WO2006106690A1 - Acoustic signal processing device - Google Patents

Acoustic signal processing device Download PDF

Info

Publication number
WO2006106690A1
WO2006106690A1 PCT/JP2006/306337 JP2006306337W WO2006106690A1 WO 2006106690 A1 WO2006106690 A1 WO 2006106690A1 JP 2006306337 W JP2006306337 W JP 2006306337W WO 2006106690 A1 WO2006106690 A1 WO 2006106690A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal processing
terminal
output
processing device
Prior art date
Application number
PCT/JP2006/306337
Other languages
French (fr)
Japanese (ja)
Inventor
Moriyuki Oshima
Mitsuo Nakazato
Shigeki Kobayashi
Akira Shimizu
Osamu Yoshizawa
Koji Takano
Kunio Toyoda
Shinjiro Kato
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006106690A1 publication Critical patent/WO2006106690A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems

Definitions

  • the present invention relates to an acoustic signal processing device that inputs, for example, a digital signal and performs predetermined signal processing and then outputs the acoustic signal processing device.
  • the present invention relates to a signal processing device.
  • a conventional general sound reproduction device has a digital 'signal' processor (hereinafter referred to as DSP), a digital-analog 'converter (hereinafter referred to as DAC), and the like.
  • DSP digital 'signal' processor
  • DAC digital-analog 'converter
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-33727 (Page 2, Figure 6)
  • the present invention has been made to solve the above-described problems, and in an acoustic signal processing apparatus that can be used in two ways, balanced and unbalanced, a positive terminal output and a negative terminal output during balanced output It is an object of the present invention to obtain an acoustic signal processing apparatus that can reduce the phase shift that occurs between the two.
  • an acoustic signal processing device performs predetermined signal processing on an input acoustic signal and then outputs at least two systems of signals A and B
  • a signal processing unit inputs the A system and B system signals, generates a positive phase signal and a negative phase signal, and outputs them to the positive phase terminal and the negative phase terminal, respectively.
  • the judging means for judging whether or not the output destination bands of the A system and the B system are the same, and In the middle of the A and B system signal paths
  • the signals of both systems are output to the respective positive phase terminal and the opposite phase terminal, respectively, and when both bands have the same band
  • a switching means for branching a signal of one of the A system and the B system into two and outputting the signal to the other positive phase terminal and the opposite phase terminal is provided.
  • FIG. 1 is a block diagram of an acoustic signal processing device according to a first embodiment.
  • FIG. 2 is a front view of the band selector of the acoustic signal processing device according to the first embodiment.
  • FIG. 3 is a front view of a band selector of the acoustic signal processing device according to the second embodiment.
  • FIG. 4 is a block diagram of an acoustic signal processing device according to a third embodiment.
  • FIG. 5 is a block diagram of an acoustic signal processing device according to a fourth embodiment.
  • the acoustic signal processing device inputs an acoustic signal from an input terminal, performs predetermined signal processing on the acoustic signal, and then applies A to the A system output terminal and the B system output terminal. It has a signal processing unit that outputs two signals of system B and system B, respectively.
  • the acoustic signal processing apparatus includes a system A signal path connected to the system A output terminal and a system B output. And a B-system signal path connected to the terminal.
  • the A system signal path inputs the A system signal from the A system output terminal, performs predetermined signal processing on this signal, generates a positive phase signal and an antiphase signal of this signal, Outputs to the positive and negative phase terminals, respectively.
  • the B system signal path inputs the B system output terminal force B system signal, performs predetermined signal processing on this signal, and then generates a positive phase signal and an opposite phase signal of this signal. And output to the positive phase terminal and the reverse phase terminal, respectively.
  • the acoustic signal processing apparatus further includes a determination unit that determines whether or not the output destination bands of the A system and the B system are the same. Furthermore, the acoustic signal processing apparatus has a switching means in the middle of the B system signal path. This switching means outputs the positive and negative phase signals of the A and B systems to the positive and negative phase terminals of the A and B systems, respectively, when the bands of the A and B systems are different. On the other hand, when the band of system A and system B is the same, the switching means branches the system A signal into two, and the system A signal path has the normal phase terminal and the reverse phase terminal as well as the system B signal path. The A system signal is also output to the positive and negative phase terminals.
  • the acoustic signal processing device having such a configuration, when the balanced output is obtained by making the output destination bands of both systems the same, the positive phase terminal of the A system signal path and the B system signal path If a noise output is obtained by the signal between the anti-phase terminals and the signal between the anti-phase terminal of the A system signal path and the positive phase terminal of the B system signal path, the phase shift generated between the two signals can be reduced. It can be made extremely small.
  • the frequency converter generates a large delay time. If the switching means is provided at the subsequent stage, the phase shift can be effectively reduced. In addition, when the path has a plurality of devices, some delay time is generated in these devices, if not as much as the frequency converter. Therefore, it is better to provide the switching means at a later stage than these devices. More effective. In other words, it is more effective to provide the switching means on the side closer to the output end of the path.
  • the switching means of the present embodiment splits the signal of system A into two and splits the signal of system B and B into two.
  • a system and B system It may be a branching branch.
  • the acoustic signal processing device of the present embodiment has an A-system signal path and a B-system signal path. A similar operation may be performed between the two paths.
  • A”, “B”, “C”, and “D” in A, B, C, and D systems used in this specification indicate that there are multiple equivalents. Other meanings may be used, for example, “first”, “second”, “third”, “fourth”, etc.
  • FIG. 1 is a block diagram of the acoustic signal processing apparatus according to the first embodiment.
  • Figure 2 is a front view of the band selector.
  • the acoustic signal processing apparatus according to the present embodiment is, for example, an audio master amplifier digital signal processing unit.
  • the acoustic signal processing device includes a digital audio “interface” receiver (hereinafter referred to as DIR) 10, a DSP 20 that is a signal processing unit, an A channel path 30 that is an A system signal path, and a B that is a B system signal path. It has a channel path 40, a microcomputer 50, and a band selector 80.
  • DIR digital audio “interface” receiver
  • DSP 20 digital audio “interface” receiver
  • a channel path 30 that is an A system signal path
  • B that is a B system signal path. It has a channel path 40, a microcomputer 50, and a band selector 80.
  • the A channel path 30 includes a frequency converter SRC21, a digital 'filter (hereinafter referred to as DF!), And two DACs 41 and 42! /.
  • the B channel path 40 has SRC 22, DF 32, and two DACs 43, 44!
  • a switching switch 25 as switching means is provided.
  • a control signal from the microcomputer 50 is input to the switching switch 25.
  • the band selector signal of band selector 80 is input to DSP 20 and microcomputer 50!
  • this embodiment is a digital signal processing unit of a master amplifier, the output destination band of the A channel is always fixed to the high range. Then, the output destination band of the B channel is switched by the band selector 80 shown in FIG. In other words, if the band selector 80 shown in FIG. 2 selects “HH”, both the A and B channels are in the high range, and if “HM” is selected, the A channel is in the high range, the B channel is in the mid range, If “HL” is selected, the A channel is selected for the high range and the B channel is selected for the low range.
  • DIRIO inputs a digital signal that is also a digital audio data stream with an external sound source power (not shown), and outputs it to the input terminal 13 of the DSP 20.
  • the DSP20 also inputs a digital signal with 13 input terminals. Then, the DSP 20 performs two independent signals on the digital signal based on the band selection signal from the band selector 80, respectively, as an A channel signal and a B channel signal. Output to output terminal 17 and B channel output terminal 18.
  • the signal processing performed by the DSP20 is right (R) Z left (L) localization, equalizing, networking, etc. All sound processing is performed by the DSP20.
  • the DSP 20 performs this signal processing independently for the A channel and B channel according to the output destination band.
  • the signals output to the A channel output terminal 17 and the B channel output terminal 18 enter the A channel path 30 and the B channel path 40, respectively, and are input to the SRCs 21 and 22.
  • the SRCs 21 and 22 that are frequency change ⁇ ⁇ perform frequency conversion. Specifically, the 44.1 kHz frequency of the CD standard is upsampled to 96 kHz of the DAT standard. SRC21 improves sound quality and improves sound quality by upsampling.
  • the DFs 31 and 32 perform digital filtering on the upsampled signal.
  • the signal digitally filtered by the DF 31 is branched into two and input to the DAC 41 and the DAC 42.
  • the DAC 41 performs digital-to-analog conversion for this signal processing, and then outputs it to the positive phase terminal 61 as the left (L) signal of the A channel.
  • the DAC 42 also performs digital-analog conversion, inverts the signal to the opposite phase, and outputs it to the opposite phase terminal 63 as the right (R) signal of the A channel.
  • the signal digitally filtered by the DF 32 is branched into two and input to the DAC 43 and the DAC 44.
  • the DAC 43 performs digital 'analog conversion, inverts the signal to the opposite phase, and outputs it to the opposite phase terminal 65 as the B channel left (L) signal.
  • the DAC 44 performs digital-to-analog conversion and outputs it to the positive phase terminal 67 as the right (R) signal of the B channel.
  • the switching switch 25 is provided in the subsequent stage of SRC21 and SRC22, and operates according to a control signal from the microcomputer 50.
  • the SR 25 Input the output of C21 to DF32. That is, the A channel path 30 signal is input to the B channel path 40.
  • the output of SRC22 is input to DF32 without changing the path.
  • the band selector 80 and the microcomputer 50 determine whether the output destination bands of the A channel and the B channel are the same, and determine whether to switch the switch 25 based on the result. Constitutes the means.
  • the acoustic signal processing device configured as described above can be used in two ways, either as a force tolerance output as an unbalanced output or as follows. That is, the left side of the A channel with the positive phase terminal 61 and the ground terminal 62 (L), the right side of the A channel with the reverse phase terminal 63 and the ground terminal 64 (R), and the B channel with the reverse phase terminal 65 and the ground terminal 66 By selecting the right (R) of the B channel using the left terminal (L), positive phase terminal 67 and ground terminal 68, it can be used as a 4-channel unbalanced output. Also, by selecting left (L) with the positive phase terminal 61 and the negative phase terminal 65 and right (R) with the negative phase terminal 63 and the positive phase terminal 67, it can be used as a balanced output of two channels. .
  • the microcomputer 50 switches the switching switch 25 between the terminal S1 and the terminal SO. Switch to As a result, the A channel signal is split into two, and the A channel signal is output to the B channel as well as the A channel. As a result, the phase shift becomes extremely small.
  • the switching switch 25 serving as switching means is provided after the SRCs 21 and 22 that generate a large delay time, the phase shift can be reduced more effectively. I'll do it.
  • FIG. 3 is a front view of the band selector for explaining the acoustic signal processing device according to the second embodiment.
  • the band selector that selects which channel is output to which band has two rotary selectors as shown in FIG. It is composed of switches. Other circuit configurations are the same as those in the first embodiment. [0032] If the band selector 81 shown in FIG. 3 is selected, the A channel band is selected for the mid range, and the B channel band is selected for the low range. Since the output destinations of the A and B channels are in different ranges, the microcomputer 50 switches the switching switch 25 so that the terminal S2 and the terminal SO are closed.
  • the band selector 81 of the band selector 81 is input to the DSP 20, and the DSP 20 outputs two signals, each of which is independently processed based on this band selection signal, to the A channel and the B channel. To do. As a result, it can be used as a 4-channel unbalanced output with independent signal processing.
  • FIG. 4 is a block diagram of the acoustic signal processing apparatus according to the third embodiment.
  • the switching switch 25 is provided at the subsequent stage of the DSP 20.
  • the acoustic signal processing device having such a configuration cannot absorb the influence of the delay time of the SRCs 21 and 22 and cannot be said to be very efficient.
  • FIG. 5 is a block diagram of the acoustic signal processing apparatus according to the fourth embodiment.
  • the switching switch 25 is provided at the subsequent stage of the DFs 31 and 32.
  • the acoustic signal processing apparatus having such a configuration not only the delay time of the SRCs 21 and 22 but also the influence of the delay time of the DFs 31 and 32 can be absorbed. Therefore, the phase shift can be reduced more efficiently than in the first embodiment.
  • the power of using two DSPs for each of the A channel path 30 and the B channel path 40 may be one DSP for each of these paths.
  • the signal digitally filtered by DF31 or 32 is input to the DSP without being branched, and is output to the antiphase terminal and the positive phase terminal in the antiphase or positive phase.
  • either the positive terminal output or the negative terminal output of the Norrance output is 1 Since the signal of one system branched into two is output, at least at the time of the switching means, there can be no phase shift. As a result, the phase of the output signal finally output to the positive terminal output and negative terminal output The difference can be made extremely small.
  • the acoustic signal processing apparatus is preferably applied to a digital signal processing unit of an audio master amplifier or a slave amplifier.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

An acoustic signal processing device includes: a signal processing unit (20) for outputting signals of two systems, i.e., A system and B system; and A system and B system signal paths (30, 40) for generating a normal phase signal and a reverse phase signal and outputting them to normal phase terminals (61, 67) and reverse phase terminals (63, 65), respectively. The acoustic signal processing device can be used for unbalanced output by selecting a predetermined terminal or for balanced output. The acoustic signal processing device further includes: judging means (50, 80) for judging whether the A system and the B system have the same output destination band; and switching means (25) arranged between the A system signal path (30) and the B system signal path (40) for outputting the signals of the two systems to their normal phase terminal and the reverse phase terminal, respectively, if the bands of the two systems are different according to the judgment of the judging means and branching one of the A system signal and the B system signal into two and outputting to the other normal phase terminal and the reverse phase terminal if the two systems have the same band.

Description

明 細 書  Specification
音響信号処理装置  Acoustic signal processing device
技術分野  Technical field
[0001] この発明は、例えばデジタル信号を入力して所定の信号処理をした後、出力する 音響信号処理装置に関し、特にアンバランス出力とする力バランス出力とする力選択 ができるようにされた音響信号処理装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an acoustic signal processing device that inputs, for example, a digital signal and performs predetermined signal processing and then outputs the acoustic signal processing device. The present invention relates to a signal processing device.
背景技術  Background art
[0002] 近年、デジタル技術の発展により、音響信号をデジタル信号処理し、映画館ゃコン サートホールと ヽつた様々な音場を再現する音響再生装置が各種提供されて!ヽる。 この音響再生装置によって、ユーザは市販の DVD映画ソフトや CD音楽ソフト等を、 あた力も映画館やコンサートホールにいる臨場感で楽しむことができる。  [0002] In recent years, with the development of digital technology, various types of sound reproduction apparatuses that digitally process sound signals and reproduce various sound fields like movie theaters and concert halls have been provided. With this sound playback device, users can enjoy commercially available DVD movie software and CD music software with a sense of presence in a movie theater or concert hall.
[0003] 従来の一般的な音響再生装置は、デジタル 'シグナル 'プロセッサ(以下、 DSPとい う)およびデジタル ·アナログ 'コンバータ(以下、 DACという)等を有し、これらをマイク 口コンピュータ(以下、マイコンと!/、う)が制御すると 、つた構成とされて 、る。  [0003] A conventional general sound reproduction device has a digital 'signal' processor (hereinafter referred to as DSP), a digital-analog 'converter (hereinafter referred to as DAC), and the like. When the microcomputer and! /, U) are controlled, it is configured as one.
[0004] DVD、 CD等のソース機器カゝら入力された音響信号は、 DSPで臨場感等の音響効 果を付加するデジタル信号処理が行われる。 DSPで処理された音響信号は DACを 介してアナログ信号に変換される。その後、このアナログ信号はアンプで増幅された 後、スピーカーから音響として出力される (例えば、特許文献 1参照)。  [0004] Acoustic signals input from source devices such as DVDs and CDs are subjected to digital signal processing that adds an acoustic effect such as a sense of presence by a DSP. The sound signal processed by the DSP is converted to an analog signal via the DAC. Thereafter, the analog signal is amplified by an amplifier and then output as sound from a speaker (see, for example, Patent Document 1).
[0005] また、従来、 DSPにてそれぞれ独立な信号処理をして、 A系統および B系統の少な くとも 2系統の信号として出力するとともに、夫々の系統の正位相信号と逆位相信号と を生成しておき、正位相信号と逆位相信号の!/、ずれ力とアース信号とを選択してアン バランス出力を得る力、或いは A系統および B系統の互いに異なる相の信号を選択 してバランス出力を得る力、 2通りの使い方ができるようにされた音響信号処理装置が 提案されている。  [0005] In addition, conventionally, independent signal processing is performed by a DSP and output as at least two signals of the A system and the B system, and the positive phase signal and the anti-phase signal of each system are output. Generate and select the positive and negative phase signals! /, The displacement force and the ground signal to obtain an unbalanced output, or select and balance signals of different phases in the A and B systems An acoustic signal processing device has been proposed that can be used in two ways.
[0006] 特許文献 1 :特開 2005— 33727号公報 (第 2頁、第 6図)  [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2005-33727 (Page 2, Figure 6)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0007] し力しながら、上述のバランス ·アンバランスの 2通りの使い方ができる音響信号処 理装置においては、ノ《ランス出力時にプラス端子出力とマイナス端子出力との間に 位相のずれが発生するという未解決の課題を有している。特に、 DSPからの出力経 路に、周波数変 であるサンプリング'レート'コンバータ(以下、 SRCという)が設 けられて 、る場合などは、この SRCの遅延時間が影響して位相のずれが大きくなる ので問題であった。 Problems to be solved by the invention [0007] However, in the acoustic signal processing device that can be used in the two ways described above, balance and unbalance, there is a phase shift between the positive terminal output and the negative terminal output during noise output. It has an unsolved problem of doing. In particular, when a sampling 'rate' converter (hereinafter referred to as SRC), which is a frequency change, is provided in the output path from the DSP, the SRC delay time will affect the phase shift. It was a problem.
[0008] この発明は上述のような課題を解決するためになされたもので、バランス 'アンバラ ンスの 2通りの使い方ができる音響信号処理装置において、バランス出力時のプラス 端子出力とマイナス端子出力との間に生じる位相のずれを減少することができる音響 信号処理装置を得ることを目的とする。  [0008] The present invention has been made to solve the above-described problems, and in an acoustic signal processing apparatus that can be used in two ways, balanced and unbalanced, a positive terminal output and a negative terminal output during balanced output It is an object of the present invention to obtain an acoustic signal processing apparatus that can reduce the phase shift that occurs between the two.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するために、この発明に係る音響信号処理装置は、入力した音響 信号に対して所定の信号処理をしたのち A系統および B系統の少なくとも 2系統の信 号を出力する信号処理部と、前記 A系統および B系統の信号を入力して、正位相信 号と逆位相信号とを生成して、それぞれ正位相端子と逆位相端子とに出力する A系 統、 B系統信号経路とを有しており、前記正位相端子と逆位相端子のいずれかとァ ース端子とを選択してアンバランス出力とする力、前記 A系統および B系統の互いに 異なる相の端子を選択してバランス出力とするか 2通りの使い方ができるようにされた 音響信号処理装置において、前記 A系統および B系統の出力先のバンドが同じであ るか否かを判断する判断手段と、前記 A系統および B系統信号経路の途中に設けら れ、前記判断手段の判断に基づき、両系統のバンドが異なるときには、両系統の信 号をそれぞれの正位相端子と逆位相端子とにそれぞれ出力するとともに、両系統の バンドが同じときには、 A系統および B系統 2つ系統のいずれか一方の信号を 2つに 分岐させて前記他方の正位相端子と逆位相端子とに出力する切替手段とを備えたこ とを特徴とする。  [0009] In order to solve the above-described problem, an acoustic signal processing device according to the present invention performs predetermined signal processing on an input acoustic signal and then outputs at least two systems of signals A and B A signal processing unit inputs the A system and B system signals, generates a positive phase signal and a negative phase signal, and outputs them to the positive phase terminal and the negative phase terminal, respectively. A signal path, the power to select either the positive phase terminal or the negative phase terminal and the first terminal to make an unbalanced output, and select the terminals of different phases of the A system and the B system In the acoustic signal processing apparatus that can be used as a balanced output or in two ways, the judging means for judging whether or not the output destination bands of the A system and the B system are the same, and In the middle of the A and B system signal paths When the two systems have different bands based on the judgment of the judgment means, the signals of both systems are output to the respective positive phase terminal and the opposite phase terminal, respectively, and when both bands have the same band, A switching means for branching a signal of one of the A system and the B system into two and outputting the signal to the other positive phase terminal and the opposite phase terminal is provided.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、実施例 1の音響信号処理装置のブロック図である。  FIG. 1 is a block diagram of an acoustic signal processing device according to a first embodiment.
[図 2]図 2は、実施例 1の音響信号処理装置のバンドセレクタの正面図である。 [図 3]図 3は、実施例 2の音響信号処理装置のバンドセレクタの正面図である。 FIG. 2 is a front view of the band selector of the acoustic signal processing device according to the first embodiment. FIG. 3 is a front view of a band selector of the acoustic signal processing device according to the second embodiment.
[図 4]図 4は、実施例 3の音響信号処理装置のブロック図である。  FIG. 4 is a block diagram of an acoustic signal processing device according to a third embodiment.
[図 5]図 5は、実施例 4の音響信号処理装置のブロック図である。  FIG. 5 is a block diagram of an acoustic signal processing device according to a fourth embodiment.
符号の説明  Explanation of symbols
10 DIR:デジタルオーディオ ·インタフェース ·レシーバ  10 DIR: Digital Audio · Interface · Receiver
20 DSP:デジタル ·シグナル ·プロセッサ(信号処理部)  20 DSP: Digital · Signal · Processor (Signal processor)
21, 22 サンプリング'レート'コンバータ(周波数変換器)  21, 22 Sampling 'rate' converter (frequency converter)
25 切替スィッチ (切替手段)  25 changeover switch (switching means)
30 Aチャンネル経路 (A系統信号経路)  30 A channel path (A system signal path)
31, 32 DF :デジタル 'フィルタ  31, 32 DF: Digital 'Filter
40 Bチャンネル経路 (B系統信号経路)  40 B channel path (B system signal path)
41, 42, 43, 44 DAC :デジタル.アナログ.コンバータ  41, 42, 43, 44 DAC: Digital-to-analog converter
50 マイクロコンピュータ (判断手段)  50 Microcomputer (Judgment means)
61, 67 正位相端子  61, 67 Positive phase terminal
62, 64, 66, 68 アース端子  62, 64, 66, 68 Ground terminal
63, 65 逆位相端子  63, 65 Reverse phase terminal
80, 81 バンドセレクタ (判断手段)  80, 81 Band selector (Judgment means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に、本発明にかかる音響信号処理装置の実施の形態を詳細に説明する。な お、この実施の形態によりこの発明が限定されるものではない。以下では、本発明の 音響信号処理装置の概略と特徴を実施の形態として説明し、その後に音響信号処 理装置に関する実施例を説明する。  Hereinafter, embodiments of an acoustic signal processing device according to the present invention will be described in detail. Note that the present invention is not limited to the embodiments. In the following, the outline and features of the acoustic signal processing apparatus of the present invention will be described as embodiments, and then examples relating to the acoustic signal processing apparatus will be described.
[実施の形態]  [Embodiment]
[0013] 本実施の形態の音響信号処理装置は、入力端子から音響信号を入力して、この音 響信号に対して所定の信号処理をしたのち、 A系統出力端子および B系統出力端子 に A系統および B系統の 2系統の信号をそれぞれ出力する信号処理部を有している  [0013] The acoustic signal processing device according to the present embodiment inputs an acoustic signal from an input terminal, performs predetermined signal processing on the acoustic signal, and then applies A to the A system output terminal and the B system output terminal. It has a signal processing unit that outputs two signals of system B and system B, respectively.
[0014] 音響信号処理装置は、 A系統出力端子に接続された A系統信号経路と B系統出力 端子に接続された B系統信号経路とをさらに有している。 A系統信号経路は、 A系統 出力端子から A系統の信号を入力して、この信号に対して所定の信号処理をしたの ち、この信号の正位相信号と逆位相信号とを生成して、それぞれ正位相端子と逆位 相端子とに出力する。 B系統信号経路は、同じように、 B系統出力端子力 B系統の 信号を入力して、この信号に対して所定の信号処理をしたのち、この信号の正位相 信号と逆位相信号とを生成して、それぞれ正位相端子と逆位相端子とに出力する。 [0014] The acoustic signal processing apparatus includes a system A signal path connected to the system A output terminal and a system B output. And a B-system signal path connected to the terminal. The A system signal path inputs the A system signal from the A system output terminal, performs predetermined signal processing on this signal, generates a positive phase signal and an antiphase signal of this signal, Outputs to the positive and negative phase terminals, respectively. Similarly, the B system signal path inputs the B system output terminal force B system signal, performs predetermined signal processing on this signal, and then generates a positive phase signal and an opposite phase signal of this signal. And output to the positive phase terminal and the reverse phase terminal, respectively.
[0015] 音響信号処理装置は、さらに A系統および B系統の出力先のバンドが同じであるか 否かを判断する判断手段を有している。そしてさらに、音響信号処理装置は、 B系統 信号経路の途中に切替手段を有している。この切替手段は、 A系統と B系統のバンド が異なるときには、 A系統と B系統の正位相信号と逆位相信号を、それぞれ A系統と B系統の正位相端子と逆位相端子とに出力する。一方、切替手段は、 A系統と B系 統のバンドが同じときには、 A系統の信号を 2つに分岐させて、 A系統信号経路の正 位相端子と逆位相端子は、もとより、 B系統信号経路の正位相端子と逆位相端子にも A系統の信号を出力する。  [0015] The acoustic signal processing apparatus further includes a determination unit that determines whether or not the output destination bands of the A system and the B system are the same. Furthermore, the acoustic signal processing apparatus has a switching means in the middle of the B system signal path. This switching means outputs the positive and negative phase signals of the A and B systems to the positive and negative phase terminals of the A and B systems, respectively, when the bands of the A and B systems are different. On the other hand, when the band of system A and system B is the same, the switching means branches the system A signal into two, and the system A signal path has the normal phase terminal and the reverse phase terminal as well as the system B signal path. The A system signal is also output to the positive and negative phase terminals.
[0016] このような構成の音響信号処理装置においては、両系統の出力先のバンドを同じ にしてバランス出力を得ようとした際に、 A系統信号経路の正位相端子と B系統信号 経路の逆位相端子間の信号、および A系統信号経路の逆位相端子と B系統信号経 路の正位相端子間の信号により、ノ《ランス出力を得れば、両信号間に発生する位相 のずれを極めて小さくすることができる。  In the acoustic signal processing device having such a configuration, when the balanced output is obtained by making the output destination bands of both systems the same, the positive phase terminal of the A system signal path and the B system signal path If a noise output is obtained by the signal between the anti-phase terminals and the signal between the anti-phase terminal of the A system signal path and the positive phase terminal of the B system signal path, the phase shift generated between the two signals can be reduced. It can be made extremely small.
[0017] なお、 A系統信号経路と B系統信号経路とが、その経路の途中に周波数変換器を 夫々有している場合、周波数変換器は、大きな遅延時間を発生するので、この周波 数変 の後段に切替手段を設けた方が効果的に位相のずれを小さくすることがで きる。また、経路が複数の機器を有している場合、これらの機器においては、周波数 変換器ほどではないにしろ多少の遅延時間を生じるので、切替手段はこれらの機器 よりさらに後段に設けた方がより効果的である。つまり、切替手段は、経路のより出力 端に近い側に設けた方が効果的である。  [0017] If the A system signal path and the B system signal path each have a frequency converter in the middle of the path, the frequency converter generates a large delay time. If the switching means is provided at the subsequent stage, the phase shift can be effectively reduced. In addition, when the path has a plurality of devices, some delay time is generated in these devices, if not as much as the frequency converter. Therefore, it is better to provide the switching means at a later stage than these devices. More effective. In other words, it is more effective to provide the switching means on the side closer to the output end of the path.
[0018] なお、本実施の形態の切替手段は、 A系統の信号を 2つに分岐させて、 A系統と B 系統とに分岐させるものであった力 B系統の信号を 2つに分岐させて、 A系統と B系 統とに分岐させるものであってもよい。 [0018] It should be noted that the switching means of the present embodiment splits the signal of system A into two and splits the signal of system B and B into two. A system and B system It may be a branching branch.
[0019] また、本実施の形態の音響信号処理装置においては、 A系統信号経路と B系統信 号経路とを有するものであつたが、さら〖こ、 C系統信号経路の D系統信号経路とを設 けて両経路間にて同様な動作をさせてもよい。なお、この明細書にて用いている A系 統、 B系統、 C系統および D系統の「A」、「B」、「C」および「D」は、同等のものが複数 ある様子を示すものであり、他に意味はなぐ例えば「第 1」、「第 2」、「第 3」および「第 4」等に読み替えてもよい。  [0019] In addition, the acoustic signal processing device of the present embodiment has an A-system signal path and a B-system signal path. A similar operation may be performed between the two paths. In addition, “A”, “B”, “C”, and “D” in A, B, C, and D systems used in this specification indicate that there are multiple equivalents. Other meanings may be used, for example, “first”, “second”, “third”, “fourth”, etc.
実施例  Example
[0020] [実施例 1] [0020] [Example 1]
図 1は実施例 1の音響信号処理装置のブロック図である。図 2はバンドセレクタの正 面図である。本実施例の音響信号処理装置は、例えば、オーディオのマスターアン プのデジタル信号処理部である。音響信号処理装置は、デジタルオーディオ 'インタ フェース 'レシーバ(以下、 DIRという) 10と、信号処理部である DSP20と、 A系統信 号経路である Aチャンネル経路 30と、 B系統信号経路である Bチャンネル経路 40と、 マイコン 50と、バンドセレクタ 80とを有している。  FIG. 1 is a block diagram of the acoustic signal processing apparatus according to the first embodiment. Figure 2 is a front view of the band selector. The acoustic signal processing apparatus according to the present embodiment is, for example, an audio master amplifier digital signal processing unit. The acoustic signal processing device includes a digital audio “interface” receiver (hereinafter referred to as DIR) 10, a DSP 20 that is a signal processing unit, an A channel path 30 that is an A system signal path, and a B that is a B system signal path. It has a channel path 40, a microcomputer 50, and a band selector 80.
[0021] Aチャンネル経路 30は、周波数変換器である SRC21と、デジタル 'フィルタ(以下、 DFと! /、う) 31と、 2つの DAC41, 42を有して! /、る。同じように、 Bチャンネノレ経路 40 は、 SRC22と、 DF32と、 2つの DAC43, 44とを有して!/ヽる。 Aチャンネノレ経路 30と Bチャンネル経路 40との間には、切替手段である切替スィッチ 25が設けられている。 この切替スィッチ 25には、マイコン 50からの制御信号が入力されている。バンドセレ クタ 80のバンド選択信号は、 DSP20とマイコン 50に入力されて!、る。  [0021] The A channel path 30 includes a frequency converter SRC21, a digital 'filter (hereinafter referred to as DF!), And two DACs 41 and 42! /. Similarly, the B channel path 40 has SRC 22, DF 32, and two DACs 43, 44! Between the A channel path 30 and the B channel path 40, a switching switch 25 as switching means is provided. A control signal from the microcomputer 50 is input to the switching switch 25. The band selector signal of band selector 80 is input to DSP 20 and microcomputer 50!
[0022] 本実施例は、マスターアンプのデジタル信号処理部であるので、 Aチャンネルの出 力先のバンドは、常にハイレンジに固定されている。そして、 Bチャンネルの出力先の バンドが図 2に示すバンドセレクタ 80によって切り替えられる。つまり、図 2に示すバン ドセレクタ 80が、「HH」を選択していれば、 A、 Bチャンネルがともにハイレンジ、「H M」を選択していれば、 Aチャンネルがハイレンジ、 Bチャンネルがミツドレンジ、「HL」 を選択していれば、 Aチャンネルがハイレンジ、 Bチャンネルがローレンジに選択され て 、ること〖こなる。 [0023] DIRIOは、図示しない外部音源力もデジタルオーディオデータストリームであるデ ジタル信号を入力して、これを DSP20の入力端子 13に出力する。 DSP20は、入力 端子 13力もデジタル信号を入力する。そして、 DSP20は、このデジタル信号に対し て、バンドセレクタ 80からのバンド選択信号に基づいて、それぞれ独立の信号処理 をした 2つの信号を、 Aチャンネル信号および Bチャンネルの信号として、夫々 Aチヤ ンネル出力端子 17および Bチャンネル出力端子 18に出力する。 DSP20の行う信号 処理は、右 (R)Z左 (L)の定位の決定、ィコライジング、ネットワーキング等であり、音 の加工は、すべてこの DSP20にて行われている。 DSP20は、この信号処理を、出 力先のバンドに応じて Aチャンネル、 Bチャンネルそれぞれ独立に行う。 Since this embodiment is a digital signal processing unit of a master amplifier, the output destination band of the A channel is always fixed to the high range. Then, the output destination band of the B channel is switched by the band selector 80 shown in FIG. In other words, if the band selector 80 shown in FIG. 2 selects “HH”, both the A and B channels are in the high range, and if “HM” is selected, the A channel is in the high range, the B channel is in the mid range, If “HL” is selected, the A channel is selected for the high range and the B channel is selected for the low range. [0023] DIRIO inputs a digital signal that is also a digital audio data stream with an external sound source power (not shown), and outputs it to the input terminal 13 of the DSP 20. The DSP20 also inputs a digital signal with 13 input terminals. Then, the DSP 20 performs two independent signals on the digital signal based on the band selection signal from the band selector 80, respectively, as an A channel signal and a B channel signal. Output to output terminal 17 and B channel output terminal 18. The signal processing performed by the DSP20 is right (R) Z left (L) localization, equalizing, networking, etc. All sound processing is performed by the DSP20. The DSP 20 performs this signal processing independently for the A channel and B channel according to the output destination band.
[0024] Aチャンネル出力端子 17および Bチャンネル出力端子 18に出力された信号は、そ れぞれ、 Aチャンネル経路 30と Bチャンネル経路 40に入り、 SRC21, 22に入力され る。周波数変^ ^である SRC21, 22は、周波数変換を行っている。具体的には、 C D規格の 44. 1kHzの周波数を DAT規格の 96kHzにアップサンプリングしている。 S RC21は、アップサンプリングすることにより、音質の改善および音質の向上を行って いる。  [0024] The signals output to the A channel output terminal 17 and the B channel output terminal 18 enter the A channel path 30 and the B channel path 40, respectively, and are input to the SRCs 21 and 22. The SRCs 21 and 22 that are frequency change ^ ^ perform frequency conversion. Specifically, the 44.1 kHz frequency of the CD standard is upsampled to 96 kHz of the DAT standard. SRC21 improves sound quality and improves sound quality by upsampling.
[0025] DF31, 32は、アップサンプリングされた信号に対して、デジタルフィルタリングをす る。 Aチャンネル経路 30において、 DF31にてデジタルフィルタリングされた信号は 2 つに分岐されて、 DAC41と DAC42に入力される。 DAC41は、この信号処理に対 して、デジタル ·アナログ変換をした後、 Aチャンネルの左 (L)信号として正位相端子 61に出力する。 DAC42は、同じくデジタル ·アナログ変換をした後、信号を逆位相 に反転して、 Aチャンネルの右 (R)信号として逆位相端子 63に出力する。  [0025] The DFs 31 and 32 perform digital filtering on the upsampled signal. In the A channel path 30, the signal digitally filtered by the DF 31 is branched into two and input to the DAC 41 and the DAC 42. The DAC 41 performs digital-to-analog conversion for this signal processing, and then outputs it to the positive phase terminal 61 as the left (L) signal of the A channel. The DAC 42 also performs digital-analog conversion, inverts the signal to the opposite phase, and outputs it to the opposite phase terminal 63 as the right (R) signal of the A channel.
[0026] 一方、 Bチャンネル経路 40において、 DF32にてデジタルフィルタリングされた信号 は 2つに分岐されて、 DAC43と DAC44に入力される。 DAC43は、デジタル 'アナ ログ変換をした後、信号を逆位相に反転して、 Bチャンネルの左 (L)信号として逆位 相端子 65に出力する。 DAC44は、デジタル 'アナログ変換をして、 Bチャンネルの 右 (R)信号として正位相端子 67に出力する。  On the other hand, in the B channel path 40, the signal digitally filtered by the DF 32 is branched into two and input to the DAC 43 and the DAC 44. The DAC 43 performs digital 'analog conversion, inverts the signal to the opposite phase, and outputs it to the opposite phase terminal 65 as the B channel left (L) signal. The DAC 44 performs digital-to-analog conversion and outputs it to the positive phase terminal 67 as the right (R) signal of the B channel.
[0027] 切替スィッチ 25は、 SRC21および SRC22の後段に設けられており、マイコン 50か らの制御信号によって動作し、端子 S1と端子 SOとの間が閉状態となつたときに、 SR C21の出力を DF32に入力する。つまり、 Aチャンネル経路 30の信号を Bチャンネル 経路 40に入力する。一方、端子 S2と端子 SOとの間が閉状態となつたときには、経路 を変えずに SRC22の出力を DF32に入力する。なお、ここで、バンドセレクタ 80とマ イコン 50とは、 Aチャンネルおよび Bチャンネルの出力先のバンドが同じであるか否 かを判断して、その結果に基づ ヽて切替スィッチ 25を切り替える判断手段を構成し ている。 [0027] The switching switch 25 is provided in the subsequent stage of SRC21 and SRC22, and operates according to a control signal from the microcomputer 50. When the terminal S1 and the terminal SO are closed, the SR 25 Input the output of C21 to DF32. That is, the A channel path 30 signal is input to the B channel path 40. On the other hand, when the terminal S2 and the terminal SO are closed, the output of SRC22 is input to DF32 without changing the path. Here, the band selector 80 and the microcomputer 50 determine whether the output destination bands of the A channel and the B channel are the same, and determine whether to switch the switch 25 based on the result. Constitutes the means.
[0028] このように構成された音響信号処理装置は、以下のように、アンバランス出力とする 力 ノ ランス出力とするか 2通りの使い方ができるようにされている。すなわち、正位相 端子 61とアース端子 62とで Aチャンネルの左 (L)、逆位相端子 63とアース端子 64と で Aチャンネルの右 (R)、逆位相端子 65とアース端子 66とで Bチャンネルの左(L)、 正位相端子 67とアース端子 68とで Bチャンネルの右 (R)として選択することにより、 4 チャンネルのアンバランス出力として使用することができる。また、正位相端子 61と逆 位相端子 65とで左 (L)および逆位相端子 63と正位相端子 67とで右 (R)として選択 することにより、 2チャンネルのバランス出力として使用することができる。  [0028] The acoustic signal processing device configured as described above can be used in two ways, either as a force tolerance output as an unbalanced output or as follows. That is, the left side of the A channel with the positive phase terminal 61 and the ground terminal 62 (L), the right side of the A channel with the reverse phase terminal 63 and the ground terminal 64 (R), and the B channel with the reverse phase terminal 65 and the ground terminal 66 By selecting the right (R) of the B channel using the left terminal (L), positive phase terminal 67 and ground terminal 68, it can be used as a 4-channel unbalanced output. Also, by selecting left (L) with the positive phase terminal 61 and the negative phase terminal 65 and right (R) with the negative phase terminal 63 and the positive phase terminal 67, it can be used as a balanced output of two channels. .
[0029] 次に動作を説明する。本実施例では図 2に示されるように、 A、 B両チャンネルの出 力先がハイレンジとされているので、マイコン 50は、切替スィッチ 25を、端子 S1と端 子 SOとの間が閉状態となるように切り替える。これにより、 Aチャンネルの信号が 2つ に分岐されて、 Aチャンネルはもとより、 Bチャンネルにも Aチャンネルの信号が出力 される。この結果、位相のずれは極めて小さくなる。  Next, the operation will be described. In this embodiment, as shown in FIG. 2, since the output destinations of both the A and B channels are in the high range, the microcomputer 50 switches the switching switch 25 between the terminal S1 and the terminal SO. Switch to As a result, the A channel signal is split into two, and the A channel signal is output to the B channel as well as the A channel. As a result, the phase shift becomes extremely small.
[0030] そして、本実施例においては、大きな遅延時間を発生する SRC21, 22の後段に切 替手段である切替スィッチ 25を設けているので、より効果的に位相のずれを小さくす ることがでさる。  [0030] In the present embodiment, since the switching switch 25 serving as switching means is provided after the SRCs 21 and 22 that generate a large delay time, the phase shift can be reduced more effectively. I'll do it.
[0031] [実施例 2]  [0031] [Example 2]
図 3は実施例 2の音響信号処理装置を説明するためのバンドセレクタの正面図であ る。音響信号処理装置が、例えば、オーディオのスレーブアンプのデジタル信号処 理部として使用される場合、どのチャンネルをどのバンドに出力するカゝ選択するバン ドセレクタは、図 3に示される様な 2つのロータリースィッチにて構成されたものとなる。 その他、回路の構成は実施例 1と同様である。 [0032] 図 3に示されたバンドセレクタ 81ように選択されたとすると、 Aチャンネルのバンドは 、ミツドレンジに、 Bチャンネルのバンドは、ローレンジに選択されていることになる。 A 、 B両チャンネルの出力先が異なるレンジとされているので、マイコン 50は、切替スィ ツチ 25を、端子 S2と端子 SOとの間が閉状態となるように切り替える。一方、バンドセ レクタ 81のバンド選択信号は、 DSP20に入力されており、 DSP20は、このバンド選 択信号に基づいて、それぞれ独立の信号処理をした 2つの信号を、 Aチャンネルお よび Bチャンネルに出力する。これにより、独立の信号処理がされた 4チャンネルのァ ンバランス出力として使用することができる。 FIG. 3 is a front view of the band selector for explaining the acoustic signal processing device according to the second embodiment. When the acoustic signal processing device is used, for example, as a digital signal processing unit of an audio slave amplifier, the band selector that selects which channel is output to which band has two rotary selectors as shown in FIG. It is composed of switches. Other circuit configurations are the same as those in the first embodiment. [0032] If the band selector 81 shown in FIG. 3 is selected, the A channel band is selected for the mid range, and the B channel band is selected for the low range. Since the output destinations of the A and B channels are in different ranges, the microcomputer 50 switches the switching switch 25 so that the terminal S2 and the terminal SO are closed. On the other hand, the band selector 81 of the band selector 81 is input to the DSP 20, and the DSP 20 outputs two signals, each of which is independently processed based on this band selection signal, to the A channel and the B channel. To do. As a result, it can be used as a 4-channel unbalanced output with independent signal processing.
[0033] [実施例 3]  [0033] [Example 3]
図 4は実施例 3の音響信号処理装置のブロック図である。本実施例の音響信号処 理装置においては、切替スィッチ 25が DSP20の後段に設けられている。このような 構成の音響信号処理装置においては、 SRC21, 22の遅延時間の影響を吸収する ことができず、あまり効率的であるとは言えない。  FIG. 4 is a block diagram of the acoustic signal processing apparatus according to the third embodiment. In the acoustic signal processing apparatus of the present embodiment, the switching switch 25 is provided at the subsequent stage of the DSP 20. The acoustic signal processing device having such a configuration cannot absorb the influence of the delay time of the SRCs 21 and 22 and cannot be said to be very efficient.
[0034] [実施例 4] [0034] [Example 4]
図 5は実施例 4の音響信号処理装置のブロック図である。本実施例の音響信号処 理装置においては、切替スィッチ 25が DF31, 32の後段に設けられている。このよう な構成の音響信号処理装置においては、 SRC21, 22の遅延時間だけでなく DF31 , 32の遅延時間の影響も吸収することができる。そのため、実施例 1に比べてより効 率的に位相のずれを減少させることができる。  FIG. 5 is a block diagram of the acoustic signal processing apparatus according to the fourth embodiment. In the acoustic signal processing apparatus of the present embodiment, the switching switch 25 is provided at the subsequent stage of the DFs 31 and 32. In the acoustic signal processing apparatus having such a configuration, not only the delay time of the SRCs 21 and 22 but also the influence of the delay time of the DFs 31 and 32 can be absorbed. Therefore, the phase shift can be reduced more efficiently than in the first embodiment.
なお、本実施例では、 Aチャンネル経路 30及び Bチャンネル経路 40の各々におけ る DSPを 2つとしている力 それら各経路の DSPを一つとしてもよい。その場合には、 DF31又は 32にてデジタルフィルタリングされた信号は分岐されることなく DSPに入 力され、逆位相又は正位相にて逆位相端子、正位相端子に出力することとなる。 本実施例に係る音響信号処理装置においては、両系統の出力先のバンドを同じに してバランス出力を得ようとした際に、ノランス出力のプラス端子出力とマイナス端子 出力とに、いずれか 1つの系統の信号が 2つに分岐されたものが出力されるので、少 なくとも切替手段の時点では、位相のずれを全くないものとすることができる。この結 果、最終的にプラス端子出力とマイナス端子出力とに出力される出力信号の位相の 差を極めて小さくすることができる。 In this embodiment, the power of using two DSPs for each of the A channel path 30 and the B channel path 40 may be one DSP for each of these paths. In this case, the signal digitally filtered by DF31 or 32 is input to the DSP without being branched, and is output to the antiphase terminal and the positive phase terminal in the antiphase or positive phase. In the acoustic signal processing apparatus according to the present embodiment, when trying to obtain a balanced output with the same output destination band of both systems, either the positive terminal output or the negative terminal output of the Norrance output is 1 Since the signal of one system branched into two is output, at least at the time of the switching means, there can be no phase shift. As a result, the phase of the output signal finally output to the positive terminal output and negative terminal output The difference can be made extremely small.
産業上の利用可能性 Industrial applicability
以上のように、本発明にかかる音響信号処理装置は、オーディオのマスターアンプ 或いはスレーブアンプのデジタル信号処理部に適用されて好適なものである。  As described above, the acoustic signal processing apparatus according to the present invention is preferably applied to a digital signal processing unit of an audio master amplifier or a slave amplifier.

Claims

請求の範囲 The scope of the claims
[1] 入力した音響信号に対して所定の信号処理をしたのち A系統および B系統の少な くとも 2系統の信号を出力する信号処理部と、  [1] A signal processing unit that performs predetermined signal processing on the input acoustic signal, and then outputs at least two signals of system A and system B;
前記 A系統および B系統の信号を入力して、正位相信号と逆位相信号とを生成し て、それぞれ正位相端子と逆位相端子とに出力する A系統、 B系統信号経路とを有 しており、  The A system and B system signals are input to generate a positive phase signal and an antiphase signal, and output to the positive phase terminal and the antiphase terminal, respectively. And
前記正位相端子と逆位相端子のいずれかとアース端子とを選択してアンバランス 出力とするか、前記 A系統および B系統の互いに異なる相の端子を選択してバランス 出力とするか 2通りの使 、方ができるようにされた音響信号処理装置にお!、て、 前記 A系統および B系統の出力先のバンドが同じであるか否かを判断する判断手 段と、 前記 A系統信号経路と前記 B系統信号経路との間に設けられ、前記判断手 段の判断に基づき、両系統のバンドが異なるときには、両系統の信号をそれぞれの 正位相端子と逆位相端子とにそれぞれ出力するとともに、両系統のバンドが同じとき には、 A系統および B系統 2つ系統のいずれか一方の信号を 2つに分岐させて前記 他方の正位相端子と逆位相端子とに出力する切替手段と、  Either the positive phase terminal or the negative phase terminal and the ground terminal are selected for unbalanced output, or the terminals of different phases of the A system and B system are selected for balanced output. In the acoustic signal processing apparatus that can be used, the determination means for determining whether the output destination bands of the A system and the B system are the same, and the A system signal path When the bands of both systems are different based on the judgment of the judgment means provided between the B system signal paths, the signals of both systems are output to the respective positive phase terminals and the opposite phase terminals, respectively. When the bands of both systems are the same, the switching means for branching the signal of either one of the two systems of system A and system B into two and outputting to the other positive phase terminal and opposite phase terminal,
を備えたことを特徴とする音響信号処理装置。  An acoustic signal processing device comprising:
[2] 前記 A系統、 B系統信号経路は、それぞれ独立な信号処理をする [2] The A system and B system signal paths perform independent signal processing.
を備えたことを特徴とする請求項 1に記載の音響信号処理装置。  The acoustic signal processing device according to claim 1, further comprising:
[3] 前記信号処理部は、デジタル信号を入力してデジタル信号処理をしてデジタル信 号を出力して、 [3] The signal processing unit inputs a digital signal, performs digital signal processing, and outputs a digital signal.
前記 A系統、 B系統信号経路は、デジタル ·アナログ変換器を含み、前記デジタル 信号を入力してアナログ信号を出力する  The system A and system B signal paths include a digital-analog converter, which inputs the digital signal and outputs an analog signal.
ことを特徴とする請求項 1または 2に記載の音響信号処理装置。  The acoustic signal processing device according to claim 1 or 2, wherein
[4] 前記 A系統、 B系統信号経路は、周波数変換器を夫々有しており、切替手段は、前 記周波数変換器の後段に設けられている [4] The A-system and B-system signal paths each have a frequency converter, and the switching means is provided at the subsequent stage of the frequency converter.
ことを特徴とする請求項 1から 3のいずれか 1項に記載の音響信号処理装置。  The acoustic signal processing device according to any one of claims 1 to 3, wherein
PCT/JP2006/306337 2005-03-31 2006-03-28 Acoustic signal processing device WO2006106690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005104220 2005-03-31
JP2005-104220 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106690A1 true WO2006106690A1 (en) 2006-10-12

Family

ID=37073256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306337 WO2006106690A1 (en) 2005-03-31 2006-03-28 Acoustic signal processing device

Country Status (1)

Country Link
WO (1) WO2006106690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037968A (en) * 2016-09-02 2018-03-08 オンキヨー株式会社 Music playback system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271100A (en) * 1996-04-02 1997-10-14 Nippon Columbia Co Ltd Acoustic signal processing unit
JPH1153841A (en) * 1997-08-07 1999-02-26 Pioneer Electron Corp Sound signal processing device and sound signal processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271100A (en) * 1996-04-02 1997-10-14 Nippon Columbia Co Ltd Acoustic signal processing unit
JPH1153841A (en) * 1997-08-07 1999-02-26 Pioneer Electron Corp Sound signal processing device and sound signal processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037968A (en) * 2016-09-02 2018-03-08 オンキヨー株式会社 Music playback system

Similar Documents

Publication Publication Date Title
JP5820806B2 (en) Spectrum management system
JP4674474B2 (en) Parallel drive bi-amp switching circuit
WO2012140983A1 (en) Digital speaker system
JP2005354695A (en) Audio signal processing
JP2002536933A5 (en)
JPH11331998A (en) System and method to composite multi-output channel from stereo input signal
JP6015146B2 (en) Channel divider and audio playback system including the same
US20070242832A1 (en) Acoustical Signal Processing Apparatus
JP2001186600A (en) Sound image localization device
WO2006106690A1 (en) Acoustic signal processing device
JP3912383B2 (en) Multi-channel signal processing circuit and sound reproducing apparatus including the same
JP4137706B2 (en) Audio data processing circuit and audio data processing method
WO2007108301A1 (en) Stereophonic sound reproducing apparatus and stereophonic sound reproducing program
KR100682492B1 (en) Audio Player
JPH09271100A (en) Acoustic signal processing unit
JP4435452B2 (en) Signal processing apparatus, signal processing method, program, and recording medium
JP2003274497A (en) Multi-channel audio reproducing apparatus
KR101659626B1 (en) Vehicle audio system for minimizing number of channels in amplifying stage by using signal mixing and bandwidth isolation
JP4720405B2 (en) Audio signal processing device
JP3786337B2 (en) Surround signal processor
JP2005184149A (en) Sound reproducing system
JPH10112900A (en) Sound reproduction device
JPS63206100A (en) Multiway speaker device
KR20050073928A (en) Dynamic audio field enhancer system by real time processing
JPH10334650A (en) Digital audio system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP