WO2006098225A1 - Method of constructing plant having nodules with high nitrogen fixation activity - Google Patents

Method of constructing plant having nodules with high nitrogen fixation activity Download PDF

Info

Publication number
WO2006098225A1
WO2006098225A1 PCT/JP2006/304681 JP2006304681W WO2006098225A1 WO 2006098225 A1 WO2006098225 A1 WO 2006098225A1 JP 2006304681 W JP2006304681 W JP 2006304681W WO 2006098225 A1 WO2006098225 A1 WO 2006098225A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbiotic
plant
gene
dna
globin
Prior art date
Application number
PCT/JP2006/304681
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Uchiumi
Yoshikazu Shimoda
Original Assignee
Kagoshima University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University filed Critical Kagoshima University
Priority to JP2007508097A priority Critical patent/JP4677568B2/en
Priority to CA2600560A priority patent/CA2600560C/en
Priority to CN2006800166195A priority patent/CN101208430B/en
Priority to AU2006224032A priority patent/AU2006224032B2/en
Publication of WO2006098225A1 publication Critical patent/WO2006098225A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a method for producing a plant in which a nodule having high nitrogen fixation activity is formed.
  • Leguminous crops such as soybean, azuki bean and kidney bean grow (form) the nodule, a symbiotic organ, by infection with rhizobia, and the rhizobia (pacteroid) symbiotic in this nodule fixes nitrogen in the air. Therefore, it can grow well even in soil with low nitrogen content. For this reason, when cultivating leguminous crops, in addition to applying normal fertilizer, pre-cultured rhizobia is applied to the seeds of crops. In order to further increase the nitrogen fixing ability of nodules in leguminous crops, development of rhizobia with enhanced nitrogen fixing ability has been carried out (Patent Document 1).
  • leguminous trees such as acacia and nemony, and non-leguminous trees such as alder and rhododendrons
  • symbiotic nitrogen-fixing bacteria settle in the roots to form nodules and efficiently fix aerial nitrogen. It is known to supply nitrogen to host trees. Trees with these root nodules have high nitrogen concentration in the leaves and therefore high nitrogen concentration in the fallen leaves. For this reason, trees with root nodules are effective in increasing the amount of microorganisms in the soil and improving them into fertile soil, and are also used for greening of wasteland as so-called fertilizer trees.
  • symbiotic hemoglobin also called leghemoglobin
  • heme the gene product of the symbiotic globin gene
  • the symbiotic hemoglobin inactivates the partial pressure of oxygen in the nodule cells, which is sufficient for the respiration of the rhizobia in the nodule, and the nitrogenase (inactivated by oxygen), which is necessary for the nitrogen fixing ability of the rhizobia. It is said to be responsible for adjusting to no level.
  • Non-symbiotic globin gene also called non-symbiotic hemoglobin gene.
  • non-symbiotic globin gene also called non-symbiotic hemoglobin gene.
  • non-symbiotic globin genes have also been reported in Miyakogusa, which is a model plant of the legume family (Non-patent Document 1).
  • nonsymbiotic globin genes are known to be expressed in all plant tissues. It has been reported that the expression level of non-symbiotic globin genes increases when plants are exposed to low temperatures (4 ° C) and low oxygen partial pressure (oxygen concentration of 5% or less). There is also a report that Arabidopsis thaliana overexpressed by introducing a non-symbiotic globin gene has enhanced resistance to hypoxic stress (Non-Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3-3 3 1 7 4
  • Non-Patent Document 1 Uchiumi et al., Plant Cell Physiol. (2002) 43 (11):. 1 351-1358
  • Non-Patent Document 2 Hunt, P. W., et al., Proc. Natl. Acad. Sci. (2002) USA 99: p. 17197-17202 Disclosure of the Invention
  • An object of the present invention is to provide a method for producing a nodule-growing plant in which a nodule having an increased nitrogen-fixing activity is formed, and a nodule-growing plant exhibiting a high nitrogen-fixing activity in the nodule.
  • the present inventors have introduced a Miyakogusa non-symbiotic gumbin gene and overexpressed Miyakodasa, and a Jashapsi non-symbiotic globin gene. It was found that the expressed Miyakogusa can grow root nodules with high nitrogen-fixing activity, and the present invention has been completed based on the findings.
  • the present invention includes the following.
  • the non-symbiotic globin gene is more preferably a DNA comprising a DNA selected from the group consisting of the following (a) to (e):
  • a non-symbiotic globin gene is overexpressed by introducing a non-symbiotic globin gene linked to an overexpression promoter into a nodulating plant.
  • the nodulating plant produced by this method is preferably capable of growing a nodule having an increased nitrogen fixing activity and exhibiting a nitrogen fixing activity of 10 to 100 nM / min / g.
  • the nodulating plant that overexpresses the non-symbiotic globin gene is preferably a legume. Furthermore, in this method, non-symbiotic globin inheritance It is more preferable to inoculate a nodulating plant with overexpressed offspring with a symbiotic nitrogen-fixing bacterium.
  • a nodule-growing plant produced by the above method 1 and capable of growing nodules with increased nitrogen fixation activity is more preferably one having a root nodule.
  • a vector for increasing nitrogen fixation activity of nodules comprising a non-symbiotic globin gene linked to an overexpression promoter.
  • the non-symbiotic globin gene contained in this vector is preferably derived from legumes or non-legume nodulating plants.
  • the DNA shown in (a) to (e) of [1] above is still more preferable.
  • a method for increasing the nitrogen fixation efficiency in plant cultivation characterized by cultivating the nodulating plant of [2] above.
  • the nitrogen fixing activity of the nodule can be remarkably improved in the desired nodulating plant.
  • the vector for increasing the nitrogen fixation activity of the nodules of the present invention is used in this production method, the nitrogen fixation activity of the nodules can be remarkably increased.
  • the nodulating plant obtained in the present invention can grow a nodule having high nitrogen fixation activity, and as a result, the growth of the plant is promoted and the nitrogen content is also increased.
  • the method for increasing the nitrogen fixation amount in plant cultivation by cultivating a nodule-growing plant increases the amount of nitrogen fixed from the air in a certain environment, and the nodule under the environment Not only can it increase the yield of seedlings or the amount of growth, it can also fertilize the soil by increasing the amount of nitrogen in the soil.
  • the present specification includes the contents described in the specification and drawings of Japanese Patent Application No. 2 0 0 5-0 7 1 6 7 7 on which the priority of the present application is claimed. Brief Description of Drawings
  • Figure 1 shows the genomic structure and amino acid sequence of the non-symbiotic globin gene. It is a figure.
  • FIG. 2 shows the expression level of non-symbiotic globin genes in wild-type Lotus.
  • Figure 2A shows the expression level by tissue
  • Figure 2B shows the expression level under stress conditions.
  • FIG. 3 is a diagram showing the structure of a transformation vector used for transformation of hairy roots.
  • Fig. 4 is a photograph showing an experiment confirming non-symbiotic globin gene transfer in transformants.
  • FIG. 4A shows the state of hairy root induction in the transformant.
  • Figure 4B shows the GFP fluorescence observed in transformed roots.
  • Fig. 4C shows the results of confirming the expression of the introduced gene by RT-PCR.
  • Fig. 5 is a photograph showing the appearance of nodulation in transformed hairy roots.
  • Fig. 5A shows hairy roots (control roots) into which a vector not containing the LjHbl gene has been introduced.
  • Fig. 5B shows a hairy root with the LjHbl gene introduced and overexpressed.
  • Open arrowhead marks indicate the nodules formed on the transformed hairy roots. Shaded arrowhead marks indicate nodules formed on hairy roots that were not transformed. Only transformed nodules are shown to fluoresce.
  • FIG. 6 is a diagram showing data measured for the amount of ethylene by gas chromatography, which shows the nitrogen fixation activity (ARA activity) of nodules formed in transformed hairy roots.
  • ARA activity nitrogen fixation activity
  • FIG. 7 is a schematic diagram showing a vector used to express the globin protein of Lotus japonicus in E. coli.
  • Figure 8 shows the affinity of Miyakogusa globin protein expressed in E. coli (symbiotic [left graph, Fig. 8 A] and non-symbiotic [right graph, Fig. 8 B]) and nitric oxide. The absorbance spectrum shown. Each line shows data for each time period mixed with nitric oxide.
  • FIG. 9 is a photograph showing the results of confirming the expression of the Af Hb 1 gene in the Lotus japonicus transformant using RT-PCR.
  • FIG. 10 is a graph showing nitrogen fixation activity (ARA activity) in whole plants and formed nodules of AfHbl-introduced Lotus japonicus transformants.
  • a nodulating plant capable of growing a nodule having an increased nitrogen fixation activity is produced by overexpressing a non-symbiotic guttine gene in the nodulating plant.
  • the nodulating plant means a plant species capable of growing (forming) a nodule.
  • a nodule is a symbiotic organ in which symbiotic nitrogen-fixing bacteria settled in the root to form a granular structure.
  • rhizobial plants include some non-leguminous plants (mainly birch family and alder family) such as birch family and alder family. Non-legume trees) are also included.
  • the roots of legumes are symbiotic as symbiotic nitrogen-fixing bacteria and form nodules.
  • actinomycetes coexist in the roots as symbiotic nitrogen-fixing bacteria to form nodules.
  • the leguminous plants include Miyakogusa, soybean, azuki bean, yellow beans, endou, broad bean, laccasei, anolefa alfa, tanoluma palm, clover, cowpea, lentil, nise acacia, henshida, hagi,
  • legumes such as monolecanes
  • the nodule-growing plant is a plant of a species that can grow (form) the nodule, at the time of introducing the non-symbiotic globin gene, at the time of regenerating the plant, or other
  • the plant body in which the nodule has grown may be the plant body in which the nodule has not grown, or the plant body.
  • the term “nodulating plant” refers not only to a plant body (whole plant individual) but also to a plant organ (eg, leaf, petal, stem, root, seed, hypocotyl, cotyledon, etc.), plant tissue (eg, It shall include any part of the plant body such as epidermis, phloem, soft tissue, xylem, vascular bundle, palisade tissue, spongy tissue, etc.) and plant cultured cells (eg callus).
  • a plant organ eg, leaf, petal, stem, root, seed, hypocotyl, cotyledon, etc.
  • plant tissue eg, It shall include any part of the plant body such as epidermis, phloem, soft tissue, xylem, vascular bundle, palisade tissue, spongy tissue, etc.
  • plant cultured cells eg callus
  • the non-symbiotic globin gene encodes a globin protein that associates with heme (a complex salt of porphyrin and divalent iron) to form non-symbiotic hemoglobin.
  • This nonsymbiotic hemoglobin like animal hemoglobin, It is a protein with strong affinity for carbon, carbon monoxide, etc.
  • Nonsymbiotic hemoglobin has a stronger affinity for oxygen, nitric oxide, and the like than symbiotic hemoglobin.
  • the activity of globin encoded by the non-symbiotic globin gene is referred to as non-symbiotic gout bin activity.
  • the non-symbiotic goutin gene according to the present invention may be isolated from any plant.
  • the non-symbiotic globin gene of the present invention is more preferably derived from a nodulating plant, and may be isolated from legumes such as Miyakodasa and soybean, or from non-legumes such as Yashapsi. It may be isolated from a nodulating plant.
  • the non-symbiotic globin gene used in the present invention may be further isolated from plants other than nodulating plants, including monocotyledonous plants such as barley, rice, and corn.
  • Non-symbiotic globin genes that can be used in the present invention include the following: Miyakogusa (Non-Patent Document 1), Yashapushi (DD BJ / EMBL / GenBank Accession Number AB221344), Rice (DDBJ / EMBL / GenBank accession number U76030), Alphanorefa (DDBJ / EMBL / GenBank accession number AF172172; Serogelyes et al., FEBS Lett. (2000) 482, p. 125-130), Dizz (DDBJ / EMBL / GenBank Accessory 3 number U47143; Anderson, et al., Proc.
  • Miyakogusa Non-Patent Document 1
  • Yashapushi DD BJ / EMBL / GenBank Accession Number AB221344
  • Rice DDBJ / EMBL / GenBank accession number U76030
  • Alphanorefa DDBJ /
  • the non-symbiotic globin gene used in the present invention may be cDNA, or genomic DNA containing exons and introns.
  • “gene” includes DNA and RNA, DNA includes at least genomic DNA, cDNA, and synthetic DNA, and RNA includes mRNA and the like.
  • the “gene” may include a sequence such as an untranslated region (UTR) sequence in addition to the coding sequence.
  • UTR untranslated region
  • the symbiotic non-symbiotic globin gene can be used as the non-symbiotic globin gene derived from the leguminous plant according to the present invention.
  • the non-symbiotic globin gene of the present invention DNA consisting of the nucleotide sequence of SEQ ID NO: 1 isolated from Miyakogusa, and DNA of the genomic fragment consisting of the nucleotide sequence of SEQ ID NO: 3 isolated from Miyakodasa are preferably used.
  • DNA encoding a non-symbiotic globin protein consisting of the amino acid sequence of SEQ ID NO: 2 can be advantageously used.
  • the non-symbiotic globin gene of the present invention is 1 to 50, preferably 1 to 35, more preferably 1 or several in the amino acid sequence shown in SEQ ID NO: 2 as long as it has non-symbiotic globin activity (for example, DNA encoding a protein consisting of an amino acid sequence in which 2 to 10 amino acids have been deleted, substituted, or added may be used.
  • the non-symbiotic globin gene used in the present invention is a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or a DNA encoding a non-symbiotic globin protein consisting of an amino acid sequence of SEQ ID NO: 2.
  • the non-symbiotic globin gene of the present invention is also a DNA encoding a protein having a non-symbiotic goutine activity consisting of an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 2.
  • the non-symbiotic globin gene derived from the non-leguminous nodule-growing plant according to the present invention is not limited. Can do.
  • DNA consisting of the nucleotide sequence of SEQ ID NO: 8 isolated from Yashabushi and DNA of the genomic fragment consisting of the nucleotide sequence of SEQ ID NO: 10 isolated from Yashapushi are preferred. Can be used appropriately.
  • a DNA encoding a Yachabushi non-symbiotic globin protein consisting of the amino acid sequence of SEQ ID NO: 9 can be advantageously used.
  • non-symbiotic globin gene of the present invention has non-symbiotic globin activity, 1 to 50, preferably 1 to 35, more preferably 1 or several (for example, 2) in the amino acid sequence shown in SEQ ID NO: 9.
  • DNA encoding a protein consisting of an amino acid sequence in which ( ⁇ 10) amino acids have been deleted, substituted or appended may be used.
  • the non-symbiotic gubin gene used in the present invention encodes a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 8 or a non-symbiotic globin protein consisting of the amino acid sequence of SEQ ID NO: 9.
  • the non-symbiotic globin gene of the present invention also encodes a protein having a non-symbiotic gubin activity comprising an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 9. But let ’s do it.
  • stringent conditions refers to conditions under which a so-called specific hybrid is formed.
  • nucleic acids having high homology that is, DNAs having a homology of 90% or more, preferably 95% or more are hybridized, and nucleic acids having lower homology are not hybridized.
  • the conditions are 55-65 ° C, formamide concentration 0-50%, preferably 20-50%, more preferably 35-45%.
  • the filter conditions after hybridization are usually such that the sodium salt concentration is 15-600 mM, preferably 50-600 mM, more preferably 300-600 mM, and the temperature 50-70. . C, preferably 55 to 70 ° (:, more preferably 60 to 65 ° C.
  • the non-symbiotic globin activity of the globin protein encoded by the non-symbiotic globin gene is the oxygen, carbon dioxide of non-symbiotic hemoglobin formed by the globin. , Or affinity for nitric oxide and the like.
  • the non-symbiotic gustin activity of the present invention is obtained by, for example, recombinantly producing a globin protein using an expression vector containing a non-symbiotic gubin gene encoding the non-symbiotic globin.
  • the affinity for oxygen, carbon dioxide, or nitric oxide can be measured by a conventional method, and the measured value can be expressed as an index.
  • the affinity of non-symbiotic hemoglobin to oxygen, carbon dioxide, or nitric oxide can be measured by methods known to those skilled in the art.
  • the affinity of non-symbiotic hemoglobin for nitric oxide is 500 nn in the presence of nitrogen monoxide!
  • the absorbance can be measured at a wavelength of ⁇ 600nm and judged from the absorbance spectrum.
  • hemoglobin absorbs light with a wavelength of 500 to 600 nm.
  • two characteristic peaks are observed at 540 ⁇ and 575nm (see Fig. 8). These two peaks are not observed in the hemogum bottle after completion of the reaction with nitric oxide. Therefore, after the hemoglobin protein is mixed with nitric oxide, the affinity spectrum of the hemoglobin protein with nitric oxide can be measured by analyzing the absorbance spectrum by a conventional method.
  • isolated and purified hemoglobin usually exists in a state bound to oxygen (called oxyhemoglobin).
  • Non-symbiotic hemoglobin is also isolated in a bound state with oxygen, for example when produced recombinantly. Since nonsymbiotic hemoglobin has a higher affinity for nitric oxide than oxygen, adding nitrogen monoxide to the isolated nonsymbiotic form causes two peaks to disappear in the absorbance spectrum. Transition to the spectrum after completion of the reaction with nitric oxide will be observed.
  • affinity of hemoglobin with nitric oxide refer to Michele Perazzoli et al., The Plant Cell (2004) 16, p. 2785-2794.
  • the absorbance spectra measured as described above are compared and analyzed for non-symbiotic hemoglobin and symbiotic hemoglobin, their affinity with nitric oxide can be relatively compared.
  • This comparison of absorbance spectra indicates that nonsymbiotic hemoglobin can bind to nitric oxide more rapidly than symbiotic hemoglobin.
  • the affinity of the non-symbiotic hemoglobin to nitric oxide is used as an index, using the mixing time of the non-symbiotic hemoglobin and nitric oxide until the binding is shown in the absorbance spectrum. Judgment can be made.
  • non-symbiotic globin is recombinantly produced in E. coli using a vector containing a gene encoding non-symbiotic globin (SEQ ID NO: 2 or 9), and non-symbiotic type in E. coli is produced.
  • SEQ ID NO: 2 or 9 a gene encoding non-symbiotic globin
  • a non-symbiotic hemoglobin mouth reconstructed from globin and heme can be collected, and the affinity of the non-symbiotic hemoglobin for nitric oxide can be measured by the method described above.
  • the non-symbiotic globin of the present invention is not limited, but compared with the affinity for nitric oxide of non-symbiotic hemoglobin derived from such non-symbiotic globin (SEQ ID NO: 2 or 9), It is preferable to have the same affinity for nitric oxide.
  • Non-symbiotic globin genes according to the present invention as described above are, for example, SEQ ID NOs: 1 to 3 And a primer designed on the basis of the sequence of 8 to 10 and performing PCR amplification using a nucleic acid derived from any plant (eg, nodulating plants; Miyakogusa, Yashabushi, etc.) It can be obtained as a fragment.
  • the non-symbiotic globin gene of the present invention is hybridized using a nucleic acid derived from any plant (eg, nodulating plants; Miyakodasa, Yashapushi, etc.) as a cocoon and using a DNA fragment that is part of a non-symbiotic globin gene as a probe.
  • the nucleic acid used as a cocoon in these methods may be, for example, genomic DNA extracted from any plant by a conventional method, or cDNA reversely synthesized from mRNA extracted by a conventional method.
  • the nucleic acid used as the saddle type may be purified genomic DNA, purified c ⁇ , one cDNA library, one genomic DNA library, or the like.
  • the non-symbiotic globin gene used in the present invention may be synthesized as a nucleic acid fragment by various nucleic acid sequence synthesis methods known in the art such as chemical synthesis methods.
  • a desired mutation may be introduced into the base sequence (and thus the encoded amino acid sequence) of the obtained non-symbiotic globin gene by site-directed mutagenesis.
  • a known method such as the Kunkel method or the Gapped duplex method, or a method equivalent thereto can be employed.
  • a mutagenesis kit such as Mutan-K (TAKARA) or MutanG (TAKARA)
  • TAKARA LA PCR in vitro Mutagenesis Mutation is introduced using a series kit.
  • Preparation of mRNA used in the present invention preparation of cDNA, PCR, RT-PCR, preparation of library, ligation into vector, cell transformation, determination of DNA base sequence, nucleic acid chemical synthesis, protein N-terminus
  • determination of the amino acid sequence on the side, mutagenesis, and protein extraction can be performed by the methods described in ordinary experiment documents. Examples of such experiments include Sambrook et al., Molecular Cloning, A laboratory manual, 2001, Eds., Sambrook, J. & Russell, DW. Cold Spring Harbor Laboratory Press.
  • a non-symbiotic globin gene is overexpressed in a nodulating plant by a genetic engineering technique.
  • “overexpressing” a gene means that the gene exceeds the amount normally expressed in the host organism by any genetic engineering technique (for example, gene transfer). It means that the gene is manipulated so that it is expressed in an amount (for example, 10% or more), or the gene is introduced into a host organism that does not have the gene and expressed.
  • the specific means for overexpressing the non-symbiotic globin gene is not limited, and any method known to those skilled in the art can be used.
  • a common method is to use a transformation vector constructed by ligating non-symbiotic globin genes so that they are expressed in the correct reading frame downstream of the overexpression promoter.
  • a method of introducing it into a plant is mentioned.
  • the non-symbiotic globin gene can be incorporated into the vector by, for example, excising a DNA fragment containing the non-symbiotic globin gene with an appropriate restriction enzyme and adding it to an expression vector containing an overexpression promoter. It may be inserted into an appropriate restriction enzyme site downstream of the overexpression promoter so as to be in-frame and connected.
  • a DNA fragment in which a non-symbiotic globin gene is linked in advance downstream of the overexpression promoter may be incorporated into the vector.
  • a genomic fragment of the non-symbiotic goutvin gene linked to the overexpression promoter may be incorporated into the genomic DNA of the nodulating plant by a method such as homologous recombination.
  • any of the above-mentioned nodulating plants for example, Miyakodasa can be preferably used.
  • the “overexpression promoter” means a promoter having the ability to strongly (in large quantities) express a gene linked to the overexpression promoter in a host plant cell.
  • the overexpression promoter of the present invention may be a promoter (nodule-specific promoter) that causes nodule-specific expression.
  • the overexpression promoter of the present invention may be an inducible promoter or a constitutive promoter.
  • a promoter generally refers to a DNA containing an expression control region or its modified sequence existing 5 'upstream of a structural gene.
  • any promoter suitable for foreign gene expression in plant cells can be used as an overexpression promoter. Suitable examples of the overexpression promoter used in the present invention include, but are not limited to, cauliflower mosaic virus.
  • any vector can be used as long as it is a vector for introduction into plant cells.
  • a plasmid vector derived from agrobacterium (such as Ti plasmid) or a binary vector.
  • the transformation vector used in the present invention includes a non-symbiotic globin gene and, optionally, an overexpression vector, as well as a selection marker gene, reporter gene, and binary vector system that facilitates selection of transformants.
  • Replication origin (such as replication origin derived from Ti or Ri plasmid).
  • selection marker gene include drug resistance genes such as cefotax gene, hygrosine resistance gene, dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene, and kanamycin resistance gene.
  • reporter genes include green fluorescent protein gene (GFP) luciferase) gene (LUC, LU X) and the like.
  • GFP green fluorescent protein gene
  • LOC green fluorescent protein gene
  • LUX green fluorescent protein gene
  • the “vector” includes a so-called expression cassette.
  • An “expression cassette” includes a promoter DNA sequence and a DNA sequence of a gene to be expressed, and is linked to the promoter DNA sequence in an arrangement such that the DNA sequence of the gene can be expressed in plant cells. It means a DNA fragment.
  • An expression cassette does not necessarily have autonomous replication ability.
  • examples of the vector containing an overexpression promoter in advance include pBI binary vectors such as pKANNIBAL, IG121-Hm, ⁇ 121, ⁇ 101, ⁇ .2, ⁇ 1.3, and pCAMBIA1301.
  • the present invention also provides a vector comprising such a non-symbiotic globin gene linked to an overexpression promoter.
  • a transformation vector can be introduced into any nodule-growing plant in order to increase the nitrogen fixation activity of the nodule and can be used very conveniently.
  • the method for introducing the transformation vector into the nodulating plant is not limited.
  • the agrobatterium method, the particle gun method, the electoral pore method, the polyethylene glycol (PEG) method, the microinjection method, Plant transformation methods widely used for plants, such as protoplast fusion, can be used. These plant transformation methods are: “Isao Shimamoto, Kiyotaka Okada“ New Edition Experimental Protocol for Model Plants From Genetic Methods to Genome Analysis ”
  • Plant cells introduced with the transformation vector are selected by a method using a selectable marker such as kanamycin resistance, and the expression of the transgene is confirmed by detecting the reporter protein or analyzing the expression of the transgene. It is preferable to regenerate the plant body by a conventional method.
  • the method of Nagel et al. is used.
  • the vector is introduced into the agrobacterium through an electoral position, and then the transformed agrobacterium is introduced.
  • Pl nt Molecular Biology Manual (SB Gelvin et. Al., Academic Publishers), Thykaer, T. et al., Cel Biology, 2nd ed. (1998) p, 518-525, Stiller, J., et al. , J. Exp. Bot. (19 97) 48, p. 1357— 1365, Ogar, P. et al., Plant Science (1996) 116 159-168, or Hiei Y. et al., Plant J. (1994 )
  • the target gene may be introduced into the plant by the method described in 6, 271-282 and regenerated into the plant body.
  • a plant body, a plant organ, or a plant tissue itself may be used as it is, or may be used after preparing a section, or a protoplast may be prepared and used ( Chri stou P, et al., Biotechnology 9: 957 (199 1)).
  • a gene transfer device eg PDS-1000 (BI0-R 1
  • the fine particles such as gold and tandasten coated with non-symbiotic globin gene are injected with high-pressure gas to bring the gene into plant cells. Introduce. Treatment conditions vary depending on the plant or sample, but are usually performed at a pressure of about 450 to 2000 psi and a distance of about 4 to 12 cm. Once the non-symbiotic globin gene is introduced into the cell, it can be regenerated into a plant in the same manner as described above.
  • the non-symbiotic globin gene may be expressed in the state of being incorporated in the genomic DNA of the plant, or as extragenomic DNA. It may be expressed (eg, while retained in the vector).
  • non-symbiotic globin gene For transformed plant cells or plant tissues (hairy roots, leaves, stems, nodules, etc.) overexpressing the non-symbiotic globin gene as described above, or the regenerated plants, non-symbiotic globin genes It is preferable to confirm the expression of the gene by conventional methods such as Northern plotting, Southern plotting, and reporter gene expression.
  • a transformed nodule-growing plant in which a non-symbiotic globin gene is overexpressed can grow a nodule by growing in an environment where symbiotic nitrogen-fixing bacteria are present.
  • the “symbiotic nitrogen-fixing bacterium” means a microbial organism that has the ability to symbiotic to a plant to form a nodule, fix nitrogen as ammonia, and give it to a host plant (nitrogen fixing ability).
  • Symbiotic nitrogen-fixing bacteria include Rhizobium, Bradyrishibium, Azorhizobiu, Sinorhizobium, Mesorhizobium, Mesorhizobium, Mesozobium Among actinomycetes, the genus Frankia is there. It is known that rhizobia infects leguminous plants and plants of the genus Parasponia, and Francia spp.
  • the transformed nodulating plants may be inoculated with symbiotic nitrogen-fixing bacteria capable of infecting the plant species.
  • Miyakodasa may be inoculated with Mesorhizobiu m loti.
  • the nitrogen-fixing activity in the nodule increases markedly.
  • the nitrogen fixation activity in this nodule is at least 2 times, preferably at least 3 times per nodule unit weight, compared to a control of a plant of the same species that does not overexpress the non-symbiotic globin gene (wild strain). For example, it increases 3 to 6 times.
  • the nitrogen fixation activity in the nodules may be performed using any method for measuring nitrogen fixation activity known to those skilled in the art.
  • the nitrogen fixation activity in the nodules is preferably measured as an activity of reducing acetylene to ethylene (acetylene reduct ion activity; ARA activity) for the extract from the nodules.
  • ARA activity can be expressed as the amount of ethylene generated per unit weight (eg 1 gram) of root nodules and per unit time (eg 1 hour, 1 minute). The ARA activity may be measured according to the examples described later, for example.
  • the nodule-growing plant in which the non-symbiotic globin gene according to the present invention is overexpressed is not limited, for example, 10 to 100 nM / min / g, preferably 11 to 40 nM / min in the nodule. Shows ARA activity of / g.
  • the present invention also relates to a nodule-growing plant that is obtained as described above and overexpresses a non-symbiotic globin gene and has a root nodule.
  • the nodule-growing plant produced by the method of the present invention grows nodules that exhibit high nitrogen-fixing activity, so that a large amount of nitrogen in the air is fixed in the cultivation environment by cultivating them. Can do. Therefore, the present invention also provides a method for increasing the nitrogen fixation efficiency in plant cultivation. “Increasing the efficiency of nitrogen fixation in plant cultivation” means that nitrogen fixation within a certain period per certain cultivation area or per individual cultivation plant. It means increasing the amount of quantification compared to the amount of nitrogen fixation by the same untransformed plant in the same environment. 'Cultivation' in the present invention means that the plant is intentionally grown in a specific place or environment.
  • “cultivation” includes agricultural cultivation, but it is not always necessary to perform agricultural work (cultivation, sowing, planting, thinning, disinfection, pruning, thinning, harvesting, etc.).
  • the cultivation in the present invention is not limited, for example, cultivation of crops and horticultural plants, landscaping, horticulture, planting for greening of degraded land and beaches, planting for fertilization of oligotrophic soil This includes planting for soil improvement such as salt and dry soils.
  • the nodulation plant produced by the method of the present invention increases the nitrogen fixation efficiency in plant cultivation, thereby increasing the amount of nitrogen fixed from the air under a certain environment, and the nitrogen fixation concentration in the plant tissue. And the yield or growth of the nodulating plant can be increased. Furthermore, by cultivating the nodulating plants of the present invention, it is possible to fertilize the soil by increasing the amount of nitrogen in the soil over the long term, and the yield of other plants using the soil. Can also be increased. In addition, by cultivating the nodulating plants of the present invention, it is possible to effectively greenen oligotrophic soil, salt soil, dry soil, and the like.
  • Example 1 Example 1
  • Example 1 Isolation and identification of non-symbiotic globin gene (LjHbl) of Lotus japonicus
  • the non-symbiotic globin gene (LjHbl) of Lotus japonicus Res. 8: p. 311-318) was isolated by screening by PCR.
  • the primer used for screening is based on the non-symbiotic globin gene homologue sequence (clone name: AV413959, DDBJ / EMBL / GenBank accession number: AB2 38220) present in the Miyakodasa EST library. Designed.
  • the sequence of this primer is as follows.
  • LjHb lFl 5,-TTCTCACTTCACTTCCATCGC-3 '(SEQ ID NO: 4; forward primer one) LjHblF2: 5'-TTGGTCAAGTCATGGAGCG-3, (SEQ ID NO: 5; forward primer) LjHblRl: 5'-TCACAGTGACTTTTCCAGCG-3 '(SEQ ID NO: 6; reverse primer) LjHblR2: 5'-AGACAGACATGGCATGAGGC-3' (SEQ ID NO: 7; reverse) ) GeneArap (R) PCR System 9700 (Applied Biosystems) was used to amplify the LjHbl gene under the following reaction conditions: 94 ° C for 30 seconds, 55 ° C for 30 seconds , 30 cycles of 30 seconds at 2 ° C.
  • Fig. 1 shows the genomic structure and amino acid sequence of the non-symbiotic globin gene (LjHbl).
  • the gene LjHbl has a structure containing four exons and three introns common to the plant globin gene, and was present on chromosome 3 of the six chromosomes of Miyako Dasa.
  • LjHbl Expression analysis of LjHbl was performed in two experimental systems by RT-PCR: expression by tissue and expression under stress conditions.
  • tissue samples were used: 1) leaves, 2) stems, 3) roots, and 4) nodules.
  • four samples were used: 1) no treatment (control), 2) sucrose addition, 3) low temperature, and 4) hypoxia.
  • the primers LjHblFl and LjHblR2 used in Example 1 were used, and the One-step RT-PCR kit (QIAGEN) was used for reverse transcription and transcription product amplification.
  • the expression level of the gene LjHbl was confirmed by electrophoresis. Electrophoresis photographs were imaged, and the expression level of LjHbl was expressed as a relative value based on the intensity of the band.
  • FIG. 2A The results of an experiment examining the expression by tissue are shown in Fig. 2A.
  • LjHbl was shown to be expressed in various organs of growing individuals. The expression levels (relative values) were 0, 4 for leaves, 0.4 for stems, 1.0 for roots, and 36.0 for root nodules. Thus, it was strongly expressed especially in the nodule tissue.
  • Figure 2B shows the results of an experiment examining the expression under stress conditions.
  • the LjHbl is strongly expressed by stress treatment such as low temperature (expression level in Fig. 2B: about 250) and hypoxia (expression level in Fig. 2B: about 450) when viewed as a relative expression level compared to no treatment. It was shown to be expressed.
  • LjHb1 cDNA was linked to a strong promoter.
  • Vectors for transformation include plasmid pKANNIBAL (Wesley et al. 2001 the plant Journal 27, 581—590), pHKN29 (Kumagai and Kouchi, 2003 MPMI 16 (8), 663—668), pIG121_Hm (Ohta et al., 1990 Plant Cell Physiol., 31, 80 5-813).
  • the obtained full-length LjHbl cDNA (SEQ ID NO: 1) was first ligated downstream of the 35S promoter of pKANNIBAL's california mosaic inoless.
  • a 35S-LjHbl cDNA fragment was excised from this vector and ligated downstream of the GFP region of pHKN29 to obtain a plasmid vector pR35SLjHbl (Fig. 3). This pR35SLjHbl was used for the induction of transformed hairy roots as described below.
  • the full-length LjHbl cDNA was ligated downstream of the 35S promoter of pIG12I-Hm to obtain a plasmid vector pT35SljLbl.
  • the P T35S1 jLhl as described below, was used for production of transformants conversion Miyakodasa plants.
  • Example 3 Using the plasmid vector prepared in Example 3, a hairy root-inducible transformation system mediated by agrobacterium lysogenes was used to produce transgenic hairy roots of Miyako-dasa introduced with LjHbl. did.
  • the vector P R35SLjHb l constructed to overexpress LjHbl in Example 3, Aguronoku Kuteriumu rhizogenes (Agrobacterium rhizogenes) LBA1334 (Dr. Clara Diaz (Institute Molecular Plant Science, minute from Leiden University) On the other hand, it was introduced directly by electo-portion.
  • the cell suspension of Agrobacterium lysozyme carrying this pR35SLjHbl was inoculated into Miyakogusa seedlings on the fifth day after seeding, which had been cut at the hypocotyl part.
  • a wild-type hairy root was used as a control.
  • the results are shown in Fig. 4C.
  • the gene Lj elF-4A which is known to be expressed at the same level in all tissues of Miyakodasa and at any time, is compared to the test sample and the control (control) sample. It was used as an index to show the same.
  • the hairy root into which LjHbl gene was introduced had about 100 times the amount of LjHb1 gene expression induced as compared to the wild-type hairy root into which LjHbl gene was not introduced. .
  • the nitrogen fixation activity of the nodules grown on the hairy roots was measured as the activity of reducing acetylene to acetylene (Acetylene reduction activity; ARA).
  • ARA Acetylene reduction activity
  • nodules collected from the hairy roots were placed in a 15 cm test tube and sealed with a rubber cap. The air in the test tube was sufficiently aspirated with an aspirator, and then filled with acetylene. After incubating the test tube at room temperature for 2 hours, the gas in the test tube was collected, and the amount of ethylene generated was measured by gas chromatography.
  • Figure 6 shows the measurement results.
  • the ARA activity per unit weight (gram weight of root nodules) in root nodules grown on hairy roots without LjHbl was calculated as 2, 12 nM / min / g [1 45 X 4- 0.
  • hypocotyl was cut into sections approximately 5 mm thick in solution. This section was directly infected with agrobacterium by immersing it in a cell suspension for 30 minutes. Place the infected sections on sterile filter paper and coculture medium (1/10 B5, BAP 0.5 ⁇ g / ml, NAA 0.05, g / ml, MES (pH 5.2) 5 mM, Toshirin Gon 20 ⁇ ⁇ / ⁇ 1) in, and co-culture for 3 to 5 days at 25 ° C.
  • the co-cultured sections were treated with callus medium (1 X B5, 2% sucrose, BAP 0.5 ⁇ g) containing cefotax (250 1) for sterilization and hygromycin B for selection of transformants. / ml, NAA 0.05 g / ml, 10 mM NH 4 , 0.3% phytagel) and cultured at 25 ° C. in a cycle of 14 hours light / 10 hours dark for 5 weeks. Sections were replanted every 1-2 weeks.
  • Sections cultured in the above callus medium for 5 weeks were taken as shoot induction medium (1 X B5, 2% sucrose, BAP 0.5 ⁇ g / ml, NAA 0.05 / g / ml, 10 mM NH 4 , 0.3% phytagel) and cultured at 25 ° C. in a cycle of 14 hours light (6100 lux) 10 hours darkness for 2 weeks. Thereafter, the callus sections were transplanted to a culture medium without addition of hygromycin B, and cultured for 3 weeks under the same culture conditions as described above. Callus replanting was done every 1-2 weeks.
  • Callus was transferred to shoot elongation medium (1 X B5, 2% sucrose, BAP 0.2 g / ml, 0.3% phy tagel) at 25 ° C for 14 hours light (6100 lux) 10 hours dark cycle And cultured for 3 weeks. Callus replanting was done every 1-2 weeks. After that, the vigor was transplanted to a shoot elongation medium containing no plant hormone, and cultured for 2 to 3 weeks under the same culture conditions as described above to promote the elongation of shout.
  • a shoot of 5 mm or more generated from a callus placed on a shoot elongation medium was cut from the base of the stem with a force razor. Make this chute vertical and root the chute 14 hours light (6100 lux) / 10 hours dark cycle for 1 week in induction medium (1/2 B5, 1% sucrose, 0.5 ju g / ml NAA, 0.4% phytagel) The above was cultured. Thereafter, the shoots with enlarged cut ends were inserted into a root elongation medium (1/2 B5, 1% sucrose) and cultured for 2 to 3 weeks under the same culture conditions as described above to promote root elongation.
  • the plant obtained by extending the roots as described above was extracted from the medium, and the gel adhering to the roots was washed well in water.
  • This plant was transplanted to vermiculite soaked with a commercially available B5 medium (Wako Pure Chemical Industries, Ltd.) diluted 1/10 times, and grown in a cycle of 14 hours light (6100 lux) / 10 hours darkness did.
  • the Miyakogusa plant grown in this way was seeded and harvested. After that, the seeds were sown and cultivated with a power soil (Taleha Horticulture Soil).
  • the plant thus grown was confirmed by PCR amplification of the 35S promoter and LjHbl fusion gene to confirm the success of LjHbl gene transfer.
  • the increase in LjHbl gene expression level was confirmed by RT-PCR.
  • the ARA activity per unit weight (gram weight of root nodules) in the root nodules that had overexpressed LjHbl was calculated to be 17. 21 nM / min / g.
  • the ARA activity per unit weight (gram weight of root nodules) in the root nodules that had not introduced LjHbl was 5. 05 nM / min / g Calculated.
  • the nodules formed in the plant obtained in this example are transformed and non-transformed.
  • the average number of all the transformants was 7. There was no particular difference in appearance such as nodule size and color.
  • the full-length LjHbl cDNA obtained in Example 3 (the sequence from the start codon to the stop codon is shown in SEQ ID NO: 1; it encodes the amino acid sequence of SEQ ID NO: 2) is expressed in the protein expression vector PGEX4T-3 (Amersham Pharmacia Biotech) was cloned by a conventional method (FIG. 7) and introduced into E. coli to obtain a transformant.
  • PGEX4T-3 Anamersham Pharmacia Biotech
  • the symbiotic globin gene was similarly cloned into the expression vector pGEX4T-3 (Fig. 7) and introduced into E. coli to obtain a transformant.
  • nitric oxide was mixed with the obtained symbiotic hemoglobin, and absorbance was measured over time.
  • Fig. 8 shows absorbance spectra at wavelengths of 500 nm to 600 nm at 0 minutes, 5 minutes, 15 minutes, and 30 minutes after the start of nitric oxide mixing. As shown in Fig. 8, it is shown that two peaks at 540nm and 575nm disappeared as the mixing time of nitric oxide increased. Especially in non-symbiotic hemoglobin, the peak at 575 nm was lost earlier and almost disappeared after 15 minutes. On the other hand, in the case of symbiotic hemoglobin, the peak at 540nra did not decrease much, and even after 30 minutes, the peak at 575nm was still weak, but two peaks were observed.
  • Example 9 Isolation and identification of Yashabushi non-symbiotic globin gene (AfHbl)
  • the screening probe was designed based on the sequence of Miyakogusa non-symbiotic globin gene LjHbl (clone name: AV413959, DDBJ / EMBL / GenBank accession number: AB238220), and the primer LjHblFl (5 '-TTCTCACTTCAC TTCCATCGC-3'; SEQ ID NO: 4) and LjHblRl (5'-TCACAGTGACTTTTCCAGCG-3 '; SEQ ID NO: 6) were used for PCR amplification from Miyako Sasa genomic DNA.
  • This PCR to amplify the LjHbl fragment as a probe uses GeneAmp 0 PCR System 9700 (Applied Biosystems), 30 seconds at 94 ° C, 30 seconds at 55 ° C, 30 seconds at 72 ° C. The test was conducted under the condition of 30 cycles.
  • the AfHb 1 gene was identified.
  • the AfHbl gene has a base length of 483 bp from the start codon to the stop codon in the cDNA and encodes 160 amino acids.
  • the nucleotide sequence from the start codon to the stop codon of cDNA of AfHbl (DDBJ / EMBL / GenBank accession number: AB221344) is shown in SEQ ID NO: 8, and the encoded amino acid sequence is shown in SEQ ID NO: 9.
  • the nucleotide sequence (from the start codon to the stop codon) of the genomic DNA of Yachabushi AfHbl gene is shown in SEQ ID NO: 10.
  • AfHbl The expression analysis of AfHbl was performed using RT-PCR using mRNA extracted from tissues of various organs of Yashapsi by a conventional method.
  • the following AfHblFl and AfHblR3 primers are used for RT-PCR, One-Step RT-PCR kit (QIAGEN) is used for reverse transcription and amplification of the transcript, and the following AfHblFl primer is also used for amplification of the reverse transcript.
  • AfHblR3 primer The sequences of those primers used are shown below.
  • AfHblFl 5>-GCTGCTATCAAATCTGCAAT-3, (SEQ ID NO: 1 1; forward primer one)
  • AfHblR3 5,-GGGGGGCTGTGATTTTAG-3, (SEQ ID NO: 12; reverse primer)
  • the obtained amplification product was electrophoresed, and the photographed electrophoretogram was imaged to determine the AfHbl gene in each tissue from the intensity of the band. The expression level was determined.
  • AfHbl cDNA was cloned by PCR using cDNA synthesized by reverse transcription from total RNA extracted from the root nodules of Yachabushi.
  • the obtained AfH bl cDNA was ligated downstream of the 35S promoter derived from cauliflower mosaic virus of pKANNIBAL.
  • this 35S-AfHbl cDNA fragment was excised and ligated downstream of the GFP region of pHKN29 to obtain the final transformation vector pAfHblS.
  • a hairy root-inducible transformation system via agrobacterium lysogenis was employed. This transformation method is based on the principle of co-transformation, and the induced hairy roots are transformed by agrobacterium terrizogenes. Production of transformed hairy roots in this example was performed according to the method of Example 3.
  • the transformation vector pAfHblS constructed in Example 11 and constructed so as to overexpress the AfHbl gene was directly introduced into Agrobacterium lysogenes LBA1334 by electroporation.
  • Agrobatery introduced with the vector pAfHblS The cell suspension of lysogenes LBA1334 was inoculated and infected to Miyakogusa seedlings 5 days after seeding cut at the hypocotyl part. Thereafter, this was placed on sterilized filter paper and co-cultured for 5 days in a co-culture medium.
  • agar medium [Gambor gB5 medium supplemented with antibiotic cefotax (200 ⁇ g / ml; Chugai Pharmaceutical Co., Ltd.) I put it on top and induced a hairy root.
  • the growth conditions of the transformed plants were 16 to 8 hours dark, and the temperature was 25 to 26 ° C in the plant growth chamber. Nodules were formed on the hairy roots of the grown plants. The average number of nodules was 9 per plant for both transformants and non-transformants. There was no difference in the appearance of the nodule size and color between the transformant and the non-transformant.
  • the nitrogen fixing activity of nodules grown on the hairy roots was measured.
  • the nitrogen fixation activity was measured according to the method described in Example 5 as the activity of reducing acetylene to ethylene (Acetylene reduction activity; ARA). Set.
  • the results are shown in FIG. In FIG. 10, the control is Miyakogusa introduced with brass pHKN29 that does not contain the AfHbl gene as a sample.
  • nodules grown on the hairy roots overexpressed with AfHbl introduced were 3 to It showed 5 times the nitrogen fixation activity.
  • nodules grown on hairy roots overexpressed with AfHbl showed an ARA activity (average value) of 7.2 nM / min / g per unit weight.
  • Measurements were also made on the whole plant of Miyakodasa with AfHbl introduced, and an ARA activity (average value) of 13 nM / min / g per unit weight was shown.
  • nodules grown on wild-type hairy roots not introduced with AfHbl showed an ARA activity (average value) of 2.6 nM / min / g per unit weight.
  • the whole wild-type plant without AfHbl introduced showed an ARA activity (average value) of 5 nM / min / g per unit weight.
  • a nodule-growing plant in which the nitrogen-fixing activity of the nodule is significantly improved can be obtained.
  • the method of increasing the nitrogen fixation amount in plant cultivation by cultivating the nodulating plants of the present invention is intended to increase the yield or growth amount of the nodulating plants, or to increase the amount of nitrogen in the soil. It can be used for the purpose of fertilizing soil and greening desolated land. All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety. Sequence table free text
  • sequences of SEQ ID Nos: 4-7, 11 and 12 represent primers.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A method of constructing a nodulating plant capable of having nodules with an elevated nitrogen fixation activity characterized by comprising overexpressing a nonsymbiotic globin gene in a nodulating plant.

Description

明 細 書 窒素固定活性の高い根粒を着生する植物の作出法 技術分野  Description of production method of plants that grow nodules with high nitrogen fixation activity Technical Field
本発明は、 窒素固定活性の高い根粒を着生する植物の作出法に関する。 背景技術  The present invention relates to a method for producing a plant in which a nodule having high nitrogen fixation activity is formed. Background art
ダイズ、 ァズキ、 インゲンマメ等のマメ科作物は、 根粒菌の感染によって共生 器官である根粒を着生 (形成) し、 この根粒中に共生している根粒菌 (パクテロ イド) が空中窒素固定を行うことにより、 窒素含量の低い土壌においても良好に 生育することができる。 このため、 マメ科作物を栽培する場合には、 通常の肥料 を与えること以外に、 予め培養した根粒菌を作物の種子に塗布することが行われ ている。 マメ科作物における根粒の窒素固定能をさらに高めるために、 窒素固定 能を増強した根粒菌の開発なども行われている (特許文献 1 ) 。  Leguminous crops such as soybean, azuki bean and kidney bean grow (form) the nodule, a symbiotic organ, by infection with rhizobia, and the rhizobia (pacteroid) symbiotic in this nodule fixes nitrogen in the air. Therefore, it can grow well even in soil with low nitrogen content. For this reason, when cultivating leguminous crops, in addition to applying normal fertilizer, pre-cultured rhizobia is applied to the seeds of crops. In order to further increase the nitrogen fixing ability of nodules in leguminous crops, development of rhizobia with enhanced nitrogen fixing ability has been carried out (Patent Document 1).
マメ科作物以外にも、 アカシア、 ネムノキなどのマメ科樹木や、 ハンノキ、 ャ シャプシなどの非マメ科樹木で、 根に共生窒素固定菌が住み着いて根粒を形成し、 効率よく空中窒素を固定して宿主樹木に窒素を供給することが知られている。 こ れらの根粒を着生する樹木では、 葉の窒素濃度が高く、 そのため落葉の窒素濃度 も高い。 このことから根粒を着生する樹木は、 土壌中の微生物量を増やし肥沃な 土壌に改良するのに有効であり、 いわゆる肥料木として荒地の緑化にも使用され ている。  In addition to leguminous crops, leguminous trees such as acacia and nemony, and non-leguminous trees such as alder and rhododendrons, symbiotic nitrogen-fixing bacteria settle in the roots to form nodules and efficiently fix aerial nitrogen. It is known to supply nitrogen to host trees. Trees with these root nodules have high nitrogen concentration in the leaves and therefore high nitrogen concentration in the fallen leaves. For this reason, trees with root nodules are effective in increasing the amount of microorganisms in the soil and improving them into fertile soil, and are also used for greening of wasteland as so-called fertilizer trees.
このような植物の根粒の窒素固定能を増強することは、 農業上だけでなく環境 保全の上でも非常に有用と思われる。  Enhancing the nitrogen fixing ability of such plant nodules seems to be very useful not only for agriculture but also for environmental conservation.
ところで、 マメ科植物の根粒細胞には、 マメ科植物だけが持つ共生型グロビン 遺伝子が非常に強く発現していることが知られている。 共生型グロビン遺伝子の 遺伝子産物であるグロビンとヘムから構成される共生型へモグロビン (レグへモ グロビンとも呼ばれる) は、 根粒の全可溶性タンパク質の 20〜30%を占めると言 われるが、 根粒以外の組織には全く存在していない。 共生型ヘモグロビンは、 動 物の血液中のヘモグロビンと同様に、 酸素等と強い親和性を示す。 共生型へモグ ロビンは、 根粒細胞内の酸素分圧を、 根粒中の根粒菌の呼吸に十分であり、 かつ 根粒菌の窒素固定能に必要なニトロゲナーゼ (酸素により失活する) を失活させ ないレベルに調節する機能を担うとされている。 By the way, it is known that the symbiotic globin gene possessed only by legumes is very strongly expressed in nodule cells of legumes. Symbiotic hemoglobin (also called leghemoglobin) composed of globin and heme, the gene product of the symbiotic globin gene, is said to account for 20-30% of the total soluble protein of nodules. There is no organization. Symbiotic hemoglobin Similar to hemoglobin in blood, it has a strong affinity with oxygen. The symbiotic hemoglobin inactivates the partial pressure of oxygen in the nodule cells, which is sufficient for the respiration of the rhizobia in the nodule, and the nitrogenase (inactivated by oxygen), which is necessary for the nitrogen fixing ability of the rhizobia. It is said to be responsible for adjusting to no level.
一方、 近年の遺伝子解析技術の発展に伴い、 マメ科植物以外の植物もグロビン 遺伝子を持つことが明らかになつてきた。 マメ科植物以外の植物で発見されたグ 口ビン遺伝子は、 マメ科植物が持つ共生型グロビン遺伝子とは異なる遺伝子であ つたため、 「非共生型グロビン遺伝子」 (非共生型ヘモグロビン遺伝子とも呼ば れる) と名付けられた。 現在では、 全ての植物が非共生型グロビン遺伝子を持つ と考えられている。 すなわち、 マメ科植物は共生型グロビン遺伝子と非共生型グ 口ビン遺伝子の両方を持つが、 非マメ科植物は非共生型.グロビン遺伝子のみを持 つと考えられる。 マメ科のモデル植物であるミヤコグサでも、 非共生型グロビン 遺伝子が報告されている (非特許文献 1 ) 。  On the other hand, with the development of genetic analysis technology in recent years, it has become clear that plants other than legumes also have globin genes. The gubin gene found in plants other than legumes is different from the symbiotic globin genes of legumes, so it is called “non-symbiotic globin gene” (also called non-symbiotic hemoglobin gene). ). Currently, all plants are thought to have non-symbiotic globin genes. In other words, legumes have both symbiotic globin genes and non-symbiotic gubin genes, while non-legumes have only non-symbiotic globin genes. Non-symbiotic globin genes have also been reported in Miyakogusa, which is a model plant of the legume family (Non-patent Document 1).
非共生型グロビン遺伝子は、 共生型グロビン遺伝子とは異なり、 植物の全ての 組織で発現していることが知られている。 低温 (4°C) や低酸素分圧 (酸素濃度 5%以下) に植物をさらすと、 非共生型グロビン遺伝子の発現量が増加すること が報告されている。 非共生型グロビン遺伝子を導入して過剰発現させたシロイヌ ナズナでは、 低酸素ス トレスに対する耐性が強化されたという報告もある (非特 許文献 2 ) 。  Unlike symbiotic globin genes, nonsymbiotic globin genes are known to be expressed in all plant tissues. It has been reported that the expression level of non-symbiotic globin genes increases when plants are exposed to low temperatures (4 ° C) and low oxygen partial pressure (oxygen concentration of 5% or less). There is also a report that Arabidopsis thaliana overexpressed by introducing a non-symbiotic globin gene has enhanced resistance to hypoxic stress (Non-Patent Document 2).
特許文献 1 特開 2 0 0 3— 3 3 1 7 4号公報  Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 3-3 3 1 7 4
非特許文献 1 Uchiumi et al. , Plant Cell Physiol. (2002) 43 (11): . 1 351-1358  Non-Patent Document 1 Uchiumi et al., Plant Cell Physiol. (2002) 43 (11):. 1 351-1358
非特許文献 2 Hunt, P. W. , et al. , Proc. Natl. Acad. Sci. (2002) USA 99: p. 17197-17202 発明の開示  Non-Patent Document 2 Hunt, P. W., et al., Proc. Natl. Acad. Sci. (2002) USA 99: p. 17197-17202 Disclosure of the Invention
本発明は、 窒素固定活性が増大した根粒を着生する根粒着生植物の作出方法、 そして根粒において高い窒素固定活性を示す根粒着生植物を提供することを目的 とする。 本発明者らは、 上記課題を解決するため鋭意検討を重ねた結果、 ミヤコグサ非 共生型グ口ビン遺伝子を導入して過剰発現させたミヤコダサ、 及ぴャシャプシ非 共生型グロビン遺伝子を導入して過剰発現させたミヤコグサは、 窒素固定活性の 高い根粒を着生できることを見出し、 その知見に基づいて本発明を完成するに至 つた。 An object of the present invention is to provide a method for producing a nodule-growing plant in which a nodule having an increased nitrogen-fixing activity is formed, and a nodule-growing plant exhibiting a high nitrogen-fixing activity in the nodule. As a result of intensive studies to solve the above-mentioned problems, the present inventors have introduced a Miyakogusa non-symbiotic gumbin gene and overexpressed Miyakodasa, and a Jashapsi non-symbiotic globin gene. It was found that the expressed Miyakogusa can grow root nodules with high nitrogen-fixing activity, and the present invention has been completed based on the findings.
すなわち、 本発明は以下を包含する。  That is, the present invention includes the following.
[1] 非共生型グロビン遺伝子を根粒着生植物中で過剰発現させることを特徴と する、 窒素固定活性が増大した根粒を着生できる根粒着生植物の作出方法。 この方法において非共生型グロビン遺伝子としては、 以下の(a)〜(e)からなる 群より選択される DNAからなるものがより好ましい:  [1] A method for producing a nodulating plant capable of growing a nodule having increased nitrogen fixation activity, characterized by overexpressing a non-symbiotic globin gene in the nodulating plant. In this method, the non-symbiotic globin gene is more preferably a DNA comprising a DNA selected from the group consisting of the following (a) to (e):
(a) 配列番号 1又は 8に示される塩基配列からなる DN.A  (a) DN.A consisting of the base sequence shown in SEQ ID NO: 1 or 8
(b) 配列番号 1又は 8に示される塩基配列に相補的な塩基配列からなる DNAと ストリンジェントな条件下でハイブリダイズし、 かつ非共生型グロビン活性を有 するタンパク質をコードする DNA  (b) DNA that hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 8 and encodes a protein having non-symbiotic globin activity
(c) 配列番号 2又は 9に示されるアミノ酸配列からなるタンパク質をコードす る DNA  (c) DNA encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or 9
(d) 配列番号 2又は 9に示されるアミノ酸配列において 1〜50個のアミノ酸が 欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ非共生型グロビン活 1生を有するタンパク質をコードする、 DNA  (d) DNA consisting of an amino acid sequence in which 1 to 50 amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 9, and encoding a protein having a non-symbiotic globin activity
(e) 配列番号 3又は 1 0に示される塩基配列からなる DNA。  (e) DNA consisting of the base sequence shown in SEQ ID NO: 3 or 10.
この方法においては、 好ましくは、 過剰発現プロモーターに連結された非共生 型グロビン遺伝子を根粒着生植物に導入することにより、 非共生型グロビン遺伝 子を過剰発現させる。  In this method, preferably, a non-symbiotic globin gene is overexpressed by introducing a non-symbiotic globin gene linked to an overexpression promoter into a nodulating plant.
この方法により、 好ましくは、 野生株と比較して窒素固定活性が少なくとも 3 倍に増大した根粒を着生できる根粒着生植物を作出することができる。 この方法 により作出される根粒着生植物は、 好ましくは、 10〜100 nM/min/gの窒素固定活 性を示す、 窒素固定活性が増大した根粒を着生することができる。  By this method, it is possible to produce a nodule-growing plant that can preferably grow a nodule having an increased nitrogen fixation activity at least three times that of the wild strain. The nodulating plant produced by this method is preferably capable of growing a nodule having an increased nitrogen fixing activity and exhibiting a nitrogen fixing activity of 10 to 100 nM / min / g.
この方法において非共生型グロビン遺伝子を過剰発現させる根粒着生植物は、 マメ科植物であることが好ましい。 さらにこの方法では、 非共生型グロビン遺伝 子を過剰発現させた根粒着生植物に、 さらに共生窒素固定菌を接種することがよ り好ましい。 In this method, the nodulating plant that overexpresses the non-symbiotic globin gene is preferably a legume. Furthermore, in this method, non-symbiotic globin inheritance It is more preferable to inoculate a nodulating plant with overexpressed offspring with a symbiotic nitrogen-fixing bacterium.
[2] 上記 1の方法によって作出される、 窒素固定活性が増大した根粒を着生でき る根粒着生植物。 この根粒着生植物は、 根に根粒を有しているものがより好まし い。  [2] A nodule-growing plant produced by the above method 1 and capable of growing nodules with increased nitrogen fixation activity. This nodule-growing plant is more preferably one having a root nodule.
[3] 過剰発現プロモーターに連結された非共生型グロビン遺伝子を含む、 根粒の 窒素固定活性を増大させるためのベクター。  [3] A vector for increasing nitrogen fixation activity of nodules, comprising a non-symbiotic globin gene linked to an overexpression promoter.
このベクターに含まれる非共生型グロビン遺伝子としては、 マメ科植物又は非 マメ科根粒着生植物由来のものが好ましい。 その非共生型グロビン遺伝子として は、 上記 [1]の(a)〜(e)に示す DNAがなお好ましい。  The non-symbiotic globin gene contained in this vector is preferably derived from legumes or non-legume nodulating plants. As the non-symbiotic globin gene, the DNA shown in (a) to (e) of [1] above is still more preferable.
[4] 上記 [2]の根粒着生植物を栽培することを特徴とす δ、 植物栽培における窒 素固定効率を増大させる方法。 本発明の根粒着生植物の作出法によれば、 所望の根粒着生植物において、 根粒 の窒素固定活性を格段に向上させることができる。 本発明の根粒の窒素固定活性 を増大させるためのベクターは、 この作出法において使用すると、 根粒の窒素固 定活性を顕著に増大させることができる。 また本発明で得られる根粒着生植物は、 高い窒素固定活性を有する根粒を着生することができ、 その結果、 その植物の生 長が促進され、 窒素含量も増加する。 本発明に係る、 根粒着生植物を栽培するこ とにより植物栽培における窒素固定量を増大させる方法は、 ある環境において空 気中から固定される窒素量を増大させ、 その環境下での当該根粒着生植物の収量 ' 又は生長量を増大させるだけでなく、 ひいては土壌中の窒素量を増大させて土壌 を肥沃化することができる。' 本願明細書は、 本願の優先権の主張の基礎となる日本国特許出願 2 0 0 5— 0 7 1 6 7 7号の明細書および図面に記載された内容を包含する。 図面の簡単な説明  [4] A method for increasing the nitrogen fixation efficiency in plant cultivation, characterized by cultivating the nodulating plant of [2] above. According to the method for producing a nodulating plant of the present invention, the nitrogen fixing activity of the nodule can be remarkably improved in the desired nodulating plant. When the vector for increasing the nitrogen fixation activity of the nodules of the present invention is used in this production method, the nitrogen fixation activity of the nodules can be remarkably increased. In addition, the nodulating plant obtained in the present invention can grow a nodule having high nitrogen fixation activity, and as a result, the growth of the plant is promoted and the nitrogen content is also increased. According to the present invention, the method for increasing the nitrogen fixation amount in plant cultivation by cultivating a nodule-growing plant increases the amount of nitrogen fixed from the air in a certain environment, and the nodule under the environment Not only can it increase the yield of seedlings or the amount of growth, it can also fertilize the soil by increasing the amount of nitrogen in the soil. 'The present specification includes the contents described in the specification and drawings of Japanese Patent Application No. 2 0 0 5-0 7 1 6 7 7 on which the priority of the present application is claimed. Brief Description of Drawings
図 1は、 ミヤコグサ非共生型グロビン遺伝子のゲノム構造とアミノ酸配列を示 す図である。 Figure 1 shows the genomic structure and amino acid sequence of the non-symbiotic globin gene. It is a figure.
図 2は、 野生型ミヤコグサにおける非共生型グロビン遺伝子の発現量を示す図 である。 図 2 Aは組織別の発現量、 図 2 Bはス トレス条件下での発現量を示す。 図 3は、 毛状根の形質転換に用いた形質転換用ベクターの構造を示す図である。 図 4は、 形質転換体における非共生型グロビン遺伝子導入を確認した実験を示 す写真である。 図 4 Aは、 形質転換体における毛状根誘導の様子を示す。 図 4 B は、 形質転換根において観察された GFP蛍光を示す。 図 4 Cは、 RT- PCRによる導 入遺伝子の発現確認の結果を示す。  Fig. 2 shows the expression level of non-symbiotic globin genes in wild-type Lotus. Figure 2A shows the expression level by tissue, and Figure 2B shows the expression level under stress conditions. FIG. 3 is a diagram showing the structure of a transformation vector used for transformation of hairy roots. Fig. 4 is a photograph showing an experiment confirming non-symbiotic globin gene transfer in transformants. FIG. 4A shows the state of hairy root induction in the transformant. Figure 4B shows the GFP fluorescence observed in transformed roots. Fig. 4C shows the results of confirming the expression of the introduced gene by RT-PCR.
図 5は、 形質転換毛状根における根粒の着生の様子を示す写真である。 図 5 A は LjHbl遺伝子を含まないベクターを導入したミヤコグサ毛状根 (コントロール 根) である。 図 5 Bは LjHbl遺伝子を導入しそれを過剰 現させた毛状根である。 白抜きの矢じりマークは形質転換毛状根に形成された根粒を示す。 網掛けの矢じ りマークは、 形質転換されなかった毛状根に形成された根粒を示す。 形質転換さ れた根粒だけが蛍光を発していることが示されている。  Fig. 5 is a photograph showing the appearance of nodulation in transformed hairy roots. Fig. 5A shows hairy roots (control roots) into which a vector not containing the LjHbl gene has been introduced. Fig. 5B shows a hairy root with the LjHbl gene introduced and overexpressed. Open arrowhead marks indicate the nodules formed on the transformed hairy roots. Shaded arrowhead marks indicate nodules formed on hairy roots that were not transformed. Only transformed nodules are shown to fluoresce.
図 6は、 形質転換毛状根に形成された根粒の窒素固定活性 (ARA活性) を示す ガスクロマトグラフィーによるェチレン量の測定データを示す図である。  FIG. 6 is a diagram showing data measured for the amount of ethylene by gas chromatography, which shows the nitrogen fixation activity (ARA activity) of nodules formed in transformed hairy roots.
図 7は、 ミヤコグサのグロビンタンパク質を大腸菌で発現させるのに用いたベ クタ一を示す模式図である。  FIG. 7 is a schematic diagram showing a vector used to express the globin protein of Lotus japonicus in E. coli.
図 8は、 大腸菌で発現させたミヤコグサグロビンタンパク質 (共生型 [左のグ ラフ、 図 8 A]及ぴ非共生型 [右のグラフ、 図 8 B ] ) と、 一酸化窒素との親和性 を示す吸光度スペク トルである。 各ラインは、 それぞれ一酸化窒素と混合した時' 間毎のデータを示す。  Figure 8 shows the affinity of Miyakogusa globin protein expressed in E. coli (symbiotic [left graph, Fig. 8 A] and non-symbiotic [right graph, Fig. 8 B]) and nitric oxide. The absorbance spectrum shown. Each line shows data for each time period mixed with nitric oxide.
図 9は、 RT- PCRを用いたミヤコグサ形質転換体における Af Hb 1遺伝子の発現確 認の結果を示す写真である。  FIG. 9 is a photograph showing the results of confirming the expression of the Af Hb 1 gene in the Lotus japonicus transformant using RT-PCR.
図 1 0は、 AfHblを導入したミヤコグサ形質転換体の植物全体及び形成された 根粒における窒素固定活性 (ARA活性) を示す図である。 発明を実施するための最良の形態  FIG. 10 is a graph showing nitrogen fixation activity (ARA activity) in whole plants and formed nodules of AfHbl-introduced Lotus japonicus transformants. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する 1. 根粒着生植物 Hereinafter, the present invention will be described in detail. 1. Nodulation plant
本発明では、 根粒着生植物中で非共生型グ口ビン遺伝子を過剰発現させること により、 窒素固定活性が増大した根粒を着生することができる根粒着生植物を作 製する。 本明細書において根粒着生植物とは、 根粒を着生 (形成) することがで きる植物種を意味する。 根粒とは、 根に共生窒素固定菌が住み着いて粒状の構造 を形成した共生器官である。 根粒着生植物には、 マメ科植物 (マメ科作物及びマ メ科樹木を含む) の他、 ァクチノリザル植物と総称される、 カバノキ科やハンノ キ科などの一部の非マメ科植物 (主に非マメ科樹木) も含まれる。 マメ科植物の 根には根粒菌が共生窒素固定菌として共生し、 根粒を形成する。 一方、 その一部 の非マメ科植物では、 根に放線菌が共生窒素固定菌として共生し、 根粒を形成す る。 本発明において有用な根粒着生植物としては、 マメ科植物ではミヤコグサ、 ダイズ、 ァズキ、 ィンゲンマメ、 エンドゥ、 ソラマメ、 ラッカセィ、 ァノレフアル ファ、 タノレゥマゴヤシ、 クローバー、 ササゲ、 レンズマメ、 ニセアカシア、 ェニ シダ、 ハギ、 ェンジュ、 モノレツカネムなど、 マメ科植物ではヤシャプシ、 ハン ノキ、 ャマモモ、 モクマオゥ、 ドクゥツギ、 グミなどが挙げられる。  In the present invention, a nodulating plant capable of growing a nodule having an increased nitrogen fixation activity is produced by overexpressing a non-symbiotic guttine gene in the nodulating plant. In the present specification, the nodulating plant means a plant species capable of growing (forming) a nodule. A nodule is a symbiotic organ in which symbiotic nitrogen-fixing bacteria settled in the root to form a granular structure. In addition to legumes (including leguminous crops and legumes), rhizobial plants include some non-leguminous plants (mainly birch family and alder family) such as birch family and alder family. Non-legume trees) are also included. The roots of legumes are symbiotic as symbiotic nitrogen-fixing bacteria and form nodules. On the other hand, in some non-leguminous plants, actinomycetes coexist in the roots as symbiotic nitrogen-fixing bacteria to form nodules. Among the nodulating plants useful in the present invention, the leguminous plants include Miyakogusa, soybean, azuki bean, yellow beans, endou, broad bean, laccasei, anolefa alfa, tanoluma palm, clover, cowpea, lentil, nise acacia, henshida, hagi, In the case of legumes such as monolecanes, there are yashapushi, alder tree, bayberry, mokumau, dokutsugi and gummy.
本発明において、 根粒着生植物は、 根粒を着生 (形成) することができる生物 種の植物である限り、 非共生型グロビン遺伝子を導入する時点において、 植物体 を再生する時点において、 あるいは他の任意の時点において、 根粒が着生してい る植物体であっても、 根粒が着生していなレ、植物体であってもよい。  In the present invention, as long as the nodule-growing plant is a plant of a species that can grow (form) the nodule, at the time of introducing the non-symbiotic globin gene, at the time of regenerating the plant, or other The plant body in which the nodule has grown may be the plant body in which the nodule has not grown, or the plant body.
本明細書において、 用語 「根粒着生植物」 は、 植物体 (植物個体全体) だけで なく、 植物器官 (例えば葉、 花弁、 茎、 根、 種子、 胚軸、 子葉など) 、 植物組織 (例えば表皮、 師部、 柔組織、 木部、 維管束、 柵状組織、 海綿状組織など) 及び 植物培養細胞 (例えばカルス) などの植物体の任意の部分をも含めて意味するも のとする。  In the present specification, the term “nodulating plant” refers not only to a plant body (whole plant individual) but also to a plant organ (eg, leaf, petal, stem, root, seed, hypocotyl, cotyledon, etc.), plant tissue (eg, It shall include any part of the plant body such as epidermis, phloem, soft tissue, xylem, vascular bundle, palisade tissue, spongy tissue, etc.) and plant cultured cells (eg callus).
2. 非共生型グロビン遺伝子とその取得 2. Non-symbiotic globin genes and their acquisition
本発明に係る非共生型グロビン遺伝子は、 ヘム (ポルフィリンと 2価鉄の錯 塩) と会合して非共生型へモグロビンを形成するグロビンタンパク質をコードす る。 この非共生型ヘモグロビンは、 動物のヘモグロビンと同様に、 酸素、 二酸化 炭素、 一酸化炭素などに対して強い親和性を有するタンパク質である。 また非共 生型ヘモグロビンは、 共生型ヘモグロビンと比較して、 酸素や一酸化窒素などに 対してより強力な親和性を有する。 本明細書では、 非共生型グロビン遺伝子にコ ードされているグロビンの活性を、 非共生型グ口ビン活性と呼ぶ。 The non-symbiotic globin gene according to the present invention encodes a globin protein that associates with heme (a complex salt of porphyrin and divalent iron) to form non-symbiotic hemoglobin. This nonsymbiotic hemoglobin, like animal hemoglobin, It is a protein with strong affinity for carbon, carbon monoxide, etc. Nonsymbiotic hemoglobin has a stronger affinity for oxygen, nitric oxide, and the like than symbiotic hemoglobin. In the present specification, the activity of globin encoded by the non-symbiotic globin gene is referred to as non-symbiotic gout bin activity.
本発明に係る非共生型グ口ビン遺伝子は、 任意の植物から単離したものであつ てよい。 本発明の非共生型グロビン遺伝子は、 根粒着生植物由来のものがより好 ましく、 ミヤコダサ、 ダイズなどのマメ科植物から単離されるものであってもよ いし、 ヤシャプシなどの非マメ科の根粒着生植物から単離されるものであっても よい。 本発明で用いる非共生型グロビン遺伝子は、 さらに、 ォォムギ、 イネ、 ト ゥモロコシなどの単子葉植物を含む、 根粒着生植物以外の植物から単離されるも のでもよい。 なお本発明で用いることができる既知の非共生型グロビン遺伝子と して、 以下のようなものがある : ミヤコグサ (非特許文献 1 ) 、 ヤシャプシ (DD BJ/EMBL/GenBankァクセッション番号 AB221344) 、 イネ (DDBJ/EMBL/GenBankァク セッショ ン番号 U76030) 、 アルファノレファ (DDBJ/EMBL/GenBankァクセッション 番号 AF172172; Serogelyes et al. , FEBS Lett. (2000) 482, p. 125-130) 、 ダ ィズ (DDBJ/EMBL/GenBankァクセッシ 3ン番号 U47143 ; Anderson, et al. , Proc. The non-symbiotic goutin gene according to the present invention may be isolated from any plant. The non-symbiotic globin gene of the present invention is more preferably derived from a nodulating plant, and may be isolated from legumes such as Miyakodasa and soybean, or from non-legumes such as Yashapsi. It may be isolated from a nodulating plant. The non-symbiotic globin gene used in the present invention may be further isolated from plants other than nodulating plants, including monocotyledonous plants such as barley, rice, and corn. Note that known non-symbiotic globin genes that can be used in the present invention include the following: Miyakogusa (Non-Patent Document 1), Yashapushi (DD BJ / EMBL / GenBank Accession Number AB221344), Rice (DDBJ / EMBL / GenBank accession number U76030), Alphanorefa (DDBJ / EMBL / GenBank accession number AF172172; Serogelyes et al., FEBS Lett. (2000) 482, p. 125-130), Dizz (DDBJ / EMBL / GenBank Accessory 3 number U47143; Anderson, et al., Proc.
Natl. Acad. Sci. USA (1996) 93 (12) , p. 5682-5687) 、 シロイヌナズナ (DDBJ /EMBL/GenBankァクセッション番号 U94998; Trevaskis, et al. , PNAS (1997) 94 p. 12230-12234) 。 Natl. Acad. Sci. USA (1996) 93 (12), p. 5682-5687), Arabidopsis thaliana (DDBJ / EMBL / GenBank accession number U94998; Trevaskis, et al., PNAS (1997) 94 p. 12230- 12234).
本発明で用いる非共生型グロビン遺伝子は、 cDNAであってもよいし、 ェキソン とイントロンを含むゲノム DNAであってもよい。 本明細書において 「遺伝子」 は、 DNAおよび RNAを包含し、 DNAは少なくともゲノム DNA、 cDNA, 合成 DNAを包含し、 R NAは、 mRNAなどを包含する。 本明細書において 「遺伝子」 は、 コード配列以外に、 非翻訳領域 (UTR) の配列などの配列を含んでもよい。  The non-symbiotic globin gene used in the present invention may be cDNA, or genomic DNA containing exons and introns. As used herein, “gene” includes DNA and RNA, DNA includes at least genomic DNA, cDNA, and synthetic DNA, and RNA includes mRNA and the like. In the present specification, the “gene” may include a sequence such as an untranslated region (UTR) sequence in addition to the coding sequence.
限定するものではないが、 好ましい 1つの態様では、 本発明に係るマメ科植物 由来の非共生型グロビン遺伝子として、 ミヤコグサ非共生型グロビン遺伝子を用 いることができる。 例えば、 本発明の非共生型グロビン遺伝子として、 ミヤコグ サから単離した配列番号 1の塩基配列からなる DNA、 及ぴミヤコダサから単離し た配列番号 3の塩基配列からなるゲノム断片の DNAを好適に使用することができ る。 また、 配列番号 2のアミノ酸配列からなるミヤコグサ非共生型グロビンタン パク質をコードする DNAも、 有利に使用できる。 Although it is not limited, in one preferred embodiment, the symbiotic non-symbiotic globin gene can be used as the non-symbiotic globin gene derived from the leguminous plant according to the present invention. For example, as the non-symbiotic globin gene of the present invention, DNA consisting of the nucleotide sequence of SEQ ID NO: 1 isolated from Miyakogusa, and DNA of the genomic fragment consisting of the nucleotide sequence of SEQ ID NO: 3 isolated from Miyakodasa are preferably used. Can be used The In addition, DNA encoding a non-symbiotic globin protein consisting of the amino acid sequence of SEQ ID NO: 2 can be advantageously used.
本発明の非共生型グロビン遺伝子としては、 非共生型グロビン活性を有する限 り、 配列番号 2に示されるアミノ酸配列において 1〜50個、 好ましくは 1〜35個、 より好ましくは 1若しくは数個 (例えば 2〜10個) のアミノ酸が欠失、 置換若しく は付加されたアミノ酸配列からなるタンパク質をコードする DNAを用いてもよい。 また本発明で用いる非共生型グロビン遺伝子は、 配列番号 1に示される塩基配列 と相補的な塩基配列からなる DNA、 又は配列番号 2のァミノ酸配列からなる非共 生型グロビンタンパク質をコードする DNAの塩基配列と相補的な塩基配列からな る DNAと、 ス トリンジェントな条件下でハイプリダイズし、 かつ非共生型グロビ ン活性を有するタンパク質をコードする DNAであっても.よい。 本発明の非共生型 グロビン遺伝子はまた、 配列番号 2のアミノ酸配列に対して少なくとも 80%の同 一性を有するァミノ酸配列からなる非共生型グ口ビン活性を有するタンパク質を コードする DNAであってもよレヽ。  The non-symbiotic globin gene of the present invention is 1 to 50, preferably 1 to 35, more preferably 1 or several in the amino acid sequence shown in SEQ ID NO: 2 as long as it has non-symbiotic globin activity ( For example, DNA encoding a protein consisting of an amino acid sequence in which 2 to 10 amino acids have been deleted, substituted, or added may be used. The non-symbiotic globin gene used in the present invention is a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or a DNA encoding a non-symbiotic globin protein consisting of an amino acid sequence of SEQ ID NO: 2. It may be a DNA consisting of a base sequence complementary to the above base sequence and a DNA encoding a protein that is hybridized under stringent conditions and has a non-symbiotic globin activity. The non-symbiotic globin gene of the present invention is also a DNA encoding a protein having a non-symbiotic goutine activity consisting of an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 2. Anyway.
一方、 別の態様では、 本発明に係る非マメ科根粒着生植物由来の非共生型グロ ビン遺伝子として、 限定するものではないが、 例えば、 ヤシャブシ非共生型グ口 ビン遺伝子を好適に用いることができる。 例えば、 本発明の非共生型グロビン遺 伝子として、 ヤシャブシから単離した配列番号 8の塩基配列からなる DNA、 及び ヤシャプシから単離した配列番号 1 0の塩基配列からなるゲノム断片の DNAを好 適に使用することができる。 また、 配列番号 9のアミノ酸配列からなるヤシャブ シ非共生型グロビンタンパク質をコードする DNAも、 有利に使用できる。  On the other hand, in another aspect, the non-symbiotic globin gene derived from the non-leguminous nodule-growing plant according to the present invention is not limited. Can do. For example, as the non-symbiotic globin gene of the present invention, DNA consisting of the nucleotide sequence of SEQ ID NO: 8 isolated from Yashabushi and DNA of the genomic fragment consisting of the nucleotide sequence of SEQ ID NO: 10 isolated from Yashapushi are preferred. Can be used appropriately. In addition, a DNA encoding a Yachabushi non-symbiotic globin protein consisting of the amino acid sequence of SEQ ID NO: 9 can be advantageously used.
本発明の非共生型グロビン遺伝子として、 非共生型グロビン活性を有する限り、 配列番号 9に示されるアミノ酸配列において 1〜50個、 好ましくは 1〜35個、 より 好ましくは 1若しくは数個 (例えば 2〜10個) のアミノ酸が欠失、 置換若しくは付 カ卩されたアミノ酸配列からなるタンパク質をコードする DNAを用いてもよい。 ま た本発明で用いる非共生型グ口ビン遺伝子は、 配列番号 8に示される塩基配列と 相補的な塩基配列からなる DNA、 又は配列番号 9のアミノ酸配列からなる非共生 型グロビンタンパク質をコードする DNAの塩基配列と相補的な塩基配列からなる D NAと、 ストリンジヱントな条件下でハイブリダイズし、 かつ非共生型グロビン活 性を有するタンパク質をコードする DNAであってもよい。 本発明の非共生型グロ ビン遺伝子はまた、 配列番号 9のァミノ酸配列に対して少なくとも 80%の同一性 を有するァミノ酸配列からなる非共生型グ口ビン活性を有するタンパク質をコー ドする DNAであってもよレヽ。 As long as the non-symbiotic globin gene of the present invention has non-symbiotic globin activity, 1 to 50, preferably 1 to 35, more preferably 1 or several (for example, 2) in the amino acid sequence shown in SEQ ID NO: 9. DNA encoding a protein consisting of an amino acid sequence in which (˜10) amino acids have been deleted, substituted or appended may be used. The non-symbiotic gubin gene used in the present invention encodes a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 8 or a non-symbiotic globin protein consisting of the amino acid sequence of SEQ ID NO: 9. Hybridizes with DNA consisting of a base sequence complementary to the DNA base sequence under stringent conditions, and non-symbiotic globin activity It may be DNA encoding a protein having sex. The non-symbiotic globin gene of the present invention also encodes a protein having a non-symbiotic gubin activity comprising an amino acid sequence having at least 80% identity to the amino acid sequence of SEQ ID NO: 9. But let ’s do it.
本発明において 「ストリンジェントな条件」 とは、 いわゆる特異的なハイプリ ッドが形成される条件をいう。 例えば、 相同性が高い核酸同士、 すなわち 90%以 上、 好ましくは 95 %以上の相同性を有する DNA同士がハイブリダィズし、 それよ り相同性が低い核酸同士がハイプリダイズしない条件が挙げられる。 より具体的 には、 ナトリウム塩濃度が 15〜750mM、 好ましくは 50〜750mM、 より好ましくは 30 0〜750mM、 温度が 25〜70°C、 好ましくは 50°C〜70°C、 より好ましくは 55〜65°C、 ホルムアミド濃度 0〜50%、 好ましくは 20〜50%、 より好ましくは 35〜45%での 条件をいう。 さらに、 ストリンジヱントな条件では、 ハイブリダィゼーシヨン後 のフィルタ一の洗浄条件が、 通常はナトリウム塩濃度が 15〜600mM、 好ましくは 5 0〜600mM、 より好ましくは 300〜600mM、 温度が 50〜70。C、 好ましくは 55~70° (:、 より好ましくは 60〜65°Cである。 In the present invention, “stringent conditions” refers to conditions under which a so-called specific hybrid is formed. For example, nucleic acids having high homology, that is, DNAs having a homology of 90% or more, preferably 95% or more are hybridized, and nucleic acids having lower homology are not hybridized. More specifically, the sodium salt concentration 15~750MM, preferably 50~750MM, more preferably 3 0 0~750mM, temperature 25 to 70 ° C, preferably 50 ° C to 70 ° C, more preferably The conditions are 55-65 ° C, formamide concentration 0-50%, preferably 20-50%, more preferably 35-45%. Furthermore, under stringent conditions, the filter conditions after hybridization are usually such that the sodium salt concentration is 15-600 mM, preferably 50-600 mM, more preferably 300-600 mM, and the temperature 50-70. . C, preferably 55 to 70 ° (:, more preferably 60 to 65 ° C.
限定するものではないが、 本発明の一実施形態においては、 非共生型グロビン 遺伝子にコードされたグロビンタンパク質が持つ非共生型グロビン活性は、 その グロビンが形成する非共生型ヘモグロビンの酸素、 二酸化炭素、 又は一酸化窒素 などに対する親和性によって表すことができる。 本発明の非共生型グ口ビン活性 は、 例えば、 その非共生型グロビンをコードする非共生型グ口ビン遺伝子を含む 発現べクタ一を用いてグロビンタンパク質を組換え生産し、 得られたグロビンタ' ンパク質とヘムとから再構成させた非共生型ヘモグロビンについて、 酸素、 二酸 化炭素、 又は一酸化窒素などに対する親和性を常法により測定し、 その測定値を 指標として表すことができる。 非共生型ヘモグロビンの酸素、 二酸化炭素、 又は 一酸化窒素に対する親和性の測定は、 当業者に公知の方法によって行うことがで きる。  Although not limited, in one embodiment of the present invention, the non-symbiotic globin activity of the globin protein encoded by the non-symbiotic globin gene is the oxygen, carbon dioxide of non-symbiotic hemoglobin formed by the globin. , Or affinity for nitric oxide and the like. The non-symbiotic gustin activity of the present invention is obtained by, for example, recombinantly producing a globin protein using an expression vector containing a non-symbiotic gubin gene encoding the non-symbiotic globin. 'With respect to non-symbiotic hemoglobin reconstituted from protein and heme, the affinity for oxygen, carbon dioxide, or nitric oxide can be measured by a conventional method, and the measured value can be expressed as an index. The affinity of non-symbiotic hemoglobin to oxygen, carbon dioxide, or nitric oxide can be measured by methods known to those skilled in the art.
—例として、 非共生型ヘモグロビンの一酸化窒素に対する親和性は、 一酸化窒 素の存在下で 500nn!〜 600nmの波長で吸光度を測定し、 その吸光度スぺクトルから 判断することができる。 一般に、 ヘモグロビンは 500〜600nmの波長の光で吸光度 曲線を描く と、 540ηπιと 575nmに 2つの特徴的なピークが観察される (図 8参照) 。 一酸化窒素との反応終了後の状態のへモグ口ビンではこの 2つのピークが見られ なくなる。 そこで、 ヘモグロビンタンパク質について、 一酸化窒素と混合した後、 常法により吸光度スぺク トルを解析することにより、 そのヘモグロビンタンパク 質の一酸化窒素との親和性を測定することができる。 なお、 単離及びノ又は精製 されたヘモグロビンは、 通常、 酸素と結合した状態 (ォキシヘモグロビンと呼ば れる) で存在する。 非共生型ヘモグロビンも、 例えば組換え生産される場合、 酸 素と結合した状態で単離される。 非共生型ヘモグロビンは酸素よりも一酸化窒素 との親和性が高いことから、 単離された非共生型へモグロビンに一酸化窒素を添 加すると、 吸光度スペク トルにおいて 2つのピークが消失し、 一酸化窒素との反 応終了後のスぺク トルへの移行が観察されることになる。 このようなへモグロビ ンの一酸化窒素との親和性測定法については、 Michele Perazzol i et al. , The Plant Cel l (2004) 16, p. 2785 - 2794を参照することができる。 —As an example, the affinity of non-symbiotic hemoglobin for nitric oxide is 500 nn in the presence of nitrogen monoxide! The absorbance can be measured at a wavelength of ~ 600nm and judged from the absorbance spectrum. In general, hemoglobin absorbs light with a wavelength of 500 to 600 nm. When the curve is drawn, two characteristic peaks are observed at 540ηπι and 575nm (see Fig. 8). These two peaks are not observed in the hemogum bottle after completion of the reaction with nitric oxide. Therefore, after the hemoglobin protein is mixed with nitric oxide, the affinity spectrum of the hemoglobin protein with nitric oxide can be measured by analyzing the absorbance spectrum by a conventional method. In addition, isolated and purified hemoglobin usually exists in a state bound to oxygen (called oxyhemoglobin). Non-symbiotic hemoglobin is also isolated in a bound state with oxygen, for example when produced recombinantly. Since nonsymbiotic hemoglobin has a higher affinity for nitric oxide than oxygen, adding nitrogen monoxide to the isolated nonsymbiotic form causes two peaks to disappear in the absorbance spectrum. Transition to the spectrum after completion of the reaction with nitric oxide will be observed. For a method for measuring the affinity of hemoglobin with nitric oxide, refer to Michele Perazzoli et al., The Plant Cell (2004) 16, p. 2785-2794.
以上のようにして測定される吸光度スぺク トルを非共生型へモグロビンと共生 型ヘモグロビンとで比較解析すると、 それらの一酸化窒素との親和性を相対的に 比較できる。 この吸光度スペク トルの比較からは、 非共生型ヘモグロビンが、 共 生型へモグロビンと比べて急速に一酸化窒素と結合することができることが示さ れる。 本発明では、 吸光度スペク トルにおいて非共生型ヘモグロビンと一酸化窒 素との結合が示されるまでの一酸化窒素との混合時間を指標として、 非共生型へ モグロビンの一酸化窒素との親和性を判断することができる。  When the absorbance spectra measured as described above are compared and analyzed for non-symbiotic hemoglobin and symbiotic hemoglobin, their affinity with nitric oxide can be relatively compared. This comparison of absorbance spectra indicates that nonsymbiotic hemoglobin can bind to nitric oxide more rapidly than symbiotic hemoglobin. In the present invention, the affinity of the non-symbiotic hemoglobin to nitric oxide is used as an index, using the mixing time of the non-symbiotic hemoglobin and nitric oxide until the binding is shown in the absorbance spectrum. Judgment can be made.
本発明では、 例えば、 非共生型グロビン (配列番号 2又は 9 ) をコードする遺 伝子を含むベクターを用いて非共生型グロビンを大腸菌中で組換え生産させ、 そ の大腸菌中で非共生型グロビンとヘムから再構成される非共生型へモグ口ビンを 採取し、 その非共生型ヘモグロビンについて、 上記のような方法で一酸化窒素に 対する親和性を測定することができる。 本発明の非共生型グロビンは、 限定する ものではないが、 このような非共生型グロビン (配列番号 2又は 9 ) 由来の非共 生型へモグロビンの一酸化窒素に対する親和性と比較して、 同程度の一酸化窒素 に対する親和性を有することが好ましい。  In the present invention, for example, non-symbiotic globin is recombinantly produced in E. coli using a vector containing a gene encoding non-symbiotic globin (SEQ ID NO: 2 or 9), and non-symbiotic type in E. coli is produced. A non-symbiotic hemoglobin mouth reconstructed from globin and heme can be collected, and the affinity of the non-symbiotic hemoglobin for nitric oxide can be measured by the method described above. The non-symbiotic globin of the present invention is not limited, but compared with the affinity for nitric oxide of non-symbiotic hemoglobin derived from such non-symbiotic globin (SEQ ID NO: 2 or 9), It is preferable to have the same affinity for nitric oxide.
以上のような本発明に係る非共生型グロビン遺伝子は、 例えば配列番号 1 ~ 3 及び 8〜 1 0の配列に基づいて設計したプライマーを用いて、 任意の植物 (例え ば根粒着生植物; ミヤコグサ、 ヤシャブシなど) 由来の核酸を鎳型とした PCR増 幅を行うことにより、 核酸断片として得ることができる。 また本発明の非共生型 グロビン遺伝子は、 任意の植物 (例えば根粒着生植物; ミヤコダサ、 ヤシャプシ など) 由来の核酸を铸型とし、 非共生型グロビン遺伝子の一部である DNA断片を プローブとしてハイブリダィゼーションを行うことにより、 核酸断片として得る ことができる。 これらの方法において錄型として用いる核酸は、 例えば、 任意の 植物から、 常法により抽出したゲノム DNAであってよいし、 常法により抽出した m RNAから逆転写合成した cDNA等であってもよい。 铸型として用いる核酸は、 精製 ゲノム DNA、 精製 c匪、 cDNAライブラリ一又はゲノム DNAライブラリ一等であって もよい。 あるいは本発明で用いる非共生型グロビン遺伝子は、 化学合成法等の当 技術分野で公知の各種の核酸配列合成法によって、 核酸断片として合成してもよ い。 Non-symbiotic globin genes according to the present invention as described above are, for example, SEQ ID NOs: 1 to 3 And a primer designed on the basis of the sequence of 8 to 10 and performing PCR amplification using a nucleic acid derived from any plant (eg, nodulating plants; Miyakogusa, Yashabushi, etc.) It can be obtained as a fragment. In addition, the non-symbiotic globin gene of the present invention is hybridized using a nucleic acid derived from any plant (eg, nodulating plants; Miyakodasa, Yashapushi, etc.) as a cocoon and using a DNA fragment that is part of a non-symbiotic globin gene as a probe. It can be obtained as a nucleic acid fragment by performing the ditherization. The nucleic acid used as a cocoon in these methods may be, for example, genomic DNA extracted from any plant by a conventional method, or cDNA reversely synthesized from mRNA extracted by a conventional method. . The nucleic acid used as the saddle type may be purified genomic DNA, purified c 匪, one cDNA library, one genomic DNA library, or the like. Alternatively, the non-symbiotic globin gene used in the present invention may be synthesized as a nucleic acid fragment by various nucleic acid sequence synthesis methods known in the art such as chemical synthesis methods.
さらに、 部位特異的突然変異誘発法等によって、 得られた非共生型グロビン遺 伝子の塩基配列 (ひいてはコードされるアミノ酸配列) に所望の突然変異を導入 してもよい。 遺伝子に変異を導入するには、 Kunkel法、 Gapped duplex法等の公 知の手法又はこれに準ずる方法を採用することができる。 例えば部位特異的突然 変異誘発法を利用した変異導入用キット (例えば Mutan- K (TAKARA社製) や Muta n-G (TAKARA社製) ) などを用いて、 あるいは、 TAKARA社の LA PCR in vitro Mut agenesis シリーズキットを用いて変異の導入が行われる。  Furthermore, a desired mutation may be introduced into the base sequence (and thus the encoded amino acid sequence) of the obtained non-symbiotic globin gene by site-directed mutagenesis. In order to introduce a mutation into a gene, a known method such as the Kunkel method or the Gapped duplex method, or a method equivalent thereto can be employed. For example, using a mutagenesis kit (such as Mutan-K (TAKARA) or MutanG (TAKARA)) using site-directed mutagenesis, or TAKARA LA PCR in vitro Mutagenesis Mutation is introduced using a series kit.
なお本発明において用いる mRNAの調製、 cDNAの作製、 PCR、 RT- PCR、 ライプラ リーの作製、 ベクター中へのライゲーシヨン、 細胞の形質転換、 DNAの塩基配列 の決定、 核酸化学合成、 タンパク質の N末端側のアミノ酸配列決定、 突然変異誘 発、 タンパク質の抽出等の実験は、 通常の実験書に記載の方法によって行うこと ができる。 そのような実験誊としては、 例えば、 Sambrookらの Molecular Clonin g, A laboratory manual, 2001, Eds., Sambrook, J. & Russell, DW. Cold Spr ing Harbor Laboratory Pressを挙げることができる。  Preparation of mRNA used in the present invention, preparation of cDNA, PCR, RT-PCR, preparation of library, ligation into vector, cell transformation, determination of DNA base sequence, nucleic acid chemical synthesis, protein N-terminus Experiments such as determination of the amino acid sequence on the side, mutagenesis, and protein extraction can be performed by the methods described in ordinary experiment documents. Examples of such experiments include Sambrook et al., Molecular Cloning, A laboratory manual, 2001, Eds., Sambrook, J. & Russell, DW. Cold Spring Harbor Laboratory Press.
3. 根粒着生植物における非共生型グロビン遺伝子の過剰発! ^ 本発明では、 非共生型グロビン遺伝子を遺伝子工学的手法により根粒着生植物 中で過剰発現させる。 本発明において、 遺伝子を 「過剰発現させる」 とは、 当該 遺伝子を、 宿主生物中で、 任意の遺伝子工学的手法 (例えば遺伝子導入) などに より、 その宿主生物で通常発現されている量を超える量 (例えば 10%以上) で発 現するように遺伝子操作するか、 または当該遺伝子を持たない宿主生物中に当該 遺伝子を導入して発現させることを意味する。 非共生型グロビン遺伝子を過剰発 現させる具体的手段は限定されず、 当業者に公知の任意の手法を用いることがで きる。 限定するものではないが、 一般的な方法としては、 非共生型グロビン遺伝 子を過剰発現プロモーターの下流に正しい読み枠で発現されるように連結して構 築した形質転換ベクターを、 根粒着生植物中に導入する手法が挙げられる。 この 場合、 非共生型グロビン遺伝子をベクター中に組み込む.には、 例えば、 非共生型 グロビン遺伝子を含む DNA断片を適当な制限酵素で切り出し、 過剰発現プロモー タ一を含有する発現べクタ一中の過剰発現プ口モーター下流の適当な制限酵素部 位にイン ' フレームとなるように揷入して連結すればよい。 あるいは、 予め過剰 発現プロモーターの下流に非共生型グロビン遺伝子を連結した DNA断片を、 ベタ ター中に組み込んでもよい。 過剰発現プロモータ一に連結した非共生型グ口ビン 遺伝子のゲノム断片を相同組換えなどの方法により根粒着生植物のゲノム DNAに 組み込んでもよい。 非共生型グロビン遺伝子を過剰発現させる根粒着生植物とし ては、 上述の任意の根粒着生植物 (例えばミヤコダサ) を好適に使用できる。 本発明において、 「過剰発現プロモーター」 とは、 その過剰発現プロモーター に連結した遺伝子を、 宿主の植物細胞中で、 強力に (大量に) 発現させる能力を 有するプロモーターを意味する。 本発明の過剰発現プロモーターは、 特に、 根粒 特異的な発現をもたらすプロモーター (根粒特異的プロモーター) であってもよ い。 本発明の過剰発現プロモーターは、 誘導性プロモーターであっても構成性プ 口モーターであってもよい。 なおプロモーターとは、 一般に構造遺伝子の 5 '側 上流に存在する発現制御領域又はその改変配列を含む DNAを言う。 本発明では、 過剰発現プロモーターとして、 植物細胞での外来遺伝子発現に適した任意のプロ モーターを使用することができる。 本発明で用いる過剰発現プロモーターの好適 な例としては、 限定するものではないが、 例えばカリフラワーモザイクウィルス (CaMV) 35Sプロモーター、 ィネアクチンプロモーター、 改変 35Sプロモーター、 タバコ PRlaプロモーター、 シロイヌナズナ PR-1プ口モーターなどが挙げられる。 非共生型グロビン遺伝子を導入するための形質転換ベクターとしては、 植物細 胞への導入用ベクターであれば任意のものを使用できる。 例えば、 ァグロバクテ リ ゥム法を利用する場合には、 ァグロバタテリ ゥム由来のプラスミ ドベクター (Tiプラスミ ドなど) 又はバイナリーベクターを使用することが好ましい。 本発 明で用いる形質転換ベクターには、 非共生型グロビン遺伝子、 そして場合により 過剰発現ベクターを含む他、 形質転換体の選抜を容易にする選択マーカー遺伝子、 レポーター遺伝子、 バイナリーベクター系を使用するための複製開始点 (Tiまた は Riプラスミ ド由来の複製開始点など) などを含んでもよい。 選択マーカー遺伝 子としては、 例えば、 セフォタックス遺伝子、 ハイグロ イシン耐性遺伝子、 ジ ヒ ドロ葉酸還元酵素遺伝子、 アンピシリン耐性遺伝子、 ネオマイシン耐性遺伝子、 カナマイシン耐性遺伝子等の薬剤耐性遺伝子が挙げられる。 レポーター遺伝子と しては、 緑色蛍光タンパク質遺伝子 (GFP) ゃルシフェラーゼ) 遺伝子 (LUC, LU X) などが挙げられる。 本発明においては、 「ベクター」 は、 いわゆる発現カセ ッ トを包含するものとする。 「発現カセッ ト」 とは、 プロモーター DNA配列と発 現させたい遺伝子の DNA配列とを含み、 当該遺伝子の DNA配列が植物細胞中で発現 可能であるような配置でプロモータ一 DNA配列に結合されている DNA断片を意味す る。 発現カセットは必ずしも自律複製能を有していなくてもよい。 3. Excessive occurrence of non-symbiotic globin genes in nodulating plants! ^ In the present invention, a non-symbiotic globin gene is overexpressed in a nodulating plant by a genetic engineering technique. In the present invention, “overexpressing” a gene means that the gene exceeds the amount normally expressed in the host organism by any genetic engineering technique (for example, gene transfer). It means that the gene is manipulated so that it is expressed in an amount (for example, 10% or more), or the gene is introduced into a host organism that does not have the gene and expressed. The specific means for overexpressing the non-symbiotic globin gene is not limited, and any method known to those skilled in the art can be used. Although not limited, a common method is to use a transformation vector constructed by ligating non-symbiotic globin genes so that they are expressed in the correct reading frame downstream of the overexpression promoter. A method of introducing it into a plant is mentioned. In this case, the non-symbiotic globin gene can be incorporated into the vector by, for example, excising a DNA fragment containing the non-symbiotic globin gene with an appropriate restriction enzyme and adding it to an expression vector containing an overexpression promoter. It may be inserted into an appropriate restriction enzyme site downstream of the overexpression promoter so as to be in-frame and connected. Alternatively, a DNA fragment in which a non-symbiotic globin gene is linked in advance downstream of the overexpression promoter may be incorporated into the vector. A genomic fragment of the non-symbiotic goutvin gene linked to the overexpression promoter may be incorporated into the genomic DNA of the nodulating plant by a method such as homologous recombination. As the nodulating plant that overexpresses the non-symbiotic globin gene, any of the above-mentioned nodulating plants (for example, Miyakodasa) can be preferably used. In the present invention, the “overexpression promoter” means a promoter having the ability to strongly (in large quantities) express a gene linked to the overexpression promoter in a host plant cell. In particular, the overexpression promoter of the present invention may be a promoter (nodule-specific promoter) that causes nodule-specific expression. The overexpression promoter of the present invention may be an inducible promoter or a constitutive promoter. A promoter generally refers to a DNA containing an expression control region or its modified sequence existing 5 'upstream of a structural gene. In the present invention, any promoter suitable for foreign gene expression in plant cells can be used as an overexpression promoter. Suitable examples of the overexpression promoter used in the present invention include, but are not limited to, cauliflower mosaic virus. (CaMV) 35S promoter, inactin promoter, modified 35S promoter, tobacco PRla promoter, Arabidopsis PR-1 promoter, and the like. As a transformation vector for introducing a non-symbiotic globin gene, any vector can be used as long as it is a vector for introduction into plant cells. For example, when the agrobacterium method is used, it is preferable to use a plasmid vector derived from agrobacterium (such as Ti plasmid) or a binary vector. The transformation vector used in the present invention includes a non-symbiotic globin gene and, optionally, an overexpression vector, as well as a selection marker gene, reporter gene, and binary vector system that facilitates selection of transformants. Replication origin (such as replication origin derived from Ti or Ri plasmid). Examples of the selection marker gene include drug resistance genes such as cefotax gene, hygrosine resistance gene, dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene, and kanamycin resistance gene. Examples of reporter genes include green fluorescent protein gene (GFP) luciferase) gene (LUC, LU X) and the like. In the present invention, the “vector” includes a so-called expression cassette. An “expression cassette” includes a promoter DNA sequence and a DNA sequence of a gene to be expressed, and is linked to the promoter DNA sequence in an arrangement such that the DNA sequence of the gene can be expressed in plant cells. It means a DNA fragment. An expression cassette does not necessarily have autonomous replication ability.
また、 過剰発現プロモーターを予め含むベクターとしては、 pBI系バイナリー ベクターなど、 例えば pKANNIBAL、 IG121-Hm、 ρΒΙ121、 ρΒΙ101、 ρΒΙΙΟΙ. 2、 ρΒΙΙΟ 1. 3、 pCAMBIA1301などが挙げられる。  Moreover, examples of the vector containing an overexpression promoter in advance include pBI binary vectors such as pKANNIBAL, IG121-Hm, ρΒΙ121, ρΒΙ101, ρΒΙΙΟΙ.2, ρΒΙΙΟ1.3, and pCAMBIA1301.
本発明は、 以上のような非共生型グロビン遺伝子を過剰発現プロモーターに連 結させて含むベクターも提供する。 このような形質転換ベクターは、 根粒の窒素 固定活性を増大させるために任意の根粒着生植物に導入することができ、 非常に 便利に使用できる。  The present invention also provides a vector comprising such a non-symbiotic globin gene linked to an overexpression promoter. Such a transformation vector can be introduced into any nodule-growing plant in order to increase the nitrogen fixation activity of the nodule and can be used very conveniently.
形質転換ベクターを根粒着生植物に導入する方法としては、 限定するものでは ないが、 例えばァグロバタテリ ゥム法、 パーティクルガン法、 エレク ト口ポレー シヨン法、 ポリエチレングリコール (PEG) 法、 マイクロインジェクション法、 プロトプラスト融合法などの、 植物用に広く用いられている植物形質転換法を用 いることができる。 これらの植物形質転換法は、 『島本功、 岡田清孝 監修 「新版 モデル植物の実験プロトコール 遺伝学的手法からゲノム解析まで」The method for introducing the transformation vector into the nodulating plant is not limited. For example, the agrobatterium method, the particle gun method, the electoral pore method, the polyethylene glycol (PEG) method, the microinjection method, Plant transformation methods widely used for plants, such as protoplast fusion, can be used. These plant transformation methods are: “Isao Shimamoto, Kiyotaka Okada“ New Edition Experimental Protocol for Model Plants From Genetic Methods to Genome Analysis ”
(2001) 秀潤社』 などの一般的な教科書の記載に記載されている。 形質転換べ クタ一を導 Λした植物細胞は、 カナマイシン耐性など選択マーカーを利用した方 法で選択をかけ、 レポータータンパク質の検出や導入遺伝子の発現解析などによ り導入遺伝子の発現を確認しつつ、 常法により植物体を再生させることが好まし レ、。 (2001) Shujunsha ”and other general textbooks. Plant cells introduced with the transformation vector are selected by a method using a selectable marker such as kanamycin resistance, and the expression of the transgene is confirmed by detecting the reporter protein or analyzing the expression of the transgene. It is preferable to regenerate the plant body by a conventional method.
より具体的には、 例えばァグロパクテリゥム法では、 例えば Nagelらの方法を 用い、 まずベクターをエレクト口ポレーシヨンによってァグロパクテリゥムに導 入し、 次いで形質転換されたァグロノくクテリゥムを、 Pl nt Molecular Biology Manual (S. B. Gelvin et. al. , Academic Publishers)、 Thykaer, T. et al., Cel l Biology, 2nd ed. (1998) p, 518—525、 Sti ller, J. , et al. , J. Exp. Bot. (19 97) 48, p. 1357— 1365、 Ogar, P. et al., Plant Science (1996) 116 159-168、 又は Hiei Y. et al. , Plant J. (1994) 6, 271- 282に記載されたような方法で目 的の遺伝子を植物に導入し、 植物体に再生させればよい。  More specifically, for example, in the agrobacterium method, for example, the method of Nagel et al. Is used. First, the vector is introduced into the agrobacterium through an electoral position, and then the transformed agrobacterium is introduced. Pl nt Molecular Biology Manual (SB Gelvin et. Al., Academic Publishers), Thykaer, T. et al., Cel Biology, 2nd ed. (1998) p, 518-525, Stiller, J., et al. , J. Exp. Bot. (19 97) 48, p. 1357— 1365, Ogar, P. et al., Plant Science (1996) 116 159-168, or Hiei Y. et al., Plant J. (1994 ) The target gene may be introduced into the plant by the method described in 6, 271-282 and regenerated into the plant body.
ポリエチレンダリコール法を用いる場合には、 まず細胞壁を酵素で溶かして取 り除き、 プロトプラストにしてから、 非共生型グロビン遺伝子を、 ポリエチレン グリコールを用いて細胞内に導入し、 植物体に再生すればよい (Datta SK: In G ene Transfer To Plants (Potrykus I and Spangenberg, Eds) pp. 66 - 74 (199 5) ) 。  When using the polyethylene dallicol method, first remove the cell wall by dissolving it with an enzyme, convert it to a protoplast, introduce the non-symbiotic globin gene into the cell using polyethylene glycol, and regenerate it into the plant body. Good (Datta SK: In Gene Transfer To Plants (Potrykus I and Spangenberg, Eds) pp. 66-74 (199 5)).
エレク トロポレーシヨン法を用いる場合には、 まず細胞壁を酵素で溶かして取 り除き、 プロトプラストにしてから、 電気パルスをかけて非共生型グロビン遺伝 子を細胞内に導入し、 その後植物体に再生すればよい (Toki S, et al. , Plant Physiol. , 100: 1503 (1992) ) 。  When using the electroporation method, first remove the cell wall by dissolving it with an enzyme, convert it to a protoplast, apply an electric pulse to introduce the non-symbiotic globin gene into the cell, and then regenerate it into the plant body. Good (Toki S, et al., Plant Physiol., 100: 1503 (1992)).
パーティクルガン法を用いる場合には、 植物体、 植物器官、 植物組織自体をそ のまま使用してもよく、 切片を調製した後に使用してもよく、 プロトプラストを 調製して使用してもよい (Chri stou P, et al. , Biotechnology 9 : 957 (199 1) ) 。 このように調製した試料に対し、 遺伝子導入装置 (例えば PDS- 1000 (BI0-R 1 When using the particle gun method, a plant body, a plant organ, or a plant tissue itself may be used as it is, or may be used after preparing a section, or a protoplast may be prepared and used ( Chri stou P, et al., Biotechnology 9: 957 (199 1)). For the sample prepared in this way, a gene transfer device (eg PDS-1000 (BI0-R 1
AD社)等) を用いて、 非共生型グロビン遺伝子でコーティングした金やタンダス テンなどの微粒子 (径約 l〜2 /i m) を高圧ガスで噴射することにより、 当該遺伝 子を植物細胞内に導入する。 処理条件は植物又は試料により異なるが、 通常は 45 0〜2000psi程度の圧力、 4〜12cm程度の距離で行う。 非共生型グロビン遺伝子を 細胞内に導入したら、 上記と同様にして植物体に再生すればよい。 AD), etc.), and the fine particles (diameter: about 1 to 2 / im) such as gold and tandasten coated with non-symbiotic globin gene are injected with high-pressure gas to bring the gene into plant cells. Introduce. Treatment conditions vary depending on the plant or sample, but are usually performed at a pressure of about 450 to 2000 psi and a distance of about 4 to 12 cm. Once the non-symbiotic globin gene is introduced into the cell, it can be regenerated into a plant in the same manner as described above.
以上のようにして形質転換された本発明の根粒着生植物においては、 非共生型 グロビン遺伝子は、 その植物のゲノム DNA中に組み込まれている状態で発現され てもよいし、 ゲノム外 DNAとして (例えばベクター中に保持されたままで) 発現 されてもよい。  In the nodulating plant of the present invention transformed as described above, the non-symbiotic globin gene may be expressed in the state of being incorporated in the genomic DNA of the plant, or as extragenomic DNA. It may be expressed (eg, while retained in the vector).
以上のようにして非共生型グロビン遺伝子を過剰発現させた形質転換植物細胞 若しくは植物組織 (毛状根、 葉、 茎、 根粒など) 、 又はその再生させた植物体に ついては、 非共生型グロビン遺伝子の発現をノーザンプロッティング法、 サザン プロッティング法、 リポーター遺伝子の発現などの常法により確認することが好 ましい。  For transformed plant cells or plant tissues (hairy roots, leaves, stems, nodules, etc.) overexpressing the non-symbiotic globin gene as described above, or the regenerated plants, non-symbiotic globin genes It is preferable to confirm the expression of the gene by conventional methods such as Northern plotting, Southern plotting, and reporter gene expression.
4. 植物体における根粒形成と根粒の窒素固定活性の測定 4. Measurement of nodulation and nitrogen fixation activity of nodules in plants
本発明において非共生型グロビン遺伝子を過剰発現させた形質転換された根粒 着生植物は、 共生窒素固定菌が存在する環境下で生育することにより根粒を着生 することができる。 しかしこの根粒着生植物に、 共生窒素固定菌を接種すること によって、 人為的に根粒を着生させることも可能である。 根粒着生植物への共生 窒素固定菌の接種は、 当業者に周知の方法に従って行うことができる (例えば、 Higashi, S., Katahira, S. and Abe, M. Plant and Soi l 81, p. 91-99 (1984) を参照) 。  In the present invention, a transformed nodule-growing plant in which a non-symbiotic globin gene is overexpressed can grow a nodule by growing in an environment where symbiotic nitrogen-fixing bacteria are present. However, it is possible to artificially grow the nodule by inoculating this nodulating plant with a symbiotic nitrogen-fixing bacterium. Inoculation of symbiotic nitrogen-fixing bacteria into nodulating plants can be performed according to methods well known to those skilled in the art (for example, Higashi, S., Katahira, S. and Abe, M. Plant and Soi 81, p. 91-99 (1984)).
本発明において 「共生窒素固定菌」 とは、 植物に共生して根粒を形成し、 窒素 をアンモニアとして固定して宿主植物に与える能力 (窒素固定能) を有する微生 物を意味する。 共生窒素固定菌には、 真正細菌では根粒菌 (リゾビゥム (Rhizob ium) 、 ブラディリゾビゥム (Bradyrhizobium) 、 ァゾリゾビゥム (Azorhizobiu m) 、 シノリゾビゥム (Sinorhizobium) 、 メソリゾビゥム (Mesorhizobium) 、 ァロリゾビゥム (Allorhizobium) ) 、 放線菌ではフランキア (Frankia) 属菌が ある。 根粒菌はマメ科植物とニレ科パラスポニァ (Parasponia) 属植物に感染し、 フランキア属菌はカバノキ科、 ャマモモ科などの主に樹木に感染することが知ら れているが、 この共生窒素固定菌一宿主植物の関係には例外も知られている。 従 つて形質転換された根粒着生植物には、 その植物種に感染できる共生窒素固定菌 を接種すればよい。 例えば、 ミヤコダサには、 ミヤコグサ根粒菌 (Mesorhizobiu m loti) を接種すればよい。 In the present invention, the “symbiotic nitrogen-fixing bacterium” means a microbial organism that has the ability to symbiotic to a plant to form a nodule, fix nitrogen as ammonia, and give it to a host plant (nitrogen fixing ability). Symbiotic nitrogen-fixing bacteria include Rhizobium, Bradyrishibium, Azorhizobiu, Sinorhizobium, Mesorhizobium, Mesorhizobium, Mesozobium Among actinomycetes, the genus Frankia is there. It is known that rhizobia infects leguminous plants and plants of the genus Parasponia, and Francia spp. Are known to infect mainly trees such as birch family and leguminous family. Exceptions are also known for host plant relationships. Therefore, the transformed nodulating plants may be inoculated with symbiotic nitrogen-fixing bacteria capable of infecting the plant species. For example, Miyakodasa may be inoculated with Mesorhizobiu m loti.
本発明において非共生型グ口ビン遺伝子を過剰発現させた根粒着生植物に共生 窒素固定菌を接種し、 根粒を着生させると、 その根粒において窒素固定活性が顕 著に増大する。 この根粒における窒素固定活性は、 非共生型グロビン遺伝子を過 剰発現させていない同じ種の植物 (野生株) を対照として比較して、 根粒単位重 量当たり少なくとも 2倍、 好ましくは少なくとも 3倍、 例えば 3倍〜 6倍に増大する。 根粒における窒素固定活性は、 当業者に公知の任意の窒素固定活性の測定法を 利用して行えばよい。 本発明では、 根粒における窒素固定活性を、 根粒からの抽 出物について、 アセチレンをエチレンに還元する活性 (アセチレン還元活性 [Ace tylene reduct ion activity]; ARA活性) として測定することが好ましい。 ARA活 性は、 根粒の単位重量 (1グラムなど) 当たり、 かつ単位時間 (1時間、 1分間 など) 当たりのエチレン発生量として表すことができる。 この ARA活性の測定は、 例えば後述の実施例に従って行えばよい。 本発明に係る非共生型グロビン遺伝子 を過剰発現させた根粒着生植物は、 限定するものではないが、 例えば、 根粒にお いて 10〜100 nM/min/g、 好ましくは 11〜40 nM/min/gの ARA活性を示す。  In the present invention, when a symbiotic nitrogen-fixing bacterium is inoculated into a nodule-growing plant in which a non-symbiotic guttine gene is overexpressed and the nodule is allowed to grow, the nitrogen-fixing activity in the nodule increases markedly. The nitrogen fixation activity in this nodule is at least 2 times, preferably at least 3 times per nodule unit weight, compared to a control of a plant of the same species that does not overexpress the non-symbiotic globin gene (wild strain). For example, it increases 3 to 6 times. The nitrogen fixation activity in the nodules may be performed using any method for measuring nitrogen fixation activity known to those skilled in the art. In the present invention, the nitrogen fixation activity in the nodules is preferably measured as an activity of reducing acetylene to ethylene (acetylene reduct ion activity; ARA activity) for the extract from the nodules. ARA activity can be expressed as the amount of ethylene generated per unit weight (eg 1 gram) of root nodules and per unit time (eg 1 hour, 1 minute). The ARA activity may be measured according to the examples described later, for example. The nodule-growing plant in which the non-symbiotic globin gene according to the present invention is overexpressed is not limited, for example, 10 to 100 nM / min / g, preferably 11 to 40 nM / min in the nodule. Shows ARA activity of / g.
本発明は、 上記のようにして得られる、 非共生型グロビン遺伝子を過剰発現し、 根に根粒を有する根粒着生植物にも関する。  The present invention also relates to a nodule-growing plant that is obtained as described above and overexpresses a non-symbiotic globin gene and has a root nodule.
5. その他の実施形態 5. Other embodiments
本発明の方法によって作出される根粒着生植物は、 高い窒素固定活性を示す根 粒を着生するため、 それを栽培することにより、 その栽培環境下で空気中の窒素 を多量に固定することができる。 従って本発明は、 植物栽培における窒素固定効 率を増大させる方法をも提供する。 「植物栽培における窒素固定効率を増大させ る」 とは、 一定栽培面積当たり又は栽培植物 1個体当たりの一定期間内の窒素固 定量を、 同じ環境下での形質転換させていない同じ植物による窒素固定量と比較 して増加させることを意味する。 '本発明において 「栽培」 とは、 当該植物を意図 的に特定の場所又は環境下で生育させることを意味する。 本発明において 「栽 培」 は農業上の栽培を包含するが、 必ずしも農業的な作業 (耕作、 播種、 植苗、 間引き、 消毒、 剪定、 間伐、 収穫など) を行わなくてもよい。 本発明における栽 培には、 限定するものではないが、 例えば作物や園芸植物の栽培、 造園、 園芸、 荒廃地や海岸などの緑化用の植栽、 貧栄養土壌の肥沃化のための植栽、 塩類土壌 や乾燥土壌などの土壌改良用の植栽が含まれる。 The nodule-growing plant produced by the method of the present invention grows nodules that exhibit high nitrogen-fixing activity, so that a large amount of nitrogen in the air is fixed in the cultivation environment by cultivating them. Can do. Therefore, the present invention also provides a method for increasing the nitrogen fixation efficiency in plant cultivation. “Increasing the efficiency of nitrogen fixation in plant cultivation” means that nitrogen fixation within a certain period per certain cultivation area or per individual cultivation plant. It means increasing the amount of quantification compared to the amount of nitrogen fixation by the same untransformed plant in the same environment. 'Cultivation' in the present invention means that the plant is intentionally grown in a specific place or environment. In the present invention, “cultivation” includes agricultural cultivation, but it is not always necessary to perform agricultural work (cultivation, sowing, planting, thinning, disinfection, pruning, thinning, harvesting, etc.). The cultivation in the present invention is not limited, for example, cultivation of crops and horticultural plants, landscaping, horticulture, planting for greening of degraded land and beaches, planting for fertilization of oligotrophic soil This includes planting for soil improvement such as salt and dry soils.
本発明の方法によって作出される根粒着生植物は、 植物栽培における窒素固定 効率を増大させることにより、 ある環境下で空気中から固定される窒素量を増大 させ、 当該植物組織中の窒素固定濃度を高め、 その根粒着生植物の収量又は生長 量を増大させることができる。 さらに、 本発明の根粒着生植物を栽培することに より、 長期的には、 土壌中の窒素量を増大させて土壌を肥沃化することができ、 その土壌を利用して他の植物の収量も増加させることができる。 また本発明の根 粒着生植物を栽培することにより、 貧栄養土壌、 塩類土壌、 乾燥土壌等を効果的 に緑化することができる。 実施例  The nodulation plant produced by the method of the present invention increases the nitrogen fixation efficiency in plant cultivation, thereby increasing the amount of nitrogen fixed from the air under a certain environment, and the nitrogen fixation concentration in the plant tissue. And the yield or growth of the nodulating plant can be increased. Furthermore, by cultivating the nodulating plants of the present invention, it is possible to fertilize the soil by increasing the amount of nitrogen in the soil over the long term, and the yield of other plants using the soil. Can also be increased. In addition, by cultivating the nodulating plants of the present invention, it is possible to effectively greenen oligotrophic soil, salt soil, dry soil, and the like. Example
以下、 本発明を実施例を挙げて説明するが、 本発明の技術的範囲はこれらによ り限定されるものではない。  Hereinafter, the present invention will be described with reference to examples, but the technical scope of the present invention is not limited thereto.
[実施例 1 ] ミヤコグサ非共生型グロビン遺伝子 (LjHbl) の単離及び同定 ミヤコグサ (Lotus japonicus) の非共生型グロビン遺伝子(LjHbl)を、 ミヤコ ダサのゲノムライプラリー (Sato et al. (2000) DNA Res. 8: p. 311- 318) から PCR法によってスクリ一二ングして単離した。 スクリ一二ングに用いるプライマ 一は、 ミヤコダサの ESTライブラリーに存在する非共生型グロビン遺伝子ホモ口 グの配列 (クローン名 : AV413959、 DDBJ/EMBL/GenBankァクセッション番号: AB2 38220) に基づいて設計した。 このプライマーの配列は以下の通りである。  [Example 1] Isolation and identification of non-symbiotic globin gene (LjHbl) of Lotus japonicus The non-symbiotic globin gene (LjHbl) of Lotus japonicus Res. 8: p. 311-318) was isolated by screening by PCR. The primer used for screening is based on the non-symbiotic globin gene homologue sequence (clone name: AV413959, DDBJ / EMBL / GenBank accession number: AB2 38220) present in the Miyakodasa EST library. Designed. The sequence of this primer is as follows.
LjHb lFl : 5, - TTCTCACTTCACTTCCATCGC- 3' (配列番号 4 ; フォワードプライマ 一) LjHblF2 : 5' - TTGGTCAAGTCATGGAGCG - 3, (配列番号 5 ; フォワードプライマー) LjHblRl : 5' -TCACAGTGACTTTTCCAGCG-3' (配列番号 6 ; リバースプライマー) LjHblR2 : 5' -AGACAGACATGGCATGAGGC-3' (配列番号 7 ; リバースプライマー) LjHbl遺伝子を増幅するための PCRは、 GeneArap(R) PCR System 9700 (Appl ied B i osystems) を使用し、 以下の反応条件で行った : 94°Cで 30秒、 55°Cで 30秒、 7 2°Cで 30秒を 30サイクル。 LjHb lFl: 5,-TTCTCACTTCACTTCCATCGC-3 '(SEQ ID NO: 4; forward primer one) LjHblF2: 5'-TTGGTCAAGTCATGGAGCG-3, (SEQ ID NO: 5; forward primer) LjHblRl: 5'-TCACAGTGACTTTTCCAGCG-3 '(SEQ ID NO: 6; reverse primer) LjHblR2: 5'-AGACAGACATGGCATGAGGC-3' (SEQ ID NO: 7; reverse) ) GeneArap (R) PCR System 9700 (Applied Biosystems) was used to amplify the LjHbl gene under the following reaction conditions: 94 ° C for 30 seconds, 55 ° C for 30 seconds , 30 cycles of 30 seconds at 2 ° C.
このようなミヤコダサのゲノムライブラリ一のスクリ一エングの結果、 TACク ローン (LjTOIOl) 上に存在する遺伝子 LjHblを同定した。 ミヤコグサゲノム上の LjHblの塩基配列を解析した結果、 この遺伝子は開始コドンから終止コドンまで の全長が 1012bpであり、 161アミノ酸残基をコードする遺伝子であることが分か つた。 ミヤコグサ非共生型グロビン遺伝子 (LjHbl) の.ゲノム上の構造とそれに コードされるアミノ酸配列を図 1に示す。 遺伝子 LjHblは、 植物グロビン遺伝子 に共通する、 4つのェキソンと 3つのイントロンを含む構造をしており、 ミヤコ ダサの 6つの染色体のうち第 3染色体に存在していた。  As a result of screening of the Miyakodasa genomic library, we identified the gene LjHbl present on the TAC clone (LjTOIOl). As a result of analyzing the base sequence of LjHbl on the Lotus japonicus genome, it was found that this gene has a total length of 1012 bp from the start codon to the stop codon and encodes 161 amino acid residues. Fig. 1 shows the genomic structure and amino acid sequence of the non-symbiotic globin gene (LjHbl). The gene LjHbl has a structure containing four exons and three introns common to the plant globin gene, and was present on chromosome 3 of the six chromosomes of Miyako Dasa.
[実施例 2 ] 非共生型グロビン遺伝子 (LjHbl) の発現解析 [Example 2] Expression analysis of non-symbiotic globin gene (LjHbl)
LjHblの発現解析を、 RT- PCRにより、 組織別の発現と、 ス トレス条件下での発 現の 2つの実験系で行った。 組織別の発現を調べた実験系では、 組織サンプルと して、 ミヤコグサ (発芽 6週目の成長個体) の 1)葉、 2)茎、 3)根、 4)根粒の 4つ を用いた。 ス トレス条件下での発現を調べた実験系では、 サンプルとして、 1)無 処理 (対照) 、 2)ショ糖添加、 3)低温、 4)低酸素の 4つを用いた。 RT- PCRには実 施例 1で使用したプライマー LjHblFlと LjHblR2を用い、 逆転写と転写産物の増幅 のために One- step RT- PCR kit (QIAGEN) を使用した。 遺伝子 LjHblの発現レベル は、 電気泳動によって確認した。 電気泳動写真をイメージングして、 そのバンド の濃さに基づき、 LjHblの発現量を相対値で表した。  Expression analysis of LjHbl was performed in two experimental systems by RT-PCR: expression by tissue and expression under stress conditions. In the experimental system that examined the expression by tissue, four tissue samples were used: 1) leaves, 2) stems, 3) roots, and 4) nodules. In the experimental system in which the expression under stress conditions was examined, four samples were used: 1) no treatment (control), 2) sucrose addition, 3) low temperature, and 4) hypoxia. For RT-PCR, the primers LjHblFl and LjHblR2 used in Example 1 were used, and the One-step RT-PCR kit (QIAGEN) was used for reverse transcription and transcription product amplification. The expression level of the gene LjHbl was confirmed by electrophoresis. Electrophoresis photographs were imaged, and the expression level of LjHbl was expressed as a relative value based on the intensity of the band.
組織別の発現を調べた実験の結果を図 2 Aに示す。 LjHblは、 成長個体の様々 な器官で発現していることが示された。 それぞれの発現量 (相対値) は、 葉で 0, 4、 茎で 0. 4、 根で 1. 0、 根粒で 36. 0であった。 このように、 特に根粒組織では強 く発現していた。 またス トレス条件下での発現を調べた実験の結果を図 2 Bに示 す。 LjHblは、 無処理と比較した相対的な発現量としてみた場合、 低温 (図 2 B における発現量:約 250) や低酸素 (図 2 Bにおける発現量:約 450) といったス トレス処理によっても強く発現することが示された。 The results of an experiment examining the expression by tissue are shown in Fig. 2A. LjHbl was shown to be expressed in various organs of growing individuals. The expression levels (relative values) were 0, 4 for leaves, 0.4 for stems, 1.0 for roots, and 36.0 for root nodules. Thus, it was strongly expressed especially in the nodule tissue. Figure 2B shows the results of an experiment examining the expression under stress conditions. The LjHbl is strongly expressed by stress treatment such as low temperature (expression level in Fig. 2B: about 250) and hypoxia (expression level in Fig. 2B: about 450) when viewed as a relative expression level compared to no treatment. It was shown to be expressed.
[実施例 3 ] '形質転換用ベクターの構築 [Example 3] 'Construction of vector for transformation
LjHblを過剰に発現する形質転換ミヤコグサ植物体及び形質転換毛状根を作出 するために、 強力なプロモーターに LjHb 1の cDNAを連結した遺伝子を構築した。 形質転換用のベクター構築には、 プラスミ ド pKANNIBAL (Wesley et al. 2001 th e plant Journal 27, 581—590)、 pHKN29 (Kumagai and Kouchi, 2003 MPMI 16 (8), 663—668)、 pIG121_Hm (Ohta et al. , 1990 Plant Cell Physiol. , 31, 80 5-813) を使用した。 .  In order to produce transformed Lotus root plants and transgenic hairy roots that overexpress LjHbl, a gene was constructed in which LjHb1 cDNA was linked to a strong promoter. Vectors for transformation include plasmid pKANNIBAL (Wesley et al. 2001 the plant Journal 27, 581—590), pHKN29 (Kumagai and Kouchi, 2003 MPMI 16 (8), 663—668), pIG121_Hm (Ohta et al., 1990 Plant Cell Physiol., 31, 80 5-813). .
ミヤコグサの根粒から、 全 RNAを常法によって抽出し、 RT- PCRによって cDNAを 合成し、 この cDNAを铸型とした PCRによって完全長の LjHbl cDNAをクローユング した。 得られた完全長 LjHbl cDNA (配列番号 1 ) は、 まず、 pKANNIBALのカリフ ラヮーモザイクゥイノレスの 35Sプロモーターの下流に連結した。 さらにこのべク ターから 35S- LjHbl cDNA断片を切り出し、 それを pHKN29の GFP領域の下流に連結 し、 プラスミ ドベクター pR35SLjHblとした (図 3 ) 。 この pR35SLjHblは、 後述の 通り、 形質転換毛状根の誘導のために使用した。  Total RNA was extracted from the root nodules of Lotus japonicus by conventional methods, cDNA was synthesized by RT-PCR, and full-length LjHbl cDNA was cloned by PCR using this cDNA as a cage. The obtained full-length LjHbl cDNA (SEQ ID NO: 1) was first ligated downstream of the 35S promoter of pKANNIBAL's california mosaic inoless. Furthermore, a 35S-LjHbl cDNA fragment was excised from this vector and ligated downstream of the GFP region of pHKN29 to obtain a plasmid vector pR35SLjHbl (Fig. 3). This pR35SLjHbl was used for the induction of transformed hairy roots as described below.
また、 完全長の LjHbl cDNAを pIG12I-Hmの 35Sプロモーターの下流に連結して、 プラスミ ドベクター pT35SljLblとした。 この PT35S1 jLhlは、 後述の通り、 形質転 換ミヤコダサ植物体の作出のために使用した。 The full-length LjHbl cDNA was ligated downstream of the 35S promoter of pIG12I-Hm to obtain a plasmid vector pT35SljLbl. The P T35S1 jLhl, as described below, was used for production of transformants conversion Miyakodasa plants.
[実施例 4 ] 形質転換毛状根の作出と遺伝子導入及び発現の確認 [Example 4] Production of transformed hairy root and introduction of gene and confirmation of expression
実施例 3で作製したプラスミ ドベクターを使用して、 ァグロパクテリゥム ' リ ゾジェネスを介した毛状根誘導型の形質転換系により、 LjHblを導入したミヤコ ダサの形質転換毛状根を作出した。  Using the plasmid vector prepared in Example 3, a hairy root-inducible transformation system mediated by agrobacterium lysogenes was used to produce transgenic hairy roots of Miyako-dasa introduced with LjHbl. did.
まず、 実施例 3で LjHblを過剰発現するように構築したベクター PR35SLjHb lを、 ァグロノくクテリゥム · リゾジェネス (Agrobacterium rhizogenes) LBA1334 (Dr. Clara Diaz (Institute Molecular Plant Science, Leiden University)より分 与) に、 エレクト口ポレーシヨンにより直接導入した。 この pR35SLjHblを保持す るァグロパクテリゥム · リゾジヱネスの菌体懸濁液を、 胚軸の部分で切断した播 種後 5日目のミヤコグサ実生に接種した。 その後、 これを滅菌したろ紙上に載せ、 共存培養培地 (1/10 B5, BAP 0. 5 ^ g/ml, NAA 0. Οδ ,α Ε/ηιΙ, MES (pH5. 2) 5 mM, ァセトシリンゴン 20 g/ml) にて 5日間共存培養した。 共存培養終了後、 抗生 物質セフォタックス(cefotax) (200 g/ml; 中外製薬株式会社) を添加した Gamb orgB5培地 (製造: 日本製薬株式会社、 販売:和光純薬工業株式会社) 上に載せ、 毛状根を誘導した。 誘導した毛状根を図 4 Aに示す。 なお図 4 Aは、 成長段階や 毛状根の発生時期が異なる各種サンプルを示している。 First, the vector P R35SLjHb l constructed to overexpress LjHbl in Example 3, Aguronoku Kuteriumu rhizogenes (Agrobacterium rhizogenes) LBA1334 (Dr. Clara Diaz (Institute Molecular Plant Science, minute from Leiden University) On the other hand, it was introduced directly by electo-portion. The cell suspension of Agrobacterium lysozyme carrying this pR35SLjHbl was inoculated into Miyakogusa seedlings on the fifth day after seeding, which had been cut at the hypocotyl part. Then, this was placed on a sterilized filter paper and co-culture medium (1/10 B5, BAP 0.5 ^ g / ml, NAA 0. Οδ, α Ε / ηιΙ, MES (pH 5.2) 5 mM, acetosyringone 20 g / ml) for 5 days. After completion of co-cultivation, put it on Gamb orgB5 medium (manufactured by Nippon Pharmaceutical Co., Ltd., sales: Wako Pure Chemical Industries, Ltd.) supplemented with the antibiotic cefotax (200 g / ml; Chugai Pharmaceutical Co., Ltd.) Induced roots. Induced hairy roots are shown in FIG. 4A. Figure 4A shows various samples with different growth stages and hairy roots.
毛状根への LjHbl遺伝子導入の有無は、 GFP蛍光の検出と、 35Sプロモーターと L jHblとの融合遺伝子を PCR増幅して検出することにより、.確認した。 LjHbl遺伝子 が導入された毛状根では、 GFPが産生され、 緑色蛍光が観察された (図 4 B ) 。 図 4 Bの左側 (上段及び下段) の写真は明視野観察、 右側 (上段及び下段) の写 真は暗視野観察の結果である。 共生型グロビン遺伝子が過剰発現し、 GFP蛍光が 観察された根がはっきりと観察される。  The presence or absence of LjHbl gene introduction into hairy roots was confirmed by detecting GFP fluorescence and PCR amplification of a fusion gene of 35S promoter and L jHbl. In the hairy root into which the LjHbl gene was introduced, GFP was produced and green fluorescence was observed (Fig. 4B). The photo on the left (upper and lower) of Fig. 4B is the result of bright field observation, and the photo on the right (upper and lower) is the result of dark field observation. Roots where symbiotic globin genes are overexpressed and GFP fluorescence is observed are clearly observed.
さらに、 形質転換毛状根から常法により全 RNAを抽出し、 RT-PCRを行って、 導 入した LjHbl遺伝子の発現を確認した。 また野生株のミヤコグサ毛状根をコント ロールとして使用した。 この結果を図 4 Cに示す。 図 4 C中、 ミヤコダサのあら ゆる組織及ぴあらゆる時期において同程度発現していることが知られる遺伝子 Lj elF- 4Aを、 遺伝子発現に用いた RNA量が被験サンプルと対照 (コントロール) サ ンプルとで同じであることを示す指標として用いた。  Furthermore, total RNA was extracted from transformed hairy roots by a conventional method, and RT-PCR was performed to confirm the expression of the introduced LjHbl gene. In addition, a wild-type hairy root was used as a control. The results are shown in Fig. 4C. In Fig. 4C, the gene Lj elF-4A, which is known to be expressed at the same level in all tissues of Miyakodasa and at any time, is compared to the test sample and the control (control) sample. It was used as an index to show the same.
この結果に示される通り、 LjHbl遺伝子を導入した毛状根では、 LjHbl遺伝子を 導入していない野生株の毛状根に比べ、 約 100倍を超える量の L jHb 1遺伝子発現が 誘導されていた。  As shown in this result, the hairy root into which LjHbl gene was introduced had about 100 times the amount of LjHb1 gene expression induced as compared to the wild-type hairy root into which LjHbl gene was not introduced. .
.  .
[実施例 5 ] 形質転換毛状根における根粒形成及び根粒の窒素固定活性の測定 実施例 4で LjHbl遺伝子の導入が確認された毛状根誘導植物を、 培養土 (バー ミキユライ ト :パーライ ト = 4 : 1 ) に移植し、 KN03を終濃度が 1 mMになるよう に加えたフェラウス培地 (Fahraeus, (1957) J. Gen. Microbiol. 16 (2) 374-38 1) を与え、 1週間生育させた。 その後、 新しい培養土に移植し、 1 X 107細胞/ ml の濃度のミヤコグサ根粒菌 (Mesorhizobium loti AFF 303099) をその毛状根に 接種した。 根粒菌接種後、 窒素源を含まない培地を与え、 さらに 4週間生育させ た。 なお形質転換植物の生育条件は、 16時間 明 /8時間 暗のサイクルで、 植 物育成チャンバ一内、 25〜26°Cとした。 4週間後、 毛状根には根粒が形成された (図 5 ) 。 [Example 5] Measurement of nodule formation and nodule nitrogen fixation activity in transformed hairy roots Hairy root-derived plants in which the introduction of the LjHbl gene was confirmed in Example 4 were obtained from cultured soil (Vermiculite: perlite = 4:. transplanted in 1), KN0 3 a Ferausu medium final concentration was added to a 1 mM (Fahraeus, (1957) J. Gen. Microbiol 16 (2) 374-38 1) and allowed to grow for 1 week. Then, it was transplanted to a new culture soil, and the hairy root was inoculated with Mesorhizobium loti AFF 303099 at a concentration of 1 × 10 7 cells / ml. After inoculation with rhizobia, a medium containing no nitrogen source was given, and further grown for 4 weeks. The growth conditions of the transformed plants were 16 hours light / 8 hours dark, 25-26 ° C in the plant growth chamber. Four weeks later, nodules were formed on the hairy roots (Fig. 5).
次いで、 毛状根に着生した根粒について、 窒素固定活性を、 アセチレンをェチ レンに還元する活性 (Acetylene reduction activity ; ARA) として測定した。 具体的には、 まず毛状根より採取した根粒を 15cmの試験管に入れ、 ゴムキャップ で密閉した。 試験管内の空気をァスピレーターで充分吸引した後、 アセチレンガ スを充満させた。 この試験管を室温で 2時間インキュベートした後、 試験管中の 気体を採取し、 ガスクロマ トグラフィーでエチレンの発生量を測定した。 この測 定結果を図 6に示す。  Next, the nitrogen fixation activity of the nodules grown on the hairy roots was measured as the activity of reducing acetylene to acetylene (Acetylene reduction activity; ARA). Specifically, first, nodules collected from the hairy roots were placed in a 15 cm test tube and sealed with a rubber cap. The air in the test tube was sufficiently aspirated with an aspirator, and then filled with acetylene. After incubating the test tube at room temperature for 2 hours, the gas in the test tube was collected, and the amount of ethylene generated was measured by gas chromatography. Figure 6 shows the measurement results.
図 6に示す測定結果から、 LjHblを導入し過剰発現させた毛状根に着生した根 粒における単位重量 (根粒のグラム重量) 当たりの ARA活性は、 11. 15 nM/min/g と算出された [1. 45 X 21. 5 -0. 5 = 30. 67 (nM/g) ; 30. 67 (nM) ÷2. 75分 =約 11. 15 n M/rain/g] 。 一方、 対照実験として、 LjHblを導入していない毛状根に着生した根 粒における単位重量 (根粒のグラム重量) 当たりの ARA活性は、 2, 12 nM/min/gと 算出された [1. 45 X 4- 0. 5 = 5. 3 (nM/g) ; 5. 3 (nM) ÷2. 5分 = 2. 12 nM/min/g] 。 Lj Hblを導入し過剰発現させた毛状根 (形質転換体) に着生した根粒では、 窒素固 定活性が 5倍以上になったことが示された。  Based on the measurement results shown in Fig. 6, the ARA activity per unit weight (gram weight of root nodules) in root nodules grown on hairy roots over-expressed with LjHbl was calculated to be 11. 15 nM / min / g [1. 45 X 21. 5 -0. 5 = 30. 67 (nM / g); 30. 67 (nM) ÷ 2. 75 min = about 11.15 n M / rain / g]. On the other hand, as a control experiment, the ARA activity per unit weight (gram weight of root nodules) in root nodules grown on hairy roots without LjHbl was calculated as 2, 12 nM / min / g [1 45 X 4- 0. 5 = 5.3 (nM / g); 5.3 (nM) ÷ 2.5 minutes = 2.12 nM / min / g]. It was shown that the nodule grown on hairy roots (transformants) overexpressed with Lj Hbl increased nitrogen fixation activity by a factor of 5 or more.
[実施例 6 ] 形質転換植物体の作出 [Example 6] Production of transformed plant body
1) ミヤコグサへのァグロバクテリウム · ッメファシエンス (A. tumefaciens) の感染  1) Infection of A. tumefaciens in Miyakogusa
播種後 5日経過したミヤコグサ実生から、 胚軸を、 子葉の直下と根の境目で切 り出した。 一方、 実施例 3で作製した pT35SljLblを、 ァグロバタテリゥム 'ッメ ファシエンス (A. tumefaciens) EHA105 (名古屋大学 中村研三教授より分与) に、 エレク ト口ポレーシヨンにより直接導入した。 得られた pT35SljLblを保持す るァグロバタテリゥム ·ッメファシエンス EHA105の菌体懸濁液 (1. 0 X 107細胞/ m 1、 0D600 = 0. 10 X 0. 15) に、 終濃度 100 Mのァセ トシリンゴンを加え、 切り出し た胚軸をその溶液に浸漬した。 胚軸は溶液中で約 5 mm厚の切片に切断した。 この 切片は、 そのまま 30分間にわたり菌体懸濁液中に浸漬することにより、 ァグロバ クテリゥムに感染させた。 感染後の切片を滅菌したろ紙上に載せ、 共存培養培地 (1/10 B5, BAP 0. 5 μ g/ml, NAA 0. 05 , g/ml, MES (pH5. 2) 5 mM, ァセ トシリン ゴン 20 μ β/πι1) 中で、 25°Cで 3 〜 5日間にわたり共存培養した。 Hypocotyls were cut out at the boundary between the cotyledons and roots from the seedlings of Miyakogusa 5 days after sowing. On the other hand, pT35SljLbl prepared in Example 3 was directly introduced into Agrobataterum 'A. tumefaciens EHA105 (provided by Prof. Kenzo Nakamura at Nagoya University) with an electoral position. Hold the resulting pT35SljLbl Add a final concentration of 100 M of acetosyringone to the bacterial suspension of EHA105 (1.0 X 10 7 cells / m 1, 0D 600 = 0. 10 X 0. 15) The excised hypocotyl was immersed in the solution. The hypocotyl was cut into sections approximately 5 mm thick in solution. This section was directly infected with agrobacterium by immersing it in a cell suspension for 30 minutes. Place the infected sections on sterile filter paper and coculture medium (1/10 B5, BAP 0.5 μg / ml, NAA 0.05, g / ml, MES (pH 5.2) 5 mM, Toshirin Gon 20 μ β / πι1) in, and co-culture for 3 to 5 days at 25 ° C.
2) カルスの誘導  2) Callus induction
共存培養した切片を、 除菌用の抗生物質セフォタックス (250 1) と形質 転換体選抜用の抗生物質ハイグロマイシン Bを加えたカルス培地 (1 X B5, 2%ス クロース, BAP 0. 5 μ g/ml, NAA 0. 05 g/ml, 10 mM NH4, 0. 3% phytagel) に移 し、 25°Cにて、 14時間 明/ 10時間 暗のサイクルで、 5週間にわたり培養した。 切片の植え替えは 1〜2週間毎に行った。 The co-cultured sections were treated with callus medium (1 X B5, 2% sucrose, BAP 0.5 μg) containing cefotax (250 1) for sterilization and hygromycin B for selection of transformants. / ml, NAA 0.05 g / ml, 10 mM NH 4 , 0.3% phytagel) and cultured at 25 ° C. in a cycle of 14 hours light / 10 hours dark for 5 weeks. Sections were replanted every 1-2 weeks.
3) カルスからのシュートの誘導  3) Induction of shoot from callus
上記カルス培地で 5週間培養した切片をシュート誘導培地 (1 X B5, 2%スクロー ス, BAP 0. 5 μ g/ml, NAA 0. 05 / g/ml, 10 mM NH4, 0. 3% phytagel) に移し、 2 5°Cにて、 14時間 明 (6100 lux) 10時間 暗のサイクルで、 2週間にわたり培 養した。 その後、 カルス化した切片を、 ハイグロマイシン Bを添加していないシ ユート誘導培地に移植して、 前記と同様の培養条件で 3週間培養した。 カルスの 植え替えは 1〜2週間毎に行った。 Sections cultured in the above callus medium for 5 weeks were taken as shoot induction medium (1 X B5, 2% sucrose, BAP 0.5 μg / ml, NAA 0.05 / g / ml, 10 mM NH 4 , 0.3% phytagel) and cultured at 25 ° C. in a cycle of 14 hours light (6100 lux) 10 hours darkness for 2 weeks. Thereafter, the callus sections were transplanted to a culture medium without addition of hygromycin B, and cultured for 3 weeks under the same culture conditions as described above. Callus replanting was done every 1-2 weeks.
4) シユートの伸長  4) Shout growth
カルスをシュート伸長培地 (1 X B5, 2%スクロース, BAP 0. 2 g/ml, 0. 3% phy tagel) に移し、 25°Cにて、 14時間 明 (6100 lux) 10時間 暗のサイクルで、 3週間にわたり培養した。 カルスの植え替えは 1〜2週間毎に行った。 その後、 力 ルスを植物ホルモンを含まないシュート伸長培地に移植して、 前記と同様の培養 条件で 2〜3週間培養して、 シユート伸長を促した。  Callus was transferred to shoot elongation medium (1 X B5, 2% sucrose, BAP 0.2 g / ml, 0.3% phy tagel) at 25 ° C for 14 hours light (6100 lux) 10 hours dark cycle And cultured for 3 weeks. Callus replanting was done every 1-2 weeks. After that, the vigor was transplanted to a shoot elongation medium containing no plant hormone, and cultured for 2 to 3 weeks under the same culture conditions as described above to promote the elongation of shout.
5) 根の誘導と伸長  5) Root induction and elongation
シュート伸長培地に置床したカルスから生じた 5 mm以上のシュートを、 シユー ト基部から力ミソリで切り出した。 このシュートを縦にして、 シュート基部を根 誘導培地 (1/2 B5, 1%スクロース, 0. 5 ju g/ml NAA, 0. 4% phytagel) に差し込ん だ状態で、 14時間 明 (6100 lux) /10時間 暗のサイクルで、 1週間以上培養 した。 その後、 切り口が肥大化したシュートを、 根伸長培地 (1/2 B5, 1%スクロ ース) に差し込んで、 前記と同様の培養条件で 2〜3週間培養し、 根の伸長を促し た。 A shoot of 5 mm or more generated from a callus placed on a shoot elongation medium was cut from the base of the stem with a force razor. Make this chute vertical and root the chute 14 hours light (6100 lux) / 10 hours dark cycle for 1 week in induction medium (1/2 B5, 1% sucrose, 0.5 ju g / ml NAA, 0.4% phytagel) The above was cultured. Thereafter, the shoots with enlarged cut ends were inserted into a root elongation medium (1/2 B5, 1% sucrose) and cultured for 2 to 3 weeks under the same culture conditions as described above to promote root elongation.
6) 形質転換植物体の栽培  6) Cultivation of transformed plants
上記のように根を伸長させて得られた植物体を、 培地から抜き取り、 根に付着 したゲルを水中でよく洗い落とした。 この植物体を、 1/10倍に希釈した市販の B5 培地 (和光純薬工業株式会社) を染み込ませたバーミキユライ トに移植し、 14時 間 明 (6100 lux) /10時間 暗のサイクルで栽培した。 こうして栽培したミヤ コグサ植物体は種子をつけたため、 その種子を収穫した.。 その後、 種子をパワー ソィル (タレハ園芸用培土) を入れた播種し、 栽培した。  The plant obtained by extending the roots as described above was extracted from the medium, and the gel adhering to the roots was washed well in water. This plant was transplanted to vermiculite soaked with a commercially available B5 medium (Wako Pure Chemical Industries, Ltd.) diluted 1/10 times, and grown in a cycle of 14 hours light (6100 lux) / 10 hours darkness did. The Miyakogusa plant grown in this way was seeded and harvested. After that, the seeds were sown and cultivated with a power soil (Taleha Horticulture Soil).
こうして生長させた植物体については、 35Sプロモーターと LjHblの融合遺伝子 を PCR増幅して検出することにより、 LjHblの遺伝子導入の成否を確認した。 また LjHbl遺伝子の発現量の増加は、 RT- PCRを行って確認した。  The plant thus grown was confirmed by PCR amplification of the 35S promoter and LjHbl fusion gene to confirm the success of LjHbl gene transfer. The increase in LjHbl gene expression level was confirmed by RT-PCR.
[実施例 7 ] ミヤコダサ形質転換植物体の根粒形成と窒素固定活性 [Example 7] Nodulation and nitrogen fixation activity of Miyakodasa transformed plants
実施例 6で作製し、 LjHbl遺伝子の導入と発現が確認されたミヤコグサ形質転 換植物体を、 培養土 (バーミキユラィト :パーライ ト = 4: 1 ) に移植して栽培 し、 1 X 107細胞/ mlの濃度のミヤコグサ根粒菌 (Mesorhizobium loti MAFF 30309 9) を接種した。 根粒菌接種後、 形質転換植物体を、 16時間 明 (6100 lux) /8 時間 暗のサイクルで、 植物育成チャンパ一内、 25〜26°Cにて、 4週間にわたり 栽培した。 4週間後、 着生した根粒を植物体から採取し、 実施例 5と同様にして、 ARA活性を測定した。 測定の結果、 LjHblを過剰発現しているミヤコグサ形質転換 植物体に着生した根粒における単位重量 (根粒のグラム重量) 当たりの ARA活性 は、 17. 21 nM/min/gと算出された。 一方、 対照実験として、 LjHblを導入してい ないミヤコグサ (通常のミヤコダサ、 野生型) に着生した根粒における単位重量 (根粒のグラム重量) 当たりの ARA活性は、 5. 05 nM/min/gと算出された。 The Lotus japonicus-transformed plant produced in Example 6 and confirmed to have introduced and expressed the LjHbl gene was transplanted and cultured in cultured soil (Vermiculite: perlite = 4: 1), and 1 X 10 7 cells / Inoculated with Mesorhizobium loti MAFF 30309 9 at a concentration of ml. After inoculation with the rhizobia, the transformed plants were cultivated at 25-26 ° C. for 4 weeks in a plant growth chamber with a cycle of 16 hours light (6100 lux) / 8 hours dark. After 4 weeks, the grown nodules were collected from the plant body, and ARA activity was measured in the same manner as in Example 5. As a result of the measurement, the ARA activity per unit weight (gram weight of root nodules) in the root nodules that had overexpressed LjHbl was calculated to be 17. 21 nM / min / g. On the other hand, as a control experiment, the ARA activity per unit weight (gram weight of root nodules) in the root nodules that had not introduced LjHbl (normal Miyakodasa, wild type) was 5. 05 nM / min / g Calculated.
なお、 本実施例で得られた植物体に形成された根粒は、 形質転換体及び非形質 転換体のいずれも、 平均 7個であった。 根粒の大きさ、 色などの外観には特に差 異は見られなかった。 The nodules formed in the plant obtained in this example are transformed and non-transformed. The average number of all the transformants was 7. There was no particular difference in appearance such as nodule size and color.
[実施例 8 ] ミヤコダサの非共生型グロビンと共生型グロビンの一酸化窒素との 親和性の比較 [Example 8] Comparison of the affinity of Miyakodasa non-symbiotic globin and symbiotic globin nitric oxide
実施例 3で得られた完全長の LjHbl cDNA (開始コドンから終止コドンまでの配 列を配列番号 1に示す;配列番号 2のアミノ酸配列をコードする) を、 タンパク 質発現ベクター PGEX4T- 3 (Amersham Pharmacia Biotech) に常法によりクローニ ングし (図 7 ) 、 それを大腸菌に導入して形質転換体を得た。 また対照サンプル として、 ミヤコグサ共生型グロビン遺伝子を、 同様に発現ベクター pGEX4T-3中に クローニングし (図 7 ) 、 それを大腸菌に導入して形質転換体を得た。 得られた 大腸菌形質転換体を培養し、 発現誘導することにより、 大腸菌の体内で、 可溶性 であり活性をもつた非共生型グロビンを大量に組換え生産させることができた。 次いで、 非共生型グロビン遺伝子を発現させた大腸菌を常法により回収し、 破壌 した後、 タンパク質精製を行ったところ、 活性をもった非共生型ヘモグロビンを 得ることができた。 非共生型グ口ビン遺伝子を導入した大腸菌中でへムが同時に 供給されるため、 大腸菌を破壊して得られるグロビンは、 大腸菌由来のヘムと会 合してへモグロビンとしての活性をもった状態で単離されたものである。  The full-length LjHbl cDNA obtained in Example 3 (the sequence from the start codon to the stop codon is shown in SEQ ID NO: 1; it encodes the amino acid sequence of SEQ ID NO: 2) is expressed in the protein expression vector PGEX4T-3 (Amersham Pharmacia Biotech) was cloned by a conventional method (FIG. 7) and introduced into E. coli to obtain a transformant. As a control sample, the symbiotic globin gene was similarly cloned into the expression vector pGEX4T-3 (Fig. 7) and introduced into E. coli to obtain a transformant. By culturing the resulting Escherichia coli transformant and inducing expression, it was possible to produce a large amount of soluble and active non-symbiotic globin in the body of Escherichia coli. Subsequently, Escherichia coli expressing the non-symbiotic globin gene was recovered by a conventional method, lysed, and then purified by protein. As a result, active non-symbiotic hemoglobin could be obtained. Since hem is simultaneously supplied in E. coli introduced with the non-symbiotic gout bin gene, the globin obtained by destroying E. coli is in a state where it has activity as hemoglobin in combination with heme derived from E. coli. It was isolated by
次いで、 得られた共生型ヘモグロビンに一酸化窒素を混合し、 経時的に吸光度 測定を行った。 一酸化窒素の混合を開始してから 0分、 5分後、 15分後、 30分後の 500nm〜600nmの波長での吸光度スぺク トルを図 8に示す。 図 8に示される通り、 一酸化窒素の混合時間が長くなるにつれて、 540nmと 575nmの 2つのピークが消失 したことが示されている。 特に非共生型ヘモグロビンでは、 575nmのピークがよ り早く喪失し、 15分経過後にはほとんど消失していていた。 一方共生型へモグロ ビンの方は、 540nraのピークはあまり減失せず、 30分経過後でも、 575nmのピーク も弱いながらもまだ存在し 2つのピークが観察された。  Subsequently, nitric oxide was mixed with the obtained symbiotic hemoglobin, and absorbance was measured over time. Fig. 8 shows absorbance spectra at wavelengths of 500 nm to 600 nm at 0 minutes, 5 minutes, 15 minutes, and 30 minutes after the start of nitric oxide mixing. As shown in Fig. 8, it is shown that two peaks at 540nm and 575nm disappeared as the mixing time of nitric oxide increased. Especially in non-symbiotic hemoglobin, the peak at 575 nm was lost earlier and almost disappeared after 15 minutes. On the other hand, in the case of symbiotic hemoglobin, the peak at 540nra did not decrease much, and even after 30 minutes, the peak at 575nm was still weak, but two peaks were observed.
[実施例 9 ] ヤシャプシ非共生型グロビン遺伝子 (AfHbl) の単離及び同定 ヤシャブシ (Alnus firma) の非共生型グロビン遺伝子 (AfHbl) を、 ミヤコグ サ非共生型グロビン遺伝子 LjHblの DNA断片をプローブとして、 ヤシャブシの根粒 cDNAフィブフ リー (Sasakura, F. et al., A class 1 hemoglobin gene from A lnus r irma functions in symbiotic and nonsymbiotic tissues to detoxify n itric oxide, Mol. Plant Microbe. Interact. (2006) 19 (4) 印刷中) のスク リーニングによって単離した。 [Example 9] Isolation and identification of Yashabushi non-symbiotic globin gene (AfHbl) The non-symbiotic globin gene (AfHbl) of Yashabushi (Alf firma) Sacher, F. et al., A class 1 hemoglobin gene from A lnus r irma functions in symbiotic and nonsymbiotic tissues to detoxify n itric oxide, using the DNA fragment of the non-symbiotic globin gene LjHbl as a probe. , Mol. Plant Microbe. Interact. (2006) 19 (4) during printing).
スクリーニング用プローブは、 ミヤコグサ非共生型グロビン遺伝子 LjHbl (ク ローン名 : AV413959、 DDBJ/EMBL/GenBankァクセッション番号: AB238220) の配 列に基づいて設計し、 実施例 1で使用したプライマー LjHblFl (5' -TTCTCACTTCAC TTCCATCGC- 3' ;配列番号 4 ) と LjHblRl (5' - TCACAGTGACTTTTCCAGCG- 3' ;配列番 号 6 ) を用いてミヤコダサのゲノム DNAから PCR増幅することにより得た。 プロ一 ブとしての LjHbl断片を増幅するためのこの PCRは、 GeneAmp0 PCR System 9700 (Applied Biosystems) を使用し、 94°Cで 30秒、 55°Cで 30秒、 72°Cで 30秒を 30サ ィクルの条件で行った。 The screening probe was designed based on the sequence of Miyakogusa non-symbiotic globin gene LjHbl (clone name: AV413959, DDBJ / EMBL / GenBank accession number: AB238220), and the primer LjHblFl (5 '-TTCTCACTTCAC TTCCATCGC-3'; SEQ ID NO: 4) and LjHblRl (5'-TCACAGTGACTTTTCCAGCG-3 '; SEQ ID NO: 6) were used for PCR amplification from Miyako Sasa genomic DNA. This PCR to amplify the LjHbl fragment as a probe uses GeneAmp 0 PCR System 9700 (Applied Biosystems), 30 seconds at 94 ° C, 30 seconds at 55 ° C, 30 seconds at 72 ° C. The test was conducted under the condition of 30 cycles.
このようなヤシャブシの根粒 cDNAライブラリ一のスクリ一ユングの結果、 AfHb 1遺伝子が同定された。 塩基配列解析の結果、 AfHbl遺伝子は、 その cDNAにおける 開始コドンから終止コドンまでの塩基長が 483 bpであり、 160個のアミノ酸をコ ードする遺伝子であることが分かった。 AfHbl (DDBJ/EMBL/GenBankァクセッショ ン番号: AB221344) の cDNAの開始コドンから終止コドンまでの塩基配列を配列番 号 8に、 コードされているアミノ酸配列を配列番号 9に示す。 さらに、 ヤシャブ シの AfHbl遺伝子のゲノム DNAの塩基配列 (開始コドンから終止コドンまで) を配 列番号 1 0に示す。  As a result of the screening of one of the rhododendron nodule cDNA libraries, the AfHb 1 gene was identified. As a result of nucleotide sequence analysis, it was found that the AfHbl gene has a base length of 483 bp from the start codon to the stop codon in the cDNA and encodes 160 amino acids. The nucleotide sequence from the start codon to the stop codon of cDNA of AfHbl (DDBJ / EMBL / GenBank accession number: AB221344) is shown in SEQ ID NO: 8, and the encoded amino acid sequence is shown in SEQ ID NO: 9. Furthermore, the nucleotide sequence (from the start codon to the stop codon) of the genomic DNA of Yachabushi AfHbl gene is shown in SEQ ID NO: 10.
[実施例 1 0 ] ヤシャブシ非共生型グロビン遺伝子 (AfHbl) の発現解析 [Example 10] Expression analysis of Yashabushi non-symbiotic globin gene (AfHbl)
AfHblの発現解析は、 ヤシャプシの各種器官の組織から常法により抽出した mRN Aを試料として、 RT-PCRを用いて行った。 RT - PCRには下記の AfHblFlプライマーと AfHblR3プライマーを用い、 逆転写とその転写産物の増幅には One- Step RT-PCR k it (QIAGEN) を使用し、 逆転写産物の増幅にも下記 AfHblFlプライマーと AfHblR3 プライマーを用いた。 使用したそれらプライマーの配列を以下に示す。  The expression analysis of AfHbl was performed using RT-PCR using mRNA extracted from tissues of various organs of Yashapsi by a conventional method. The following AfHblFl and AfHblR3 primers are used for RT-PCR, One-Step RT-PCR kit (QIAGEN) is used for reverse transcription and amplification of the transcript, and the following AfHblFl primer is also used for amplification of the reverse transcript. And AfHblR3 primer. The sequences of those primers used are shown below.
AfHblFl: 5> - GCTGCTATCAAATCTGCAAT- 3, (配列番号 1 1 ; フォワードプライマ 一) AfHblFl: 5>-GCTGCTATCAAATCTGCAAT-3, (SEQ ID NO: 1 1; forward primer one)
AfHblR3 : 5, - GGGGGGCTGTGATTTTAG- 3, (配列番号 1 2 ; リバースプライマー) 得られた増幅産物を電気泳動し、 撮影した電気泳動写真をイメージングしてそ のバンドの濃さから各組織における AfHbl遺伝子の発現量を決定した。  AfHblR3: 5,-GGGGGGCTGTGATTTTAG-3, (SEQ ID NO: 12; reverse primer) The obtained amplification product was electrophoresed, and the photographed electrophoretogram was imaged to determine the AfHbl gene in each tissue from the intensity of the band. The expression level was determined.
この RT- PCRによる発現解析の結果は、 AfHbl遺伝子がヤシャブシの成長個体の 様々な器官で発現していたことを示した。 特に、 根粒組織では強く発現していた。 また AfHbl遺伝子は、 ミヤコダサの LjHbl遺伝子と同様に、 低温といったス トレス 処理によっても強く発現が誘導されることが分かった。 [実施例 1 1 ] 形質転換用ベクターの構築  The results of this RT-PCR expression analysis indicated that the AfHbl gene was expressed in various organs of Yashabushi growing individuals. In particular, it was strongly expressed in the nodule tissue. It was also found that the expression of the AfHbl gene was strongly induced by stress treatment such as low temperature, similar to the Miyakodasa LjHbl gene. [Example 1 1] Construction of vector for transformation
AfHbl遺伝子の機能を明らかにするため、 AfHbl遺伝子を過剰に発現する形質転 換ミヤコダサの作出を試みた。 形質転換用のベクター構築には、 プラスミ ド pKAN NIBAL (Wesley et al. 2001 The Plant Journal 27, 581 - 590) と pHKN29 (Kumag ai and Kouchi. 2003 MPMI 16 (8), 663-668) を使用した。  In order to elucidate the function of the AfHbl gene, we attempted to create transgenic Miyakodasa that overexpresses the AfHbl gene. The plasmids pKAN NIBAL (Wesley et al. 2001 The Plant Journal 27, 581-590) and pHKN29 (Kumagai and Kouchi. 2003 MPMI 16 (8), 663-668) were used for transformation vector construction. .
まず、 ヤシャブシの根粒から抽出した全 RNAより逆転写によって合成した cDNA を錄型として、 PCRにより完全長の AfHbl cDNAをクローニングした。 得られた AfH bl cDNAは、 pKANNIBALのカリフラワーモザイクウィルス由来 35Sプロモーターの 下流に連結した。 さらにこの 35S-AfHbl cDNA断片を切り出し、 pHKN29の GFP領域 の下流へ連結して、 最終的な形質転換ベクター pAfHblSとした。  First, a full-length AfHbl cDNA was cloned by PCR using cDNA synthesized by reverse transcription from total RNA extracted from the root nodules of Yachabushi. The obtained AfH bl cDNA was ligated downstream of the 35S promoter derived from cauliflower mosaic virus of pKANNIBAL. Furthermore, this 35S-AfHbl cDNA fragment was excised and ligated downstream of the GFP region of pHKN29 to obtain the final transformation vector pAfHblS.
[実施例 1 2 ] 形質転換毛状根の作出 [Example 1 2] Production of transformed hairy roots
AfHblを用いたミヤコダサの形質転換には、 ァグロバタテリゥム ' リゾジエネ スを介した毛状根誘導型の形質転換系を採用した。 この形質転換法は共トランス フエクションという原理に基づくものであり、 ァグロバタテリゥム · リゾジエネ スによって、 誘導される毛状根が形質転換される。 本実施例における形質転換毛 状根の作出は実施例 3の方法に準じて行った。  For the transformation of Miyakodasa using AfHbl, a hairy root-inducible transformation system via agrobacterium lysogenis was employed. This transformation method is based on the principle of co-transformation, and the induced hairy roots are transformed by agrobacterium terrizogenes. Production of transformed hairy roots in this example was performed according to the method of Example 3.
実施例 1 1で作製した、 AfHbl遺伝子を過剰発現するように構築した形質転換 ベクター pAfHblSを、 ァグロバタテリゥム ' リゾジェネス LBA1334にエレクトロポ レーションにより直接導入した。 該ベクター pAfHblSを導入したァグロバタテリ ゥム . リゾジェネス LBA1334の菌体懸濁液を、 胚軸の部分で切断した播種後 5日 目のミヤコグサ実生に接種し、 感染させた。 その後、 これを滅菌したろ紙上に載 せ、 共存培養培地にて 5日間共存培養した。 共存培養終了後、 寒天培地 [抗生物 質セフォタックス(cefotax) (200 μ g/ml;中外製薬株式会社) を添加した Gambor gB5培地 (製造: 日本製薬株式会社、 販売:和光純薬工業株式会社) ] 上にのせ、 毛状根を誘導した。 The transformation vector pAfHblS constructed in Example 11 and constructed so as to overexpress the AfHbl gene was directly introduced into Agrobacterium lysogenes LBA1334 by electroporation. Agrobatery introduced with the vector pAfHblS The cell suspension of lysogenes LBA1334 was inoculated and infected to Miyakogusa seedlings 5 days after seeding cut at the hypocotyl part. Thereafter, this was placed on sterilized filter paper and co-cultured for 5 days in a co-culture medium. After completion of co-culture, agar medium [Gambor gB5 medium supplemented with antibiotic cefotax (200 μg / ml; Chugai Pharmaceutical Co., Ltd.) I put it on top and induced a hairy root.
毛状根への AfHbl導入の有無は、 実施例 4と同様にして、 GFP蛍光検出と RT-PCR を用いて確認した。 その結果、 AfHblを導入したァグロバタテリゥム ' リゾジェ ネスを感染させた全てのミヤコグサ個体において, GFPの蛍光を発する毛状根が 誘導されていた。 一方、 RT-PCRによる確認の結果、 AfHblを導入した毛状根 (形 質転換体) では、 AfHblを導入していない野生株の毛状根に比べ、 約 100倍を超え る量の AfHblの遺伝子発現が誘導されていた。 RT- PCRを用いた AfHbl遺伝子の発現 確認の結果を図 9に示す。 図 9中、 LjelF- 4Aは陽性対照である。 [実施例 1 3 ] 形質転換個体の表現型の解析  The presence or absence of AfHbl introduction into the hairy root was confirmed using GFP fluorescence detection and RT-PCR in the same manner as in Example 4. As a result, hairy roots that fluoresce GFP were induced in all A. thaliana individuals infected with Agrobacterium terrestrialis introduced with AfHbl. On the other hand, as a result of confirmation by RT-PCR, hairy roots (transformants) into which AfHbl had been introduced had about 100 times more AfHbl than the wild-type hairy roots into which AfHbl had not been introduced. Gene expression was induced. Figure 9 shows the results of confirmation of AfHbl gene expression using RT-PCR. In FIG. 9, LjelF-4A is a positive control. [Example 1 3] Analysis of phenotype of transformed individuals
実施例 1 2において AfHbl遺伝子による形質転換が確認された毛状根を持つ植 物を、 培養土 (バーミキユラィト :パーライ ト = 4 : 1 ) に移植し、 KN03を終濃 度が 1 mMになるように加えたフェラウス培地 (Fahraeus, (1957) J. Gen. Micro biol. 16 (2) 374- 381)を与え、 1週間生育させた。 その後、 新しい培養土に移植 し、 I X 107細胞/ mlの濃度のミヤコグサ根粒菌 (Mesorhizobium loti MAFF 3030 99) をその毛状根に接種した。 根粒菌接種後は、 窒素源を入れないフェラウス培 地を与え、 さらに 4週間生育させた。 この形質転換植物の生育条件は、 16時間 明 8時間 暗のサイクルで、 植物育成チャンバ一内で 25〜26°Cとした。 生育し た植物体の毛状根には根粒が形成された。 根粒の数は、 形質転換体及び非形質転 換体のいずれも、 1植物体当たり平均 9個であった。 根粒の大きさ、 色などの外 観には、 形質転換体と非形質転換体の間で特に差異は見られなかった。 The plant with a hairy roots transformation with AfHbl gene was confirmed in Example 1 2, potting (Bamikiyuraito: pearlite = 4: 1) to implanted, final concentration is 1 mM to KN0 3 Feraus medium (Fahraeus, (1957) J. Gen. Micro biol. 16 (2) 374-381) added as described above was fed and grown for 1 week. Then transferred to a new culture soil was inoculated Lotus japonicus root nodule bacteria at a concentration of IX 10 7 cells / ml of (Mesorhizobium loti MAFF 3030 99) in the hairy roots. After inoculation with rhizobia, Feraus medium without nitrogen source was given and grown for another 4 weeks. The growth conditions of the transformed plants were 16 to 8 hours dark, and the temperature was 25 to 26 ° C in the plant growth chamber. Nodules were formed on the hairy roots of the grown plants. The average number of nodules was 9 per plant for both transformants and non-transformants. There was no difference in the appearance of the nodule size and color between the transformant and the non-transformant.
次いで、 形質転換体の表現型の一つとして、 毛状根に着生した根粒の窒素固定 活性を測定した。 窒素固定活性は、 アセチレンをエチレンに還元する活性 (Acet ylene reduction activity; ARA) として、 実施例 5に記載した方法に従って測 定した。 結果を図 1 0に示す。 図 1 0中、 対照は、 AfHbl遺伝子を含まないブラ スミ ド pHKN29を導入したミヤコグサを試料として用いたものである。 Next, as one of the phenotypes of the transformant, the nitrogen fixing activity of nodules grown on the hairy roots was measured. The nitrogen fixation activity was measured according to the method described in Example 5 as the activity of reducing acetylene to ethylene (Acetylene reduction activity; ARA). Set. The results are shown in FIG. In FIG. 10, the control is Miyakogusa introduced with brass pHKN29 that does not contain the AfHbl gene as a sample.
測定の結果、 AfHblを導入し過剰発現させた毛状根に着生した根粒は、 AfHblを 導入していないミヤコグサ野生株の毛状根に着生した根粒と比較して、 単位重量 当たり 3〜5倍の窒素固定活性を示した。 図 1 0に示す通り、 AfHblを過剰発現さ せた毛状根に着生した根粒は、 単位重量当たり 7. 2 nM/min/gの ARA活性 (平均 値) を示した。 AfHblを導入したミヤコダサの植物体全体についても測定を行つ たところ、 単位重量当たり 13 nM/min/gの ARA活性 (平均値) が示された。 一方、 対照実験として、 AfHblを導入していない野生株の毛状根に着生した根粒は、 単 位重量当たり 2. 6 nM/min/gの ARA活性 (平均値) を示した。 AfHblを導入していな い野生株の植物体全体では、 単位重量当たり 5 nM/min/gの ARA活性 (平均値) が 示された。  As a result of the measurement, the nodules grown on the hairy roots overexpressed with AfHbl introduced were 3 to It showed 5 times the nitrogen fixation activity. As shown in FIG. 10, nodules grown on hairy roots overexpressed with AfHbl showed an ARA activity (average value) of 7.2 nM / min / g per unit weight. Measurements were also made on the whole plant of Miyakodasa with AfHbl introduced, and an ARA activity (average value) of 13 nM / min / g per unit weight was shown. On the other hand, as a control experiment, nodules grown on wild-type hairy roots not introduced with AfHbl showed an ARA activity (average value) of 2.6 nM / min / g per unit weight. The whole wild-type plant without AfHbl introduced showed an ARA activity (average value) of 5 nM / min / g per unit weight.
以上の結果から、 ヤシャブシの非共生型グロビン遺伝子 AfHblを導入したミヤ コグサでも、 その毛状根に着生した根粒における窒素固定活性が顕著に向上する ことが示された。 産業上の利用可能性  From the above results, it was shown that the nitrogen fixation activity in the nodules grown on the hairy roots was also remarkably improved even in Miyakogusa introduced with the non-symbiotic globin gene AfHbl. Industrial applicability
本発明の根'粒着生植物の作出法により、 根粒の窒素固定活性を格段に向上させ た根粒着生植物を得ることができる。 本発明の根粒着生植物を栽培することによ り植物栽培における窒素固定量を増大させる方法は、 当該根粒着生植物の収量又 は生長量を増大させる目的や、 土壌中の窒素量を増大させて土壌を肥沃化し、 ま た荒廃地等を緑化する目的のために使用することができる。 本明細書で引用した全ての刊行物、 特許および特許出願は、 その全体を参照に より本明細書に組み入れるものとする。 配列表フリ一テキスト  By the method for producing a nodule-growing plant of the present invention, a nodule-growing plant in which the nitrogen-fixing activity of the nodule is significantly improved can be obtained. The method of increasing the nitrogen fixation amount in plant cultivation by cultivating the nodulating plants of the present invention is intended to increase the yield or growth amount of the nodulating plants, or to increase the amount of nitrogen in the soil. It can be used for the purpose of fertilizing soil and greening desolated land. All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety. Sequence table free text
配列番号 4〜7、 1 1及び 1 2の配列は、 プライマーを示す。  The sequences of SEQ ID NOs: 4-7, 11 and 12 represent primers.

Claims

請求の範囲 The scope of the claims
1 . 非共生型グ口ビン遺伝子を根粒着生植物中で過剰発現させることを特徴とす る、 窒素固定活性が増大した根粒を着生できる根粒着生植物の作出方法。 1. A method for producing a nodule-growing plant capable of growing a nodule having increased nitrogen fixation activity, characterized by overexpressing a non-symbiotic gout bin gene in the nodule-growing plant.
2 . 非共生型グロビン遺伝子が、 以下の(a)〜(e)からなる群より選択される DNA からなるものである、 請求項 1に記載の方法。 2. The method according to claim 1, wherein the non-symbiotic globin gene is composed of DNA selected from the group consisting of the following (a) to (e).
(a) 配列番号 1又は 8に示される塩基配列からなる DNA  (a) DNA comprising the base sequence shown in SEQ ID NO: 1 or 8
(b) 配列番号 1又は 8に示される塩基配列に相補的な塩基配列からなる DNAと ストリンジェントな条件下でハイブリダイズし、 かつ非共生型グロビン活性を有 するタンパク質をコードする DNA .  (b) DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 8, and encodes a protein having non-symbiotic globin activity.
(c) 配列番号 2又は 9に示されるアミノ酸配列からなるタンパク質をコードす る DNA  (c) DNA encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or 9
(d) 配列番号 2又は 9に示されるアミノ酸配列において 1〜50個のアミノ酸が 欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ非共生型グロビン活 性を有するタンパク質をコードする、 DNA  (d) DNA consisting of an amino acid sequence in which 1 to 50 amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 9, and encoding a protein having non-symbiotic globin activity
(e) 配列番号 3又は 1 0に示される塩基配列からなる DNA (e) DNA consisting of the base sequence shown in SEQ ID NO: 3 or 10
3 . 過剰発現プロモーターに連結された非共生型グロビン遺伝子を根粒着生植物 に導入することにより、 非共生型グロビン遺伝子を過剰発現させる、 請求項 1又 は 2に記載の方法。 3. The method according to claim 1 or 2, wherein the non-symbiotic globin gene is overexpressed by introducing a non-symbiotic globin gene linked to an overexpression promoter into a nodulating plant.
4 . 窒素固定活性の増大が、' 野生株と比較して少なくとも 3倍の増大である、 請 求項 1〜 3のいずれか 1項に記載の方法。 4. The method according to any one of claims 1 to 3, wherein the increase in nitrogen fixation activity is at least a 3-fold increase compared to the wild type strain.
5 . 窒素固定活性が増大した根粒が、 10〜100 nM/min/gの窒素固定活性を示す根 粒である、 請求項 1〜4のいずれか 1項に記載の方法。 5. The method according to any one of claims 1 to 4, wherein the nodule having an increased nitrogen fixation activity is a nodule exhibiting a nitrogen fixation activity of 10 to 100 nM / min / g.
6 . 根粒着生植物がマメ科植物である、 請求項 1〜5のいずれか 1項に記載の方 法 6. The method according to any one of claims 1 to 5, wherein the nodulating plant is a leguminous plant. Law
7 . 非共生型グロビン遺伝子を過剰発現させた根粒着生植物に、 共生窒素固定菌 を接種することをさらに含む、 請求項 1〜 6のいずれか 1項に記載の方法。 7. The method according to any one of claims 1 to 6, further comprising inoculating a nodule-growing plant overexpressing the non-symbiotic globin gene with a symbiotic nitrogen-fixing bacterium.
8 . 請求項 1〜7のいずれか 1項に記載の方法によって作出される、 窒素固定活 性が増大した根粒を着生できる根粒着生植物。 8. A root nodule plant produced by the method according to any one of claims 1 to 7 and capable of growing nodule having increased nitrogen fixation activity.
9 . 根に根粒を有している、 請求項 8に記載の根粒着生植物。 9. The nodule-growing plant according to claim 8, wherein the root has nodules.
1 0 . 過剰発現プロモーターに連結された非共生型グ qビン遺伝子を含む、 根粒 の窒素固定活性を増大させるためのベクター。 10. A vector for increasing the nitrogen fixation activity of nodules, comprising a non-symbiotic gbin gene linked to an overexpression promoter.
1 1 . 非共生型グロビン遺伝子が、 マメ科植物又は非マメ科根粒着生植物由来の ものである、 請求項 1 0に記載のベクター。 11. The vector according to claim 10, wherein the non-symbiotic globin gene is derived from a leguminous plant or a non-legume nodulating plant.
1 2 . 非共生型グロビン遺伝子が、 以下の(a)〜( からなる群より選択される DN Aからなるものである、 請求項 1 0又は 1 1に記載のベクター。 1 2. The vector according to claim 10 or 11, wherein the non-symbiotic globin gene is composed of DNA selected from the group consisting of:
(a) 配列番号 1又は 8に示される塩基配列からなる DNA  (a) DNA comprising the base sequence shown in SEQ ID NO: 1 or 8
(b) 配列番号 1又は 8に示される塩基配列に相補的な塩基配列からなる DNAと ストリンジェントな条件下でハイブリダイズし、 かつ非共生型グロビン活性を有 するタンパク質をコードする DNA  (b) DNA that hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 or 8 and encodes a protein having non-symbiotic globin activity
(c) 配列番号 2又は 9に示されるアミノ酸配列からなるタンパク質をコードす る DNA  (c) DNA encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or 9
(d) 配列番号 2又は 9に示されるアミノ酸配列において 1〜50個のアミノ酸が 欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ非共生型グロビン活 性を有するタンパク質をコードする、 DNA  (d) DNA consisting of an amino acid sequence in which 1 to 50 amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 9, and encoding a protein having non-symbiotic globin activity
(e) 配列番号 3又は 1 0に示される塩基配列からなる DNA (e) DNA consisting of the base sequence shown in SEQ ID NO: 3 or 10
1 3 . 請求項 8又は 9に記載の根粒着生植物を栽培することを特徴とする、 植物 栽培における窒素固定効率を増大させる方法。 1 3. A method for increasing nitrogen fixation efficiency in plant cultivation, characterized by cultivating the nodulating plant according to claim 8 or 9.
PCT/JP2006/304681 2005-03-14 2006-03-03 Method of constructing plant having nodules with high nitrogen fixation activity WO2006098225A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007508097A JP4677568B2 (en) 2005-03-14 2006-03-03 Production method of plants that grow nodules with high nitrogen fixation activity
CA2600560A CA2600560C (en) 2005-03-14 2006-03-03 Method for producing plant forming nodules with high nitrogen-fixing activity
CN2006800166195A CN101208430B (en) 2005-03-14 2006-03-03 Method of constructing plant having nodules with high nitrogen fixation activity
AU2006224032A AU2006224032B2 (en) 2005-03-14 2006-03-03 Method for producing plant forming nodules with high nitrogen-fixing activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005071677 2005-03-14
JP2005-071677 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006098225A1 true WO2006098225A1 (en) 2006-09-21

Family

ID=36991571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304681 WO2006098225A1 (en) 2005-03-14 2006-03-03 Method of constructing plant having nodules with high nitrogen fixation activity

Country Status (5)

Country Link
JP (1) JP4677568B2 (en)
CN (1) CN101208430B (en)
AU (1) AU2006224032B2 (en)
CA (1) CA2600560C (en)
WO (1) WO2006098225A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506681A (en) * 2017-01-12 2020-03-05 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
US11479516B2 (en) 2015-10-05 2022-10-25 Massachusetts Institute Of Technology Nitrogen fixation using refactored NIF clusters
US11739032B2 (en) 2015-07-13 2023-08-29 Pivot Bio, Inc. Methods and compositions for improving plant traits
US11946162B2 (en) 2012-11-01 2024-04-02 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728425B (en) * 2017-04-13 2021-12-03 中国科学院分子植物科学卓越创新中心 Gene for regulating nitrogen fixation capacity of root nodule plant and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055703A2 (en) * 2003-12-12 2005-06-23 University Of Manitoba Method of modifying plant phenotypes with nonsymbiotic hemoglobin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242631A (en) * 2003-02-17 2004-09-02 Japan Science & Technology Agency Method for increasing active nitrogen stress tolerance of plant
BRPI0409079A (en) * 2003-04-01 2006-04-18 Cropdesign Nv method for altering plant growth characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055703A2 (en) * 2003-12-12 2005-06-23 University Of Manitoba Method of modifying plant phenotypes with nonsymbiotic hemoglobin

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DORDAS C. ET AL.: "Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress", PLANT J., vol. 35, 2003, pages 763 - 770, XP003001104 *
SASAKURA F. ET AL.: "Expression analysis of hemoglobin genes in Alnus firma (actinorhizal plant)", PLANT CELL PHYSIOL., vol. 45, no. SUPPL., pages S170 (ABSTRACT 571 (3PG09)), XP003003343 *
SEREGELYES C. ET AL.: "Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach", PLANT SCI., vol. 165, no. 3, 2003, pages 541 - 550, XP003001105 *
SHIMODA Y. ET AL.: "Involvement of nonsymbiotic hemoglobin in Mesorhizobium-Lotus symbiosis", PLANT CELL PHYSIOL., vol. 46, no. SUPPL., March 2005 (2005-03-01), pages S92 (ABSTRACT 274 (3PB07)), XP003003345 *
SHIMODA Y. ET AL.: "Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus", PLANT CELL PHYSIOL., vol. 46, no. 1, January 2005 (2005-01-01), pages 99 - 107, XP003001107 *
UCHIUMI T. ET AL.: "Expression of symbiotic and nonsymbiotic globin genes responding to microsymbionts of Lotus japonicus", PLANT CELL PHYSIOL., vol. 43, no. 11, 2002, pages 1351 - 1358, XP003001106 *
UCHIUMI T. ET AL.: "Promotion of the symbiotic ability of Lotus japonicus by nonsymbiotic hemoglobin", J. PLANT RES., vol. 118, no. SUPPL., 2005, pages 187 (ABSTRACT 495), XP003003344 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946162B2 (en) 2012-11-01 2024-04-02 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
US11739032B2 (en) 2015-07-13 2023-08-29 Pivot Bio, Inc. Methods and compositions for improving plant traits
US11479516B2 (en) 2015-10-05 2022-10-25 Massachusetts Institute Of Technology Nitrogen fixation using refactored NIF clusters
JP2020506681A (en) * 2017-01-12 2020-03-05 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
JP2022095931A (en) * 2017-01-12 2022-06-28 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
US11565979B2 (en) 2017-01-12 2023-01-31 Pivot Bio, Inc. Methods and compositions for improving plant traits
JP7234116B2 (en) 2017-01-12 2023-03-07 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
JP7244697B2 (en) 2017-01-12 2023-03-22 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen

Also Published As

Publication number Publication date
JP4677568B2 (en) 2011-04-27
JPWO2006098225A1 (en) 2008-08-21
CA2600560A1 (en) 2006-09-21
CN101208430A (en) 2008-06-25
CN101208430B (en) 2013-07-17
AU2006224032A1 (en) 2006-09-21
AU2006224032B2 (en) 2010-06-24
CA2600560C (en) 2013-07-16

Similar Documents

Publication Publication Date Title
CN109232725B (en) Soybean C2H2 type single zinc finger protein transcription factor, coding gene and application
CN112779234B (en) Phyllostachys pubescens PeAPX5 gene and application thereof
JP4677568B2 (en) Production method of plants that grow nodules with high nitrogen fixation activity
CN109971766A (en) A kind of and plant stress tolerance-associated protein PwRBP1 and its encoding gene and application
CN111424037B (en) Cymbidium CgWRKY70 gene and application thereof
CN111072762B (en) Mao bamboo senescence-associated NAP transcription factor, and coding gene and application thereof
CN110218247B (en) Interaction of two proteins PwRBP1 and PwNAC1 for synergistically improving plant stress tolerance and application thereof
CN115927370B (en) Sea sword bean CrHsf2 gene and application thereof
CN116083445A (en) CrBZR1 gene and application thereof
CN108329382B (en) Transcription factor MxERF72, and coding gene and application thereof
CN111304223B (en) Cymbidium CgWRKY24 gene and application thereof
CN111304220B (en) Cymbidium CgWRKY3 gene and application thereof
CN111454966B (en) Cymbidium CgWRKY4 gene and application thereof
CN114591969A (en) Drought-resistant gene CrWRKY57 and application thereof in drought-resistant improvement of plants
CN111304222A (en) Cymbidium CgWRKY11 gene and application thereof
US20080295198A1 (en) Method for Producing Plant Forming Nodules with High Nitrogen-Fixing Activity
CN111424038B (en) Cymbidium CgWRKY40 gene and application thereof
CN111304221B (en) Cymbidium CgWRKY31 gene and application thereof
CN111454987B (en) Application of GhNAC091 gene in improving plant photosynthesis efficiency and strong light tolerance
CN110760522B (en) AK209 gene and its coded protein and application in resisting stress and increasing yield
CN115651073B (en) EjWUSa gene for advancing loquat flowering time, encoding protein and application thereof
CN113549602B (en) Phyllostachys pubescens ascorbic acid peroxidase gene PeAPX1 and application thereof
CN113736798B (en) Zinc-cadmium-resistant gene TmZRC1S from truffle and application thereof
CN114717245B (en) MsbHLH35 gene and application of encoding protein thereof in regulation and control of alfalfa yield and stain resistance
CN111424039B (en) Cymbidium CgWRKY65 gene and application thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016619.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508097

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2600560

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11886249

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006224032

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006224032

Country of ref document: AU

Date of ref document: 20060303

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006224032

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715502

Country of ref document: EP

Kind code of ref document: A1