WO2006093055A1 - Chip for optical analysis, method for manufacturing the same, optical analyzer, and optical analyzing method - Google Patents

Chip for optical analysis, method for manufacturing the same, optical analyzer, and optical analyzing method Download PDF

Info

Publication number
WO2006093055A1
WO2006093055A1 PCT/JP2006/303489 JP2006303489W WO2006093055A1 WO 2006093055 A1 WO2006093055 A1 WO 2006093055A1 JP 2006303489 W JP2006303489 W JP 2006303489W WO 2006093055 A1 WO2006093055 A1 WO 2006093055A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical analysis
groove
light
wavelength
negative dielectric
Prior art date
Application number
PCT/JP2006/303489
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Miyazaki
Yoichi Kurokawa
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2007505902A priority Critical patent/JP4117665B2/en
Publication of WO2006093055A1 publication Critical patent/WO2006093055A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the present invention relates to a chip, an analysis device, and an analysis method for analyzing a substance component, concentration, state, and the like with high sensitivity based on a light emission signal with respect to light irradiation such as Raman scattered light, fluorescence, and harmonic light. It is about.
  • Raman scattered light shows a spectrum that reflects the molecular structure in detail, so it is useful for understanding the substance, the state of the molecule, and the environment in which the molecule is placed.
  • harmonic light especially second harmonic light, provides information such as molecular orientation at the interface.
  • these optical signals are very weak.
  • One method for capturing such a weak signal with high sensitivity is to improve the performance of the light source or detector by irradiating strong light or capturing the weak signal.
  • the luminescent properties of a substance are usually considered to be intrinsic to that substance, but this is not the case.
  • the light emission process of a material is determined by factors such as the density of states of the radiation field in the space where the material is placed, in addition to the intrinsic properties of the material.
  • the state density of the radiation field can be artificially modified. Even if the environment surrounding the substance is properly arranged, even the substance that is usually considered to be weak and difficult to detect can enhance the luminescence itself and detect it with high sensitivity.
  • the target substance is suspended in the solution or attached to the surface of the slide glass.
  • the density of states in the surrounding environment of the substance is almost the same as in free space. Therefore, when analyzing the luminescence of these substances, only the intrinsic properties of the substance are reflected, and the luminescence from a substance with weak luminescence is only detected as a weak signal.
  • the light emission characteristics of a force substance are determined only by the inherent properties of the substance, because the usual analytical method is based on the premise that the substance is placed in a solution or on the surface of a simple glass slide. .
  • a resonator is a structure made so that the density of states of the radiation field is high for a specific wavelength (wavelength when propagating in vacuum, hereinafter referred to as vacuum wavelength) ⁇ 0.
  • vacuum wavelength wavelength when propagating in vacuum
  • the strength of the effect of increasing the density of states of the radiation field in the resonator is expressed by the parcel coefficient.
  • the parcel coefficient is proportional to the Q value and inversely proportional to the volume of the resonator.
  • the Q value is an index representing energy stored in the resonator or electric field enhancement. In order to obtain a large parcel coefficient, it is important to confine a large electromagnetic field in a small volume. Note that the phenomenon discussed here is not limited to a narrow-sense phenomenon called the parcel effect.
  • Plasmon is a particle-image name, but what is actually discussed is classical electromagnetic plasma waves.
  • Surface plasmon is a surface wave localized at the interface that decays exponentially as the interfacial force goes away, and is generally seen in metals with a negative dielectric constant in the visible to infrared region.
  • the component perpendicular to the interface has an imaginary value, so the other two components have larger values than in free space. Ie space
  • the wavelength is shorter than the light wave propagating through. In addition, the wavelength is determined by the structure of the material alone, and even shorter wavelengths can be realized.
  • a resonator that resonates surface plasmons is made, a minute resonator that cannot be realized by other methods can be realized. Especially for metals such as silver, gold, copper, and aluminum, the loss of light due to absorption is small, so a large Q value can be realized at the same time.
  • This resonator has a high utility value as an analysis chip that sensitizes optical analysis by irradiating light to obtain information on the target substance force.
  • the present invention uses an analysis chip that makes use of surface plasmon resonance and enables high sensitivity of analysis based on an optical signal typified by Raman scattered light, a method for manufacturing the chip, and the chip.
  • An object of the present invention is to provide an analysis apparatus and an analysis method using the above.
  • the present invention provides an optical analysis chip comprising a negative dielectric, and a positive dielectric in a solid state, which is disposed inside at least one groove formed on the surface of the negative dielectric. I will provide a.
  • a method for manufacturing the above-described optical analysis chip wherein a convex having a groove having a predetermined dimension is pressed against a positive dielectric, thereby causing a protrusion derived from the groove. Forming a portion on the surface of the positive dielectric, forming a negative dielectric on the surface of the positive dielectric to a height exceeding the height of the convex portion, and the surface of the positive dielectric The surface of the negative dielectric is exposed from the opposite side, and a part of the positive dielectric is disposed in a groove formed in the surface of the negative dielectric derived from the convex portion. Remain
  • a method for manufacturing an optical analysis chip comprising a step of removing a part of the positive dielectric.
  • Another aspect of the present invention is a method for manufacturing the above-described chip for optical analysis, comprising the step of forming a laminate in which positive dielectric thin films and negative dielectric thin films are alternately laminated, A step of disposing a negative dielectric on one side surface of the multilayer body; and polishing the multilayer body from a side surface opposite to the side surface of the multilayer body to thereby form a negative dielectric film disposed on the negative dielectric thin film and the side surface. And a step of determining a depth L of a groove in which a positive dielectric composed of the positive dielectric thin film is disposed.
  • the method for manufacturing an optical analysis chip is provided.
  • the present invention can measure the optical analysis chip, a light source arranged to irradiate light on the surface of the optical analysis chip, and light emitted from the surface. And an optical measuring device arranged as described above.
  • the present invention provides a method in which a substance to be analyzed is disposed on the surface of the optical analysis chip, the surface is irradiated with light, and the light emitted from the substance to be analyzed is measured.
  • An optical analysis method for a substance to be measured is provided.
  • a minute substance to be analyzed enters the bottom of the groove.
  • a large electric field strength due to surface plasmon resonance cannot be obtained at the bottom of the groove serving as the closed end. Therefore, in the present invention, a positive dielectric, which is a solid, is arranged inside the groove, thereby predefining the position where the analysis target substance is to be arranged.
  • a narrow groove having only a nanometer-level width is generally physically unstable, and an object is deposited in the groove, or atoms migrate and the groove is buried. There is concern about changes over time. Placing a solid positive dielectric inside the groove is reasonable from the viewpoint of stability as an industrial product.
  • FIG. 1 is a schematic diagram (a) of an interface between a negative dielectric material and a positive dielectric material, and a diagram (b) showing dispersion characteristics of a surface wave mode propagating along the interface.
  • FIG. 2 A schematic diagram (a) of a slab waveguide having a negative dielectric as a cladding and a positive dielectric as a core, and a diagram (b) showing dispersion characteristics of a surface wave mode propagating along the slab waveguide.
  • ⁇ 3 A diagram showing the schematic structure of a closed resonator and the electric field distribution at the time of resonance.
  • ⁇ 4] (a) to (c) are perspective views illustrating the structure of a closed resonator. It is.
  • FIG. 5 is a cross-sectional view showing an example of the optical analysis chip of the present invention.
  • FIG. 6 is a cross-sectional view showing another example of the optical analysis chip of the present invention.
  • FIG. 7] (a) to (d) are sectional views for explaining each step in an example of the production method of the present invention.
  • FIG. 8 is a cross-sectional view (a) showing the dispersion state of the analyte in an untreated surface state and a cross-sectional view (b) showing the dispersion state of the analyte after the surface treatment.
  • FIG. 9] (a) to (f) are cross-sectional views for explaining each step in another example of the production method of the present invention.
  • FIG. 10 is a diagram showing an example (a) of the reflection spectrum shown by the optical analysis chip of the present invention and an example (b) of the wavelength dependence of the electric field enhancement intensity.
  • FIG. 11 is an example of a reflection spectrum shown by the optical analysis chip of the present invention.
  • FIG. 12 is a schematic diagram showing a configuration example of an optical analysis apparatus of the present invention.
  • FIG. 13 is a diagram showing an example of the relationship between the wavelength ⁇ e of the excitation light and the wavelength ⁇ s of the signal light and the wavelength dependency of the electric field enhancement degree of the optical analysis chip.
  • FIG. 14 is a diagram showing another example of the relationship between the wavelength ⁇ e of the excitation light and the wavelength ⁇ s of the signal light and the wavelength dependence of the electric field enhancement degree of the optical analysis chip.
  • This "resonator” has two effects.
  • the first effect is enhancement of the incident electric field.
  • the first effect may be referred to as an effect as a receiving antenna.
  • An antenna is a kind of resonator, and as is well known, the same antenna works as both a receiving antenna and a transmitting antenna.
  • the performance as a receiving antenna for the same wavelength is the same as the performance as a transmitting antenna. This is explained by the reciprocity theorem.
  • the second effect may be understood as a transmission antenna effect. Since the light emission efficiency of molecules strongly excited by the first effect is increased by the second effect, the light emission efficiency is enhanced twice by using the resonator.
  • the enhancement as a receiving antenna (M times) and the enhancement as a transmission antenna are contradictory. Since the theorem is almost equal, the overall efficiency of this process reaches M 2 times.
  • the physical phenomenon to be used is the resonance caused by the reflection of the surface plasmon mode of the slab waveguide, which is sandwiched by a clad made of a negative dielectric material with a slit in a minute gap, at the end face of the waveguide. It is a phenomenon. It is important that this slab waveguide does not have a finite length force comparable to the surface plasmon wavelength.
  • the positive dielectric has a positive value in the real part of the dielectric constant
  • the negative dielectric has a negative value in the real part of the dielectric constant.
  • the positive dielectric corresponds to a general non-metallic material, and specifically includes glass, ceramics, semiconductors, polymers, liquids, and the like. Also, according to the above definition, air, other gases, and vacuum spaces can be called positive dielectrics.
  • negative dielectric The body means that an object made of a specific material has the above-mentioned properties only in a specific frequency range. A typical example is a metal material having a frequency lower than the plasma frequency, that is, in the visible light or infrared light region.
  • terahertz wave region force at a frequency lower than the superconducting energy gap.
  • superconducting materials in the superconducting state in the microphone mouth wave region and semiconductor materials such as silicon in which the carriers are excited.
  • the electric field is generally perpendicular to the interface, the electromagnetic field takes the maximum value at the interface, and exponentially as the interface force increases.
  • the surface wave in the case where the negative dielectric is a metal material is the surface plasmon described above.
  • the dispersion curve generally has the wavenumber k on the horizontal axis and the angular frequency ⁇ on the vertical axis (Fig. 1 (b)).
  • Wave number is surface wave
  • the angular frequency is the wavelength at which the electromagnetic wave propagates in vacuum (vacuum wavelength) ⁇ 2 ⁇ ⁇ / ⁇
  • d m are specific dielectric constants of the positive dielectric and the negative dielectric, respectively.
  • K 2 k 2 — ( ⁇ / c) 2 X ⁇
  • TM mode is used regardless of the description method in any field as long as it is expressed as a mode having an electric field component perpendicular to the interface of the dielectric and having no cutoff frequency.
  • the cut-off frequency is the angular frequency ⁇ that defines the boundary where the mode cannot propagate at lower frequencies.
  • the dispersion curve is as shown in ⁇ mode in Fig. 2 (b).
  • the force starts where the vertical axis is not zero.
  • the dispersion curve starts from the origin.
  • the wavelength ⁇ of the surface wave in the coupled mode becomes shorter as the core thickness D becomes smaller.
  • the surface wave of this coupled mode has the same electromagnetic field symmetry as the plane wave, it can be easily excited just by irradiating the plane wave from the end face of the waveguide. It can also radiate.
  • light that is electromagnetic waves generally enters and exits the resonator with a certain angular distribution.
  • the average propagation direction is referred to as the main propagation direction.
  • the length (groove depth) L of the waveguide is (1Z4U, (3/4) ⁇ , (5/4) ⁇
  • V a so-called closed resonator
  • the side surface of the core parallel to the propagation direction is an open end.
  • the side is an open end, there is no special condition for the resonance between the side-to-side distance W.
  • the length of the waveguide is the length that corresponds to the first-order resonance, and W is the same small size.
  • this resonator will be a single-mode resonator, and it will be a high-performance microresonator that can excite specific modes efficiently and that has the ultimate small volume.
  • the distance w between the sides is more than half of the vacuum wavelength
  • Figures 4 (a) to (c) list the specific structures from which the above condition forces are derived.
  • the thickness D is less than or equal to the vacuum wavelength, a sufficiently small wavelength can be obtained at the same time.
  • plasmon resonance at the particle contact point of agglomerates of silver and gold nanoparticles which has been actively studied, is a slab in which each particle is a negative dielectric cladding and the gap is a positive dielectric core.
  • the coupled waveguide mode of the waveguide can be regarded as resonating between the two open ends. Resonance when conducting at the contact point can be interpreted in the same way if a closed-type resonator is formed.
  • the present invention extracts the essential mechanism of the giant resonance that occurs by chance in silver and gold nanoparticle aggregates, and provides design rules for the structure to artificially generate in an optimal form. Based on this! It has an aspect that makes optical analysis highly sensitive.
  • the chip for optical analysis according to the present invention includes a negative dielectric and a positive dielectric in a solid state and disposed in at least one groove formed on the surface of the negative dielectric.
  • FIG. 5 shows the simplest configuration example of the optical analysis chip of the present invention.
  • On the surface la of the negative dielectric 1 a groove having a rectangular cross section is formed, and the positive dielectric 2 is disposed up to a predetermined height inside the groove of the bottom force of this groove.
  • the surface 2a of the positive dielectric 2 serves as a table on which the analyte 3 is placed.
  • the substance 31 to be analyzed placed on the table is irradiated with light 31, and the signal light 32 emitted from the substance 3 as a result of this irradiation becomes the object of measurement.
  • the optical analysis chip of the present invention includes a positive dielectric 2 arranged inside two or more grooves formed on the surface of the negative dielectric 1, and includes two or more grooves. May be arranged in parallel with each other.
  • grooves having a width D are regularly (periodically) arranged at a predetermined interval P. If there are a plurality of positive dielectrics 2 in the groove, the substance 3 to be analyzed is positioned on the positive dielectric 2 with a certain probability simply by spreading. If this form is used, the minute analyte 3 is arranged on the positive dielectric 2 inside the groove having a minute width. t Difficult work is unnecessary.
  • the groove width D is smaller than the groove depth L and the groove length W! /.
  • the width D of the groove is specifically 50 nm or less, particularly lOnm or less, for example 0.2 ⁇ ! ⁇ LOnm is preferred.
  • the depth L of the groove is preferably 1 nm to 500 nm, for example.
  • the ratio of the groove depth L to the groove width D may be 10 or less. Since this ratio does not need to be extremely high, the formation of the grooves is relatively easy.
  • the vacuum wavelength of the target light is 300 ⁇ 4 / ⁇ ⁇
  • the groove length W may be set to 1Z2 or more of the target wavelength ⁇ , for example, 500 ⁇ ! ⁇
  • both end faces of the groove may be covered with a negative dielectric material! / ( Figure 4 (a)), and at least one of them is covered with a negative dielectric material! / (Fig. 4 (b) (c)).
  • the resonance wavelength ⁇ in this groove is mainly the groove width D, groove depth L, and groove spacing P.
  • the sharpness of the resonance peak appearing at ⁇ is mainly due to the groove width D and the order of resonance.
  • the force determined by the dielectric constant of the negative dielectric material has a certain extent of spread, and the wavelength range where the resonance enhancement effect is obtained is determined according to the extent of this spread.
  • the actual enhancement effect differs depending on the size of the peak, but here, the wavelength region defined by the half width is considered to be the wavelength region where the enhancement effect due to the peak can be obtained.
  • the groove depth L, interval P, and width D are determined by the resonance of TM mode surface waves.
  • the light intensity is increased in a predetermined wavelength range including the target wavelength.
  • the most important parameter that should be properly set is the groove depth L.
  • the depth L of the groove may be defined as ((2 ⁇ 1) ⁇ 4) ⁇ . Where ⁇ is preferably 6 or more
  • is the wavelength of the surface wave (in TM mode)
  • the wavelength ⁇ of the TM mode surface wave is the target wavelength ⁇ , groove width D, negative dielectric And the relative dielectric constant of the positive dielectric.
  • the electric field becomes maximum at the opening end of the groove at the same height as the surface of the negative dielectric in the groove depth direction (Fig. 3). Therefore, in this case, the negative dielectric surface la should coincide with the positive dielectric surface 2a! /, (Figs. 5 and 6).
  • the surface plasmon mode (mode propagating in the P direction in FIG. 6) on the light incident surface (the surface of the negative dielectric) and the surface plasmon mode (L The mode at which the electric field is maximized may deviate from the surface of the negative dielectric material. Dispersion characteristics in the new resonance mode generated in this way can be solved by strictly solving the Maxwell equation using the transfer matrix method and the multimode expansion method. Based on the calculation results, the surface of the positive dielectric 2a The position of may be near the height at which the electric field is maximized.
  • the position where the amplitude of the electric field becomes maximum is approximately L of the negative dielectric surface la (groove opening end) toward the bottom of the groove.
  • the range is 0.6 times or less, and in many cases 0.5 times or less of L.
  • An analysis chip in which the positive dielectric 2 is filled so that the surface 2a thereof is substantially the same height as the surface la of the negative dielectric is a preferred form of the present invention.
  • the height of the surface 2a of the positive dielectric may be adjusted as appropriate.
  • substantially the same means that the difference in height between the surface 2a of the positive dielectric and the surface la of the negative dielectric is 10% or less of the depth L of the groove.
  • Negative dielectric materials and positive dielectric materials are exemplified below.
  • a typical negative dielectric material is a metal.
  • the negative dielectric made of metal may contain, as a main component, at least one selected from gold, silver, copper, and aluminum, for example.
  • the main component means a component having the highest content.
  • the main component of the negative dielectric material in which the total content of gold and silver exceeds the total content of other components is the two components of gold and silver.
  • the positive dielectric is preferably composed of at least one selected from the forces applicable to the various materials exemplified above, for example, a resin and an inorganic material.
  • the inorganic material includes a semiconductor material, and further includes various inorganic compounds such as oxide, nitride, carbide, nitride, chloride, and fluoride.
  • Inorganic materials include, for example, silica (acid silicate), acid silicate Titanium, niobium oxide, aluminum oxide, zinc oxide, tantalum oxide, magnesium oxide
  • At least one selected from the group consisting of acid hafnium and magnesium fluoride power can be exemplified.
  • the resin include polystyrene, polymethylmetatalylate (acrylic resin), and polycarbonate.
  • a sample corresponding to this was laminated with a multilayer film of gold, silica, and gold, and the surrounding area was removed with a focused ion beam device leaving a rectangular region slightly larger than the predetermined L and W, and the closed end side was removed.
  • Gold was vapor-deposited from a direction of 45 degrees, and it was attached to the focused ion beam device once again, and L and W were processed by finishing.
  • the electric field enhancement at the center of the incident end face of the core (denoted by the square of the electric field amplitude IEI corresponding to the intensity) is as shown in Fig. 10 (b).
  • the primary was 2270 times and the secondary was 80 times.
  • the fine force between the first and second order, the peak is the resonance due to the surface plasmon with the W component.
  • D lnm
  • the amplitude of the electric field is inversely proportional to D. Therefore, the intensity is increased by 100 times that is more than 5 orders of magnitude in the first order and 3 to 4 orders of magnitude in the second order. .
  • both the incident wave and the scattered wave receive such an increase, so it is expected that the Raman enhancement will be 10 orders of magnitude or more in the first order and 7 orders of magnitude in the second order.
  • the structure of the analysis chip according to the present invention is industrially superior in that it can be mass-produced at low cost by applying the nanometer-level mold transfer technology, which has been developed recently, which is generally called nanoimprint technology.
  • This analysis chip has a structure in which a positive dielectric solid material is embedded in a groove having a width D and a depth L of a surface of a negative dielectric, for example, a metal material.
  • D the value of D be as small as lOnm or less
  • the value of L is the same size
  • the aspect ratio (LZD) is not necessarily high. Specifically, it is 6 in the previous numerical example and 10 at most. Unlike nanostructures with aspect ratios greater than 10, many technologies can be applied if the aspect ratio is 10 or less.
  • Figures 7 (a) to 7 (d) show the manufacturing process of a high-sensitivity analysis chip based on the mold transfer technology.
  • a mold having a predetermined groove formed on the surface is used. Since only one mold is required, the manufacturing process may be performed using an electron beam lithography technique or the like that is poor in mass productivity.
  • This mold is transferred to a mold material made of, for example, a resin to obtain a resin 50 having protrusions 25 having a width D and a height L (FIG. 7 (a)). Between the protrusions 25, a groove 15 having a width P is formed.
  • a number of methods have been proposed for this process. For example, a method in which a mold is pressed on a flat plate such as acrylic resin while the temperature is simply raised, a laser pulse is irradiated from the mold side with a transparent mold pressed against the flat resin plate, and the temperature is increased instantaneously.
  • the method of transferring the shape of the mold, applying a liquid UV curable resin on the substrate, pressing the mold, and then irradiating the mold with UV light from the side of the transparent mold to cure the resin. is there.
  • P + D is preferably set to 100 to 250 nm, for example.
  • a negative dielectric thin film 1 is formed on the surface of the resin 50 by applying a film forming technique such as a direct current magnetron sputtering method (FIG. 7 (b)).
  • the negative dielectric thin film 1 include a gold thin film having a thickness of 150 nm.
  • a film forming method a method and conditions with high step coverage should be selected so that the negative dielectric is sufficiently filled in the groove 15 of the mold 50.
  • grooves 11 and protrusions 21 are formed reflecting the protrusions 25 and grooves 15 of the mold.
  • the negative dielectric thin film 1 is bonded to the substrate 20 using an adhesive 30 such as epoxy resin (FIG. 7 (c)).
  • the material thereof is not particularly limited, and may be glass, silicon, metal, or the like.
  • the resin 50 is mechanically polished to some extent from the surface opposite to the surface on which the negative dielectric thin film 1 is formed, and further, using various organic solvents (xylene, toluene, etc.) In addition to the groove 11 of the negative dielectric thin film 1, the resin 50 is also removed (FIG. 7 (d)). The removal of the resin 50 with a solvent needs to be performed at least to the extent that the top surface of the protrusion 21 of the negative dielectric thin film 11 is exposed.
  • the negative dielectric having a surface in which the grooves 11 having the depth L and the width D are regularly arranged in parallel with each other at a distance P, and the grooves 11 are filled with the resin as the positive dielectric 2.
  • An analysis chip with 1 is obtained.
  • the thickness T of the negative dielectric thin film 1 where the groove 11 is formed has a thickness that is such that the electric field is sufficiently attenuated inside the negative dielectric and the resonance characteristics are not affected by the opposite surface! This is preferred.
  • the thickness of T is preferably lOOnm or more. However, T need not be larger than necessary.
  • the strength of the analysis chip may be ensured by the substrate 20 bonded to the negative dielectric 1 on the surface opposite to the surface where the grooves 11 are formed. Considering this, the thickness of T may be 1 ⁇ m or less.
  • the analysis chip may be subjected to a surface treatment.
  • the surface of the positive dielectric 2 and the surface of the positive dielectric 2 are negative so that the surface of the positive dielectric 2 is relatively hydrophilic compared to the surface of the negative dielectric 1, or is relatively hydrophobic.
  • an appropriate surface treatment is applied to at least one of the surface forces of the dielectric 1, the distribution of the analyte on these surfaces can be easily controlled.
  • the analysis target substance 3 is supplied in the form of an aqueous solution, the analysis target substance 3 is distributed almost evenly when not processed (Fig. 8 (a)), but the surface of the negative dielectric 1
  • the surface of the positive dielectric 2 is made hydrophilic, the analyte 3 is densely attached to the surface of the positive dielectric 2.
  • Fig. 8 (b) the entire surface of the analysis chip obtained according to the above-described process is hydrophilized by oxygen plasma treatment, and then the surface is immersed in 1-decanethiol ethanol solution and rinsed with ethanol.
  • 1-decane thiol is adsorbed only on the surface, and only the surface of negative dielectric 1 is hydrophobized.
  • Such surface treatment is effective in analyzing a very small amount of the target substance.
  • the surface of the analysis chip is immersed in an ethanol solution of 3-mercaptopropionic acid without performing oxygen plasma treatment for hydrophilicity. Rinse with ethanol. 3-mercaptopropionic acid is adsorbed only on the surface of negative dielectric 1 (gold), and only the surface of negative dielectric 1 is hydrophilized due to the carboxyl group at the end. Since the surface of one positive dielectric 2 is inherently hydrophobic, the substance 3 to be analyzed is densely distributed on the surface of the positive dielectric 2.
  • the optical analysis chip of the present invention can also be produced by applying a thin film forming technique. For example, first, a 150 nm thick gold thin film as the negative dielectric thin film 5 and a silica thin film with a thickness D as the positive dielectric thin film 2 are alternately laminated several times on the synthetic quartz substrate as the substrate 61. A multilayer film (multilayer structure) 71 is formed (FIG. 9 (a)).
  • the substrate 61 is cut into a strip shape with a width of about 2 mm, for example.
  • the multilayer structure parts are faced to each other, and bonded together with a hard epoxy resin that becomes the bonding layer 73.
  • a laminated body is obtained in which the first substrate 61, the first multilayer structure 71, the bonding layer 73, the second multilayer structure 72, and the second substrate 62 are laminated in this order (FIG. 9B).
  • multilayer structures 71 and 72 are bonded together.
  • the peripheral portion tends to be polished quickly in the subsequent polishing step.
  • the delicate multilayer structure 71, 72 becomes the outermost periphery, and high-precision polishing becomes difficult.
  • Multi-layered structures 71 and 72 are bonded together and placed in the center of the polishing material to facilitate high-precision polishing.
  • the laminate is thickened, for example, cut to about 300 m, and attached to a polishing jig with hot wax, and one side is polished (FIG. 9 (c)).
  • polishing for example, mirror finishing may be performed by first polishing with water-resistant abrasive paper and then with diamond paste. Furthermore, a technique such as flat milling using argon ions may be used.
  • gold having a thickness of 150 nm is deposited as the negative dielectric thin film 40, and this end face is used as a closed end (FIG. 9 (d)).
  • this laminate is bonded to a glass substrate as a support 20 using an adhesive 30 (Fig. 9 (e)).
  • an adhesive 30 As the materials for the adhesive 30 and the support 20, those exemplified above may be used.
  • the support 20 is attached to the polishing apparatus and polished in the same process as above, the end faces of the multilayer structures 71 and 72 are retracted, and the thickness (groove depth) L ′ is reduced to the predetermined dimension L. (Fig. 9 (f)).
  • the thickness L be manufactured with an accuracy of nanometer order. For this purpose, measure the reflection spectrum and transmission spectrum of the polished surface as needed during polishing, and polish until the desired spectrum is obtained.
  • a thin positive dielectric thin film that defines the width D of the groove can be formed with high accuracy and good reproducibility.
  • the manufacturing method exemplified above is suitable for mass production of analysis chips in which the groove width D is controlled to be small in order to obtain a high enhancement effect.
  • FIG. 12 shows an example of the analysis apparatus of the present invention.
  • This device is capable of detecting the optical analysis chip 10, the light source 41 arranged so that the excitation light 31 can be irradiated on the surface of the optical analysis chip 10, and the signal light 32 emitted from the chip surface.
  • an optical measuring instrument 42 arranged.
  • the analyte 3 is arranged on the surface of the optical analysis chip 10 so that at least a part thereof is located on the positive dielectric 2 arranged inside the groove formed on the surface of the negative dielectric 1.
  • the excitation light 31 is preferably irradiated along the main propagation direction (for example, the direction perpendicular to the surface) of the incident light that is predetermined for the optical analysis chip 10.
  • the light source 41 may be a monochromatic light source such as a laser, regardless of whether the signal to be measured is Raman scattered light, fluorescence, or harmonic light. Described in relation to the wavelength e of light 31 emitted from the light source 41, the groove depth D of the optical analysis chip is preferably 1Z10 times or less of the groove depth L is less than the wavelength e. Preferably there is.
  • the light source 41 is a straight line A polarized light source is preferred. In that case, it is desirable to adjust the polarization direction (the direction of the electric field) to match the width direction of the groove of the analysis chip.
  • the optical measuring instrument 42 may be a combination of a spectroscope and a photodetector.
  • the optical measuring instrument 42 may include a filter and a photodetector having a predetermined transmission spectrum.
  • the analysis chip according to the present invention can have various resonance characteristics depending on the width D, depth L, and interval P of the slit.
  • D mainly gives enhancement, and if D is fixed, the resonance wavelength is determined by L and P.
  • the sharpness of resonance is mainly determined by the slit width D, the order of resonance, and the dielectric constant of the negative dielectric used.
  • the resonance peak of the analysis chip it is only necessary to aim for the resonance peak of the analysis chip to be ⁇ e, s, or an average value of both. Even when the signal to be measured is fluorescence, the same can be considered in the case of a system in which the difference between s and e (Stokes shift) is small.
  • Figure 14 shows an example of the peak due to resonance using an analysis chip suitable for measuring fluorescence and harmonic light. In Fig. 14, corresponding to (1/4) ⁇ , (3/4) ⁇ , and (5/4) ⁇ in order from the right.
  • the optical analysis method of the present invention is suitable as a method for irradiating light having a wavelength ⁇ e and measuring light having a wavelength ⁇ s different from ⁇ e emitted from the analyte. ing.
  • the light having a wavelength s may be Raman scattered light, fluorescent light, or harmonic light having a wavelength e.
  • the intensity of the signal light having the wavelength S can be enhanced as compared with the case where there is no resonance.
  • the intensity of light having the wavelength e is enhanced by the resonance of the surface wave of a)
  • the intensity of light having the wavelength ⁇ s is enhanced by the resonance of the surface wave of b). It is also possible.
  • the groove is a TM mode surface.
  • the resonance of the wave is formed so that the intensity of light in at least one wavelength region is enhanced inside the groove, and both s are included in the same wavelength region selected by the at least one wavelength region force.
  • the groove has an electric field component in the width direction of the groove, and in the groove due to resonance of the surface wave having no cutoff frequency. It may be formed so that the intensity of light in two or more wavelength ranges is enhanced, and s may be selected from the above two or more wavelength range forces and included in different wavelength ranges. (See Figure 14).
  • the present invention has great utility value as contributing to high sensitivity of analysis based on optical signals such as Raman scattered light, fluorescence, and harmonic light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

There is provided a chip for analysis realizing high sensitivity analysis based on an optical signal represented by Raman scattering light by utilizing surface plasmon resonance. The chip for optical analysis comprises a negative dielectric, and a positive dielectric in solid state arranged in at least one groove formed in the surface of the negative dielectric. An analysis object substance is arranged on the surface of the chip and irradiated with light and then light radiated from the analysis object substance is measured. Analysis by Raman scattering light, for example, can be carried out with high sensitivity by resonance of surface wave in TM0 mode.

Description

明 細 書  Specification
光学分析用チップとその製造方法、光学分析用装置、および光学分析方 法  Optical analysis chip and manufacturing method thereof, optical analysis device, and optical analysis method
技術分野  Technical field
[0001] 本発明は、物質の成分、濃度、状態などをラマン散乱光、蛍光、高調波光などの光 照射に対する発光信号に基づいて高感度に分析するためのチップ、分析用装置、 および分析方法に関するものである。  The present invention relates to a chip, an analysis device, and an analysis method for analyzing a substance component, concentration, state, and the like with high sensitivity based on a light emission signal with respect to light irradiation such as Raman scattered light, fluorescence, and harmonic light. It is about.
背景技術  Background art
[0002] 物質の成分や濃度、状態を分析するために、光を対象物に照射して、対象物が発 する別の波長の光の強度やスペクトルを計測する方法が開発されている。具体的に は、そのような発光過程として、ラマン散乱光、蛍光、高調波光などが知られている。  [0002] In order to analyze a component, concentration, and state of a substance, a method of measuring the intensity and spectrum of light of another wavelength emitted from the object by irradiating the object with light has been developed. Specifically, Raman scattering light, fluorescence, harmonic light, etc. are known as such a light emission process.
[0003] 特にラマン散乱光は分子構造を詳細に反映したスペクトルを示すので、物質の特 定ゃ、分子の状態、分子の置かれている環境の理解に有用である。また、高調波光 、特に第 2高調波光は、界面における分子の配向などの情報をもたらしてくれる。しか し、これらの有用性とひきかえに、これらの光信号は極めて微弱である。  [0003] In particular, Raman scattered light shows a spectrum that reflects the molecular structure in detail, so it is useful for understanding the substance, the state of the molecule, and the environment in which the molecule is placed. In addition, harmonic light, especially second harmonic light, provides information such as molecular orientation at the interface. However, in contrast to their usefulness, these optical signals are very weak.
[0004] このような微弱な信号を高感度にとらえるための一つの方法は、強い光を照射した り、微弱な信号を捕らえたりするという、光源や検出器の性能向上である。しかし、もう 一つ、根本的に異なる方法がある。物質の発光特性は、通常はその物質固有の性 質と考えられているが、実際にはそうではない。物質の発光過程とは、物質本来の性 質の他に、物質の置かれている空間の輻射場の状態密度という要因によっても決ま つている。そして、この輻射場の状態密度とは、人工的に改変できるものである。物質 の周囲の環境さえ適切に整えてやれば、通常、発光が弱くて検出しにくいとされてい る物質であっても、発光そのものを増強し、高感度に検出することができるのである。 通常の分析時には、対象物質は溶液中に浮遊していたり、スライドガラス表面に付着 していたりする。このような時の物質の周囲環境の輻射場の状態密度は、自由空間 中とほとんど変わらない。従って、これらの物質の発光を分析すると、物質本来の性 質だけが反映され、発光の弱い物質からの発光は、確かに弱い信号としてしか検出 されない。通常、我々力 物質の発光特性が物質固有の性質だけで決まると考えが ちなのは、通常の分析方法が、溶液中や単なるスライドガラスの表面に物質を配置 することを前提として 、るためである。 [0004] One method for capturing such a weak signal with high sensitivity is to improve the performance of the light source or detector by irradiating strong light or capturing the weak signal. However, there is another fundamentally different method. The luminescent properties of a substance are usually considered to be intrinsic to that substance, but this is not the case. The light emission process of a material is determined by factors such as the density of states of the radiation field in the space where the material is placed, in addition to the intrinsic properties of the material. The state density of the radiation field can be artificially modified. Even if the environment surrounding the substance is properly arranged, even the substance that is usually considered to be weak and difficult to detect can enhance the luminescence itself and detect it with high sensitivity. During normal analysis, the target substance is suspended in the solution or attached to the surface of the slide glass. In such a case, the density of states in the surrounding environment of the substance is almost the same as in free space. Therefore, when analyzing the luminescence of these substances, only the intrinsic properties of the substance are reflected, and the luminescence from a substance with weak luminescence is only detected as a weak signal. Not. Usually, we tend to think that the light emission characteristics of a force substance are determined only by the inherent properties of the substance, because the usual analytical method is based on the premise that the substance is placed in a solution or on the surface of a simple glass slide. .
[0005] しかし、同じ物質を、その光に対する共振器の中に置いて同じ測定をすると、同じ 光源と検出器を用いても、強い発光を検出することができる。共振器とは、ある特定 の波長 (真空中を伝搬する時の波長、以下、真空波長と呼ぶ) λ 0に対して、輻射場 の状態密度が高くなるように作られた構造物と言い換えることができる。共振器にお いて輻射場の状態密度が高くなる効果の強さは、パーセル係数で表わされる。パー セル係数は Q値に比例し、共振器の体積に反比例する。 Q値とは、共振器に蓄えら れるエネルギー、あるいは電界増強度を表す指標である。大きなパーセル係数を得 るためには、小さな体積に大きな電磁界を閉じ込めることが重要である。なお、ここで 議論している現象は、パーセル効果と呼ばれる狭義の現象に限定されるものではな い。  [0005] However, when the same substance is placed in a resonator for the light and the same measurement is performed, strong luminescence can be detected even with the same light source and detector. In other words, a resonator is a structure made so that the density of states of the radiation field is high for a specific wavelength (wavelength when propagating in vacuum, hereinafter referred to as vacuum wavelength) λ 0. Can do. The strength of the effect of increasing the density of states of the radiation field in the resonator is expressed by the parcel coefficient. The parcel coefficient is proportional to the Q value and inversely proportional to the volume of the resonator. The Q value is an index representing energy stored in the resonator or electric field enhancement. In order to obtain a large parcel coefficient, it is important to confine a large electromagnetic field in a small volume. Note that the phenomenon discussed here is not limited to a narrow-sense phenomenon called the parcel effect.
[0006] 現実にこのような発光の増強現象が目に見える形で起こって 、る事例として、表面 増強ラマン散乱現象がある。具体的な方法として、表面に適度な凹凸を有する銀や 金の表面上に分析対象分子を吸着させると、通常の溶液中やスライドガラス上に比 ベて例えば 4桁力も 6桁もラマン散乱光の強度が強くなる。あるいは、銀や金のナノ粒 子が分散した懸濁液に分析対象物質を混ぜて、そのままの状態でラマン散乱光を測 定したり、その懸濁液をスライドガラスなどの通常の基板上に滴下して乾燥させたもの につ 、てラマン散乱光を測定しても同様の効果がある。この発光増強現象のメカニズ ムには多くの要因が絡んでいることが知られており、今なお十分に解明されたとは言 えないが、表面プラズモンの共鳴による電界増強が重要な役割を果たしているのは 確実とされている。  [0006] As an example of such a phenomenon in which light emission enhancement actually occurs, there is a surface enhanced Raman scattering phenomenon. As a specific method, when molecules to be analyzed are adsorbed on the surface of silver or gold with moderate irregularities on the surface, Raman scattered light, for example, four or six orders of magnitude compared to that in ordinary solutions or glass slides. The strength of is increased. Alternatively, a substance to be analyzed is mixed in a suspension in which silver or gold nanoparticles are dispersed, and the Raman scattered light is measured as it is, or the suspension is placed on a normal substrate such as a slide glass. The same effect can be obtained by measuring the Raman scattered light of the material dropped and dried. It is known that there are many factors involved in the mechanism of this luminescence enhancement phenomenon, and it cannot be said that it has been fully elucidated, but the electric field enhancement by resonance of surface plasmon plays an important role. This is certain.
[0007] プラズモンとは粒子描像的な呼称であるが、実際に議論されるのは古典電磁気学 的なプラズマ波である。表面プラズモンは、界面力 離れるに従って指数関数的に減 衰する界面に局在した表面波で、可視光から赤外光の領域で誘電率の実部が負の 値を持つ金属一般で見られる。波数ベクトルの 3成分の内、界面に垂直な成分が虚 数の値を持っため、他の 2成分は自由空間中よりも大きな値を持つ。すなわち、空間 を伝搬する光波に比べて波長が短くなる。また、その波長は材料の誘電特性だけで なぐ構造によっても決まり、さらに短い波長の実現も可能になる。 [0007] Plasmon is a particle-image name, but what is actually discussed is classical electromagnetic plasma waves. Surface plasmon is a surface wave localized at the interface that decays exponentially as the interfacial force goes away, and is generally seen in metals with a negative dielectric constant in the visible to infrared region. Of the three components of the wave vector, the component perpendicular to the interface has an imaginary value, so the other two components have larger values than in free space. Ie space The wavelength is shorter than the light wave propagating through. In addition, the wavelength is determined by the structure of the material alone, and even shorter wavelengths can be realized.
[0008] 表面増強ラマン散乱における表面プラズモンの役割については、例えば以下の文 献 1に報告されている。ロペス リオス、「冷蒸着金属膜の表面増強ラマン散乱にお ける導波および表面プラズモン共鳴の役割」ソリッドステイトコミュニケーションズ、 52 、 2 、 197〜20丄貞 (T. Lopez- Rios, 'Role of waveguide and surface plasmon res onances in surface-enhanced raman scattering at coldly evaporated metallic films , s olid state communications, vol. 52, No. 2, pp.197- 201, 1984)  [0008] The role of surface plasmons in surface-enhanced Raman scattering is reported, for example, in Reference 1 below. Lopez Rios, “The Role of Waveguide and Surface Plasmon Resonance in Surface-Enhanced Raman Scattering of Cold-deposited Metal Films” Solid State Communications, 52, 2, 197-20 Tadatoshi (T. Lopez- Rios, 'Role of waveguide and surface plasmon res onances in surface-enhanced raman scattering at coldly evaporated metallic films, s olid state communications, vol. 52, No. 2, pp.197- 201, 1984)
発明の開示  Disclosure of the invention
[0009] 表面プラズモンを共鳴させるような共振器を作れば、他の手法では実現できないよ うな微小な共振器が実現できる。特に銀、金、銅、アルミニウムなどの金属では、吸収 による光の損失が小さいので、大きな Q値も同時に実現できる。この共振器は、光を 照射して分析対象物質力 情報を得る光学分析を高感度化する分析用チップとして 利用価値が高い。  [0009] If a resonator that resonates surface plasmons is made, a minute resonator that cannot be realized by other methods can be realized. Especially for metals such as silver, gold, copper, and aluminum, the loss of light due to absorption is small, so a large Q value can be realized at the same time. This resonator has a high utility value as an analysis chip that sensitizes optical analysis by irradiating light to obtain information on the target substance force.
[0010] しかし、これまで、このような分析用チップにっ 、て、明確な設計指針は示されてお らず、量産に適した構造にっ 、ても十分な検討はなされて 、な 、。  [0010] However, until now, such an analysis chip has not been provided with a clear design guideline, and a structure suitable for mass production has been sufficiently studied. .
[0011] 本発明は、表面プラズモン共鳴を利用し、ラマン散乱光に代表される光信号に基 づく分析の高感度化を可能とする分析用チップ、このチップの製造方法、さらにはこ のチップを用いた分析用装置と分析方法を提供することを目的とする。  The present invention uses an analysis chip that makes use of surface plasmon resonance and enables high sensitivity of analysis based on an optical signal typified by Raman scattered light, a method for manufacturing the chip, and the chip. An object of the present invention is to provide an analysis apparatus and an analysis method using the above.
[0012] 本発明は、負誘電体と、前記負誘電体の表面に形成された少なくとも 1つの溝の内 部に配置された、固体状態にある正誘電体と、を備えた光学分析用チップを提供す る。  [0012] The present invention provides an optical analysis chip comprising a negative dielectric, and a positive dielectric in a solid state, which is disposed inside at least one groove formed on the surface of the negative dielectric. I will provide a.
[0013] 本発明は、その別の側面から、上記光学分析用チップの製造方法であって、予め 所定寸法の溝を形成した型を正誘電体に押圧することにより、前記溝に由来する凸 部を前記正誘電体の表面に形成する工程と、前記正誘電体の前記表面に前記凸部 の高さを超える高さにまで負誘電体を形成する工程と、前記正誘電体の前記表面の 反対側から、前記負誘電体の表面が露出し、かつ前記凸部に由来して前記負誘電 体の表面に形成された溝の内部に配置された状態で前記正誘電体の一部が残存す るように、前記正誘電体の一部を除去する工程と、を含む光学分析用チップの製造 方法を提供する。 In another aspect of the present invention, there is provided a method for manufacturing the above-described optical analysis chip, wherein a convex having a groove having a predetermined dimension is pressed against a positive dielectric, thereby causing a protrusion derived from the groove. Forming a portion on the surface of the positive dielectric, forming a negative dielectric on the surface of the positive dielectric to a height exceeding the height of the convex portion, and the surface of the positive dielectric The surface of the negative dielectric is exposed from the opposite side, and a part of the positive dielectric is disposed in a groove formed in the surface of the negative dielectric derived from the convex portion. Remain Thus, there is provided a method for manufacturing an optical analysis chip comprising a step of removing a part of the positive dielectric.
[0014] 本発明は、また別の側面から、上記光学分析用チップの製造方法であって、正誘 電体薄膜と負誘電体薄膜とを交互に積層した積層体を形成する工程と、前記積層体 の一方の側面に負誘電体を配置する工程と、前記積層体の前記側面と反対側の側 面から前記積層体を研磨して、前記負誘電体薄膜および前記側面に配置された負 誘電体により形成され、前記正誘電体薄膜からなる正誘電体が内部に配置された溝 の深さ Lを定める工程と、を含む、光学分析用チップの製造方法を提供する。  [0014] Another aspect of the present invention is a method for manufacturing the above-described chip for optical analysis, comprising the step of forming a laminate in which positive dielectric thin films and negative dielectric thin films are alternately laminated, A step of disposing a negative dielectric on one side surface of the multilayer body; and polishing the multilayer body from a side surface opposite to the side surface of the multilayer body to thereby form a negative dielectric film disposed on the negative dielectric thin film and the side surface. And a step of determining a depth L of a groove in which a positive dielectric composed of the positive dielectric thin film is disposed. The method for manufacturing an optical analysis chip is provided.
[0015] 本発明は、さらに別の側面から、上記光学分析用チップと、前記光学分析用チップ の表面に光を照射できるように配置された光源と、前記表面から放射された光を計測 できるように配置された光計測器と、を備えた光学分析用装置を提供する。  [0015] From another aspect, the present invention can measure the optical analysis chip, a light source arranged to irradiate light on the surface of the optical analysis chip, and light emitted from the surface. And an optical measuring device arranged as described above.
[0016] 本発明は、またさらに別の側面から、上記光学分析用チップの表面に、分析対象 物質を配置し、前記表面に光を照射して、前記分析対象物質から放射された光を計 測する、物質の光学分析方法を提供する。  [0016] In yet another aspect, the present invention provides a method in which a substance to be analyzed is disposed on the surface of the optical analysis chip, the surface is irradiated with light, and the light emitted from the substance to be analyzed is measured. An optical analysis method for a substance to be measured is provided.
[0017] 負誘電体の表面に表面プラズモン共鳴を生じさせる溝を形成しただけでは、微小 な分析対象物質は、溝の底部に入り込む。後述するとおり、閉鎖端となる溝の底部で は表面プラズモン共鳴による大きな電界強度が得られない。そこで、本発明では、固 体である正誘電体を溝の内部に配置することにより、分析対象物質を配置すべき位 置を予め規定することとした。  [0017] Just by forming a groove that causes surface plasmon resonance on the surface of the negative dielectric, a minute substance to be analyzed enters the bottom of the groove. As described later, a large electric field strength due to surface plasmon resonance cannot be obtained at the bottom of the groove serving as the closed end. Therefore, in the present invention, a positive dielectric, which is a solid, is arranged inside the groove, thereby predefining the position where the analysis target substance is to be arranged.
[0018] また、ナノメートルレベルの幅しかない狭い溝は一般に物理ィ匕学的に不安定で、物 体が溝の中に析出したり、原子がマイグレーションして、溝が埋まってしまったりする 経時変化が懸念される。固体である正誘電体を溝の内部に配置することは、工業製 品としての安定性の観点からも、合理的である。  [0018] In addition, a narrow groove having only a nanometer-level width is generally physically unstable, and an object is deposited in the groove, or atoms migrate and the groove is buried. There is concern about changes over time. Placing a solid positive dielectric inside the groove is reasonable from the viewpoint of stability as an industrial product.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]負誘電体と正誘電体の界面の模式図(a)、およびこれに沿って伝搬する表面 波モードの分散特性を示す図 (b)である。  FIG. 1 is a schematic diagram (a) of an interface between a negative dielectric material and a positive dielectric material, and a diagram (b) showing dispersion characteristics of a surface wave mode propagating along the interface.
[図 2]負誘電体をクラッド、正誘電体をコアとするスラブ導波路の模式図(a)、およびこ れに沿って伝搬する表面波モードの分散特性を示す図(b)である。 圆 3]閉鎖型共振器の模式的な構造と共鳴時の電界分布とを対比して示す図である 圆 4] (a)〜 (c)とも、閉鎖型共振器の構造を例示する斜視図である。 [FIG. 2] A schematic diagram (a) of a slab waveguide having a negative dielectric as a cladding and a positive dielectric as a core, and a diagram (b) showing dispersion characteristics of a surface wave mode propagating along the slab waveguide. 圆 3] A diagram showing the schematic structure of a closed resonator and the electric field distribution at the time of resonance. 圆 4] (a) to (c) are perspective views illustrating the structure of a closed resonator. It is.
[図 5]本発明の光学分析用チップの一例を示す断面図である。  FIG. 5 is a cross-sectional view showing an example of the optical analysis chip of the present invention.
[図 6]本発明の光学分析用チップの別の一例を示す断面図である。  FIG. 6 is a cross-sectional view showing another example of the optical analysis chip of the present invention.
[図 7] (a)〜 (d)とも、本発明の製造方法の一例における各工程を説明するための断 面図である。  [FIG. 7] (a) to (d) are sectional views for explaining each step in an example of the production method of the present invention.
[図 8]表面未処理状態における分析対象物質の分散状態を示す断面図 (a)、および 表面処理後の分析対象物質の分散状態を示す断面図 (b)である。  FIG. 8 is a cross-sectional view (a) showing the dispersion state of the analyte in an untreated surface state and a cross-sectional view (b) showing the dispersion state of the analyte after the surface treatment.
[図 9] (a)〜 (f)とも、本発明の製造方法の別の一例における各工程を説明するため の断面図である。  [Fig. 9] (a) to (f) are cross-sectional views for explaining each step in another example of the production method of the present invention.
[図 10]本発明の光学分析用チップが示す反射スペクトルの一例 (a)、および電界増 強度の波長依存性の一例 (b)を示す図である。  FIG. 10 is a diagram showing an example (a) of the reflection spectrum shown by the optical analysis chip of the present invention and an example (b) of the wavelength dependence of the electric field enhancement intensity.
[図 11]本発明の光学分析用チップが示す反射スペクトルの一例である。  FIG. 11 is an example of a reflection spectrum shown by the optical analysis chip of the present invention.
[図 12]本発明の光学分析用装置の構成例を示す模式図である。  FIG. 12 is a schematic diagram showing a configuration example of an optical analysis apparatus of the present invention.
[図 13]励起光の波長 λ eおよび信号光の波長 λ sと、光学分析用チップの電界増強 度の波長依存性との関係の一例を示す図である。  FIG. 13 is a diagram showing an example of the relationship between the wavelength λ e of the excitation light and the wavelength λ s of the signal light and the wavelength dependency of the electric field enhancement degree of the optical analysis chip.
[図 14]励起光の波長 λ eおよび信号光の波長 λ sと、光学分析用チップの電界増強 度の波長依存性との関係の別の一例を示す図である。  FIG. 14 is a diagram showing another example of the relationship between the wavelength λ e of the excitation light and the wavelength λ s of the signal light and the wavelength dependence of the electric field enhancement degree of the optical analysis chip.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] [感度向上の基本原理]  [0020] [Basic principle of sensitivity improvement]
まず初めに、本発明の光学分析用チップが「共振器」として作用する場合の発光増 強効果について説明する。  First, the light emission enhancement effect when the optical analysis chip of the present invention functions as a “resonator” will be described.
[0021] この「共振器」は 2つの効果を持って 、る。第 1の効果は、入射電界の増強である。  [0021] This "resonator" has two effects. The first effect is enhancement of the incident electric field.
これはあた力もレンズで入射光を強く集光したように、小さな領域に大きな電界が生じ る効果である。電界の大きな場所に置かれた分子は強く励起され、それに比例して 大きな発光を示すことになる。第 2の効果は、発光効率の増大である。通常、物質の 発光効率は各物質に固有の特性のように理解されている力 それは自由空間中に 置かれた場合の話であって、共振器中に置かれた物質の発光効率はそれとは異な る。特に共振器中の電界の大きな場所に置かれた分子 (ダイポール)は、高い効率で 発光する。この共振器中の電界の大きさは輻射場の状態密度に対応している。 This is the effect that a large electric field is generated in a small area, as if the force of the incident light was intensely collected by the lens. Molecules placed in places with a large electric field are strongly excited and emit light in proportion to that. The second effect is an increase in luminous efficiency. Usually, the luminous efficiency of a substance is understood as a characteristic unique to each substance. In this case, the luminous efficiency of the substance placed in the resonator is different. In particular, molecules (dipoles) placed in places with a large electric field in the resonator emit light with high efficiency. The magnitude of the electric field in the resonator corresponds to the state density of the radiation field.
[0022] 第 1の効果は受信アンテナとしての効果と言ってもよい。アンテナとは一種の共振 器であり、良く知られているように、同じアンテナが受信アンテナとしても送信アンテナ としても働く。また、同じ波長に対する受信アンテナとしての性能と送信アンテナとし ての性能は等しい。このことは相反定理〖こより説明される。同様に、第 2の効果は送 信アンテナとしての効果と理解してもよい。第 1の効果により強く励起された分子の発 光効率そのものが第 2の効果により増大するのであるから、共振器を用いれば発光 効率は 2回の増強効果を受ける。特に、ラマン散乱のように、物質が所定波長の光を 受け、それとほぼ等しい波長の電磁波を放射する過程では、受信アンテナとしての 増強度 (M倍とする)と送信アンテナとしての増強度は相反定理によりほぼ等しくなる ため、この過程の総合効率は M2倍にも達する。 [0022] The first effect may be referred to as an effect as a receiving antenna. An antenna is a kind of resonator, and as is well known, the same antenna works as both a receiving antenna and a transmitting antenna. In addition, the performance as a receiving antenna for the same wavelength is the same as the performance as a transmitting antenna. This is explained by the reciprocity theorem. Similarly, the second effect may be understood as a transmission antenna effect. Since the light emission efficiency of molecules strongly excited by the first effect is increased by the second effect, the light emission efficiency is enhanced twice by using the resonator. In particular, in the process where a substance receives light of a predetermined wavelength and emits an electromagnetic wave with a wavelength approximately equal to that, such as Raman scattering, the enhancement as a receiving antenna (M times) and the enhancement as a transmission antenna are contradictory. Since the theorem is almost equal, the overall efficiency of this process reaches M 2 times.
[0023] 以上述べて来た発光増強効果を利用するために、どのような共振器が必要なのか を考えてみる。まず第 1に、電界増強度が大きいことが必要である。また、状態密度を 高くするためには体積が小さぐそこに少数のモードだけが存在することが必要であ る。つまり、先述のパーセル係数が大きいことが重要である。第 2に、そのような共振 器において電界が大きな場所に正確に対象物質を配置できる構造が必要とされる。  [0023] Let us consider what kind of resonator is necessary in order to utilize the light emission enhancement effect described above. First of all, it is necessary that the electric field enhancement is large. In order to increase the density of states, it is necessary that only a small number of modes exist in the small volume. That is, it is important that the aforementioned parcel coefficient is large. Secondly, in such a resonator, a structure that can accurately place the target substance in a place where the electric field is large is required.
[0024] 以下、これらの条件を両方とも満足することのできる共振器としての光学分析用チッ プの実現方法にっ 、て述べて 、く。  [0024] Hereinafter, a method for realizing an optical analysis chip as a resonator that can satisfy both of these conditions will be described.
[0025] 利用すべき物理現象は、微小な間隙のスリットを負誘電体材料でできたクラッドによ りはさんだスラブ導波路の表面プラズモンモードが、導波路の端面で反射されること により起こる共鳴現象である。このスラブ導波路が、表面プラズモンの波長と同程度 の有限の長さし力持たな 、ことが重要である。  [0025] The physical phenomenon to be used is the resonance caused by the reflection of the surface plasmon mode of the slab waveguide, which is sandwiched by a clad made of a negative dielectric material with a slit in a minute gap, at the end face of the waveguide. It is a phenomenon. It is important that this slab waveguide does not have a finite length force comparable to the surface plasmon wavelength.
[0026] ここで、正誘電体とは、誘電率の実数部が正の値であるもの、負誘電体とは、誘電 率の実数部が負の値であるものである。正誘電体は、一般的な非金属材料が該当し 、具体的にはガラス、セラミタス、半導体、高分子、液体などが挙げられる。また、上記 定義によると、空気やその他の気体、真空の空間も正誘電体と呼べる。一方、負誘電 体は、特定の材料からなる物体が特定の周波数領域にお!、てのみ上記のような性質 を有する、というものである。代表的なものに、プラズマ周波数よりも低周波数、つまり 可視光や赤外光領域における金属材料が挙げられる。この他に、遠赤外光領域から テラへルツ波領域における炭化ケィ素や各種イオン結晶などの大きな格子振動の共 鳴を示す材料、超伝導エネルギーギャップよりも低周波数のテラへルツ波領域力 マ イク口波領域における超伝導状態の超伝導材料、キャリアが励起された状態のシリコ ンなどの半導体材料、などがある。 [0026] Here, the positive dielectric has a positive value in the real part of the dielectric constant, and the negative dielectric has a negative value in the real part of the dielectric constant. The positive dielectric corresponds to a general non-metallic material, and specifically includes glass, ceramics, semiconductors, polymers, liquids, and the like. Also, according to the above definition, air, other gases, and vacuum spaces can be called positive dielectrics. On the other hand, negative dielectric The body means that an object made of a specific material has the above-mentioned properties only in a specific frequency range. A typical example is a metal material having a frequency lower than the plasma frequency, that is, in the visible light or infrared light region. In addition to this, materials that exhibit resonance of large lattice vibrations such as carbon carbide and various ion crystals in the far-infrared light region to the terahertz wave region, terahertz wave region force at a frequency lower than the superconducting energy gap. There are superconducting materials in the superconducting state in the microphone mouth wave region and semiconductor materials such as silicon in which the carriers are excited.
[0027] 負誘電体と正誘電体との界面(図 1 (a) )には、一般に、電界が界面に垂直で、電磁 界が界面において最大値を取り、界面力 離れるに従って指数関数的に減衰するよ うな電磁界分布を持ち、表面に沿って伝搬するような表面波モードが存在する。特に 誘電率の虚数成分の値が小さな材料に対しては、このような表面波は長い距離伝搬 できる。負誘電体を金属材料とする場合の表面波が、前出の表面プラズモンである。  [0027] At the interface between the negative dielectric and the positive dielectric (Fig. 1 (a)), the electric field is generally perpendicular to the interface, the electromagnetic field takes the maximum value at the interface, and exponentially as the interface force increases. There is a surface wave mode that propagates along the surface with a decaying electromagnetic field distribution. Especially for materials with a small value of the imaginary component of the dielectric constant, such surface waves can propagate over long distances. The surface wave in the case where the negative dielectric is a metal material is the surface plasmon described above.
[0028] このような表面波の波長を議論する際に、分散曲線を考えることが多い。分散曲線 は一般に横軸に波数 k、縦軸に角周波数 ωを取る(図 1 (b) )。波数は表面波の波  [0028] When discussing the wavelength of such a surface wave, a dispersion curve is often considered. The dispersion curve generally has the wavenumber k on the horizontal axis and the angular frequency ω on the vertical axis (Fig. 1 (b)). Wave number is surface wave
Ρ 0  Ρ 0
長え の  Long
Ρ 逆数に比例し、 k = 2 π / λ  比例 Proportional to reciprocal, k = 2 π / λ
Ρ Ρと表される。一方、角周波数は、その電磁波が 真空中を伝搬する時の波長 (真空波長) λ 2 π ο/ λ  表 Represented as Ρ. On the other hand, the angular frequency is the wavelength at which the electromagnetic wave propagates in vacuum (vacuum wavelength) λ 2 π ο / λ
0の逆数に比例し、 ω =  Proportional to the reciprocal of 0, ω =
0 0と表さ れる。ここで Cとは真空中の光速である。分散曲線の形状は負誘電体と正誘電体の誘 電特性で決まり、一般的な金属材料の可視〜赤外光領域での分散曲線は図 1 (b)の ような形になる。  0 Expressed as 0. Where C is the speed of light in a vacuum. The shape of the dispersion curve is determined by the dielectric properties of the negative and positive dielectrics, and the dispersion curve in the visible to infrared region of a typical metal material is as shown in Fig. 1 (b).
[0029] この曲線は、具体的には、  [0029] Specifically, this curve is
k 2= ( w /c) 2 X ε ε / ( ε + ε ) k 2 = (w / c) 2 X ε ε / (ε + ε)
ρ 0 d m d m  ρ 0 d m d m
という関係により表される。ここで ε 、 ε  It is expressed by the relationship. Where ε, ε
d mは、それぞれ、正誘電体、負誘電体の比誘 電率である。  d m are specific dielectric constants of the positive dielectric and the negative dielectric, respectively.
[0030] 次に、負誘電体をクラッド、正誘電体をコアとするスラブ導波路(図 2 (a) )を考える。  Next, consider a slab waveguide (FIG. 2 (a)) having a negative dielectric as a cladding and a positive dielectric as a core.
この系では、 2つの界面での表面波モードが相互作用し、結合モードと反結合モード に分裂する。この様子を図 2 (b)の分散曲線に示した。破線は図 1 (b)の分散曲線で 、それが上下に分裂している。上が反結合モード (TMモード)、下が結合モード (T  In this system, surface wave modes at the two interfaces interact and split into coupled and anti-coupled modes. This is shown in the dispersion curve in Fig. 2 (b). The broken line is the dispersion curve in Fig. 1 (b), which is split up and down. Upper is anti-coupling mode (TM mode), lower is coupling mode (T
1  1
Mモード)である。 [0031] これらの曲線は、具体的には、 M mode). [0031] Specifically, these curves are:
(l—R)Z(l+R) = ±exp(KD) (式 1)  (l—R) Z (l + R) = ± exp (KD) (Equation 1)
d  d
の解として求められる。ここで、  It is calculated as a solution of here,
K2 = k2—(co /c)2X ε 、 K 2 = k 2 — (co / c) 2 X ε,
d p 0 d  d p 0 d
K 2 = k2— (ω /c)2X ε 、 K 2 = k 2 — (ω / c) 2 X ε,
m p 0 m  m p 0 m
R=— ε K /( ε K)  R = — ε K / (ε K)
d m m d  d m m d
である。  It is.
[0032] TMなどの呼称は、技術分野によって定義が異なる場合があるが、正誘電体と負  [0032] The designation of TM and the like may differ depending on the technical field.
0  0
誘電体の界面に垂直な電界成分を有し、カットオフ周波数を有さないモード、と表現 すれば、いずれの分野の記述方法を採用するにしても、本明細書において TMモー  In this specification, TM mode is used regardless of the description method in any field as long as it is expressed as a mode having an electric field component perpendicular to the interface of the dielectric and having no cutoff frequency.
0 ドと呼んでいるモードを特定できる。ここで、カットオフ周波数とは、それよりも低い周 波数ではそのモードが伝搬し得な 、と 、う境界を規定する角周波数 ωのこと  You can specify the mode called 0 mode. Here, the cut-off frequency is the angular frequency ω that defines the boundary where the mode cannot propagate at lower frequencies.
0 である。 カットオフ周波数が存在するモードでは、図 2(b)の ΤΜモードのように、分散曲線が  0. In a mode with a cutoff frequency, the dispersion curve is as shown in ΤΜ mode in Fig. 2 (b).
1  1
縦軸のゼロでないところ力も始まる。これに対し、 ΤΜモードは、分散曲線が原点から  The force starts where the vertical axis is not zero. In contrast, in ΤΜ mode, the dispersion curve starts from the origin.
0  0
始まっている。負誘電体をクラッド、正誘電体をコアとするスラブ導波路の複数の表面 波モードにおいて、カットオフ周波数を有さないのは、 ΤΜモード、ただ一つである。  It has begun. In the multiple surface wave modes of a slab waveguide with a negative dielectric as the cladding and a positive dielectric as the core, the only one that has no cutoff frequency is the ΤΜ mode.
0  0
[0033] 結合モード (ΤΜモード)の表面波の波長 λ は、コア厚さ Dが小さくなるほど短くな  [0033] The wavelength λ of the surface wave in the coupled mode (ΤΜ mode) becomes shorter as the core thickness D becomes smaller.
0 Ρ  0 Ρ
る(波数は大きくなる)。 Dを小さく選べば、真空中での波長え に対して、数分の 1か  (The wave number increases). Choosing a small D is a fraction of the wavelength in a vacuum.
0  0
ら数 10分の 1という小さな λも実現できる。これは屈折率が数十という材料の中での  A small λ of several tenths can be realized. This is a material with a refractive index of tens
Ρ  Ρ
電磁波の波長に相当するが、現実にはそのような巨大な屈折率を持つ材料は知られ ていない。つまり、屈折率を大きくすることではとても得られないような小さな λ 1S 負  Although it corresponds to the wavelength of electromagnetic waves, no material with such a large refractive index is known in reality. In other words, a small λ 1S negative that cannot be obtained by increasing the refractive index.
Ρ  Ρ
誘電体をクラッドとし、コア厚さ Dが微小なスラブ導波路であれば実現できるのである  This can be realized with a slab waveguide with a dielectric clad and a small core thickness D.
[0034] また、この結合モードの表面波は平面波と同じ電磁界の対称性を持つので、導波 路端面から平面波を照射するだけで容易に励起できるし、逆に端面力 空間に電磁 波を放射することもできる。なお、電磁波である光は一般にある角度分布を持って共 振器に入射したり出射したりするが、本明細書では、その平均的な伝搬方向を主伝 搬方向と呼ぶ。 [0035] このような表面波が導波路の端面に到達した時、表面波は反射され、導波路へと再 び戻っていく。この時の反射率はコア厚さ Dが小さいほど高くなる。入射波に対してど のような位相関係で反射されるかは、端面の状態により決まる。端面の先が正誘電体 で覆われている場合(開放端と呼ぶ)には、端面にて電界が極大になるような位相関 係で反射し、導波路の端面が負誘電体で覆われている場合(閉鎖端と呼ぶ)には、 端面にて電界が 0になるような位相関係で反射する。 [0034] Further, since the surface wave of this coupled mode has the same electromagnetic field symmetry as the plane wave, it can be easily excited just by irradiating the plane wave from the end face of the waveguide. It can also radiate. Note that light that is electromagnetic waves generally enters and exits the resonator with a certain angular distribution. In this specification, the average propagation direction is referred to as the main propagation direction. When such a surface wave reaches the end face of the waveguide, the surface wave is reflected and returns to the waveguide again. The reflectivity at this time increases as the core thickness D decreases. The phase relationship with respect to the incident wave depends on the state of the end face. When the tip of the end face is covered with a positive dielectric (referred to as an open end), reflection is performed with a phase correlation that maximizes the electric field at the end face, and the end face of the waveguide is covered with a negative dielectric. (Referred to as a closed end), the light is reflected with a phase relationship such that the electric field is zero at the end face.
[0036] 従って、伝搬方向の一方の端部が開放端で他方の端部が閉鎖端である場合には 、導波路の長さ (溝の深さ) Lが(1Z4U 、 (3/4) λ 、 (5/4) λ · · ·に一致するよ  Therefore, when one end in the propagation direction is an open end and the other end is a closed end, the length (groove depth) L of the waveguide is (1Z4U, (3/4) λ, (5/4) λ
Ρ Ρ Ρ  Ρ Ρ Ρ
うな飛び飛びの波長え を持った表面波に対する共振器となる(図 3)。この共振器は  It becomes a resonator for surface waves with such a sharp wavelength (Fig. 3). This resonator
Ρ  Ρ
V、わゆる閉鎖型共振器である。  V, a so-called closed resonator.
[0037] 実際には、開放端や閉鎖端において電界が厳密に極大や 0になるわけではなぐ 多少のしみ出しが起こる。そのため、設計にあたっては若干の補正が必要である。境 界要素法などの数値計算手法により、マックルゥエル方程式の厳密計算を行い、正 誘電体コア内部およびその近傍に蓄積される電磁気的エネルギーが極大になる条 件を探せば、目的の真空波長えの光がちょうど共鳴するような導波路長 Lを正確に  [0037] In practice, the electric field does not become strictly maximum or zero at the open end or the closed end, and some oozing occurs. Therefore, some correction is necessary for the design. By using the numerical calculation method such as the boundary element method, exact calculation of the McLuel equation can be performed to find the condition where the electromagnetic energy stored in and near the positive dielectric core is maximized. The waveguide length L, where the light just resonates, is precisely
0  0
求めることができる。  Can be sought.
[0038] この時、伝搬方向に、上記のような共鳴が効率良く起こるには、伝搬方向と平行な コアの側面は開放端となっていることが望ましい。側面が開放端である場合には、側 面間距離 Wには共鳴が起こるための特別の条件は存在しない。特に導波路長しが 注目しているえ に対して 1次の共鳴に対応する長さで、かつ、 Wも同程度の小さな寸  [0038] At this time, in order for the resonance as described above to occur efficiently in the propagation direction, it is desirable that the side surface of the core parallel to the propagation direction is an open end. When the side is an open end, there is no special condition for the resonance between the side-to-side distance W. In particular, the length of the waveguide is the length that corresponds to the first-order resonance, and W is the same small size.
0  0
法である場合には、この共振器はシングルモード共振器となり、特定のモードを効率 良く励起することができ、なおかつ、究極の小さな体積を持つ、高性能な微小共振器 となる。もう一つの形態として、側面間距離 wが真空波長えの半分以上であれば、  If this is the case, this resonator will be a single-mode resonator, and it will be a high-performance microresonator that can excite specific modes efficiently and that has the ultimate small volume. As another form, if the distance w between the sides is more than half of the vacuum wavelength,
0  0
側面は閉鎖端であっても、比較的効率良く共鳴を励起できる。図 4 (a)〜(c)に、以上 の条件力 導き出される具体的な構造を列挙した。  Even if the side surface is a closed end, resonance can be excited relatively efficiently. Figures 4 (a) to (c) list the specific structures from which the above condition forces are derived.
[0039] 以上述べてきたように、負誘電体をクラッド、正誘電体をコアとするスラブ導波路に おける TMモードの端面反射による共鳴は、小さな共振器を実現し、外界との相互 [0039] As described above, resonance by TM-mode end face reflection in a slab waveguide having a negative dielectric as a cladding and a positive dielectric as a core realizes a small resonator, and can interact with the outside world.
0  0
作用が容易で、顕著な共鳴を示すので、微小共振器として理想的である。特にコア 厚さ Dが真空波長えの ΙΖΙΟ以下になると、十分小さな波長え が得られると同時に It is ideal as a microresonator because it is easy to act and exhibits significant resonance. Especially the core When the thickness D is less than or equal to the vacuum wavelength, a sufficiently small wavelength can be obtained at the same time.
0 P  0 P
大きな電界が得られる。歴史的には、このモードは、他のモード (例えば TE )等に比  A large electric field is obtained. Historically, this mode is comparable to other modes (e.g. TE).
0 ベると伝搬損失が大きいために、あまり注目されてこな力つた。そのために、本発明ほ どの簡潔で微小な分析用チップの実現方法が、長い間見過ごされてきた。しかし、微 小な共振器を考える上では、所詮、波長の数分の 1か、長くてもせいぜい数波長分と いう小さな距離の伝搬し力議論しなくて良いので、この損失はさほど深刻な問題では ない。  0 Since the propagation loss is large, it has attracted much attention. For this reason, a method for realizing an analysis chip as simple as the present invention has been overlooked for a long time. However, when considering a small resonator, it is not necessary to discuss the propagation force for a small distance of a few wavelengths or even a few wavelengths at most, so this loss is very serious. is not a problem.
[0040] 実は、これまで盛んに研究されてきた銀や金のナノ粒子の凝集体の粒子接触点に おけるプラズモン共鳴は、各粒子を負誘電体クラッド、その隙間を正誘電体コアとし たスラブ導波路の結合導波モードが、 2つの開放端の間で共鳴しているものと見なす ことができる。接触点で導通した場合の共鳴も、閉鎖型共振器が形成されていると考 えれば同様に解釈できる。本発明は、銀や金のナノ粒子の凝集体で偶然に生じてい る巨大な共鳴の本質的なメカニズムを抽出し、最適な形で人工的に起こすための構 造の設計ルールを提供し、これに基づ!ヽて光学分析を高感度化する側面を有する。  [0040] Actually, plasmon resonance at the particle contact point of agglomerates of silver and gold nanoparticles, which has been actively studied, is a slab in which each particle is a negative dielectric cladding and the gap is a positive dielectric core. The coupled waveguide mode of the waveguide can be regarded as resonating between the two open ends. Resonance when conducting at the contact point can be interpreted in the same way if a closed-type resonator is formed. The present invention extracts the essential mechanism of the giant resonance that occurs by chance in silver and gold nanoparticle aggregates, and provides design rules for the structure to artificially generate in an optimal form. Based on this! It has an aspect that makes optical analysis highly sensitive.
[0041] [光学用分析チップの構成]  [0041] [Configuration of optical analysis chip]
本発明の光学分析用チップは、負誘電体と、この負誘電体の表面に形成された少 なくとも 1つの溝の内部に配置された、固体状態にある正誘電体とを備えている。図 5 に、本発明の光学用分析チップの最も簡単な構成例を示す。負誘電体 1の表面 la には、断面が矩形の溝が形成され、この溝の底部力 溝内部の所定高さにまで正誘 電体 2が配置されている。正誘電体 2の表面 2aは、分析対象物質 3を配置する台とし ての役割を果たす。この台に配置された分析対象物質 3に光 31が照射され、この照 射に伴って物質 3から放射される信号光 32が測定の対象となる。  The chip for optical analysis according to the present invention includes a negative dielectric and a positive dielectric in a solid state and disposed in at least one groove formed on the surface of the negative dielectric. FIG. 5 shows the simplest configuration example of the optical analysis chip of the present invention. On the surface la of the negative dielectric 1, a groove having a rectangular cross section is formed, and the positive dielectric 2 is disposed up to a predetermined height inside the groove of the bottom force of this groove. The surface 2a of the positive dielectric 2 serves as a table on which the analyte 3 is placed. The substance 31 to be analyzed placed on the table is irradiated with light 31, and the signal light 32 emitted from the substance 3 as a result of this irradiation becomes the object of measurement.
[0042] 図 6に示すように、本発明の光学用分析チップは、負誘電体 1の表面に形成された 2以上の溝の内部に配置された正誘電体 2を備え、 2以上の溝が互 ヽに平行に配置 された構成としてもよい。この分析チップでは、幅 Dの溝が、所定の間隔 Pで規則的 に (周期的に)配置されている。溝が複数の正誘電体 2が存在すれば、単に散布した だけで、ある確率で、分析対象物質 3は正誘電体 2の上に位置する。この形態を用い れば、微小な分析対象物質 3を微小な幅を有する溝内部の正誘電体 2上に配置する t 、う困難な作業が不要となる。 As shown in FIG. 6, the optical analysis chip of the present invention includes a positive dielectric 2 arranged inside two or more grooves formed on the surface of the negative dielectric 1, and includes two or more grooves. May be arranged in parallel with each other. In this analysis chip, grooves having a width D are regularly (periodically) arranged at a predetermined interval P. If there are a plurality of positive dielectrics 2 in the groove, the substance 3 to be analyzed is positioned on the positive dielectric 2 with a certain probability simply by spreading. If this form is used, the minute analyte 3 is arranged on the positive dielectric 2 inside the groove having a minute width. t Difficult work is unnecessary.
[0043] 以下、図 4および図 6を参照して、光学用分析チップの好ましい寸法を例示する。  Hereinafter, preferred dimensions of the optical analysis chip will be exemplified with reference to FIG. 4 and FIG.
[0044] 溝の幅 Dは、溝の深さ Lおよび溝の長さ Wよりも小さ!/、ことが好まし!/、。溝の幅 Dは、 具体的には、 50nm以下、特に lOnm以下、例えば 0. 2ηπ!〜 lOnmが好適である。 溝の深さ Lは、 以下、例えば lnm〜500nmが好適である。溝の幅 Dに対する 溝の深さ Lの比は、 10以下であってもよい。この比を極度に高くする必要がないため 、溝の形成は、比較的容易である。対象とする光の真空波長え は、 300ηπι〜4 /ζ πι [0044] Preferably, the groove width D is smaller than the groove depth L and the groove length W! /. The width D of the groove is specifically 50 nm or less, particularly lOnm or less, for example 0.2ηπ! ~ LOnm is preferred. The depth L of the groove is preferably 1 nm to 500 nm, for example. The ratio of the groove depth L to the groove width D may be 10 or less. Since this ratio does not need to be extremely high, the formation of the grooves is relatively easy. The vacuum wavelength of the target light is 300ηπι〜4 / ζ πι
0  0
力も選択するとよい。  You should also choose your strength.
[0045] 溝の長さ Wは、対象とする波長 λの 1Z2以上としておけばよぐ例えば 500ηπ!〜  [0045] The groove length W may be set to 1Z2 or more of the target wavelength λ, for example, 500ηπ! ~
0  0
5 /z mの範囲であってもよい。なお、溝の長さ方向について、溝の端面は、ともに負誘 電体で覆われて!/、なくてもよく(図 4 (a) )、少なくとも一方が負誘電体で覆われて!/、て もよい (図 4 (b) (c) )。  It may be in the range of 5 / z m. In addition, in the length direction of the groove, both end faces of the groove may be covered with a negative dielectric material! / (Figure 4 (a)), and at least one of them is covered with a negative dielectric material! / (Fig. 4 (b) (c)).
[0046] この溝における共鳴波長 λ は、主として、溝の幅 D、溝の深さ Lおよび溝の間隔 P  [0046] The resonance wavelength λ in this groove is mainly the groove width D, groove depth L, and groove spacing P.
0  0
により制御できる。 λ に現れる共鳴ピークの鋭さは、主として、溝の幅 D、共鳴の次数  Can be controlled. The sharpness of the resonance peak appearing at λ is mainly due to the groove width D and the order of resonance.
0  0
および負誘電体の誘電率により定まる力 ある程度の広がりを有し、この広がりの程 度に応じ、共鳴による増強効果が得られる波長域が定まる。波長域の広がりは、 D = lOnmであって負誘電体が金である場合の 1次の共鳴ピークの半値幅により表示す ると、 lOOnm程度である。ピークの大きさにより実際の増強効果は相違するが、ここ では、半値幅により規定される波長域が当該ピークによる増強効果が得られる波長 域と考える。溝の深さ L、間隔 Pおよび幅 Dは、 TMモードの表面波の共鳴により、溝  The force determined by the dielectric constant of the negative dielectric material has a certain extent of spread, and the wavelength range where the resonance enhancement effect is obtained is determined according to the extent of this spread. The broadening of the wavelength range is about lOOnm when expressed by the half-width of the first-order resonance peak when D = lOnm and the negative dielectric is gold. The actual enhancement effect differs depending on the size of the peak, but here, the wavelength region defined by the half width is considered to be the wavelength region where the enhancement effect due to the peak can be obtained. The groove depth L, interval P, and width D are determined by the resonance of TM mode surface waves.
0  0
の内部において (対象波長を含む)所定の波長域の波長を有する光の強度が増強さ れるように、設定するとよい。  It is desirable to set so that the intensity of light having a wavelength in a predetermined wavelength region (including the target wavelength) is enhanced.
[0047] 近接する溝の共鳴の相互作用や負誘電体表面の表面波の影響を実質的に考慮 する必要がない場合、目的とする波長を含む所定の波長域において光の強度が増 強されるように適切に設定すべき最も重要なパラメータは、溝の深さ Lである。溝の深 さ Lは、具体的には((2η—1) Ζ4) λ と規定するとよい。ここで、 ηは、好ましくは 6以  [0047] When it is not necessary to substantially consider the resonance interaction between adjacent grooves and the influence of surface waves on the surface of the negative dielectric, the light intensity is increased in a predetermined wavelength range including the target wavelength. The most important parameter that should be properly set is the groove depth L. Specifically, the depth L of the groove may be defined as ((2η−1) Ζ4) λ. Where η is preferably 6 or more
Ρ  Ρ
下、より好ましくは 3以下の自然数であり、 λ は (TMモードの)表面波の波長である  Lower, more preferably a natural number of 3 or less, and λ is the wavelength of the surface wave (in TM mode)
P 0  P 0
。なお、 TMモードの表面波の波長 λ は、対象とする波長 λ、溝の幅 D、負誘電体 および正誘電体の比誘電率、によって定まる。 . The wavelength λ of the TM mode surface wave is the target wavelength λ, groove width D, negative dielectric And the relative dielectric constant of the positive dielectric.
[0048] 上記のように溝の深さを設定すると、溝の深さ方向について負誘電体の表面と同じ 高さにある溝の開口端において、電界が極大となる(図 3)。従って、この場合は、負 誘電体の表面 laと正誘電体の表面 2aとを一致させるとよ!/、(図 5、図 6)。  [0048] When the groove depth is set as described above, the electric field becomes maximum at the opening end of the groove at the same height as the surface of the negative dielectric in the groove depth direction (Fig. 3). Therefore, in this case, the negative dielectric surface la should coincide with the positive dielectric surface 2a! /, (Figs. 5 and 6).
[0049] しかし、実際には、上述のように、光の入射面 (負誘電体の表面)における表面ブラ ズモンモード(図 6の P方向に伝搬するモード)と溝内部における表面プラズモンモー ド (L方向に伝搬するモード)とが結合し、新たな共鳴状態が生じうるため、電界が極 大となる位置は、負誘電体の表面からずれることがある。こうして生じる新たな共鳴モ ードにおける分散特性は、転送行列法や多モード展開法を用い、マックスウェル方程 式を厳密に解けばわ力るから、その計算結果に基づき、正誘電体の表面 2aの位置 を、電界が極大となる高さ近傍とすればよい。  However, in practice, as described above, the surface plasmon mode (mode propagating in the P direction in FIG. 6) on the light incident surface (the surface of the negative dielectric) and the surface plasmon mode (L The mode at which the electric field is maximized may deviate from the surface of the negative dielectric material. Dispersion characteristics in the new resonance mode generated in this way can be solved by strictly solving the Maxwell equation using the transfer matrix method and the multimode expansion method. Based on the calculation results, the surface of the positive dielectric 2a The position of may be near the height at which the electric field is maximized.
[0050] 上述のように、新たな共鳴モードが生じた場合、電界の振幅が最大となる位置は、 負誘電体の表面 la (溝開口端)から溝の底部に向力つて、概ね Lの 0. 6倍以下、多く の場合 Lの 0. 5倍以下、の範囲となる。  [0050] As described above, when a new resonance mode occurs, the position where the amplitude of the electric field becomes maximum is approximately L of the negative dielectric surface la (groove opening end) toward the bottom of the groove. The range is 0.6 times or less, and in many cases 0.5 times or less of L.
[0051] 正誘電体 2を、その表面 2aが、負誘電体の表面 laと実質的に同一の高さとなるよう に充填した分析用チップは本発明の好ましい一形態ではあるが、実際には、上記程 度に、正誘電体の表面 2aの高さを適宜調整するとよい。ここで、「実質的に同一」とは 、正誘電体の表面 2aと負誘電体の表面 laとの高さの相違が溝の深さ Lの 10%以下 であることをいう。  [0051] An analysis chip in which the positive dielectric 2 is filled so that the surface 2a thereof is substantially the same height as the surface la of the negative dielectric is a preferred form of the present invention. As described above, the height of the surface 2a of the positive dielectric may be adjusted as appropriate. Here, “substantially the same” means that the difference in height between the surface 2a of the positive dielectric and the surface la of the negative dielectric is 10% or less of the depth L of the groove.
[0052] 負誘電体および正誘電体の材料を以下に例示する。代表的な負誘電体材料として は、金属が挙げられる。金属からなる負誘電体は、例えば、金、銀、銅およびアルミ二 ゥムカも選ばれる少なくとも 1種を主成分としていてもよい。ここで、主成分とは、最も 含有率が多い成分をいう。例えば、金および銀の含有率の合計がその他の成分の含 有率の合計を上回る負誘電体の主成分は、金および銀の 2成分である。  [0052] Negative dielectric materials and positive dielectric materials are exemplified below. A typical negative dielectric material is a metal. The negative dielectric made of metal may contain, as a main component, at least one selected from gold, silver, copper, and aluminum, for example. Here, the main component means a component having the highest content. For example, the main component of the negative dielectric material in which the total content of gold and silver exceeds the total content of other components is the two components of gold and silver.
[0053] 正誘電体は、上記に例示した各種材料を適用できる力 例えば榭脂および無機材 料カゝら選ばれる少なくとも一方カゝら構成するとよい。ここで、無機材料は、半導体材料 を含み、さらに酸化物、窒化物、炭化物、窒化物、塩化物、フッ化物など各種無機化 合物を含む意味で用いている。無機材料としては、例えばシリカ(酸ィ匕ケィ素)、酸ィ匕 チタン、酸化ニオブ、酸化アルミニウム、酸化亜鉛、酸化タンタル、酸化マグネシウム[0053] The positive dielectric is preferably composed of at least one selected from the forces applicable to the various materials exemplified above, for example, a resin and an inorganic material. Here, the inorganic material includes a semiconductor material, and further includes various inorganic compounds such as oxide, nitride, carbide, nitride, chloride, and fluoride. Inorganic materials include, for example, silica (acid silicate), acid silicate Titanium, niobium oxide, aluminum oxide, zinc oxide, tantalum oxide, magnesium oxide
、酸ィ匕ハフニウムおよびフッ化マグネシウム力も選ばれる少なくとも 1種を例示できる。 また、榭脂としては、ポリスチレン、ポリメチルメタタリレート (アクリル榭脂)、ポリカーボ ネートなどを例示できる。 Further, at least one selected from the group consisting of acid hafnium and magnesium fluoride power can be exemplified. Examples of the resin include polystyrene, polymethylmetatalylate (acrylic resin), and polycarbonate.
[0054] [光学用分析チップの具体例と特性]  [Specific Example and Characteristics of Optical Analysis Chip]
光学分析用チップについて、具体的な寸法例とその特性を紹介する。典型的な構 造として、 D= 10nm、 L = 60nm、 W= 3 /z m、負誘電体を金、負誘電体の溝に充填 する正誘電体を ε = 2. 1のシリカとした時の単一の閉鎖型共振器を考える。時間領 d  Specific examples of dimensions and characteristics of optical analysis chips are introduced. A typical structure is D = 10nm, L = 60nm, W = 3 / zm, negative dielectric is gold, and positive dielectric filling the negative dielectric groove is silica with ε = 2.1. Consider a single closed resonator. Time domain d
域差分 (FDTD)法による計算の結果、 λ = 1. 27 111で1次、 λ =615nmで 2次  As a result of calculation by the domain difference (FDTD) method, the first order is λ = 1. 27 111, the second order is λ = 615 nm.
0 0  0 0
の共鳴を示すことがわ力つた。計算で求めた反射スペクトルを図 10 (a)に示す。  It was very powerful to show the resonance. The reflection spectrum obtained by calculation is shown in Fig. 10 (a).
[0055] これに対応するサンプルを、金、シリカ、金の多層膜を積層し、集束イオンビーム装 置で所定の L、 Wより若干大きめの矩形領域を残して周囲を除去し、閉鎖端側 45度 の方向から金を蒸着し、もう一度集束イオンビーム装置に取り付けて Lと Wを仕上げ 加工するという加工手順により作製した。でき上がった寸法は D= 14nm、 L = 63nm 、 W= 3 mであった。反射スペクトルを測定したところ、 λ =605nmに 2次の共鳴 [0055] A sample corresponding to this was laminated with a multilayer film of gold, silica, and gold, and the surrounding area was removed with a focused ion beam device leaving a rectangular region slightly larger than the predetermined L and W, and the closed end side was removed. Gold was vapor-deposited from a direction of 45 degrees, and it was attached to the focused ion beam device once again, and L and W were processed by finishing. The finished dimensions were D = 14nm, L = 63nm, W = 3m. When the reflection spectrum was measured, the second-order resonance at λ = 605 nm
0  0
に対応する反射の谷が観察されたことから(1次は測定可能波長領域外で直接は観 測できなかった)、閉鎖型共振器においても計算と実験とは比較的よく一致すること が確認できた。  Since a reflection valley corresponding to is observed (the 1st order was not observed directly outside the measurable wavelength region), it was confirmed that the calculation and the experiment agreed relatively well even with a closed resonator. did it.
[0056] この時、計算によると、コアの入射端面中央での電界増強度(強度に対応するよう に、電界の振幅 I E Iの 2乗で記述)は、図 10 (b)に示すように、 1次で 2270倍、 2 次で 80倍であった。 1次と 2次の間の細力 、ピークは、 W方向の成分を持った表面プ ラズモンによる共鳴である。コアを 1桁小さくして D= lnmとすると、電界の振幅は D に反比例するから、さらにその 100倍、つまり、 1次で 5桁以上、 2次で 3〜4桁の強度 の増強が起こる。ラマン散乱過程では、入射波と散乱波の両方がそれぞれこれだけ の増強を受けるので、 1次で 10桁以上、 2次でも 7桁程度のラマン増強が見込まれる 。これはせ!/、ぜ 、2桁し力得られな力つたこれまでの分析チップとは桁違 、の性能で あり、銀や金のナノ粒子凝集体に匹敵する増強度も実現が可能になる。  [0056] According to the calculation, the electric field enhancement at the center of the incident end face of the core (denoted by the square of the electric field amplitude IEI corresponding to the intensity) is as shown in Fig. 10 (b). The primary was 2270 times and the secondary was 80 times. The fine force between the first and second order, the peak is the resonance due to the surface plasmon with the W component. If the core is reduced by an order of magnitude and D = lnm, the amplitude of the electric field is inversely proportional to D. Therefore, the intensity is increased by 100 times that is more than 5 orders of magnitude in the first order and 3 to 4 orders of magnitude in the second order. . In the Raman scattering process, both the incident wave and the scattered wave receive such an increase, so it is expected that the Raman enhancement will be 10 orders of magnitude or more in the first order and 7 orders of magnitude in the second order. This is a performance that is an order of magnitude higher than conventional analysis chips that can not be obtained by two orders of magnitude, and it is possible to achieve an increase in strength comparable to silver and gold nanoparticle aggregates. Become.
[0057] [光学用分析チップの製造方法の第 1の具体例] 本発明による分析チップの構造が工業的に優れている点は、ナノインプリント技術 などと総称される、近年発展著しいナノメートルレベルの型転写技術を応用すると、 安価に量産できることにある。この分析チップは、負誘電体、例えば金属材料、の表 面の幅 D、深さ Lの溝に正誘電体固体材料が埋め込まれた構造を有する。 Dの値とし ては先の例のように lOnmやそれ以下の微小な寸法が望ましいが、 Lの値も同程度 の寸法であり、決してアスペクト比(LZD)が大きいわけではない。具体的には先の 数値例で 6であり、せいぜい 10である。 10を超えるアスペクト比を持つナノ構造物と は異なり、アスペクト比が 10以下であれば、多くの技術を適用できる。 [0057] [First specific example of manufacturing method of optical analysis chip] The structure of the analysis chip according to the present invention is industrially superior in that it can be mass-produced at low cost by applying the nanometer-level mold transfer technology, which has been developed recently, which is generally called nanoimprint technology. This analysis chip has a structure in which a positive dielectric solid material is embedded in a groove having a width D and a depth L of a surface of a negative dielectric, for example, a metal material. As in the previous example, it is desirable that the value of D be as small as lOnm or less, but the value of L is the same size, and the aspect ratio (LZD) is not necessarily high. Specifically, it is 6 in the previous numerical example and 10 at most. Unlike nanostructures with aspect ratios greater than 10, many technologies can be applied if the aspect ratio is 10 or less.
[0058] 図 7 (a)〜(d)に、型転写技術をベースとした高感度分析チップの製造プロセスを 示す。このプロセスには、表面に所定形状の溝が形成された金型を用いる。この金型 は 1個あればよいので、その製造には電子線リソグラフィ技術など量産性に乏しいェ 程を用いてもよい。この型を、例えば榭脂からなる型材料に転写し、幅 D、高さ Lの突 起 25が形成された榭脂 50を得る(図 7 (a) )。突起 25の間は、幅 Pの溝 15となる。  [0058] Figures 7 (a) to 7 (d) show the manufacturing process of a high-sensitivity analysis chip based on the mold transfer technology. In this process, a mold having a predetermined groove formed on the surface is used. Since only one mold is required, the manufacturing process may be performed using an electron beam lithography technique or the like that is poor in mass productivity. This mold is transferred to a mold material made of, for example, a resin to obtain a resin 50 having protrusions 25 having a width D and a height L (FIG. 7 (a)). Between the protrusions 25, a groove 15 having a width P is formed.
[0059] このプロセスとしては、多数の方法が提案されている。例えば、単に温度を上げた 状態でアクリル榭脂などの平板に金型をプレスする方法、透明の金型を榭脂平板に 押し付けた状態で金型側からレーザパルスを照射し、一瞬に高温にして型の形状を 転写する方法、基板上に液体状の紫外線硬化榭脂を塗布しておき、型をプレスした 後、透明の金型側力 紫外線を照射し、榭脂を硬化させる方法などである。  [0059] A number of methods have been proposed for this process. For example, a method in which a mold is pressed on a flat plate such as acrylic resin while the temperature is simply raised, a laser pulse is irradiated from the mold side with a transparent mold pressed against the flat resin plate, and the temperature is increased instantaneously. The method of transferring the shape of the mold, applying a liquid UV curable resin on the substrate, pressing the mold, and then irradiating the mold with UV light from the side of the transparent mold to cure the resin. is there.
[0060] なお、入射光が負誘電体の表面で回折を起こすと効率が低下するため、一般には 、対象とする波長えで回折が起こらないように、 P + Dくえとすることが好ましい。入  [0060] Since the efficiency decreases when incident light is diffracted on the surface of the negative dielectric, it is generally preferable to use P + D to prevent diffraction from occurring at the target wavelength. Enter
0 0  0 0
射光が角度分布を有する場合にも、 P + D< λ Ζ2としておけば回折は起こらない。  Even when the incident light has an angular distribution, diffraction does not occur if P + D <λ Ζ2.
0  0
P + Dは、例えば、 100〜250nmとしておくとよい。  P + D is preferably set to 100 to 250 nm, for example.
[0061] 次 、で、直流マグネトロンスパッタリング法などの成膜技術を適用し、榭脂 50の表 面に、負誘電体薄膜 1を成膜する(図 7 (b) )。負誘電体薄膜 1としては、例えば厚み 1 50nmの金薄膜が挙げられる。成膜方法は、負誘電体が型 50の溝 15にも十分に充 填されるように、ステップカバレージの高い方法および条件を選択すべきである。負 誘電体薄膜 1の表面には、型の突起 25および溝 15を反映し、溝 11および突起 21が 形成される。 [0062] 引き続き、エポキシ榭脂などの接着剤 30を用いて負誘電体薄膜 1を基板 20に接合 する(図 7 (c) )。基板 20は、薄膜 1を支持できれば、その材料に特に制限はなぐ例 えばガラス、シリコン、金属等であってよい。 Next, a negative dielectric thin film 1 is formed on the surface of the resin 50 by applying a film forming technique such as a direct current magnetron sputtering method (FIG. 7 (b)). Examples of the negative dielectric thin film 1 include a gold thin film having a thickness of 150 nm. As a film forming method, a method and conditions with high step coverage should be selected so that the negative dielectric is sufficiently filled in the groove 15 of the mold 50. On the surface of the negative dielectric thin film 1, grooves 11 and protrusions 21 are formed reflecting the protrusions 25 and grooves 15 of the mold. Subsequently, the negative dielectric thin film 1 is bonded to the substrate 20 using an adhesive 30 such as epoxy resin (FIG. 7 (c)). As long as the substrate 20 can support the thin film 1, the material thereof is not particularly limited, and may be glass, silicon, metal, or the like.
[0063] 最後に、負誘電体薄膜 1を形成した面とは反対側の面から、榭脂 50をある程度機 械的に研摩し、さらに、各種有機溶媒 (キシレン、トルエンなど)を用いて、負誘電体 薄膜 1の溝 11以外力も榭脂 50を除去する(図 7 (d) )。溶媒による榭脂 50の除去は、 少なくとも負誘電体薄膜 11の突起 21の頂面が露出する程度にまで行う必要がある。  [0063] Finally, the resin 50 is mechanically polished to some extent from the surface opposite to the surface on which the negative dielectric thin film 1 is formed, and further, using various organic solvents (xylene, toluene, etc.) In addition to the groove 11 of the negative dielectric thin film 1, the resin 50 is also removed (FIG. 7 (d)). The removal of the resin 50 with a solvent needs to be performed at least to the extent that the top surface of the protrusion 21 of the negative dielectric thin film 11 is exposed.
[0064] こうして、深さ L、幅 Dの溝 11が互いに平行かつ間隔 Pで規則的に配列し、この溝 1 1に正誘電体 2である榭脂が充填された表面を有する負誘電体 1を備えた分析チッ プが得られる。  [0064] Thus, the negative dielectric having a surface in which the grooves 11 having the depth L and the width D are regularly arranged in parallel with each other at a distance P, and the grooves 11 are filled with the resin as the positive dielectric 2. An analysis chip with 1 is obtained.
[0065] なお、負誘電体薄膜 1における溝 11形成部分における厚み Tは、負誘電体の内部 で電界が十分減衰し、共鳴特性が反対側の面から影響されな!、程度の厚さとするこ とが好ましい。 Tの厚みとしては、 lOOnm以上が好ましい。ただし、 Tは必要以上に 大きくする必要はない。分析用チップの強度は、溝 11を形成した表面と反対側の表 面において負誘電体 1と接合する基体 20により確保すればよい。これを考慮すると、 Tの厚みは 1 μ m以下であってよい。  [0065] It should be noted that the thickness T of the negative dielectric thin film 1 where the groove 11 is formed has a thickness that is such that the electric field is sufficiently attenuated inside the negative dielectric and the resonance characteristics are not affected by the opposite surface! This is preferred. The thickness of T is preferably lOOnm or more. However, T need not be larger than necessary. The strength of the analysis chip may be ensured by the substrate 20 bonded to the negative dielectric 1 on the surface opposite to the surface where the grooves 11 are formed. Considering this, the thickness of T may be 1 μm or less.
[0066] 上述の理由により、図 7 (d)に示したような複数の溝が配置された構造では、新たな プラズモン共鳴状態が生じ、電界が極大となる位置が負誘電体 1の表面力 シフトす ることがある。この場合には、有機溶媒による溶解条件を最適化し、溝 11内部の適切 な位置にまで正誘電体 (榭脂) 2の表面を後退させればょ 、。  [0066] For the reasons described above, in the structure in which a plurality of grooves as shown in FIG. 7 (d) are arranged, a new plasmon resonance state occurs, and the position where the electric field becomes maximum is the surface force of the negative dielectric 1. May shift. In this case, optimize the dissolution conditions with an organic solvent and retract the surface of the positive dielectric (wax) 2 to an appropriate position inside the groove 11.
[0067] さらに、分析チップに表面処理を施してもよい。例えば、正誘電体 2の表面が、負誘 電体 1の表面と比較して相対的に親水性を示すように、あるいは相対的に疎水性を 示すように、正誘電体 2の表面および負誘電体 1の表面力 選ばれる少なくとも一方 に適切な表面処理を施すと、これら表面における分析対象物質の分布を制御しやす くなる。  [0067] Further, the analysis chip may be subjected to a surface treatment. For example, the surface of the positive dielectric 2 and the surface of the positive dielectric 2 are negative so that the surface of the positive dielectric 2 is relatively hydrophilic compared to the surface of the negative dielectric 1, or is relatively hydrophobic. When an appropriate surface treatment is applied to at least one of the surface forces of the dielectric 1, the distribution of the analyte on these surfaces can be easily controlled.
[0068] 例えば、分析対象物質が水溶液の状態で供給される場合、未処理の場合には分 析対象物質 3がほぼ均等に分布するが(図 8 (a) )、負誘電体 1の表面に疎水処理を 施し、正誘電体 2の表面を親水性とすると、分析対象物質 3は正誘電体 2の表面に密 に分布する(図 8 (b) )。例えば、上述の工程に従って得た分析チップの表面全体を 酸素プラズマ処理して親水化し、その後、この表面を 1 デカンチオールのエタノー ル溶液に浸けてエタノールでリンスすると、負誘電体 1 (金)の表面のみに 1 デカン チオールが吸着し、負誘電体 1の表面のみが疎水化される。このような表面処理は、 微量の対象物質の分析に効果がある。 [0068] For example, when the analysis target substance is supplied in the form of an aqueous solution, the analysis target substance 3 is distributed almost evenly when not processed (Fig. 8 (a)), but the surface of the negative dielectric 1 When the surface of the positive dielectric 2 is made hydrophilic, the analyte 3 is densely attached to the surface of the positive dielectric 2. (Fig. 8 (b)). For example, the entire surface of the analysis chip obtained according to the above-described process is hydrophilized by oxygen plasma treatment, and then the surface is immersed in 1-decanethiol ethanol solution and rinsed with ethanol. 1-decane thiol is adsorbed only on the surface, and only the surface of negative dielectric 1 is hydrophobized. Such surface treatment is effective in analyzing a very small amount of the target substance.
[0069] また、逆に分析対象物質が疎水性表面に吸着しやすい場合には、親水化のため の酸素プラズマ処理を施さずに、分析チップの表面を 3—メルカプトプロピオン酸の エタノール溶液に浸けてエタノールでリンスすると良い。負誘電体 1 (金)の表面のみ に 3—メルカプトプロピオン酸が吸着し、末端のカルボキシル基のために、負誘電体 1 の表面のみが親水化される。一方の正誘電体 2の表面は本来疎水性であるため、分 析対象物質 3は正誘電体 2の表面に密に分布する。  [0069] Conversely, if the analyte is likely to be adsorbed on the hydrophobic surface, the surface of the analysis chip is immersed in an ethanol solution of 3-mercaptopropionic acid without performing oxygen plasma treatment for hydrophilicity. Rinse with ethanol. 3-mercaptopropionic acid is adsorbed only on the surface of negative dielectric 1 (gold), and only the surface of negative dielectric 1 is hydrophilized due to the carboxyl group at the end. Since the surface of one positive dielectric 2 is inherently hydrophobic, the substance 3 to be analyzed is densely distributed on the surface of the positive dielectric 2.
[0070] [光学用分析チップの製造方法の第 2の具体例]  [0070] [Second specific example of manufacturing method of optical analysis chip]
本発明の光学用分析チップは、薄膜形成技術を応用して作製することもできる。例 えば、まず、基板 61とする合成石英基板上に、負誘電体薄膜 5とする厚さ 150nmの 金薄膜と、正誘電体薄膜 2とする厚さ Dのシリカ薄膜とを交互に複数回積層した多層 膜 (多層構造) 71を形成する(図 9 (a) )。  The optical analysis chip of the present invention can also be produced by applying a thin film forming technique. For example, first, a 150 nm thick gold thin film as the negative dielectric thin film 5 and a silica thin film with a thickness D as the positive dielectric thin film 2 are alternately laminated several times on the synthetic quartz substrate as the substrate 61. A multilayer film (multilayer structure) 71 is formed (FIG. 9 (a)).
[0071] 次いで、基板 61を例えば 2mm程度の幅に短冊状に切断する。これを 2枚一組とし て、多層構造部分を向かい合わせ、接合層 73となる硬質のエポキシ榭脂にて貼り合 わせる。こうして、第 1基板 61、第 1多層構造 71、接合層 73、第 2多層構造 72、第 2 基板 62がこの順に積層された積層体を得る(図 9 (b) )。  Next, the substrate 61 is cut into a strip shape with a width of about 2 mm, for example. As a set of two sheets, the multilayer structure parts are faced to each other, and bonded together with a hard epoxy resin that becomes the bonding layer 73. Thus, a laminated body is obtained in which the first substrate 61, the first multilayer structure 71, the bonding layer 73, the second multilayer structure 72, and the second substrate 62 are laminated in this order (FIG. 9B).
[0072] 多層構造 71, 72を貼り合わせるのは、その後の研摩工程では外周部分が早く研摩 される傾向があるためである。貼り合わせずに研摩すると、繊細な多層構造 71, 72 が最外周となり、高精度な研摩が難しくなる。多層構造 71, 72を貼り合わせて被研 磨材の中央に配置することで、高精度な研摩を容易にする。  [0072] The reason why the multilayer structures 71 and 72 are bonded together is that the peripheral portion tends to be polished quickly in the subsequent polishing step. When polishing without bonding, the delicate multilayer structure 71, 72 becomes the outermost periphery, and high-precision polishing becomes difficult. Multi-layered structures 71 and 72 are bonded together and placed in the center of the polishing material to facilitate high-precision polishing.
[0073] さらに、この積層体を、厚さし'、例えば 300 m程度、に切断し、研摩用のジグにホ ットワックスで貼り付け、片面を研磨する(図 9 (c) )。研磨は、例えば、初めに耐水研 摩紙、次いでダイヤモンドペーストで研摩することにより鏡面仕上げするとよい。さら に、アルゴンイオンによるフラットミリングなどの手法を用いてもよい。引き続き、多層 構造 71, 72の端面の一方に、負誘電体薄膜 40として厚さ 150nmの金を蒸着し、こ の端面を閉鎖端とする(図 9 (d) )。 [0073] Further, the laminate is thickened, for example, cut to about 300 m, and attached to a polishing jig with hot wax, and one side is polished (FIG. 9 (c)). For polishing, for example, mirror finishing may be performed by first polishing with water-resistant abrasive paper and then with diamond paste. Furthermore, a technique such as flat milling using argon ions may be used. Continue to multilayer On one of the end faces of the structures 71 and 72, gold having a thickness of 150 nm is deposited as the negative dielectric thin film 40, and this end face is used as a closed end (FIG. 9 (d)).
[0074] その後、この積層体を、接着剤 30を用い、支持体 20とするガラス基板に接着する( 図 9 (e) )。接着剤 30および支持体 20の材料は、上記に例示したものを用いればよ い。最後に、支持体 20を研摩装置に取り付け、上記と同様の工程で研磨し、多層構 造 71, 72の端面を後退させ、厚さ (溝の深さ) L'を所定寸法 Lにまで減少させる(図 9 (f) )。 [0074] After that, this laminate is bonded to a glass substrate as a support 20 using an adhesive 30 (Fig. 9 (e)). As the materials for the adhesive 30 and the support 20, those exemplified above may be used. Finally, the support 20 is attached to the polishing apparatus and polished in the same process as above, the end faces of the multilayer structures 71 and 72 are retracted, and the thickness (groove depth) L ′ is reduced to the predetermined dimension L. (Fig. 9 (f)).
[0075] こうして、負誘電体薄膜 5, 40により形成された溝に充填された正誘電体薄膜 3が、 表面 (多層構造の側面)力も露出した分析用チップを得ることができる。  In this way, an analysis chip can be obtained in which the positive dielectric thin film 3 filled in the grooves formed by the negative dielectric thin films 5 and 40 has an exposed surface (side surface of the multilayer structure) force.
[0076] なお、厚さ Lは、ナノメートルオーダの精度で作製することが望ましい。このためには 、研摩中に適宜研摩面の反射スペクトルや透過スペクトルを測定し、目的のスぺタト ルになるまで研摩するとよ 、。  [0076] It is desirable that the thickness L be manufactured with an accuracy of nanometer order. For this purpose, measure the reflection spectrum and transmission spectrum of the polished surface as needed during polishing, and polish until the desired spectrum is obtained.
[0077] 薄膜形成技術を用いれば、溝の幅 Dを規定する薄い正誘電体薄膜を、精度良くか つ再現性良く形成できる。上記に例示した製造方法は、高い増強効果を得るために 溝の幅 Dを小さく制御した分析用チップの量産に適している。  [0077] By using the thin film formation technique, a thin positive dielectric thin film that defines the width D of the groove can be formed with high accuracy and good reproducibility. The manufacturing method exemplified above is suitable for mass production of analysis chips in which the groove width D is controlled to be small in order to obtain a high enhancement effect.
[0078] [分析用装置および分析方法の説明]  [Description of Analytical Apparatus and Analysis Method]
図 12に、本発明の分析用装置の一例を示す。この装置は、光学分析用チップ 10と 、光学分析用チップ 10の表面に励起光 31を照射できるように配置された光源 41と、 チップ表面カゝら放射された信号光 32を検出できるように配置された光計測器 42と、 を備えている。分析対象物質 3は、光学分析用チップ 10の表面に、その少なくとも一 部が負誘電体 1の表面に形成された溝の内部に配置された正誘電体 2上に位置す るように、配置されている。励起光 31は、光学分析用チップ 10について予め定めら れた入射光についての主伝搬方向(例えば表面に垂直な方向)に沿って照射するこ とが好ましい。  FIG. 12 shows an example of the analysis apparatus of the present invention. This device is capable of detecting the optical analysis chip 10, the light source 41 arranged so that the excitation light 31 can be irradiated on the surface of the optical analysis chip 10, and the signal light 32 emitted from the chip surface. And an optical measuring instrument 42 arranged. The analyte 3 is arranged on the surface of the optical analysis chip 10 so that at least a part thereof is located on the positive dielectric 2 arranged inside the groove formed on the surface of the negative dielectric 1. Has been. The excitation light 31 is preferably irradiated along the main propagation direction (for example, the direction perpendicular to the surface) of the incident light that is predetermined for the optical analysis chip 10.
[0079] 光源 41は、測定対象信号がラマン散乱光、蛍光、高調波光いずれの場合であって も、レーザなどの単色光源を用いるとよい。光源 41から照射される光 31の波長え eと の関係で記述すると、光学分析用チップにおける溝の幅 Dは、 の 1Z10倍以下 が好ましぐ溝の深さ Lは、波長え e以下であることが好ましい。また、光源 41は直線 偏光した光源が好ましい。その場合、偏光方向(電界べ外ルの方向)が、分析チップ の溝の幅の方向に一致するように調整することが望まし 、。 [0079] The light source 41 may be a monochromatic light source such as a laser, regardless of whether the signal to be measured is Raman scattered light, fluorescence, or harmonic light. Described in relation to the wavelength e of light 31 emitted from the light source 41, the groove depth D of the optical analysis chip is preferably 1Z10 times or less of the groove depth L is less than the wavelength e. Preferably there is. The light source 41 is a straight line A polarized light source is preferred. In that case, it is desirable to adjust the polarization direction (the direction of the electric field) to match the width direction of the groove of the analysis chip.
[0080] 光計測器 42は、具体的には分光器と光検出器とを組み合わせたものとするとよい。  [0080] Specifically, the optical measuring instrument 42 may be a combination of a spectroscope and a photodetector.
測定対象信号が分析対象物質の発するラマン散乱光である場合には、スぺ外ルを 計測することにより、対象物質を特定したり、分子の状態を調べたり、濃度を計測した りする。しかし、分析対象が絞れていて、ラマン散乱光や蛍光力もその量や割合を知 りたい場合には、分光器を固定し、特定の波長範囲の強度だけを測定してもよいし、 分光器の代わりに所定の透過スペクトルを持ったフィルタを用い、単にそれを透過し てきた光強度を測定するのでもよ 、。高調波光を測定した ヽ場合にも測定波長は励 起光波長で定まるので、フィルタで十分である。これらの場合、光計測器 42は、所定 の透過スペクトルを有するフィルタおよび光検出器を備えて 、ればよ 、。  When the signal to be measured is Raman scattered light emitted from the analyte, the analyte is identified, the molecular state is examined, or the concentration is measured by measuring the spectrum. However, if the analysis target is narrowed down and you want to know the amount and ratio of Raman scattered light and fluorescence power, you can fix the spectrometer and measure only the intensity in a specific wavelength range. Instead of using a filter with a predetermined transmission spectrum, simply measuring the light intensity transmitted through it. Even when harmonic light is measured, a filter is sufficient because the measurement wavelength is determined by the excitation light wavelength. In these cases, the optical measuring instrument 42 may include a filter and a photodetector having a predetermined transmission spectrum.
[0081] 以下、励起光波長、信号光波長、分析チップの共鳴波長の選択方法につ!、て説 明する。本発明による分析チップは、スリットの幅 D、深さ L、間隔 Pによって、様々な 共鳴特性を持たせることができる。 Dは主に増強度を与え、 Dを固定すれば、共鳴波 長は Lと Pによって定まる。共鳴の鋭さは、主にスリットの幅 Dと共鳴の次数と用いる負 誘電体の誘電率により定まる。  Hereinafter, a method for selecting the excitation light wavelength, the signal light wavelength, and the resonance wavelength of the analysis chip will be described. The analysis chip according to the present invention can have various resonance characteristics depending on the width D, depth L, and interval P of the slit. D mainly gives enhancement, and if D is fixed, the resonance wavelength is determined by L and P. The sharpness of resonance is mainly determined by the slit width D, the order of resonance, and the dielectric constant of the negative dielectric used.
[0082] 共鳴のピークの半値幅は、図 10 (b)に示した例では 125nmであった。この程度の 半値幅があれば、測定対象信号がラマン散乱光である場合には、励起光波長え eお よび信号光波長え sがともにこの範囲内となる。例えば、 e = 633nmとしたとき、一 般的に注目するラマンシフト (ストークス光)はせ ヽぜ 、2000cm 1以下の範囲である 力 これは最大え s = 725nmに相当する。 λ sとえ eとの差は最大でも 92nmであり、 十分に一つの共鳴ピークに納まる程度の違いでしかない。従って、分析チップを選 択するには、分析チップの共鳴ピークが λ e、あるいは s、あるいは両者の平均値と なるように狙えばよい。測定対象信号が蛍光である場合にも、 sとえ eの差 (ストーク スシフト)が小さな系の場合には、同様に考えればよい。 [0082] The half width of the resonance peak was 125 nm in the example shown in Fig. 10 (b). If there is such a half-width, when the signal to be measured is Raman scattered light, both the excitation light wavelength e and the signal light wavelength s are within this range. For example, when e = 633 nm, the generally noted Raman shift (Stokes light) is at most 2000 cm 1 or less. This corresponds to a maximum of s = 725 nm. The difference between λ s and e is at most 92 nm, which is just enough to fit in one resonance peak. Therefore, in order to select an analysis chip, it is only necessary to aim for the resonance peak of the analysis chip to be λ e, s, or an average value of both. Even when the signal to be measured is fluorescence, the same can be considered in the case of a system in which the difference between s and e (Stokes shift) is small.
[0083] しかし、測定対象信号が蛍光で、スト一タスシフトが大き!/、系の場合、あるいは、高 調波光の場合、 sとえ eの両方を 1つの共鳴ピークに納めることはできない。その場 合には、異なる次数の共鳴ピークがそれぞれえ sと λ eに対応するように分析チップを 選択すればよい。 [0083] However, when the signal to be measured is fluorescent and the stochastic shift is large! /, Or in the case of harmonic light, both s and e cannot be contained in one resonance peak. In that case, the analysis chip should be placed so that the resonance peaks of different orders correspond to s and λ e respectively. Just choose.
[0084] 例えば、試作した共振器の内、 D= 56nm、 L = 208nmのものは、図 11に示すよう に、反射スペクトルの谷の位置から、 X = 545nmに 3次、 λ = 763nmに 2次の共  [0084] For example, among the prototype resonators with D = 56nm and L = 208nm, as shown in Fig. 11, from the valley position of the reflection spectrum, X = 545nm, 3rd order, λ = 763nm, 2 Next
0 0  0 0
鳴ピークがあることがわかった。これは、それぞれ、 LDS751という色素のメタノール 溶液の吸収極大波長 542nmと発光極大波長 754nmに非常に近 、。このような場合 、例えばえ e = 532nmの励起光で測定を行えば、励起光は 3次の共鳴により増強さ れ、発光も 2次の共鳴により増強されるので、ラマン散乱光の時と同様に、 2重の増強 を得ることができる。様々な発光過程で表面プラズモンによる増強効果が同様に見ら れるはずなのに、ラマン散乱光の増強の報告だけが突出して多ぐまた、その増強度 が顕著なのは、おそらぐ偶発的に形成される共鳴状態では、ラマン散乱過程の場 合には 1本の共鳴ピークに とえ sの両方が容易に納まるのに対して、蛍光や高調 波光について、 とえ sの両方がそれぞれ共鳴ピークに納まる確率が極めて低ぐ どちらか一方の増強効果し力、得られないためだと考えられる。しかし、本発明による 分析チップを用いると、対象とする発光過程に合わせて最適なチップを設計し、実現 することができるので、ラマン散乱光以外の発光過程でも容易に 2重の増強を得るこ とができる。図 14に蛍光、高調波光の計測に適した分析チップによる共鳴によるピー クの例を示す。図 14では、右から順に、 (1/4) λ 、 (3/4) λ 、 (5/4) λ に対応  It turns out that there is a cry peak. This is very close to the absorption maximum wavelength 542 nm and emission maximum wavelength 754 nm of the methanol solution of the dye LDS751, respectively. In such a case, for example, if measurement is performed with excitation light of e = 532 nm, the excitation light is enhanced by the third-order resonance, and the emission is also enhanced by the second-order resonance. In addition, a double enhancement can be obtained. Although the enhancement effect by surface plasmon should be seen in various light emission processes, only reports of enhancement of Raman scattered light are prominent, and the increase in intensity is prominently formed accidentally. In the resonance state, in the case of the Raman scattering process, both s easily fit in one resonance peak, whereas for fluorescence and harmonic light, the probability that both s fall in the resonance peak respectively. It is thought that this is because one of the enhancement effects and powers cannot be obtained. However, when the analysis chip according to the present invention is used, an optimum chip can be designed and realized in accordance with the target light emission process, so that double enhancement can be easily obtained even in light emission processes other than Raman scattered light. You can. Figure 14 shows an example of the peak due to resonance using an analysis chip suitable for measuring fluorescence and harmonic light. In Fig. 14, corresponding to (1/4) λ, (3/4) λ, and (5/4) λ in order from the right.
Ρ Ρ Ρ  Ρ Ρ Ρ
するピークが示されている。  The peak to be shown is shown.
[0085] 以上のように、本発明の光学分析方法は、波長 λ eを有する光を照射し、分析対象 物質から放射された λ eとは異なる波長 λ sを有する光を計測する方法として適して いる。波長え sを有する光はラマン散乱光であってもよぐ蛍光であってもよぐ波長え eを有する光の高調波光であってもよ 、。 [0085] As described above, the optical analysis method of the present invention is suitable as a method for irradiating light having a wavelength λe and measuring light having a wavelength λs different from λe emitted from the analyte. ing. The light having a wavelength s may be Raman scattered light, fluorescent light, or harmonic light having a wavelength e.
[0086] 本発明の光学分析方法によれば、 a)波長 λ eを有する光の照射により発生する Τ[0086] According to the optical analysis method of the present invention, a) generated by irradiation with light having a wavelength λe
Mモードの表面波、および b)波長え sを有する光の放射により発生する TMモードB) TM mode generated by the emission of light having a wavelength of s
0 0 の表面波、力 選ばれる少なくとも一方の表面波の共鳴により、共鳴がない場合と比 較して、波長え Sを有する信号光の強度を増強することができる。本発明の光学分析 方法によれば、 a)の表面波の共鳴により波長え eを有する光の強度を増強し、かつ b )の表面波の共鳴により波長 λ sを有する光の強度を増強することも可能である。 [0087] 本発明の光学分析方法では、光学分析チップにおいて、溝が、 TMモードの表面 0 0 surface wave, force By the resonance of at least one selected surface wave, the intensity of the signal light having the wavelength S can be enhanced as compared with the case where there is no resonance. According to the optical analysis method of the present invention, the intensity of light having the wavelength e is enhanced by the resonance of the surface wave of a), and the intensity of light having the wavelength λ s is enhanced by the resonance of the surface wave of b). It is also possible. [0087] In the optical analysis method of the present invention, in the optical analysis chip, the groove is a TM mode surface.
0  0
波の共鳴により溝の内部において少なくとも 1つの波長域にある光の強度が増強され るように、形成され、 およびえ sが、ともに上記少なくとも 1つの波長域力 選ばれ る同一の波長域に含まれていてもよい(図 13参照)。また、本発明の光学分析方法で は、光学分析用チップにおいて、溝が、溝の幅方向についての電界成分を有し、か つカットオフ周波数を有さない表面波の共鳴により溝の内部において 2以上の波長 域にある光の強度が増強されるように、形成され、 およびえ sが、上記 2以上の波 長域力も選ばれ、互 、に異なる波長域に含まれて 、てもよ 、(図 14参照)。  The resonance of the wave is formed so that the intensity of light in at least one wavelength region is enhanced inside the groove, and both s are included in the same wavelength region selected by the at least one wavelength region force. (See Fig. 13). In the optical analysis method of the present invention, in the optical analysis chip, the groove has an electric field component in the width direction of the groove, and in the groove due to resonance of the surface wave having no cutoff frequency. It may be formed so that the intensity of light in two or more wavelength ranges is enhanced, and s may be selected from the above two or more wavelength range forces and included in different wavelength ranges. (See Figure 14).
[0088] 以上、本発明の実施形態について説明してきた力 本発明は、その精神から逸脱 することなぐ他の様々な形で実施することができる。例えば、上記の例では、 や hに対して、適切な分析チップを選択する際に、別々の条件で作られた別々のチッ プカも適切なものを選ぶように記述した。しかし、本発明による分析用チップは、転写 技術により一括生産できるから、多様な条件の共振器アレイを 1枚のチップ上に多数 配列しておき、その中から都合の良いものを選択すると利用価値がさらに高まる。こ のような複合的な分析チップも、本発明の簡単な拡張であり、本発明の一例に過ぎな い。 [0088] The power described in the embodiments of the present invention has been described above. The present invention can be implemented in various other forms without departing from the spirit thereof. For example, in the above example, when selecting an appropriate analysis chip for and h, it was described that different chippers made under different conditions should be selected as appropriate. However, since the analysis chip according to the present invention can be batch-produced by the transfer technology, it is useful to arrange a number of resonator arrays with various conditions on a single chip and select a convenient one from them. Is further increased. Such a complex analysis chip is also a simple extension of the present invention and is merely an example of the present invention.
産業上の利用可能性  Industrial applicability
[0089] 本発明は、ラマン散乱光、蛍光、高調波光などの光信号に基づく分析の高感度化 に寄与するものとして多大な利用価値を有する。 [0089] The present invention has great utility value as contributing to high sensitivity of analysis based on optical signals such as Raman scattered light, fluorescence, and harmonic light.

Claims

請求の範囲 The scope of the claims
[I] 負誘電体と、前記負誘電体の表面に形成された少なくとも 1つの溝の内部に配置さ れた、固体状態にある正誘電体と、を備えた、光学分析用チップ。  [I] An optical analysis chip comprising: a negative dielectric; and a positive dielectric in a solid state disposed in at least one groove formed on the surface of the negative dielectric.
[2] 前記負誘電体の表面に形成された 2以上の溝の内部に配置された、固体状態にあ る正誘電体を備え、前記 2以上の溝が互いに平行に配置された請求項 1に記載の光 学分析用チップ。  [2] The positive dielectric in a solid state is disposed inside two or more grooves formed on the surface of the negative dielectric, and the two or more grooves are disposed in parallel to each other. Chip for optical analysis as described in 1.
[3] 前記溝の幅 Dが、前記溝の深さ Lおよび前記溝の長さ Wよりも小さ 、請求項 1に記 載の光学分析用チップ。  [3] The chip for optical analysis according to claim 1, wherein a width D of the groove is smaller than a depth L of the groove and a length W of the groove.
[4] 前記溝の幅 Dが 50nm以下である請求項 1に記載の光学分析用チップ。 4. The optical analysis chip according to claim 1, wherein the width D of the groove is 50 nm or less.
[5] 前記 Dが 0. 2ηπ!〜 lOnmである請求項 4に記載の光学分析用チップ。 [5] D is 0.2ηπ! 5. The chip for optical analysis according to claim 4, wherein the chip is lOnm.
[6] 前記溝の深さ Lが 1 μ m以下である請求項 1に記載の光学分析用チップ。 6. The optical analysis chip according to claim 1, wherein the depth L of the groove is 1 μm or less.
[7] 前記 Lが Inn!〜 500nmである請求項 6に記載の光学分析用チップ。 [7] L is Inn! The chip for optical analysis according to claim 6, wherein the chip is ˜500 nm.
[8] 前記溝の深さ Lが、前記溝の幅方向についての電界成分を有し、かつカットオフ周 波数を有さない表面波の共鳴により前記溝の内部において所定の波長域にある波 長を有する光の強度が増強されるように、設定された、請求項 1に記載の光学分析用 チップ。 [8] A wave having a depth L in the predetermined wavelength region inside the groove due to resonance of a surface wave having an electric field component in the width direction of the groove and not having a cutoff frequency. 2. The chip for optical analysis according to claim 1, which is set so that the intensity of light having a length is increased.
[9] 前記溝の深さ Lが、 ( (2η- 1) /4) λである請求項 8に記載の光学分析用チップ。  [9] The optical analysis chip according to [8], wherein the depth L of the groove is ((2η-1) / 4) λ.
Ρ  Ρ
ただし、 ηは自然数であり、 λ は前記表面波の波長である。  Where η is a natural number and λ is the wavelength of the surface wave.
Ρ  Ρ
[10] 前記溝の深さ L、前記溝の間隔 P、および前記溝の幅 Dが、前記溝の幅方向につ V、ての電界成分を有し、かつカットオフ周波数を有さな 、表面波の共鳴により前記溝 の内部において所定の波長域にある波長を有する光の強度が増強されるように、設 定された、請求項 2に記載の光学分析用チップ。  [10] The groove depth L, the groove spacing P, and the groove width D have V electric field components in the width direction of the groove and do not have a cutoff frequency. 3. The chip for optical analysis according to claim 2, which is set so that the intensity of light having a wavelength in a predetermined wavelength region inside the groove is enhanced by resonance of surface waves.
[II] 前記溝の長さ方向についての前記溝の 2つの端面がともに負誘電体で覆われてい な 、請求項 1に記載の光学分析用チップ。  [II] The optical analysis chip according to claim 1, wherein the two end faces of the groove in the length direction of the groove are not covered with a negative dielectric.
[12] 前記溝の長さ方向についての前記溝の 2つの端面の少なくとも一方が負誘電体で 覆われて 、る請求項 1に記載の光学分析用チップ。  12. The optical analysis chip according to claim 1, wherein at least one of the two end faces of the groove in the length direction of the groove is covered with a negative dielectric.
[13] 前記負誘電体が金属からなる請求項 1に記載の光学分析用チップ。 13. The optical analysis chip according to claim 1, wherein the negative dielectric is made of metal.
[14] 前記金属が、金、銀、銅およびアルミニウム力 選ばれる少なくとも 1種を主成分と する請求項 13に記載の光学分析用チップ。 [14] The metal is composed mainly of at least one selected from gold, silver, copper and aluminum force. The optical analysis chip according to claim 13.
[15] 前記正誘電体が、榭脂および無機材料から選ばれる少なくとも一方からなる請求項[15] The positive dielectric is made of at least one selected from a resin and an inorganic material.
1に記載の光学分析用チップ。 The optical analysis chip according to 1.
[16] 前記表面の反対側の面において前記負誘電体に接合された基体をさらに含む請 求項 1に記載の光学分析用チップ。 [16] The optical analysis chip according to claim 1, further comprising a base bonded to the negative dielectric on the surface opposite to the surface.
[17] 前記溝の深さ方向について、前記正誘電体の表面が、前記負誘電体の表面と実 質的に同一の高さを有する請求項 1に記載の光学分析用チップ。 17. The optical analysis chip according to claim 1, wherein the surface of the positive dielectric has substantially the same height as the surface of the negative dielectric in the depth direction of the groove.
[18] 前記正誘電体の表面が、前記負誘電体の表面と比較して相対的に親水性を示す ように、前記正誘電体の表面および前記負誘電体の表面から選ばれる少なくとも一 方が表面処理を施された請求項 1に記載の光学分析用チップ。 [18] At least one selected from the surface of the positive dielectric and the surface of the negative dielectric so that the surface of the positive dielectric is relatively hydrophilic compared to the surface of the negative dielectric 2. The optical analysis chip according to claim 1, wherein the surface treatment is performed.
[19] 前記正誘電体の表面が、前記負誘電体の表面と比較して相対的に疎水性を示す ように、前記正誘電体の表面および前記負誘電体の表面から選ばれる少なくとも一 方が表面処理を施された請求項 1に記載の光学分析用チップ。 [19] At least one selected from the surface of the positive dielectric and the surface of the negative dielectric so that the surface of the positive dielectric is relatively hydrophobic compared to the surface of the negative dielectric 2. The optical analysis chip according to claim 1, wherein the surface treatment is performed.
[20] 請求項 1に記載の光学分析用チップの製造方法であって、 [20] A method for manufacturing an optical analysis chip according to claim 1,
予め所定寸法の溝を形成した型を正誘電体に押圧することにより、前記溝に由来 する凸部を前記正誘電体の表面に形成する工程と、  Forming a convex portion derived from the groove on the surface of the positive dielectric by pressing a mold in which a groove having a predetermined dimension is formed on the positive dielectric;
前記正誘電体の前記表面に前記凸部の高さを超える高さにまで負誘電体を形成 する工程と、  Forming a negative dielectric material on the surface of the positive dielectric material to a height exceeding the height of the convex portion;
前記正誘電体の前記表面の反対側から、前記負誘電体の表面が露出し、かつ前 記凸部に由来して前記負誘電体の表面に形成された溝の内部に配置された状態で 前記正誘電体の一部が残存するように、前記正誘電体の一部を除去する工程と、 を含む光学分析用チップの製造方法。  In a state where the surface of the negative dielectric is exposed from the opposite side of the surface of the positive dielectric and is disposed in a groove formed on the surface of the negative dielectric derived from the convex portion. A step of removing a part of the positive dielectric so that a part of the positive dielectric remains.
[21] 前記正誘電体が榭脂からなる請求項 20に記載の光学分析用チップの製造方法。 21. The method for manufacturing an optical analysis chip according to claim 20, wherein the positive dielectric is made of a resin.
[22] 請求項 1に記載の光学分析用チップの製造方法であって、 [22] The method for producing an optical analysis chip according to claim 1,
正誘電体薄膜と負誘電体薄膜とを交互に積層した積層体を形成する工程と、 前記積層体の一方の側面に負誘電体を配置する工程と、  A step of forming a laminate in which positive dielectric thin films and negative dielectric thin films are alternately laminated, a step of disposing a negative dielectric on one side surface of the laminate,
前記積層体の前記側面と反対側の側面から前記積層体を研磨して、前記負誘電 体薄膜および前記側面に配置された負誘電体により形成され、前記正誘電体薄膜 力 なる正誘電体が内部に配置された溝の深さ Lを定める工程と、 The positive dielectric thin film is formed from the negative dielectric thin film and the negative dielectric disposed on the side surface by polishing the multilayer from the side opposite to the side of the multilayer. A step of determining the depth L of the groove in which the positive dielectric is arranged,
を含む、光学分析用チップの製造方法。  A method for manufacturing a chip for optical analysis, comprising:
[23] 前記正誘電体薄膜が無機材料からなる請求項 22に記載の光学分析用チップの製 造方法。 23. The method for manufacturing an optical analysis chip according to claim 22, wherein the positive dielectric thin film is made of an inorganic material.
[24] 請求項 1に記載の光学分析用チップと、前記光学分析用チップの表面に光を照射 できるように配置された光源と、前記表面力 放射された光を計測できるように配置さ れた光計測器と、を備えた光学分析用装置。  [24] The optical analysis chip according to claim 1, a light source arranged so as to be able to irradiate light on a surface of the optical analysis chip, and a light emitted from the surface force. And an optical analyzer.
[25] 前記光源が単色光源である請求項 24に記載の光学分析用装置。 25. The optical analysis device according to claim 24, wherein the light source is a monochromatic light source.
[26] 前記光計測器が、分光器および光検出器を備えた請求項 24に記載の光学分析用 装置。 26. The apparatus for optical analysis according to claim 24, wherein the optical measuring instrument includes a spectroscope and a photodetector.
[27] 前記光計測器が、所定の透過スペクトルを有するフィルタおよび光検出器を備えた 請求項 24に記載の光学分析用装置。  27. The optical analysis device according to claim 24, wherein the optical measuring instrument includes a filter having a predetermined transmission spectrum and a photodetector.
[28] 前記光学分析用チップにおける前記溝の幅 Dが、前記光源から照射される光の波 長 λ eの 1Ζ10倍以下である請求項 24に記載の光学分析用装置。 28. The optical analysis device according to claim 24, wherein a width D of the groove in the optical analysis chip is 1 to 10 times or less of a wavelength λe of light emitted from the light source.
[29] 前記光学分析用チップにおける前記溝の深さ Lが、前記光源から照射される光の 波長 λ e以下である請求項 24に記載の光学分析用装置。 29. The optical analysis device according to claim 24, wherein a depth L of the groove in the optical analysis chip is not more than a wavelength λe of light irradiated from the light source.
[30] 請求項 1に記載の光学分析用チップの表面に分析対象物質を配置し、 [30] An analyte is disposed on the surface of the optical analysis chip according to claim 1,
前記表面に光を照射して、前記分析対象物質から放射された光を計測する、 物質の光学分析方法。  An optical analysis method for a substance, wherein the surface is irradiated with light, and the light emitted from the substance to be analyzed is measured.
[31] 波長 λ eを有する光を照射し、 [31] irradiating with light having wavelength λ e
前記分析対象物質から放射された前記 λ eとは異なる波長 λ sを有する光を計測す る、  Measuring light having a wavelength λ s different from λ e emitted from the analyte;
請求項 30に記載の光学分析方法。  The optical analysis method according to claim 30.
[32] 前記波長 λ sを有する光がラマン散乱光である請求項 31に記載の光学分析方法。 32. The optical analysis method according to claim 31, wherein the light having the wavelength λ s is Raman scattered light.
[33] 前記波長 λ sを有する光が蛍光である請求項 31に記載の光学分析方法。 33. The optical analysis method according to claim 31, wherein the light having the wavelength λ s is fluorescence.
[34] 前記波長 λ sを有する光が前記波長 λ eを有する光の高調波光である請求項 31に 記載の光学分析方法。 34. The optical analysis method according to claim 31, wherein the light having the wavelength λs is a harmonic light of the light having the wavelength λe.
[35] a)前記波長 λ eを有する光の照射により発生する表面波であって前記溝の幅方向 についての電界成分を有し、かつカットオフ周波数を有さない表面波、および b)前記波長 λ sを有する光の放射により発生する表面波であって前記溝の幅方向 についての電界成分を有し、かつカットオフ周波数を有さない表面波、から選ばれる 少なくとも一方の表面波の共鳴により、 [35] a) A surface wave generated by irradiation with light having the wavelength λe, and the width direction of the groove B) a surface wave that does not have a cutoff frequency, and b) a surface wave that is generated by the emission of light having the wavelength λ s and has an electric field component in the width direction of the groove. And resonance of at least one surface wave selected from surface waves having no cutoff frequency,
前記共鳴がない場合と比較して、前記波長 sを有する光の強度を増強する、請求 項 31に記載の光学分析方法。  32. The optical analysis method according to claim 31, wherein the intensity of light having the wavelength s is enhanced as compared with the case where there is no resonance.
[36] 前記 a)の表面波の共鳴により前記波長 λ eを有する光の強度を増強し、かつ [36] The intensity of light having the wavelength λ e is enhanced by the resonance of the surface wave of a), and
前記 b)の表面波の共鳴により前記波長 λ sを有する光の強度を増強する、請求項 35に記載の光学分析方法。  36. The optical analysis method according to claim 35, wherein the intensity of light having the wavelength λ s is enhanced by resonance of the surface wave of b).
[37] 前記光学分析チップにおいて、前記溝が、溝の幅方向についての電界成分を有し 、かつカットオフ周波数を有さない表面波の共鳴により前記溝の内部において少なく とも 1つの波長域にある光の強度が増強されるように、形成され、 [37] In the optical analysis chip, the groove has an electric field component in the groove width direction and has at least one wavelength region inside the groove due to resonance of a surface wave having no cutoff frequency. Formed so that the intensity of some light is enhanced,
前記 λ eおよび前記 λ sが、ともに前記少なくとも 1つの波長域力 選ばれる同一の 波長域に含まれる、請求項 36に記載の光学分析方法。  37. The optical analysis method according to claim 36, wherein both λ e and λ s are included in the same wavelength range selected by the at least one wavelength range force.
[38] 前記光学分析チップにおいて、前記溝が、溝の幅方向についての電界成分を有し 、かつカットオフ周波数を有さない表面波の共鳴により前記溝の内部において 2以上 の波長域にある光の強度が増強されるように、形成され、 [38] In the optical analysis chip, the groove has an electric field component in the groove width direction and has a wavelength region of 2 or more inside the groove due to resonance of a surface wave having no cutoff frequency. Formed so that the intensity of light is enhanced,
前記 および前記 sが、前記 2以上の波長域から選ばれ、互いに異なる波長域 に含まれる、請求項 36に記載の光学分析方法。  The optical analysis method according to claim 36, wherein the and s are selected from the two or more wavelength ranges and are included in different wavelength ranges.
PCT/JP2006/303489 2005-03-03 2006-02-24 Chip for optical analysis, method for manufacturing the same, optical analyzer, and optical analyzing method WO2006093055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007505902A JP4117665B2 (en) 2005-03-03 2006-02-24 Optical analysis chip and manufacturing method thereof, optical analysis device, and optical analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-059120 2005-03-03
JP2005059120 2005-03-03

Publications (1)

Publication Number Publication Date
WO2006093055A1 true WO2006093055A1 (en) 2006-09-08

Family

ID=36941086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303489 WO2006093055A1 (en) 2005-03-03 2006-02-24 Chip for optical analysis, method for manufacturing the same, optical analyzer, and optical analyzing method

Country Status (2)

Country Link
JP (1) JP4117665B2 (en)
WO (1) WO2006093055A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070360A (en) * 2006-08-17 2008-03-27 National Institute Of Advanced Industrial & Technology High spatial resolution spectroscopic measurement method and apparatus
JP2011232186A (en) * 2010-04-28 2011-11-17 Seiko Epson Corp Optical device, analyzer and spectroscopy method
JP2012063155A (en) * 2010-09-14 2012-03-29 Seiko Epson Corp Optical device unit and detecting apparatus
JP2012063156A (en) * 2010-09-14 2012-03-29 Seiko Epson Corp Optical device unit and detecting apparatus
JP2012063154A (en) * 2010-09-14 2012-03-29 Seiko Epson Corp Detection device
JP2012242387A (en) * 2011-05-13 2012-12-10 Imec Waveguide-integrated plasmonic resonator for integrated sers measurements
CN104422682A (en) * 2013-09-05 2015-03-18 精工爱普生株式会社 Raman spectroscopic apparatus, raman spectroscopic method, and electronic apparatus
EP3091347A1 (en) * 2015-05-04 2016-11-09 The European Union, represented by the European Commission Screening of nanoparticle properties
CN106442459A (en) * 2016-08-24 2017-02-22 南京大学 Gold-based extraction material functionalized by different affinity ligands, and application thereof in surface Plasmon optical affinity sandwich analysis
EP3381547A1 (en) * 2017-03-30 2018-10-03 Canon Medical Systems Corporation Specimen test apparatus
JP2018173404A (en) * 2017-03-30 2018-11-08 キヤノンメディカルシステムズ株式会社 Sample inspection device
CN111208114A (en) * 2020-03-07 2020-05-29 浙江大学 Detection method and device for surface enhanced Raman scattering/fluorescence combined SPR sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772166B2 (en) * 2011-04-08 2015-09-02 セイコーエプソン株式会社 Detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195441A (en) * 2004-01-07 2005-07-21 Fuji Photo Film Co Ltd Raman spectroscopy, and device for raman spectroscopy
JP2005195397A (en) * 2004-01-05 2005-07-21 Shimadzu Corp Electrophoresis detecting apparatus
JP2005345402A (en) * 2004-06-07 2005-12-15 Shimadzu Corp Measuring device using surface plasmon resonance, and analyzer using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195397A (en) * 2004-01-05 2005-07-21 Shimadzu Corp Electrophoresis detecting apparatus
JP2005195441A (en) * 2004-01-07 2005-07-21 Fuji Photo Film Co Ltd Raman spectroscopy, and device for raman spectroscopy
JP2005345402A (en) * 2004-06-07 2005-12-15 Shimadzu Corp Measuring device using surface plasmon resonance, and analyzer using it

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070360A (en) * 2006-08-17 2008-03-27 National Institute Of Advanced Industrial & Technology High spatial resolution spectroscopic measurement method and apparatus
JP2011232186A (en) * 2010-04-28 2011-11-17 Seiko Epson Corp Optical device, analyzer and spectroscopy method
JP2012063155A (en) * 2010-09-14 2012-03-29 Seiko Epson Corp Optical device unit and detecting apparatus
JP2012063156A (en) * 2010-09-14 2012-03-29 Seiko Epson Corp Optical device unit and detecting apparatus
JP2012063154A (en) * 2010-09-14 2012-03-29 Seiko Epson Corp Detection device
CN102419320A (en) * 2010-09-14 2012-04-18 精工爱普生株式会社 Detection apparatus
US8902419B2 (en) 2010-09-14 2014-12-02 Seiko Epson Corporation Detection apparatus
JP2012242387A (en) * 2011-05-13 2012-12-10 Imec Waveguide-integrated plasmonic resonator for integrated sers measurements
CN104422682B (en) * 2013-09-05 2019-04-19 精工爱普生株式会社 Raman spectroscopic apparatus, Raman spectroscopy and electronic equipment
CN104422682A (en) * 2013-09-05 2015-03-18 精工爱普生株式会社 Raman spectroscopic apparatus, raman spectroscopic method, and electronic apparatus
EP3091347A1 (en) * 2015-05-04 2016-11-09 The European Union, represented by the European Commission Screening of nanoparticle properties
WO2016177641A1 (en) * 2015-05-04 2016-11-10 The European Union, Represented By The European Commission Screening of nanoparticle properties
CN107709966A (en) * 2015-05-04 2018-02-16 欧洲联盟·由欧洲委员会代表 The screening of characteristics of nanoparticles
US10408727B2 (en) 2015-05-04 2019-09-10 The European Union, Represented By The European Commission Screening of nanoparticle properties
AU2016257244B2 (en) * 2015-05-04 2021-01-28 The European Union, Represented By The European Commission Screening of nanoparticle properties
CN106442459A (en) * 2016-08-24 2017-02-22 南京大学 Gold-based extraction material functionalized by different affinity ligands, and application thereof in surface Plasmon optical affinity sandwich analysis
EP3381547A1 (en) * 2017-03-30 2018-10-03 Canon Medical Systems Corporation Specimen test apparatus
JP2018173404A (en) * 2017-03-30 2018-11-08 キヤノンメディカルシステムズ株式会社 Sample inspection device
JP7109945B2 (en) 2017-03-30 2022-08-01 キヤノンメディカルシステムズ株式会社 Laboratory test device
CN111208114A (en) * 2020-03-07 2020-05-29 浙江大学 Detection method and device for surface enhanced Raman scattering/fluorescence combined SPR sensing

Also Published As

Publication number Publication date
JP4117665B2 (en) 2008-07-16
JPWO2006093055A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4117665B2 (en) Optical analysis chip and manufacturing method thereof, optical analysis device, and optical analysis method
Kasani et al. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications
Gordon et al. Resonant optical transmission through hole‐arrays in metal films: physics and applications
Minopoli et al. Nanostructured surfaces as plasmonic biosensors: A review
US20120281957A1 (en) Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
US8023115B2 (en) Sensor, sensing system and sensing method
Khan et al. Optical sensing by metamaterials and metasurfaces: from physics to biomolecule detection
WO2006093056A1 (en) Electromagnetic wave resonator and its manufacturing method, and electromagnetic wave resonance method
US8837039B2 (en) Multiscale light amplification structures for surface enhanced Raman spectroscopy
Liu et al. Real-time Raman detection by the cavity mode enhanced Raman scattering
Kaplan et al. Tuning optical discs for plasmonic applications
WO2008112189A2 (en) Electric-field-enhancement structures including dielectric particles, apparatuses including same, and methods of use
Liu et al. Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates
US8395768B2 (en) Scattering spectroscopy apparatus and method employing a guided mode resonance (GMR) grating
CN112857232A (en) Long-range optical self-reference displacement sensor
Yektaparast et al. Controlling optical absorption of graphene in near-infrared region by surface plasmons
Kim et al. Fabry–Perot Cavity Control for Tunable Raman Scattering
Higashino et al. Photoluminescence coupled to electric and magnetic surface lattice resonance in periodic arrays of zirconia nanoparticles
Du et al. Near-field coupling effect between individual Au nanospheres and their supporting SiO 2/Si substrate
JP2008181114A (en) Laminate comprising metal nanoparticle/polymer complex and optical waveguide material
Guan et al. Surface-enhanced Raman scattering on dual-layer metallic grating structures
JP6648888B2 (en) Substrate for surface-enhanced Raman scattering analysis, method for producing the same and method for using the same
Pavlov et al. Eigenmode analysis of the waveguide-plasmon structure based on a-Si1-xCx: H layer with 1D gold grating
Cui et al. An achiral magnetic photonic antenna as a tunable nanosource of superchiral light
Zhang et al. A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2007505902

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06714628

Country of ref document: EP

Kind code of ref document: A1