第 1 8 A図において、 5 O l aは、 読み取り装置上部であり、 受 光体 5 0 aが装着されている。 受光体 5 0 aには、 外部へ電気信号を 送信するための電気リ一ド線 5 0 cが接続されている。 5 0 1 bは、 読み取り装置下部であり、 受光体 5 0 aの直下に相当する部分に光 源 5 0 bが配置されている。  In FIG. 18A, 5 O l a is the upper part of the reading device, and a light receiver 50 0 a is attached. An electrical lead wire 50 c for transmitting an electrical signal to the outside is connected to the photoreceptor 50 a. Reference numeral 5 0 1 b denotes a lower part of the reading device, and a light source 50 b is arranged in a portion corresponding to a portion immediately below the photoreceptor 50 a.
光源 5 0 bには電気エネルギーを供給するための電気リ一ド線 5 0 dが接続されている。  An electric lead wire 50 d for supplying electric energy is connected to the light source 50 b.
試薬反応槽 5 3 a内には、 血漿成分と試薬の混合溶液 5 0 1 cが充 填されている。  The reagent reaction vessel 5 3 a is filled with a plasma component-reagent mixed solution 5 0 1 c.
担体 5 0 0は、 各種流路を試薬反応槽を凹部で形成し、 蓋部 5 0 O bを、 接着剤、 粘着剤、 自己吸着能により接続する。 The carrier 5 0 0 is formed by forming various flow paths with a reagent reaction tank as a recess, and a lid 5 0 Connect O b with adhesive, adhesive, and self-adsorption ability.
また、 透過光を効率よく得るため、 試薬反応槽を通過する光路以 外には、 吸光部材 5 0 0 cが塗布、 接続されている。  Further, in order to efficiently obtain transmitted light, a light absorbing member 500 c is applied and connected in addition to the optical path passing through the reagent reaction tank.
第 1 8 B図は、 担体 5 0 0が更に回転し、 校正媒体収容部 5 4 a が、 赤色の光源 5 0 bと、 赤色受光体 5 0 aの間に置かれた状態を示 す。 内部には希釈液 5 2 aが入っている。 尚、 予め注入しておいた 状態であるため、 供給流路等は接続されていないが、 血液を供給し 、 希釈液を展開する際、 校正媒体収容部 5 4 aに希釈液のみを供給 しても良い。  FIG. 18B shows a state in which the carrier 50 0 0 further rotates and the calibration medium container 5 4 a is placed between the red light source 5 0 b and the red light receiver 5 0 a. Diluent 5 2 a is contained inside. Although the supply channel is not connected because it has been pre-injected, when supplying blood and developing the diluted solution, supply only the diluted solution to the calibration medium container 54a. May be.
'第 1 8 C図は、 黒色領域 5 4 cが、 赤色の光源 5 0 bと、 赤色受光 体 5 0 aの間に置かれた状態を示す。  'FIG. 18 C shows a state in which the black region 54c is placed between the red light source 50b and the red photoreceptor 50a.
黒色領域 5 4 cは、 試薬反応槽を持つ必要は必ずしもなく、 第 1 The black area 5 4 c does not necessarily have a reagent reaction tank.
8 C図で示すように、 担体 5 0 0の底部に吸光部材 5 0 0 cを配置 したものとすることが好ましい。 As shown in FIG. 8C, it is preferable that a light-absorbing member 500 c is disposed at the bottom of the carrier 500.
次に上述した構成を具えた実施例の動作を説明する。  Next, the operation of the embodiment having the above-described configuration will be described.
第 19図で示す担体 5 0 0上の試薬が含まれた試薬反応槽に血漿成 分が供給用流路を介して定量供給される。  A plasma component is quantitatively supplied to the reagent reaction tank containing the reagent on the carrier 500 shown in FIG. 19 via the supply channel.
定量検体は、 試薬反応槽内で回転の変化等で撹拌され、 試薬と反 応する。  The quantitative sample is agitated by a change in rotation in the reagent reaction tank and reacts with the reagent.
発色測定が可能なタイミングにおいて、 担体 5 0 0 を 6 0 0 r p m前後の回転数で回転させ、 担体 5 0 0上の基準領域 5 4 dが、 赤 色の光源 5 O bと赤色受光体 5 0 aの光路上、 緑色光源 5 l bと緑色 受光体 5 1 aの光路上及び青色光源 5 2 bと青色受光体 5 2 aの光路 上を通過した際、 それぞれ受光計測を行う。 第 2 1図は、 3つの受 光ュニッ 卜のうちの一つの受光波形を示す。  At a timing at which color development measurement is possible, the carrier 5 0 0 is rotated at a rotational speed of about 6 0 0 rpm, and the reference region 5 4 d on the carrier 5 0 0 is a red light source 5 O b and a red photoreceptor 5 On the optical path of 0 a, green light source 5 lb and green light receiver 5 1 When light passes through the optical path of 1 a and blue light source 5 2 b and blue light receiver 5 2 a, the light reception measurement is performed. Figure 21 shows the light reception waveform of one of the three light receiving units.
第 2 1図において 5 1 0 Sは、 第 19図で示す基準領域 5 4 dを受 光した時の波形であって、 中央のスリ ツ トにより 2双状の信号を示 している。 In FIG. 21, 5 10 S is a waveform when the reference region 54 d shown in FIG. 19 is received, and the center slit indicates two bilateral signals. is doing.
基準信号 5 1 0 Sは、 第 1 7図で示す光電変換手段 5 0 1で電気 信号に変換された後、 タイミング信号形成手段 5 0 5 に入力される 。 第 1 7図の接続点 5 aには、 例えば、 第 2 0図で示す様な信号列 が出力される。 尚、 第 2 0図の信号列は、 第 1 9図で示す赤色の光 源 5 O bと赤色受光体 5 0 aの組み合わせ、 緑色光源 5 l bと緑色受 光体 5 l aの組み合わせ、 青色光源 5 2 bと青色受光体 5 2 aの組み 合わせのうち、 一つの組み合わせから得られた電気信号列を示して いる。 V o ifがオフセッ ト電圧であり、 素子の特性等から生じる電 圧である。  The reference signal 5 10 S is converted into an electric signal by the photoelectric conversion means 5 0 1 shown in FIG. 17 and then input to the timing signal forming means 5 5. For example, a signal sequence as shown in FIG. 20 is output to the connection point 5a in FIG. The signal sequence in FIG. 20 is the combination of the red light source 5 O b and the red light receiver 50 0 a shown in FIG. 19, the combination of the green light source 5 lb and the green light receiver 5 la, and the blue light source. The electric signal train obtained from one of the combinations of 5 2 b and blue light receiver 5 2 a is shown. V o if is the offset voltage, which is a voltage generated from the characteristics of the element.
タイミング信号形成手段 5 0 5は、 第 2 1 図で示す 5 1 O Sを基 準に、 例えば (b) で示すような自走パルス出力を接続点 5 Mこ行う このパルス間隔は、 等間隔に配列された試薬反応槽の距離に相当 し、 パルス幅は、 試薬反応槽に代表される光路中の面積に相当して いる。  The timing signal forming means 5 0 5 is based on 5 1 OS shown in Fig. 2 1, and for example, performs 5 M of free-running pulse output as shown in (b). This pulse interval is equally spaced. This corresponds to the distance between the arranged reagent reaction vessels, and the pulse width corresponds to the area in the optical path typified by the reagent reaction vessel.
第 2 1 図 (a)は、 5 1 0 Sを基準部位として、 一定時間間隔で、 試薬反応槽 5 1 1 a〜 5 1 1 eを計測していった場合の出力信号列で ある。 第 2 1図 (a)で示す信号列の内 5 1 1 a〜 5 1 1 eは、 実際試 薬が入った試薬反応槽内で発色した状態を透過した透過光を受光し て、 光電変換後の信号列である。  Fig. 21 (a) shows the output signal sequence when the reagent reaction vessels 5 1 1 a to 5 1 1 e are measured at regular intervals with 5 10 S as the reference site. Fig. 21 (1) In the signal sequence shown in Fig. 21 (a), 5 1 1 a to 5 1 1 e receive the transmitted light that has passed through the colored state in the reagent reaction tank containing the actual reagent and photoelectrically convert it. It is a subsequent signal sequence.
更に第 1 9図で示す黒色領域 5 4 cに光源と受光体のュニッ 卜が到 達すると、 第 20図で示すオフセッ ト電圧 V o f f信号のみを受光する このオフセッ ト電圧は、 例えば、 受光体として構成されるフォ ト トランジスタ、 増幅回路、 等電子回路固有の電圧であり、 その他、 電気回路上で生じる電圧を示す。 第 1 7図において、 光電変換手段 5 1 1 は、 黒色領域を受光して 電気信号に変換した後、 増幅手段 5 0 2で増幅、 ろ波する。 増幅手 段 5 0 2の出力信号は、 第 2 1図 )の 5 1 2 &、 5 1 2 b、 5 1 2 cに示す。 Further, when the light source and photoreceptor unit reach the black area 54c shown in Fig. 19, only the offset voltage Voff signal shown in Fig. 20 is received. This is a voltage unique to an electronic circuit such as a phototransistor, an amplifier circuit, and the like. In FIG. 17, the photoelectric conversion means 51 1 1 receives the black region and converts it into an electric signal, and then amplifies and filters it by the amplification means 50 2. The output signal of the amplification unit 5 0 2 is shown in 5 1 2 &, 5 1 2 b, 5 1 2 c in Fig. 2 1).
これらの出力信号電圧値は、 オフセッ ト値決定手段 5 0 4で加算 平均され、 一つのオフセッ ト電圧値として、 一時的に記憶又は設定 される。  These output signal voltage values are added and averaged by the offset value determination means 50 4, and temporarily stored or set as one offset voltage value.
次に、 第 1 9図で示す試薬反応槽 5 3 aが、 第 1 7図で示す光電 変換手段 5 0 1 (例えば、 第 1 9図の光源 5 0 b、 受光素子 5 0 a間 ) ' を通過する際、 受光素子 5 0 aで得られる発色反応デ一夕が増幅 手段 5 0 2で増幅等がされて、 オフセッ ト値補正手段 5 .0 3に入力 される。  Next, the reagent reaction vessel 53 a shown in FIG. 19 is replaced by the photoelectric conversion means 50 01 shown in FIG. 17 (for example, between the light source 50 b and the light receiving element 50 a shown in FIG. 19). When passing the light, the color reaction reaction obtained by the light receiving element 50a is amplified by the amplifying means 502, and input to the offset value correcting means 5.03.
オフセッ ト値補正手段 5 0 3は、 この増幅等された発色反応デ一 夕に対しオフセッ ト値決定手段 5 0 4から入力されたオフセッ ト電 圧 VoHを減じることで、 より誤差の小さいデ一夕 (例えば第 2 1 図 (a)で示す V 5 1 1 ) が得られ、 接続点 5 cに出力されると共に 、 補正手段 5 0 7及び基準データ形成手段 5 0 6 に出力される。  The offset value correction means 50 3 reduces the offset voltage VoH input from the offset value determination means 50 4 to the amplified color development reaction, thereby reducing the error with a smaller error. Evening (for example, V 5 11 shown in FIG. 21 (a)) is obtained and outputted to the connection point 5c and also outputted to the correcting means 507 and the reference data forming means 5106.
尚、 個々の原色に係る受光体毎に、 オフセッ ト電圧値を得る必要 はなく、 各受光体出力電圧の総和を記憶すればよい場合もある。 第 Π図において、 基準デ一夕形成手段 5 0 6は、 タイミング信号 形成手段 5 0 5からのタイミング信号により、 水、 希釈液のみ充填 された試薬反応槽が、 光電変換手段 5 0 1 を通過して、 オフセッ ト 値補正手段 5 0 3で校正された校正デ一夕として接続点 5 cに出力 されたことを検出し、 その値を一時的に記憶する (例えば第 2 1図 (a)で示す 5 1 3 a〜 5 1 3 cの全部) 。  Note that it is not necessary to obtain an offset voltage value for each photoreceptor associated with each primary color, and it may be sufficient to store the total sum of the photoreceptor output voltages. In FIG. 5, the reference de-evening means 5 0 6 shows that the reagent reaction tank filled with only water and diluent passes through the photoelectric conversion means 5 0 1 according to the timing signal from the timing signal forming means 5 0 5. Then, it is detected that the calibration data calibrated by the offset value correction means 50 3 is output to the connection point 5 c, and the value is temporarily stored (for example, FIG. 21 (a)). All of 5 1 3 a to 5 1 3 c shown in).
更に 1回転毎に又は、 隣接したその希釈液のみの光学的データを 記憶し、 加算平均して、 担体で生じる反射、 散乱光による減衰デー 夕を記憶する、 その際加算平均後 OD値 (例えば、 第 2 1図 (a)で 示す Vt) に変換して、 記憶する事が好ましい。 Furthermore, optical data of only the diluted solution adjacent to each other is stored for each rotation, and added up and averaged, and attenuation data due to reflection and scattered light generated by the carrier. It is preferable to memorize the evening and convert it into an OD value after averaging (for example, Vt shown in Fig. 21 (a)) and memorize it.
又、 第 17図で示す基準データ形成手段 5 0 6は、 第 1 9図で示す 基準領域 5 4 dから、 貫通光の光学的データ 0D値を上述と同様に記 憶して、 基準記憶 OD値(例えば、 第 2 1図 (a)で示す Vmaxに係る 値)を得る。  Further, the reference data forming means 50 06 shown in FIG. 17 stores the optical data 0D value of the penetrating light from the reference area 54 d shown in FIG. A value (for example, the value related to Vmax shown in Fig. 21 (a)) is obtained.
〇 D値は、 例えば、 loglO ( V in/ Vout) で示される。  〇 D value is indicated by, for example, loglO (V in / Vout).
貫通光に関する光学的デ一夕 (第 2 1図 (a)で示す 5 1 0 S ) (0 D値 Vmax)に対し、 希釈液のみの光学的データ (0D値 Vt)を引く こと で、 担体減衰〇D値 Vg (Vmax— V t) が得られこれを一時的に記 ' す。。  By subtracting the optical data (0D value Vt) of the diluted solution from the optical data for penetrating light (5 10 S shown in Fig. 21 (a)) (0 D value Vmax), the carrier Attenuation ○ D value Vg (Vmax—Vt) is obtained, which is temporarily recorded. .
第 19図で示す試薬反応槽 5 3 aの透過光に係る第 21図 (a)で示す 受光信号 V 5 1 1が、 第 17図で示す光電変換手段 5 0 1及びオフセ ッ 卜値補正手段 5 0 3を介して、 補正手段 5 0 7 に入力された時、 基準データ形成手段 5 0 6は、 第 2 1図 (a)で示す担体減衰デ一夕 Vgを、 第 1 7図で示す補正手段 5 0 7へ出力する。  The light reception signal V 5 11 shown in FIG. 21 (a) relating to the light transmitted through the reagent reaction vessel 53 3a shown in FIG. 19 is converted into the photoelectric conversion means 5 0 1 and the offset value correction means shown in FIG. When the data is input to the correction means 5 0 7 via 5 0 3, the reference data forming means 5 0 6 shows the carrier attenuation data Vg shown in FIG. 21 (a) in FIG. Output to correction means 5 0 7.
補正手段 5 0 7は、 試薬に関する光学的デ一夕を O D値化し、 第 2 1図 (a)で示す担体減衰デ一夕 Vgを加算することで、 担体の1損 失によって生じている値 V 5 11+ Vgを補いより真の発,色デ一夕を 得ることが可能となる。 Correcting means 5 0 7, the Isseki optical de relates to a reagent and OD-value conversion, by adding the carrier attenuation de Isseki Vg of the 2nd 1 view (a), values that are produced by 1 loss of carrier Complementing V 5 11+ Vg makes it possible to obtain a true color and color.
尚、 希釈液データだけでなく、 試薬を含まない反応槽に充填され た検体だけのデータ (例えば血漿のみ)の光学的データを〇 D値化し て基準データ (担体減衰値 Vgを加算する) とし、 演算することで 、 より正確な発色反応値を得ることも可能である。  In addition to the diluted solution data, the optical data of only the sample filled in the reaction tank that does not contain the reagent (for example, plasma only) is converted into a D value and used as reference data (add the carrier attenuation value Vg). It is also possible to obtain a more accurate color reaction value by calculating.
第 2の発明 - 第 2の発明は、 回転又は周期的運動を行う担体の一面の一部を加 熱する手段と、 当該加熱手段に対向する部位の温度を計測する温度 計測手段と、 前記温度計測手段で計測した温度に基づいて加熱手段 の担体を加熱する熱量を調節制御する制御手段及び担体の裏面に配 置した吸熱部材により消費電力を抑えながら、 温度管理を可能とす る。 2nd invention-2nd invention is the temperature which measures the temperature of the part which heats a part of one surface of the support | carrier which performs rotation or a periodic motion, and the site | part facing the said heating means Temperature control is possible while suppressing power consumption by measuring means, control means for adjusting and controlling the amount of heat to heat the carrier of the heating means based on the temperature measured by the temperature measuring means, and a heat absorbing member arranged on the back surface of the carrier Suppose that
本発明における加熱手段は、 赤外線、 遠赤外線を照射するもの、 赤外線ランプ、 ハロゲンランプ、 等が例示される。  Examples of the heating means in the present invention include those that irradiate infrared rays and far infrared rays, infrared lamps, halogen lamps, and the like.
本発明における温度計測手段は、 非接触タイプの温度センサ (サ ーモパイル等) が例示される。  The temperature measuring means in the present invention is exemplified by a non-contact type temperature sensor (thermopile etc.).
加熱手段と温度計測手段は、 一つの担体上の異なる位置であれば よいが、 対角線上に配置されることが好ましい。 加熱手段と担体の 距離は、 5〜 1 0 m mが例示され、 温度計測手段と担体の距離は、 5〜 1 0 m mが例示される。  The heating unit and the temperature measuring unit may be located at different positions on one carrier, but are preferably arranged diagonally. The distance between the heating means and the carrier is exemplified as 5 to 10 mm, and the distance between the temperature measuring means and the carrier is exemplified as 5 to 10 mm.
本発明における吸熱部材は、 黒色材又は、 熱を吸収し、 保持する 部材であり、 担体裏面に溶液、 ゲル材を塗布するか、 黒色シートを 貼り付けてなるものが例示される。  The heat-absorbing member in the present invention is a black material or a member that absorbs and holds heat, and examples include a member formed by applying a solution or a gel material on the back surface of the carrier or attaching a black sheet.
担体の上部の一部を加熱する際、 まず担体上面を加熱し、 担体内 部を通過して吸熱部材を加熱することから、 その両面を加熱する。 担体は回転することから、 担体全体が両面から加熱されていく こと になる。  When heating a part of the upper part of the carrier, the upper surface of the carrier is first heated, and the heat-absorbing member is heated by passing through the inner part of the carrier. Since the carrier rotates, the entire carrier is heated from both sides.
本発明では、 ポリアクリル等の硬質性ポリマーよりなる、 厚さ数 m mの円盤状の担体が例示されるが、 その他、 シート状等であって 、 長手方向に、 試薬反応槽が配列した構成等が例示される。  In the present invention, a disk-shaped carrier having a thickness of several millimeters made of a hard polymer such as polyacryl is exemplified, but in addition, a sheet-like carrier and the like, in which a reagent reaction tank is arranged in the longitudinal direction, etc. Is exemplified.
本発明は、 担体の裏面を吸熱性を有する部材を配し、 表面の一部 を加温し、 且つ担体の対向部分を測温する構成によって足りること から、 薄く又コンパク トな読み取り装置を実現可能とし、 パソコン の内蔵型 CD-ROMドライブ装置と同じように、 パソコンに組み込んだ 態様が例示され、 安定した環境を形成可能とする。 実施例 2— 1 In the present invention, a thin and compact reading device can be realized by arranging a heat absorbing member on the back surface of the carrier, heating a part of the front surface, and measuring the temperature of the opposite part of the carrier. As with a built-in CD-ROM drive device of a personal computer, a built-in personal computer is illustrated as an example, and a stable environment can be formed. Example 2-1
本発明の一実施例を図面を参照して詳細に説明する。 第 22図は、 発熱部材、 温度センサ、 受光体を抜き出した状態での組み合わせ配 置構成を示すものであり、 第 2 3図は、 実際蓋を閉じた状態、 第 24 図は、 第 2 3図の線分 _ ' に沿った切断面を示す。 第 25 A図及 び第 2 5 B図は、 担体を示し、 また、 第 25 A図は表面、 第 25 B図は 裏面を示す。  An embodiment of the present invention will be described in detail with reference to the drawings. Fig. 22 shows the combined arrangement configuration with the heat generating member, temperature sensor, and photoreceptor removed, Fig. 23 shows the actual lid closed, and Fig. 24 shows the second 3 The section along line _ 'is shown. 25A and 25B show the carrier, FIG. 25A shows the front surface, and FIG. 25B shows the back surface.
第 25 A図及び第 2 5 B図において、 2 5 0 1は、 担体であって、 ポリエステル、 PMMA、 P C、 PS、 PET, P D M S、 ガラス等よりなる 回転体により構成され、 例えば、 中央に血液供給口、 希釈液貯留部 、 等を具え、 血球分離部、 混合部、 定量部、 分配流路 2 5 0 1 f 、 供給用流路 2 5 0 1 c を介して各試薬反応槽 2 5 0 l bに定量混合 液を回転の速度、 方向を調整する事で、 供給する構成を有する。  In FIG. 25A and FIG. 25B, 2500 is a carrier and is composed of a rotating body made of polyester, PMMA, PC, PS, PET, PDMS, glass, etc., for example, blood in the center Each reagent reaction tank 2 5 0 is provided via a supply port, a diluent storage part, etc., and a blood cell separation part, a mixing part, a quantification part, a distribution flow path 2 5 0 1 f and a supply flow path 2 5 0 1 c It has a configuration in which a fixed amount of mixed liquid is supplied to lb by adjusting the rotation speed and direction.
蓋部 2 5 O l aは、 透光性を有し、 シ一卜状で片面だけバッキン グ部材を剥離した両面粘着テープ、 片面粘着テープ等が用いられる が好ましくは、 非変形性を備える程度の厚み 1 m m前後を有する板 状を有する。 実際、 第 25 A図で示す蓋部 250 1 a及び担体 2 5 0 1 に は、 血液を外部から供給するための供給口が設けられる。  The lid portion 25 O la is translucent, and is made of a double-sided adhesive tape, a single-sided adhesive tape, etc., which has a single-sided shape and has a backing member peeled off only on one side, but preferably has a degree of non-deformability. It has a plate shape with a thickness of around 1 mm. Actually, the lid 250 1 a and the carrier 2 5 0 1 shown in FIG. 25A are provided with a supply port for supplying blood from the outside.
第 2 5 B図で示す 2 5 O l dは、 吸熱部材であり、 黒色のシート 、 黒色配色された状態などを示し、 少なく とも吸熱状態を形成すれ ばよい色のものが配置されている。  25 O l d shown in FIG. 25B is an endothermic member, which indicates a black sheet, a state of black coloration, etc., and at least a color that can form an endothermic state is arranged.
2 5 0 1 eは、 試薬反応槽の底面を光学計測するために穿設され た計測用孔であり、 試薬反応槽の直径よりも多少小さい口径を有し た窓である。  2 5 0 1 e is a measurement hole drilled to optically measure the bottom surface of the reagent reaction tank, and is a window having a diameter slightly smaller than the diameter of the reagent reaction tank.
2 5 1 2は、 チヤッキング用金属部材であり、 磁性部材に対し、 吸引反発力 作用する.部材であれば、 如何なる物でも良く、 例えば 、 スチール、 フェライ ト、 その他セラミックス、 プラスチック等の 非金属と金属の複合材等が示される。 2 5 1 2 is a metal member for chucking that acts on the magnetic member to attract and repel any member, such as steel, ferrite, other ceramics, plastic, etc. Non-metal and metal composites are shown.
2 5 1 2 aは、 凹部であり、 第 2 4図で示すように担体 2 5 0 1 内部にまで及ぶものである。  2 5 1 2 a is a recess and extends to the inside of the carrier 2 5 0 1 as shown in FIG.
第 2 4図等で示す読み取り装置の下部 2 5 0 9 と上部 2 5 1 0は 、 樹脂などの断熱部材を含み内部が保温される事が好ましい。  It is preferable that the lower portion 2 5 0 9 and the upper portion 2 5 10 of the reading device shown in FIG. 24 and the like include a heat insulating member such as a resin to keep the inside warm.
第 22図において、 2 5 0 2 a〜 2 5 0 2 cは、 光源であり、 レーザ 光、 L E D等で構成され、 原色毎に複数の光源が配置されている。  In FIG. 22, reference numerals 2 5 02 a to 2 5 0 2 c denote light sources, which are composed of laser light, LED, etc., and a plurality of light sources are arranged for each primary color.
例えば、 2 5 0 2 aは赤色光源、 2 5 0 2 bは緑色光源、 2 5 0 2 cは、 青色光源で構成され、 これらと対となる受光体を 2 5 0 3 a〜 2 5 0 3 cに示した。 2 5 0 3 aは赤色受光体、 2 5 0 3 bは緑色受 光体、 2 5 0 3 cは青色受光体を示す。  For example, 2 5 0 2 a is composed of a red light source, 2 5 0 2 b is composed of a green light source, and 2 5 0 2 c is composed of a blue light source. Shown in 3c. 2 5 0 3 a is a red light receiver, 2 5 0 3 b is a green light receiver, and 2 5 0 3 c is a blue light receiver.
これらの光源と、 受光体を一対とする光学ュニッ 卜が一定の間隔 で配置されている。  These light sources and an optical unit having a pair of photoreceptors are arranged at regular intervals.
2 5 0 4は、 発熱部材であり、 照射方向に可視光遮断フィル夕 2 5 0 4 bを具えた遮光カバー内に例えばハロゲンランプが配置され た構成を有する。  2 5 04 is a heat generating member, and has a configuration in which, for example, a halogen lamp is arranged in a light shielding cover having a visible light blocking film 2 5 0 4 b in the irradiation direction.
2 5 0 5は 温度センサであり、 非接触で表面温度を計測するも の (例えばサーモパイル) が例示される。  Reference numeral 2 5 0 5 is a temperature sensor, which measures the surface temperature in a non-contact manner (for example, thermopile).
第 24図において、 2 ,5 0 6は、 回転体であり、 上面の中央部位は 、 回転軸 2 5 0 6 cが形成されると共に、 外周部には、 環状の磁性 部材 2 5 0 6 bが機械的又は接着剤などにより結合され、 更に外周 には摩擦部材 2 5 0 6 aが同心円状に付設形成されている。  In FIG. 24, 2 and 5 06 are rotating bodies, and the center part of the upper surface is formed with a rotating shaft 2 5 0 6 c and an annular magnetic member 2 5 0 6 b on the outer peripheral portion Are joined mechanically or by an adhesive or the like, and friction members 25 0 6 a are concentrically formed on the outer periphery.
摩擦部材 2 5 0 6 aの高さは、 磁性部材 2 5 0 6 bの高さよりも 高く構成され、 担体 2 5 1 2を回転体 2 5 0 6 に装着した際、 チヤ ッキング用金属部材 2 5 1 2 と、 磁性部材 2 5 0 6 bが接触しない ような状態を形成している。  The height of the friction member 2 5 0 6 a is configured to be higher than the height of the magnetic member 2 5 0 6 b, and when the carrier 2 5 1 2 is mounted on the rotating body 2 5 0 6, the metal member 2 for chucking 5 1 2 and the magnetic member 2 5 0 6 b are not in contact with each other.
回転体 2 5 0 6は、 第 24図で示す様に回転モータや変速機等を含 む駆動手段 2 5 1 1 と結合している。 The rotating body 2 5 0 6 includes a rotating motor, a transmission and the like as shown in FIG. Connected to the drive means 2 5 1 1.
2 5 0 7は、 発熱体に電気エネルギーを供給するための発熱体用 リード線である。  2 5 0 7 is a heating element lead wire for supplying electric energy to the heating element.
2 5 0 8は、 温度センサで得られた電気信号を、 信号処理装置、 マイコン制御用変換手段などに供給するためのセンサ用リード線で ある。  2 5 0 8 is a sensor lead wire for supplying an electrical signal obtained by the temperature sensor to a signal processing device, a microcomputer control conversion means, and the like.
発熱体用リ一ド線及びセンサ用リ一ド線は、 何れも装置内に配線 されていればよいが、 これらの図では、 説明のために外部へ延ばし た状態とした。  The lead wire for the heating element and the lead wire for the sensor need only be wired in the device, but in these figures, they are extended to the outside for explanation.
次に、 第 2 2図〜第 2 5 B図で示す実施例の動作を説明する。 まず、 第 2 5 A図で示す担体 2 5 0 1 に血液、 尿等の検体を供給 し、 更に必要に応じ希釈液も供給する。  Next, the operation of the embodiment shown in FIGS. 22 to 25B will be described. First, a sample such as blood or urine is supplied to the carrier 2500 shown in FIG. 25A, and a diluent is also supplied as necessary.
検体等が供給された後、 第 2 4図で示すように読み取り装置の下 部 2 5 0 9 の回転体 2 5 0 6上の回転軸 2 5 0 6 c に担体 2 5 0 1 の凹部 2 5 1 2 aを併せるようにして挿入装着する。  After the sample is supplied, as shown in FIG. 24, the concave portion 2 of the carrier 2 5 0 1 is placed on the rotating shaft 2 5 0 6 c on the rotating body 2 5 0 6 of the lower part 2 5 0 9 of the reading device. Insert the 5 1 2 a together.
回転体 2 5 0 6 の磁性部材 2 5 Q 6 bと、 チヤッキング用金属部 材 2 5 1 2は、 磁力により結合しょうとするが、 摩擦部材 2 5 0 6 aがチヤッキング用金属部材 2 5 1 2, 又は担体 2 5 0 1の裏面に 接触する為、 非接触状態で固定される。  The magnetic member 2 5 Q 6 b of the rotating body 2 5 0 6 and the metal member for chucking 2 5 1 2 try to couple by magnetic force, but the friction member 2 5 0 6 a is the metal member for chucking 2 5 1 2, or carrier 2 5 0 1 Since it contacts the back surface, it is fixed in a non-contact state.
この状態で、 駆動手段 2' 5 1 1が回転体 2 5 0 6を回転駆動させ る。  In this state, the driving means 2 '5 1 1 drives the rotating body 2 5 0 6 to rotate.
摩擦部材 2 5 0 6 aは, 担体 2 5 0 1 を回転させ、 血球分離、 定 量、 各試薬反応槽への血液検体の供給が行われる。  The friction member 2 5 06 a rotates the carrier 2 5 0 1 to separate blood cells, quantitate, and supply a blood sample to each reagent reaction tank.
第 22図で示すように、 発熱部材 2 5 0 4に発熱体用リード線 2 5 0 7を介して電気エネルギーを供給し、 温度センサ 2 5 0 5で、 担 体 2 5 0 1 に接合した蓋部 2 5 0 1 aの表面温度を計測しながら試 薬反応に適した温度 36. 5°C〜37. 5 °C前後になるように発熱部材 2 5 0 4への電気エネ"ルギ一が制御される。 ' As shown in FIG. 22, electric energy is supplied to the heat generating member 2 5 0 4 via the heating element lead wire 2 5 0 7 and joined to the support 2 5 0 1 by the temperature sensor 2 5 0 5. Lid 2 5 0 1 Temperature suitable for the reagent reaction while measuring the surface temperature of the heating element 36.5 ° C to 37.5 ° C Electric energy to 5 0 4 is controlled.
担体 2 5 0 1 には、 吸熱部材 2 5 0 1 dが付設されており、 上面 からの発熱部材による局所的な発熱による表面での発熱であるが、 更に担体内部を伝達した熱は吸熱部材 2 5 0 I dでの発熱を生じさ せるため目標温度への到達は、 比較的速く達成される。  A heat absorbing member 2 5 0 1 d is attached to the carrier 2 5 0 1, and heat is generated on the surface due to local heat generated by the heat generating member from the upper surface. Reaching the target temperature is achieved relatively quickly because it generates heat at 2 5 0 I d.
次いで、 発熱部材の発熱量を、 温度センサで得られる温度値によ つて制御するフィードバック制御手段の具体例を第 26図に示す。  Next, FIG. 26 shows a specific example of feedback control means for controlling the amount of heat generated by the heat generating member based on the temperature value obtained by the temperature sensor.
2 0 5 0 aは、 センサであり、 第 22図で示す温度センサ 2 5 0 5 に相当する。  2 0 5 0 a is a sensor and corresponds to the temperature sensor 2 5 0 5 shown in FIG.
' 2 0 5 0 bは、 AZD変換部であり、 入力したアナログ信号を、 デジタル信号に変換するためのものである。  '2 0 5 0 b is an AZD conversion unit for converting an input analog signal into a digital signal.
2 0 5 0 cは、 フィードバック制御部であり、 前後に入力される 温度情報に関連したデジタル電圧情報と所定の温度情報に関連した デジタル電圧情報とを比較して、 フィードバック出力を行うための ものである。  2 0 5 0 c is a feedback control unit for comparing the digital voltage information related to the temperature information inputted before and after with the digital voltage information related to the predetermined temperature information to perform feedback output. It is.
フィードバック制御部 2 0 5 0じについての具体的な例を第 2 7 図に示した。  A specific example of the feedback control unit 20 50 is shown in FIG.
第 2 7図において、  In Figure 27,
2 0 0 5 aは、 入力部であり、 第 2 6 A図のフィードバック制御 部 2 0 5 0 cの入力部に相当する。  2 0 0 5 a is an input unit and corresponds to the input unit of the feedback control unit 2 0 5 0 c in FIG.
2 0 5 1 aは, 加算部であり、 現在入力されるデジタル信号値に 、 前のデジタル信号値を加算するためのものである。  2 0 5 1 a is an adder for adding the previous digital signal value to the currently input digital signal value.
2 0 5 1 b、 2 0 5 1 d、 2 0 5 1 f は、 乗算部であり、 それぞ れ入力信号に対し個々に設定された係数 K1から K3を掛け合わせて 出力するためのものである。  2 0 5 1 b, 2 0 5 1 d, 2 0 5 1 f are multipliers, each of which multiplies the input signal by a set coefficient K1 to K3 and outputs it. is there.
2 0 5 1 cは、 記憶部であり、 入力される信号を一時的に記憶す るためのものである。 2 0 5 1 a、 2 0 5 1 b、 2 0 5 1 c、 2 0 5 1 dによって 1次 の低域通過ディジタルフィルタを構成している。 2 0 5 1 c is a storage unit for temporarily storing an input signal. 2 0 5 1 a, 2 0 5 1 b, 2 0 5 1 c, and 2 0 5 1 d constitute a first-order low-pass digital filter.
2 0 5 1 eは、 減算部であり、 閾値電圧 V r e f から入力される 信号を減算するためのものである。  2 0 5 1 e is a subtraction unit for subtracting a signal input from the threshold voltage V r e f.
第 2 6 A図において、 2 0 5 0 dは、 D/ A変換部であり、 フィ ードバックデジタル信号をアナログ信号に変換して出力するための ものであり、 例えば後段の P W M出力部の出力パルス幅を制御する アナログ出力を行う。  In FIG. 26A, 2 0 50 0 d is a D / A converter for converting the feedback digital signal into an analog signal and outputting it, for example, the output of the PWM output unit at the subsequent stage Analog output that controls the pulse width.
2 0 5 0 eは、 PWM出力部であり、 入力されるアナログ信号値 によりパルス幅を調整して制御するためのものである。  2 0 5 0 e is a PWM output unit for adjusting and controlling the pulse width according to the input analog signal value.
P WM出力部 2 0 5 0 eは、 例えば、 鋸状波又は三角波を発振す る自走発振器と、 可変可能な閾値入力を持つシュミッ ト回路、 比較 回路との組み合わせが示される。  For example, the PWM output unit 205 0 e shows a combination of a free-running oscillator that oscillates a sawtooth wave or a triangular wave, a Schmitt circuit having a variable threshold input, and a comparison circuit.
DZA変換部 2 0 5 0 dと P WM出力部 2 0 5 0 eは、 図中点線 で示すように、 1つのデジタル PWM回路 2 5 0 0に置き換えるこ ともできる。  The DZA conversion unit 2500 d and the PWM output unit 2 0500 e can be replaced by one digital PWM circuit 2500 as shown by the dotted line in the figure.
PWM回路は、 ワンチップ化され、 内部にメモリ、 C P Uを備え たス 卜ァ一ドプログラムタイプのものであってもよく、 プログラム に基づいて、 フィ一ドバック制御部から出力される加熱量指示値に ほぼ比例した D u t y F a c t o rのデジ夕ル値 (例えば、 0〜 5ボルト) を出力することにより所望の PWM信号を直接出力する ことができ、 回路をコンパク ト化できる点で有効である。  The PWM circuit may be a single program type that is made into a single chip and has an internal memory and CPU. Based on the program, the heating value indication value output from the feedback controller It is effective in that the desired PWM signal can be output directly by outputting the Duty F actor's digital value (eg, 0 to 5 volts), which is almost proportional to, and the circuit can be made compact.
2 0 5 0 f は、 熱源であり、 例えば、 第 2 2図の発熱部材 2 5 0 4内部に配置したハロゲンランプ、 電熱線、 抵抗体などである。 デジタル PWM回路 2 5 0 0 を使用した場合の熱源 2 0 5 0 の 駆動回路例を第 2 6 B図に示す。  2 0 50 0 f is a heat source, for example, a halogen lamp, a heating wire, a resistor, or the like disposed inside the heat generating member 2 5 0 4 in FIG. Fig. 26B shows an example of the drive circuit for the heat source 20 5 0 when the digital PWM circuit 2 5 0 0 is used.
2 5 0 0 aは、 第 2 7図で示すフィードパック制御部 2 0 5 0 c の出力部と接続する入力端であり、 2 5 0 O bは、 F E T、 トラン ジス夕等のスイッチング素子を示す。 2 5 0 0 a is the feed pack controller shown in Fig. 2 7 2 0 5 0 c 2 5 0 Ob indicates a switching element such as an FET or a transistor.
スイッチング素子 2 5 0 0 bは、 デジタル PWM回路 2 5 0 0の パルスによりオンオフし、 スイッチング素子 2 5 0 0 bがオンする 期間、 電源入力端 V dから熱源 2 0 5 0 f に電流が流れ、 発熱し、 この発熱を断続的に繰り返し行うことで、 発熱量を制御することが できる構成を有する。  The switching element 2 5 0 0 b is turned on / off by the pulse of the digital PWM circuit 2 5 0 0, and current flows from the power input terminal V d to the heat source 2 0 5 0 f during the period when the switching element 2 5 0 0 b is turned on. It generates heat and has a configuration capable of controlling the amount of heat generation by intermittently repeating this heat generation.
したがって、 フィードバック制御部 2 0 5 0 cが出力する熱量を 示す数値データが、 デジタル PWM回路 2 5 0 0に入力され、 この 数値データにほぼ比例する D u t y F a c t o r を備えたパルス をデジタル PWM回路 2 5 0 0が出力することで、 スイッチング素 子 2 5 0 0 bのオンオフ駆動だけで、 熱源 2 0 5 0 f の発熱量が可 変自在に調整できる。 なお、 デジダル PWM回路 2 5 0 0の出力す るデジタルパルスの周波数は、 例えば、 1 0〜 1 0 0 K H zで選択 されることが好ましいが、 熱源の種顔、 発熱量の調整、 その他の要 素の相違により、 他の範囲であってもよい場合もある。  Therefore, numerical data indicating the amount of heat output from the feedback controller 2 0 5 0 c is input to the digital PWM circuit 2 5 0 0, and a pulse having a duty factor that is substantially proportional to the numerical data is input to the digital PWM circuit. By outputting 2500, the amount of heat generated by the heat source 2500f can be adjusted variably by simply turning on / off the switching element 2500b. Note that the frequency of the digital pulse output from the digital PWM circuit 2500 is preferably selected, for example, from 10 to 100 kHz, but the heat source, heat generation adjustment, and other Other ranges may be possible due to differences in the elements.
• 次に第 2 6 A図及び第 2 6 B図ならびに第 2 7図で示す実施例の 動作について第 2 8図及び第 2 9図を参照して説明する。 • Next, the operation of the embodiment shown in FIGS. 26A, 26B and 27 will be described with reference to FIGS. 28 and 29. FIG.
担体 2 5 0 1が回転している状態で、 その表面温度を第 2 6 A図 で示すセンサ 2 0 5 0 aで計測する。  While the carrier 2 5 0 1 is rotating, its surface temperature is measured by the sensor 2 0 5 0 a shown in FIG.
センサ 2 0 5 0 aが出力するアナログのセンサ信号は、 AZD変 換部 2 0 5 0 bで、 デジタル信号値に変換され、 フィードバック制 御部 2 0 5 0 c に入力される。  The analog sensor signal output from the sensor 20 0 50 a is converted into a digital signal value by the AZD conversion unit 2 0 5 0 b and input to the feedback control unit 2 0 5 0 c.
第 2 7図で示す入力部 2 0 0 5 aに入力された温度デ一夕 X nは 、 加算部 2 0 5 l aで、 前に入力された温度データに係数 K1が乗算 されたデータと加算され加算温度データ ynとして乗算部 2 0 5 I d に出力される。 又、 加算部 2 0 5 1 aで前の温度データと加算出力された加算温 度データ ynは、 記憶部 2 0 5 1 cで一時的に記憶されると共に、 前 の温度データ yn- - 1として乗算部 2 0 5 l bに入力され、 係数 K1が 乗算されて、 加算部 2 0 5 l aへ出力される。 The temperature data X n input to the input unit 2 0 0 5 a shown in Fig. 2 7 is added to the data obtained by multiplying the previously input temperature data by the coefficient K1 in the addition unit 2 0 5 la. Is output to the multiplication unit 205 I d as the addition temperature data yn. In addition, the temperature data yn added and output from the previous temperature data in the adding unit 2 0 5 1 a is temporarily stored in the storage unit 2 0 5 1 c and the previous temperature data yn--1 Is input to the multiplier 2 0 5 lb, multiplied by the coefficient K1, and output to the adder 2 0 5 la.
乗算部 2 0 5 1 dは、 入力された温度デ一夕 ynに更に係数 K 2を 乗算した乗算デ一夕 K2* ynを形成し、 減算部 2 0 5 1 eへ出力す る。  The multiplier 2 0 5 1 d forms a multiplication data K2 * yn by further multiplying the input temperature data yn by a coefficient K 2 and outputs the result to the subtraction circuit 2 0 5 1 e.
乗算デ一夕 K2* ynは、 予め設定された参照電圧 Vrefから減算 され、 更に乗算部 2 0 5 1 ίで係数 K 3が乗算され、 出力部 2 0 0 5 bに乗算デ一夕 (K3* (Vref- ( K 2 * y n) ) ) が出力される。  The multiplication data K2 * yn is subtracted from the preset reference voltage Vref, and further multiplied by the coefficient K3 in the multiplication section 2 0 5 1 ί, and the output section 2 0 0 5 b is multiplied by the multiplication data (K3 * (Vref- (K 2 * yn))) is output.
即ち、 現在の温度データに直前の温度データを加算した値と参照 電圧との差が大きいと、 後段の PWM出力部に、 パルス幅が大きい パルスを出力する旨の信号を出力し、 差が小さくなるに従って、 パ ルス幅が小さいパルスを出力する旨の信号を出力することで、 温度 情報電圧 K2* ynは、 参照電圧 Vref と同じくなるように、 常に調 整された状態が形成される。  In other words, if the difference between the value obtained by adding the previous temperature data to the current temperature data and the reference voltage is large, a signal indicating that a pulse with a large pulse width is output is output to the subsequent PWM output section, and the difference is small. As a result, by outputting a signal indicating that a pulse having a small pulse width is output, the temperature information voltage K2 * yn is always adjusted so as to be the same as the reference voltage Vref.
第 2 6 A図で示す D/ A変換部 2 0 5 0 dは、 フィ一ドバック制 御部 2 0 5 0 cが出力するフィードバックデータを D Z A変換して 、 第 2 8図 ( a ) で示すような出力を行い、 第 2 6 A図で示す PW M出力部 2 0 5 0 eは、 このアナログフィードバックデ一夕に基づ いてパルス幅を調整したパルス信号(第 28図 ( b ) を参照) を第 2 6 A図で示す熱源 2 0 5 O fへ出力する。  The D / A conversion unit 20 50 d shown in FIG. 26 A performs DZA conversion on the feedback data output from the feedback control unit 20 50 c and is shown in FIG. 28 (a). The PWM output section 2 0 5 0 e shown in Fig. 26 A shows a pulse signal whose pulse width is adjusted based on this analog feedback data (see Fig. 28 (b)). ) Is output to the heat source 2 0 5 Of shown in Fig. 26 A.
即ち、 予め設定された参照電圧 Vref と、 温度データ電圧との差 が、 大きいと、 その差に基づいたデータを接続点 2 0 0 5 bに出力 し、 第 2 6 A図の DZA変換部 2 0 5 0 dは、 このデータに基づい たアナログ信号を PWM出力部 2 0 5 0 eに出力し、 このアナログ 信号に基づいたパルス幅を有するパルスを熱源 2 0 5 0 Πこ出力す る。 In other words, if the difference between the preset reference voltage Vref and the temperature data voltage is large, data based on the difference is output to the connection point 2 0 0 5 b, and the DZA conversion unit 2 in FIG. 0 5 0 d outputs an analog signal based on this data to the PWM output unit 2 0 5 0 e and outputs a pulse having a pulse width based on this analog signal 2 0 5 0 The
この様なフィードバックによれば、 P W M出力部 2 0 5 0 eの出 力は、 担体の表面温度が低い場合は、 パルス幅が大きいパルスを連 続して熱源 2 0 5 0 Πこ出力し、 温度が 3 7 °C前後になるにつれて 、 パルス幅が小さいパルスを熱源 50 Πこ出力するような制御を行う 第 2 9図は、 センサ(サーモパイル) 2 0 5 0 aの出力電圧と、 D Z A変換部 2 0 5 0 dの出力電圧の関係を示したものである。 最初第 2 6 A図で示す D / A変換部 2 0 5 0 dの出力電圧は、 最 大電圧を出力することで、 P W M変換部 2 0 5 0 eからの出力パル スのパルス幅も大きい状態とし、 センサの出力電圧が大きくなるに つれ、 D / A変換部 2 0 5 0 dの出力も小さくなつていき、 P W M 変換部 2 0 5 0 eからの出力パルス幅も小さくなつていく ことで、 熱源 2 0 5 0 f の発熱量を小さく していき、 所定 ^温度 37。C 38°C 前後に調 mするものであ o 。  According to such feedback, when the surface temperature of the carrier is low, the output of the PWM output unit 2 5 0 5 0 e continuously outputs a pulse with a large pulse width 2 0 5 0 As the temperature reaches around 37 ° C, control is performed to output 50 pulses of a pulse with a small pulse width. Fig. 2-9 shows the output voltage of the sensor (thermopile) 2 0 5 0 a and DZA conversion The relationship of the output voltage of the part 2 0 5 0 d is shown. First, the output voltage of the D / A converter 2 0 50 0 d shown in Fig. 26 A is the maximum voltage, and the pulse width of the output pulse from the PWM converter 2 0 5 0 e is large. As the output voltage of the sensor increases, the output of the D / A converter 2 0 5 0 d also decreases, and the output pulse width from the PWM converter 2 0 5 0 e also decreases. Then, the heat generation amount of the heat source 2 0 50 0 f is reduced to a predetermined temperature 37. C Adjust to around 38 ° C.
担体の一面に 、 発熱源と、 センサを併設した場 α ゝ 発熱源の発す る熱線が 、 直接センサに伝達してしまう場合があ Όことから 、 発熱 源の発熱と 、 センサによる計測のタイミングを異なるようにし 、 (― れを繰り返すことで、 センサの誤計測を防止して fc良い。  When a heat source and a sensor are installed on one side of the carrier α 熱 The heat rays emitted by the heat source may be transmitted directly to the sensor, so the heat generation of the heat source and the timing of measurement by the sensor By repeating (-), it is possible to prevent erroneous sensor measurement and fc is good.
例えば、 発熱源からの発熱を所定時間 (例えば 25秒から 30秒) 継 続して行い、 その後発熱を停止させて、 センサによる温度計測を例 えば 1秒から 5秒行う。 次にセンサの温度計測を中断して発熱源の発 熱を再開する。  For example, heat generation from the heat source is performed for a predetermined time (for example, 25 seconds to 30 seconds), then the heat generation is stopped, and temperature measurement using a sensor, for example, is performed for 1 second to 5 seconds. Next, the temperature measurement of the sensor is interrupted and heat generation from the heat source is resumed.
これを繰り返すという手法を、 本発明は好適に適用する。  The method of repeating this is preferably applied to the present invention.
尚、 交互に発熱、 温度計測を繰り返す場合、 発熱源とセンサの位 置関係は特に限定されなくてもよい。  When heat generation and temperature measurement are repeated alternately, the positional relationship between the heat generation source and the sensor may not be particularly limited.
第 3 の発明 第 3の発明は、 次のような特徴を有する。 3rd invention The third invention has the following features.
1 . 希釈液リザ一バの組み込み構成 1. Built-in configuration of diluent reservoir
本発明における希釈液は、 血液であれば、 生理食塩水、 食塩水、 その他、 希釈を目的とした溶液が例示される。  If the diluent in the present invention is blood, examples thereof include physiological saline, saline, and other solutions for dilution.
本発明における希釈部材とは、 例えば、 希釈液を封入したカップ 状の硬質部材の開口縁部と、 穿刺可能な柔軟性シートの熱溶着、 超 音波溶着、 接着剤等による貼り合わせ構成や、 柔軟性シー卜により 形成される袋状体に希釈液を入れたもの等が示される。  The diluting member in the present invention includes, for example, an opening edge of a cup-shaped hard member enclosing a diluting solution, a heat-bonding of a puncturable flexible sheet, ultrasonic welding, a bonding configuration using an adhesive, and the like. The one in which a diluent is put into a bag-like body formed by sex sheet is shown.
本発明における 「検体を希釈する為の希釈部材を担体内に上下可 動に配置」 とは、 例えば、 担体上に形成される蓋部の一部を薄いシ 一卜状に一体的に又は別体的に円状の蛇腹を形成し、 蛇腹の中心を 希釈液リザ一バの開口目的部とは反対側に接続したり、 蓋部の一部 に延伸部材を配置した構成が示される。  In the present invention, “the diluting member for diluting the specimen is arranged vertically movable in the carrier” means, for example, that a part of the lid formed on the carrier is integrally or separately in a thin sheet shape. A configuration in which a circular bellows is formed physically and the center of the bellows is connected to the side opposite to the opening target portion of the diluent reservoir, or an extending member is arranged on a part of the lid portion is shown.
前記希.釈部材が下方向に移動したとき、 希釈部材の下方向を開口 状態を形成するための開口部材とは、 例えば、 希釈部材の穿刺可能 領域に対して設けられる穿刺部材、 押圧時、 希釈部材のずれにより 、 一部が破れるように希釈液部材の一部が固定的に接続したもの等 が例示される。  When the diluting member moves downward, the opening member for forming an opening state in the downward direction of the diluting member is, for example, a puncturing member provided for a puncturable region of the diluting member, An example is one in which a part of the diluent member is fixedly connected so that a part of the diluent member is broken due to the displacement of the diluent member.
2 . 撹拌構成 1 " 本発明おける 「この側面、 上面又は底面のうち、 いずれか一面又 は複数面に対しその一部、 又は全部が連続した凹凸を形成してなる 環状凹凸部材」 とは、 担体の表面であって、 少なく とも混合撹拌を 行う部位近傍に、 三角状、 矩形状、 円状でピッチが、 振動の大きさ によって形成される連続した又は一部連続した凹凸を示すものであ り、 これらの凹凸は、 振動の大きさが他の構成要素に影響を与えな い程度の高さを持つことが好ましい。  2. Stirring structure 1 "In this invention," an annular concavo-convex member formed by forming unevenness partially or entirely on one or a plurality of one or more of the side surface, top surface and bottom surface " Triangular, rectangular or circular pitches on the surface of the carrier, at least in the vicinity of the part where mixing and stirring are performed, showing continuous or partially continuous irregularities formed depending on the magnitude of vibration. Therefore, it is preferable that these irregularities have such a height that the magnitude of vibration does not affect other components.
当該凹凸に接触して振動を与える振動体は、 要時のみ、 凹凸に接 触する状態が形成されることが好ましく、 そのタイミングだけ移動 するような移動手段が併せて設けられる事が好ましいが、 手動であ つても良い場合もある。 A vibrating body that touches the unevenness and vibrates is in contact with the unevenness only when necessary. It is preferable that a touching state is formed, and it is preferable that a moving means that moves only at the timing is also provided, but there may be a case where it is manual.
3 . 撹拌構成 2  3. Stirring configuration 2
前記担体内に収容された撹拌を要する部位内に、 前記担体の回転 によって内側方向へ変形する撹拌部材は、 少なく とも混合撹拌が行 われる領域に、 一部遠心力によって、 移動可能な部位ができ、 遠心 力が無い場合又は、 ある一定の回転以下 (例えば 700RPM以下) であ れば、 元の位置に復元固定され、 計測に支障がない状態となること が好ましい。  The stirring member that is deformed inward by the rotation of the carrier in the portion that needs to be stirred accommodated in the carrier has a portion that can be moved by centrifugal force at least in the region where mixing and stirring is performed. If there is no centrifugal force, or if it is below a certain rotation (eg 700 RPM or less), it is preferable that the original position is restored and fixed so that there is no hindrance to the measurement.
撹拌部材としては、 例えば、 ゴム、 樹脂等により撹拌部材内部に 一部可動可能に貼り付けられた状態で形成されていることが好まし い。  The stirring member is preferably formed in a state in which it is movably attached to the inside of the stirring member with, for example, rubber or resin.
尚、 回動可能な部分には、 質量が異なる鉄球、 プラスチック球等 が接続していることが好ましい。  In addition, it is preferable that an iron ball, a plastic ball or the like having a different mass is connected to the rotatable portion.
4 . チヤツキン.グ構成  4. Chucking configuration
本発明における金属部材は、 磁性部材と結合可能なもの(ステン レス板、 銅板等)であれば良い。' '  The metal member in the present invention may be any member (such as a stainless plate or a copper plate) that can be coupled to the magnetic member. ''
本発明における磁性部材は、 回転体を中心として、 環状である事 が好ましいが、 磁力が強い場合は、 その一部であっても良い。  The magnetic member in the present invention is preferably annular around the rotating body, but may be a part of the magnetic member when the magnetic force is strong.
本発明における摩擦部材とは、 天然ゴム、 人工ゴム、 樹脂等で形 成され、 金属部材又は担体表面と摩擦が大きい部材であれば良い。  The friction member in the present invention may be formed of natural rubber, artificial rubber, resin, or the like, and may be a metal member or a member having a large friction with the carrier surface.
尚、 摩擦部材を基準面として使用する場合は、 非変形性を有する ことが好ましい。  In addition, when using a friction member as a reference surface, it is preferable to have non-deformability.
本発明における環状凸部材は、 少なく とも回転体の側面と一様に 接触する様な高さと内面積を持つものであれば良く、 担体と一体的 に形成されることが好ましい。 担体底面の金属部材は、 磁性体との間で、 吸引力があれば良く、 スチールや磁性ステンレス等の他、 金属とセラミックスとの複合材 、 金属とプラスチックの複合材、 磁性金属、 磁性金属と、 プラスチ ック、 '紙、 セラミックス、 非磁性金属との複合材であつてもよい。 本発明は、 担体と回転体との接触部分を摩擦部材で行い、 結合を 、 非接触状態の磁性部材と金属部材間で働く磁力によって行う力 磁性部材と金属との距離は、 0. 1〜 1. 0 mmが例示される。 実施例 3— 1 The annular convex member in the present invention may be any member that has at least a height and an inner area so as to uniformly contact the side surface of the rotating body, and is preferably formed integrally with the carrier. The metal member on the bottom surface of the carrier only needs to have an attractive force between the magnetic material, steel, magnetic stainless steel, etc., metal-ceramic composite, metal-plastic composite, magnetic metal, magnetic metal , Plastic, 'paper, ceramics, composites with non-magnetic metals. In the present invention, the contact portion between the carrier and the rotating body is formed by a friction member, and the coupling is performed by the magnetic force acting between the magnetic member and the metal member in a non-contact state. The distance between the magnetic member and the metal is 0.1 to 1.0 mm is exemplified. Example 3— 1
本発明の一実施例を図面を参照して詳細に説明する。  An embodiment of the present invention will be described in detail with reference to the drawings.
'第 3 O A図〜第 3 0 C図は、 本発明の一実施例を示す断面図であ る。  'FIG. 3 O A to FIG. 30 C are sectional views showing an embodiment of the present invention.
3 1 0 1は、 シート状の蓋部であり、 P P、 P E T、 ポリエステ ル等の透光性部材、 半透光性部材よりなり、 血液分析用担体の表面 を一様に覆い接着剤、 粘着材、 等で貼り付けられるものである。 蓋 部 3 1 0 1は、 透明な両面テープ、 片面テープが取り扱いが容易な 点で好ましい。  3 1 0 1 is a sheet-like lid, which is made of a translucent member such as PP, PET, or polyester, or a semi-translucent member, and uniformly covers the surface of the blood analysis carrier. It can be pasted with materials, etc. For the lid part 310, a transparent double-sided tape or a single-sided tape is preferable in terms of easy handling.
3 1 0 2は、 担体用基板であって、 P P、 P E T, ポリエステル 等の透光性部材、 半透光性部材よりなり、 表面に形成した溝によつ て希釈液貯留部、 血液貯留部、 流路、 混合槽等を構成する。  3 1 0 2 is a carrier substrate, which is made of a translucent member such as PP, PET, or polyester, or a semi-translucent member, and is formed by a groove formed on the surface. Configure the flow path, mixing tank, etc.
第 3 O A図〜第 3 0 C図では、 希釈液リザ一バ保持空間のみ示し ている。  In FIGS. 3A to 30C, only the diluent reservoir holding space is shown.
3 1 0 3は、 蛇腹部であり、 盖部 3 1 0 1 の一部を同心円状の蛇 腹に加工したものである。  3 1 0 3 is a bellows portion, and a part of the collar portion 3 1 0 1 is processed into a concentric bellows.
3 1 0 4は、 希釈液リザーバであり、 下方向に開口した硬質性力 ップ 3 1 0 6 とこの硬質性カップの開口面の周縁部に熱圧着、 接着 剤などで接続した薄膜 3 1 0 7が結合した構成を有している。  3 1 0 4 is a diluent reservoir, a hard force cup 3 1 0 6 that opens downward, and a thin film that is connected to the periphery of the opening surface of this hard cup by thermocompression bonding or adhesive 3 1 0 7 has a combined structure.
3 1 0 5は、 希釈液であり、 生理食塩水よりなり、 場合によって は保存剤等の各種添加剤が含まれている。 3 1 0 5 is a diluting solution and consists of physiological saline. Contains various additives such as preservatives.
3 1 0 8は、 係止部材であり、 担体と一体的に構成され、 中心か ら外方向に変形可能な状態で、 前記希釈液リザーバが内挿可能な位 置の 2方向、 4方向、 その他の方向に設けられる。  3 10 8 is a locking member, which is formed integrally with the carrier, and can be deformed outward from the center, and can be inserted into the diluent reservoir in two directions, four directions, Provided in other directions.
3 1 0 9は、 穿刺部材であり、 好ましくは担体と一体的に構成さ れ、 薄膜 1 0 7 を穿刺破壊可能な程度の硬度と、 鋭角度を有するも のが好ましい。  3 10 9 is a puncture member, preferably constructed integrally with a carrier, and preferably has a hardness and an acute angle that can puncture and break the thin film 10 7.
3 1 1 0は、 希釈液用流路であり、 溝状及びある程度幅の広い流 路が例示される。  3 1 10 is a flow path for the diluent, and is exemplified by a groove shape and a flow path that is somewhat wide.
次に、 第 3 0 A図〜第 3 0 C図示す実施例の動作を説明する。 使用前、 希釈液リザ一バは、 蛇腹部 3 1 0 3の中心部に結合され た状態で、 係止部材 3 1 0 8の先端内側に固定されている。  Next, the operation of the embodiment shown in FIGS. 30A to 30C will be described. Prior to use, the diluent reservoir is fixed to the inside of the distal end of the locking member 3 10 8 while being coupled to the central portion of the bellows 3 1 0 3.
担体に血液を導入し使用する際、 第 3 0 B図で示すように希釈液 リザーバ 3 1 0 4—の上部を押圧 (F) する。 押圧力 Fは、 希釈液リ ザーバ 3 1 0 4の縁部を、 係止部材 3 1 0 8 を外方向に押し開かせ ると共に、 希釈液リザ一バ 3 1 0 4を穿剌部材 3 1 0 9方向に押圧 する。 蛇腹部 3 1 0 3が延びることで、 希釈液リザーバ 3 1 0 4は 移動し、 希釈液リザ一バ 3 1 0 4の薄膜 3 1 0 7は、 穿刺部材 3 1 0 9により穿刺破壊されると共に、 係止部材 3 1 0 8の内側に係止 固定される。  When blood is introduced into the carrier and used, the upper part of the diluent reservoir 3 10 4-is pressed (F) as shown in FIG. 30B. The pressing force F causes the edge of the diluent reservoir 3 1 0 4 to push the locking member 3 1 0 8 outward and open the diluent reservoir 3 1 0 4 to the piercing member 3 1 0 Press in the 9 direction. As the bellows 3 1 0 3 extends, the diluent reservoir 3 1 0 4 moves, and the thin film 3 1 0 7 of the diluent reservoir 3 1 0 4 is punctured by the puncture member 3 1 0 9 At the same time, it is locked and fixed inside the locking member 3 1 0 8.
第 3 0 C図で示すように、 担体用基板 3 1 0 2は、 中心軸〇を中 心として回転する。 薄膜 3 1 0 7が破れて、 希釈液 Bは外部へ表出 し、 遠心力により外部方向へ移動する。  As shown in FIG. 30 C, the carrier substrate 3 1 0 2 rotates around the central axis 0. The thin film 3 1 0 7 is broken, and the diluent B is exposed to the outside and moved outward by centrifugal force.
もともと担体基板 3 1 0 2 と蓋部 3 1 0 1が密閉状態で結合され ているため、 希釈液リザ一バ 3 1 0 4の薄膜 3 1 0 7が破れ、 内部 の希釈液が表出したとしても、 外部へ漏れることが無く、 安全且つ 安定している。 実施例 3— 2 Since the carrier substrate 3 1 0 2 and the lid 3 1 0 1 were originally sealed, the thin film 3 1 0 7 of the dilution reservoir 3 1 0 4 was broken and the internal dilution was exposed. However, it is safe and stable without leaking outside. Example 3-2
第 3 1図は、 本発明の他の実施例を示す模式図である。  FIG. 31 is a schematic diagram showing another embodiment of the present invention.
3 2 0 1は、 円盤状の担体であり、 中央に血液供給部を設け、 血 球分離部、 希釈液との混合部、 定量部、 血球分離部、 試薬反応槽 3 2 O l aを外周方向に複数配置している。  3 2 0 1 is a disc-shaped carrier, which has a blood supply part in the center, a blood cell separation part, a mixing part with diluent, a quantification part, a blood cell separation part, and a reagent reaction tank 3 2 O la There are several.
3 2 0 2は、 担体操作装置と結合するための結合用孔であり、 中 心から所定の間隔で 2っ穿設されている。  Reference numeral 3 2 0 2 is a coupling hole for coupling to the carrier operating device, and is drilled twice at a predetermined interval from the center.
3 2 0 3は、 凹凸部であり、 例えば、 鋸状波状、 三角波状を有し ている。 凹凸のピッチや、 高さは、 特に限定されていないが、 ピッ チが短い場合は、 細かい振動を発生させ、 ピッチが長い場合は、 大 きな振動が発生させることができる。  3 2 0 3 is a concavo-convex portion, and has, for example, a sawtooth wave shape and a triangular wave shape. The pitch and height of the unevenness are not particularly limited, but if the pitch is short, fine vibrations can be generated, and if the pitch is long, large vibrations can be generated.
3 2 0 4は、 振動用凸部 3 2 0 5及び板バネ状の弾性部材 3 2 0 6の組み合わせよりなる振動体を摺動駆動させるための駆動部であ り、 例えば摺動モ一夕等を組み込んだ状態を示す。  3 2 0 4 is a drive unit for slidingly driving a vibrating body composed of a combination of a vibration convex part 3 2 0 5 and a leaf spring-like elastic member 3 2 0 6. The state which incorporated etc. is shown.
振動子の振動用凸部 3 2 0 5、 弾性部材の組み合わせは、 あくま で一例であり、 担体読み取り装置の大きさなどにより様々な形状が 適宜選択される。  The combination of the convex portions for vibration 3 2 0 5 of the vibrator and the elastic members is merely an example, and various shapes are appropriately selected depending on the size of the carrier reader.
次に、 第 3 1図で示す実施例の動作を説明する。 . 撹拌動作が必要な場合、 駆動部 3 2 0 4を駆動させて振動子の振 動用凸部 3 2 0 5を凹凸部 3 2 0 3に当接する (第 3 1図 (b) を 参照) 。  Next, the operation of the embodiment shown in FIG. 31 will be described. When stirring operation is required, drive part 3 2 0 4 is driven to bring vibrator's vibration convex part 3 2 0 5 into contact with uneven part 3 2 0 3 (see Fig. 3 (b)) .
第 3 1図 (c) で示すように、 担体の凹凸部 3 2 0 3 に接触した 振動用凸部 3 2 0 5力 回転する担体の山部により外側に押され( 第 3 1図 (d) を参照)、 更に凹凸部 3 2 0 3の移動により、 谷部が 到来すると弾性部材 3 2 0 6の復元力により振動用凸部 3 2 0 5が 、 担体 3 2 0 1の凹凸部 3 2 0 3の表面を打つ(第 3 1図 (e) を参 照) ことで、 振動を与える。 この繰り返しにより、 連続した振動が、 複数の外周状の試薬反応 槽 3 2 0 l aの周辺に生じ、 撹拌運動を増加させる。 As shown in Fig. 31 (c), the convex portion for vibration 3 2 0 5 force in contact with the concave and convex portion 3 2 0 3 of the carrier is pushed outward by the crest of the rotating carrier (Fig. 3 1 (d )), And when the trough comes due to the movement of the uneven portion 3 2 0 3, the vibration convex portion 3 2 0 5 becomes the uneven portion 3 of the carrier 3 2 0 1 by the restoring force of the elastic member 3 2 0 6. Vibration is given by hitting the surface of 203 (see Fig. 31 (e)). By repeating this, continuous vibration is generated around the plurality of outer peripheral reagent reaction tanks 3 2 0 la to increase the stirring motion.
実施例 3 — 3 Example 3 — 3
第 32図は、 本発明の他の実施例を示す模式図である。  FIG. 32 is a schematic diagram showing another embodiment of the present invention.
第 32図 (a)は、 例えば第 3 1 図 (a)で示した血液分析用担体 3 2 0 1 の裏面であり、 試薬反応槽周辺部位には、 吸光性、 吸熱性を有 する黒色部材 3 2 1 0が配置され、 試薬反応槽直下には、 測定用光 が通過するための観察窓 3 2 1 0 aが設けられている。  FIG. 32 (a) is, for example, the back surface of the blood analysis carrier 3 201 shown in FIG. 31 (a), and a black member having absorptivity and endotherm in the region around the reagent reaction tank. 3 2 1 0 is arranged, and an observation window 3 2 1 0 a for allowing measurement light to pass is provided immediately below the reagent reaction tank.
第 3 2図で示す 3 2 0 7は、 環状凹凸部であり、 第 3 2図 (b) にその一部を示した。 第 3 2図 (b)及び (c)は、 担体 3 2 0 1 を側 面から見た図である。  3 2 0 7 shown in FIG. 3 2 is an annular concavo-convex portion, and a part thereof is shown in FIG. 3 2 (b). FIGS. 32 (b) and 32 (c) are views of the carrier 3220 from the side.
第 3 2図 (c)で示す 3 2 0 9は、 振動用凸部であり、 3 2 0 8は 、 弾性部材である。  3 2 0 9 shown in FIG. 3 2 (c) is a vibration convex portion, and 3 2 0 8 is an elastic member.
本実施例も第 3 1図で示した実施例と同様、 要時、 振動用凸部 3 2 0 9が、 環状凹凸部 3 2 0 7 と接触させるための移動部を設けて いるが、 第 32図では省略した。 .  Similarly to the embodiment shown in FIG. 31, this embodiment also has a moving portion for bringing the vibrating convex portion 3 2 0 9 into contact with the annular concave and convex portion 3 2 0 7. Omitted in Figure 32. .
第 32図で示す実施例も、 第 3 1図で示す実施例と同様、 振動用凸 部 3 2 0 9が、 環状凹凸部 · 3 2 0 7表面を移動する際(第 3 2図 (d ) を参照)、 環状凹凸部 3 2 0 7の凸部が、 振動用凸部 3 2 0 9 を押 しゃり (第 32図 (e ) を参照)、 担体 3 2 0 1 の回転により、 環状用 凹凸部 3 2 0 9 の凹部が、 押しやられた振動用凸部 3 2 0 9 の部位 にく ると、 弾性部材 3 2 0 8 の復元力で、 振動用凸部 3 2 0 9が、 環状用凹凸部 3 2 0 7 を打ち付けることで振動を生じさせる (第 3 2 図 (Πを参照) 。  In the embodiment shown in FIG. 32, as in the embodiment shown in FIG. 31, the vibration convex portion 3 2 0 9 moves on the surface of the annular uneven portion 3 2 0 7 (FIG. 3 2 (d )), And the convex part of the annular concavo-convex part 3 2 0 7 pushes the vibration convex part 3 2 0 9 (see FIG. 32 (e)), and the carrier 3 2 0 1 rotates to make the annular part When the concave portion of the concave / convex portion 3 2 0 9 comes to the pressed portion of the vibrating convex portion 3 2 0 9, the restoring portion of the elastic member 3 2 0 8 causes the vibrating convex portion 3 2 0 9 to Vibration is generated by striking the annular uneven part 3 2 0 7 (Fig. 3 2 (see Π)).
この様に、 担体に振動を与えることで、 試薬と血漿成分の撹拌混 合を確実に行う ことができる。  In this way, the reagent and the plasma component can be agitated and mixed reliably by applying vibration to the carrier.
実施例 3 — 4 第 3 3 A図〜第 3 3 C図は、 本発明の他の実施例である。 Example 3-4 FIGS. 3A to 3C are other embodiments of the present invention.
第 3 3 A図〜第 3 3 C図は、 例えば第 3 1図で示した試薬反応槽 3 2 0 1 aを拡大した状態を示す。  FIGS. 3A to 3C show an enlarged state of the reagent reaction tank 3 2 0 1 a shown in FIG. 3 1, for example.
3 3 0 1 は、 試薬反応槽であり、 担体に円柱状の凹部として形成 されている。 大きさは、 直径 1 、 深さが 2 匪前後が例示され、 中 心方向の内側面に、 血漿等の検体が供給される供給用流路 3 3 0 2 が接続している。 試薬反応槽には予め試薬の粉末、 顆粒、 液体など が含まれている。  3 3 0 1 is a reagent reaction tank, which is formed as a cylindrical recess in the carrier. The size is exemplified by a diameter of 1 and a depth of about 2 mm, and a supply channel 3 300 for supplying a sample such as plasma is connected to the inner surface in the center direction. The reagent reaction vessel contains reagent powder, granules, liquid, etc. in advance.
3 3 0 3は、 撹拌用リ ングであり、 ゴム、 樹脂等の弾性素材で形 成され、 中心方向の一部を除き、 試薬反応槽 3 3 0 1の内周に接続 固定されている。  3 30 3 is a stirring ring formed of an elastic material such as rubber or resin, and connected and fixed to the inner periphery of the reagent reaction tank 3 30 1 except for a part in the center direction.
3 3 0 4は、 金属などの比較的重い粒子よりなる金属粒であって 、 担体の回転により生じる遠心力を一番有効に受ける部位に埋入な どされ、 配置されている。 ·  3 3 0 4 is a metal particle composed of relatively heavy particles such as metal, and is embedded and arranged in a site that receives the centrifugal force most effectively generated by the rotation of the carrier. ·
第 3 3 B図の線分 X— X ' で示す断面を第 3 3 C図に示した。 撹 拌用リング 3 3 0 3は、 試薬反応槽 3 3 0 1の底面と、 供給用流路 3 3 0 2の流路口との間に配置されている。  The cross section indicated by the line XX 'in Fig. 3 3B is shown in Fig. 3 3C. The stirring ring 3 3 0 3 is disposed between the bottom surface of the reagent reaction tank 3 3 0 1 and the flow channel opening of the supply flow channel 3 3 0 2.
3 3 0 5は、 蓋部であり、 P P、 P E T等の透光性部材、 半透光 性部材よりなる。  Reference numeral 3 3 0 5 denotes a lid, which is made of a translucent member such as PP or PET, or a semi-translucent member.
3 3 0 6は、 黒色シートであり、 吸熱性、 吸光性を有し、 試薬反 応槽直下は、 計測光を通過させるための観察孔 3 3 0 7が形成され ている。  Reference numeral 3 3 06 is a black sheet, which has endothermic and light absorbing properties, and an observation hole 3 3 0 7 for allowing measurement light to pass therethrough is formed immediately below the reagent reaction tank.
次に、 第 3 3 A図〜第 3 3 C図の動作を説明する。  Next, the operation of FIGS. 3 3A to 3 3 C will be described.
試薬反応槽 3 3 0 1内に、 検体が供給され、 予め配置した試薬と 接触して溶解を始める。  The sample is supplied into the reagent reaction tank 3 30 1 and comes into contact with the pre-arranged reagent to start dissolution.
担体の回転を高めることにより、 試薬反応槽内の撹拌用リング 3 By increasing the rotation of the carrier, the stirring ring in the reagent reaction tank 3
3 0 3は、 遠心力を受け、 一部試薬反応槽内に接合していない部位 であって、 金属粒 3 3 0 4を含む部位が、 遠心方向に移動する。 その際、 第 3 3 B図で示すように、 撹拌用リング 3 3 0 3 と、 試 薬反応槽 3 3 0 1内に間隙が形成され、 この部分に検体等が流入す る。 . 3 0 3 is a part that is not joined in the reagent reaction tank due to centrifugal force And the part containing the metal particles 3 3 0 4 moves in the centrifugal direction. At that time, as shown in FIG. 3 3 B, a gap is formed in the stirring ring 3 3 0 3 and the reagent reaction tank 3 3 0 1, and the sample or the like flows into this portion. .
担体の回転数を下げると、 撹拌用リング 3 3 0 3が元に戻り、 間 隙に入った検体等は、 押し出されるように元の位置に戻る (第 3 3 When the number of rotations of the carrier is reduced, the stirring ring 3 3 0 3 returns to its original position, and the specimen, etc. that enters the gap returns to its original position so that it is pushed out (No. 3 3
A図) 。 (Figure A)
以上の動作を繰り返すことで、 光学的測定にも支障が無く簡易に 撹拌を行う ことができる。  By repeating the above operations, stirring can be easily performed without any problem in optical measurement.
実施例 3 — 5 , 以下、 本発明の一実施例である担体を、 担体読み取り装置へ装着 する部分、 即ちチヤッキング構成について詳細に説明する。 Embodiment 3-5 Hereinafter, a portion where a carrier according to an embodiment of the present invention is attached to a carrier reader, that is, a chucking configuration will be described in detail.
第 3 4 A図〜第 3 4 C図において、  In Figures 3 4 A to 3 4 C,
3 4 0 1 は、 担体であり、 円盤状の基材に、 血液供給口、 希釈液 貯留部、 血球分離部、 混合撹拌部、 定量分配部、 試薬反応槽等が溝 状又は凹状に形成されている。  3 4 0 1 is a carrier, in which a blood supply port, a diluent storage part, a blood cell separation part, a mixing and stirring part, a quantitative distribution part, a reagent reaction tank, etc. are formed in a groove shape or a concave shape on a disk-shaped substrate. ing.
担体 3 4 0 1の上部には、 透光性を有する蓋部が全体を覆うよう に配置されている。  On the upper part of the carrier 340, a light-transmitting lid is disposed so as to cover the whole.
第 3 4 C図に、 担体 3 4 0 1上に構成される構成要件中、 試薬反 応槽 3 4 0 4の一例を示した。  FIG. 34 shows an example of the reagent reaction vessel 3 4 0 4 among the constituent elements configured on the carrier 3 4 0 1.
3 4 0 2は、 環状凸部であり、 回転体 3 4 0 5の側面と一致する 様な内径を持つ環状体であり、 好ましくは担体 3 4 0 1 と一体的に 形成されている。  Reference numeral 34 0 2 denotes an annular convex portion, which is an annular body having an inner diameter that coincides with the side surface of the rotating body 3 4 0 5, and is preferably formed integrally with the carrier 3 4 0 1.
3 4 0 3は'、 金属部材であり、 磁性材との結合可能な金属、 セラ ミックス、 その他の複合材の薄板よりなり、 担体 3 4 0 1の底面で あって、 環状凸部 3 4 0 2の内側に接着剤、 機械的嵌合等によって 結合されている。 金属部材 3 4 0 3は、 好ましくは、 摩擦係数の高 い表面を有することが好ましい。 3 4 0 3 'is a metal member, which is made of a thin plate of metal, ceramic, or other composite material that can be combined with a magnetic material, and is the bottom surface of the carrier 3 4 0 1, which is an annular convex portion 3 4 0 The inside of 2 is connected by adhesive, mechanical fitting, etc. The metal member 3 4 0 3 preferably has a high friction coefficient. It is preferable to have a rough surface.
3 4 0 5は、 回転体であり、 その底面部でモー夕、 変速ギヤ等と 接続する。 回転体 3 4 0 5は、 樹脂、 プラスチック形成されており 軽量化を図ることが好ましい。 回転体 3 4 0 5は、 読み取り装置(図 示せず)内に配置され、 第 3 4 A図〜第 3 4 C図では、 その一部を 示している。  3 4 0 5 is a rotating body, and is connected to a motor gear, a transmission gear, etc. on the bottom surface. The rotating body 3 4 0 5 is formed of resin or plastic, and it is preferable to reduce the weight. The rotating body 3 4 0 5 is arranged in a reading device (not shown), and a part thereof is shown in FIGS. 3 4 A to 3 4 C.
3 4 0 6は、 摩擦部材であり、 環状のゴム、 ビニール樹脂等で形 成され、 回転体 3 4 0 5の上部より均一に突出して接着剤、 機械的 嵌合等によって結合配置されている。 環状の摩擦部材 3 4 0 6の幅 は、 その幅が広ければ、 担体 3 4 0 1 との接触面積が広くなるため 摩擦力も強くなるが、 1〜 3 m m程度が担体駆動用として好ましい  3 4 0 6 is a friction member, which is formed of an annular rubber, vinyl resin, etc., and protrudes uniformly from the upper part of the rotating body 3 4 0 5 and is bonded and arranged by an adhesive, mechanical fitting, etc. . If the width of the annular friction member 3 4 0 6 is wide, the contact area with the carrier 3 4 0 1 will be wide and the frictional force will be strong, but about 1 to 3 mm is preferable for driving the carrier.
3 4 0 7は、 磁性部材であり、 環状に形成された、 永久磁石、 又 は電磁石により構成されている。 磁性部材 3 4 0 7の幅も、 広けれ ば担体との結合が密になるが、 取り扱いを手軽にするため、 2〜 4 m mが適当である。 3 4 0 7 is a magnetic member, which is formed of a permanent magnet or an electromagnet formed in an annular shape. If the width of the magnetic member 3 4 0 7 is wide, the bond with the carrier becomes dense, but 2 to 4 mm is suitable for easy handling.
尚、 磁性部材 3 4 0 7の幅、 摩擦部材 3 4 0 6の幅の何れもが、 担体の表面状態、 磁性部材の材質などにより、 上述の範囲外の方が 適当な場合もある。  In some cases, the width of the magnetic member 3 4 0 7 and the width of the friction member 3 4 0 6 are more suitable than the above ranges depending on the surface condition of the carrier, the material of the magnetic member, and the like.
磁性部材 3 4 0 7 の高さは、 摩擦部材 3 4 0 6 の高さよりも低く 、 第 3 4 B図で示すように担体を装着した際も、 担体の金属部材と は、 非接触状態を形成している。  The height of the magnetic member 3 4 0 7 is lower than that of the friction member 3 4 0 6, and even when the carrier is mounted as shown in FIG. 3 4 B, the metal member of the carrier is in a non-contact state. Forming.
. 3 4 0 8は、 回転体凸部であり、 回転体 3 4 0 5 と一体的に形成 され、 その外周側面は、 前記環状凸部 3 4 0 2の内周側面に接触し て結合し、 垂直基準面 3 4 0 8 aを形成する。  3 4 0 8 is a rotating body convex portion, and is formed integrally with the rotating body 3 4 0 5, and the outer peripheral side thereof is in contact with and coupled to the inner peripheral side surface of the annular convex portion 3 4 0 2. The vertical reference plane 3 4 0 8 a is formed.
回転体凸部 3 4 0 8の上面と金属部材 3 4 0 3 との接触面が水平 基準面 3 4 0 8 bを形成する。 垂直基準面 3 4 0 8 a及び水平基準面 3 4 0 8 bの何れもが、 担体A contact surface between the upper surface of the rotating body projection 3 4 0 8 and the metal member 3 4 0 3 forms a horizontal reference surface 3 4 0 8 b. Both vertical reference plane 3 4 0 8 a and horizontal reference plane 3 4 0 8 b
3 4 0 1 の底面との一様な接触であって、 互いに直角な関係を維持 することで担体 3 4 0 1 に安定的な回転を生じさせる。 It is a uniform contact with the bottom surface of 3 4 0 1 and maintains a perpendicular relationship with each other, thereby causing a stable rotation of the carrier 3 4 0 1.
第 3 4 A図〜第 3 4 C図で示す実施例では、 読み取り装置内の回 転体 3 4 0 5を担体 3 4 0 1の環状凸部 3 4 0 2の内側に挿入し、 垂直基準面 3 4 0 8 aと環状凸部 3 4 0 2の内面及び水平基準面 3 In the embodiment shown in FIGS. 3 4 A to 3 4 C, the rotating body 3 4 0 5 in the reader is inserted inside the annular projection 3 4 0 2 of the carrier 3 4 0 1, and the vertical reference Surface 3 4 0 8 a and inner surface of annular projection 3 4 0 2 and horizontal reference surface 3
4 0 8 bと金属部材 3 4 0 3 の表面が接触すると共に摩擦部材 3 4 0 6 と、 金属部材 3 4 0 3が接触した状態で、 磁性部材 3 4 0 7 と 、 金属部材 3 4 0 3間が非接触状態で磁力結合することで、 読み取 り装置内の回転体 3 4 0 5 と担体 3 4 0 1が結合固定される。 4 0 8 b and the metal member 3 4 0 3 are in contact with each other and the friction member 3 4 0 6 and the metal member 3 4 0 3 are in contact with each other, the magnetic member 3 4 0 7 and the metal member 3 4 0 By magnetically coupling the three members in a non-contact state, the rotating body 3 4 0 5 and the carrier 3 4 0 1 in the reading device are coupled and fixed.
第 3 4 B図に、 結合した状態を示す。 その際、 垂直基準面 3 4 0 8 aと、 水平基準面 3 4 0 8 bのそれぞれの担体 3 4 0 1への均一な 接触により、 安定した回転が行われ、 回転体 3 4 0 5が回転する場 合も、 摩擦部材 3 4 0 6 の接触摩擦によって、 担体 3 4 0 1は、 す ベることなく回転する。  Figure 34 shows the combined state. At that time, stable rotation is performed by uniform contact of the vertical reference plane 3 4 0 8 a and the horizontal reference plane 3 4 0 8 b to the respective carriers 3 4 0 1, and the rotating body 3 4 0 5 Also in the case of rotation, the carrier 3 4 0 1 rotates without slipping due to the contact friction of the friction member 3 4 0 6.
この様に、 回転体 3 4 0 5に、 担体 3 4 0 1 の環状凸部 3 4 0 2 を挿入するだけで、 チヤッキングが終了し、 取り外しも、 磁性部材 3 4 0 7 と金属部材 3 4 0 3が接触していない為に比較的容易な取 り外しができる等、 取り扱いも容易である。  Thus, by simply inserting the annular convex portion 3 4 0 2 of the carrier 3 4 0 1 into the rotating body 3 4 0 5, the chucking is completed, and the magnetic member 3 4 0 7 and the metal member 3 4 are also removed. 0 3 is not in contact, so it can be easily removed.
第 3 5 A図及び第 3 5 B図は、 第 3 4 A図〜第 3 4 C図と同様、 担体 3 4 0 1 に環状凸部 3 4 0 2を設けたものを用いた場合の他の 実施例を示す。  FIGS. 35A and 35B are the same as those shown in FIGS. 34A to 34C except that the carrier 3 4 0 1 provided with the annular projection 3 4 0 2 is used. An example of is shown.
第 3 5 A図で示す回転体 3 4 0 5の外周には、 段差状の結合部 3 4 0 9を形成し、 結合部 3 4 0 9の下面と、 環状凸部 3 4 0 2の先 端平面部が接触し第 3 6 B図で示す水平基準面 3 4 0 9 aを形成し 、 結合部 3 4 0 9の側面部と環状凸部 3 4 0 2の内側側面部が接触 することで、 第 3 6 B図で示す垂直基準面 3 4 0 9 bを形成する。 3 4 0 6は、 摩擦部材であり、 第 3 4 A図〜第 3 4 C図で示した ものと同一の構成を有し、 また、 3 4 0 7は、 環状の磁性部材であ り、 第 3 4 A図〜第 3 4 C図で示したものと同一の構成を有する。 磁性部材 3 4 0 7 の高さは、 摩擦部材 3 4 0 6力 結合し収縮した 状態であっても、 金属部材 3 4 0 3 と接触しない程度の高さを維持 する事が好ましい。 第 3 5 B図は、 担体 3 4 0 1 と、 回転体 3 4 0 5を結合した状態を示す。 簡単な結合関係ではあるが、 磁性部材 3 4 0 7 と金属部材 3 4 0 3の磁力による結合による結合力と摩擦部 材 3 4 0 6 と担体底面との摩擦力により、 激しい回転環境において も滑ることなく、 安定した回転が実現される。 FIG. 3 5 Stepped coupling portion 3 4 0 9 is formed on the outer periphery of rotating body 3 4 0 5 shown in FIG. 3A, and the lower surface of coupling portion 3 4 0 9 and the tip of annular projection 3 4 0 2 The end plane part comes into contact to form the horizontal reference plane 3 4 0 9 a shown in FIG. 3 6 B, and the side part of the coupling part 3 4 0 9 and the inner side part of the annular convex part 3 4 0 2 are in contact with each other Thus, the vertical reference plane 3 4 0 9 b shown in FIG. 3 6 B is formed. 3 4 0 6 is a friction member, which has the same configuration as that shown in FIGS. 3 4 A to 3 4 C, and 3 4 0 7 is an annular magnetic member, It has the same configuration as that shown in FIGS. 34A to 34C. The height of the magnetic member 304 is preferably maintained at such a level that it does not come into contact with the metal member 304 even when the friction member 304 is coupled and contracted. FIG. 35B shows a state in which the carrier 3 4 0 1 and the rotating body 3 4 0 5 are combined. Although it is a simple coupling relationship, the coupling force due to the coupling of the magnetic member 3 4 0 7 and the metal member 3 4 0 3 and the frictional force between the friction member 3 4 0 6 and the bottom surface of the carrier can be used even in a severe rotational environment. Stable rotation is achieved without slipping.
第 3 5 A図及び第 3 5 B図で示す実施例は、 第 3 4 A図〜第 3 4 C図で示す実施例よりも水平基準面と垂直基準面の構成をより簡素 化させ、 更に担体 3 4 0 1 を回転体 3 4 0 5へ容易に結合させたり 離脱させたりすることができる。  The embodiment shown in FIGS. 35A and 35B simplifies the configuration of the horizontal reference plane and the vertical reference plane more than the embodiment shown in FIGS. 34A to 34C. The carrier 3 4 0 1 can be easily coupled to or detached from the rotating body 3 4 0 5.
実施例 3 — 6 Example 3-6
第 3 6 A図〜第 3 6 C図は、 本発明のチヤッキング構成の他の一 例を示す図である。  FIGS. 36A to 36C are diagrams showing another example of the chucking configuration of the present invention.
第 3 6 A図〜第 3 6 C図において、 3 4 0 1は担体であり、 第 3 4 A図〜第 3 4 C図で示した構成と同様の構成を有し、 例えば、 第 3 6 C図で示すような、 試薬反応槽 3 4 1 3、 分配流路等の組み合 わせによって構成されている。  In FIGS. 3 6 A to 3 6 C, 3 4 0 1 is a carrier, and has the same structure as that shown in FIGS. 3 4 A to 3 4 C. As shown in Fig. C, it consists of a combination of reagent reaction tank 3 4 1 3 and distribution channel.
3 4 1 1 は、 金属部材であり、 好ましくは担体 3 4 0 1の底面に 埋入されている。 金属部材 3 4 1 1 の中央には、 担体 3 4 0 1 にも 一部通じるような揷入口 3 4 1 0が形成されている。  3 4 1 1 is a metal member, and is preferably embedded in the bottom surface of the carrier 3 4 0 1. In the center of the metal member 3 4 1 1, a soot entrance 3 4 1 0 is formed which partially communicates with the carrier 3 4 0 1.
揷入口 3 4 1 0ば、 円柱状に形成され、 回転体 3 4 1 2の回転軸 3 4 1 6が挿入可能な大きさを有する。  If the rod inlet 3 4 1 0 is formed in a columnar shape, the rotating shaft 3 4 1 6 of the rotating body 3 4 1 2 can be inserted.
3 4 1 2は、 回転体であり、 中心に、 突出した回転軸 3 4 1 6が 形成されている。 回転軸 3 4 1 6の側面は、 挿入口 3 4 1 0へ挿入 接触した状態で、 第 3 6 B図で示す垂直基準面 3 4 1 6 aを形成す る。 3 4 1 2 is a rotating body, and the projecting rotating shaft 3 4 1 6 is at the center. Is formed. The side surface of the rotating shaft 3 4 1 6 forms a vertical reference surface 3 4 1 6 a shown in FIG. 3 6 B in the state of being inserted into and contacted with the insertion port 3 4 10.
3 4 1 7は、 摩擦部材であり、 摩擦係数が高い弾力性を有する部 材、 ゴム、 天然樹脂、 合成樹脂等で形成されている。 本実施例にお ける摩擦部材 3 4 1 7は、 摩擦部材.3 4 1 7 と、 担体 3 4 0 1の底 面とが接触する部分で、 第 3 6 B図で示す水平基準面 3 4 1 7 aを 形成するために、 なるべく非変形性を有する'事が好ましく、 より硬 質な部材が好ましい。  3 4 1 7 is a friction member, which is formed of a material having a high coefficient of friction and elasticity, rubber, natural resin, synthetic resin, and the like. The friction member 3 4 1 7 in this example is a portion where the friction member 3 4 1 7 and the bottom surface of the carrier 3 4 0 1 are in contact with each other. The horizontal reference surface 3 4 shown in FIG. In order to form 17a, it is preferable to have non-deformability as much as possible, and a harder member is preferable.
本実施例では、 他の実施例に比べ比較的幅の広い摩擦部材 3 1 7が配置されることが好ましく、 その幅は例えば 3〜 5 mmの幅が 例示されるが、 担体 3 4 0 1の底面の状態、 大きさ等により この範 囲以外でも設定される場合もある。  In this embodiment, it is preferable that a friction member 3 17 having a relatively wide width is disposed as compared with the other embodiments, and the width is exemplified by a width of 3 to 5 mm, for example. It may be set outside this range depending on the state and size of the bottom surface.
3 4 1 4は磁性部材であり、—永久磁石、 電磁石によって形成され 、 摩擦部材 3 4 1 7の高さより低い高さで配置されている。  3 4 1 4 is a magnetic member, which is formed by a permanent magnet and an electromagnet, and is arranged at a height lower than that of the friction member 3 4 1 7.
第 3 6 A図〜第 3 6 C図で示す実施例は、 第 3 4 A図〜第 3 4 C 図ならびに第 3 5 A図及び第 3 5 B図の実施例をより簡素化するも のである。 回転体 3 4 1 2の回転軸 3 4 1 6 を担体 3 4 0 1 の挿入 口 3 4 1 0 に挿入すると、 金属部材 3 4 1 1 と磁性部材 3 4 1 4の 磁力結合が非接触状態で形成され、 回転軸 3 4 1 6の側面と揷入口 3 4 1 0の側面の接触により、 第 3 6 B図で示す垂直基準面 3 4 1 6 aを形成すると共に、 担体 3 4 0 1の底面と摩擦部材 3 4 1 7が 摩擦接触して、 第 3 6 B図で示す水平基準面 3 4 1 7 aを形成する 。 回転体 3 4 1 2の回転は、 担体 3 4 0 1 に伝達され、 回転方向を 変化させたり、 停止させたり、 急激な回転を開始させたりする過酷 な担体 3 4 0 1 の回転に対しても、 ぶれることなく安定した回転を させることができる。 実施例 3 — 7 The embodiment shown in FIGS. 36A to 36C is a simplified version of the embodiment shown in FIGS. 34A to 34C and FIGS. 35A and 35B. is there. When the rotating shaft 3 4 1 6 of the rotating body 3 4 1 2 is inserted into the insertion port 3 4 1 0 of the carrier 3 4 0 1, the magnetic coupling between the metal member 3 4 1 1 and the magnetic member 3 4 1 4 is in a non-contact state. The vertical reference surface 3 4 1 6 a shown in FIG. 3 6 B is formed by contact between the side surface of the rotating shaft 3 4 1 6 and the side surface of the inlet 3 4 1 0 and the carrier 3 4 0 1 And the friction member 3 4 1 7 are in frictional contact with each other to form a horizontal reference surface 3 4 1 7 a shown in FIG. The rotation of the rotating body 3 4 1 2 is transmitted to the carrier 3 4 0 1, and in response to the severe rotation of the carrier 3 4 0 1 that changes the direction of rotation, stops it, or starts a sudden rotation. However, stable rotation can be achieved without blurring. Example 3-7
第 3 7 A図及び第 3 7 B図は、 本発明における他の実施例を示す 断面図である。  FIGS. 37A and 37B are sectional views showing another embodiment of the present invention.
第 3 7 A図及び第 3 7 B図において、 担体 3 4 0 1 は、 第 3 6 A 図〜第 3 6 C図の担体と同じであり、 同一の番号を付して説明を省 略する。 回転体 3 4 1 2 も同様に、 他の実施例と 1口 i一の部分は、 同 じ番号を付して説明を省略する。  In FIGS. 37A and 37B, the carrier 3400 is the same as the carrier in FIGS. 36A to 36C, and the same reference numerals are given and description thereof is omitted. . Similarly for the rotating body 3 4 1 2, the same numbers are assigned to the same parts as in the other embodiments, and the description thereof is omitted.
回転体 3 4 1 2の上部外周面には、 環状凸部 3 4 1 8が付設され An annular projection 3 4 1 8 is attached to the upper outer peripheral surface of the rotating body 3 4 1 2.
、 7こ、 ¾¾状凸部 3 4 1' 8の上面部は、 担体 3 4 0 1 の底面と接触 し / |¾¾、 3 7 B図で示すように水平基準面 3 4 1 8 aを形成する 部分である。 7 and ¾¾-shaped convex portion 3 4 1 '8 is in contact with the bottom surface of carrier 3 4 0 1 / | ¾¾, 3 7B forming horizontal reference surface 3 4 1 8a as shown in FIG. It is a part to do.
摩擦部材 3 4 1 9は、 第 3 4 A図〜第 3 4 C図ならびに第 3 5 A 図及び第 3 5 B図で示した実施例の摩擦部材と同様のものであって The friction member 3 4 1 9 is the same as the friction member of the embodiment shown in FIGS. 3 4 A to 3 4 C, 3 5 A and 3 5 B.
、 環状のゴム 、 ビニール樹脂等で形成されている It is made of annular rubber, vinyl resin, etc.
3 4 1 4は 、 磁性部材であり、 第 3 4 A図〜第 3 4 C図、 第 3 5 3 4 1 4 is a magnetic member, FIGS. 3 4 A to 3 4 C, 3 5
A図及び第 3 5 B図ならびに第 3 6 A図〜第 3 6 C図と同様の材質The same material as Fig. A, Fig. 35B and Fig. 36 A to Fig. 36C
、 形状を具えたものである。 It has a shape.
'磁性部材 3 4 1 4の高さは、 摩擦部材 3 4 1 9の高さよりも低く 'The height of magnetic member 3 4 1 4 is lower than that of friction member 3 4 1 9
、 担体と回転体が結合した際も、 磁性部材 3 4 1 4は 、 担体 3 4 0When the carrier and the rotating body are combined, the magnetic member 3 4 1 4 is also the carrier 3 4 0
1 の金属部材 3 4 1 1 とは非接触状態を保つ。 1 Metal member 3 4 1 1 Keep in a non-contact state.
回転体 3 4 1 2の中心に一体的に形成された回転軸 3 4 1 6の側 面は、 担体 3 4 0 1の揷入口 3 4 1 0に挿入された際、 挿入口 3 4 1 0の内周面と接触し、 垂直基準面 3 4 1 6 aを形成する。  The side surface of the rotating shaft 3 4 1 6 formed integrally with the center of the rotating body 3 4 1 2 is inserted into the inlet 3 4 1 0 of the carrier 3 4 0 1. The vertical reference surface 3 4 1 6 a is formed.
第 3 7 A図及び第 3 7 B図で示す実施例も、 第 3 6 A図〜第 3 6 C図で示すものと同様に、 回転軸 3 4 1 6 を担体 3 4 0 1の揷入口 3 4 1 0に挿入するだけで、 磁性部材 3 4 1 4 と、 金属部材 3 4 1 1の磁力結合による結合がされ、 第 3 7 B図で示すように回転体 3 4 1 2 の外周に配置した環状凸部 3 4 1 8 の上面が担体 3 4 0 1 と 接触した際、 水平基準面 3 4 1 8 aを形成し、 回転軸 3 4 1 6 の側 面と揷入口 3 4 1 0の内周面との接触面が垂直基準面 3 1 6 aを 形成することから、 安定的な担体と回転体の結合が可能となる。 第 4の発明 The embodiment shown in FIGS. 37A and 37B is similar to that shown in FIGS. 36A to 36C. Just by inserting it into 3 4 1 0, the magnetic member 3 4 1 4 and the metal member 3 4 1 1 are coupled by magnetic coupling, and as shown in Fig. 3 7 B, the rotating body 3 When the upper surface of the annular convex part 3 4 1 8 arranged on the outer periphery of 4 1 2 comes into contact with the carrier 3 4 0 1, the horizontal reference surface 3 4 1 8 a is formed, and the side surface of the rotating shaft 3 4 1 6 Since the contact surface with the inner peripheral surface of the inlet 3 4 10 forms the vertical reference surface 3 1 6 a, the stable support and the rotating body can be coupled. 4th invention
粲 4の発明における微小空間とは、 例えば、 試薬が収容され、 外 部より定量的な検体が供給され、 混合されることで発色するタイプ の円筒状の試薬反応槽であって、 上下の面積が 0 . 5〜 2 . 5 φ、 高さ 5 m m以下く らいが例示されるが、 これに限らず、 混合のみを 目的とする部位等でも適用可能である。  (4) The micro space in the invention of (4) is, for example, a cylindrical reagent reaction tank of a type in which a reagent is stored, a quantitative specimen is supplied from the outside, and color is developed by mixing, However, the present invention is not limited to this, and the present invention is not limited to this, but can be applied to a part intended only for mixing.
比重の異なる物質とは、 例えば血液、 体液、 尿等の体液と、 固形 Substances with different specific gravities include, for example, body fluids such as blood, body fluids and urine, and solids
、 粉末状、 顆粒状の試薬の混合や、 その他、 濃度の異なる液体同士 等が例示される。 Examples include mixing of powdered and granular reagents, and other liquids having different concentrations.
比較的短時間では遠心分離が生じず、 かつ、 攪拌に必要な加速度 を所定時間与えられる回転数とは、 比較的短時間で遠心分離が起き ない回転数を示し、 所定時間とは、 およそ 1秒前後が例示される。 即ちこの回転数は、 比較的短時間に遠心力による分離が生じる回 転数の境界付近を示すものであって、 境界.となる回転数は、 比重の 相違の程度、 粘性、 回転中心からの距離などによって相違するが、 少なく とも、 直ちに遠心分離がおこらない程度の回転数であればよ い。  Centrifugation does not occur in a relatively short time, and the rotation speed at which the acceleration required for stirring is given for a predetermined time is the rotation speed at which centrifugation does not occur in a relatively short time. The predetermined time is approximately 1 Examples are around seconds. In other words, this rotational speed indicates the vicinity of the rotational speed boundary where separation by centrifugal force occurs in a relatively short time, and the rotational speed at the boundary is the degree of difference in specific gravity, viscosity, from the rotational center. Although it depends on the distance, etc., it is sufficient that the number of rotations is at least so that the centrifugal separation does not occur immediately.
「反対方向」 とは、 先の回転が時計回りである場合は、 反時計回 りのことを,示す。  The “opposite direction” indicates counterclockwise rotation when the previous rotation is clockwise.
目標とする回転数まで達した状態から、 方向が異なる回転であつ て、 比較的短時間では遠心力による分離が生じない回転数まで、 回 転を増加させるものであって、 その増加の仕方、 目標の回転数は、 混合を目的とする物質、 比重の相違量、 混合の時間によって適宜調 整され、 限るものではない。 . The rotation speed is increased from a state where the target rotational speed is reached to a rotational speed in which the direction is different and the rotational speed is such that separation by centrifugal force does not occur in a relatively short time. The target number of revolutions is adjusted as appropriate according to the substance to be mixed, the difference in specific gravity, and the mixing time. It is arranged and not limited. .
具体的には、 例えば混合のための前記微小空間が、 担体上の、 回 転中心より 2〜 3 cm程度離れている場合、 最初時計回りで回転数を 0 rpmから 2 0 0 0 rpmまで上昇させ、 回転数が 2 0 0 0 rpmに達し た後、 今度は反時計回りで 2 0 0 0 rpmまで連続的に変化上昇させ 、 2 0 0 0 rpmまで到達した後、 再び逆回転に切り替え、 時計回り で 2 0 0 0 rpmまで連続的に変化上昇させ、 これを数百 msec〜数 sec 程度の間隔で、 繰り返し行うといったものが示される。  Specifically, for example, when the minute space for mixing is about 2 to 3 cm away from the center of rotation on the carrier, the number of rotations is first increased clockwise from 0 rpm to 200 rpm. Then, after the rotation speed reaches 2 00 rpm, this is continuously increased counterclockwise until 2 0 00 rpm, and after reaching 2 0 00 rpm, it switches to reverse rotation again. It is shown that the change is continuously increased to 200 rpm in a clockwise direction, and this is repeated at intervals of several hundred msec to several sec.
この一方向の最大回転数から、 反対方向の最大回転数までの時間 が 0. 1msec〜 2 secまで、 好ましくは 0. 5 sec〜 : L sec (機械的条 件が比較的緩やかである点で、 安価な装置が利用される点で好まし い) が例示される。  The time from the maximum rotational speed in one direction to the maximum rotational speed in the opposite direction is from 0.1 msec to 2 sec, preferably from 0.5 sec to L sec (in terms of relatively gentle mechanical conditions. This is preferable in that an inexpensive apparatus is used.
なお、 反応 · 測定室の形状を工夫することで、 例えば 6 0 0 rpm 以上で回転しながら測定している時は測定室の一部 (外側の壁のほ う) へ液体が集合したりへばりついたり して測定を可能にし、 回転 を停止 (あるいは回転数を落とす) すると今度は測定室の底面に液 体が広がり、 この液体形状の変化を繰り返すことで、 効率の良い攪 拌ゃ酸素供給、 および回転中の測定を可能にする。  In addition, by devising the shape of the reaction / measurement chamber, for example, when measuring while rotating at 600 rpm or higher, liquid collects or sticks to a part of the measurement chamber (like the outer wall). If measurement is enabled and rotation is stopped (or the rotation speed is reduced), the liquid spreads to the bottom of the measurement chamber, and this change in the shape of the liquid is repeated. And allows measurement during rotation.
尚、 回収流路の数は、 2つ以上であれば良く、 特に限定されない が、 担体がより小さい場合や使用する目的によっては、 2つで足り る場合もある。  The number of recovery channels is not particularly limited as long as it is two or more, but two may be sufficient depending on the case where the carrier is smaller or the purpose of use.
本発明における、 「円周方向に延びた供給流路」 とは、 例えば円 周に対して接線方向を示すものであり、 半径方向に垂直の場合に限 らず垂直に対しおよそ ± 3 0 ° の範囲であれば良い。  In the present invention, the “circumferential supply channel” refers to, for example, a tangential direction with respect to the circumference, and is not limited to being perpendicular to the radial direction, but approximately ± 30 ° with respect to the vertical. If it is the range.
本発明における 「毛管力を有する流路であって、 少なく とも入力 口から、 出力口が、 直径と平行な直線部を有する構成により、 担体 の回転数を調整して液体の移動及び停止を行う」 とは、 直径方向に 平行な直線上の流路を示す。 尚、 少なく とも担体の回転中心付近で 直径方向に平行であればよく、 その前後であらゆる方向に向いた屈 曲部があってもよい。 According to the present invention, “a flow path having a capillary force, and at least from the input port, the output port has a linear portion parallel to the diameter, and the liquid is moved and stopped by adjusting the rotation speed of the carrier. ”Means diametrically Flow paths on parallel straight lines are shown. It should be noted that at least the center of rotation of the carrier may be parallel to the diametrical direction, and there may be a bent portion that faces in all directions before and after that.
又、 本発明では、 毛管力を有する流路であって、 少なく とも入力 口から、 出力口が、 円周方向に延びた構成によっても、 液体の移動 の停止及び開始を回転数の調整によって可能とする。 円周方向に延 びたとは、 円周と同様の曲率をもつ流路であって、 円周上に延びて いる状態をしめすものであるが、 必ずしも曲率が円周と一致しなく てもよく、 多少曲率が大きい場合や、 その逆の場合であっても、 液 体の流れを制御するスィッチとして利用可能である。  Further, according to the present invention, a flow path having a capillary force can be stopped and started by adjusting the number of revolutions even when the output port extends in the circumferential direction from at least the input port. And The direction extending in the circumferential direction is a flow path having the same curvature as the circumference, and indicates a state of extending on the circumference, but the curvature does not necessarily have to coincide with the circumference. Even if the curvature is somewhat large and vice versa, it can be used as a switch to control the flow of liquid.
実施例 4 - 1 Example 4-1
第 3 8 A図は、 本発明の一実施例を説明するための模式図である  FIG. 38 is a schematic diagram for explaining one embodiment of the present invention.
4 1 1 8は、 第 1供給用流路であり、 外周方向に複数の試薬反応 槽 4 1 1 6が定量槽 4 1 1 4, 定量供給流路 4 1 1 5 を介して接続 する。 第 3 8 A図〜第 3 8 C図は、 試薬反応槽の一つを示している 全体構成の一例を第 4 3図に示した。 この時、 担体 4 1 0 0の最 外周部の直径は、 6 0 Din!〜 7 0 mm程度とする。 第 3 8 A図〜第 3 & C図は、 その一部であるので、 番号を共通にしている。 4 1 1 8 is a first supply flow path, and a plurality of reagent reaction tanks 4 1 1 6 are connected to each other in the outer circumferential direction through a quantitative tank 4 1 1 4 and a quantitative supply path 4 1 1 5. Figures 38A to 38C show an example of the overall configuration of one of the reagent reaction tanks, as shown in Figure 43. At this time, the diameter of the outermost periphery of the carrier 4 1 0 0 is 6 0 Din! About 70 mm. Figures 3 A to 3 & C are part of it, so they have the same number.
第 3 8 A図で示す 4 1 1 4は、 定量槽であり、 定量供給流路 4 1 1 5の容積と併せた容積分の検体を確保するための部分である。 . 4 1 1 5は、 定量供給流路であり、 円周方向に延びている。 定量 供給流路の方向は、 おおよそ接線方向を例示するが、 これに限らず 、 接線に対しおよそ + 0 ° 〜 3 0 ° の傾きがあっても良い。 ·  38 1, 4 1 1 4 shown in FIG. 3A is a quantification tank, and is a part for securing a volume of specimen together with the volume of the quantification supply channel 4 1 1 5. . 4 1 1 5 is a constant supply channel, extending in the circumferential direction. The direction of the fixed supply flow path is exemplified by a tangential direction, but is not limited thereto, and may be inclined at about + 0 ° to 30 ° with respect to the tangential line. ·
4 1 1 6は、 試薬反応槽であり、 内部に乾燥または、 液状の試薬 S Yが予め封入されているか、 用時供給される。 4 1 1 6 aが反応領域であり、 第 3 8 B図で示すように円柱状の 凹部で形成され、 その大きさは例えば直径 1 mm、 高さ 3匪程度で形 成されている。 4 1 1 6 is a reagent reaction tank in which dry or liquid reagent SY is enclosed in advance or supplied at the time of use. 4 1 1 6 a is a reaction region, which is formed by a cylindrical recess as shown in FIG. 3 8 B. The size is, for example, 1 mm in diameter and about 3 mm in height.
4 1 1 6 bは、 空気溜であり、 高さが、 反応領域の高さの半分く らいから反応領域と同程度の範囲で形成されている。  4 1 1 6 b is an air reservoir, and the height is about half the height of the reaction region, and is formed in the same range as the reaction region.
第 3 9 A図〜第 3 9 E図は、 検体が、 定量的に試薬反応領域に供 給される状態の一例を説明している。  FIGS. 39A to 39E illustrate an example of a state in which the specimen is quantitatively supplied to the reagent reaction region.
まず、 担体は、 一方向に回転しており、 回転力に伴い、 第 1供給 用流路 4 1 1 8 を流れてきた検体 3 Aは、 定量槽 4 1 1 4に充填さ れていく (第 3 9 A図を参照)。  First, the carrier rotates in one direction, and the specimen 3 A flowing through the first supply channel 4 1 1 8 is filled in the quantification tank 4 1 1 4 according to the rotational force ( (See Figure 39 A).
定量供給流路 4 1 1 5にも検体 3 Bが充填され、 第 3 9 B図で示 すような状態が形成される。 この時定量される検体 3 Bの体積は、 反応領域 4 1 1 6 aを満たす量であるが、 4 1 1 6 aと 4 1 1 6 bを 全て満たす量よりも少ない場合もある。  The sample supply path 4 1 1 5 is also filled with the specimen 3 B, and the state shown in FIG. 39B is formed. The volume of the specimen 3 B quantified at this time is an amount satisfying the reaction region 4 1 1 6 a, but may be smaller than an amount satisfying all 4 1 1 6 a and 4 1 1 6 b.
なお、 試薬の反応機作や、 その性状によって、 もしくは目的に応 じて、 必要な試薬の一部がこの定量槽にも封入されており、 供給さ れた検体との混合、 もしくは一次反応が定量槽内で行われる場合も あり得る。 一例として、 保存中の.試薬成分どう しの反 を防 E "る ために、 物理的または化学的に分離された状態で保存される、 いわ ゆる二試薬反応系などが想定される。  Depending on the reaction mechanism of the reagent, its properties, or depending on the purpose, part of the necessary reagent is also enclosed in this quantification tank, and mixing with the supplied sample or primary reaction is performed. It may be performed in a quantification tank. As an example, a so-called two-reagent reaction system that is stored in a physically or chemically separated state in order to prevent conflict between reagent components during storage is assumed.
次に、 回転数をおよそ 5 0 0 0〜 6 0 0 0 r p mまで上げる。 これにより、 検体 3 Cは、 押されるようにして試薬反応領域に充 填される (第 3 9 C図を参照) 。  Next, the rotational speed is increased to about 5 0 0 0 to 6 0 0 0 r pm. As a result, the specimen 3 C is filled into the reagent reaction region as if it was pushed (see FIG. 39C).
この状態で、 第 3 8 B図で示す予め又は使用直前に供給された固 体状又は液体状の試薬 S Yが入った検体液(未混合)が形成される。  In this state, a sample liquid (unmixed) containing the solid or liquid reagent SY supplied in advance or immediately before use as shown in FIG. 38B is formed.
次に、 担体の回転を第 4 0 A図〜第 4 0 C図で示す様に行う。 例えば、 第 4 O A図で示すような回転とは、 最初、 時計回りに担 体を回転させる。 Next, the carrier is rotated as shown in FIGS. 40A to 40C. For example, the rotation shown in Fig. 4 OA is initially clockwise. Rotate the body.
最初の時計回りの回転が所定の角加速度で 1 5 0 0 rpmに到達し た時点で、 所定の角加速度で回転数を下げていき、 回転数が 0 にな つた時点で反時計回りに 1 5 0 0 r p mまで所定の角加速度で上昇 させ、 1 5 0 0 rpmに到達した後は、 所定の角加速度で回転数を下 げていき 0になった後、 時計回りに回転をさせ、 これを繰り返し行 う。 これにより、 1 0〜 1 2 0秒間に十分な混合が行われる。  When the first clockwise rotation reaches 1500 rpm at the predetermined angular acceleration, the rotational speed is decreased at the predetermined angular acceleration, and when the rotational speed reaches 0, the counterclockwise direction is 1 After increasing to 500 rpm with a predetermined angular acceleration and reaching 1500 rpm, the rotational speed is decreased at a predetermined angular acceleration to zero, and then rotated clockwise. Repeat. Thereby, sufficient mixing is performed for 10 to 120 seconds.
尚、 この時の周期 P 1は、 1〜 2 s e cく らいが適当である力 、 第 4 0 B図で示す様に、 周期 P 2 を長く しても多少撹拌混合までの時 間が長くなるものの十分な混合が期待できる場合もあり、 反応槽の 大きさに応じて適宜調整される。  It should be noted that the period P 1 at this time is an appropriate force for 1 to 2 sec. As shown in Fig. 40B, even if the period P 2 is lengthened, the time until stirring and mixing is slightly increased. In some cases, sufficient mixing can be expected, and it is adjusted appropriately according to the size of the reaction vessel.
尚、 所定角加速度に基づく上述の回転数への移行、 下限回転数へ の移行は、 直線的に上昇、 下降、 指数関数的上昇下降により行われ ればよい。  It should be noted that the shift to the above-described rotation speed and the shift to the lower limit rotation speed based on the predetermined angular acceleration may be performed by linear increase, decrease, and exponential increase / decrease.
又、 角加速度による表現は、 一例であって、 少なく とも、 下限回 転数から上限回転数まで又は上限回転数から下限回転数までを、 所 定の時間で上述のような態様で担体の回転を到達させるものであれ ばよい。  In addition, the expression by angular acceleration is an example, and at least rotation from the lower limit rotation speed to the upper limit rotation speed or from the upper limit rotation speed to the lower limit rotation speed in the above-described manner in a manner as described above. Anything that can be achieved.
更に第 4 0 C図で示すように、 交番せず、 時計回り、 反時計回り の何れか一方向に所定の角加速度で強弱をつけたものであっても良 い場合もある。 すなわち、 正の加速度と負の加速度を交互に加える ものであってもよい。  Furthermore, as shown in FIG. 40C, there may be a case in which strength is increased with a predetermined angular acceleration in one direction of clockwise or counterclockwise without alternating. In other words, a positive acceleration and a negative acceleration may be added alternately.
. 尚、 第 4 0 A図〜第 4 0 C図における回転の変化を示す波形が、 鋸状の直流又は交番波で示されるが、 これに限らず、 矩形状、 三角 関数波、 間欠的三角波状、 間欠的矩形波状、 間欠的正弦波状の直流 又は交番波等の波形に応じた回転数の変化であってもよい。  In addition, the waveform indicating the change in rotation in FIGS. 40A to 40C is shown as a sawtooth DC or alternating wave, but is not limited to this, and is rectangular, triangular function wave, intermittent triangle. It may be a change in the number of rotations corresponding to a waveform such as a wave, intermittent rectangular wave, intermittent sine wave, direct current or alternating wave.
又、 第 4 0 A図〜第 4 0 C図は、 角加速度が連続的で、 一定であ る場合を示すが、 ある一定回転まで上昇した後、 一度回転を停止さ せて、 再び逆方向へ、 ある一定回転まで上昇させるものであっても 良い場合もある。 尚、 この時、 反応槽中の液体に与えられる加速度 の範囲は、 1 0〜 5 0 0 m / s 2が好ましいが、 特に限定はされない 第 3 8 A図で示す実施例の形状は、 これに限らず、 例えば第 3 8 C図で示す様な楕円状の試薬反応槽 4 1 1 6 fのような形状であつ ても良い。 Figures 40A to 40C show that the angular acceleration is continuous and constant. In some cases, however, it may be possible to stop the rotation once after increasing to a certain rotation and then increase it again to a certain rotation in the opposite direction. At this time, the range of acceleration given to the liquid in the reaction tank is preferably 10 to 500 m / s 2, but is not particularly limited. FIG. 38 The shape of the embodiment shown in FIG. For example, an elliptical reagent reaction vessel 4116f as shown in Fig. 38C may be used.
楕円状の試薬反応槽 4 1 1 6 fの場合、 定量する検体量を 4 1 1 6 fの体積より少し少なめに充填することで、 回転による混合液の 遠心方向への偏りにより 、 第 3 8 C図の 4 1 1 6 f aで示すように 空気溜ができしかも、 外周方向に配置された光学ュ一ッ トによる光 学測定の際の光路長が確保でき •o。  In the case of an elliptical reagent reaction vessel 4 1 1 6 f, the sample volume to be quantified is filled slightly less than the volume of 4 1 1 6 f, so that the 3 8 As shown by 4 1 1 6 fa in Fig. C, an air reservoir can be created, and the optical path length can be secured for optical measurement using the optical unit arranged in the outer circumference.
又、 本発明では、 試薬反応槽内に残留させる空 を多く し、 回転 数を増減させることで 、 簡易な撹拌を実現させる ともできる。  Further, in the present invention, simple stirring can be realized by increasing the amount of empty space remaining in the reagent reaction tank and increasing or decreasing the number of rotations.
第 3 9 D図及び第 3 9 E図は 、 第 3 8 C図の線分 Y — Y ' に沿つ た断面を示す。  Figures 39D and 39E show cross sections along line Y—Y 'in Figure 38C.
T Aは、 担体であり、 第 4 3図で示す担体 4 1 0 0 と同様のもの であって、 透明、 半透明のアクリル、 P E T、 P P、 ポリエステル 樹脂等よりなる。  TA is a carrier and is similar to the carrier 4 100 shown in FIG. 43, and is made of transparent, translucent acrylic, PET, PP, polyester resin, or the like.
F Tは、 蓋部であり、 担体 T Aと同様の素材よりなり、 両面ない し片面の粘着テープ、 粘着剤、 接着剤を塗布したアクリル薄板より なる。  FT is a lid, made of the same material as the carrier TA, and made of an acrylic thin plate coated with double-sided or single-sided adhesive tape, adhesive, and adhesive.
第 3 9 D図は、 検体 4 1 1 6 f bが、 試薬反応槽 4 1 1 6 Πこ全部 又は一部供給された状態で、 低速度で回転 ( 6 0 0 rpm以下の回転 ) した状態又は静止した状態となっている。  Fig. 39D shows the state in which the sample 4 1 1 6 fb is rotated at a low speed (rotation of 600 rpm or less) with all or part of the reagent reaction vessel 4 1 1 6 supplied. It is in a stationary state.
4 1 1 6 f aは、 空気溜めであり、 S Yは、 例えば固形状の試薬で ある。 4 1 1 6 fa is a reservoir and SY is a solid reagent, for example. is there.
次に回転数を 6 ひ 0 rpm以上とする。 検体 4 1 1 6 f bは、 遠心力 により、 第 3 9 E図で示すように、 試薬反応槽 4 1 1 6 ίの外側の 壁面に偏る。  Next, set the rotation speed to 60 rpm or more. Specimen 4 1 1 6 f b is biased to the outer wall surface of reagent reaction vessel 4 1 1 6 ί by centrifugal force as shown in Fig. 39E.
再び回転数を下げて、 6 0 0 rpm以下にするか静止させると、 第 3 9 D図で示すような状態となる。  When the rotational speed is lowered again to below 600 rpm or stationary, the state shown in Fig. 39D is obtained.
この 2つの状態を交互に繰り返すことで、 試薬 S Yと検体 4 1 1 6 f bの効率よい攪拌が可能となる。  By alternately repeating these two states, the reagent S Y and the sample 4 1 1 6 f b can be efficiently stirred.
尚、 定量供給路 4 1 1 5の毛管力の検体 4 1 1 6 f bへの影響は、 空気溜め 4 1 1 6 f aの空気により低いことから、 定量供給路 4 1 1 5へ、 検体が移動することなく、 遠心力のみで、 検体の混合が行わ れる。  In addition, the influence of the capillary force of the quantitative supply channel 4 1 1 5 on the sample 4 1 1 6 fb is lower due to the air in the air reservoir 4 1 1 6 fa, so the sample moves to the quantitative supply channel 4 1 1 5 Without mixing, the sample is mixed only by centrifugal force.
第 3 9 D図及び第 3 9 E図は、 回転数を増減させることで、 生じ る遠心力の変化により液体の移動を生じせしめ、 混合する手法であ つて、 回転数は、 他の実施例と同様、 所定の回転数まで増加させた 後、 逆方向へ回転させるような角加速度を持つ回転を担体に与えた り、 或いは、 一時的に停止させたり しても良い。  Fig. 39D and Fig. 39E show the method of mixing by causing the liquid to move due to the change in centrifugal force generated by increasing / decreasing the number of revolutions. Similarly to the above, after increasing to a predetermined number of rotations, rotation with angular acceleration that rotates in the opposite direction may be given to the carrier, or it may be temporarily stopped.
この場合の回転数の増減、 増加期間と減少期.間の関係は、 他の実 施例と同様の値で行われれば良く、 少なく とも液体に同様の加速度 を与えれば良い。  In this case, the relationship between the increase / decrease of the rotation speed and the increase period and the decrease period may be performed with the same value as in the other examples, and at least the same acceleration may be given to the liquid.
実施例 4一 2 Example 4 1 2
第 4 1図ならびに第 4 2 A図及び第 4 2 B図を参照して本発明の 実施例について説明する。  An embodiment of the present invention will be described with reference to FIG. 41 and FIGS. 4 2A and 4 2B.
第 4 1図ならびに第 4 2 A図及び第 4 2 B図で示す構成は、 第 4 3図で示した担体の全体構成中の一部を示すことから、 図番を共通 に示した。  The configurations shown in FIG. 41, FIG. 4 2 A, and FIG. 4 2 B show part of the overall configuration of the carrier shown in FIG.
4 1 1 8は、 第 1供給流路であり、 円盤状の担体に対し略同心円 弧状の流路により形成されている。 略同心円弧であるため、 必ずし も同心円の曲率を有する必要はなく、 担体回転時に血漿成分の良好 な分配性を得られるものであればよい。 4 1 1 8 is the first supply flow path, which is substantially concentric with the disc-shaped carrier. It is formed by an arcuate channel. Since it is a substantially concentric arc, it is not always necessary to have a concentric curvature, as long as it can obtain a good distribution of plasma components during carrier rotation.
ただし、 余剰検体の排出や、 定量槽での定量を行う場合、 第 1供 給流路 4 1 1 8の外側の壁は担体の回転中心に対して、 同心円とな つていることが好ましい。  However, it is preferable that the outer wall of the first supply channel 4 1 1 8 be concentric with the center of rotation of the carrier when discharging excess samples or performing quantification in the quantification tank.
4 1 1 7 aは、 各定量槽 4 1 1 4に検体が充填された後、 余る検 体を収容する余剰検体収容部であり、 2つの略円弧状を有するもの であって、 外周方向に位置する第 1余剰収容部 4 1 1 7 a a及び第 2 余剰収容部 4 1 1 7 a c及びこれらの収容部を連結する連結路 4 1 1 7 a bによって構成され、 供給用流路の端部の一方又は両方に余 剰収容部用流路 4 1 1 7 adを介して接続される。  4 1 1 7 a is a surplus sample storage part for storing a surplus sample after each quantification tank 4 1 1 4 is filled with a sample, and has two substantially arcuate shapes in the outer circumferential direction. The first surplus accommodating part 4 1 1 7 aa and the second surplus accommodating part 4 1 1 7 ac and the connecting path 4 1 1 7 ab connecting these accommodating parts are located at the end of the supply channel. One or both of them are connected via a flow path 4 1 1 7 ad for the excess storage section.
余剰希釈混合液収容部 4 1 1 7 aの位置は、 供給用流路の端部に 限らず、 中央部等にあっても良い。  The position of the excessively diluted mixed liquid container 4 1 1 7 a is not limited to the end of the supply flow path, but may be in the center or the like.
連結路 4 1 1 7 abは、 各余剰収容部との接続箇所で鋭角化されて おり、 余剰液体の第 1供給用流路 4 1 1 8への逆流による漏れを防 止している。  The connecting channel 4 1 1 7 ab is sharpened at the connection point with each surplus accommodating portion, and prevents leakage of surplus liquid due to backflow into the first supply channel 4 1 1 8.
4 1 1 4は、 定量槽のそれぞれ一つを示し、 第 1供給用流路 4 1 1 8の外周部に等間隔又は不等間隔で、 配列されその容積が目的の 液量を示している。  4 1 1 4 shows one of each of the quantification tanks, arranged at equal intervals or unequal intervals on the outer periphery of the first supply channel 4 1 1 8, and the volume indicates the target liquid amount .
4 1 1 5は、 定量供給流路であり、 円周方向であって、 略接線方 向に延びている。  4 1 1 5 is a fixed supply channel, which extends in the circumferential direction and substantially tangentially.
. 4 1 1 6 aは、 反応領域であり、 内部に試薬が配置され、 定量供 給流路 4 1 1 5 とは、 空気溜 4 1 1 6 bを介して接続している。  4 1 1 6 a is a reaction area, a reagent is arranged inside, and is connected to the quantitative supply channel 4 1 1 5 through an air reservoir 4 1 1 6 b.
定量槽 4 1 1 4から反応領域 4 1 1 6 aまでの構成は、 例えば第 3 8 B図で示すような構成を有している。  The configuration from the quantification tank 4 1 1 4 to the reaction zone 4 1 1 6 a has a configuration as shown in FIG. 38B, for example.
第 4 1図で示す構成についての動作を、 第 4 2 A図及び第 4 2 B 図を参照して詳細に説明する。 Fig. 4 Operation of the configuration shown in Fig. 1 is shown in Fig. 4 2 A and 4 2 B. This will be described in detail with reference to the drawings.
第 1供給用流路 4 1 1 8 に供給された検体は、 担体が回転してい る状態で、 遠心力などにより定量槽 4 1 1 4に充填され保持されて いく残りの検体は、 余剰収容部用流路 4 1 1 7 adを介して第 2余剰 収容部 4 1 1 7 acに供給されると共に、 連結路 4 1 1 7 abを介して 第 1余剰収容部 4 1 1 7 aaに供給される。  The sample supplied to the first supply channel 4 1 1 8 is in a state where the carrier is rotating, and the remaining sample that is filled and held in the quantification tank 4 1 1 4 by centrifugal force or the like is stored in excess. 4 1 1 7 a via the second surplus storage section 4 1 1 7 ac through the ad and to the first surplus storage section 4 1 1 7 aa through the connection path 4 1 1 7 ab Is done.
何れの定量槽 4 1 1 4にも検体が充填され更に、 定量供給流路 4 1 1 5にも検体が充填された状態で、 回転数を上げて反応領域 4 1 1 6 aに検体を供給する。  While any sample tank 4 1 1 4 is filled with the sample, and the sample supply channel 4 1 1 5 is also filled with the sample, the rotation speed is increased and the sample is supplied to the reaction region 4 1 1 6 a. To do.
反応領域 4 1 1 6 a内の試薬と、 検体が混ざるために、 第 4 0 A 図〜第 4 0 C図で示すような、 角加速度を交番的に増減させた回転 を行わせる。  In order to mix the reagent in the reaction region 4 1 1 6 a and the sample, rotation with the angular acceleration increased or decreased alternately as shown in FIGS. 40A to 40C is performed.
その際、 回転方向が第 4 2 A図で示すように反時計回りの場合、 余剰検体 4 a、 4 bは、 余剰収容部の左方向端部に集まり、 回転方向 を第 4 2 B図で示すように時計回りの場合、 余剰検体 4 a, 4 bは、 各余剰収容部の右方向の端部に集まる。  At that time, if the rotation direction is counterclockwise as shown in FIG. 4 2 A, the surplus specimens 4 a and 4 b gather at the left end of the surplus container, and the rotation direction is shown in FIG. 4 2 B. As shown, in the clockwise direction, the surplus specimens 4a and 4b gather at the right end of each surplus container.
この様に、 回転による遠心力が掛かる場合でも、 交番的に回転方 向が.変化し、 即ち加速度の方向が変化する場合でも、 剰余検体は剰 余検体収容部 4 1 1 7 aに保持され、 流路、 各槽の表面のぬれ性に よっては、 その他の部分から漏れ出し易い検体でも第 1供給用流路 4 1 1 8へ漏れ出すことが無く、 各試薬反応槽内の液体の独立性を 保ったまま、 安定した低回転撹拌が可能となる。  In this way, even when a centrifugal force due to rotation is applied, even if the direction of rotation changes alternately, that is, even if the direction of acceleration changes, the surplus sample is held in the surplus sample container 4 1 1 7 a. Depending on the wettability of the flow path and the surface of each tank, specimens that easily leak from other parts do not leak to the first supply flow path 4 1 1 8 and the liquid in each reagent reaction tank is independent. Stable low-speed agitation is possible while maintaining the properties.
. 次に本発明の実施例を含む担体全体の一例を示す。  Next, an example of the entire carrier including the embodiment of the present invention is shown.
第 4 3図は、 透明、 半透明のアクリル、 P E T、 P P、 ポリエス テル樹脂等で形成される円盤状の担体 4 1 0 0上に溝、 凹部を形成 して流路、 貯留部、 余剰収容部など各構成部を形成したものである 4 1 0 1は、 血液貯留部であり、 人体等から採取した血液をピぺ ッ ト、 その他の保持具によつて保持した血液を供給する部分である 血液貯留部 4 1 0 1 は、 第 4 3図で示すように貯留槽側面に鋭角 を設けないような構成とし、 血液の残留を低減する形状を有してい る。 Fig. 43 shows a disk-shaped carrier 4100 formed of transparent, translucent acrylic, PET, PP, polyester resin, etc., forming grooves and recesses on the channel, reservoir, and excess storage Each component such as a part is formed Reference numeral 4 1 0 1 is a blood reservoir, which is a part for supplying blood collected by a pipet or other holders from blood collected from a human body or the like. 4 As shown in Fig. 3, the side of the storage tank is not provided with an acute angle, and has a shape that reduces residual blood.
4 1 0 2は、 希釈液貯留部であり、 密封された希釈液入りバウチ を破壊する等して外部に漏れだした希釈液を貯留する部分である。 血液貯留部 4 1 0 1 は、 上面が開放されており、 隣接する希釈液 貯留部 4 1 0 2は、 バウチに収容されて予め配置されている状態で 、 希釈液貯留部 4 1 0 2の上部には、 蓋部が配置されている。  Reference numeral 4 1 0 2 denotes a diluent storage part that stores the diluent leaked to the outside by, for example, destroying the sealed diluent-containing bouch. The blood reservoir 4 10 1 has an open upper surface, and the adjacent diluent reservoir 4 1 0 2 is stored in the bouch and arranged in advance. At the top is a lid.
使用する際、 血液貯留部 4 1 0 1 に血液をピペッ トなどで供給し 、 又は、 体液を癌浸させた多孔質材を揷入し、 蓋部を摺動させるこ とで、 血液貯留部 4 1 0 1 の上面を蓋部で覆い、 且つ蓋部の摺動に 起因して希釈貯留部 4 1 0 2内部のバウチを移動させ、 破壊させて 、 希釈液を希釈液貯留部 4 1 0 2から外部へ供給可能とする構成が 好ましく、 例えば、 特願 2 0 0 5— 1 6 8 8 8 5号の構成が好適に 用いられる。 図番は付していないが、 血液貯留部 4 1 0 1 と希釈液 貯留部 4 1 0 2の両側面に設けられている溝は、 蓋部を固定的に摺 動可能とする為のガイ ド溝として使用され得る。  When used, blood is supplied to the blood reservoir 4 10 1 by a pipette or the like, or a porous material in which body fluid is immersed in cancer is inserted, and the lid is slid to slide the blood reservoir Cover the upper surface of 4 1 0 1 with a lid, and move the inside of the dilution reservoir 4 10 0 2 due to the sliding of the lid, destroy it, and dilute the diluent 4 1 0 A configuration that enables supply from 2 to the outside is preferable. For example, the configuration of Japanese Patent Application No. 2 0 0 5-1 6 8 8 8 5 is preferably used. Although not shown in the figure, the grooves provided on both sides of the blood reservoir 4 1 0 1 and the diluent reservoir 4 1 0 2 are guides that allow the lid to slide slidably. It can be used as a groove.
4 1 0 3は、 血液分配部であり、 2つの血球分離部方向へ、 血液 を供給する血液定量供給流路を具えている。  Reference numeral 4 1 0 3 denotes a blood distribution unit, which includes a blood quantitative supply channel for supplying blood toward the two blood cell separation units.
. 4 1 0 4は、 余剰血液貯留部であり、 血液が第 1血球分離部 4 1 0 6 と第 2血球分離部 4 1 0 7 とを充填した後、 溢れ出た血液を貯 留するための部分である。  4 1 0 4 is a surplus blood reservoir for storing the blood that has overflowed after the blood has filled the first blood cell separator 4 1 0 6 and the second blood cell separator 4 1 0 7. It is a part of.
4 1 0 5は、 余剰部用流路であり、 第 1血球分離部 4 1 0 6 と第 2血球分離部 4 1 0 7 とに血液が充填された後、 溢れ出た血液を余 剰血液貯留部 4 1 0 4へ流すための流路である。 -4 1 0 5 is a flow channel for the surplus part, and after the first blood cell separation unit 4 10 6 and the second blood cell separation unit 4 1 0 7 are filled with blood, the excess blood is removed. This is a flow path for flowing into the excess blood reservoir 4 10 4. -
4 1 0 6は、 第 1血球分離部であり、 また、 4 1 0 7は、 第 2血 球分離部である。 それぞれの空間の容積が、 必要とする液量を示す ように形成されている。 4 10 06 is a first blood cell separation unit, and 4 10 07 is a second blood cell separation unit. The volume of each space is formed to indicate the required amount of liquid.
4 1 0 8は第 1血球収容部であり、 比較的細い流路を介して第 2 血球分離部 4 1 0 7 と接続し、 また、 4 1 0 9は第 2血球収容部で あり、 比較的細い流路を介して第 1血球分離部 4 1 0 6 と接続する 。 この様な比較的細い流路による結合は、 担体の低回転時、 回転方 向が交番した場合等、 遠心力が弱まった際、 血球が逆流することを 阻止する。  4 1 0 8 is the first blood cell storage unit, which is connected to the second blood cell separation unit 4 1 0 7 via a relatively narrow channel, and 4 1 0 9 is the second blood cell storage unit, It connects with the 1st blood cell separation part 4106 through a thin channel. Such a connection by a relatively narrow channel prevents the blood cells from flowing backward when the centrifugal force weakens, such as when the carrier rotates at a low speed or when the direction of rotation is alternated.
4 1 1 1は、 中心方向に屈曲部を有する第 1流路であり、 第 2血 球分離部 4 1 0 7 と混合部 4 1 1 2 を接続する。  4 1 1 1 is a first flow path having a bent portion in the center direction, and connects the second blood cell separation portion 4 1 0 7 and the mixing portion 4 1 1 2.
4 1 1 3は、 中心方向に屈曲部を有する第 2流路であり、 第 1血 球分離部 4 1 0 6 と調整槽 4 1 1 0 とを接続する為のものである。  4 1 1 3 is a second flow path having a bent portion in the center direction, and is for connecting the first blood cell separating portion 4 10 6 and the adjustment tank 4 1 1 0.
4 1 1 4は、 定量槽のそれぞれ一つを示し、 第 3 8 A図〜第 3 8 C図と同様の構成であって、 第 1供給用流路 4 1 1 8の外周部に等 間隔又は不等間隔で配列され、 その容積が @的の液量を示している  4 1 1 4 shows one each of the quantification tanks, and has the same configuration as in FIGS. 3 8 A to 38 C, and is equidistant from the outer periphery of the first supply channel 4 1 1 8 Or they are arranged at unequal intervals, and their volumes indicate the target liquid volume
4 1 1 5は、 定量供給流路であり、 第 3 8 A図〜第 3 8 C図と同 様の構成であって 、 円周方向に延びており 、 定量槽 4 1 1 4と試薬 反応槽 4 1 1 6 とを接続するためのものである 4 1 1 5 is a quantitative supply channel, which has the same configuration as that shown in FIGS. 38A to 38C and extends in the circumferential direction. For connecting tank 4 1 1 6
4 1 1 6は、 試薬反応槽であり、 第 3 8 A図〜第 3 8 C図と同様 の構成であって、 担体の略接線方向に形成され、 第 3 8 B図等で示 すように内部に試薬を配置してある。 尚、 B式薬の種類によつて、 発 色反応に酸素を必要とする場合、 試薬反応槽 4 1 1 6には 、 第 3 8 4 1 1 6 is a reagent reaction tank, which has the same configuration as that shown in FIGS. 38A to 38C, and is formed in a substantially tangential direction of the carrier, as shown in FIG. 38 and the like. The reagent is arranged inside. If oxygen is required for the color reaction, depending on the type of B-type drug, the reagent reaction tank 4 1 1 6 has the third 3 8
B図で示すような空気溜が設けられる場合もある。 An air reservoir as shown in Fig. B may be provided.
4 1 1 7 a〜 4 1 1 7 dは、 それぞれ同一形状、 大きさを有する余 剰希釈混合液収容部であり、 第 4 1図で示すように同心円状の第 1 余剰収容部及び第 2余剰収容部を連結部で連結して構成されている 4 1 1 7 a to 4 1 1 7 d are redundant shapes having the same shape and size. As shown in Fig. 41, it is a superdiluted liquid mixture storage part, and is constructed by connecting concentric first surplus storage part and second surplus storage part at the connecting part.
4 1 1 8は、 第 1供給用流路であり、 同心円状に形成され、 外周 方向に定量槽 4 1 1 4を具えた試薬反応槽 4 1 1 6が複数個配置さ れている。 Reference numeral 4 1 1 8 denotes a first supply channel, which is concentrically formed, and a plurality of reagent reaction tanks 4 1 1 6 having a quantitative tank 4 1 1 4 are arranged in the outer circumferential direction.
4 1 1 9、 4 1 2 1及び 4 1 2 7は、 脱気口であり、 流路内の液 体の移動を妨げる混合部、 緩衝部内の空気を外部へ放出するための 開口部分である。  4 1 1 9, 4 1 2 1 and 4 1 2 7 are deaeration ports, a mixing part that prevents liquid movement in the flow path, and an opening part for releasing the air in the buffer part to the outside .
4 1 2 0は、 第 3流路であり、 中' L、方向に屈曲部をもち、 調整槽 4 1 1 0 と第 1供給用流路 4 1 1 8 を接続するためのものである。  4 1 2 0 is a third flow path, which has a bent portion in the middle “L” direction, and is used to connect the adjustment tank 4 1 1 0 and the first supply flow path 4 1 1 8.
4 1 2 2は、 第 4流路であり、 中心方向に屈曲部をもち混合部 4 1 1 2 と第 2供給用流路 4 1 3 0 を接続するためのものである。  4 1 2 2 is a fourth flow path for connecting the mixing section 4 1 1 2 and the second supply flow path 4 1 3 0 with a bent portion in the center direction.
4 1 2 3は、 第 5流路であり、 希釈液貯留部 4 1 0 2 と希釈液定 量部 4 1 2 4を接続するための直線上の流路である。  Reference numeral 4 1 2 3 denotes a fifth flow path, which is a straight flow path for connecting the diluent storage section 4 10 0 2 and the diluent measurement section 4 1 2 4.
4 1 2 4は、 希釈液定量部であり、 中心方向に第 6流路 4 1 2 5 の一端が接続し、 第 6流路 4 1 2 5の他端は、 余剰希釈液収容部 4 1 2 6が接続する。 '  4 1 2 4 is a diluent quantification unit, one end of the sixth channel 4 1 2 5 is connected in the center direction, and the other end of the sixth channel 4 1 2 5 is the surplus dilution solution storage unit 4 1 2 6 connects. '
4 1 2 6は、 余剰希釈液収容部であり、 希釈液定量部 4 1 2 4で 溢れた希釈液を収容する部分である。  4 1 2 6 is a surplus dilution liquid storage part, and a part for storing the dilution liquid overflowing in the dilution liquid determination part 4 1 2 4.
4 1 2 8は、 予備槽であり、 遠心力を与えることにより予備槽 4 1 2 8に残留した液面の同心円性を利用して、 希釈液定量部 4 1 2 4で定量した液体の定量精度を高めるためのものであって、 希釈液 定量部 4 1 2 4に対して外周方向に接続している。  4 1 2 8 is a preparatory tank, which uses the concentricity of the liquid surface remaining in the preparatory tank 4 1 2 8 by applying centrifugal force, and quantifies the liquid quantified by the dilution liquid quantification unit 4 1 2 4 This is to improve the accuracy and is connected to the diluent quantification unit 4 1 2 4 in the outer circumferential direction.
4 1 2 9は、 第 7流路であり、 直径方向と平行に延び、 途中 2つ の屈曲部を経て混合部 4 1 1 2に接続している。  4 1 2 9 is a seventh flow path that extends parallel to the diameter direction and is connected to the mixing portion 4 1 1 2 through two bent portions.
4 1 3 1, 4 1 3 1 ' は、 チヤッキング用孔であり、 読み取り装 置と接続するための部分である。 4 1 3 1 and 4 1 3 1 'are chucking holes, It is a part for connecting with the device.
第 44図は、 読み取り装置の一例を示している。  FIG. 44 shows an example of a reading device.
4 1 3 2は、 装置下部であり、 中央に担体 4 1 0 0を収容する凹 部が形成され、 中央には、 担体 4 1 0 0の 2つのチヤッキング用孔 4 1 3 1, 4 1 3 1 , に挿入固定するための突起 4 1 3 5, 4 1 3 5 を有する回転体 4 1 34が設け れている。 回転体 4 1 3 4は 、 図示されていないが、 ステッピングモー夕、 変速ギヤ等と接続さ れている。  4 1 3 2 is a lower part of the apparatus, and a recess for accommodating the carrier 4 1 0 0 0 is formed in the center. In the center, the two chucking holes 4 1 3 1 and 4 1 3 Rotating body 4 1 34 having projections 4 1 3 5 and 4 1 3 5 for insertion and fixing to 1 and 2 is provided. Although not shown, the rotating body 4 1 3 4 is connected to a stepping motor, a transmission gear or the like.
4 1 3 3は装置上部であり、 装置下部 4 1 3 2と、 一辺を回動可 能な状態で接続している。  4 1 3 3 is the upper part of the device and is connected to the lower part of the device 4 1 3 2 so that one side can rotate.
4 1 3 6 a〜4 1 3 6 cは、 原色光源であり、 レーザ光、 L E D、 赤外光源等で形成され、 また、 4 1 3 7 a〜4 1 3 7 cは、 受光素子 であり、 前記光源と対向する部位にそれぞれ配置されている。  4 1 3 6 a to 4 1 3 6 c are primary color light sources, which are formed by laser light, LED, infrared light source, etc., and 4 1 3 7 a to 4 1 3 7 c are light receiving elements. , And are respectively disposed at portions facing the light source.
次に、 第 4 3図及び第 44図で示す実施例の担体に血液と希釈液 を供給展開した際の動作説明をする。  Next, the operation when blood and diluent are supplied and developed on the carrier of the embodiment shown in FIGS. 43 and 44 will be described.
静止した担体 4 1 0 0の血液貯留部 4 1 0 1に血液を供給すると 共に希釈液貯留部 4 1 0 2内へ希釈液を展開.する。  When blood is supplied to the blood reservoir 4 10 1 of the stationary carrier 4 1 0 0, the diluent is developed into the diluent reservoir 4 1 0 2.
この時、 担体 4 1 0 0のチヤッキング用孔 4 1 3 1, 4 1 3 1, を第 44図の回転体 4 1 34の突起 4 1 3 5 , 4 1 3 5 ' に揷入さ せて装置下部 4 1 3 2にセッ トする。  At this time, the chucking holes 4 1 3 1 and 4 1 3 1 of the carrier 4 1 0 0 are inserted into the protrusions 4 1 3 5 and 4 1 3 5 ′ of the rotating body 4 1 34 shown in FIG. Lower unit 4 1 3 2 Set.
装置上部 4 1 3 3を蔵置下部 4 1 3 2に重ねるようにして閉める ことで担体 4 1 0 0上の各試薬反応槽を回転させながら計測する。 装置内に収容された担体 4 1 0 0を回転数 5 0 0 0 jpm程度で回 転させる。  Measure by rotating each reagent reaction tank on the carrier 4 1 0 0 by closing the upper 4 1 3 3 on the storage 4 1 3 2 and closing it. The carrier 4 1 0 0 accommodated in the apparatus is rotated at a rotational speed of about 5 0 0 0 jpm.
血液貯留部 4 1 0 1内の血液は、 血液分配部 4 1 0 3の 2つの流 路を介して第 1血球分離部 4 1 0 6と第 2血球分離部 4 1 0 7とに 供給され、 希釈液貯留部 4 1 0 2内の希釈液は、 第 5流路 4 1 2 3 を介して希釈液貯留部 4 1 2 4に供給される。 The blood in the blood reservoir 4 10 1 is supplied to the first blood cell separator 4 10 6 and the second blood cell separator 4 1 0 7 via the two channels of the blood distributor 4 1 0 3. The dilution liquid in the dilution liquid storage 4 1 0 2 is the fifth flow path 4 1 2 3 Is supplied to the diluent storage unit 4 1 2 4.
第 1血球分離部 4 1 0 6 と第 2血球分離部 4 1 0 7 とへ供給され た血液は、 遠心力により第 1血球収容部 4 1 0 8 と第 2血球収容部 4 1 0 9 を充填しながら、 第 1血球分離部 4 1 0 6及び第 2血球分 離部 4 1 0 7 を充填し、 余剰分は、 余剰部用流路 4 1 0 5を介して 余剰血液貯留部 4 1 0 4に収容される。 当該構成は、 2つ以上の定 量部を有しながら少ない余剰血液貯留部で足り、 簡素化された構成 を提案する。  The blood supplied to the first blood cell separation unit 4 10 6 and the second blood cell separation unit 4 1 0 7 passes through the first blood cell storage unit 4 1 0 8 and the second blood cell storage unit 4 1 0 9 by centrifugal force. While filling, the first blood cell separation unit 4 10 6 and the second blood cell separation unit 4 1 0 7 are filled, and the surplus is stored in the surplus blood storage unit 4 1 via the surplus portion channel 4 1 0 5. Housed in 0-4. This configuration requires a small excess blood reservoir while having two or more quantifiers, and proposes a simplified configuration.
希釈液定量部 4 1 2 4に供給された希釈液は、 予備槽 4 1 2 8 を 充填しながら次第に希釈液定量部を充填し、 余剰分は、 第 6流路 4 1 2 5を介して余剰希釈液収容部 4 1 2 6に収容される。  The diluent supplied to the diluent quantification unit 4 1 2 4 gradually fills the diluent quantification unit while filling the spare tank 4 1 2 8, and the surplus is passed through the sixth channel 4 1 2 5. It is stored in the surplus dilution liquid storage section 4 1 2 6.
血球分離部に供給された血液は、 第 1流路 4 1 1 1及び第 2流路 4 1 1 3に対して毛管力によって充填されるべく移動しょうとするが 、 遠心力によって移動が妨げられている状態となっている。  The blood supplied to the blood cell separation unit tries to move to fill the first channel 4 1 1 1 and the second channel 4 1 1 3 by capillary force, but the movement is hindered by centrifugal force. It is in the state.
希釈液も第 7流路 4 1 2 9の毛管力により移動しょうとするが、 遠心力により移動が妨げられている状態となっている。  The diluent also tries to move due to the capillary force of the seventh flow path 4 1 2 9, but the movement is blocked by the centrifugal force.
回転を継続することにより、 第 1血球分離部 4 1 0 6, 第 2血球 分離部 4 1 0 7内の血球を第 1血球収容部 4 1 0 8, 4 1 0 9へ移 動させて、 血球分離を行う。 血球分離部と血球収容部は、 細い流路 で接続されているため、 一度血球収容部に入った血球は、 保持され 、 低速回転によっても、 逆流することがない。  By continuing the rotation, the blood cells in the first blood cell separation unit 4 1 0 6 and the second blood cell separation unit 4 1 0 7 are moved to the first blood cell storage unit 4 1 0 8 and 4 1 0 9, Perform blood cell separation. Since the blood cell separation part and the blood cell storage part are connected by a thin flow path, the blood cells that have once entered the blood cell storage part are held and do not flow backward even by low-speed rotation.
分離が十分に行われ、 血球分離部 4 1 0 6及び 4 1 0 7が血漿成 分のみで充填された後、 担体 4 1 0 0の回転を下げる。 遠心力が弱 まり、 第 1流路 4 1 1 1, 第 2流路 4 1 1 3内の血液は、 流路内に充 填されるように移動し、 第 7流路 4 1 2 9内の希釈液も同様に混合 部 4 1 1 2方向へ移動する。  After the separation is sufficiently performed and the blood cell separators 4 1 0 6 and 4 1 0 7 are filled with only the plasma components, the rotation of the carrier 4 1 0 0 is lowered. The centrifugal force is weakened, and the blood in the first flow path 4 1 1 1 and the second flow path 4 1 1 3 moves to fill the flow path, and in the seventh flow path 4 1 2 9 The dilute solution in the same way also moves in the mixing section 4 1 1 2 direction.
再び回転数を上げると、 第 1流路 4 1 1 1 , 第 2流路 4 1 1 3内の 血漿は、 混合部 4 1 1 2及び調整槽 4 1 1 0へ、 移動し、 希釈液も 、 混合部 4 1 1 2へ移動する。 When the rotation speed is increased again, the first flow path 4 1 1 1 and the second flow path 4 1 1 3 The plasma moves to the mixing unit 4 1 1 2 and the adjustment tank 4 1 1 10, and the diluted solution also moves to the mixing unit 4 1 1 2.
この時、 第 1流路 4 1 1 1、 第 2流路 4 1 1 3、 第 7流路 4 1 2 9それぞれの入力口よりも出力口の方が回転中心から遠くに位置し ているため、 血球分離部 1 0 6、 1 0 7及び希釈液定量部 4 1 2 4 で定量された血漿及び希釈液が、 混合部 4 1 1 2と調節槽 4 1 1 0 へ移動する。  At this time, the output port is located farther from the center of rotation than the input ports of the first channel 4 1 1 1, second channel 4 1 1 3, and seventh channel 4 1 2 9 The plasma and the diluted solution quantified by the blood cell separation units 10 6 and 10 7 and the diluted solution quantification unit 4 1 2 4 move to the mixing unit 4 1 1 2 and the control tank 4 1 1 0.
移動が完了した後、 回転方向を経時的に変化させて混合させる。 この場合は、 容積が大きい混合槽のため、 速度を経時的に変化させ たり、 回転方向を変えたりするだけで混合は可能である。  After the movement is completed, change the direction of rotation over time and mix. In this case, because the mixing tank has a large volume, mixing is possible by simply changing the speed over time or changing the direction of rotation.
混合後、 回転数を下げることで、 混合部 4 1 1 2に接続した第 4 流路 4 1 2 2内を混合液が充填し、 血漿が、 第 3流路 4 1 2 0を充 填する。  After mixing, by reducing the rotation speed, the mixed solution fills the fourth flow path 4 1 2 2 connected to the mixing section 4 1 1 2, and the plasma fills the third flow path 4 1 2 0. .
再び回転数を 5 0 0 ΓΡΠ!〜 1 0 0 0 rpm程度まで上げると、 混合液 は第 2供給用流路 4 1 3 0に、 血漿は第 1供給用流路 4 1 1 8に供 給され、 .それぞれの溶液は、 遠心力により各定量槽 4 1 1 4内に充 填される。 定量供給流路 4 1 1 5にも充填されるが、 試薬反応槽 4 1 1 6との接続面で留まった状態となる。  Again set the rotation speed to 5 0 0 ΓΡΠ! When the pressure is increased to about 100 rpm, the mixed solution is supplied to the second supply channel 4 1 30 and the plasma is supplied to the first supply channel 4 1 1 8. Each metering tank 4 1 1 4 is filled by force. The fixed-quantity supply channel 4 1 1 5 is also filled, but stays on the connection surface with the reagent reaction tank 4 1 1 6.
各定量槽 4 1 1 4、 4 1 1 4 ' に混合液及び血漿が充填された後 、 余剰分が、 余剰希釈混合液収容部 4 1 1 7 a〜 4 1 1 7 dに収容さ れるために回転数を 2 5 0 0 rpm程度まで上昇させる。  After each of the quantification tanks 4 1 1 4 and 4 1 1 4 ′ is filled with the mixed solution and the plasma, the surplus portion is stored in the excess diluted mixed solution storage portions 4 1 1 7 a to 4 1 1 7 d. Increase the rotation speed to about 2500 rpm.
更に各定量槽 4 1 1 4, 4 1 1 4 ' の各液を試薬反応槽 4 1 1 6 、. 4 1 1 6 ' に供給するため、 担体の回転数を、 さらに大きく ( 5 0 0 0 r pm〜 6 0 0 0 r pm) する。  Furthermore, since each solution in each quantification tank 4 1 1 4 and 4 1 1 4 ′ is supplied to the reagent reaction tank 4 1 1 6, 4 1 1 6 ′, the number of rotations of the carrier is further increased (5 0 0 0 r pm to 6 0 0 0 r pm).
供給が完了した後、 第 40 A図〜第 4 0 C図で示すように所定の 回転数まで、 経時的に交番的に変化させた回転を担体に行わせる。  After the supply is completed, as shown in FIGS. 40A to 40C, the carrier is caused to rotate alternately up to a predetermined number of rotations over time.
この、 与えられる加速度の交番的変化により、 試薬反応槽内の液 体と試薬は混合され、 均一な発色反応が行われる。 This alternating change in acceleration gives the liquid in the reagent reaction tank The body and the reagent are mixed to produce a uniform color reaction.
次に原色光源 4 1 3 6 a〜 4 1 3 6 cがレーザ光を各試薬反応槽に 照射し、 受光素子 4 1 3 7 a〜 4 1 3 7 cで透過光を受光して、 吸光 度を電子的に求め、 血液の成分濃度を測定する。  Next, the primary color light sources 4 1 3 6 a to 4 1 3 6 c irradiate each reagent reaction tank with laser light, and the light receiving elements 4 1 3 7 a to 4 1 3 7 c receive the transmitted light and absorb the absorbance. Is measured electronically and the concentration of blood components is measured.
以上の説明によれば、 血液を中心部の血液貯留部 4 1 0 1へ供給 するだけで、 容易に血液成分を計測可能とする。 産業上の利用可能性  According to the above description, it is possible to easily measure blood components simply by supplying blood to the central blood reservoir 4 10 1. Industrial applicability
第 1の発明は、 より簡易で、 迅速な信号処理を施すことができる 装置を可能とするため、 生活習慣病等、 より生活に身近なところで 、 患者或いは健常者が、 容易に自らの診断ができる装置を実現し、 現代社会で問題になっている生活習慣病の診断の普及を可能とする 又、 第 1の発明は、 例えば体液の多項目にわたる成分を自動的に 計測する際、 基準となる部位を正確に認識できる構成を提案できる ことから、 様々な複数成分を計測する場合であっても、 電気的処理 が正確にでき、 小型で簡易で在宅用可能な体液成分の自動計測用の 装置の実現化に大きく貢献する。 ,  The first invention enables a simpler and quicker apparatus that can perform signal processing, so that a patient or a healthy person can easily diagnose himself / herself in a place close to his / her life such as a lifestyle-related disease. The first invention makes it possible to spread the diagnosis of lifestyle-related diseases that are a problem in modern society. Therefore, even when measuring various multiple components, electrical processing can be performed accurately, and it can be used for automatic measurement of body fluid components that are small and easy to use at home. Contributes greatly to the realization of equipment. ,
又、 第 1の発明は、 複数の生体成分を一枚の担体上で測定する場 合、 光学測定を簡易に安定的に行えることから、 自動化した体液成 分測定装置を小型簡素化可能であり、 より身近なところで、 生活習 慣病等の各種疾病の傾向を測定できる装置を可能とする。  In the first invention, when a plurality of biological components are measured on a single carrier, optical measurement can be performed easily and stably, so that an automated body fluid component measuring device can be reduced in size and simplified. A device that can measure the tendency of various diseases such as lifestyle-related diseases at a more familiar place.
又、 第 1 の発明は、 血液検査、 感染検査等の生化学分析装置にお いて、 信号のドリフ ト、 その他の誤差を解消しより正確な生化学情 報を迅速に得ることができることから、 よりスピーディな生化学分 析装置が構成できる。  In the first invention, since biochemical analyzers such as blood tests and infection tests can eliminate signal drift and other errors, more accurate biochemical information can be obtained quickly. A faster biochemical analyzer can be constructed.
また、 第 2の発明は、 より小型で、 簡易でありながら、 多項目に 渡る体内成分の情報を測定することができ、 より身近な体内情報の 検出装置の提案を行う ことができる。 In addition, the second invention is smaller and simpler, but has many items. It is possible to measure information on the components in the body that cross, and to propose a detection device for more familiar in-vivo information.
さらに、 第 3及び第 4の発明は、 血液検査、 感染検査等の生化学 分析装置において、 より正確な生化学情報を迅速に得ることができ ることから、 よりスピーディな生化学分析装置が構成できる。  Furthermore, in the third and fourth inventions, biochemical analyzers such as blood tests and infection tests can quickly obtain more accurate biochemical information. it can.

Claims

請 求 の 範 囲 The scope of the claims
1 . 生化学的反応を示す反応部位を複数有する担体、 前記生化学 的反応を読み取る為の複数の読み取り部、 及び前記担体と前記読み 取り部とは互いに可動状態を有し、 前記担体上の反応部位間の間隔 と前記複数の読み敢り部間の間隔が異なるように配置されたことを 特徴とする生化学分析装置。 1. a carrier having a plurality of reaction sites showing a biochemical reaction, a plurality of reading units for reading the biochemical reaction, and the carrier and the reading unit are movable with respect to each other, and on the carrier A biochemical analyzer characterized in that the interval between reaction sites and the interval between the plurality of reading parts are arranged differently.
2 . 前記読み取り部間の間隔は、 前記担体上の反応部位間の間隔 の整数倍した間隔と異なることを特徴とする請求項 1 に記載の生化 学分析装置。  2. The biochemical analyzer according to claim 1, wherein an interval between the reading units is different from an interval that is an integral multiple of an interval between reaction sites on the carrier.
3 . 前記反応部位が、 血液、 尿等の体液を成分に応じて発色反応 させる部位であることを特徴とする請求項 1 に記載の生化学分析装 置。  3. The biochemical analyzer according to claim 1, wherein the reaction site is a site that causes a color reaction of a body fluid such as blood or urine according to a component.
4 . 前記担体は、 円盤状であって、 前記反応部位が外周に等間隔 に配置されていることを特徴とする請求項 1 に記載の生化学分析装 置。  4. The biochemical analysis apparatus according to claim 1, wherein the carrier has a disc shape, and the reaction sites are arranged on the outer periphery at equal intervals.
5 . 生化学的反応を示す反応部位を複数有する担体、 前記担体の 複数の反応部位から生化学的反応情報を得る為の生化学反応情報取 得手段、 所定の時間において前記生化学反応情報取得手段から得ら れた生化学反応情報を検出する検出手段、 前記検出手段で得られた 情報を所定時間、 所定数だけ演算する演算手段、 及び前記演算手段 から出力された信号から基準となる部位を判定する判定手段よりな ることを特徴とする生化学分析装置。  5. A carrier having a plurality of reaction sites showing a biochemical reaction, biochemical reaction information acquisition means for obtaining biochemical reaction information from a plurality of reaction sites of the carrier, and acquiring the biochemical reaction information at a predetermined time Detecting means for detecting biochemical reaction information obtained from the means, calculating means for calculating a predetermined number of information obtained by the detecting means for a predetermined time, and a part serving as a reference from the signal output from the calculating means A biochemical analyzer characterized by comprising determination means for determining whether or not.
6 . 前記生化学反応情報取得手段で得られた情報を一時的に記憶 する記憶部を具え、 基準となる部位を判定する際、 前記記憶部から 、 データを読み取り判定することを特徴とする請求項 5に記載の生 化学分析装置。 6. A storage unit that temporarily stores information obtained by the biochemical reaction information acquisition unit is provided, and when determining a reference site, data is read from the storage unit for determination. Item 6. The biochemical analyzer according to Item 5.
7 . 前記反応部位は、 軌道を有した状態で配列され、 その一部に スリ ッ トを含む、 非吸光性領域を基準領域とすることを特徴とする 請求項 5に記載の生化学分析装置。 7. The biochemical analyzer according to claim 5, wherein the reaction site is arranged in a state having an orbit, and a non-light-absorbing region including a slit in a part thereof is used as a reference region. .
8 . 前記所定の時間が、 中心時間に対し、 先後所定の時間である ことを特徴とする請求項 5に記載の生化学分析装置。  8. The biochemical analyzer according to claim 5, wherein the predetermined time is a predetermined time earlier than a central time.
9 . 前記読み取られた情報が、 試薬と体液の発色反応に係る電気 信号であることを特徴とする請求項 5に記載の生化学分析装置。  9. The biochemical analyzer according to claim 5, wherein the read information is an electrical signal related to a color reaction between a reagent and a body fluid.
1 0 . 生化学的信号を変化量を示す信号に変換する変化量変換手 段、 前記変化量変換手段で得られた信号から測定範囲を決定する測 定範囲決定手段を有することを特徴とする生化学分析装置。  10. A change amount conversion means for converting a biochemical signal into a signal indicating a change amount, and a measurement range determination means for determining a measurement range from the signal obtained by the change amount conversion means. Biochemical analyzer.
1 1 . 前記変化量を示す信号が微分信号であることを特徴とする 請求項 1 0 に記載の生化学分析装置。  11. The biochemical analyzer according to claim 10, wherein the signal indicating the amount of change is a differential signal.
1 2 . 前記測定範囲が、 前記変化量を示す信号のピーク間である ことを特徴とする請求項 1 0に記載の生化学分析装置。  The biochemical analyzer according to claim 10, wherein the measurement range is between peaks of the signal indicating the amount of change.
1 3 . 前記生化学的信号が、 試薬と検体の発色反応を行う試薬反 応槽を等間隔で、 複数配列した担体であって、 試薬反応槽に、 外部 から測定光を照射し、 反射乃至透過した光を計測して生化学成分を 計測することを特徴とする請求項 1 0に記載の生化学分析装置。  1 3. The biochemical signal is a carrier in which a plurality of reagent reaction tanks that perform a color reaction between a reagent and a specimen are arranged at equal intervals, and the reagent reaction tank is irradiated with measurement light from the outside to be reflected or reflected. The biochemical analyzer according to claim 10, wherein the biochemical component is measured by measuring transmitted light.
1 4 . 複数の試薬反応槽が同一軌道上に配列された担体、 前記試 薬反応槽に対し光学的に成分計測する計測ユニッ トを具え、 前記計 測ュニッ トと担体が相対的に移動することで、 個々の前記試薬反応 槽内の成分を計測する生化学分析装置であることを特徴とする請求 項 1 0に記載の生化学分析装置。  1 4. A carrier in which a plurality of reagent reaction tanks are arranged on the same orbit, and a measurement unit for optically measuring the components in the reagent reaction tank, and the measurement unit and the carrier move relatively. The biochemical analyzer according to claim 10, wherein the biochemical analyzer is a biochemical analyzer that measures the components in each of the reagent reaction vessels.
1 5 . 試薬反応槽の部位を検出する試薬反応槽検出手段、 前記試 薬反応槽検出手段で検出された部位の間隔が、 所定以上の間隔であ る場合、 前記間隔を予測間隔で除した値一 1力 以上であるときに 1 5. Reagent reaction tank detection means for detecting a part of the reagent reaction tank, and when the interval of the parts detected by the reagent reaction tank detection means is equal to or larger than a predetermined interval, the interval is divided by the predicted interval. When the value is 1 force or more
、 所定間隔を試薬反応槽の部位と決定する試薬反応槽部位決定手段 を更に有することを特徴とする請求項 1 4に記載の生化学分析装置 Reagent reaction tank part determining means for determining a predetermined interval as a reagent reaction tank part The biochemical analyzer according to claim 14, further comprising:
1 6 . 試薬反応槽を具えた透光性部材からなる担体、 検体を供給 した前記試薬反応槽に対し外部から測定光を照射し、 試薬反応槽を 介して得られた光を受光して検体成分を測定する生化学分析装置に おいて、 前記試薬反応槽に対する測定光を照射する照射面方向に、 測定窓を設けた光を吸収する膜、 印刷面、 塗装面等の吸光部材を配 置し、 前記測定窓の面積が前記試薬反応槽の測定光照射面の面積よ り小さいことを特徴とする生化学分析装置。 ' 1 6. A carrier consisting of a translucent member provided with a reagent reaction tank, the reagent reaction tank supplied with the sample is irradiated with measurement light from the outside, and the light obtained through the reagent reaction tank is received to receive a sample. In a biochemical analyzer that measures components, a light absorbing member such as a film that absorbs light, a printed surface, or a painted surface is provided in the direction of the irradiation surface that irradiates measurement light to the reagent reaction tank. The biochemical analyzer is characterized in that the area of the measurement window is smaller than the area of the measurement light irradiation surface of the reagent reaction tank. '
1 7 . 前記測定窓の面積は、 試薬反応槽の照射面の面積より小さ く して上記反応層の中心部分のみを測定光が通過するようにしたこ とを特徴とする請求項 1 6に記載の生化学分析装置。  17. The area of the measurement window is smaller than the area of the irradiation surface of the reagent reaction tank so that the measurement light can pass only through the central portion of the reaction layer. The described biochemical analyzer.
1 8 . 前記測定窓が凹状に形成されていることを特徴とする請求 項 1 6 に記載の生化学分析装置。  18. The biochemical analyzer according to claim 16, wherein the measurement window is formed in a concave shape.
1 9 . 複数の試薬反^槽を具えた透光性部材からなる担体、 検体 を供給した前記試薬反応槽に対し外部から相対的移動によって測定 光を照射し、 測定光の軌道上に配列した試薬反応槽を介して得られ た光を受光して検体成分を測定する生化学分析装置において、 前記 担体に透過計測のための基準部位を設けることを特徴とする生化学 分析装置。  1 9. A carrier consisting of a translucent member having a plurality of reagent tanks, and the reagent reaction tank to which the sample is supplied is irradiated with measurement light from the outside by relative movement, and is arranged on the track of the measurement light. A biochemical analyzer that receives light obtained through a reagent reaction tank and measures a sample component, wherein the carrier is provided with a reference site for permeation measurement.
2 0 . 前記基準部位が、 黒色面、 貫通孔、 基準液体槽、 空の試薬 反応槽、 希釈液槽、 測定検体(血漿等)のみ、 封入された槽の何れか 1又は複数であることを特徴とする請求項 1 9 に記載の生化学分析 装置。  2 0. The reference part is one or more of a black surface, a through-hole, a reference liquid tank, an empty reagent reaction tank, a dilution liquid tank, a measurement sample (plasma, etc.) only, and a sealed tank. The biochemical analyzer according to claim 19, wherein the biochemical analyzer is characterized by the following.
2 1 . 前記基準部位が黒色であって、 前記黒色の際の受光信号に 基づいて、 オフセッ ト校正を行う校正手段を更に設けることを特徴 とする請求項 1 9 に記載の生化学分析装置。 21. The biochemical analyzer according to claim 19, further comprising a calibration means for performing offset calibration based on a light reception signal when the reference site is black.
2 2 . 担体の一部を加温する加温手段、 前記加温手段の部位と対 向する部位を測温する測温手段、 前記測温手段で測温した温度に基 づいて、 前記加温手段の加温量を調節制御する制御手段よりなるこ とを特徴とする生化学分析装置。 2 2. Heating means for heating a part of the carrier, temperature measuring means for measuring a part opposite to the part of the heating means, and based on the temperature measured by the temperature measuring means, the heating A biochemical analyzer characterized by comprising control means for adjusting and controlling the heating amount of the temperature means.
2 3 . 前記担体の他面に吸熱部材を配置してなることを特徴とす る請求項 2 2に記載の生化学分析装置。  23. The biochemical analyzer according to claim 22, wherein an endothermic member is disposed on the other surface of the carrier.
2 4 . 前記加温手段がハロゲンランプよりなることを特徴とする 請求項 2 2に記載の生化学分析装置。  24. The biochemical analyzer according to claim 25, wherein the heating means is a halogen lamp.
2 5 . 前記担体は、 規則性を有する運動を行う ことを特徴とする 請求項 2 2に記載の生化学分析装置。  25. The biochemical analyzer according to claim 22, wherein the carrier performs regular motion.
2 6 . 担体の一部を加温する加温手段、 前記担体の表面を測温す る測温手段、 前記測温手段で測温した温度に基づいて、 前記加温手 段の加温量を調節制御する制御手段よりなり前記加温手段による加 温と、 前記測温手段を異なるタイミングで行うことを特徴とする生 化学分析装置。  26. A heating means for heating a part of the carrier, a temperature measuring means for measuring the surface of the carrier, and a heating amount of the heating means based on the temperature measured by the temperature measuring means A biochemical analysis apparatus comprising a control means for adjusting and controlling the temperature, and performing the heating by the heating means and the temperature measuring means at different timings.
2 7 . 検体を供給した後、 加工操作して、 複数の検査を行うため の状態に配置する担体において、 前記検体を希釈する為の希釈部材 を担体内に上下可動に配置し、 前記希釈部材が下方向に移動したと き、 希釈部材の下方向に開口状態を形成するための開口部材を配置 してなることを特徴とする生化学分析装置用担体。  2 7. After supplying the specimen, in a carrier that is processed and arranged in a state for performing a plurality of examinations, a dilution member for diluting the specimen is arranged vertically movable in the carrier, and the dilution member A carrier for a biochemical analyzer, comprising: an opening member for forming an open state in the downward direction of the dilution member when the is moved downward.
2 8 . 前記希釈部材は、 蛇腹状等の押圧可能なシート部剤を介し て担体内に収容されていることを特徴とする請求項 2 7 に記載の生 化学分析装置用担体。  28. The biochemical analyzer carrier according to claim 27, wherein the diluting member is accommodated in the carrier via a pressable sheet member such as a bellows.
2 9 . 前記希釈部材は、 希釈液を収容したカップ部材の開口面を 薄膜シートで覆う構成を有し、 前記開口部材は、 前記薄膜シートを 穿刺可能な穿刺具で形成されることを特徴とする生化学分析装置用 担体。 29. The dilution member has a configuration in which an opening surface of a cup member containing a diluent is covered with a thin film sheet, and the opening member is formed of a puncture device that can puncture the thin film sheet. A carrier for biochemical analyzers.
3 0 . 検体を供給した後、 加工操作して、 複数の検査を行うため の状態に配置する担体の側面、 上面又は底面のうち、 いずれか一面 又は複数面に対しその一部、 又は全部が連続した凹凸を形成してな る環状凹凸部材、 前記環状凹凸部材に接触して、 前記担体の撹拌を 要する部位に振動を与える振動用部材ょりなることを特徴とする生 化学分析装置。 30. After supplying the specimen, a part of or all of the side surface, top surface, or bottom surface of the carrier to be processed and processed in a state for performing a plurality of examinations is provided. An annular concavo-convex member formed with continuous concavo-convex portions, and a biochemical analyzer characterized by comprising a vibrating member that comes into contact with the annular concavo-convex member and vibrates a portion requiring stirring of the carrier.
3 1 . 検体を供給した後、 加工操作して、 複数の検査を行うため の状態に配置する担体において、 前記担体内に収容された撹拌を要 する部位内に、 前記担体の回転によって内側方向へ変形する撹拌部 材よりなることを特徴とする生化学分析装置。 '  3 1. In a carrier placed in a state for performing a plurality of examinations after being supplied with a specimen, the carrier is placed in the inside of the carrier and needs to be stirred. A biochemical analyzer characterized by comprising a stirring member that deforms into '
3 2 . 検体を供給した後、 加工操作して、 複数の検査を行うため の状態に配置する担体、 前記担体を回転させるための回転体、 前記 担体の裏面の前記回転体と接触する部位に配置された金属部材、 前 記回転体と前記担体との接触面を形成する摩擦部材、 前記金属部材 に対し磁力的結合を非接触的に与える磁性部材を有することを特徴 とする生化学分析装置。  3 2. After supplying the specimen, a processing operation is performed to arrange the carrier in a state for performing a plurality of examinations, a rotating body for rotating the carrier, and a portion in contact with the rotating body on the back surface of the carrier. A biochemical analyzer comprising: a disposed metal member; a friction member that forms a contact surface between the rotating body and the carrier; and a magnetic member that provides magnetic coupling to the metal member in a non-contact manner. .
3 3 . 前記担体と、 前記回転体との水平接触面が前記回転体上に 設けられた摩擦部材と前記担体の底面であることを特徴とする請求 項 3 2に記載の生化学分析装置。  3. The biochemical analyzer according to claim 32, wherein a horizontal contact surface between the carrier and the rotating body is a friction member provided on the rotating body and a bottom surface of the carrier.
3 4 . 前記金属部材は、 前記担体の底面に埋め込まれていること を特徴とする請求項 3 2に記載の生化学分析装置。  34. The biochemical analyzer according to claim 32, wherein the metal member is embedded in a bottom surface of the carrier.
3 5 . 微小空間において、 異なる 2種以上の物質を混合する際、 比較的短時間では遠心分離が生じず、 かつ、 必要な加速度を所定時 間与えられるような回転数まで経時的に回転を増加 (正の加速度) または減少 (負の加速度) させるように角加速度を印加させること を特徴とする液体混合方法。  3 5. When mixing two or more different substances in a minute space, the centrifugal force does not occur in a relatively short time, and the rotation speed is increased over time so that the required acceleration can be given for a predetermined time. A liquid mixing method characterized by applying an angular acceleration to increase (positive acceleration) or decrease (negative acceleration).
3 6 . 微小空間において、 比重の異なる物質を混合する際、 比較 的短時間では遠心分離が生じず、 かつ、 物質に対し必要な加速度を 所定時間与えられるような回転数まで経時的に増加させた後、 反対 方向に比較的短時間では遠心分離が生じず、 かつ、 物質に対し必要 な加速度を所定時間与えられるような回転数まで経時的に増加させ3 6. When mixing substances with different specific gravity in a minute space, compare Centrifugation does not occur in a short period of time, and the necessary acceleration of the substance is increased over time to a speed that can be given for a predetermined time. In addition, the necessary acceleration for the substance is increased over time up to a rotational speed that can be given for a predetermined time.
、 これを繰り返すことを特徴とする請求項 3 5 に記載の液体混合方 法。 The liquid mixing method according to claim 35, wherein this is repeated.
3 7 . 相異なる 2種以上の物質を混合するための微小空間を具え た担体、 前記担体に対し、 比較的短時間では遠心分離が生じず、 か つ必要な加速度を所定時間与えられるような回転数まで経時的に回 転を増加または減少させるように前記担体に対し角加速度を印加さ せる駆動手段を具えたことを特徴とする液体混合装置。  3 7. A carrier having a micro space for mixing two or more different substances, such that centrifugation does not occur in a relatively short time and the necessary acceleration can be given for a predetermined time. A liquid mixing apparatus comprising drive means for applying angular acceleration to the carrier so as to increase or decrease the rotation over time up to the rotation speed.
3 8 . 比重の異なる物質を混合させる混合部を有する担体、 前記 担体を回転させ、 比較的短時間では遠心分離が生じず、 かつ、 物質 に対し必要な加速度を所定時間与えられるような回転数まで経時的 に増加させた後、 反対方向に比較的短時間では遠心分離が生じず、 かつ、 物質に対し必要な加速度を所定時間与えられるような回転数 まで経時的に増加させ、 これを繰り返す回転手段を有することを特 徴とする請求項 3 7 に記載の液体混合装置。  3 8. A carrier having a mixing part for mixing substances having different specific gravities, and a rotation speed at which the carrier is rotated so that centrifugation does not occur in a relatively short time and a necessary acceleration is given to the substance for a predetermined time. Is increased over time until the number of rotations is increased over time so that the required acceleration can be given to the substance for a predetermined time without centrifugal separation in the opposite direction for a relatively short time. The liquid mixing apparatus according to claim 37, further comprising a rotating means.
3 9 . 前記回転数が 2 0 0 0 r p m以下であることを特徴とする 請求項 3 5〜 3 8のいずれか 1項に記載の液体混合方法及び装置。  39. The liquid mixing method and apparatus according to any one of claims 35 to 38, wherein the number of rotations is 2 00 0 rpm or less.
4 0 . 前記一方向の最大回転数から、 反対方向の最大回転数まで の時間が、 0 . 5〜 2秒であることを特徴とする請求項 3 5〜 3 8 のいずれか 1項に記載の液体混合方法及び装置。  4. The time from the maximum rotational speed in one direction to the maximum rotational speed in the opposite direction is 0.5 to 2 seconds, 4. Liquid mixing method and apparatus.
4 1 . 担体中の微小空間の 2種以上の物質を混合する際、 比較的 短時間では遠心分離が生じず、 かつ、 物質に対し必要な加速度を所 定時間与える為に担体を駆動させる駆動手段を有することを特徴と する生化学分析装置。 4 1. When mixing two or more substances in a minute space in a carrier, the centrifugal separation does not occur in a relatively short time, and the carrier is driven to give the necessary acceleration to the substance for a predetermined time. A biochemical analyzer characterized by having means.
4 2 . 回転体上で、 外周縁部方向に配置した比重の異なる物質を 混合し、 吸光度等、 反応の状態や結果を測定する測定部、 前記測定 部に定量検体を供給するための定量部、 前記定量部に検体を供給す る流路であって円周方向に延びた定量供給流路、 同心円状にのびた 有限の第 1回収流路と他の回収流路を設け、 前記第 1 回収流路と、 前記他の回収流路を結ぶ連結流路によってなり前記定量供給流路と 接続し余剰検体を回収する回収部よりなることを特徴とする生化学 分析装置用担体。 4 2. A measuring unit that mixes substances with different specific gravity arranged in the direction of the outer peripheral edge on the rotating body, measures the reaction state and results such as absorbance, and a quantifying unit for supplying a quantitative sample to the measuring unit A flow path for supplying a sample to the quantification unit, a quantitative supply flow path extending in the circumferential direction, a finite first recovery flow path extending concentrically and another recovery flow path, and the first recovery flow path. A carrier for a biochemical analyzer, comprising a flow path and a connecting flow path connecting the other recovery flow paths and connected to the quantitative supply flow path to recover a surplus specimen.
4 3 . 前記連結流路の第 1回収流路と第 2回収流路の接続部が鋭 角状に形成されてなることを特徴とする請求項 4 2に記載の生化学 分析装置用担体。  43. The carrier for a biochemical analyzer according to claim 42, wherein a connecting portion between the first recovery channel and the second recovery channel of the connection channel is formed in an acute angle shape.
4 4 . 前記測定部と前記定量部は、 円周方向に延びた流路によつ て接続していることを特徴とする請求項 4 2に記載の生化学分析装 置用担体。  44. The carrier for a biochemical analysis device according to claim 42, wherein the measurement unit and the determination unit are connected by a flow path extending in a circumferential direction.
4 5 . 前記測定部において、 中心方向に空気貯留部が形成される ことを特徴とする請求項 4 2に記載の生化学分析装置用担体。  45. The carrier for a biochemical analyzer according to claim 42, wherein an air reservoir is formed in a central direction in the measurement unit.
4 6 . 前記担体に対し、 比較的短時間では遠心分離が生じず、 か つ、 必要な角加速度を所定時間与えられるような回転数まで経時的 に増加させた後、 反対方向に比較的短時間では遠心分離が生じず、 かつ、 必要な角加速度を所定時間与えられるような回転数まで経時 的に増加させ、 これを繰り返すための回転装置をさらに設けたこと を特徴とする請求項 4 2に記載の生化学分析装置用担体。  4 6. With respect to the carrier, the centrifugal separation does not occur in a relatively short time, and the necessary angular acceleration is increased over time up to a given time, and then relatively short in the opposite direction. 4. A rotator is further provided for increasing the number of rotations over time until a required angular acceleration is given for a predetermined time, and repeating this without causing centrifugal separation over time. The carrier for a biochemical analyzer described in 1.
4 7 . 毛管力を有する流路であって、 少なく とも入力口から、 出 カロが、 直径と平行な直線部を有する構成により、 担体の回転数を 調整して液体の移動及び停止を行う生化学分析装置用担体。  4 7. A flow path having capillary force, and at least from the input port, the output calorie has a linear part parallel to the diameter, and adjusts the rotation speed of the carrier to move and stop the liquid. Carrier for chemical analysis equipment.
4 8 . 毛管力を有する流路であって、 少なく とも入力口から、 出 カロが、 円周方向に延びた構成により、 担体の回転数を調整して液 体の移動及び停止を行う生化学分析装置用担体。 4 8. A flow path having a capillary force, in which at least the output calorie extends from the input port in the circumferential direction to adjust the rotation speed of the carrier and adjust the liquid. A carrier for biochemical analyzers that moves and stops the body.
PCT/JP2006/313341 2005-06-28 2006-06-28 Biochemical analyzer and carrier for biochemical analyzer WO2007001084A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-187592 2005-06-28
JP2005187638A JP2007010322A (en) 2005-06-28 2005-06-28 Biochemical analyzer
JP2005187592A JP2007010319A (en) 2005-06-28 2005-06-28 Biochemical analyzer
JP2005-187638 2005-06-28
JP2005187621A JP2007010320A (en) 2005-06-28 2005-06-28 Biochemical analyzer
JP2005-187621 2005-06-28
JP2005225531A JP2007040833A (en) 2005-08-03 2005-08-03 Biochemical analyzer
JP2005-225531 2005-08-03

Publications (1)

Publication Number Publication Date
WO2007001084A1 true WO2007001084A1 (en) 2007-01-04

Family

ID=37595315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313341 WO2007001084A1 (en) 2005-06-28 2006-06-28 Biochemical analyzer and carrier for biochemical analyzer

Country Status (1)

Country Link
WO (1) WO2007001084A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057659A1 (en) * 2007-10-30 2009-05-07 Arkray, Inc. Method for analyzing sample and its device
JP2009109467A (en) * 2007-11-01 2009-05-21 Rohm Co Ltd Microchip
JP2009128247A (en) * 2007-11-26 2009-06-11 Hitachi High-Technologies Corp Device for sample pre-treatment, reaction tub sheet, and sample analyzing method
EP2133151A1 (en) * 2008-06-11 2009-12-16 Samsung Electronics Co., Ltd. Analyzing apparatus using rotatable microfluidic disk
JP2010519536A (en) * 2007-02-20 2010-06-03 ギロス パテント アーべー Method for mixing aliquots in a microchannel structure
EP2237047A1 (en) 2009-03-31 2010-10-06 Samsung Electronics Co., Ltd. Method and/or System for Measuring Concentration of Detection Target Using Transmission or Reflection of Light
US8343428B2 (en) 2007-10-29 2013-01-01 Rohm Co., Ltd. Microchip and method of using the same
JP2015092182A (en) * 2011-03-08 2015-05-14 ユニベルシテ・ラバルUniversite Laval Fluid centripetal device
EP2233928A4 (en) * 2007-12-10 2015-09-30 Panasonic Healthcare Holdings Co Ltd Analyzing apparatus
JP2017529236A (en) * 2014-07-25 2017-10-05 北京泊菲莱科技有限公司 Light irradiation multi-sample parallel reaction device
EP3315942A1 (en) * 2016-10-27 2018-05-02 Samsung Electronics Co., Ltd. Test device, test system, and control method of the test device
US10031085B2 (en) 2014-07-24 2018-07-24 Ortho-Clinical Diagnostics, Inc. Point of care analytical processing system
CN109596612A (en) * 2019-01-29 2019-04-09 谭兵 A kind of excrement detection device and excrement detection method
CN110857929A (en) * 2018-08-23 2020-03-03 爱科来株式会社 Component analysis method and component analysis device
CN112469988A (en) * 2018-07-26 2021-03-09 因普兰公司 Device for spectral analysis
CN112816719A (en) * 2020-12-25 2021-05-18 重庆康巨全弘生物科技有限公司 POCT full-automatic fluorescence immunoassay appearance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472033A (en) * 1987-09-14 1989-03-16 Toshiba Corp Photometric system for automatic chemical analysis
JPH01145552A (en) * 1987-12-02 1989-06-07 Olympus Optical Co Ltd Automatic apparatus for analysis
JPH0335144A (en) * 1989-06-30 1991-02-15 Nippon Shoji Kk Rotary cuvette

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472033A (en) * 1987-09-14 1989-03-16 Toshiba Corp Photometric system for automatic chemical analysis
JPH01145552A (en) * 1987-12-02 1989-06-07 Olympus Optical Co Ltd Automatic apparatus for analysis
JPH0335144A (en) * 1989-06-30 1991-02-15 Nippon Shoji Kk Rotary cuvette

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519536A (en) * 2007-02-20 2010-06-03 ギロス パテント アーべー Method for mixing aliquots in a microchannel structure
US8343428B2 (en) 2007-10-29 2013-01-01 Rohm Co., Ltd. Microchip and method of using the same
JP5442447B2 (en) * 2007-10-30 2014-03-12 アークレイ株式会社 Sample analysis method and apparatus
WO2009057659A1 (en) * 2007-10-30 2009-05-07 Arkray, Inc. Method for analyzing sample and its device
US9176049B2 (en) 2007-10-30 2015-11-03 Arkray Inc Method of optical analysis using reference cell and base plate correction and apparatus thereof
JP2009109467A (en) * 2007-11-01 2009-05-21 Rohm Co Ltd Microchip
JP2009128247A (en) * 2007-11-26 2009-06-11 Hitachi High-Technologies Corp Device for sample pre-treatment, reaction tub sheet, and sample analyzing method
US9515582B2 (en) 2007-12-10 2016-12-06 Panasonic Healthcare Holdings Co., Ltd. Driving apparatus for analyzing apparatus
EP2233928A4 (en) * 2007-12-10 2015-09-30 Panasonic Healthcare Holdings Co Ltd Analyzing apparatus
US9172315B2 (en) 2007-12-10 2015-10-27 Panasonic Healthcare Co., Ltd. Driving apparatus for analyzing apparatus
US9281766B2 (en) 2007-12-10 2016-03-08 Panasonic Healthcare Holdings Co., Ltd. Driving apparatus for analyzing apparatus
EP2133151A1 (en) * 2008-06-11 2009-12-16 Samsung Electronics Co., Ltd. Analyzing apparatus using rotatable microfluidic disk
EP2237047A1 (en) 2009-03-31 2010-10-06 Samsung Electronics Co., Ltd. Method and/or System for Measuring Concentration of Detection Target Using Transmission or Reflection of Light
US8852859B2 (en) 2009-03-31 2014-10-07 Samsung Electronics Co., Ltd. Method and/or system for measuring concentration of detection target using transmission or reflection of light
US10427158B2 (en) 2011-03-08 2019-10-01 UNIVERSITé LAVAL Fluidic centripetal device
JP2015092182A (en) * 2011-03-08 2015-05-14 ユニベルシテ・ラバルUniversite Laval Fluid centripetal device
US9562262B2 (en) 2011-03-08 2017-02-07 UNIVERSITé LAVAL Fluidic centripetal device
US11123730B2 (en) 2011-03-08 2021-09-21 Universite Laval Fluidic centripetal device
US10031085B2 (en) 2014-07-24 2018-07-24 Ortho-Clinical Diagnostics, Inc. Point of care analytical processing system
JP2017529236A (en) * 2014-07-25 2017-10-05 北京泊菲莱科技有限公司 Light irradiation multi-sample parallel reaction device
CN108007863A (en) * 2016-10-27 2018-05-08 三星电子株式会社 Test device, tests the control method of system and test device
EP3315942A1 (en) * 2016-10-27 2018-05-02 Samsung Electronics Co., Ltd. Test device, test system, and control method of the test device
CN112469988A (en) * 2018-07-26 2021-03-09 因普兰公司 Device for spectral analysis
US11525771B2 (en) * 2018-07-26 2022-12-13 Implen GmbH Device for a light-spectroscopic analysis
CN110857929A (en) * 2018-08-23 2020-03-03 爱科来株式会社 Component analysis method and component analysis device
CN110857929B (en) * 2018-08-23 2024-04-09 爱科来株式会社 Component analysis method and component analysis device
CN109596612A (en) * 2019-01-29 2019-04-09 谭兵 A kind of excrement detection device and excrement detection method
CN112816719A (en) * 2020-12-25 2021-05-18 重庆康巨全弘生物科技有限公司 POCT full-automatic fluorescence immunoassay appearance
CN112816719B (en) * 2020-12-25 2023-12-12 重庆康巨全弘生物科技有限公司 POCT full-automatic fluorescence immunoassay appearance

Similar Documents

Publication Publication Date Title
WO2007001084A1 (en) Biochemical analyzer and carrier for biochemical analyzer
US20120261256A1 (en) Sample holders and analytical instrument for point-of-care qualification of clinical samples
US7808645B2 (en) Analysis system for analyzing a sample on an analytical test element
US20130041236A1 (en) Sample analysis system and method of use
EP0293858A2 (en) Apparatus for measuring electrolytes
KR102378607B1 (en) Birth point system and device, biochemical cartridge, and methods for newborn screening
CN110892247B (en) Apparatus, systems, and methods for performing optical and electrochemical assays
US9945789B2 (en) Multiple analyte detection systems and methods of detecting multiple analytes
CN110869746B (en) Techniques for performing optical and electrochemical assays using universal circuitry
CN110869745B (en) Apparatus, system and method for performing optical assays
JP2007010319A (en) Biochemical analyzer
JP6659541B2 (en) Method and apparatus for determining the concentration of an analyte in a body fluid
JP2005274241A (en) Biological information detection unit
JP2006098227A (en) Reflected light measuring instrument and biochemical analyzer
JP2004347436A (en) Component measuring device
EP3385738A1 (en) Testing apparatus and control method therefor
US20220250060A1 (en) Integrated, point of sale, blood testing systems and methods
KR20220129638A (en) Devices, systems and methods for measuring properties of samples
JP6952045B2 (en) Component measuring device set and component measuring chip
JP2008082898A (en) Component measuring instrument
JP2007010320A (en) Biochemical analyzer
JP2012159405A (en) Cartridge and automatic analysis method
WO2014024154A1 (en) Centrifugal microfluidic device and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780768

Country of ref document: EP

Kind code of ref document: A1