WO2006120754A1 - Biosignal detecting device - Google Patents

Biosignal detecting device Download PDF

Info

Publication number
WO2006120754A1
WO2006120754A1 PCT/JP2005/008804 JP2005008804W WO2006120754A1 WO 2006120754 A1 WO2006120754 A1 WO 2006120754A1 JP 2005008804 W JP2005008804 W JP 2005008804W WO 2006120754 A1 WO2006120754 A1 WO 2006120754A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological signal
sensor
biological
sensor pad
signal detection
Prior art date
Application number
PCT/JP2005/008804
Other languages
French (fr)
Japanese (ja)
Inventor
Seijirou Tomita
Original Assignee
Seijirou Tomita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seijirou Tomita filed Critical Seijirou Tomita
Priority to PCT/JP2005/008804 priority Critical patent/WO2006120754A1/en
Priority to JP2006522834A priority patent/JP4423481B2/en
Publication of WO2006120754A1 publication Critical patent/WO2006120754A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency

Definitions

  • the present invention relates to a biological signal detection device that detects heartbeat, respiration, body movement, and fluctuations without being attached to the body and unconstrained.
  • Conventional devices for detecting biological signals include an electroencephalograph that detects an electroencephalogram, an electrocardiograph that detects an electrocardiogram waveform, or an electromyograph that detects an electromyogram waveform.
  • electroencephalograph that detects an electroencephalogram
  • electrocardiograph that detects an electrocardiogram waveform
  • electromyograph that detects an electromyogram waveform.
  • these methods detect changes in the potential of living organisms by attaching electrodes directly to the skin, and skill and skill are required for electrode mounting and handling.
  • breathing band devices that detect breathing conditions and breathing curves, but if the body moves, the position may shift and measurement may not be possible.
  • Patent Document 3 is known as an invention for improving the calculation accuracy of the obtained data of the vital signal detection apparatus.
  • the biological signal detection device provided with the above-described piezoelectric element or capacitance element sensor can measure only a body motion or a respiration curve, and the heart rate as when the electrode is directly attached to the living body. It does not reach the range where the number and the respiratory rate can be measured accurately.
  • the above Sensor force of flexible piezoelectric element as in Patent Document 1 and capacitive element as in Patent Document 2 The detected signal level is very low, so it is immediately affected by fluctuations due to temperature and noise. Detection is difficult unless the location of the sensor is devised for the living body.
  • Patent Document 3 is an invention that improves the calculation accuracy of respiration rate and heart rate by using a sensor of multiple channels. Cycle calculation of heart rate and respiration rate from data for 5 seconds for each channel. This method requires the calculation calculation time of at least 10 seconds or more in the case of heart rate since the average value is calculated after waiting for the data for the newly input channel for 5 seconds. In addition, when calculating the respiration rate, a calculation calculation time of at least 30 seconds or more is required, and there is a problem that the first calculation takes time. Furthermore, once the detection becomes impossible, data loss occurs each time, and there is a big problem in measuring biological information that takes a long time.
  • Patent Document 3 is configured to improve the calculation accuracy of respiration rate and heart rate by adding data for 5 seconds for each channel. If this occurs, the method of detecting it and removing it from the addition channel is used, so the sensor force detection signal disappears for 5 seconds each time the body moves, and the period cannot be calculated. There was a problem with the correlation of the data to be added.
  • body motion information is vital biological information in measuring the sleep state
  • the importance of detecting the number of body motions has increased in recent years.
  • the problem is that when detecting a biological signal during sleep, the body is moved many times in the REM state, and thus cannot be calculated by conventional means and devices, and a lot of information is lost in the measurement information.
  • the conventional biological information detecting device is effective only when the position of the sensor is finely adjusted according to the state of the living body and the living body is fixed in a resting state. It is technically impossible to measure accurately in an environment where the body moves or has external vibration such as in an automobile. Of course, the number of body movements could not be detected. In addition, conventional devices are not easily accessible to anyone because they are easily affected by environmental conditions such as temperature.
  • Patent Document 1 Japanese Patent No. 3125293
  • Patent Document 2 Japanese Patent No. 3131293
  • Patent Document 3 Japanese Patent No. 2795106
  • the present invention was devised in view of the current situation, and the object of the present invention is to solve the above-mentioned problems of the conventional and recent biological signal detection devices. It is unconstrained and outputs accurate biological information such as heart rate, respiratory rate, body movement, and fluctuations without being affected by individual differences and body movements of the living body and noise from the environment and outside. Another object of the present invention is to provide a biological signal detection device capable of measuring.
  • the biological signal detection device includes a biological signal detection sensor pad for detecting changes in sound or Z and pressure on a body surface caused by biological activity. A plurality of them are arranged so as to cross, and the air pressure in the sensor pad is changed. Sensors are connected to each sensor pad, the output signals from this sensor are AZD converted by multiple AZD conversion circuits, and the AZD conversion results are added in real time by the adding means, and this addition result is used.
  • the cycle is calculated by the cycle calculation means, and the calculation cycle is output to the outside as it is, or converted to Z and heart rate per unit time, respiratory rate / body motion frequency fluctuation by the conversion means. It is characterized by that.
  • period means a period of a biological signal waveform repeated like an RR interval of an electrocardiogram.
  • body movement means a sound or Z generated by moving the body and a pressure change on the body surface.
  • fluctuation means the fluctuation of the period. Rhythm that repeats in a 24-hour cycle is called the savory power dian rhythm. Minute, hour, day, week, month, year, and life cycle fluctuations are also included in the “fluctuation” in the present invention.
  • heart sound is a sound of the heart that can be heard for each cycle of the heartbeat, and the heartbeat and the cycle are the same.
  • real-time addition means that after a certain amount of AZD conversion data is stored in a memory circuit or the like, the data is always added without taking out and using the data. .
  • output data as it is to the outside means that the calculated cycle without converting it to the number of cycles per unit time is not added to FD, CD, etc. It means recording and saving in a known recording medium, or recording and saving in an external storage medium by transmitting by communication means.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to claim 1, together with the plurality of biological signal detection sensor pads.
  • a sensor pad for detecting external vibration which is a component, is placed in a place where it is not affected by biological signals, and a sensor that detects changes in internal air pressure is connected to this sensor pad for detecting external vibration.
  • the output signal is AZD converted by the AZD conversion circuit, and the AZD conversion result force of the plurality of biological signal detection sensor pads is subtracted by the subtraction means from the AZD conversion result of the external vibration detection sensor pad. It is characterized by removing motion and noise.
  • a plurality of biological signal detection sensor pads for detecting sound or Z and pressure changes on the body surface caused by biological activity are arranged across the living body.
  • a sensor for detecting a change in air pressure in the sensor pad is connected to each sensor pad for detecting a biological signal, and the output signal of each sensor force is sent to the adding means as an analog signal and added in real time.
  • the added analog signal is AZD converted by a single AZD conversion circuit, the period is calculated by the period calculation means using the result of the AZD conversion, and the calculated period is directly output to the outside as data.
  • Or Z and the heart rate per unit time, respiration rate, body motion rate, fluctuation are converted by the conversion means.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to claim 3, and has the same configuration force as the biological signal detection sensor pad.
  • An external vibration detection sensor pad is placed in a place that is not affected by biological signals, and a sensor that detects changes in internal sound or Z and air pressure is connected to this external vibration detection sensor pad.
  • the output signal is subtracted by an analog subtraction circuit to eliminate vibrations and noise from external forces.
  • a plurality of biological signal detection sensor pads for detecting changes in sound or Z and pressure on the body surface caused by biological activity are arranged across the living body.
  • sensors that detect changes in air pressure within the sensor pad are connected to each sensor pad, and the output signals of these sensor powers are converted to analog signal switching circuit switching timing and a single AZD conversion circuit.
  • the sampling frequency of the AZD conversion circuit and the switching of the analog signal switching circuit are subtle by using a frequency equal to or higher than (the highest biological frequency component of the biological signal X twice the frequency X number of channels).
  • An error caused by a time lag can be set to a level that can be ignored compared to a biological signal component.
  • the biological signal component having the highest frequency component is a heart sound emitted from the heart. For example, if the frequency component contained in the heart sound is 10 Hz and the number of channels is 4, the sampling frequency is
  • the AZD conversion and analog signal switching frequency is more than 80 times the sampling rate, and errors due to subtle time shifts can be ignored. Also, since breathing is a slower signal than heartbeat, the error is even smaller.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to claim 5, and has the same configuration force as the biological signal detection sensor pad.
  • An external vibration detection sensor pad is placed in a place that is not affected by biological signals, and a sensor that detects changes in internal sound or Z and air pressure is connected to this external vibration detection sensor pad.
  • the output signal is subtracted by an analog subtraction circuit to eliminate vibrations and noise from external forces.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to any one of claims 2, 4 and 6, and the external vibration detection.
  • the sensor pad for medical use is placed on the same surface as the sensor node that detects changes in sound or Z and pressure on the body surface, and is placed in a place that is not affected by biological signals.
  • the external vibration detection sensor pad is preferably placed in a place where the living body does not directly hit, for example, near the foot or above the head.
  • the measurement location is a chair, the same surface is limited, so external vibrations can be detected by placing it under the backrest or backside where the buttocks do not hit.
  • the vibration phase will be reversed, so correction is required.
  • the biological signal detection device according to claim 8 is based on the technical premise of the biological signal detection device according to claim 7, and a weight is placed on the surface of the external vibration detection sensor pad. It is characterized by that.
  • the biological signal detection device according to claim 9 is based on the technical premise of the biological signal detection device according to any one of claims 1 to 8, and the period calculation result includes an absolute time And positional information are added.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to any one of claims 1 to 9, and each of the biological signal detection sensor pads or The sensor pad for detecting external vibration is configured by enclosing a foamed resin and air inside, and changes in sound or Z and air pressure in each sensor pad are detected by a piezoelectric sensor. While maintaining the air pressure on the pad side, the other side is opened to the atmosphere, and the pressure difference between the air enclosure chamber side and the atmosphere open side is detected.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to claim 10, and the piezoelectric sensor communicates with the air insertion chamber side atmosphere side. It is characterized in that a simple hole is formed so that air on the air insertion chamber side is pulled out with resistance.
  • the biological signal detection device according to claim 12 is based on the technical premise of the biological signal detection device according to claim 11, and a plate material is disposed in the sensor pad. And As the plate material, a flat plate or a plate having an inclined surface can be used.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to any one of claims 1 to 12, and the sensor pad and the bed or chair. A sheet is interposed between the two. A thick sheet can be used, and a thin sheet is suitable.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a biological signal detection device of the present invention.
  • FIG. 2 is an explanatory view showing an example of the arrangement of the sensor pad when the apparatus of FIG.
  • FIG. 3 is an explanatory diagram showing a configuration of a sensor pad used in the biological signal detection device.
  • FIG. 4 is a sectional view of the sensor pad taken along line 3A-A in FIG.
  • FIG. 5 is a block diagram showing a schematic configuration of the biological signal detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of a biological signal detection apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram showing a schematic configuration of a biological signal detection apparatus according to Embodiment 3 of the present invention.
  • the biological signal detection apparatus 1 includes a foaming oil and air enclosed therein, and is disposed in a bedding, for example, and a biological activity of a sleeping person.
  • a plurality of sensor pads 2A, 2B, 2C, 2D for detecting sound or Z and pressure changes on the body surface caused by the above are arranged independently across the living body 1A, and the sensor pads 2A, 2B, 2C , Sensors that detect changes in air pressure in 2D (eg piezoelectric sensors) 3A, 3B, 3C, 3D are connected to these sensor pads 2A, 2B, 2C, 2D, and from these sensors 3A, 3B, 3C, 3D
  • the output signal is processed by the signal processing circuits 4A, 4B, 4C, and 4D, and the processed signal is AZD converted by the four AZD conversion circuits 5A, 5B, 5C, and 5D, and the result of the AZD conversion is added and subtracted by the circuit
  • the biological information processing circuit 8 converts the measured period into heart rate, respiration rate, body movement rate, and fluctuation data per unit time, and then adds GPS information such as position and time to these biological information to save data. Configured to save at 12. Of course, periodic data may be used as an output signal without converting to data per unit time.
  • a piezoelectric sensor is used as the sensor in this embodiment, a sensor that can convert various known changes in air pressure and sound into electricity, such as a pressure sensor, a piezo element, a microphone, and a vibration sensor are used. be able to.
  • reference numerals 4A, 4B, 4C, 4D, and 4E in this example are signal processing circuits including a signal amplification amplifier and a frequency filter. Depending on the type and signal of the force sensor, only signal amplification is performed. Each circuit may not be necessary depending on the signal processing and signal contents.
  • the biological signal detection device 1 includes a data display circuit 11 for displaying biological information, a computer interface circuit 10 for interfacing with a computer, and a data line. And a data communication circuit 9 for transmitting through the network.
  • the data storage circuit 12 can be taken out by connecting a medium 12A (SD memory card or the like) that can be exchanged to a memory node disk.
  • a medium 12A SD memory card or the like
  • the same component force is provided.
  • a plurality of external vibration noise detection sensor pads 2E are arranged in a place not affected by a biological signal, and the external vibration detection sensor pad 2E is filled with foamed resin and air inside, and the external vibration Connected to the piezoelectric sensor 3E that detects changes in air pressure in the sensor pad 2E for detection, the output signal from this piezoelectric sensor 3E is signal-processed by the signal processing circuit 4E, and then AZD-converted by the AZD conversion circuit 5E.
  • the AZD conversion result detected by the external vibration detection sensor pad 2E is synchronized and subtracted by the adder / subtractor circuit 6 to reduce the vibration of external force and Remove noise It is configured so that, Ru.
  • This external vibration detection sensor pad 2E is arranged on the same plane as the sensor pads 2A, 2B, 2C, 2D for detecting pressure changes on the body surface, and is not affected by a biological signal, for example, FIG. As shown in Fig. 1 and Fig. 2, it is placed at a location where the foot force is separated.
  • This weight body 2Z can effectively detect vibration and noise caused by an external force by making the weight per unit area equal to the human standard weight.
  • the arrangement of the sensor pads 2A, 2B, 2C, 2D is a shoulder portion in the case of bedding.
  • Chest part (2B) ⁇ Waist part (2C) ⁇ Butt part (2D) is desirable, but in the case of a chair, it should be placed under the thigh 'butt part' 'waist' chest part Is desirable.
  • the sensor pads 2A, 2B, 2C, 2D and 2E used in Example 1 are filled with foamed urethane resin 22 as shown in FIGS. 3 to 4, and the sensor pads 2A, 2B , 2 C, 2D, and 2E are configured to maintain a constant expansion state, and after the sensor pads 2A, 2B, 2C, 2D, and 2E are deformed by an external force, the external force stops working. It works to quickly restore the original expanded state.
  • the sensor pads 2A, 2B, 2C, 2D, and 2E are formed of a rectangular bag-like body formed of two skins 23 and 24 as shown in FIG.
  • the peripheral portions of both epidermis 23 and 24 are formed by being bonded with an adhesive that can maintain airtightness or ultrasonic bonding.
  • materials having excellent airtightness such as rubber and soft synthetic resin for the skins 23 and 24 of the sensor pad 21, and in order to further improve the airtightness, it is formed of a plurality of layers. I hope to do it.
  • a hard plate 28 is disposed, and the thickness of the plate 28 is reduced in one direction. It is formed in a wedge shape.
  • the plate material 28 may be a flat plate.
  • the movable side of the sensor pads 2A, 2B, 2C, 2D is Even in an uneven body part, the movable member is naturally pressed in the direction of the body by the plate material 28 and is in close contact with the body, so that the detection sensitivity of heart sounds and Z or respiratory waveform can be further improved.
  • a thin plate-like sheet (not shown) between the sensor pads 2A, 2B, 2C, 2D and the bed 4 or chair, the detection sensitivity of the biological signal is increased and more accurate measurement is possible. It can be carried out.
  • the sensor pads side 2 4A of the piezoelectric sensors 3A, 3B, 3C, 3D, and 3E are airtight and the other side 24B to be open to the atmosphere, It is configured so that a pressure difference is generated between the air enclosure chamber side and the atmosphere side, and the sensor pad 2A, 2B, 2C, 2D is applied to the piezoelectric sensor 3A, 3B, Since it can be transmitted to 3C and 3D, the heart rate signal and Z or respiratory signal can be extracted at high output. Can be issued.
  • a method of detecting vibration and noise at various places by using a plurality of sensor pads and sensors for detecting external vibration and noise is more effective.
  • the piezoelectric sensors 3A, 3B, 3C, 3D, 3E is configured to be kept airtight
  • the piezoelectric sensors 3A, 3B, Sensor unit with 3C, 3D, 3E attached 24C minute hole 24D that connects the air enclosure chamber side and the atmosphere side is formed so as to allow the air in the air enclosure chamber side to escape with resistance.
  • Example 1 the piezoelectric element 24 is disposed in the chamber 24F of the sensor unit 24C connected to the tip of the pipe 25 to form the chamber.
  • a hole 24B formed in the bottom 24E is attached so as to be closed with an adhesive or the like.
  • the biological signals detected by the sensor pads 2A, 2B, 2C, and 2D detected in this way and the external vibration and noise component signals detected by the sensor pad 2E are as shown in FIG.
  • the signal processing circuit 4A, 4B, 4C, 4D which is the power of the amplification amplifier and the frequency filter according to the frequency component of the signal, is processed by the four AZD conversion circuits 5A, 5B, 5C, 5D.
  • the biological information processing circuit 8 converts the cycle calculated in step 4 into cycle data output or Z and heart rate, respiratory rate, body motion and fluctuation data per unit time.
  • the AZD conversion circuits 5A, 5B, 5C, 5D, and 5E receive conversion start triggers simultaneously from the synchronization signal generation circuit 15, convert them, output the results to the addition / subtraction circuit 6, and calculate the results. Is output to the period calculation circuit 7.
  • the effect of external vibration and noise is removed by subtracting the conversion result of the external vibration and noise components converted by AZD conversion circuit 5E from the biological signal components AZD converted by AZD conversion circuits 5A, 5B, 5C, and 5D.
  • the biological signal components AZD converted by the AZD conversion circuits 5A, 5B, 5C, and 5D can be added to remove unnecessary pseudo signals and detect only the biological signal. Of course, either order of addition and subtraction may be used.
  • the cycle calculation circuit 7 calculates the cycle of heartbeat and respiration, and the biological information processing circuit 8 converts it into heartbeat-respiration rate / body motion rate / fluctuation information.
  • the position / time generation circuit 14 for outputting the position and altitude information such as GPS information and the absolute time information is connected to the synchronization signal generation circuit 15, and other than the synchronization signal for the AZD conversion of the biological data. In addition, it is connected to the biological information processing 8 and used as a reference time, and is also used for data storage time information and position information.
  • the biological signal detection device 1 performs real-time addition by synchronizing the four biological signal data at all times, so that the true biological signal whose time is the same can be obtained. Only signals are added, and pseudo signals such as reflection and random signals such as noise are attenuated by addition because there is a time lag (phase difference) between the four pieces of biological signal data.
  • pseudo signals such as reflection and random signals such as noise are attenuated by addition because there is a time lag (phase difference) between the four pieces of biological signal data.
  • the true biological signal is quadrupled and the other signals are at the level of 1Z4. can do.
  • the saturation signal (large signal) output by the movement of the body rarely occurs simultaneously in the entire body, and this saturation signal is obtained by always adding a plurality of biological signal data in synchronization.
  • the signal can also be reduced.
  • biosignal detection is performed using four sensor pads 2A, 2B, 2C, 2D and piezoelectric sensors 3A, 3B, 3C, 3D, one of the piezoelectric sensors 3A, 3B, 3C, 3D. Even if a large output occurs due to body movement in one sensor, this signal is not output to the other sensors. Therefore, it is possible to quickly suppress a large output due to a body movement that is harmful to detecting a biological signal.
  • FIG. 6 shows a biological signal detection apparatus 1 according to Embodiment 2 of the present invention.
  • the biological signal detection apparatus 1 converts the output signals from the piezoelectric sensors 3A, 3B, 3C, and 3D into digital signals. Since the other configuration and operation are the same as in the first embodiment except that the addition / subtraction processing is performed to add the analog signal without conversion, the same components as in the first embodiment are implemented.
  • the same reference numerals as those in Example 1 are attached, and detailed description thereof is omitted here.
  • the biological signal detection apparatus 1 includes sensor pads 2A, 2B, 2C, and 2D that detect changes in sound or Z and pressure on the body surface caused by biological activity, and the sensor pad 2A. , 2B, 2C, 2D Piezoelectric sensors 3A, 3B, 3C, 3D that sense changes in air pressure, and analog add / subtract that adds the output signals from these piezoelectric sensors 3A, 3B, 3C, 3D as analog signals
  • the circuit 16 one AZD conversion circuit 6 that performs AZD conversion on the signal from the analog addition / subtraction circuit 16, a period calculation circuit 7 that calculates a period using the AZD conversion result, and the period calculation circuit 7
  • Biological information processing circuit 8 that converts the cycle into heart rate per unit time, respiratory rate 'body motion number, fluctuation information, etc., data storage circuit 12 that stores these biological information, and data for displaying biological information Display circuit 11, computer and interface A computer interface circuit 10 for transmitting data and a data communication circuit 9 for transmitting data via a
  • the biological signal detection apparatus 1 is configured to perform addition processing on a plurality of biological signals as analog signals, and therefore, in the first embodiment, a plurality of channels are necessary.
  • the AZD conversion circuit can be integrated into one, and the circuit can be simplified and the device can be realized at low cost.
  • by simply synchronizing multiple biological signals easily and adding them in real time at all times only the real biological signals with the same time are added, and random signals such as pseudo signals and noise due to internal reflections are added.
  • Multiple signals are multiple biological signal data Since there is a time lag (phase lag) between them, the analog signal is attenuated by addition as in the first embodiment.
  • a position / time generation circuit 13 for outputting the position of GPS information, altitude information and absolute time information is connected, and connected to the biological information processing 8 in addition to the AZD conversion synchronization signal of the biological data. Since it is the same as in the first embodiment that it is used for the reference time, and also used for data storage time information and location information, detailed description thereof is omitted here.
  • FIG. 7 shows a biological signal detection apparatus 1 according to Embodiment 3 of the present invention.
  • the biological signal detection apparatus 1 according to Embodiment 3 performs AZD conversion using a single AZD conversion circuit. By synchronizing the timing with the analog signal switching circuit, it adds multiple biological signal data, adds only the true biological signal with the same time, and generates random signals such as reflection and noise.
  • the signal is configured to be attenuated by addition.
  • the first embodiment is similar to the first embodiment.
  • the same components as those of the second embodiment are denoted by the same reference numerals as those of the first or second embodiment, and detailed description thereof is omitted here.
  • the biological signal detection apparatus 1 includes sensor pads 2A, 2B, 2C, and 2D that detect changes in sound or Z and pressure changes on the body surface caused by biological activity, and the sensors.
  • Piezoelectric sensors 3A, 3B, 3C, 3D that detect changes in air pressure in the Serpad 2A, 2B, 2C, 2D and output signals from these piezoelectric sensors 3A, 3B, 3C, 3D 4B, 4C, and 4D, the analog signal switching circuit 17, one AZD conversion circuit 5, the addition / subtraction circuit 6 for adding / subtracting the AZD conversion result, and the addition / subtraction processed AZD conversion result are used.
  • a cycle calculation circuit 7 for calculating the cycle a biological information processing circuit 8 for converting the cycle calculated by the cycle calculation circuit 7 into heart rate, respiratory rate 'body motion number, fluctuation data, etc. per unit time;
  • the data storage circuit 12 is connected to a memory 12A in addition to a memory disk and can be taken out externally.
  • the analog signal switching circuit 17 and one AZD conversion circuit 5 are used to switch the analog signals output from the plurality of sensor pads 2A to 2D.
  • the timing and the timing for AZD conversion are configured so that the sampling and switching timings are shifted for each of the piezoelectric sensors 3A to 3D using a frequency equal to or higher than the above (maximum biological signal frequency X 2 times frequency X number of channels). RU
  • the sampling frequency of the AZD conversion is also higher than (the maximum biological signal frequency x 2 times the frequency x the number of channels).
  • the highest frequency component of the heart sound signal having the highest frequency component of the biological signal is 10 Hz, for example, and the number of channels is 4 channels,
  • the synchronization adjustment circuit 18 for synchronizing the trigger timing of the AZD converter 5 and the switching timing of the analog switching circuit 17 is used. It is configured to synchronize with the conversion circuit 5 and the analog signal switching circuit 17.
  • one external vibration and noise having the same constitutional force are used together with the above four sensor pads for detecting changes in sound or Z and pressure on the body surface caused by the biological activity.
  • the sensor pad 2E for detection is placed at a place not affected by the biological signal, and the biological signal detected by the sensor pad 2E for detecting external vibration is also switched by the analog signal switching circuit 17 in the same manner as described above. By subtracting after conversion, external vibration and noise can be removed and a clear biological signal can be obtained.
  • Example 2 and Example 3 are used in combination.
  • a circuit configuration in which Example 2 and Example 3 are used in combination can also be used.
  • 2 channels of biological signals are added as analog signals, and the remaining 3 channels of biological signals are synchronized with one AZD conversion circuit and analog signal switching circuit. The same effect can be obtained by operating in the same manner.
  • the biological signal detection device crosses the living body through the biological signal detection sensor pad that detects changes in sound or Z and pressure on the body surface caused by the biological activity.
  • a sensor that senses changes in air pressure within the sensor pad is connected to each sensor pad, and the output signal from this sensor is AZD converted by multiple AZD conversion circuits.
  • the period is calculated by the period calculating means using the addition result, and the calculation period is output to the outside as it is, or the heart rate, respiratory rate, Since it is configured to convert the number of body movements and fluctuations by the conversion means, real biological signals can be instantaneously detected from biological information generated in various parts of the living body without time delay.
  • biological signals such as heartbeat and respiration are active with an autonomous period that is unrelated to the period of the clock we are using, and are basically uncorrelated. It is difficult to extract a true biological signal by the method of storing and comparing data.
  • a means for constantly adding a plurality of biological signals in real time without using a timer circuit or a memory circuit for storing and comparing measurement data for a certain period of time is used. Correlated true biological signals can be extracted, and necessary biological information required without waiting can be output and displayed accurately.
  • a large body movement signal generated by moving the body during measurement can also be reduced by this means.
  • the biological signal detection device has the same configuration force as the biological signal detection device according to claim 1 together with the plurality of biological signal detection sensor pads.
  • An external vibration detection sensor pad is placed in a place where it is not affected by biological signals.
  • a sensor that detects changes in internal air pressure is connected to this external vibration detection sensor pad, and the output signal from this sensor is sent AZD conversion by AZD conversion circuit and subtracting AZD conversion result of sensor pads for external vibration detection by subtracting means to eliminate external vibration and noise
  • separate sensor pads are placed in a place where the living body does not touch them directly, and sensor output that can also be obtained is output to other sensor outputs. By subtracting in real time all the time, external vibration and noise are removed and clear biological signals are detected.
  • a plurality of biological signal detection sensor pads for detecting changes in sound or Z and pressure on the body surface caused by biological activity are arranged across the living body.
  • a sensor for detecting a change in air pressure in the sensor pad is connected to each sensor pad for detecting a biological signal, and the output signal of each sensor force is sent to the adding means as an analog signal and added in real time.
  • the added analog signal is AZD converted by a single AZD conversion circuit, the period is calculated by the period calculation means using the result of the AZD conversion, and the calculated period is directly output to the outside as data.
  • the conversion means Or Z and heart rate per unit time, respiratory rate ⁇ body motion ⁇ fluctuations are converted by the conversion means, so multiple biological signal data are added as analog signals.
  • This makes it possible to combine expensive AZD conversion circuits and peripheral circuits that were required for multiple channels, and eliminate the need for memory circuits at the same time, simplifying the entire circuit and realizing equipment at low cost. it can.
  • by adding multiple biological signal data in real time with raw data only real biological signals with no time delay and always the same time are added, and pseudo signals such as reflection and noise are added.
  • the true biological signal can be accurately detected because it is attenuated by addition.
  • no memory since no memory is used, there is no need to wait for a certain period of time, and a means for continuous addition in real time is used.
  • the information can be output and displayed quickly without time.
  • the biological signal detection device is based on the technical premise of the biological signal detection device according to claim 3, and the external vibration having the same configuration force as the biological signal detection sensor pad.
  • a sensor pad for detection is placed in a place where it is not affected by biological signals, and a sensor that detects changes in internal sound or Z and air pressure is connected to this sensor pad for detection of external vibration.
  • By subtracting the signal with an analog subtraction circuit it is configured to remove external vibration and noise, so the influence from the outside can be removed or reduced, independent of multiple sensor pads.
  • the sensor pad is placed in a place where the living body does not touch it directly, and the sensor output obtained from it is constantly subtracted in real time from the other sensor outputs.
  • the dynamic and noise As a result, it is possible to improve the accuracy of calculation of biological information because it detects a clear biological signal, and it is possible to increase the accuracy of calculating biological information. However, it is possible to accurately measure and detect the respiratory rate 'heart rate ⁇ body motion ⁇ fluctuation data.
  • a plurality of biological signal detection sensor pads for detecting changes in sound or Z and pressure on the body surface caused by biological activity are arranged across the living body.
  • sensors that detect changes in air pressure within the sensor pad are connected to each sensor pad, and the output signals of these sensor powers are converted to analog signal switching circuit switching timing and a single AZD conversion circuit.
  • By synchronizing the timing of conversion only the true biological signal with the same time is added out of the multiple biological signal data, and pseudo signals such as reflection and random signals such as noise are added by addition. Since it is configured to attenuate, it is possible to provide a device at a low cost by simplifying the entire circuit by using one expensive AZD conversion circuit and omitting the analog addition / subtraction circuit.
  • the external vibration detection sensor pad having the same structural force is disposed in a place not affected by the biological signal.
  • the sensor pad for detecting external vibration is connected to a sensor that detects changes in internal sound or Z and air pressure, and the output signal from this sensor is sequentially switched by an analog signal switching circuit, and converted to AZD. Since it is configured to eliminate external force vibration and noise by subtracting, external vibration and external noise are detected under the same conditions as the sensor pad that detects changes in sound or Z and pressure on the body surface. It is possible to remove external noise reliably, and as a result, the calculation accuracy of biological information can be improved, and measurement with conventional devices is impossible. De Even when you are in a car with extraneous noise and vibration, you can output periodic data and accurately measure and detect respiratory rate (heart rate, body motion, fluctuation data).
  • the external vibration detection sensor pad is disposed on the same plane as the sensor pad for detecting a change in sound or Z and pressure on the body surface, and the biological signal is detected.
  • the living body (dummy) having no biological signal is placed on the sensor pad by placing a weight on the surface of the external vibration detection sensor pad.
  • the sensitivity of the sensor is increased, and external vibration and noise signals used in the subtraction process can be detected with higher sensitivity. As a result, external vibration and external noise can be removed.
  • the biological signal detection apparatus adds the absolute time (Y • DHM-S) and position data (GPS information, etc.) to the period calculation result,
  • the time can be known at the same time, and the necessary data can be saved simultaneously with the biological information. It can be used for detection and measurement of biological signals while moving in vehicles, etc., or when multiple experiments are performed simultaneously in different locations, so that the start times can be matched to make measurement more efficient. Become.
  • each of the biological signal detection sensor nodes or the external vibration detection sensor pad is configured by enclosing a foamed resin and air inside, Changes in sound or Z and air pressure in each sensor pad are detected by a piezoelectric sensor.
  • the piezoelectric sensor maintains the air pressure on the sensor pad side, while the other side is open to the atmosphere, and the air enclosure chamber side and the air open side Therefore, it is possible to realize signal detection with high output and high sensitivity and fast response speed by utilizing the pressure difference between the air insertion chamber side and the atmosphere open side.
  • the high output level signal eliminates the need for complicated temperature correction and gain correction that are strong against noise, and it is possible to realize a biological signal device that is easy to handle at low cost without having to select an installation location.
  • the piezoelectric sensor includes an air insertion chamber.
  • a self-adhesive foamed resin can be used without using a sealed sensor pad.
  • the repulsive force can be used to constantly send a stable pressure to the sensor.
  • since it is not a sealed structure there is no risk of rupture or leakage due to high pressure, and a biological signal device that is structurally inexpensive and safe can be realized.
  • the biological signal detection device can increase the sensitivity of biological signal detection by inserting a plate material into the sensor pad. For example, it is possible to prevent the influence caused by the soft material of the bed or chair, to obtain a stable biosignal output with a high output, and to further free the installation location of the sensor pad.
  • a plate material a flat plate or a plate having an inclined surface can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A nonworn, non constraining biosignal detecting device for accurately detecting the heart rate, the respiratory rate, and fluctuation without being affected by the individual difference of the subject, body movement, and the noise from the outside and the environment. The biosignal detecting device is so constituted that sensor pads for detecting a variation of body surface sound/pressure induced by biological activity are so arranged as to traverse the body, sensors for sensing a variation of the air pressure in the sensor pads are connected to the respective sensor pads, the output signals from the sensors are A/D-converted by A/D conversion circuits, the results of the A/D conversion are added in real time by addition means, periods are calculated from the results of the addition by period calculating means, and the calculated period data are outputted outside as it is, and/or converted into a heart rate/respiratory rate/the number of body movements/fluctuation per unit time by converting means.

Description

明 細 書  Specification
生体信号検出装置  Biological signal detection device
技術分野  Technical field
[0001] 本発明は、身体に非装着かつ非拘束で心拍、呼吸、体動、ゆらぎを検出する生体 信号検出装置に関する。  The present invention relates to a biological signal detection device that detects heartbeat, respiration, body movement, and fluctuations without being attached to the body and unconstrained.
背景技術  Background art
[0002] 従来の生体信号を検出する装置としては、脳波を検出する脳波計、心電波形を検 出する心電計、あるいは筋電波形を検出する筋電計などがある。しかし、これらは生 体の電位変化を皮膚に直接に電極を取り付けて検出するものであり、電極の取り付 け作業や取り扱いには熟練を要する。また、呼吸状態や呼吸曲線を検出する呼吸バ ンド装置などもあるが、体が動くと位置がずれ、測定できないことがある。  [0002] Conventional devices for detecting biological signals include an electroencephalograph that detects an electroencephalogram, an electrocardiograph that detects an electrocardiogram waveform, or an electromyograph that detects an electromyogram waveform. However, these methods detect changes in the potential of living organisms by attaching electrodes directly to the skin, and skill and skill are required for electrode mounting and handling. There are also breathing band devices that detect breathing conditions and breathing curves, but if the body moves, the position may shift and measurement may not be possible.
[0003] このように従来の生体信号検出装置のいずれも、生体の動作を拘束し、肌に直接 取り付ける構成であるため、測定中は生体に大きなストレスを与え、且つ連続測定に は適さな力 た。特に、睡眠時の生体信号検出またはリラックス状態における生体信 号の検出には不向きなものであった。  [0003] As described above, since all of the conventional biological signal detection devices are configured to restrain the movement of the living body and attach directly to the skin, they exert a great stress on the living body during the measurement and are suitable for continuous measurement. It was. In particular, it was unsuitable for detecting biological signals during sleep or detecting biological signals in a relaxed state.
[0004] 特に、生体が動いた場合は、電極を取り付けた装置に於いても生体信号を検出で きな!/ヽ根本的な問題があった。  [0004] In particular, when a living body moves, a biological signal cannot be detected even in an apparatus with electrodes attached! / There was a fundamental problem.
[0005] このような問題を解決するため、近年では、非装着且つ非拘束で簡単に、生体信 号を検出できる生体信号検出装置が提案されている。  In order to solve such problems, in recent years, there has been proposed a biological signal detection apparatus that can easily detect a biological signal without wearing it and without restraint.
[0006] しかし、このような近年の生体信号検出装置としては、特許文献 1のような可撓性を 有する圧電素子を用いたものや、特許文献 2のような変形による電極部間の静電容 量が変化を検出するセンサーを用いて生体信号を検出するものが提案されている。  [0006] However, as such a biological signal detection device in recent years, a device using a flexible piezoelectric element as in Patent Document 1 or a capacitance between electrode portions due to deformation as in Patent Document 2 is used. There has been proposed one that detects a biological signal using a sensor that detects a change in quantity.
[0007] また、これらの生体信号検出装置力 得られたデータの算出精度を向上させるため の発明としては特許文献 3が知られている。  [0007] Further, Patent Document 3 is known as an invention for improving the calculation accuracy of the obtained data of the vital signal detection apparatus.
[0008] ところで、上記圧電素子や静電容量素子のセンサーを備える生体信号検出装置で は、体動や呼吸曲線という程度のものしか測定できず、電極を生体に直接装着した 場合のような心拍数や呼吸数を正確に測定できる域まで達していない。特に、上記 特許文献 1のような可撓性を有する圧電素子や、特許文献 2のような静電容量素子 のセンサー力 検出される信号レベルは非常に低いため、温度やノイズによる変動 に影響を受けやすぐ生体に対してセンサーの配置場所を工夫しないと検出が難し い。 [0008] By the way, the biological signal detection device provided with the above-described piezoelectric element or capacitance element sensor can measure only a body motion or a respiration curve, and the heart rate as when the electrode is directly attached to the living body. It does not reach the range where the number and the respiratory rate can be measured accurately. In particular, the above Sensor force of flexible piezoelectric element as in Patent Document 1 and capacitive element as in Patent Document 2 The detected signal level is very low, so it is immediately affected by fluctuations due to temperature and noise. Detection is difficult unless the location of the sensor is devised for the living body.
[0009] また、センサーが棒状で長い一本の形状であるため、生体各所の血管や臓器から の様々な惰報ゃ反射した擬似信号を同時に検出してしまうため、この信号の中から 正確な生体情報を検出することは非常に難しい。  [0009] In addition, since the sensor is in the shape of a rod and is long, various false intelligence signals from blood vessels and organs in various parts of the living body are detected at the same time. It is very difficult to detect biological information.
[0010] さら〖こ、上記形式のセンサーでは、性別や体型および年齢差によっても位置ゃレべ ルで検出される信号に差が生じ、正確な生体情報を検出するためには測定の度にセ ンサ一の配置や信号レベルを調整する必要があった。  [0010] In the above type of sensor, there is a difference in the signal detected at the position depending on the gender, body type, and age difference. It was necessary to adjust the sensor layout and signal level.
[0011] またさらに、上記形式のセンサーを用いて確実な計測をするためには、測定開始の 都度ゼロ点調整や環境温度を一定にする等、大掛かりな装置となり使用する上でも 煩わしかった。  [0011] Furthermore, in order to perform reliable measurement using the above-mentioned type of sensor, it has been bothersome to use as a large-scale device such as zero adjustment and constant environmental temperature each time measurement is started.
[0012] そしてまた、特許文献 2の請求項 2に記述されているような物質を充填した密封容 器を棒状に形成したセンサーの場合、充填物質によってセンサーの応答が遅くなり、 特に高域成分が検出できな力つたり、大きな圧力が力かった場合の物質漏れや密閉 された物質の経時変化への対処など、多くの課題を有し、製品化する上には多くの 問題がある。  [0012] In addition, in the case of a sensor in which a sealed container filled with a substance as described in claim 2 of Patent Document 2 is formed in a rod shape, the response of the sensor is slowed by the filling substance, and in particular, a high frequency component There are many problems, such as dealing with material leaks when the pressure cannot be detected or when large pressure is applied, and dealing with changes in the sealed material over time, and there are many problems in commercialization.
[0013] さらに、特許文献 3は、複数チャンネルのセンサーを用いて呼吸数、心拍数の算出 精度を向上させる発明である力 各チャンネル毎の 5秒分のデータから心拍数と呼吸 数の周期計算した結果と、新たに入力されるチャンネル 5秒分のデータを待って平均 値を算出する方法が用いられているため、心拍数の場合、この手段では少なくとも 10 秒以上の算出計算時間を必要とし、また、呼吸数の算出の場合には少なくとも 30秒 以上の算出計算時間が必要で、最初の算出に時間がかかってしまう問題があった。 さらには、一度検出不能に陥るとその度にデータ欠落が生じてしまい、長時間を要す る生体情報の測定には大きな問題があった。  [0013] Further, Patent Document 3 is an invention that improves the calculation accuracy of respiration rate and heart rate by using a sensor of multiple channels. Cycle calculation of heart rate and respiration rate from data for 5 seconds for each channel. This method requires the calculation calculation time of at least 10 seconds or more in the case of heart rate since the average value is calculated after waiting for the data for the newly input channel for 5 seconds. In addition, when calculating the respiration rate, a calculation calculation time of at least 30 seconds or more is required, and there is a problem that the first calculation takes time. Furthermore, once the detection becomes impossible, data loss occurs each time, and there is a big problem in measuring biological information that takes a long time.
[0014] また、上記特許文献 3は、各チャンネル 5秒分のデータを加算して呼吸数、心拍数 の算出精度を向上させるように構成されているが、体動などによる大出力がセンサー に生じた場合、それを検出して加算チャンネルから除外する手法を用いているため、 体が動く度にセンサー力 の検出信号が 5秒間無くなり、周期を算出することができ なくなってしまうという問題や加算するデータの相関性に問題を有していた。 [0014] In addition, Patent Document 3 is configured to improve the calculation accuracy of respiration rate and heart rate by adding data for 5 seconds for each channel. If this occurs, the method of detecting it and removing it from the addition channel is used, so the sensor force detection signal disappears for 5 seconds each time the body moves, and the period cannot be calculated. There was a problem with the correlation of the data to be added.
[0015] また、体動情報は睡眠状態を計測する上で、重要な生体情報であるため、体動数 を検出する重要性が近年増しているが、上記従来の各装置では体動のデータを検 出することが難しいだけでなぐ体動が起こると長時間に渡って呼吸や心拍を検出で きなくなってしまう問題があった。 [0015] In addition, since body motion information is vital biological information in measuring the sleep state, the importance of detecting the number of body motions has increased in recent years. However, it was difficult to detect the heartbeat, and if body movements occurred, it was impossible to detect respiration and heartbeat for a long time.
この問題は、睡眠時の生体信号検出等を行う際、レム状態には体を動かす回数も多 いため、従来の手段や装置では算出ができず計測情報に多くの情報欠落が生じて しまう。  The problem is that when detecting a biological signal during sleep, the body is moved many times in the REM state, and thus cannot be calculated by conventional means and devices, and a lot of information is lost in the measurement information.
[0016] 以上のように上記従来の生体情報検出装置は、生体の状況に合わせてセンサー の位置を微妙に調整し、且つ生体は安静状態で固定された寝具等を用いた時に初 めて有効な手段であり、体が動いたり、自動車内のように外部からの振動を有する環 境下では正確な計測をすることは、技術的に不可能であった。勿論、体動数も検出 することができな力つた。また、従来の各装置は、温度等の環境条件に影響を受けや すいため誰でも簡単に利用できる装置ではなかった。  [0016] As described above, the conventional biological information detecting device is effective only when the position of the sensor is finely adjusted according to the state of the living body and the living body is fixed in a resting state. It is technically impossible to measure accurately in an environment where the body moves or has external vibration such as in an automobile. Of course, the number of body movements could not be detected. In addition, conventional devices are not easily accessible to anyone because they are easily affected by environmental conditions such as temperature.
[0017] 特許文献 1 :特許第 3125293号公報  [0017] Patent Document 1: Japanese Patent No. 3125293
[0018] 特許文献 2 :特許第 3131293号公報  Patent Document 2: Japanese Patent No. 3131293
[0019] 特許文献 3 :特許第 2795106号公報  Patent Document 3: Japanese Patent No. 2795106
発明の開示  Disclosure of the invention
[0020] この発明は、力かる現状に鑑み創案されたものであって、その目的とするところは、 上記従来および近年の生体信号検出装置が有する問題点を悉く解決することができ 、非装着、且つ非拘束で、生体の個体差や体動による影響および環境や外部からの ノイズの影響を受けず、正確な心拍数、呼吸数、体動及びゆらぎ等の生体情報をデ ータ出力し、又は測定することができる生体信号検出装置を提供することにある。  [0020] The present invention was devised in view of the current situation, and the object of the present invention is to solve the above-mentioned problems of the conventional and recent biological signal detection devices. It is unconstrained and outputs accurate biological information such as heart rate, respiratory rate, body movement, and fluctuations without being affected by individual differences and body movements of the living body and noise from the environment and outside. Another object of the present invention is to provide a biological signal detection device capable of measuring.
[0021] 上記目的を達成するため、請求の範囲 1に記載の生体信号検出装置は、生体活動 により生じる体表面の音又は Z及び圧変化を検出する生体信号検出用センサーパ ッドを、生体を横切るように複数配置すると共に、該センサーパッド内の空気圧の変 化を感知するセンサーを各々のセンサーパッドに接続し、このセンサーからの出力信 号を複数の AZD変換回路で AZD変換し、この AZD変換結果を加算手段でリア ルタイム加算し、この加算結果を用いて周期算出手段で周期を算出して該算出周期 をそのまま外部へとデータ出力し、又は Z及び単位時間当りの心拍数,呼吸数 ·体動 数'ゆらぎに変換手段で変換するように構成したことを特徴とする。 [0021] In order to achieve the above object, the biological signal detection device according to claim 1 includes a biological signal detection sensor pad for detecting changes in sound or Z and pressure on a body surface caused by biological activity. A plurality of them are arranged so as to cross, and the air pressure in the sensor pad is changed. Sensors are connected to each sensor pad, the output signals from this sensor are AZD converted by multiple AZD conversion circuits, and the AZD conversion results are added in real time by the adding means, and this addition result is used. The cycle is calculated by the cycle calculation means, and the calculation cycle is output to the outside as it is, or converted to Z and heart rate per unit time, respiratory rate / body motion frequency fluctuation by the conversion means. It is characterized by that.
[0022] 尚、この明細書において、「周期」とは、心電図の RR間隔のように繰り返される生体 信号波形の周期を意味する。  In this specification, “period” means a period of a biological signal waveform repeated like an RR interval of an electrocardiogram.
[0023] また、この明細書において「体動」とは、体を動かすことによって生じる音又は Z及 び体表面の圧力変化を意味する。  [0023] In this specification, "body movement" means a sound or Z generated by moving the body and a pressure change on the body surface.
[0024] さらに、この明細書において「ゆらぎ」とは、上記周期の変動を意味する。 24時間の 周期で繰り返されるリズムはサ一力ディアンリズムと呼ばれる。分、時、日、週、月、年 、一生の周期変動も本発明でいう「ゆらぎ」に含まれる。  [0024] Further, in this specification, "fluctuation" means the fluctuation of the period. Rhythm that repeats in a 24-hour cycle is called the savory power dian rhythm. Minute, hour, day, week, month, year, and life cycle fluctuations are also included in the “fluctuation” in the present invention.
[0025] また、この明細書において「心音」とは、心拍 1周期ごとに聞こえる心臓の音であり、 心拍と周期は一致している。  [0025] In this specification, "heart sound" is a sound of the heart that can be heard for each cycle of the heartbeat, and the heartbeat and the cycle are the same.
[0026] さらに、この明細書において「リアルタイム加算」とは、メモリー回路等に一定時間分 の AZD変換データを蓄えた後、データを取り出して利用することなく常時データを、 加算処理することをいう。  [0026] Further, in this specification, "real-time addition" means that after a certain amount of AZD conversion data is stored in a memory circuit or the like, the data is always added without taking out and using the data. .
[0027] また、この明細書において「そのまま外部へとデータ出力する」とは、単位時間当り の周期回数に変換することなぐ算出された周期を、何らの加工を加えることなく FD や CD等の公知の記録媒体に記録保存したり、通信手段で送信して外部保存媒体 に記録保存することをいう。  [0027] Also, in this specification, “output data as it is to the outside” means that the calculated cycle without converting it to the number of cycles per unit time is not added to FD, CD, etc. It means recording and saving in a known recording medium, or recording and saving in an external storage medium by transmitting by communication means.
[0028] 次に、請求の範囲 2に記載の生体信号検出装置は、請求の範囲 1に記載の生体信 号検出装置を技術的前提とし、前記複数の生体信号検出用センサーパッドと共に、 同様の構成力 なる外部振動検出用センサーパッドを生体信号の影響を受けない場 所に配置し、この外部振動検出用センサーパッドには、内部の空気圧の変化を感知 するセンサーを接続し、このセンサーからの出力信号を AZD変換回路で AZD変 換し、前記複数の生体信号検出用センサーパッドの AZD変換結果力 外部振動検 出用センサーパッドの AZD変換結果を減算手段で減算することで、外部からの振 動やノイズを除去することを特徴とする。 [0028] Next, the biological signal detection device according to claim 2 is based on the technical premise of the biological signal detection device according to claim 1, together with the plurality of biological signal detection sensor pads. A sensor pad for detecting external vibration, which is a component, is placed in a place where it is not affected by biological signals, and a sensor that detects changes in internal air pressure is connected to this sensor pad for detecting external vibration. The output signal is AZD converted by the AZD conversion circuit, and the AZD conversion result force of the plurality of biological signal detection sensor pads is subtracted by the subtraction means from the AZD conversion result of the external vibration detection sensor pad. It is characterized by removing motion and noise.
[0029] 請求の範囲 3に記載の生体信号検出装置は、生体活動により生じる体表面の音又 は Z及び圧変化を検出する生体信号検出用センサーパッドを、生体を横切るよう〖こ 複数配置すると共に、該センサーパッド内の空気圧の変化を感知するセンサーを各 々の生体信号検出用センサーパッドに接続し、これらの各センサー力もの出力信号 をアナログ信号のまま加算手段へと送ってリアルタイム加算し、該加算されたアナログ 信号を一個の AZD変換回路で AZD変換し、該 AZD変換された結果を用いて周 期算出手段で周期を算出し、この算出された周期をそのまま外部へとデータ出力し、 又は Z及び単位時間当りの心拍数,呼吸数 ·体動数 ·ゆらぎに変換手段で変換する ように構成したことを特徴とする。  [0029] In the biological signal detection device according to claim 3, a plurality of biological signal detection sensor pads for detecting sound or Z and pressure changes on the body surface caused by biological activity are arranged across the living body. At the same time, a sensor for detecting a change in air pressure in the sensor pad is connected to each sensor pad for detecting a biological signal, and the output signal of each sensor force is sent to the adding means as an analog signal and added in real time. The added analog signal is AZD converted by a single AZD conversion circuit, the period is calculated by the period calculation means using the result of the AZD conversion, and the calculated period is directly output to the outside as data. , Or Z and the heart rate per unit time, respiration rate, body motion rate, fluctuation are converted by the conversion means.
[0030] また、請求の範囲 4に記載の生体信号検出装置は、請求の範囲 3に記載の生体信 号検出装置を技術的前提とし、前記生体信号検出用センサーパッドと共に、同様の 構成力 なる外部振動検出用センサーパッドを生体信号の影響を受けない場所に配 置し、この外部振動検出用センサーパッドには、内部の音又は Z及び空気圧の変化 を感知するセンサーを接続し、このセンサーからの出力信号を、アナログ減算回路で 減算処理することで、外部力もの振動やノイズを除去することを特徴とする。  [0030] Further, the biological signal detection device according to claim 4 is based on the technical premise of the biological signal detection device according to claim 3, and has the same configuration force as the biological signal detection sensor pad. An external vibration detection sensor pad is placed in a place that is not affected by biological signals, and a sensor that detects changes in internal sound or Z and air pressure is connected to this external vibration detection sensor pad. The output signal is subtracted by an analog subtraction circuit to eliminate vibrations and noise from external forces.
[0031] 請求の範囲 5に記載の生体信号検出装置は、生体活動により生じる体表面の音又 は Z及び圧変化を検出する生体信号検出用センサーパッドを、生体を横切るよう〖こ 複数配置すると共に、該センサーパッド内の空気圧の変化を感知するセンサーを各 々のセンサーパッドに接続し、これらのセンサー力もの出力信号を、アナログ信号切 り替え回路の切り替えタイミングと一個の AZD変換回路で AZD変換するタイミング と、を同期させることで、複数の生体信号データの内、時間が一致している真の生体 信号のみを加算し、反射等の擬似信号やノイズ等のランダムな信号は、加算によって 減衰させるように構成したことを特徴とする。  [0031] In the biological signal detection device according to claim 5, a plurality of biological signal detection sensor pads for detecting changes in sound or Z and pressure on the body surface caused by biological activity are arranged across the living body. At the same time, sensors that detect changes in air pressure within the sensor pad are connected to each sensor pad, and the output signals of these sensor powers are converted to analog signal switching circuit switching timing and a single AZD conversion circuit. By synchronizing the timing of conversion, only the true biological signal with the same time is added out of the multiple biological signal data, and pseudo signals such as reflection and random signals such as noise are added by addition. It is characterized by being configured to attenuate.
[0032] この場合、 AZD変換回路のサンプリング周波数とアナログ信号切り替え回路の切 り替えは、(生体信号の最高生体周波数成分 X 2倍の周波数 Xチャンネル数)の周 波数以上を用いることで、微妙な時間ずれによる誤差は、生体信号成分に比べて無 視できるレベルとすることができる。 [0033] 即ち、生体信号成分で最も高い周波数成分を持つものは心臓から発せられる心 音であり、例えば、心音に含まれる周波数成分を 10Hzとし、チャンネル数を 4とする とサンプリング周波数は、 [0032] In this case, the sampling frequency of the AZD conversion circuit and the switching of the analog signal switching circuit are subtle by using a frequency equal to or higher than (the highest biological frequency component of the biological signal X twice the frequency X number of channels). An error caused by a time lag can be set to a level that can be ignored compared to a biological signal component. [0033] That is, the biological signal component having the highest frequency component is a heart sound emitted from the heart. For example, if the frequency component contained in the heart sound is 10 Hz and the number of channels is 4, the sampling frequency is
[0034] 10 X 2 X 4 = 80Hz  [0034] 10 X 2 X 4 = 80Hz
以上となり、一般的な心拍の基本周期を 1Hzとすると AZD変換とアナログ信号切り 替え周波数は、 80倍以上のサンプリングレートとなり、微妙な時間ずれによる誤差は 無視できるレベルとすることができる。また、呼吸は心拍に比べてさらに遅い信号にな るため、誤差はさらに少なくなる。  As described above, assuming that the basic period of a general heartbeat is 1 Hz, the AZD conversion and analog signal switching frequency is more than 80 times the sampling rate, and errors due to subtle time shifts can be ignored. Also, since breathing is a slower signal than heartbeat, the error is even smaller.
[0035] また、請求の範囲 6に記載の生体信号検出装置は、請求の範囲 5に記載の生体信 号検出装置を技術的前提とし、前記生体信号検出用センサーパッドと共に、同様の 構成力 なる外部振動検出用センサーパッドを生体信号の影響を受けない場所に配 置し、この外部振動検出用センサーパッドには、内部の音又は Z及び空気圧の変化 を感知するセンサーを接続し、このセンサーからの出力信号を、アナログ減算回路で 減算処理することで、外部力もの振動やノイズを除去することを特徴とする。  Further, the biological signal detection device according to claim 6 is based on the technical premise of the biological signal detection device according to claim 5, and has the same configuration force as the biological signal detection sensor pad. An external vibration detection sensor pad is placed in a place that is not affected by biological signals, and a sensor that detects changes in internal sound or Z and air pressure is connected to this external vibration detection sensor pad. The output signal is subtracted by an analog subtraction circuit to eliminate vibrations and noise from external forces.
[0036] 請求の範囲 7に記載の生体信号検出装置は、請求の範囲 2又は請求の範囲 4又は 請求の範囲 6のいずれかに記載の生体信号検出装置を技術的前提とし、前記外部 振動検出用センサーパッドは、体表面の音又は Z及び圧変化を検出するセンサー ノ^ドと同一面に配置し、かつ生体信号の影響を受けない場所に配置したことを特 徴とする。  [0036] The biological signal detection device according to claim 7 is based on the technical premise of the biological signal detection device according to any one of claims 2, 4 and 6, and the external vibration detection. The sensor pad for medical use is placed on the same surface as the sensor node that detects changes in sound or Z and pressure on the body surface, and is placed in a place that is not affected by biological signals.
[0037] 例えば、目的とする生体信号をベッド上で計測する場合、前記外部振動検出用セ ンサーパッドは生体が直接当らない場所、例えば足の付近や頭より上の位置に置く ことが望ましい。また、計測する場所が椅子の場合は、同一面が限られるため、尻部 が当らない背もたれの下や裏側に配置することで外部振動を検出することができる。 勿論、万一、天地を逆に配置した場合は振動位相が逆転するので補正をする必要 がある。  [0037] For example, when a target biological signal is measured on a bed, the external vibration detection sensor pad is preferably placed in a place where the living body does not directly hit, for example, near the foot or above the head. In addition, when the measurement location is a chair, the same surface is limited, so external vibrations can be detected by placing it under the backrest or backside where the buttocks do not hit. Of course, if the top and bottom are arranged upside down, the vibration phase will be reversed, so correction is required.
[0038] 請求の範囲 8に記載の生体信号検出装置は、請求の範囲 7に記載の生体信号検 出装置を技術的前提とし、前記外部振動検出用センサーパッドの表面には、錘体を 置くことを特徴とする。 [0039] 請求の範囲 9に記載の生体信号検出装置は、請求の範囲 1乃至請求の範囲 8のい ずれかに記載の生体信号検出装置を技術的前提とし、前記周期算出結果に、絶対 時刻と位置情報を付加することを特徴とする。 [0038] The biological signal detection device according to claim 8 is based on the technical premise of the biological signal detection device according to claim 7, and a weight is placed on the surface of the external vibration detection sensor pad. It is characterized by that. [0039] The biological signal detection device according to claim 9 is based on the technical premise of the biological signal detection device according to any one of claims 1 to 8, and the period calculation result includes an absolute time And positional information are added.
[0040] 請求の範囲 10に記載の生体信号検出装置は、請求の範囲 1乃至請求の範囲 9の いずれかに記載の生体信号検出装置を技術的前提とし、前記各生体信号検出用セ ンサーパッド又は外部振動検出用センサーパッドは、内部に発泡性榭脂並びに空気 を封入させて構成すると共に、これら各センサーパッド内の音又は Z及び空気圧の 変化は圧電センサーで感知させ、該圧電センサーは、センサーパッド側の空気圧を 保持しつつ、他側は大気に開放され、空気封入室側と大気開放側との圧力差を検 知することを特徴とする。  [0040] The biological signal detection device according to claim 10 is based on the technical premise of the biological signal detection device according to any one of claims 1 to 9, and each of the biological signal detection sensor pads or The sensor pad for detecting external vibration is configured by enclosing a foamed resin and air inside, and changes in sound or Z and air pressure in each sensor pad are detected by a piezoelectric sensor. While maintaining the air pressure on the pad side, the other side is opened to the atmosphere, and the pressure difference between the air enclosure chamber side and the atmosphere open side is detected.
[0041] 請求の範囲 11に記載の生体信号検出装置は、請求の範囲 10に記載の生体信号 検出装置を技術的前提とし、前記圧電センサーは、空気挿入室側大気側とを連通さ せる微細な孔を貫通形成し、空気挿入室側のエアーを、抵抗を持たせて抜くように構 成したことを特徴とする。  [0041] The biological signal detection device according to claim 11 is based on the technical premise of the biological signal detection device according to claim 10, and the piezoelectric sensor communicates with the air insertion chamber side atmosphere side. It is characterized in that a simple hole is formed so that air on the air insertion chamber side is pulled out with resistance.
[0042] 請求の範囲 12に記載の生体信号検出装置は、請求の範囲 11に記載の生体信号 検出装置を技術的前提とし、前記センサーパッド内には、板材が配設されていること を特徴とする。この板材としては、平板或は傾斜面を持つ板を用いることができる。  [0042] The biological signal detection device according to claim 12 is based on the technical premise of the biological signal detection device according to claim 11, and a plate material is disposed in the sensor pad. And As the plate material, a flat plate or a plate having an inclined surface can be used.
[0043] 請求の範囲 13に記載の生体信号検出装置は、請求の範囲 1乃至請求の範囲 12 のいずれかに記載の生体信号検出装置を技術的前提とし、前記センサーパッドとベ ットまたは椅子との間にシートを介装することを特徴とする。シートは、薄いものが好 適である力 厚いものを用いることもできる。  [0043] The biological signal detection device according to claim 13 is based on the technical premise of the biological signal detection device according to any one of claims 1 to 12, and the sensor pad and the bed or chair. A sheet is interposed between the two. A thick sheet can be used, and a thin sheet is suitable.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]この発明の生体信号検出装置の概略的な構成を示す説明図である。 FIG. 1 is an explanatory diagram showing a schematic configuration of a biological signal detection device of the present invention.
[図 2]図 1の装置を側面力も見た同センサーパッドの配置例を示す説明図である。  FIG. 2 is an explanatory view showing an example of the arrangement of the sensor pad when the apparatus of FIG.
[図 3]同生体信号検出装置に用いられるセンサーパッドの構成を示す説明図である。  FIG. 3 is an explanatory diagram showing a configuration of a sensor pad used in the biological signal detection device.
[図 4]同センサーパッドの図 3A— A線に沿う断面図である。  FIG. 4 is a sectional view of the sensor pad taken along line 3A-A in FIG.
[図 5]この発明の実施例 1に係る生体信号検出装置の概略的な構成を示すブロック 図である。 [図 6]この発明の実施例 2に係る生体信号検出装置の概略的な構成を示すブロック 図である。 FIG. 5 is a block diagram showing a schematic configuration of the biological signal detection apparatus according to Embodiment 1 of the present invention. FIG. 6 is a block diagram showing a schematic configuration of a biological signal detection apparatus according to Embodiment 2 of the present invention.
[図 7]この発明の実施例 3に係る生体信号検出装置の概略的な構成を示すブロック 図である。  FIG. 7 is a block diagram showing a schematic configuration of a biological signal detection apparatus according to Embodiment 3 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下、本発明を実施するための最良の形態例を、添付図面を用いて説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
[0046] 〔実施例 1〕 [Example 1]
[0047] この実施例 1に係る生体信号検出装置 1は、図 1乃至図 5に示すように、内部に発 泡性榭脂並びに空気が封入され、例えば寝具に配設され就寝者の生体活動により 生じる体表面の音又は Z及び圧変化を検出するセンサーパッド 2A, 2B, 2C, 2Dを 、生体 1 Aを横切るように複数、独立させて配置すると共に、該センサーパッド 2A, 2 B, 2C, 2D内の空気圧の変化を感知するセンサー(例えば圧電センサー) 3A, 3B, 3C, 3Dをこれらのセンサーパッド 2A, 2B, 2C, 2Dに接続し、このセンサー 3A, 3B , 3C, 3Dからの出力信号を信号処理回路 4A, 4B, 4C, 4Dで処理し、該処理され た信号を、 4個の AZD変換回路 5A, 5B, 5C, 5Dで AZD変換し、この AZD変換 結果を加減算回路 6で加算し、該加減算回路 6における加算結果を用いて周期算出 回路 7で周期を算出し、該周期算出回路 7で算出された周期を生体情報処理回路 8 で単位時間当りの心拍数 ·呼吸数 ·体動数やゆらぎデータに変換した後、これらの生 体情報に位置や時刻などの GPS情報を加えてデータ保存回路 12で保存するように 構成されている。勿論、単位時間当りデータに変換せずに、周期データを出力信号 として用いることちある。  [0047] As shown in Figs. 1 to 5, the biological signal detection apparatus 1 according to the first embodiment includes a foaming oil and air enclosed therein, and is disposed in a bedding, for example, and a biological activity of a sleeping person. A plurality of sensor pads 2A, 2B, 2C, 2D for detecting sound or Z and pressure changes on the body surface caused by the above are arranged independently across the living body 1A, and the sensor pads 2A, 2B, 2C , Sensors that detect changes in air pressure in 2D (eg piezoelectric sensors) 3A, 3B, 3C, 3D are connected to these sensor pads 2A, 2B, 2C, 2D, and from these sensors 3A, 3B, 3C, 3D The output signal is processed by the signal processing circuits 4A, 4B, 4C, and 4D, and the processed signal is AZD converted by the four AZD conversion circuits 5A, 5B, 5C, and 5D, and the result of the AZD conversion is added and subtracted by the circuit 6 And the period calculation circuit 7 calculates the period using the addition result in the addition / subtraction circuit 6, and the period calculation circuit 7 calculates the period. The biological information processing circuit 8 converts the measured period into heart rate, respiration rate, body movement rate, and fluctuation data per unit time, and then adds GPS information such as position and time to these biological information to save data. Configured to save at 12. Of course, periodic data may be used as an output signal without converting to data per unit time.
[0048] また、センサーとしては、圧電センサーをこの実施例では用いているが、公知の各種 空気圧の変化や音を電気に変換できるセンサー例えば、圧力センサー、ピエゾ素子 、マイクロホン、振動センサー等を用いることができる。  [0048] Although a piezoelectric sensor is used as the sensor in this embodiment, a sensor that can convert various known changes in air pressure and sound into electricity, such as a pressure sensor, a piezo element, a microphone, and a vibration sensor are used. be able to.
[0049] 尚、図 1中、符号 4A, 4B, 4C, 4D, 4Eは、この例では、信号増幅アンプ及び周 波数フィルターからなる信号処理回路である力 センサーの種類や信号によっては 信号増幅のみで処理される場合や信号の内容によっては各々の回路が必要ない場 合もある。 [0050] また、本生体信号検出装置 1は、上記構成に加え、生体情報を表示するためのデ ータ表示回路 11と、コンピュータとインターフェースするためのコンピュータインター フェース回路 10と、データを回線を介して送信するデータ通信回路 9と、から構成さ れている。 In FIG. 1, reference numerals 4A, 4B, 4C, 4D, and 4E in this example are signal processing circuits including a signal amplification amplifier and a frequency filter. Depending on the type and signal of the force sensor, only signal amplification is performed. Each circuit may not be necessary depending on the signal processing and signal contents. [0050] In addition to the above configuration, the biological signal detection device 1 includes a data display circuit 11 for displaying biological information, a computer interface circuit 10 for interfacing with a computer, and a data line. And a data communication circuit 9 for transmitting through the network.
[0051] データ保存回路 12は、メモリーゃノヽードディスクにカ卩ぇ交換可能なメディア 12A(S Dメモリーカード等)が接続され外部に取り出すこともできる。  [0051] The data storage circuit 12 can be taken out by connecting a medium 12A (SD memory card or the like) that can be exchanged to a memory node disk.
[0052] また、この実施例 1では、生体活動により生じる体表面の音又は Z及び圧変化を検 出する上記 4個のセンサーパッド 2A, 2B, 2C, 2Dと共に、同様の構成力 なる 1個 または複数の外部振動ノイズ検出用センサーパッド 2Eを生体信号の影響を受けない 場所に配置し、この外部振動検出用センサーパッド 2Eは、内部に発泡性榭脂並び に空気が封入され、該外部振動検出用センサーパッド 2E内の空気圧の変化を感知 する圧電センサー 3Eに接続し、この圧電センサー 3Eからの出力信号は、信号処理 回路 4Eにより信号処理された後、 AZD変換回路 5Eで AZD変換され、上記 4個の センサーパッド 2A, 2B, 2C, 2Dの AZD変換結果力 外部振動検出用センサーパ ッド 2Eが検出した AZD変換結果を同期させて加減算回路 6で減算することで、外部 力 の振動やノイズを除去するように構成されて 、る。  [0052] Further, in the first embodiment, together with the four sensor pads 2A, 2B, 2C, and 2D for detecting the sound or Z and pressure changes on the body surface caused by the biological activity, the same component force is provided. Alternatively, a plurality of external vibration noise detection sensor pads 2E are arranged in a place not affected by a biological signal, and the external vibration detection sensor pad 2E is filled with foamed resin and air inside, and the external vibration Connected to the piezoelectric sensor 3E that detects changes in air pressure in the sensor pad 2E for detection, the output signal from this piezoelectric sensor 3E is signal-processed by the signal processing circuit 4E, and then AZD-converted by the AZD conversion circuit 5E. AZD conversion result force of the four sensor pads 2A, 2B, 2C, 2D The AZD conversion result detected by the external vibration detection sensor pad 2E is synchronized and subtracted by the adder / subtractor circuit 6 to reduce the vibration of external force and Remove noise It is configured so that, Ru.
[0053] この外部振動検出用センサーパッド 2Eは、体表面の圧変化を検出するセンサーパ ッド 2A, 2B, 2C, 2Dと同一面に配置し、生体信号の影響を受けない場所、例えば、 図 1及び図 2に示すように足元力 離れた場所に配置される。  This external vibration detection sensor pad 2E is arranged on the same plane as the sensor pads 2A, 2B, 2C, 2D for detecting pressure changes on the body surface, and is not affected by a biological signal, for example, FIG. As shown in Fig. 1 and Fig. 2, it is placed at a location where the foot force is separated.
[0054] 尚、該外部振動検出用センサーパッド 2Eの表面には、板状の錘体 2Zを置くことで 、よりクリアな外部振動及びノイズを検出することができる。  Note that clearer external vibration and noise can be detected by placing a plate-like weight 2Z on the surface of the external vibration detection sensor pad 2E.
[0055] この錘体 2Zは、単位面積あたりの加重を、人間の標準体重と等しくすることより効果 的に外部力もの振動及びノイズを検出することができる。  [0055] This weight body 2Z can effectively detect vibration and noise caused by an external force by making the weight per unit area equal to the human standard weight.
[0056] ところで、上記センサーパッド 2A, 2B, 2C, 2Dの配置は、寝具の場合には肩部分  [0056] By the way, the arrangement of the sensor pads 2A, 2B, 2C, 2D is a shoulder portion in the case of bedding.
(2A) ·胸部分 (2B) ·腰部分 (2C) ·尻部分 (2D)に配置するのが望ましいが、椅子の 場合には太ももの下'尻分部 '腰'胸部分に配置するのが望ましい。  (2A) · Chest part (2B) · Waist part (2C) · Butt part (2D) is desirable, but in the case of a chair, it should be placed under the thigh 'butt part' 'waist' chest part Is desirable.
[0057] この実施例 1に用いられるセンサーパッド 2A, 2B, 2C, 2D及び 2Eには、図 3乃至 図 4に示すように、発泡ウレタン榭脂 22が充填されており、センサーパッド 2A, 2B, 2 C, 2D及び 2E内を一定の膨張状態を保つように構成されていると共に、センサーパ ッド 2A, 2B, 2C, 2D及び 2Eが外力により変形した後、該外力が作用しなくなつたと きに、素早く元の膨張状態に復元するように作用する。 [0057] The sensor pads 2A, 2B, 2C, 2D and 2E used in Example 1 are filled with foamed urethane resin 22 as shown in FIGS. 3 to 4, and the sensor pads 2A, 2B , 2 C, 2D, and 2E are configured to maintain a constant expansion state, and after the sensor pads 2A, 2B, 2C, 2D, and 2E are deformed by an external force, the external force stops working. It works to quickly restore the original expanded state.
[0058] また、上記センサーパッド 2A, 2B, 2C, 2D及び 2Eは、図 4に示すように、平面形 状が 2枚の表皮 23, 24で形成された矩形の袋状体で構成されており、その気密性が 保持されるように、両表皮 23, 24の周縁部が気密性を保持できる接着剤または超音 波接着で貼合されて形成されている。尚、このセンサーパッド 21の表皮 23, 24は、 例えば、ゴムや軟質合成樹脂等の気密性に優れた材質を用いるのが望ましぐまた、 より気密性を高めるためには、複数層で形成するのが望まし 、。  [0058] Further, the sensor pads 2A, 2B, 2C, 2D, and 2E are formed of a rectangular bag-like body formed of two skins 23 and 24 as shown in FIG. In order to maintain its airtightness, the peripheral portions of both epidermis 23 and 24 are formed by being bonded with an adhesive that can maintain airtightness or ultrasonic bonding. In addition, it is desirable to use materials having excellent airtightness such as rubber and soft synthetic resin for the skins 23 and 24 of the sensor pad 21, and in order to further improve the airtightness, it is formed of a plurality of layers. I hope to do it.
[0059] さらに、上記センサーパッド 2A, 2B, 2C, 2D及び 2Eの内部には、図 4に示すよう に、硬質の板材 28が配置され、この板材 28は、一方向に厚さ寸法が減少する楔状 に形成されている。勿論、この板材 28は、平板であっても構わない。このように構成 することで、センサーパッド 21を例えば、寝具と身体との間に配置した場合には、該 センサーパッド 21の可動側(表皮側)が身体側に配置されるので、心臓の心音や呼 吸による体表面の変化に伴う空気の圧力変化をセンサーパッド 2A, 2B, 2C, 2Dで 確実に採取することができ、その結果、センサーパッド 2A, 2B, 2C, 2Dの感度を良 好なものとすることができると共に、該センサーノッド 2A, 2B, 2C, 2Dを寝具と身体 の間に挿入して身体に装着した場合、該センサーパッド 2A, 2B, 2C, 2Dの可動側 は、凹凸がある身体部分であっても、上記板材 28によって可動側が身体方向に自然 に押し付けられて身体に密着するので、心音及び Z又は呼吸波形の検出感度をより 向上させることができる。勿論、上記センサーパッド 2A, 2B, 2C, 2Dとベット 4または 椅子との間に薄い板状のシート(図示せず)を介装することで生体信号の検出感度を 上げ、より正確な計測を行うことができる。  [0059] Further, inside the sensor pads 2A, 2B, 2C, 2D and 2E, as shown in FIG. 4, a hard plate 28 is disposed, and the thickness of the plate 28 is reduced in one direction. It is formed in a wedge shape. Of course, the plate material 28 may be a flat plate. With this configuration, when the sensor pad 21 is disposed between the bedding and the body, for example, the movable side (skin side) of the sensor pad 21 is disposed on the body side. The sensor pad 2A, 2B, 2C, 2D can reliably collect changes in air pressure due to changes in the body surface due to or breathing. As a result, the sensitivity of the sensor pads 2A, 2B, 2C, 2D is good. And when the sensor nodes 2A, 2B, 2C, 2D are inserted between the bedding and the body and attached to the body, the movable side of the sensor pads 2A, 2B, 2C, 2D is Even in an uneven body part, the movable member is naturally pressed in the direction of the body by the plate material 28 and is in close contact with the body, so that the detection sensitivity of heart sounds and Z or respiratory waveform can be further improved. Of course, by inserting a thin plate-like sheet (not shown) between the sensor pads 2A, 2B, 2C, 2D and the bed 4 or chair, the detection sensitivity of the biological signal is increased and more accurate measurement is possible. It can be carried out.
[0060] また、図 3に示すように、圧電センサー 3A, 3B, 3C, 3D, 3Eのセンサーパッド側 2 4Aを気密に保持し、他側 24Bは大気に開放するように構成することで、空気封入室 側と大気側とで圧力差が生じるように構成し、センサーパッド 2A, 2B, 2C, 2D加え られる生体 1 Aの心音や呼吸による微妙な圧力変化を確実に圧電センサー 3A, 3B , 3C, 3Dへと伝えることができるので、心拍信号及び Z又は呼吸信号を高出力で抽 出することができる。 In addition, as shown in FIG. 3, by configuring the sensor pads side 2 4A of the piezoelectric sensors 3A, 3B, 3C, 3D, and 3E to be airtight and the other side 24B to be open to the atmosphere, It is configured so that a pressure difference is generated between the air enclosure chamber side and the atmosphere side, and the sensor pad 2A, 2B, 2C, 2D is applied to the piezoelectric sensor 3A, 3B, Since it can be transmitted to 3C and 3D, the heart rate signal and Z or respiratory signal can be extracted at high output. Can be issued.
[0061] また、センサーパッド 2Eにカ卩えられる外部からの振動やノイズの微妙な圧力変化は 、外部振動用圧電センサー 3Eへと伝えられるので、生体信号検出に邪魔となる外部 振動と外来ノイズ成分を高出力で検出することができる。  [0061] In addition, subtle changes in pressure due to external vibration and noise that are trapped in the sensor pad 2E are transmitted to the external vibration piezoelectric sensor 3E, so external vibration and external noise that interfere with biological signal detection. Components can be detected with high output.
[0062] この外部振動及びノイズ検出用センサーパッドとセンサーは複数個用いて各所の 振動及びノイズを検出する方法はさらに有効である。  [0062] A method of detecting vibration and noise at various places by using a plurality of sensor pads and sensors for detecting external vibration and noise is more effective.
[0063] さらに、上記説明では、圧電センサー 3A, 3B, 3C, 3D, 3Eのセンサーパッド側 2 4Aを、気密を保持するように構成した場合を例にとり説明したが、圧電センサー 3A, 3B, 3C, 3D, 3Eが取り付けられたセンサ部 24Cの空気封入室側と大気側とを連通 させる微細な孔 24Dを貫通形成し、空気封入室側のエアーを、抵抗を持たせて抜け るように構成することで、押圧され収縮した発泡ウレタン榭脂 22が、気密状態では元 に戻らなくなるのを防止することができ、スムーズにセンサーパッド 2A, 2B, 2C, 2D 及び 2Eの膨らみ状態を元の状態に復帰させることができる。  Furthermore, in the above description, the case where the sensor pad side 2 4A of the piezoelectric sensors 3A, 3B, 3C, 3D, 3E is configured to be kept airtight has been described as an example, but the piezoelectric sensors 3A, 3B, Sensor unit with 3C, 3D, 3E attached 24C minute hole 24D that connects the air enclosure chamber side and the atmosphere side is formed so as to allow the air in the air enclosure chamber side to escape with resistance. By configuring, it is possible to prevent the urethane foam resin 22 that has been pressed and shrunk from returning to its original state in an airtight state, and smoothly swell the sensor pads 2A, 2B, 2C, 2D, and 2E. It can be returned to the state.
[0064] そして、この実施例 1では、上記したように、圧電素子 24は、上記パイプ 25の先端 部に連通接続されたセンサ部 24Cの室内 24Fに配設されており、上記室内を形成 する底部 24Eに開設されてなる穴部 24Bを、接着剤等を介して閉塞するように取り付 けられている。勿論、オーリング等を用いて閉塞するとさらに良い結果が得られる。  [0064] In Example 1, as described above, the piezoelectric element 24 is disposed in the chamber 24F of the sensor unit 24C connected to the tip of the pipe 25 to form the chamber. A hole 24B formed in the bottom 24E is attached so as to be closed with an adhesive or the like. Of course, better results can be obtained by occlusion using O-rings or the like.
[0065] このようにして検出された同センサーパッド 2A, 2B, 2C, 2Dで検出された生体信 号とセンサーパッド 2Eで検出された外部振動及びノイズ成分の信号は、図 5に示す ように、信号の周波数成分に応じて増幅アンプと周波数フィルタ一力 なる信号処理 回路 4A, 4B, 4C, 4Dで処理され、該処理された信号は、 4個の AZD変換回路 5A , 5B, 5C, 5D, 5Eで AZD変換されてデジタル信号化され、この AZD変換結果を 加減算回路 6で加減算処理され、該加減算回路 6における加減算結果を用いて周期 算出回路 7で周期を算出し、該周期算出回路 7で算出された周期を、生体情報処理 回路 8により周期データ出力又は Z及び単位時間当りの心拍数,呼吸数,体動数 ·ゆ らぎデータに変換される。  [0065] The biological signals detected by the sensor pads 2A, 2B, 2C, and 2D detected in this way and the external vibration and noise component signals detected by the sensor pad 2E are as shown in FIG. The signal processing circuit 4A, 4B, 4C, 4D, which is the power of the amplification amplifier and the frequency filter according to the frequency component of the signal, is processed by the four AZD conversion circuits 5A, 5B, 5C, 5D. , 5E is converted into a digital signal by the AZD conversion, and the addition / subtraction circuit 6 adds / subtracts the AZD conversion result, the period calculation circuit 7 calculates the period using the addition / subtraction result in the addition / subtraction circuit 6, and the period calculation circuit 7 The biological information processing circuit 8 converts the cycle calculated in step 4 into cycle data output or Z and heart rate, respiratory rate, body motion and fluctuation data per unit time.
[0066] また、上記 AZD変換回路 5A, 5B, 5C, 5D, 5Eは、変換開始トリガーを同期信号 発生回路 15から同時に受けて変換し、結果を加減算回路 6に出力し、その計算結果 を上記周期算出回路 7に出力する。 AZD変換回路 5A, 5B, 5C, 5Dで AZD変換 された生体信号成分から AZD変換回路 5Eで変換された外部振動及びノイズ成分 の変換結果を減算することで外部振動及びノイズの影響を除去するとともに、 AZD 変換回路 5A, 5B, 5C, 5Dで AZD変換された生体信号成分は、加算することで不 要な擬似信号を除去し生体信号のみを検出することができる。勿論、加算減算の順 序はどちらでも良い。 [0066] Further, the AZD conversion circuits 5A, 5B, 5C, 5D, and 5E receive conversion start triggers simultaneously from the synchronization signal generation circuit 15, convert them, output the results to the addition / subtraction circuit 6, and calculate the results. Is output to the period calculation circuit 7. The effect of external vibration and noise is removed by subtracting the conversion result of the external vibration and noise components converted by AZD conversion circuit 5E from the biological signal components AZD converted by AZD conversion circuits 5A, 5B, 5C, and 5D. The biological signal components AZD converted by the AZD conversion circuits 5A, 5B, 5C, and 5D can be added to remove unnecessary pseudo signals and detect only the biological signal. Of course, either order of addition and subtraction may be used.
[0067] 周期算出回路 7は、心拍及び呼吸の周期を算出し、生体情報処理回路 8で心拍- 呼吸数 ·体動数 ·ゆらぎ情報に変換される。  The cycle calculation circuit 7 calculates the cycle of heartbeat and respiration, and the biological information processing circuit 8 converts it into heartbeat-respiration rate / body motion rate / fluctuation information.
[0068] また、上記同期信号発生回路 15には、 GPS情報等の位置や高度情報と絶対時刻 情報を出力する位置 ·時刻発生回路 14が接続されており、生体データの AZD変換 の同期信号以外にも、生体情報処理 8に接続して基準時間に使用したり、データ保 存時刻の情報や位置情報にも使用する。  [0068] Further, the position / time generation circuit 14 for outputting the position and altitude information such as GPS information and the absolute time information is connected to the synchronization signal generation circuit 15, and other than the synchronization signal for the AZD conversion of the biological data. In addition, it is connected to the biological information processing 8 and used as a reference time, and is also used for data storage time information and position information.
[0069] 尚、上記生体信号の周期算出は、本発明者が先の国際出願 (PCTZJP03Z161 85及び PCTZJP03)の明細書に、その構成及び手順を記した方法と同様であるの で、その詳細な説明をここでは省略する。  [0069] Note that the calculation of the period of the biological signal is the same as the method in which the present inventor described the configuration and procedure in the specification of the earlier international application (PCTZJP03Z16185 and PCTZJP03). The description is omitted here.
[0070] 以上説明したように、この実施例 1に係る生体信号検出装置 1は、 4個の生体信号 データを常時同期させてリアルタイムで加算を行うことで、時間が一致している真の 生体信号のみが加算され、反射などの擬似信号やノイズなどのランダム信号は 4個 の生体信号データ間で時間のずれ (位相差)があるため、加算によって減衰される。 即ち、 4個のセンサーパッド 2A, 2B, 2C, 2Dと圧電センサー 3A, 3B, 3C, 3Dを使 い加算した場合は、真の生体信号は 4倍になり、他の信号は 1Z4のレベルとすること ができる。  [0070] As described above, the biological signal detection device 1 according to the first embodiment performs real-time addition by synchronizing the four biological signal data at all times, so that the true biological signal whose time is the same can be obtained. Only signals are added, and pseudo signals such as reflection and random signals such as noise are attenuated by addition because there is a time lag (phase difference) between the four pieces of biological signal data. In other words, if the four sensor pads 2A, 2B, 2C, and 2D and the piezoelectric sensors 3A, 3B, 3C, and 3D are added together, the true biological signal is quadrupled and the other signals are at the level of 1Z4. can do.
[0071] また、体が動くことによって出力される飽和信号 (大信号)は、体全体で同時に起こ ることは稀であり、複数の生体信号データを常時同期して加算することで、この飽和 信号を減少させることもできる。例えば、 4個のセンサーパッド 2A, 2B, 2C, 2Dと圧 電センサー 3A, 3B, 3C, 3Dを使用して生体信号検出を行う場合、圧電センサー 3 A, 3B, 3C, 3Dのうちの一つのセンサーに体動による大出力が生じても、他のセン サ一にはこの信号が出力されないので、これを加算することで 1Z4のレベルとするこ とができ、生体信号を検出するのに有害な体動による大出力をすばやく抑えることが できる。 [0071] In addition, the saturation signal (large signal) output by the movement of the body rarely occurs simultaneously in the entire body, and this saturation signal is obtained by always adding a plurality of biological signal data in synchronization. The signal can also be reduced. For example, when biosignal detection is performed using four sensor pads 2A, 2B, 2C, 2D and piezoelectric sensors 3A, 3B, 3C, 3D, one of the piezoelectric sensors 3A, 3B, 3C, 3D. Even if a large output occurs due to body movement in one sensor, this signal is not output to the other sensors. Therefore, it is possible to quickly suppress a large output due to a body movement that is harmful to detecting a biological signal.
[0072]  [0072]
〔実施例 2〕  Example 2
[0073] 図 6は、この発明の実施例 2に係る生体信号検出装置 1を示しており、該生体信号 検出装置 1は、圧電センサー 3A, 3B, 3C, 3Dからの出力信号をデジタル信号に変 換することなぐアナログ信号のまま加算する加減算処理するように構成した他は、他 の構成及び作用は、実施例 1と同様であるので、実施例 1と同様な構成部分につい ては、実施例 1と同一の符号を付して、その詳細な説明をここでは省略する。  FIG. 6 shows a biological signal detection apparatus 1 according to Embodiment 2 of the present invention. The biological signal detection apparatus 1 converts the output signals from the piezoelectric sensors 3A, 3B, 3C, and 3D into digital signals. Since the other configuration and operation are the same as in the first embodiment except that the addition / subtraction processing is performed to add the analog signal without conversion, the same components as in the first embodiment are implemented. The same reference numerals as those in Example 1 are attached, and detailed description thereof is omitted here.
[0074] 即ち、この実施例 2に係る生体信号検出装置 1は、生体活動により生じる体表面の 音又は Z及び圧変化を検出するセンサーパッド 2A, 2B, 2C, 2Dと、該センサーパ ッド 2A, 2B, 2C, 2D内の空気圧の変化を感知する圧電センサー 3A, 3B, 3C, 3D と、これらの圧電センサー 3A, 3B, 3C, 3Dからの出力信号をアナログ信号のまま加 算するアナログ加減算回路 16と、該アナログ加減算回路 16からの信号を AZD変換 する一個の AZD変換回路 6と、この AZD変換結果を用いて周期を計算する周期 算出回路 7と、該周期算出回路 7で算出された周期を単位時間当りの心拍数,呼吸 数'体動数やゆらぎ情報等に変換する生体情報処理回路 8と、これらの生体情報を 保存するデータ保存回路 12と、生体情報を表示するためのデータ表示回路 11と、コ ンピュータとインターフェースするためのコンピュータインターフェース回路 10と、デ ータを回線を介して送信するデータ通信回路 9と、から構成されている。データ保存 回路 12は、メモリ一やハードディスクに加え交換可能なメディア 12A (SDメモリー力 ード等)が接続され外部に取り出すこともできる。  That is, the biological signal detection apparatus 1 according to the second embodiment includes sensor pads 2A, 2B, 2C, and 2D that detect changes in sound or Z and pressure on the body surface caused by biological activity, and the sensor pad 2A. , 2B, 2C, 2D Piezoelectric sensors 3A, 3B, 3C, 3D that sense changes in air pressure, and analog add / subtract that adds the output signals from these piezoelectric sensors 3A, 3B, 3C, 3D as analog signals The circuit 16, one AZD conversion circuit 6 that performs AZD conversion on the signal from the analog addition / subtraction circuit 16, a period calculation circuit 7 that calculates a period using the AZD conversion result, and the period calculation circuit 7 Biological information processing circuit 8 that converts the cycle into heart rate per unit time, respiratory rate 'body motion number, fluctuation information, etc., data storage circuit 12 that stores these biological information, and data for displaying biological information Display circuit 11, computer and interface A computer interface circuit 10 for transmitting data and a data communication circuit 9 for transmitting data via a line. The data storage circuit 12 is connected to a replaceable medium 12A (SD memory card, etc.) in addition to the memory and the hard disk, and can be taken out to the outside.
[0075] このように、この実施例 2に係る生体信号検出装置 1では、複数の生体信号をアナ ログ信号のまま加算処理するように構成したので、実施例 1では複数チャンネル分必 要であった AZD変換回路を一つにすることができ、回路を簡略化し低コストで装置 を実現することができる。また、複数の生体信号を簡単に完全に同期させて常時リア ルタイムで加算することで、時間が一致して 、る本物の生体信号のみがプラスされ、 体内の反射による擬似信号やノイズ等のランダムな信号は、複数の生体信号データ 間で時間のずれ (位相ずれ)があるため、アナログ信号に於いても加算によって減衰 されることは実施例 1と同様である。 As described above, the biological signal detection apparatus 1 according to the second embodiment is configured to perform addition processing on a plurality of biological signals as analog signals, and therefore, in the first embodiment, a plurality of channels are necessary. The AZD conversion circuit can be integrated into one, and the circuit can be simplified and the device can be realized at low cost. In addition, by simply synchronizing multiple biological signals easily and adding them in real time at all times, only the real biological signals with the same time are added, and random signals such as pseudo signals and noise due to internal reflections are added. Multiple signals are multiple biological signal data Since there is a time lag (phase lag) between them, the analog signal is attenuated by addition as in the first embodiment.
[0076] 勿論、この実施例 2でも、生体活動により生じる体表面の音又は Z及び圧変化を検 出する上記 4個のセンサーパッドと共に、同様の構成力 なる 1個または複数の外部 振動及びノイズ検出用センサーパッド 2Eを生体信号の影響を受けない場所に配置 し、この外部振動検出用センサーパッド 2Eで検出された信号も、上記と同様に、アナ ログ信号のまま減算するアナログ加減算回路 16によって同期させて常時リアルタイム で減算することで、外部からの振動やノイズを除去し、クリアな生体信号を得ることが できる。 Of course, also in this Example 2, one or a plurality of external vibrations and noises having the same constitutional force as well as the above four sensor pads for detecting changes in body surface sound or Z and pressure caused by biological activity. The sensor pad 2E for detection is placed in a place where it is not affected by the biological signal, and the signal detected by the sensor pad 2E for external vibration detection is also subtracted from the analog signal by the analog addition / subtraction circuit 16 as described above. By synchronizing and subtracting in real time at all times, it is possible to remove external vibration and noise and obtain a clear biological signal.
[0077] また、 GPS情報等の位置や高度情報と絶対時刻情報を出力する位置 ·時刻発生 回路 13が接続されており、生体データの AZD変換の同期信号以外にも、生体情報 処理 8に接続して基準時間に使用したり、データ保存時刻の情報や位置情報にも使 用することは実施例 1と同様であるので、ここではその詳細な説明を省略する。  [0077] Also, a position / time generation circuit 13 for outputting the position of GPS information, altitude information and absolute time information is connected, and connected to the biological information processing 8 in addition to the AZD conversion synchronization signal of the biological data. Since it is the same as in the first embodiment that it is used for the reference time, and also used for data storage time information and location information, detailed description thereof is omitted here.
[0078]  [0078]
〔実施例 3〕  Example 3
[0079] 図 7は、この発明の実施例 3に係る生体信号検出装置 1を示しており、この実施例 3 に係る生体信号検出装置 1は、一個の AZD変換回路を用いて、 AZD変換するタイ ミングとアナログ信号切り替え回路とを同期させることで、複数の生体信号データを加 算し、時間が一致している真の生体信号のみを加算し、反射等の擬似信号やノイズ 等のランダムな信号は、加算によって減衰するように構成して 、る。  FIG. 7 shows a biological signal detection apparatus 1 according to Embodiment 3 of the present invention. The biological signal detection apparatus 1 according to Embodiment 3 performs AZD conversion using a single AZD conversion circuit. By synchronizing the timing with the analog signal switching circuit, it adds multiple biological signal data, adds only the true biological signal with the same time, and generates random signals such as reflection and noise. The signal is configured to be attenuated by addition.
[0080] 即ち、アナログ信号切り替え回路 17で各圧電センサー 3A乃至 3D毎に  That is, in the analog signal switching circuit 17, for each of the piezoelectric sensors 3A to 3D,
最高生体周波数 X 2倍の周波数 Xチャンネル数  Maximum biological frequency X 2 times frequency X number of channels
以上の周波数を用いて AZD変換のサンプリングレートと切り替えタイミングを同期( ずらす)させるように構成した他は、他の構成及び作用は、実施例 1又は実施例 2と 同様であるので、実施例 1又は実施例 2と同様な構成部分については、実施例 1又 は実施例 2と同一の符号を付して、その詳細な説明をここでは省略する。  Since the other configurations and operations are the same as those in the first or second embodiment except that the AZD conversion sampling rate and the switching timing are synchronized (shifted) using the above frequencies, the first embodiment is similar to the first embodiment. Alternatively, the same components as those of the second embodiment are denoted by the same reference numerals as those of the first or second embodiment, and detailed description thereof is omitted here.
[0081] 即ち、この実施例 3に係る生体信号検出装置 1は、生体活動により生じる体表面の 音又は Z及び圧変化を変化を検出するセンサーパッド 2A, 2B, 2C, 2Dと、該セン サーパッド 2A, 2B, 2C, 2D内の空気圧の変化を感知する圧電センサー 3A, 3B, 3 C, 3Dと、これらの圧電センサー 3A, 3B, 3C, 3Dからの出力信号を、信号処理回 路 4A、 4B、 4C, 4Dを介して、アナログ信号切り替え回路 17と、 1個の AZD変換回 路 5と、この AZD変換結果を加減算処理する加減算回路 6と、この加減算処理され た AZD変換結果を用いて周期を計算する周期算出回路 7と、該周期算出回路 7で 算出された周期を単位時間当りの心拍,呼吸数'体動数やゆらぎデータ等に変換す る生体情報処理回路 8と、生体情報を表示するためのデータ表示回路 11と、これら の生体情報を保存するデータ保存回路 12と、コンピュータとインターフェースするた めのコンピュータインターフェース回路 10と、データを回線を介して送信するデータ 送信回路 9と、力も構成されている。データ保存回路 12は、メモリーゃノヽードディスク に加え交換可能なメディア 12A (SDメモリー等)が接続され外部に取り出すこともで きる。 That is, the biological signal detection apparatus 1 according to the third embodiment includes sensor pads 2A, 2B, 2C, and 2D that detect changes in sound or Z and pressure changes on the body surface caused by biological activity, and the sensors. Piezoelectric sensors 3A, 3B, 3C, 3D that detect changes in air pressure in the Serpad 2A, 2B, 2C, 2D and output signals from these piezoelectric sensors 3A, 3B, 3C, 3D 4B, 4C, and 4D, the analog signal switching circuit 17, one AZD conversion circuit 5, the addition / subtraction circuit 6 for adding / subtracting the AZD conversion result, and the addition / subtraction processed AZD conversion result are used. A cycle calculation circuit 7 for calculating the cycle, a biological information processing circuit 8 for converting the cycle calculated by the cycle calculation circuit 7 into heart rate, respiratory rate 'body motion number, fluctuation data, etc. per unit time; A data display circuit 11 for displaying information, a data storage circuit 12 for storing such biological information, a computer interface circuit 10 for interfacing with a computer, and a data transmission circuit 9 for transmitting data via a line 9 And force is also composed It is. The data storage circuit 12 is connected to a memory 12A in addition to a memory disk and can be taken out externally.
[0082] そして、この実施例 3に係る生体信号検出装置 1では、アナログ信号切り替え回路 1 7と一個の AZD変換回路 5を用いて、複数のセンサーパッド 2A乃至 2Dから出力さ れるアナログ信号の切り替えタイミングと AZD変換するタイミングとを、圧電センサー 3A乃至 3D毎に、前記 (最高生体信号周波数 X 2倍の周波数 Xチャンネル数)以上 の周波数を用いて、サンプリングと切り替えタイミングをずらすように構成されて 、る。 勿論、 AZD変換のサンプリング周波数も、(最高生体信号周波数 X 2倍の周波数 X チャンネル数)より高 、周波数を用いて行って 、る。  Then, in the biological signal detection apparatus 1 according to the third embodiment, the analog signal switching circuit 17 and one AZD conversion circuit 5 are used to switch the analog signals output from the plurality of sensor pads 2A to 2D. The timing and the timing for AZD conversion are configured so that the sampling and switching timings are shifted for each of the piezoelectric sensors 3A to 3D using a frequency equal to or higher than the above (maximum biological signal frequency X 2 times frequency X number of channels). RU Of course, the sampling frequency of the AZD conversion is also higher than (the maximum biological signal frequency x 2 times the frequency x the number of channels).
[0083] 具体的には、生体信号の最も高い周波数成分を持つ心音信号の最高周波数成分 を、例えば 10Hzとし、チャンネル数を 4チャンネルとした場合、  [0083] Specifically, when the highest frequency component of the heart sound signal having the highest frequency component of the biological signal is 10 Hz, for example, and the number of channels is 4 channels,
10 X 2 X 4 = 80Hz  10 X 2 X 4 = 80Hz
以上の周波数となり、 80Hz以上の周波数でアナログ信号を切り替え、複数の生体信 号データを一個の AZD変換回路 5と同期させて AZD変換し、変換結果を全てカロ 算を行うことで、時間が一致している真の生体信号のみがプラスされ、反射等の擬似 信号やノイズ等のランダムな信号は、複数の生体信号データ間で時間のずれがある ため、加算によって減衰される。  By switching analog signals at a frequency of 80 Hz or more, synchronizing multiple biological signal data with one AZD conversion circuit 5 and performing AZD conversion, and performing all the conversion results, the time is reduced. Only the true biological signal is added, and pseudo signals such as reflection and random signals such as noise are attenuated by addition because there is a time lag between multiple pieces of biological signal data.
[0084] このように構成することにより、複数個必要だった AZD変換回路を一個で済ますこ とができ、回路を簡略ィ匕し低コストでこの種の装置を提供することができる。 [0084] With this configuration, a single AZD conversion circuit can be used. Therefore, this type of device can be provided at a low cost by simplifying the circuit.
[0085] このため、この実施例 3では、 AZD変換器 5のトリガータイミングとアナログ切り替え 回路 17の切り替えタイミングを同期させるための同期調整回路 18を用いており、該 同期調整回路 18は、上記 AZD変換回路 5とアナログ信号切り替え回路 17と同期す るように構成されている。  Therefore, in the third embodiment, the synchronization adjustment circuit 18 for synchronizing the trigger timing of the AZD converter 5 and the switching timing of the analog switching circuit 17 is used. It is configured to synchronize with the conversion circuit 5 and the analog signal switching circuit 17.
[0086] 勿論、この実施例 3でも、生体活動により生じる体表面の音又は Z及び圧変化を検 出する上記 4個のセンサーパッドと共に、同様の構成力 なる 1個の外部振動及びノ ィズ検出用センサーパッド 2Eを生体信号の影響を受けな 、場所に配置し、この外部 振動検出用センサーパッド 2Eで検出された生体信号も、上記と同様に、アナログ信 号切り替え回路 17によって切り替え、 AZD変換後、減算することで、外部からの振 動やノイズを除去し、クリアな生体信号を得ることができる。  [0086] Of course, also in this Example 3, one external vibration and noise having the same constitutional force are used together with the above four sensor pads for detecting changes in sound or Z and pressure on the body surface caused by the biological activity. The sensor pad 2E for detection is placed at a place not affected by the biological signal, and the biological signal detected by the sensor pad 2E for detecting external vibration is also switched by the analog signal switching circuit 17 in the same manner as described above. By subtracting after conversion, external vibration and noise can be removed and a clear biological signal can be obtained.
[0087] また、実施例 2と実施例 3を併用させたような回路構成も用いることができる。例えば 、複数個のセンサーパッドと同数のセンサーを用い、 2チャンネルの生体信号はアナ ログ信号のまま加算し、残りの 3チャンネルの生体信号は 1個の AZD変換回路とァ ナログ信号切り替え回路を同期させて動作させることで同様の効果を得ることもでき る。  Further, a circuit configuration in which Example 2 and Example 3 are used in combination can also be used. For example, using the same number of sensors as multiple sensor pads, 2 channels of biological signals are added as analog signals, and the remaining 3 channels of biological signals are synchronized with one AZD conversion circuit and analog signal switching circuit. The same effect can be obtained by operating in the same manner.
産業上の利用可能性  Industrial applicability
[0088] 請求の範囲 1に記載の生体信号検出装置は、以上説明したように、生体活動により 生じる体表面の音又は Z及び圧変化を検出する生体信号検出用センサーパッドを、 生体を横切るように複数配置すると共に、該センサーパッド内の空気圧の変化を感 知するセンサーを各々のセンサーパッドに接続し、このセンサーからの出力信号を複 数の AZD変換回路で AZD変換し、この AZD変換結果を加算手段でリアルタイム 加算し、この加算結果を用いて周期算出手段で周期を算出して該算出周期をそのま ま外部へとデータ出力し、又は Z及び単位時間当りの心拍数,呼吸数,体動数,ゆら ぎに変換手段で変換するように構成したので、時間の遅れなく生体の各所で発生し ている生体情報の中から本物の生体信号を瞬時に検出することができる。  [0088] As described above, the biological signal detection device according to claim 1 crosses the living body through the biological signal detection sensor pad that detects changes in sound or Z and pressure on the body surface caused by the biological activity. A sensor that senses changes in air pressure within the sensor pad is connected to each sensor pad, and the output signal from this sensor is AZD converted by multiple AZD conversion circuits. Is added in real time by the adding means, the period is calculated by the period calculating means using the addition result, and the calculation period is output to the outside as it is, or the heart rate, respiratory rate, Since it is configured to convert the number of body movements and fluctuations by the conversion means, real biological signals can be instantaneously detected from biological information generated in various parts of the living body without time delay.
[0089] 生体信号の発生源は本来ひとつであるにも関わらず、血管や骨等を伝わって生体 内部では各所で多くの擬似信号と生体活動によるノイズが発生している。この発明で は、これらの擬似信号とノイズの中から真の生体信号を、上記構成から取り出すため 、複数のセンサーから採取される生体信号の値を、記憶装置を用いることなぐリアル タイムで常時加算することによって、生体の各所で発生している生体情報の中から本 物の生体信号を取り出し、結果として生体信号の周期算出精度を向上させることが できる。 [0089] Although there is essentially only one source of biological signals, many pseudo signals and noise due to biological activities are generated in various parts of the living body through blood vessels and bones. In this invention In order to extract a true biological signal from these pseudo signals and noise from the above configuration, the values of biological signals collected from a plurality of sensors are always added in real time without using a storage device. Thus, it is possible to extract a real biological signal from biological information generated in various parts of the biological body, and as a result, improve the cycle calculation accuracy of the biological signal.
[0090] 特に、心拍や呼吸などの生体信号は、我々が利用している時計の周期とは無関係 な自律的周期を持って活動しており、基本的に相関性がないため、一定時間計測デ ータを保存し比較する方法では真の生体信号を抽出することはむずかしい。  [0090] In particular, biological signals such as heartbeat and respiration are active with an autonomous period that is unrelated to the period of the clock we are using, and are basically uncorrelated. It is difficult to extract a true biological signal by the method of storing and comparing data.
[0091] このため、この発明にあっては、一定時間計測データを保存し比較するためのタイ マー回路やメモリー回路を使用せず、複数の生体信号をリアルタイムで常時加算す る手段を用いて相関性のある真の生体信号を抽出することができ、かつ待ち時間なく 必要とされる必要な生体情報を正確に出力したり表示することができる。  Therefore, in the present invention, a means for constantly adding a plurality of biological signals in real time without using a timer circuit or a memory circuit for storing and comparing measurement data for a certain period of time is used. Correlated true biological signals can be extracted, and necessary biological information required without waiting can be output and displayed accurately.
[0092] また、この発明にあっては、計測中に体を動かすことによって生じる大きな体動信号 も、この手段で軽減することもできる。  In the present invention, a large body movement signal generated by moving the body during measurement can also be reduced by this means.
[0093] 次に、請求の範囲 2に記載の生体信号検出装置は、請求の範囲 1に記載の生体信 号検出装置において、前記複数の生体信号検出用センサーパッドと共に、同様の構 成力 なる外部振動検出用センサーパッドを生体信号の影響を受けない場所に配置 し、この外部振動検出用センサーパッドには、内部の空気圧の変化を感知するセン サーを接続し、このセンサーからの出力信号を AZD変換回路で AZD変換し、前記 複数の生体信号検出用センサーパッドの AZD変換結果力 外部振動検出用セン サーパッドの AZD変換結果を減算手段で減算することで、外部からの振動やノイズ を除去するように構成し、複数のセンサーパッドとは別に独立したセンサーパッドを生 体が直接触れない場所に配置し、そこ力も得られるセンサー出力を他のセンサー出 力からリアルタイムで常時減算することで、外部からの振動とノイズを除去しクリアな生 体信号を検出するため、結果として生体情報の算出精度を高めることができ、今まで の装置では測定が不可能だった外来のノイズや振動が存在する自動車乗車中であ つても、周期データを出力したり、呼吸数'心拍数 ·体動数 ·ゆらぎデータを正確に計 測し検出することができる。 [0094] 請求の範囲 3に記載の生体信号検出装置は、生体活動により生じる体表面の音又 は Z及び圧変化を検出する生体信号検出用センサーパッドを、生体を横切るよう〖こ 複数配置すると共に、該センサーパッド内の空気圧の変化を感知するセンサーを各 々の生体信号検出用センサーパッドに接続し、これらの各センサー力もの出力信号 をアナログ信号のまま加算手段へと送ってリアルタイム加算し、該加算されたアナログ 信号を一個の AZD変換回路で AZD変換し、該 AZD変換された結果を用いて周 期算出手段で周期を算出し、この算出された周期をそのまま外部へとデータ出力し、 又は Z及び単位時間当りの心拍数,呼吸数 ·体動数 ·ゆらぎに変換手段で変換する ように構成したので、複数の生体信号データをアナログ信号のまま加算処理すること ができ、複数チャンネル分必要であった高価な AZD変換回路と周辺回路を一個に することができ、同時にメモリー回路も不要にでき、回路全体を簡略化し低コストで装 置を実現することができる。また、複数の生体信号データを生データのままリアルタイ ムで加算を行うことで、時間遅れがなく常に時間が一致している本物の生体信号の みが加算され、反射等の擬似信号やノイズ等のランダムな信号は、複数の生体信号 データ間で時間のずれがあるものは、加算によって減衰されるので、正確に真の生 体信号を検出することができる。また、メモリーを使用していないため一定時間を待つ 必要が無ぐリアルタイムで常時加算する手段を用いているため、必要とされる生体 信号の周期計算や情報処理に時間が力からないため、待ち時間無く迅速に該情報 を出力したり表示することもができる。 Next, the biological signal detection device according to claim 2 has the same configuration force as the biological signal detection device according to claim 1 together with the plurality of biological signal detection sensor pads. An external vibration detection sensor pad is placed in a place where it is not affected by biological signals. A sensor that detects changes in internal air pressure is connected to this external vibration detection sensor pad, and the output signal from this sensor is sent AZD conversion by AZD conversion circuit and subtracting AZD conversion result of sensor pads for external vibration detection by subtracting means to eliminate external vibration and noise In addition to multiple sensor pads, separate sensor pads are placed in a place where the living body does not touch them directly, and sensor output that can also be obtained is output to other sensor outputs. By subtracting in real time all the time, external vibration and noise are removed and clear biological signals are detected. As a result, the calculation accuracy of biological information can be improved, and measurement with conventional devices is impossible. Even when you are in a car with extraneous noise and vibration, you can output periodic data and accurately measure and detect respiratory rate (heart rate, body motion, fluctuation data). [0094] In the biological signal detection device according to claim 3, a plurality of biological signal detection sensor pads for detecting changes in sound or Z and pressure on the body surface caused by biological activity are arranged across the living body. At the same time, a sensor for detecting a change in air pressure in the sensor pad is connected to each sensor pad for detecting a biological signal, and the output signal of each sensor force is sent to the adding means as an analog signal and added in real time. The added analog signal is AZD converted by a single AZD conversion circuit, the period is calculated by the period calculation means using the result of the AZD conversion, and the calculated period is directly output to the outside as data. , Or Z and heart rate per unit time, respiratory rate · body motion · fluctuations are converted by the conversion means, so multiple biological signal data are added as analog signals. This makes it possible to combine expensive AZD conversion circuits and peripheral circuits that were required for multiple channels, and eliminate the need for memory circuits at the same time, simplifying the entire circuit and realizing equipment at low cost. it can. Also, by adding multiple biological signal data in real time with raw data, only real biological signals with no time delay and always the same time are added, and pseudo signals such as reflection and noise are added. In the case of random signals such as those having a time lag among a plurality of biological signal data, the true biological signal can be accurately detected because it is attenuated by addition. In addition, since no memory is used, there is no need to wait for a certain period of time, and a means for continuous addition in real time is used. The information can be output and displayed quickly without time.
[0095] 請求の範囲 4に記載の生体信号検出装置は、請求の範囲 3に記載の生体信号検 出装置を技術的前提とし、前記生体信号検出用センサーパッドと共に、同様の構成 力 なる外部振動検出用センサーパッドを生体信号の影響を受けない場所に配置し 、この外部振動検出用センサーパッドには、内部の音又は Z及び空気圧の変化を感 知するセンサーを接続し、このセンサー力もの出力信号を、アナログ減算回路で減算 処理することで、外部からの振動やノイズを除去するように構成したので、外部からの 影響を除去または軽減することができ、複数のセンサーパッドとは、別に独立したセ ンサーパッドを生体が直接触れない場所に配置し、そこから得られるセンサー出力を 他のセンサー出力からリアルタイムで常時減算することで外部力 の振動とノイズを 除去しクリアな生体信号を検出するため、結果として生体情報の算出精度を高めるこ とができ、今までの装置では測定が不可能だった外来のノイズや振動が存在する自 動車乗車中であっても、呼吸数'心拍数 ·体動数 ·ゆらぎデータを正確に計測し検出 することができる。 The biological signal detection device according to claim 4 is based on the technical premise of the biological signal detection device according to claim 3, and the external vibration having the same configuration force as the biological signal detection sensor pad. A sensor pad for detection is placed in a place where it is not affected by biological signals, and a sensor that detects changes in internal sound or Z and air pressure is connected to this sensor pad for detection of external vibration. By subtracting the signal with an analog subtraction circuit, it is configured to remove external vibration and noise, so the influence from the outside can be removed or reduced, independent of multiple sensor pads. The sensor pad is placed in a place where the living body does not touch it directly, and the sensor output obtained from it is constantly subtracted in real time from the other sensor outputs. The dynamic and noise As a result, it is possible to improve the accuracy of calculation of biological information because it detects a clear biological signal, and it is possible to increase the accuracy of calculating biological information. However, it is possible to accurately measure and detect the respiratory rate 'heart rate · body motion · fluctuation data.
[0096] 請求の範囲 5に記載の生体信号検出装置は、生体活動により生じる体表面の音又 は Z及び圧変化を検出する生体信号検出用センサーパッドを、生体を横切るよう〖こ 複数配置すると共に、該センサーパッド内の空気圧の変化を感知するセンサーを各 々のセンサーパッドに接続し、これらのセンサー力もの出力信号を、アナログ信号切 り替え回路の切り替えタイミングと一個の AZD変換回路で AZD変換するタイミング と、を同期させることで、複数の生体信号データの内、時間が一致している真の生体 信号のみを加算し、反射等の擬似信号やノイズ等のランダムな信号は、加算によって 減衰させるように構成したので、高価な AZD変換回路を一個とし、アナログ加減算 回路も省略することで、回路全体を簡略化し、低コストで装置を提供することができる  [0096] In the biological signal detection device according to claim 5, a plurality of biological signal detection sensor pads for detecting changes in sound or Z and pressure on the body surface caused by biological activity are arranged across the living body. At the same time, sensors that detect changes in air pressure within the sensor pad are connected to each sensor pad, and the output signals of these sensor powers are converted to analog signal switching circuit switching timing and a single AZD conversion circuit. By synchronizing the timing of conversion, only the true biological signal with the same time is added out of the multiple biological signal data, and pseudo signals such as reflection and random signals such as noise are added by addition. Since it is configured to attenuate, it is possible to provide a device at a low cost by simplifying the entire circuit by using one expensive AZD conversion circuit and omitting the analog addition / subtraction circuit. Can
[0097] 勿論、生体信号に比べ十分高い周波数、例えば 80Hz (最生体信号周波数 X 2倍 の周波数 Xチャンネル数)より高 、周波数を用いて AZD変換のサンプリングとタイミ ングの切り替えを行うことで、各チャンネルの生体信号はゆっくりとした信号 (最高でも 10Hz以下)であるため、このずれは無視できる範囲であり、その結果、生体信号の 検出精度を保ちながら、低コストで簡単な回路と部品で本装置を実現できる。 [0097] Of course, by switching the sampling and timing of AZD conversion using a frequency that is sufficiently higher than the biological signal, for example, higher than 80 Hz (frequency X channel number twice the maximum biological signal frequency X), The biological signal of each channel is a slow signal (at most 10 Hz or less), so this deviation is negligible. As a result, while maintaining the detection accuracy of the biological signal, it is possible to use low-cost and simple circuits and components. This device can be realized.
[0098] 請求の範囲 6に記載の生体信号検出装置は、前記複数の生体信号検出用センサ 一パッドと共に、同様の構成力 なる外部振動検出用センサーパッドを生体信号の 影響を受けない場所に配置し、この外部振動検出用センサーパッドには、内部の音 又は Z及び空気圧の変化を感知するセンサーを接続し、このセンサーからの出力信 号を、アナログ信号切り替え回路で順次切り替え、 AZD変換した後、減算処理する ことで、外部力 の振動やノイズを除去するように構成したので、体表面の音又は Z 及び圧変化を検出するセンサーパッドと同一条件下で外部振動及び外来ノイズを検 出することが可能になり、外部からのノイズを確実に除去することができ、結果として 生体情報の算出精度をより高めることができ、今までの装置では測定が不可能だつ た外来のノイズや振動が存在する自動車乗車中であっても、周期データを出力したり 、呼吸数'心拍数 ·体動数 ·ゆらぎデータを正確に計測し検出することができる。 [0098] In the biological signal detection device according to claim 6, along with the plurality of biological signal detection sensors, the external vibration detection sensor pad having the same structural force is disposed in a place not affected by the biological signal. The sensor pad for detecting external vibration is connected to a sensor that detects changes in internal sound or Z and air pressure, and the output signal from this sensor is sequentially switched by an analog signal switching circuit, and converted to AZD. Since it is configured to eliminate external force vibration and noise by subtracting, external vibration and external noise are detected under the same conditions as the sensor pad that detects changes in sound or Z and pressure on the body surface. It is possible to remove external noise reliably, and as a result, the calculation accuracy of biological information can be improved, and measurement with conventional devices is impossible. De Even when you are in a car with extraneous noise and vibration, you can output periodic data and accurately measure and detect respiratory rate (heart rate, body motion, fluctuation data).
[0099] 請求の範囲 7に記載の生体信号検出装置は、前記外部振動検出用センサーパッド は、体表面の音又は Z及び圧変化を検出するセンサーパッドと同一面に配置し、か つ生体信号の影響を受けない場所に配置したことで、減算処理に用いる外部振動や 外来のノイズを同一条件で正確に検出し、結果として外部振動や外来ノイズを除去 することができる。  [0099] In the biological signal detection device according to claim 7, the external vibration detection sensor pad is disposed on the same plane as the sensor pad for detecting a change in sound or Z and pressure on the body surface, and the biological signal is detected. By placing it in a place that is not affected by external noise, it is possible to accurately detect external vibration and external noise used in the subtraction process under the same conditions, and as a result, remove external vibration and external noise.
[0100] 請求の範囲 8に記載の生体信号検出装置は、前記外部振動検出用センサーパッド の表面に、錘体を置くことで、生体信号の無い生体 (ダミー)をセンサーパッドの上に 置いたと同様の効果となり、センサーの感度が高くなり、減算処理に用いる外部から の振動やノイズ信号をより高感度で検出し、結果として外部振動や外来ノイズを除去 することができる。  [0100] In the biological signal detection device according to claim 8, the living body (dummy) having no biological signal is placed on the sensor pad by placing a weight on the surface of the external vibration detection sensor pad. The same effect is achieved, the sensitivity of the sensor is increased, and external vibration and noise signals used in the subtraction process can be detected with higher sensitivity. As a result, external vibration and external noise can be removed.
[0101] 請求の範囲 9に記載の生体信号検出装置は、前記周期算出結果に、絶対時刻 (Y •D-H-M- S)と位置データ (GPS情報等)を付加したので、生体信号の検出位置と 時刻を同時に知ることができ、生体情報と同時に、必要なデータを保存することがで きる。車両等で移動中の生体信号の検出や測定に利用することができたり、別な場 所で、複数の実験を同時に行う場合など、開始時間を一致させることができ測定がよ り効率的になる。  [0101] The biological signal detection apparatus according to claim 9 adds the absolute time (Y • DHM-S) and position data (GPS information, etc.) to the period calculation result, The time can be known at the same time, and the necessary data can be saved simultaneously with the biological information. It can be used for detection and measurement of biological signals while moving in vehicles, etc., or when multiple experiments are performed simultaneously in different locations, so that the start times can be matched to make measurement more efficient. Become.
[0102] 請求の範囲 10に記載の生体信号検出装置は、前記各生体信号検出用センサー ノッド又は外部振動検出用センサーパッドは、内部に発泡性榭脂並びに空気を封入 させて構成すると共に、これら各センサーパッド内の音又は Z及び空気圧の変化は 圧電センサーで感知させ、該圧電センサーは、センサーパッド側の空気圧を保持し つつ、他側は大気に開放され、空気封入室側と大気開放側との圧力差を検知するよ うに構成したので、空気挿入室側と大気開放側との圧力差を利用して高出力'高感 度且つ応答速度の速い信号検出を実現することができる。また、高出力レベル信号 のため、ノイズに強く複雑な温度補正や利得補正も不要となり、設置場所を選ぶ必要 も無く低コストで取り扱いが簡単な生体信号装置を実現することができる。  [0102] In the biological signal detection device according to claim 10, each of the biological signal detection sensor nodes or the external vibration detection sensor pad is configured by enclosing a foamed resin and air inside, Changes in sound or Z and air pressure in each sensor pad are detected by a piezoelectric sensor. The piezoelectric sensor maintains the air pressure on the sensor pad side, while the other side is open to the atmosphere, and the air enclosure chamber side and the air open side Therefore, it is possible to realize signal detection with high output and high sensitivity and fast response speed by utilizing the pressure difference between the air insertion chamber side and the atmosphere open side. In addition, the high output level signal eliminates the need for complicated temperature correction and gain correction that are strong against noise, and it is possible to realize a biological signal device that is easy to handle at low cost without having to select an installation location.
[0103] 請求の範囲 11に記載の生体信号検出装置は、前記圧電センサーは、空気挿入室 側大気側とを連通させる微細な孔を貫通形成し、空気挿入室側のエアーを抵抗を持 たせて抜けるように構成したことで、密封構造のセンサーパッドを用いず、発泡性榭 脂の自己反発力を利用して常に安定した圧力をセンサーに送ることができる。また、 密封構造でないため大圧力による破裂や漏れの心配が無く構造的にも安価で安全 な生体信号装置を実現できる。 [0103] In the biological signal detection device according to claim 11, the piezoelectric sensor includes an air insertion chamber. By forming a fine hole that communicates with the atmosphere side, and allowing air in the air insertion chamber side to escape with resistance, a self-adhesive foamed resin can be used without using a sealed sensor pad. The repulsive force can be used to constantly send a stable pressure to the sensor. In addition, since it is not a sealed structure, there is no risk of rupture or leakage due to high pressure, and a biological signal device that is structurally inexpensive and safe can be realized.
[0104] 請求の範囲 12に記載の生体信号検出装置は、前記センサーパッド内に、板材を 挿入することで、生体信号検出の感度を上げることができる。例えば、ベットや椅子の 材料が柔らかかった場合による影響を防ぎ、高出力で安定した生体信号出力を得る ことができ、センサーパッドの設置場所もより自由になる。この板材は、平板或は傾斜 面を持つ板を用いることができる。  [0104] The biological signal detection device according to claim 12 can increase the sensitivity of biological signal detection by inserting a plate material into the sensor pad. For example, it is possible to prevent the influence caused by the soft material of the bed or chair, to obtain a stable biosignal output with a high output, and to further free the installation location of the sensor pad. As this plate material, a flat plate or a plate having an inclined surface can be used.
[0105] 請求の範囲 13に記載の生体信号検出装置は、前記センサーパッドとベットまたは 椅子との間にシートを介装したので、センサーパッドの感度とセンサー力もの出力信 号レベルを上げることができより高精度の検出が可能となるため生体の体型やベッド 等の素材の影響も受けに《なる効果がある。  [0105] In the biological signal detection device according to claim 13, since a seat is interposed between the sensor pad and the bed or chair, the output signal level corresponding to the sensitivity of the sensor pad and the sensor force can be increased. As a result, detection with higher accuracy is possible, and the effect of << is also received under the influence of the body shape of the living body and materials such as beds.

Claims

請求の範囲 The scope of the claims
[1] 生体活動により生じる体表面の音又は Z及び圧変化を検出する生体信号検出用セ ンサーパッドを、生体を横切るように複数配置すると共に、該センサーパッド内の空 気圧の変化を感知するセンサーを各々のセンサーパッドに接続し、このセンサーから の出力信号を複数の AZD変換回路で AZD変換し、この AZD変換結果を加算手 段でリアルタイム加算し、この加算結果を用いて周期算出手段で周期を算出して該 算出周期をそのまま外部へとデータ出力し、又は Z及び単位時間当りの心拍数-呼 吸数 ·体動数'ゆらぎに変換手段で変換するように構成したことを特徴とする生体信 号検出装置。  [1] A sensor for detecting a change in air pressure in the sensor pad while arranging a plurality of biological signal detection sensor pads for detecting a change in sound or Z and pressure on the body surface caused by biological activity across the living body. Is connected to each sensor pad, the output signal from this sensor is AZD converted by multiple AZD conversion circuits, the AZD conversion results are added in real time by the addition means, and the period is calculated by the period calculation means using the addition results. And the calculation cycle is directly output to the outside, or Z and the heart rate per unit time-inhalation number / body motion number fluctuation are converted by the conversion means. Biological signal detection device.
[2] 請求の範囲 1に記載の生体信号検出装置において、前記複数の生体信号検出用セ ンサーパッドと共に、同様の構成力もなる外部振動検出用センサーパッドを生体信号 の影響を受けない場所に配置し、この外部振動検出用センサーパッドには、内部の 空気圧の変化を感知するセンサーを接続し、このセンサーからの出力信号を AZD 変換回路で AZD変換し、前記複数の生体信号検出用センサーパッドの AZD変換 結果力 外部振動検出用センサーパッドの AZD変換結果を減算手段で減算するこ とで、外部力もの振動やノイズを除去することを特徴とする生体信号検出装置。  [2] In the biological signal detection device according to claim 1, in addition to the plurality of biological signal detection sensor pads, an external vibration detection sensor pad having a similar component force is disposed in a place not affected by the biological signal. The external vibration detection sensor pad is connected to a sensor that senses changes in the internal air pressure, and the output signal from this sensor is AZD converted by the AZD conversion circuit. Conversion result force A biological signal detection device that removes vibration and noise of external force by subtracting the AZD conversion result of the external vibration detection sensor pad by a subtraction means.
[3] 生体活動により生じる体表面の音又は Z及び圧変化を検出する生体信号検出用セ ンサーパッドを、生体を横切るように複数配置すると共に、該センサーパッド内の空 気圧の変化を感知するセンサーを各々の生体信号検出用センサーパッドに接続し、 これらの各センサーからの出力信号をアナログ信号のまま加算手段へと送ってリアル タイム加算し、該加算されたアナログ信号を一個の AZD変換回路で AZD変換し、 該 AZD変換された結果を用いて周期算出手段で周期を算出し、この算出された周 期をそのまま外部へとデータ出力し、又は Z及び単位時間当りの心拍数,呼吸数 ·体 動数'ゆらぎに変換手段で変換するように構成したことを特徴とする生体信号検出装 置。  [3] A sensor for detecting a change in air pressure in the sensor pad while arranging a plurality of biological signal detection sensor pads for detecting sound or Z and pressure changes on the body surface caused by biological activity across the living body. Connected to each sensor pad for detecting a biological signal, the output signals from each of these sensors are sent as analog signals to the adding means and added in real time, and the added analog signals are processed by one AZD conversion circuit. AZD conversion, and using the result of the AZD conversion, the cycle is calculated by the cycle calculation means, and the calculated cycle is output to the outside as it is, or the heart rate and respiratory rate per unit time and Z A biological signal detection apparatus configured to convert the number of motions to fluctuations by a conversion means.
[4] 前記生体信号検出用センサーパッドと共に、同様の構成からなる外部振動検出用セ ンサーパッドを生体信号の影響を受けない場所に配置し、この外部振動検出用セン サーパッドには、内部の音又は Z及び空気圧の変化を感知するセンサーを接続し、 このセンサー力もの出力信号を、アナログ減算回路で減算処理することで、外部から の振動やノイズを除去することを特徴とする請求の範囲 3に記載の生体信号検出装 置。 [4] An external vibration detection sensor pad having the same configuration as the above-described sensor pad for detecting a biological signal is arranged in a place not affected by the biological signal, and the external vibration detection sensor pad includes an internal sound or Connect sensors that detect changes in Z and air pressure, 4. The biological signal detection device according to claim 3, wherein the output signal having the sensor force is subjected to subtraction processing by an analog subtraction circuit to remove external vibration and noise.
[5] 生体活動により生じる体表面の音又は Z及び圧変化を検出する生体信号検出用セ ンサーパッドを、生体を横切るように複数配置すると共に、該センサーパッド内の空 気圧の変化を感知するセンサーを各々のセンサーパッドに接続し、これらのセンサー 力もの出力信号を、アナログ信号切り替え回路の切り替えタイミングと一個の AZD変 換回路で AZD変換するタイミングと、を同期させることで、複数の生体信号データの 内、時間が一致している真の生体信号のみを加算し、反射等の擬似信号やノイズ等 のランダムな信号は、加算によって減衰させるように構成したことを特徴とする請求の 範囲 3又は請求の範囲 4に記載の生体信号検出装置。  [5] A sensor for detecting a change in air pressure in the sensor pad while arranging a plurality of biological signal detection sensor pads for detecting sound or Z and pressure changes on the body surface caused by biological activity across the living body. Is connected to each sensor pad, and the output signal of these sensors is synchronized with the switching timing of the analog signal switching circuit and the timing of AZD conversion with one AZD conversion circuit, so that multiple biological signal data Or a pseudo signal such as a reflection or a random signal such as a noise is attenuated by the addition. The biological signal detection device according to claim 4.
[6] 前記生体信号検出用センサーパッドと共に、同様の構成からなる外部振動検出用セ ンサーパッドを生体信号の影響を受けない場所に配置し、この外部振動検出用セン サーパッドには、内部の音又は Z及び空気圧の変化を感知するセンサーを接続し、 このセンサー力もの出力信号を、アナログ減算回路で減算処理することで、外部から の振動やノイズを除去することを特徴とする請求の範囲 5に記載の生体信号検出装 置。 [6] An external vibration detection sensor pad having the same configuration as the above-described sensor pad for detecting a biological signal is disposed in a place not affected by the biological signal, and the external vibration detection sensor pad includes an internal sound or A sensor that detects changes in Z and air pressure is connected, and the output signal of this sensor force is subtracted by an analog subtraction circuit to eliminate external vibration and noise. The biological signal detection device described.
[7] 前記外部振動検出用センサーパッドは、体表面の音又は Z及び圧変化を検出する センサーパッドと同一面に配置し、かつ生体信号の影響を受けない場所に配置した ことを特徴とする請求の範囲 2又は請求の範囲 4又は請求の範囲 6のいずれかに記 載の生体信号検出装置。  [7] The sensor pad for detecting external vibration is arranged on the same surface as the sensor pad for detecting a change in sound or Z and pressure on the body surface, and is arranged in a place not affected by a biological signal. The biological signal detection device according to claim 2, claim 4, or claim 6.
[8] 前記外部振動検出用センサーパッドの表面には、錘体を置くことを特徴とする請求の 範囲 7に記載の生体信号検出装置。  8. The biological signal detection device according to claim 7, wherein a weight body is placed on the surface of the external vibration detection sensor pad.
[9] 前記周期算出結果に、絶対時刻と位置情報を付加することを特徴とする請求の範囲 1乃至請求の範囲 8のいずれかに記載の生体信号検出装置。  [9] The biological signal detection device according to any one of claims 1 to 8, wherein absolute time and position information are added to the period calculation result.
[10] 前記各生体信号検出用センサーパッド又は外部振動検出用センサーパッドは、内部 に発泡性榭脂並びに空気を封入させて構成すると共に、これら各センサーパッド内 の音又は Z及び空気圧の変化は圧電センサーで感知させ、該圧電センサーは、セ ンサーパッド側の空気圧を保持しつつ、他側は大気に開放され、空気封入室側と大 気開放側との圧力差を検知することを特徴とする請求の範囲 1乃至請求の範囲 9の いずれかに記載の生体信号検出装置。 [10] Each of the biological signal detection sensor pads or the external vibration detection sensor pads is configured by enclosing a foamed resin and air inside, and changes in sound or Z and air pressure in each of the sensor pads are not detected. The piezoelectric sensor senses the sensor. Any one of claims 1 to 9, wherein the air pressure on the sensor pad side is maintained, the other side is opened to the atmosphere, and a pressure difference between the air enclosure chamber side and the air release side is detected. The biological signal detection device according to 1.
[11] 前記圧電センサーは、空気挿入室側大気側とを連通させる微細な孔を貫通形成し、 空気挿入室側のエアーを、抵抗を持たせて抜くように構成したことを特徴とする請求 の範囲 10に記載の生体信号検出装置。 [11] The piezoelectric sensor is characterized in that a fine hole that communicates with the air insertion chamber side atmosphere side is formed so as to penetrate the air insertion chamber side air with resistance. The biological signal detection device according to claim 10.
[12] 前記センサーパッド内には、板材が配設されていることを特徴とする請求の範囲 11 に記載の生体信号検出装置。 12. The biological signal detection device according to claim 11, wherein a plate material is disposed in the sensor pad.
[13] 前記センサーパッドとベットまたは椅子との間にシートを介装することを特徴とする請 求の範囲 1乃至請求の範囲 12のいずれかに記載の生体信号検出装置。 [13] The biological signal detection device according to any one of claims 1 to 12, wherein a seat is interposed between the sensor pad and a bed or a chair.
PCT/JP2005/008804 2005-05-13 2005-05-13 Biosignal detecting device WO2006120754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/008804 WO2006120754A1 (en) 2005-05-13 2005-05-13 Biosignal detecting device
JP2006522834A JP4423481B2 (en) 2005-05-13 2005-05-13 Biological signal detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008804 WO2006120754A1 (en) 2005-05-13 2005-05-13 Biosignal detecting device

Publications (1)

Publication Number Publication Date
WO2006120754A1 true WO2006120754A1 (en) 2006-11-16

Family

ID=37396276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008804 WO2006120754A1 (en) 2005-05-13 2005-05-13 Biosignal detecting device

Country Status (2)

Country Link
JP (1) JP4423481B2 (en)
WO (1) WO2006120754A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518939A (en) * 2007-02-22 2010-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cardiac ballistic sensor system with sensor configuration and method for detecting ballistic movement of body movement
WO2012132967A1 (en) * 2011-03-29 2012-10-04 テルモ株式会社 Vital sign-measuring instrument
WO2013042465A1 (en) * 2011-09-21 2013-03-28 テルモ株式会社 Vital-sign-measuring instrument
WO2013046926A1 (en) * 2011-09-26 2013-04-04 テルモ株式会社 Vital-sign-measuring instrument
JP2019126540A (en) * 2018-01-24 2019-08-01 株式会社豊田中央研究所 Biological information detector
CN111065322A (en) * 2017-09-14 2020-04-24 欧姆龙健康医疗事业株式会社 Electrode unit for measuring pulse wave and pulse wave measuring device
CN113520451A (en) * 2021-06-18 2021-10-22 北京积水潭医院 Wearable respiratory sound acquisition system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630914A (en) * 1992-07-15 1994-02-08 Matsushita Electric Works Ltd Organismic signal detector
JPH06154179A (en) * 1992-11-25 1994-06-03 Matsushita Electric Ind Co Ltd Organism information processor
JPH06327653A (en) * 1993-05-19 1994-11-29 Matsushita Electric Ind Co Ltd Bedsore watching apparatus
JPH08322804A (en) * 1995-05-31 1996-12-10 Matsushita Electric Ind Co Ltd Biological signal detector
JP2005021331A (en) * 2003-07-01 2005-01-27 Sony Corp Apparatus and method for good sleep promotion
JP2005110969A (en) * 2003-10-08 2005-04-28 Yamatake Corp Biological information measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630914A (en) * 1992-07-15 1994-02-08 Matsushita Electric Works Ltd Organismic signal detector
JPH06154179A (en) * 1992-11-25 1994-06-03 Matsushita Electric Ind Co Ltd Organism information processor
JPH06327653A (en) * 1993-05-19 1994-11-29 Matsushita Electric Ind Co Ltd Bedsore watching apparatus
JPH08322804A (en) * 1995-05-31 1996-12-10 Matsushita Electric Ind Co Ltd Biological signal detector
JP2005021331A (en) * 2003-07-01 2005-01-27 Sony Corp Apparatus and method for good sleep promotion
JP2005110969A (en) * 2003-10-08 2005-04-28 Yamatake Corp Biological information measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518939A (en) * 2007-02-22 2010-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Cardiac ballistic sensor system with sensor configuration and method for detecting ballistic movement of body movement
WO2012132967A1 (en) * 2011-03-29 2012-10-04 テルモ株式会社 Vital sign-measuring instrument
WO2013042465A1 (en) * 2011-09-21 2013-03-28 テルモ株式会社 Vital-sign-measuring instrument
WO2013046926A1 (en) * 2011-09-26 2013-04-04 テルモ株式会社 Vital-sign-measuring instrument
CN111065322A (en) * 2017-09-14 2020-04-24 欧姆龙健康医疗事业株式会社 Electrode unit for measuring pulse wave and pulse wave measuring device
US11457828B2 (en) 2017-09-14 2022-10-04 Omron Corporation Pulse wave measurement electrode unit and pulse wave measurement device
JP2019126540A (en) * 2018-01-24 2019-08-01 株式会社豊田中央研究所 Biological information detector
CN113520451A (en) * 2021-06-18 2021-10-22 北京积水潭医院 Wearable respiratory sound acquisition system
CN113520451B (en) * 2021-06-18 2023-05-16 北京积水潭医院 Wearable breathing sound acquisition system

Also Published As

Publication number Publication date
JPWO2006120754A1 (en) 2008-12-18
JP4423481B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP4423481B2 (en) Biological signal detection device
US6254551B1 (en) Apparatus for monitoring a mechanically transmitted signal based on the organs or vital functions and for processing the results
Yang et al. Pulse transit time measurement using seismocardiogram, photoplethysmogram, and acoustic recordings: Evaluation and comparison
US5964720A (en) Method and system for monitoring the physiological condition of a patient
US5796340A (en) Motion monitor useful for sleeping humans
US20030220584A1 (en) Headset for measuring physiological parameters
US10842396B2 (en) Vibration waveform sensor and waveform analysis device
Hsu et al. Skin-coupled personal wearable ambulatory pulse wave velocity monitoring system using microelectromechanical sensors
US7048697B1 (en) Biological information collecting device comprising closed pneumatic sound sensor
US11426127B2 (en) Holding instrument, measurement apparatus and measurement method
KR101668304B1 (en) Bracelet type blood pressure monitor to reduce motion artifact
US11627884B2 (en) Blood pressure calculation method and device
JP2000107141A (en) Hemomanometer
JP2010119822A (en) Biological information detector
CA2290247A1 (en) Method and device for measuring systolic and diastolic blood pressure and heart rate in an environment with extreme levels of noise and vibrations
JP2006311951A (en) Blood pressure measuring apparatus
CA2426622A1 (en) Method and device for measuring systolic and diastolic blood pressure and heart rate in an environment with extreme levels of noise and vibrations
McCombie et al. Motion based adaptive calibration of pulse transit time measurements to arterial blood pressure for an autonomous, wearable blood pressure monitor
JPH0595913A (en) Improved device for monitoring blood vessel
Yang et al. Pulse transit time measurement using seismocardiogram and in-ear acoustic sensor
Watanabe et al. Ballistocardiogram (BCG) measurement by a differential pressure sensor
WO2020181452A1 (en) Signal acquisition sensor array, electronic device, and mattress
Dinh et al. A heart rate sensor based on seismocardiography for vital sign monitoring systems
JPH0833613A (en) Vital signal sampling and analyzing apparatus
Foo et al. Motion artefact reduction of the photoplethysmographic signal in pulse transit time measurement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006522834

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05739202

Country of ref document: EP

Kind code of ref document: A1