WO2006080315A1 - Organic electroluminescent device, method for manufacturing same, and organic electroluminescent display panel - Google Patents

Organic electroluminescent device, method for manufacturing same, and organic electroluminescent display panel Download PDF

Info

Publication number
WO2006080315A1
WO2006080315A1 PCT/JP2006/301064 JP2006301064W WO2006080315A1 WO 2006080315 A1 WO2006080315 A1 WO 2006080315A1 JP 2006301064 W JP2006301064 W JP 2006301064W WO 2006080315 A1 WO2006080315 A1 WO 2006080315A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
cathode
oxide
halide
Prior art date
Application number
PCT/JP2006/301064
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Ishizuya
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006080315A1 publication Critical patent/WO2006080315A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers

Definitions

  • the present invention relates to an organic electoluminescence element.
  • organic electroluminescence devices which is a type of electroluminescent device, are self-luminous, all-solid-state devices, so they have high visibility and are also CRTs and plasma displays. Compared with liquid crystal displays, the thickness of the device can be reduced, and the drive power is also low!
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a conventional organic EL element.
  • an organic EL element is laminated on a substrate in this order on an anode, a hole transport layer, a light emitting layer, an electron injection layer, and a cathode force S.
  • the hole transport layer and the light emitting layer correspond to an organic layer.
  • the anode has a function of injecting holes into the organic layer.
  • the hole transport layer has a function of improving the transport efficiency of holes injected from the anode to the light emitting layer.
  • the cathode has a function of transporting electrons to the electron injection layer.
  • the electron injection layer has a function of improving the injection efficiency of electrons transported by the cathode into the light emitting layer.
  • excitons excitons
  • the electron injection layer is preferably made of a material having a low work function from the viewpoint of realizing high injection efficiency of electrons from the cathode to the light emitting layer.
  • the material having a low work function include alkali metals and alkaline earth metals such as calcium (Ca), barium (Ba), and lithium (Li).
  • the alkali metal or alkaline earth metal is very unstable to oxygen or moisture. It is not a chemically stable material because it reacts with oxygen and water to produce oxides and hydroxides. Therefore, these electron injection layers that also have alkali metal or alkaline earth metal power are suitable from the viewpoint of the efficiency of electron injection into the organic layer, but they react with oxygen and moisture, resulting in electron injection. There is a problem of reduced efficiency
  • Patent Document 1 proposes to insert an alkali metal or alkaline earth metal oxide as an electron injection layer between the organic layer and the cathode in order to solve the above problem. It has been. These alkali metal and alkaline earth metal oxides have a low work function. Therefore, by using an alkali metal or alkaline earth metal oxide as the electron injection layer, high electron injection efficiency into the organic layer can be expected, and since it is an oxide, it reacts with oxygen. It does not occur, the adhesion to other layers is stabilized, and electrons are efficiently injected into the light-emitting layer.
  • Patent Document 2 an oxide insulating layer and a fluorine compound insulating layer are laminated in this order on an organic light emitting layer, and a cathode is formed on the fluorine compound insulating layer.
  • the proposed configuration is disclosed.
  • the conventional configuration described above has a problem in that the electron injection efficiency is poor and the driving voltage of the organic EL element is high.
  • the organic EL device using an alkali metal or alkaline earth metal oxide disclosed in Patent Document 1 as an electron injection layer is an element using an alkali metal or alkaline earth metal as an electron injection layer.
  • the driving voltage of an organic EL device in which the electron injection layer is made of an oxide of an alkali metal or an alkaline earth metal is lower than that of the metal injection layer. Same as drive voltage of organic EL device composed of alkaline earth metal Degree. Therefore, at present, the driving voltage of organic EL elements is high and the power consumption is large, and further reduction in driving voltage is required.
  • the driving voltage of the organic EL element is high, the power consumption is large, and further reduction of the driving voltage is required.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an organic EL element that can improve electron injection efficiency and can be driven at a low voltage.
  • the inventors of the present application have conducted intensive research on the electron injection layer in order to improve the electron injection efficiency, and as a result, the structure of the electron injection layer is specified to include at least the organic light emitting layer. It has been found that electrons can be efficiently injected into the organic layer, that is, the efficiency of injection of electrons into the organic layer can be improved, and the present invention has been completed.
  • the organic EL device includes an anode, an anode, and an organic layer including at least an organic light emitting layer provided between the anode and the cathode;
  • An anode, an organic layer, a halide layer, an oxide layer, and a cathode provided between the cathode and the organic layer, the electron injection layer including at least an oxide layer and a halide layer. are stacked in this order.
  • the organic EL element having the above-described structure has the above-described electron injection layer, the efficiency of electron injection into the organic layer is significantly improved as compared with the conventional case, and as a result, the drive voltage is reduced. Therefore, an organic EL element with low power consumption can be obtained.
  • the electron injection layer is formed to include an acid compound and a halogen compound that are very stable with respect to oxygen, even when the organic EL device is placed in an oxygen atmosphere.
  • the electron injection layer does not oxidize.
  • the electron injection efficiency of the electron injection layer into the light emitting layer does not decrease even in an oxygen atmosphere, and the electron injection layer can be peeled off at the interface with other layers. No organic EL element can be obtained. Therefore, by adopting the above-described configuration, it is possible to realize an organic EL element with low power consumption and less element deterioration even for a long time as compared with the conventional case.
  • the oxide layer is in contact with at least a part of the cathode, and Z or a halide layer is in contact with at least a part of the organic layer.
  • the configuration is more preferable.
  • the organic EL device according to the present invention preferably has a configuration in which the halide layer and the oxide layer are in contact with each other.
  • the material constituting the oxide layer is more preferably an alkali metal or alkaline earth metal oxide.
  • the material constituting the halide layer is more preferably an alkali metal or alkaline earth metal halide.
  • the material constituting the halide layer is a fluoride.
  • the current density and the light emission luminance can be further improved as compared with the conventional case.
  • the organic EL device according to the present invention preferably has a configuration in which the thickness of the electron injection layer is in the range of 0.1 to 20 nm.
  • the material constituting the cathode is preferably a transparent conductive oxide.
  • the cathode is made of a transparent conductive oxide, light from the light emitting layer can be extracted also from the cathode side.
  • anode and the cathode are made of a transparent conductive material, light can also be extracted from both side forces of the cathode and the cathode.
  • a method for producing an organic EL element according to the present invention includes an anode, a cathode, and an organic layer including at least an organic light emitting layer provided between the anode and the cathode;
  • a method for producing an organic electoluminescence device comprising an electron injection layer provided between the cathode and the organic layer, the halide forming a halide layer on at least a part of the surface of the organic layer A layer forming step and an oxide layer forming step of forming an oxide layer on at least a part of the halide layer.
  • an organic electoluminescence display panel includes the organic EL element.
  • FIG. 1 is a cross-sectional view illustrating an example of an electron injection layer in an organic EL element that is useful in the present embodiment.
  • FIG. 2 is a cross-sectional view illustrating another example of an electron injection layer.
  • FIG. 3 is a cross-sectional view illustrating still another example of the electron injection layer.
  • FIG. 4 is a cross-sectional view illustrating still another example of the electron injection layer.
  • FIG. 5 is a cross-sectional view showing another example of an organic EL element.
  • FIG. 6 (a) is a cross-sectional view showing a schematic configuration of the passive matrix drive type organic EL display panel.
  • FIG. 6 (b) is a view of the organic EL display panel viewed from the substrate side.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of an active matrix driving type organic EL display panel.
  • FIG. 8 A graph showing the measured current density of the current flowing in the organic EL element with respect to the driving voltage of the organic EL element.
  • FIG. 9 is a graph showing the measured luminance of the organic EL device with respect to the driving voltage of the organic EL device.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a conventional organic EL element.
  • the organic EL device is provided between an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and between the cathode and the organic layer.
  • an electron injection layer comprising at least an oxide layer and a halide layer provided between the cathode and the organic layer.
  • the oxide layer is in contact with at least a part of the cathode, and the Z or halogen oxide layer is in contact with at least a part of the organic layer. This will be described below.
  • the organic layer includes at least an organic light emitting layer (hereinafter simply referred to as a light emitting layer).
  • the organic layer may be a single-layer structure including only a light-emitting layer, or a stacked structure including a plurality of layers including a light-emitting layer and a layer having other functions.
  • a light emitting layer an organic light emitting layer
  • the organic layer may be a single-layer structure including only a light-emitting layer, or a stacked structure including a plurality of layers including a light-emitting layer and a layer having other functions.
  • the configuration of the organic layer the following configurations can be cited. The present invention is not limited to these.
  • the light emitting layer may be formed by, for example, a resistance heating vapor deposition method or an electron beam vapor deposition method using a vacuum vapor deposition apparatus, or a spin coating method, a doctor blade method, a discharge coating method, a spray using a light emitting layer forming coating solution. It is possible to form a film by a wet process such as a coating method, an inkjet method, a relief printing method, an intaglio printing method, a screen printing method, or a micro gravure coating method.
  • Examples of the material constituting the light emitting layer include light emitting materials.
  • Specific examples of the light-emitting material include aromatic dimethylidene compounds such as 4,4'-bis (2,2'-diphenyl) -biphenyl (DPVBi), 5-methyl-2, and the like.
  • oxazole compounds such as benzoxazole, 3- (4-biphenyl) -4-phenyl-5 --Butylphenol-Triazole derivatives such as 1,2,4-triazole (TAZ), styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, thiopyrazine dioxide derivatives, Fluorescent organic materials such as benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, and fluorenone derivatives, azomethine zinc complexes, and fluorescent organic materials such as (8-hydroxyquinolinato) aluminum complexes (Alq)
  • Low molecular light emitting materials such as metal compounds, or, for example, poly (2-decyloxy-1,4-phenylene) (DO-PP), poly [2,5-bis- [2- (N, N, N-triethylammo) ethoxy]-1, 4-phenol-alt-1,4-phenolene dibromide (PPP-NEt3 +), poly [2- (2'-ethylhexyloxy)- 5-methoxy-1,4-phenylenevinylene] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfo) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) -1,4-phenylene- (1-cyanobilene)] (CN-PPV), poly (9,9-dioctylfluorene) (PDAF), Examples thereof include polymer light emitting materials such as polyspiro (PS).
  • DO-PP poly (2-de
  • the light emitting layer can be formed of one kind of light emitting material among the above light emitting materials, or can be formed by combining a plurality of light emitting materials among the above light emitting materials.
  • the light-emitting layer may include, for example, a light-emission assisting agent, a charge transport material, an additive such as a donor receptor, a light-emitting dopant, a leveling agent, a charge injection material, It is also possible to contain knotting oil and the like.
  • the binding fat include, but are not limited to, for example, polycarbonate, polyester, and the like.
  • the hole transport layer can be formed, for example, by the same method as the method for forming the light emitting layer.
  • a material constituting the hole transport layer specifically, for example, porphyrin compounds, ⁇ , ⁇ , -bis- (3-methylphenol)-, ⁇ , -bis -(Phenol)-Benzidine (TPD), ⁇ , ⁇ , -Di (Naphthalene-1-yl)-Aromatic tertiary amines such as ⁇ , ⁇ , -Diphenyl-Benzidine (NPD) , Hydrazone compounds, quinacridone compounds, low molecular weight materials such as stillamin compounds, polyarine, 3,4-polyethylenedioxythiophene ⁇ polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) Derivatives), polymer materials such as polybulucarbazole (PVCz), polymer materials precursors such as poly (P-fur
  • the hole transport layer is formed of one kind of hole transport material among the hole transport materials, or formed by combining a plurality of hole transport materials among the hole transport materials. It is possible to do.
  • the hole transport layer may contain, for example, an additive such as a donor receptor, a leveling agent, a binding resin, and the like.
  • an additive such as a donor receptor, a leveling agent, a binding resin, and the like.
  • polycarbonate and polyester are not limited to the binding fats and oils.
  • the electron transport layer can be formed, for example, by the same method as the method for forming the light emitting layer.
  • Specific examples of materials constituting the electron transport layer include, for example, low molecular weight materials such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, and fluorenone derivatives, poly [oxaziazole], and the like. There are no particular restrictions on the high molecular weight material.
  • the electron transport layer may be formed of one electron transport material of the electron transport materials, or may be formed by combining a plurality of electron transport materials of the electron transport materials. Is possible.
  • the electron transport layer may be, for example, a donor or It is possible to contain additives such as acceptors, leveling agents, binding fats and the like. Examples of the binding fat include, but are not limited to, for example, polycarbonate, polyester and the like.
  • the hole injection layer can be formed by, for example, a method similar to the method for forming the light emitting layer.
  • specific examples of materials constituting the hole injection layer include, for example, copper phthalocyanine (CuPc), star bust type amine (eg, m-MTDATA), and the like. Is not to be done.
  • the hole injection layer is formed of one kind of hole injection material among the hole injection materials, or formed by combining a plurality of hole injection materials among the hole injection materials. It is possible to do.
  • the hole injection layer can contain, for example, additives such as donors and acceptors, leveling agents, binder resins and the like.
  • the binding fat include, but are not limited to, for example, polycarbonate, polyester and the like.
  • the organic EL covered in this embodiment can be manufactured on a substrate.
  • the substrate include inorganic materials such as glass and quartz, plastics such as polyethylene terephthalate, substrates that have insulating materials such as ceramics such as alumina, metal substrates such as aluminum and iron, SiO and organic A substrate coated with an insulating material such as an insulating material, or
  • the force that can be used is that the surface of a metal substrate such as aluminum or iron that has been subjected to an insulation treatment by a method such as anodization is not limited thereto.
  • the material constituting the anode is preferably composed of a material having a high work function so that holes can be easily injected into the organic layer.
  • ITO indium stannate
  • IZO indium zinc oxide
  • Nikkenore (Ni) ( ⁇ 5. 15 eV), etc.
  • Metal materials metal materials.
  • Examples include resistance heating evaporation, electron beam evaporation, ion plating, laser exposure, sputtering, and CVD.
  • a material in which these conductive materials are dispersed in a resin material can be used.
  • the resin material that can be used include, but are not limited to, acrylic resin, epoxy resin, and the like.
  • the material constituting the cathode is not particularly limited as long as it is a conductive material capable of transporting electrons to the electron injection layer.
  • the conductive material include aluminum (A1), Metal materials such as silver (Ag), nickel (Ni), palladium (Pd), platinum (Pt), indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO) And transparent conductive oxides such as Examples of the cathode forming method (film forming method) include a resistance heating evaporation method, an electron beam evaporation method, an ion plating method, a laser abrasion method, a sputtering method, and a CVD method.
  • a mixture of the above conductive materials can be used for the cathode.
  • a material in which these conductive materials are dispersed in a resin material can be used.
  • the resin material that can be used include acrylic resin, epoxy resin, and the like, but are not limited thereto.
  • the cathode has translucency in order to extract light from the organic EL element. It is necessary to In addition, for example, when the cathode is formed on the substrate and the cathode or the substrate has a light-transmitting property, the anode has a light-transmitting property in order to extract light from the organic EL element. There is a need.
  • a transparent conductive material for example, a transparent conductive oxide
  • the force on both sides (negative electrode side and anode side) of the organic EL element is also light. Can be taken out.
  • the electron injecting layer in the organic EL device which is effective in the present embodiment is configured to include at least an oxide layer and a no-logous layer.
  • the halide layer is disposed closer to the organic layer than the oxide layer, and the oxide layer is disposed closer to the cathode than the halide layer.
  • the organic EL element has an anode, an organic layer, a halide layer, an oxide layer, and a cathode laminated in this order.
  • the above “product in this order “Layered” simply indicates a relative stacking order, and for example, other layers may be formed between the layers.
  • the electron injection layer only needs to include at least an oxide layer and a halide layer, for example, between an oxide layer and a halide layer, and between a halide layer and an organic layer. And at least one between the oxide layer and the cathode
  • the oxide layer can be formed of one kind of oxide or a mixture of acids. Further, as a material constituting the oxide layer, a peroxide deviating from the stoichiometric composition ratio of the oxide or an oxide having oxygen vacancies can be used. Suitable materials for forming the oxide layer include, for example, aluminum oxide (Al 2 O 3) and lanthanum oxide (La 2 O 3).
  • Cerium oxide CeO, CeO
  • Y ⁇ yttrium oxide
  • ZrO zirconium oxide
  • the oxide layer more preferably contains an alkali metal or alkaline earth metal oxide. Since alkali metals and alkaline earth metal oxides have a low work function, the use of the alkali metal or alkaline earth metal oxide as the oxide layer improves the efficiency of electron injection into the organic layer. Can be made.
  • alkali metal or alkaline earth metal oxides lithium oxide (Li 0), acid potassium (K 2 O 2)
  • the halide layer also comprises at least one halide strength selected from the group consisting of fluoride, chloride, bromide, and iodide strength.
  • the halogenated layer can be formed of a mixture of one kind of halogenated material and a nonogenous material.
  • a suitable material constituting the halogenated material layer for example.
  • the halide layer is more preferably made of an alkali metal or alkaline earth metal halide.
  • alkali metal or alkaline earth metal halide insulating layer By using the alkali metal or alkaline earth metal halide insulating layer as the halide layer, the electron injection barrier height between the organic layer and the cathode can be lowered.
  • alkali metal or alkaline earth metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), rubidium fluoride (RbF), and cesium fluoride (CsF). ), Magnesium fluoride (MgF), calcium fluoride (CaF), strontium fluoride (SrF), barium fluoride (
  • Fluorides such as BaF), lithium chloride (LiCl), potassium chloride (KC1), rubidium chloride (Rb).
  • C1 cesium chloride (CsCl), calcium chloride (CaCl), strontium chloride (SrCl),
  • Chlorides such as barium chloride (BaCl), potassium bromide (KBr), odorous rubidium (RbBr), odor
  • the halide layer is particularly preferably made of a fluoride.
  • the fluoride By using the fluoride as the halide layer, the height of the electron injection barrier between the organic layer and the cathode can be further reduced.
  • fluorides LiF, RbF, CsF, CaF, SrF, and BaF are particularly preferable.
  • FIG. 1 is a cross-sectional view illustrating an example of the electron injection layer 13 in the organic EL element 1 according to the present embodiment.
  • a configuration example of the electron injection layer 13 will be described with reference to FIG.
  • the force for explaining the case where the electron injection layer 13 also has two layer forces of the halide layer 22 and the oxide layer 23 is not particularly limited.
  • the electron injection layer 13 is composed of a stack of an oxide layer 23 and a halide layer 22, the oxide layer 23 is in contact with the cathode 14, and the halide is In contact with the organic layer 12.
  • the halide layer 22 and the oxide layer 23 have a sufficient thickness, the halide layer 22 and the oxide layer 23 are formed as shown in FIG. And a structure in which both layers are laminated.
  • the halide layer 22 is oxidized with the organic layer 12.
  • the oxide layer 23 is in contact only with the cathode 14 and the halide layer 22.
  • the electron injection layer 13 may be distributed in an island shape with respect to the organic layer 12. More specifically, the halide layer 22 is in contact with only part of the organic layer 12, and Z or the oxide layer 23 is in contact with only part of the cathode 14. Also good. This will be described below.
  • FIG. 2 is a cross-sectional view illustrating another example of the electron injection layer 13.
  • the oxide layer 23 faces the cathode 14 and the halide faces the organic layer 12 in a part of the electron injection layer 13. That is, as shown in FIG. 2, the halide layer 22 is formed so as to be in contact with a portion of the light emitting layer 21 constituting the organic layer 12 and the oxide layer 23. The oxide layer 23 is formed so as to be in contact with the halide layer 22, the light emitting layer 21 (organic layer 12), and the cathode 14.
  • the halide layer 22 constituting the electron injection layer 13 may be laminated not on the entire surface of the organic layer 12 (here, the light emitting layer 21) but on only a part thereof.
  • the halogenated material layer 22 may be laminated on the organic layer 12 so as to be distributed in a plurality of island shapes. More specifically, the halide layer 22 is in contact with the organic layer 12 in a plurality of regions.
  • the island distribution indicates that the halide layer 22 is distributed so as to form a plurality of islands with respect to the surface of the organic layer 12.
  • FIG. 3 is a cross-sectional view illustrating still another example of the electron injection layer 13.
  • the electron injection layer 13 has a halide layer 22 laminated on the entire surface of the organic layer 12, and the oxide layer 23 is formed on the surface of the halide layer 22. They are stacked so that they are distributed in islands. That is, the oxide layer 23 is in contact with only a part of the cathode 14 and the halide layer 22, and the halide layer 22 is in contact with the organic layer 12 (here, the light emitting layer 21) and the oxide layer 23. It is in contact with the material layer 23 and the cathode 14. More specifically, the oxide layer 23 is in contact with the neurogenic layer 22 in a plurality of regions.
  • FIG. 4 is a cross-sectional view for explaining still another example of the electron injection layer 13.
  • the electron injection layer 13 has a halide layer 22 laminated on only a part of the surface of the organic layer 12, and the organic layer 12 and the oxide layer 23.
  • the oxide layer 23 is in contact with the cathode 14, the halide layer 22, and the organic layer 12. That is, in this case, the oxide layer 23 and the halide layer 22 are laminated so as to be distributed in a plurality of islands only on a part of the surface of the organic layer 12. Therefore, in this organic EL element 1, there is a portion where the cathode 14 and the organic layer 12 are in contact with each other. Further, in the organic EL element 1, the region where the oxide layer 23 is in contact only with the cathode 14 and the organic layer 12 and the region where the halide transport 22 is in contact only with the cathode 14 and the organic layer 12 Exists.
  • the electron injection layer 13 according to FIGS. 2 to 4 has an electron concentration portion (protruding portion) for concentrating electrons injected from the cathode in one place.
  • the halide layer 22 or the oxide layer 23 is laminated on the entire surface of the organic layer 12 or the halide layer 22, and a plurality of layers are formed on the surface of each halide layer 22 or oxide layer 23. May have a protruding portion (electron concentration portion).
  • the thickness of the electron injection layer 13 is preferably in the range of 0.1 to 20 nm. Since the electron injection layer 13 must efficiently inject electrons into the organic layer 12, when the thickness of the electron injection layer 13 is less than 0.1 nm, the effect as the electron injection layer 13 is small, and the organic layer In some cases, sufficient electron injection into 12 is not performed. In particular, when the electron injection layer 13 is contained in the halogenated oxide layer 22 or the oxide oxide layer 23 distributed in an island shape, the thickness of the electron injection layer 13 is less than 0.1 nm. However, if it is too thin, electron injection may not be performed sufficiently. Further, the oxides and halogens constituting the electron injection layer 13 are basically insulators.
  • the layer thicknesses of the oxide layer 23 and the halide layer 22 are each preferably in the range of 0.1 to LOnm.
  • the organic EL element 1 includes at least the anode 11, the cathode 14, and the light emitting layer 21 provided between the anode 11 and the cathode 14.
  • Layer 12 and an oxide layer 23 and a halogen oxide layer 22 provided between the cathode 14 and the organic layer 12 are reduced.
  • the electron injection layer 13 is included, and the anode 11, the organic layer 12, the halide layer 22, the oxide layer 23, and the cathode 14 are laminated in this order.
  • the electron injection layer 13 By configuring the electron injection layer 13 as described above, the efficiency of electron injection into the organic layer 12 is remarkably improved, and as a result, the driving voltage is lowered. Is possible. Further, since the electron injection layer 13 is formed to contain an oxide and a halide that are very stable with respect to oxygen, the organic EL element 1 is, for example, placed in an oxygen atmosphere. Even if it exists, the electron injection layer 13 does not oxidize. For this reason, the electron injection efficiency of the electron injection layer 13 into the light emitting layer 21 does not decrease, and the electron injection layer 13 does not peel off at the interface with other layers.
  • the organic EL element 1 in the present embodiment can realize the organic EL element 1 with little element deterioration even when used for a long time with low power consumption.
  • the manufacturing method of the organic EL element 1 includes a step of forming a halide layer 22 on at least a part of the surface of the organic layer 12, and a step of forming the halide layer 22 at least in part of the halide layer 22. And the oxide layer 23 forming step of forming the oxide layer 23.
  • the anode 11 is formed on the substrate 10, and the organic layer 12 including at least the light emitting layer 21 is formed on the anode 11.
  • the halide layer 22 is formed on at least a part (or part or all) of the surface of the organic layer 12.
  • an oxide layer 23 is formed on at least a part of the surface of the halide layer 22 (which may be a part or all of it! /,).
  • the organic EL element 1 can be manufactured by forming the cathode 14 on the oxide layer 23 so as to be in contact with at least the oxide layer 23.
  • halide layer 22 on at least a part of the surface of the organic layer 12, for example, an electron beam evaporation method, an ion plating method, a laser exposure method, a sputtering method, a CVD method, etc. Or the like.
  • oxide layer 23 on the halogen oxide layer 22 for example, an electronic vinyl Vapor deposition method, ion plating method, laser exposure method, sputtering method,
  • the halide layer 22 is formed only on a part of the surface of the organic layer 12, and the oxide layer 23 is combined with the halide layer 22. It may be formed in contact with the above organic layer 12! /.
  • the oxide layer 23 is formed only on a part of the surface of the halide layer 22, and the oxide layer 23, the halide layer 22,
  • the cathode 14 may be formed so as to be in contact with each other.
  • the halide layer 22 may be formed on the organic layer 12 (entire surface of the laminated surface) which may be formed only on a part of the organic layer 12.
  • the halide layer 22 is formed on a part of the organic layer 12, and the oxide layer 23 is formed so as to cover the halide layer 22.
  • the cathode 14 may be formed so as to be in contact with the organic layer 12 and the oxide layer 23. In this case, the cathode 14 and the organic layer 12 may be in contact with each other.
  • FIG. 5 is a cross-sectional view showing another example of the organic EL element 1.
  • the organic EL element 1 that is useful in the present embodiment may have a configuration in which the cathode 14 also has a transparent conductive acidity.
  • a transparent conductive oxide as the cathode 14 of the organic EL element 1
  • the electron injection layer 13 is composed of alkali metal or alkaline earth metal, the electron injection layer 13 reacts with oxygen when forming a transparent conductive oxide, and the organic injection layer 13
  • the electron injection layer 13 of the organic EL element 1 in the present embodiment is Since the structure includes the halide layer 23 and the halide layer 22, the electron injection layer 13 does not react with oxygen and is stable even in an oxygen atmosphere. Therefore, even if a transparent conductive oxide film is formed on the electron injection layer 13, the electron injection layer 13 is stable without deterioration, so that the electron injection from the electron injection layer 13 to the organic layer 12 efficiently. Can be performed.
  • the electron injection layer 13 is configured as described above. It is possible to extract the emitted light from both sides of cathode 14 and anode 11 without degradation of organic EL element 1.
  • the transparent conductive oxide examples include indium tin oxide (ITO) and zinc oxide (ZnO) of indium zinc oxide (IZO).
  • the cathode 14 is formed by a film forming method such as an electron beam evaporation method, an ion plating method, a laser exposure method, a sputtering method, or a CVD method. be able to.
  • a film forming method such as an electron beam evaporation method, an ion plating method, a laser exposure method, a sputtering method, or a CVD method.
  • the transparent conductive oxide a mixture of the above transparent conductive oxide materials can be used.
  • a material in which these transparent conductive oxides are dispersed in a resin material can be used. Examples of the resin material that can be used include, but are not limited to, acrylic resin, epoxy resin, and the like.
  • the organic EL element 1 it is also possible to use a reflective material that reflects light on the anode 11.
  • a reflective material for example, gold (Au), platinum (Pt), nickel (Ni) and the like have a high work function and high light reflectance, and metal materials are preferred.
  • anode 11 a hole is easily injected into the organic layer 12 having a large work function on a metal having a high light reflectance such as aluminum (A1) or silver (Ag). It is also possible to use a laminate of ITO and IZO, which are transparent conductive oxides.
  • the configuration of the anode 11 described above is advantageous in that the efficiency of injecting holes into the organic layer 12 is improved and a high light reflectance can be obtained.
  • the organic EL display panel 30 (hereinafter referred to as the organic EL display panel 30) will be described.
  • FIG. 6 (a) is a cross-sectional view showing a schematic configuration of the organic EL display panel 30 of the above-described passive matrix drive system, and FIG. Surface.
  • the organic EL display panel 30 of the above passive matrix driving system has a hole transport layer 20, a light emitting layer 21, a halide layer 22, an oxide layer 23, a cathode 14 on a plurality of rows of anodes 11 arranged in a strip shape. Has a laminated structure in which these layers are laminated in this order.
  • the passive matrix driving type organic EL display panel 30 is provided such that the plurality of rows of cathodes 14 arranged in a strip shape are orthogonal to the anode 11, and the intersection of the cathode 11 and the cathode 14 is a light emitting portion. Thus, information can be displayed by a plurality of light emitting units.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of an active matrix driving type organic EL display panel 30.
  • the organic EL element 1 is formed on the active matrix substrate 31 (substrate 10).
  • the active matrix substrate 31 includes a substrate 34, a plurality of TFTs formed for each pixel on the substrate 34, and a flat film 32 covering these TFTs.
  • Each TFT is provided so as to cover the gate electrode 38, the island-shaped semiconductor layer 40 formed on the gate electrode 38 via the gate insulating film 33, and both ends of the island-shaped semiconductor layer 40.
  • TFT electrodes 36 source and drain electrodes
  • Each TFT is connected to the source wiring 39 and the gate wiring 37.
  • the flat film 32 is provided with a through hole 35 reaching the drain electrode of each TFT.
  • the organic EL element 1 is formed on the flat film 32.
  • the anode 11 of the organic EL element 1 is composed of a transparent conductive film, and is formed for each pixel by patterning the transparent conductive film deposited on the flat film 32 and inside the through hole 35. Yes.
  • Each anode 11 is connected to the corresponding drain electrode of TFT through a through hole 35.
  • These anodes 11 are mutually insulated by insulating films 41 formed so as to cover the respective edge portions of the respective anodes 11 and the through holes 35.
  • a hole transport layer 20, a light emitting layer 21, a halide layer 22, an oxide layer 23, and a cathode 14 are formed (laminated) in this order on the anode 11 and the insulating film.
  • the organic EL element 1 which is similar to the present embodiment is formed.
  • the organic EL element 1 is not limited to the above configuration, and any organic EL element 1 may be used as long as it is the organic EL element 1 according to the present invention.
  • the configuration of the organic EL display panel 30 of the active matrix driving system that is useful for the present embodiment is not limited to the above.
  • the TFT may have a top gate structure.
  • the active matrix driving type organic EL display panel 30 may adopt a voltage driving method that requires two TFTs for each pixel, or a current that requires four TFTs for each pixel. Adopt a drive system.
  • the organic EL element 1 includes an anode 11, a cathode 14, and an organic layer 12 including at least a light-emitting layer 21 provided between the anode 11 and the anode 14;
  • An organic electroluminescent device comprising an electron injection layer 13 provided between a cathode 14 and an organic layer 12, wherein the electron injection layer 13 comprises an oxide layer 23 and a halide layer 22. It may have a layered structure including at least the halide layer 22 facing the organic layer 12, and the oxide layer 23 facing the cathode 14! /.
  • the organic layer 12 is in contact with the halide layer 22 and the oxide layer 23, and the cathode 14 is the halide layer 22.
  • the structure which is not touching may be sufficient.
  • the organic EL element 1 according to the present embodiment may have a configuration in which the organic layer 12 and the cathode 14 are in contact with each other. Further, in the organic EL device 1 according to the present embodiment, the cathode 14 is in contact with the halide layer 22 and the oxide layer 23, and the organic layer 12 is coupled with the oxide layer 23. The structure which is not in contact may be sufficient.
  • the manufacturing method of the organic EL element 1 according to the present embodiment has a configuration in which the oxide layer 23 is further formed in contact with the organic layer 12 in the oxide layer 23 forming step. There may be.
  • the method of manufacturing the organic EL device 1 according to the present embodiment may be configured such that the cathode 14 is further formed in contact with the halide layer 22 in the cathode 14 forming step.
  • the method of manufacturing the organic EL element 1 according to the present embodiment may be configured such that the cathode 14 is further formed in contact with the organic layer 12 in the cathode 14 forming step.
  • the organic EL element 1 which is useful in the present embodiment includes the halogenated material layer 22 and / or More preferably, the oxide layer 22 is not flattened.
  • the organic EL element 1 according to the present embodiment is more preferably formed so that the halide layer 22 has a plurality of protrusions from the organic layer 12. Further, the organic EL element 1 according to the present embodiment is more preferably formed such that the oxide layer 22 has a plurality of protrusions from the halogen layer 22.
  • ITO indium stannate
  • a sputtering apparatus a sputtering apparatus.
  • the ITO was patterned in a stripe shape having a width of 2 mm and a length of 25 mm, and this was used as an anode.
  • a PEDOT-PSS solution was applied on the anode by a spin coating method and dried at 200 ° C. for 10 minutes to form a hole transport layer.
  • the thickness of the hole transport layer was set to about 70 nm by controlling the concentration of the solution and the number of rotations during spin coating.
  • a solution of a polyfluorene derivative was similarly applied onto the hole transport layer by spin coating, and dried at 150 ° C. for 10 minutes to form a light emitting layer.
  • the film thickness of the light emitting layer was set to about 70 nm by controlling the concentration of the solution and the number of rotations during spin coating.
  • a lithium fluoride (LiF) film which is a fluoride, is formed on the light emitting layer by a resistance heating vapor deposition method in a stripe shape having a width of 2 mm and a length of 25 mm so as to be orthogonal to the stripe of the anode.
  • oxide barium oxide (BaO) film Is formed on the LiF film in a stripe shape with a width of 2mm and a length of 25mm with a film thickness of 3nm by the electron beam evaporation method (acid-oxide stacking process).
  • the stacked film of BaO was used as the electron injection layer.
  • an alkali metal fluoride is used for the halide layer
  • an alkaline earth metal oxide is used for the oxide layer.
  • aluminum (A1) is used as the cathode, and using an electron beam evaporation system, the striped shape is 2 mm wide and 25 mm long so that it has the same shape as the electron injection layer on the BaO thin film, with a thickness of lOOnm. Formed.
  • an organic EL device having a light emitting surface of 2 mm ⁇ 2 mm, which is covered in this example, was obtained.
  • a comparative organic EL element as a comparative example was prepared in the same manner as in Example 1 except for the configuration of the electron injection layer of the organic EL element.
  • the comparison organic EL device of the configuration of anode Z organic layer ZBa (metal) Z cathode is compared.
  • Example 1 comparison of the organic EL device of configuration of anode Z organic layer ZBaO (oxide) Z cathode is compared.
  • Example 2 Anode Z organic layer ZLiF (halogenated) Z cathode composition comparison Organic EL device Comparative Example 3, Anode Z organic layer ZBaO (oxide) / LiF (halogenated) Z cathode composition comparative organic An EL device was fabricated as Comparative Example 4, respectively. Then, the device characteristics of the comparative organic EL devices of Comparative Examples 1 to 4 were examined. The results are shown in Figs.
  • LiFZBaOZA which is the configuration of the electron injection layer in Example 1
  • the voltage and current density characteristics of the organic EL device with one structure are 10.8mA Zcm 2 at a voltage of 4V
  • the comparative organic EL device of BaZAl in which the electron injection layer is made of alkaline earth metal (Comparative Example 1 ) Is a low current density of 2.6 mAZcm 2 at a voltage of 4 V
  • the BaOZAl comparative organic EL device (Comparative Example 2) has an electron injection layer made of oxide.
  • the current density is 1.8 mAZcm 2 at a voltage of 4 V Since the injection layer is composed of a halide, the LiFZAl comparative organic EL device (Comparative Example 3) has a voltage of 4 V and a current density of 3 • OmAZcm 2.
  • the injection layer configuration allows a current to flow at a low voltage. This is because the structure of the electron injection layer in Example 1 can efficiently inject electrons into the organic layer. Also, the structure of the electron injection layer is the anode Z organic layer ZBaO (oxide) / LiF (halogenated material) Z cathode, and the structure of the electron injection layer is opposite to that of the electron injection layer in Example 1.
  • the current density is 0.5 mAZcm 2 at a voltage of 4 V, which is much higher than the current density of the organic EL device having the electron injection layer configuration of Example 1. The current is flowing through.
  • the electron injection layer is not necessarily composed of an oxide and a halide.
  • the anode Z organic layer Z halide Z oxide Z cathode t With this configuration, it is possible to pass a current through the organic EL element at a low voltage.
  • FIG. 9 is a graph showing the relationship between the light emission luminance of each organic EL element and the driving voltage of each organic EL element. From the results of FIG. 9 above, the voltage-luminescence luminance characteristic of the organic EL device having the LiFZBaOZAl structure, which is the configuration of the electron injection layer in Example 1, shows a luminance of 614 cdZm 2 at a voltage of 4 V, while the comparison of Comparative Example 1 The organic EL device has a low emission luminance of 59 cd / m 2 at a voltage of 4 V.
  • the comparative organic EL device of Comparative Example 2 has a light emission luminance of 31 cdZm 2 at a voltage of 4 V
  • the comparative organic EL device of Comparative Example 3 has Since the emission luminance is 143 cd / m 2 at a voltage of 4 V, and the emission luminance is 3 cdZm 2 at a voltage of 4 V in the comparative organic EL device of Comparative Example 4, the electron injection in Example 1 is performed. It can be seen that the layer structure can achieve high emission luminance at a low voltage. This is because, as described above with reference to FIG. 8, in the organic EL element having the structure of the electron injection layer in Example 1, electrons can be injected into the organic layer very efficiently. [Example 2]
  • the electron injection layer halide layer is lithium chloride (LiCl) deposited to a thickness of 6 nm by resistance heating vapor deposition, and the oxide layer is cesium oxide (CsO) 6 nm thick by electron beam vapor deposition.
  • An organic EL device was produced in the same manner as in Example 1 except that the film was formed to a thickness of 2 mm. That is, in this embodiment, an alkali metal salt is used for the halide layer and an alkali metal oxide is used for the oxide layer. Then, the element characteristics (element characteristics when a driving voltage of 4 V was applied) of the obtained organic EL element were measured. The results are shown in Table 1.
  • the electron injection layer halide layer is 5n of resistance heating vapor deposition of barium fluoride (BaF).
  • An organic EL device was fabricated in the same manner as in Example 1 except that the film was formed to a thickness of m and the oxide layer was formed to a thickness of 5 nm by an electron beam evaporation method using calcium oxide (CaO).
  • CaO calcium oxide
  • an alkaline earth metal fluoride is used for the halide layer
  • an alkaline earth metal oxide is used for the oxide layer.
  • the device characteristics of the obtained organic EL device were measured. The results are shown in Table 1.
  • the electron injection layer is made of scandium fluoride (ScF) for electron beam evaporation.
  • An organic EL device was produced in the same manner as in Example 1 except that the film was formed to a thickness of 2 nm and the oxide layer was formed to a thickness of 5 nm by an electron beam evaporation method using barium oxide (BaO). That is, in this embodiment, fluoride is used for the halide layer, and an alkaline earth metal oxide is used for the oxide layer. And the element characteristic of the obtained organic EL element was measured. The results are shown in Table 1.
  • the electron injection layer has a halide layer with a thickness of 2 nm formed by LiF using resistance heating vapor deposition, and the oxide layer is formed with an acid aluminum layer (Al 2 O 3) by electron beam evaporation to a thickness of 2 nm.
  • An organic EL device was produced in the same manner as in Example 1 except that the film was formed. That is, in this embodiment, an alkali metal fluoride is used for the halide layer and an oxide is used for the oxide layer. Then, the device characteristics of the obtained organic EL device were measured. The results are shown in Table 1.
  • Example 1 (m A / cm) c d / m) Example 1 10. 8 614 Example 2 8. 5 480 Example 3 9. 1 493 Example 4 6. 4 312 Example 5 4.4 4 185
  • Example 1 From the results in Table 1 above, the current density and light emission luminance are remarkably increased by using an alkali metal fluoride for the halogen layer and an alkaline earth metal oxide for the oxide layer as in Example 1. I understand that it ’s high. In addition, by comparing Example 1 to Example 4 and Example 5, by using an alkali metal or alkaline earth metal oxide for the oxide layer, the current density and emission luminance can be further increased. It can be seen that it can be raised. Further, according to Example 1, Example 3, and Example 4, the use of an alkali metal or alkaline earth metal fluoride for the halide layer can increase the current density and the emission luminance. I understand that.
  • ITO indium stannate
  • a sputtering device Formed.
  • ITO is patterned into stripes 2mm wide and 25mm long! / This was the anode.
  • PEDOT-PSS was applied onto the anode by spin coating, and dried at 200 ° C for 10 minutes to form a hole transport layer.
  • the film thickness of the hole transport layer is the concentration of the solution, The thickness was about 70 nm by controlling the number of rotations during spin coating.
  • a solution of the polyfluorene derivative was similarly applied to the hole transport layer by spin coating, and dried at 150 ° C. for 10 minutes to form a light emitting layer.
  • the film thickness of the light emitting layer was set to about 70 nm by controlling the concentration of the solution and the number of rotations during spin coating.
  • a cesium fluoride (CsF) film which is a fluoride
  • CsF cesium fluoride
  • a strontium oxide (SrO) film which is an oxide, is striped in a 2 mm width and 25 mm length so that it has the same shape as the CsF on the CsF film, which is a halide layer, using an electron beam evaporation system.
  • the film was formed to a thickness of 3 nm, and a laminated film of CsF (a non-oxide layer) and Sr o (an oxide layer) was used as an electron injection layer. That is, in this embodiment, an alkali metal fluoride is used for the halide layer, and an alkaline earth metal oxide is used for the oxide layer.
  • ITO as the cathode was formed on the SrO thin film in the same shape as the electron injection layer with a thickness of 150 nm in a mixed atmosphere of oxygen and argon using a sputtering apparatus. As a result, an organic EL device having a light emitting surface of 2 mm ⁇ 2 mm was obtained.
  • the organic EL device is provided between an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and the cathode and the organic layer.
  • an electron injection layer wherein the anode, the organic layer, the halide layer, the oxide layer, and the cathode force are stacked in this order.
  • the electron injection layer in the present invention is composed of an acid compound and a halogen compound that hardly react with oxygen, whereby the electron injection layer can be made very stable.
  • the oxide layer of the electron injection layer is preferably made of an alkali metal or alkaline earth metal oxide.
  • Alkali metal or alkali metal earth oxides have a low work function, so that the efficiency of electron injection into the organic layer can be increased.
  • the halide layer of the injection layer is preferably composed of an alkali metal or alkaline earth metal halide. Alkali metal or alkaline earth metal halides lower the electron injection barrier height between the cathode and the organic layer.
  • the halogenated material layer is preferably composed of a foodstuff. Fluoride also reduces the electron injection barrier height between the cathode and the organic layer.
  • the thickness of the electron injection layer is 0.1 to 20 nm, it becomes possible to efficiently inject electrons into the organic layer. Further, in the structure of the electron injection layer of the organic EL device in the present invention, even when a transparent conductive oxide film is formed, the electron injection layer is very chemically stable against water and oxygen. Therefore, the stability of an organic EL device having a cathode made of a transparent conductive oxide film can be made extremely excellent.
  • An organic EL device is provided between an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and the cathode and the organic layer.
  • an electron injection layer including at least an oxide layer and a halide layer is provided, and the anode, the organic layer, the halide layer, the oxide layer, and the cathode force are laminated in this order.
  • the organic EL device according to the present invention can be suitably applied to, for example, a display panel for displaying information.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic electroluminescent device comprising an anode (11), a cathode (14), an organic layer (12) arranged between the anode (11) and the cathode (14) and including at least a light-emitting layer (21), and an electron injection layer (13) arranged between the cathode (14) and the organic layer (12) and including at least an oxide layer (23) and a halide layer (22). The anode (11), organic layer (12), halide layer (22), oxide layer (23) and cathode (14) are arranged in layers in this order. With this structure, the organic EL device is improved in the electron injection efficiency and can be driven at low voltage.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子およびその製造方法、有機エレクトロル ミネッセンス表示パネル  ORGANIC ELECTRIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, ORGANIC ELECTROMINESSENCE DISPLAY PANEL
技術分野  Technical field
[0001] 本発明は、有機エレクト口ルミネッセンス素子に関するものである。  [0001] The present invention relates to an organic electoluminescence element.
背景技術  Background art
[0002] 電界発光素子の 1種である有機エレクト口ルミネッセンス素子(以下、「有機 EL素子 」と称する)は、自発光性の全固体素子であるため視認性が高ぐまたブラウン管、プ ラズマディスプレイ、液晶ディスプレイに比べて素子の厚さを小さくすることができ、さ らには駆動電力も小さ!、ため、広く応用が期待されて!、る。  Organic electroluminescence devices (hereinafter referred to as “organic EL devices”), which is a type of electroluminescent device, are self-luminous, all-solid-state devices, so they have high visibility and are also CRTs and plasma displays. Compared with liquid crystal displays, the thickness of the device can be reduced, and the drive power is also low!
[0003] 図 10は、従来の有機 EL素子の概略の構成を示す断面図である。 FIG. 10 is a cross-sectional view showing a schematic configuration of a conventional organic EL element.
[0004] 有機 EL素子は、図 10に示すように、基板の上に、陽極、正孔輸送層、発光層、電 子注入層、陰極力 Sこの順に積層されている。また、上記正孔輸送層と発光層とが有 機層に相当する。 As shown in FIG. 10, an organic EL element is laminated on a substrate in this order on an anode, a hole transport layer, a light emitting layer, an electron injection layer, and a cathode force S. The hole transport layer and the light emitting layer correspond to an organic layer.
[0005] 陽極は、有機層に正孔を注入する機能を有する。また、正孔輸送層は、陽極から注 入された正孔の、発光層への輸送効率を向上する機能を有する。また、陰極は、電 子注入層に電子を輸送する機能を有する。また、電子注入層は、陰極により輸送さ れた電子の、発光層への注入効率を向上する機能を有する。有機 EL素子では、陽 極から注入された正孔と、陰極から注入された電子を発光層にお ヽて再結合させる ことにより励起子 (エキシトン)を生成させて、その励起子が失活する際の光の放出を 利用して発光させる仕組みになっている。  [0005] The anode has a function of injecting holes into the organic layer. The hole transport layer has a function of improving the transport efficiency of holes injected from the anode to the light emitting layer. The cathode has a function of transporting electrons to the electron injection layer. The electron injection layer has a function of improving the injection efficiency of electrons transported by the cathode into the light emitting layer. In an organic EL element, excitons (excitons) are generated by recombining holes injected from the cathode and electrons injected from the cathode in the light emitting layer, and the excitons are deactivated. It is designed to emit light using the emission of light.
[0006] 上記有機 EL素子では、陰極から発光層への電子の高い注入効率を実現する観点 から、電子注入層は仕事関数の低い材料により構成されることが好ましい。そして、 上記仕事関数の低い材料としては、例えば、カルシウム (Ca)、バリウム (Ba)、リチウ ム(Li)等のアルカリ金属やアルカリ土類金属が使用されている。  In the organic EL element, the electron injection layer is preferably made of a material having a low work function from the viewpoint of realizing high injection efficiency of electrons from the cathode to the light emitting layer. Examples of the material having a low work function include alkali metals and alkaline earth metals such as calcium (Ca), barium (Ba), and lithium (Li).
[0007] しカゝしながら、上記アルカリ金属やアルカリ土類金属を電子注入層として用いた場 合、これらアルカリ金属やアルカリ土類金属は、酸素や水分に対して非常に不安定 であり、酸素や水と反応して酸化物や水酸化物を生成するために、化学的に安定な 材料とはいえない。そのため、これらのアルカリ金属やアルカリ土類金属力もなる電 子注入層は、有機層への電子の注入効率からみると好適ではあるが、酸素や水分と 反応を起こしてしまい、その結果として電子注入効率が低下するという問題点がある[0007] However, when the alkali metal or alkaline earth metal is used as the electron injection layer, the alkali metal or alkaline earth metal is very unstable to oxygen or moisture. It is not a chemically stable material because it reacts with oxygen and water to produce oxides and hydroxides. Therefore, these electron injection layers that also have alkali metal or alkaline earth metal power are suitable from the viewpoint of the efficiency of electron injection into the organic layer, but they react with oxygen and moisture, resulting in electron injection. There is a problem of reduced efficiency
。また、酸化物や水酸化物が生成されると、当該電子注入層と陰極および Zまたは 有機層との界面において剥離が生じ、有機 EL素子の発光輝度が低下してしまうとい う問題がある。 . In addition, when oxides or hydroxides are generated, there is a problem that peeling occurs at the interface between the electron injection layer and the cathode and the Z or organic layer, resulting in a decrease in light emission luminance of the organic EL element.
[0008] そこで、上記問題点に対して、例えば、特許文献 1では、有機層と陰極との間に電 子注入層としてアルカリ金属やアルカリ土類金属の酸ィ匕物を挿入することが提案され ている。そして、これらアルカリ金属やアルカリ土類金属の酸ィ匕物は仕事関数が低い 。そのためアルカリ金属やアルカリ土類金属の酸ィ匕物を電子注入層として利用するこ とにより、有機層への高い電子注入効率が期待でき、また酸ィ匕物であるため、酸素と の反応が起こらず、他の層との密着性が安定し、発光層への電子注入が効率的に行 なわれる。  [0008] Therefore, for example, Patent Document 1 proposes to insert an alkali metal or alkaline earth metal oxide as an electron injection layer between the organic layer and the cathode in order to solve the above problem. It has been. These alkali metal and alkaline earth metal oxides have a low work function. Therefore, by using an alkali metal or alkaline earth metal oxide as the electron injection layer, high electron injection efficiency into the organic layer can be expected, and since it is an oxide, it reacts with oxygen. It does not occur, the adhesion to other layers is stabilized, and electrons are efficiently injected into the light-emitting layer.
[0009] また、例えば、特許文献 2には、有機発光層の上に酸ィ匕物絶縁層とフッ素化合物 絶縁層とがこの順に積層されており、上記フッ素化合物絶縁層の上に陰極が形成さ れた構成が開示されている。  [0009] Further, for example, in Patent Document 2, an oxide insulating layer and a fluorine compound insulating layer are laminated in this order on an organic light emitting layer, and a cathode is formed on the fluorine compound insulating layer. The proposed configuration is disclosed.
〔特許文献 1〕  [Patent Document 1]
米国特許第 6563262号(登録曰; 2003年 5月 13曰)  US Patent No. 6563262 (Registered; May 13, 2003)
〔特許文献 2〕  [Patent Document 2]
特開 2001— 93671号 (公開曰; 2001年 4月 6曰)  JP 2001-93671 (Opened; April 6, 2001)
し力しながら、上記従来の構成では、電子の注入効率は悪ぐ有機 EL素子の駆動 電圧が高!、と 、う問題点がある。  However, the conventional configuration described above has a problem in that the electron injection efficiency is poor and the driving voltage of the organic EL element is high.
[0010] 具体的には、特許文献 1に開示のアルカリ金属やアルカリ土類金属の酸化物を電 子注入層とした有機 EL素子は、アルカリ金属やアルカリ土類金属を電子注入層とし た素子に比べて、化学的に安定した電子注入層ではあるが、電子注入層がアルカリ 金属やアルカリ土類金属の酸化物で構成された有機 EL素子の駆動電圧は、電子注 入層がアルカリ金属やアルカリ土類金属で構成された有機 EL素子の駆動電圧と同 程度である。従って、現時点において有機 EL素子の駆動電圧は高ぐ消費電力は 大きいものとなっており、さらなる駆動電圧の低下が求められている。 [0010] Specifically, the organic EL device using an alkali metal or alkaline earth metal oxide disclosed in Patent Document 1 as an electron injection layer is an element using an alkali metal or alkaline earth metal as an electron injection layer. In contrast, the driving voltage of an organic EL device in which the electron injection layer is made of an oxide of an alkali metal or an alkaline earth metal is lower than that of the metal injection layer. Same as drive voltage of organic EL device composed of alkaline earth metal Degree. Therefore, at present, the driving voltage of organic EL elements is high and the power consumption is large, and further reduction in driving voltage is required.
[0011] また、特許文献 2に開示の有機 EL素子の場合も同様に、有機 EL素子の駆動電圧 は高ぐ消費電力は大きぐさらなる駆動電圧の低下が求められている。 Similarly, in the case of the organic EL element disclosed in Patent Document 2, the driving voltage of the organic EL element is high, the power consumption is large, and further reduction of the driving voltage is required.
[0012] 本発明は、上記の課題に鑑みなされたものであり、その目的は、電子の注入効率を 向上させ、低電圧駆動が可能な有機 EL素子を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an organic EL element that can improve electron injection efficiency and can be driven at a low voltage.
発明の開示  Disclosure of the invention
[0013] 本願発明者等は、電子の注入効率を向上させるために、電子注入層について鋭意 研究を行なった結果、当該電子注入層の構造を特定することで、有機発光層を少な くとも含む有機層へ効率よく電子を注入すること、つまり、有機層への電子の注入効 率を向上させることができることを見出し、本発明を完成するに至った。  [0013] The inventors of the present application have conducted intensive research on the electron injection layer in order to improve the electron injection efficiency, and as a result, the structure of the electron injection layer is specified to include at least the organic light emitting layer. It has been found that electrons can be efficiently injected into the organic layer, that is, the efficiency of injection of electrons into the organic layer can be improved, and the present invention has been completed.
[0014] すなわち、本発明に係る有機 EL素子は、上記課題を解決するために、陽極と、陰 極と、上記陽極と陰極との間に設けられた有機発光層を少なくとも含む有機層と、上 記陰極と有機層との間に設けられた、酸ィ匕物層とハロゲンィ匕物層とを少なくとも含む 電子注入層とを備え、上記陽極、有機層、ハロゲン化物層、酸化物層および陰極が この順に積層されてなることを特徴としている。  [0014] That is, in order to solve the above problems, the organic EL device according to the present invention includes an anode, an anode, and an organic layer including at least an organic light emitting layer provided between the anode and the cathode; An anode, an organic layer, a halide layer, an oxide layer, and a cathode provided between the cathode and the organic layer, the electron injection layer including at least an oxide layer and a halide layer. Are stacked in this order.
[0015] 上記構成の有機 EL素子は、上記のような電子注入層の構成であるため、従来と比 ベて、有機層への電子の注入効率が著しく向上し、その結果として駆動電圧が低下 するため、消費電力の少ない有機 EL素子を得ることが可能となる。また、上記電子 注入層は、酸素に対して非常に安定である酸ィ匕物とハロゲンィ匕物とを含んで形成さ れているため、有機 EL素子が酸素雰囲気下に置かれた場合においても、電子注入 層が酸ィ匕することがない。つまり、上記構成とすることにより、酸素雰囲気下においた 場合でも電子注入層の発光層への電子注入効率が低下することがなぐまた電子注 入層が他の層との界面で剥離することがない有機 EL素子を得ることができる。従って 、上記の構成とすることにより、従来と比べて、低消費電力で長時間でも素子劣化の 少な 、有機 EL素子を実現することができる。  [0015] Since the organic EL element having the above-described structure has the above-described electron injection layer, the efficiency of electron injection into the organic layer is significantly improved as compared with the conventional case, and as a result, the drive voltage is reduced. Therefore, an organic EL element with low power consumption can be obtained. In addition, since the electron injection layer is formed to include an acid compound and a halogen compound that are very stable with respect to oxygen, even when the organic EL device is placed in an oxygen atmosphere. The electron injection layer does not oxidize. In other words, with the above structure, the electron injection efficiency of the electron injection layer into the light emitting layer does not decrease even in an oxygen atmosphere, and the electron injection layer can be peeled off at the interface with other layers. No organic EL element can be obtained. Therefore, by adopting the above-described configuration, it is possible to realize an organic EL element with low power consumption and less element deterioration even for a long time as compared with the conventional case.
[0016] また、本発明に係る有機 EL素子は、上記酸ィ匕物層が上記陰極の少なくとも一部と 接している、および Zまたは、ハロゲンィ匕物層が上記有機層の少なくとも一部と接し ている構成がより好ましい。 In the organic EL device according to the present invention, the oxide layer is in contact with at least a part of the cathode, and Z or a halide layer is in contact with at least a part of the organic layer. The configuration is more preferable.
[0017] また、本発明に係る有機 EL素子は、上記ハロゲンィ匕物層と酸ィ匕物層とが接してい る構成がより好ましい。 [0017] Further, the organic EL device according to the present invention preferably has a configuration in which the halide layer and the oxide layer are in contact with each other.
[0018] また、本発明に係る有機 EL素子は、上記酸化物層を構成する材料が、アルカリ金 属またはアルカリ土類金属の酸ィ匕物である構成がより好ましい。これにより、電流密 度および発光輝度を従来に比べて、より向上させることができる。  [0018] Further, in the organic EL device according to the present invention, the material constituting the oxide layer is more preferably an alkali metal or alkaline earth metal oxide. Thereby, the current density and the light emission luminance can be further improved as compared with the conventional case.
[0019] また、本発明に係る有機 EL素子は、上記ハロゲンィ匕物層を構成している材料が、 アルカリ金属またはアルカリ土類金属のハロゲンィ匕物である構成がより好ましい。これ により、電流密度および発光輝度を従来に比べて、より向上させることができる。  [0019] Further, in the organic EL device according to the present invention, the material constituting the halide layer is more preferably an alkali metal or alkaline earth metal halide. Thereby, the current density and the light emission luminance can be further improved as compared with the conventional case.
[0020] また、本発明に係る有機 EL素子は、上記ハロゲンィ匕物層を構成して 、る材料は、 フッ化物である構成がより好ましい。これにより、電流密度および発光輝度を従来に 比べて、より一層向上させることができる。  [0020] Further, in the organic EL device according to the present invention, it is more preferable that the material constituting the halide layer is a fluoride. Thereby, the current density and the light emission luminance can be further improved as compared with the conventional case.
[0021] また、本発明に係る有機 EL素子は、上記電子注入層の厚さが、 0. l〜20nmの範 囲内である構成がより好ましい。  In addition, the organic EL device according to the present invention preferably has a configuration in which the thickness of the electron injection layer is in the range of 0.1 to 20 nm.
[0022] また、本発明に係る有機 EL素子は、上記陰極を構成して!/ヽる材料は、透明導電性 酸ィ匕物である構成がより好ま 、。  [0022] In the organic EL device according to the present invention, the material constituting the cathode is preferably a transparent conductive oxide.
[0023] 上記陰極を透明導電性酸化物で構成することにより、陰極側からも発光層からの光 を取り出すことができる。  [0023] When the cathode is made of a transparent conductive oxide, light from the light emitting layer can be extracted also from the cathode side.
[0024] また、陽極および陰極を透明導電性の材料によって構成することにより、陰極と陽 極との両側力も光を取り出すことができる。  [0024] In addition, when the anode and the cathode are made of a transparent conductive material, light can also be extracted from both side forces of the cathode and the cathode.
[0025] 本発明に係る有機 EL素子の製造方法は、上記の課題を解決するために、陽極と、 陰極と、陽極と陰極との間に設けられた有機発光層を少なくとも含む有機層と、上記 陰極と有機層との間に設けられた電子注入層とを備えた有機エレクト口ルミネッセン ス素子の製造方法であって、上記有機層の表面の少なくとも一部にハロゲン化物層 を形成するハロゲン化物層形成工程と、上記ハロゲン化物層の少なくとも一部に酸 化物層を形成する酸化物層形成工程とを含むことを特徴としている。  [0025] In order to solve the above problems, a method for producing an organic EL element according to the present invention includes an anode, a cathode, and an organic layer including at least an organic light emitting layer provided between the anode and the cathode; A method for producing an organic electoluminescence device comprising an electron injection layer provided between the cathode and the organic layer, the halide forming a halide layer on at least a part of the surface of the organic layer A layer forming step and an oxide layer forming step of forming an oxide layer on at least a part of the halide layer.
[0026] 上記の構成とすることにより、有機層、ハロゲン化物層、酸化物層、陰極の順に積 層された有機 EL素子を製造することができる。つまり、上記製造方法によって、従来 と比べて、低消費電力で長時間でも素子劣化の少な!ヽ有機 EL素子を製造すること ができる。 [0026] With the above configuration, it is possible to manufacture an organic EL element in which an organic layer, a halide layer, an oxide layer, and a cathode are stacked in this order. In other words, according to the above manufacturing method, Compared with, organic EL elements can be manufactured with low power consumption and little element degradation even for a long time.
[0027] 本発明に係る有機エレクト口ルミネッセンス表示パネルは、上記の課題を解決する ために、上記有機 EL素子を備えることを特徴として 、る。  [0027] In order to solve the above-described problems, an organic electoluminescence display panel according to the present invention includes the organic EL element.
[0028] 上記の構成とすることにより、従来と比べて、低消費電力で長時間でも素子劣化の 少ない有機 EL素子を用いているので、低消費電力で長時間表示品質が劣化するこ とのない有機エレクト口ルミネッセンス表示パネルを提供することができる。 [0028] By adopting the above configuration, since the organic EL element with low power consumption and less element deterioration even for a long time is used as compared with the conventional case, the display quality is deteriorated for a long time with low power consumption. There can be provided no organic-electto-luminescence display panel.
[0029] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。 [0029] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本実施の形態に力かる有機 EL素子における電子注入層の一例を説明する断 面図である。  [0030] FIG. 1 is a cross-sectional view illustrating an example of an electron injection layer in an organic EL element that is useful in the present embodiment.
[図 2]電子注入層の他の例を説明する断面図である。  FIG. 2 is a cross-sectional view illustrating another example of an electron injection layer.
[図 3]電子注入層のさらに他の例を説明する断面図である。  FIG. 3 is a cross-sectional view illustrating still another example of the electron injection layer.
[図 4]電子注入層のさらに他の例を説明する断面図である。  FIG. 4 is a cross-sectional view illustrating still another example of the electron injection layer.
[図 5]有機 EL素子の他の例を示す断面図である。  FIG. 5 is a cross-sectional view showing another example of an organic EL element.
[図 6(a)]上記パッシブマトリックス駆動方式の有機 EL表示パネルの概略構成を示す 断面図である。  FIG. 6 (a) is a cross-sectional view showing a schematic configuration of the passive matrix drive type organic EL display panel.
[図 6(b)]当該有機 EL表示パネルの基板側から見た図面である。  FIG. 6 (b) is a view of the organic EL display panel viewed from the substrate side.
[図 7]アクティブマトリックス駆動方式の有機 EL表示パネルの概略の構成を示す断面 図である。  FIG. 7 is a cross-sectional view showing a schematic configuration of an active matrix driving type organic EL display panel.
[図 8]有機 EL素子の駆動電圧に対する有機 EL素子に流れる電流の電流密度を測 定したグラフである。  [Fig. 8] A graph showing the measured current density of the current flowing in the organic EL element with respect to the driving voltage of the organic EL element.
[図 9]有機 EL素子の駆動電圧に対する有機 EL素子の発光輝度を測定したグラフで ある。  FIG. 9 is a graph showing the measured luminance of the organic EL device with respect to the driving voltage of the organic EL device.
[図 10]従来の有機 EL素子の概略の構成を示す断面図である。  FIG. 10 is a cross-sectional view showing a schematic configuration of a conventional organic EL element.
符号の説明 1 有機 EL素子 Explanation of symbols 1 Organic EL device
10 基板  10 Board
11 陽極  11 Anode
12 有機層  12 Organic layer
13 電子注入層  13 Electron injection layer
14 陰極  14 Cathode
20 正孔輸送層  20 Hole transport layer
21 発光層  21 Light-emitting layer
22 ハロゲン化物層  22 Halide layer
23 酸化物層  23 Oxide layer
30 有機 EL表示パネル  30 OLED display panel
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 本発明の実施の一形態について説明すれば、以下の通りである。  [0032] An embodiment of the present invention will be described as follows.
[0033] 本実施の形態に係る有機 EL素子は、陽極と、陰極と、陽極と陰極との間に設けら れた有機発光層を少なくとも含む有機層と、陰極と有機層との間に設けられた電子 注入層と、を備えた有機エレクト口ルミネッセンス素子であって、上記陰極と有機層と の間に設けられた、酸化物層とハロゲン化物層とを少なくとも含む電子注入層とを備 え、上記酸ィ匕物層が上記陰極の少なくとも一部と接している、および Zまたは、ハロ ゲンィ匕物層が上記有機層の少なくとも一部と接している構成である。以下、これにつ いて説明する。 [0033] The organic EL device according to the present embodiment is provided between an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and between the cathode and the organic layer. And an electron injection layer comprising at least an oxide layer and a halide layer provided between the cathode and the organic layer. The oxide layer is in contact with at least a part of the cathode, and the Z or halogen oxide layer is in contact with at least a part of the organic layer. This will be described below.
[0034] (有機層) [0034] (Organic layer)
上記有機層は、有機発光層(以下、単に発光層と称する)を少なくとも含んでいる。 上記有機層は、発光層のみの単層構造でも、発光層と他の機能を有する層との複数 の層で構成された積層構造でも良い。具体的には、例えば、上記有機層の構成とし ては、下記の構成が挙げられる力 本発明はこれらに限定されるものではない。 The organic layer includes at least an organic light emitting layer (hereinafter simply referred to as a light emitting layer). The organic layer may be a single-layer structure including only a light-emitting layer, or a stacked structure including a plurality of layers including a light-emitting layer and a layer having other functions. Specifically, for example, as the configuration of the organic layer, the following configurations can be cited. The present invention is not limited to these.
(1)発光層 (1) Light emitting layer
(2)正孔輸送層 Z発光層  (2) Hole transport layer Z light emitting layer
(3)発光層 Z電子輸送層 (4)正孔輸送層 Z発光層 Z電子輸送層 (3) Light emitting layer Z electron transport layer (4) Hole transport layer Z light emitting layer Z electron transport layer
(5)正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層  (5) Hole injection layer Z hole transport layer Z light emitting layer Z electron transport layer
(発光層)  (Light emitting layer)
上記発光層は、例えば、真空蒸着装置を用いた抵抗加熱蒸着法や電子ビーム蒸 着法、また発光層形成用塗液を用いて、スピンコート法、ドクターブレード法、吐出コ ート法、スプレーコート法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印 刷法、マイクログラビアコート法等のウエットプロセスで成膜することが可能である。  The light emitting layer may be formed by, for example, a resistance heating vapor deposition method or an electron beam vapor deposition method using a vacuum vapor deposition apparatus, or a spin coating method, a doctor blade method, a discharge coating method, a spray using a light emitting layer forming coating solution. It is possible to form a film by a wet process such as a coating method, an inkjet method, a relief printing method, an intaglio printing method, a screen printing method, or a micro gravure coating method.
[0035] 発光層を構成する材料としては、発光材料が挙げられる。上記発光材料としては、 具体的には、例えば、 4, 4'-ビス(2, 2'-ジフエ-ルビ-ル) -ビフエ-ル(DPVBi)等 の芳香族ジメチリデェン化合物、 5-メチル -2- [2- [4- (5-メチル -2-ベンゾォキサゾリ ル)フエ-ル]ビュル]ベンゾォキサゾール等のォキサジァゾール化合物、 3- (4-ビフ ェ-ルイル) -4-フエ-ル -5- -ブチルフエ-ル - 1, 2, 4-トリァゾール(TAZ)等のトリ ァゾ-ル誘導体、 1, 4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物 、チォピラジンジォキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラ キノン誘導体、ジフヱノキノン誘導体、フルォレノン誘導体等の蛍光性有機材料、ァ ゾメチン亜鉛錯体、(8-ヒドロキシキノリナト)アルミニウム錯体 (Alq )等の蛍光性有機  [0035] Examples of the material constituting the light emitting layer include light emitting materials. Specific examples of the light-emitting material include aromatic dimethylidene compounds such as 4,4'-bis (2,2'-diphenyl) -biphenyl (DPVBi), 5-methyl-2, and the like. -[2- [4- (5-Methyl-2-benzoxazolyl) phenol] bulu] oxazole compounds such as benzoxazole, 3- (4-biphenyl) -4-phenyl-5 --Butylphenol-Triazole derivatives such as 1,2,4-triazole (TAZ), styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, thiopyrazine dioxide derivatives, Fluorescent organic materials such as benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, and fluorenone derivatives, azomethine zinc complexes, and fluorescent organic materials such as (8-hydroxyquinolinato) aluminum complexes (Alq)
3  Three
金属化合物等の低分子発光材料、若しくは、例えば、ポリ(2-デシルォキシ - 1, 4-フ ェ-レン)(DO- PPP)、ポリ [2, 5-ビス- [2- (N, N, N-トリェチルアンモ-ゥム)エト キシ] - 1, 4-フエ-ル-アルト- 1, 4-フエ-ルレン]ジブロマイド(PPP- NEt3+)、ポリ [ 2- (2' -ェチルへキシルォキシ) -5-メトキシ - 1, 4-フエ二レンビニレン] (MEH-PPV) 、ポリ [5-メトキシ-(2-プロパノキシサルフォ-ド)- 1, 4-フエ二レンビニレン] (MPS- PPV)、ポリ [2, 5-ビス- (へキシルォキシ) - 1, 4-フエ二レン- (1 -シァノビ-レン)] (C N-PPV)、ポリ(9, 9-ジォクチルフルオレン)(PDAF) ,ポリスピロ(PS)等の高分子 発光材料等が挙げられる。  Low molecular light emitting materials such as metal compounds, or, for example, poly (2-decyloxy-1,4-phenylene) (DO-PP), poly [2,5-bis- [2- (N, N, N-triethylammo) ethoxy]-1, 4-phenol-alt-1,4-phenolene dibromide (PPP-NEt3 +), poly [2- (2'-ethylhexyloxy)- 5-methoxy-1,4-phenylenevinylene] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfo) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) -1,4-phenylene- (1-cyanobilene)] (CN-PPV), poly (9,9-dioctylfluorene) (PDAF), Examples thereof include polymer light emitting materials such as polyspiro (PS).
[0036] また、上記発光層は、上記の発光材料のうち 1種の発光材料により形成したり、上 記の発光材料のうち複数の発光材料を複合して形成したりすることが可能である。ま た、発光層は、上記発光材料の他に、例えば、発光アシスト剤、電荷輸送材料、ドナ ーゃァクセプター等の添加剤、発光性のドーパント、レべリング剤、電荷注入材料、 結着用の榭脂等を含有させることも可能である。結着用の榭脂としては、例えば、ポリ カーボネート、ポリエステル等が挙げられる力 何らこれに限定されるものではない。 [0036] Further, the light emitting layer can be formed of one kind of light emitting material among the above light emitting materials, or can be formed by combining a plurality of light emitting materials among the above light emitting materials. . In addition to the above light-emitting materials, the light-emitting layer may include, for example, a light-emission assisting agent, a charge transport material, an additive such as a donor receptor, a light-emitting dopant, a leveling agent, a charge injection material, It is also possible to contain knotting oil and the like. Examples of the binding fat include, but are not limited to, for example, polycarbonate, polyester, and the like.
[0037] (正孔輸送層)  [0037] (Hole transport layer)
上記正孔輸送層は、例えば、上記発光層の形成方法と同様の方法で成膜すること ができる。また、正孔輸送層を構成する材料 (正孔輸送材料)としては、具体的には、 例えば、ポルフィリン化合物、 Ν,Ν,-ビス- (3-メチルフエ-ル)- Ν,Ν,-ビス- (フエ-ル) - ベンジジン (TPD)、 Ν,Ν,-ジ (ナフタレン- 1-ィル) - Ν,Ν,-ジフエ-ル-ベンジジン (NPD) 等の芳香族第 3級アミンィ匕合物、ヒドラゾン化合物、キナクリドンィ匕合物、スチルァミン 化合物等の低分子材料、ポリア-リン、 3,4-ポリエチレンジォキシチォフェン Ζポリス チレンサルフォネート (PEDOT/PSS)、ポリ(トリフエ-ルァミン誘導体)、ポリビュルカル バゾール(PVCz)等の高分子材料、ポリ (P-フ -レンビ-レン)前駆体、ポリ (P-ナフタ レンビニレン)前駆体等の高分子材料前駆体等が挙げられるが、特に限定されるもの ではない。  The hole transport layer can be formed, for example, by the same method as the method for forming the light emitting layer. Further, as a material constituting the hole transport layer (hole transport material), specifically, for example, porphyrin compounds, Ν, Ν, -bis- (3-methylphenol)-, Ν, -bis -(Phenol)-Benzidine (TPD), Ν, Ν, -Di (Naphthalene-1-yl)-Aromatic tertiary amines such as Ν, Ν, -Diphenyl-Benzidine (NPD) , Hydrazone compounds, quinacridone compounds, low molecular weight materials such as stillamin compounds, polyarine, 3,4-polyethylenedioxythiophene Ζpolystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) Derivatives), polymer materials such as polybulucarbazole (PVCz), polymer materials precursors such as poly (P-furene-vinylene) precursors, poly (P-naphthalene vinylene) precursors, etc. It is not limited.
[0038] また、上記正孔輸送層は、上記正孔輸送材料のうち 1種の正孔輸送材料により形 成したり、上記正孔輸送材料のうち複数の正孔輸送材料を複合して形成したりするこ とが可能である。また、上記正孔輸送層は、上記の正孔輸送材料の他に、例えば、ド ナーゃァクセプター等の添加剤、レべリング剤、結着用の榭脂等を含有させることも 可能である。結着用の榭脂としては、例えば、ポリカーボネート、ポリエステル等が挙 げられる力 何らこれに限定されるものではない。  [0038] Further, the hole transport layer is formed of one kind of hole transport material among the hole transport materials, or formed by combining a plurality of hole transport materials among the hole transport materials. It is possible to do. In addition to the above hole transport material, the hole transport layer may contain, for example, an additive such as a donor receptor, a leveling agent, a binding resin, and the like. For example, polycarbonate and polyester are not limited to the binding fats and oils.
[0039] (電子輸送層)  [0039] (Electron transport layer)
上記電子輸送層は、例えば、上記発光層の形成方法と同様の方法で成膜すること ができる。また、電子輸送層を構成する材料 (電子輸送材料)としては、具体的には、 例えば、ォキサジァゾール誘導体、トリァゾール誘導体、ベンゾキノン誘導体、ナフト キノン誘導体、フルォレノン誘導体等の低分子材料、ポリ [ォキサジァゾール]等の高 分子材料等が挙げられるが、特に限定されるものではない。  The electron transport layer can be formed, for example, by the same method as the method for forming the light emitting layer. Specific examples of materials constituting the electron transport layer (electron transport material) include, for example, low molecular weight materials such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, and fluorenone derivatives, poly [oxaziazole], and the like. There are no particular restrictions on the high molecular weight material.
[0040] また、上記電子輸送層は、上記電子輸送材料のうち 1種の電子輸送材料により形 成したり、上記電子輸送材料のうち複数の電子輸送材料を複合して形成したりするこ とが可能である。また、電子輸送層は、上記電子輸送材料の他に、例えば、ドナーや ァクセプター等の添加剤、レべリング剤、結着用の榭脂等を含有させることが可能で ある。結着用の榭脂としては、例えば、ポリカーボネート、ポリエステル等が挙げられ る力 何らこれに限定されるものではない。 [0040] Further, the electron transport layer may be formed of one electron transport material of the electron transport materials, or may be formed by combining a plurality of electron transport materials of the electron transport materials. Is possible. In addition to the electron transport material, the electron transport layer may be, for example, a donor or It is possible to contain additives such as acceptors, leveling agents, binding fats and the like. Examples of the binding fat include, but are not limited to, for example, polycarbonate, polyester and the like.
[0041] (正孔注入層)  [0041] (Hole injection layer)
上記正孔注入層は、例えば、上記発光層の形成方法と同様の方法で成膜すること ができる。また、正孔注入層を構成する材料 (正孔注入材料)としては、具体的には、 例えば、銅フタロシアニン(CuPc)、スターバスト型ァミン(例えば m- MTDATA)等が挙 げられる力 特に限定されるものではない。  The hole injection layer can be formed by, for example, a method similar to the method for forming the light emitting layer. In addition, specific examples of materials constituting the hole injection layer (hole injection material) include, for example, copper phthalocyanine (CuPc), star bust type amine (eg, m-MTDATA), and the like. Is not to be done.
[0042] また、上記正孔注入層は、上記正孔注入材料のうち 1種の正孔注入材料により形 成したり、上記正孔注入材料のうち複数の正孔注入材料を複合して形成したりするこ とが可能である。また、正孔注入層は、上記正孔注入材料の他に、例えば、ドナーや ァクセプター等の添加剤、レべリング剤、結着用の榭脂等を含有させることが可能で ある。結着用の榭脂としては、例えば、ポリカーボネート、ポリエステル等が挙げられ る力 何らこれに限定されるものではない。  [0042] Further, the hole injection layer is formed of one kind of hole injection material among the hole injection materials, or formed by combining a plurality of hole injection materials among the hole injection materials. It is possible to do. In addition to the above hole injection material, the hole injection layer can contain, for example, additives such as donors and acceptors, leveling agents, binder resins and the like. Examples of the binding fat include, but are not limited to, for example, polycarbonate, polyester and the like.
[0043] (基板)  [0043] (Substrate)
本実施の形態にカゝかる有機 ELは、基板上に作製することができる。上記基板とし ては、例えば、ガラス、石英等の無機材料、ポリエチレンテレフタレート等のプラスチ ック、および、アルミナ等のセラミックス等の絶縁性材料力 なる基板、アルミニウム、 鉄等の金属基板に SiOや有機絶縁性材料等の絶縁材料をコートした基板、または  The organic EL covered in this embodiment can be manufactured on a substrate. Examples of the substrate include inorganic materials such as glass and quartz, plastics such as polyethylene terephthalate, substrates that have insulating materials such as ceramics such as alumina, metal substrates such as aluminum and iron, SiO and organic A substrate coated with an insulating material such as an insulating material, or
2  2
、アルミニウム、鉄等の金属基板の表面を陽極酸ィ匕等の方法で絶縁ィ匕処理を施した 基板等を用いることが可能である力 何らこれに限定されるものではない。  In addition, the force that can be used is that the surface of a metal substrate such as aluminum or iron that has been subjected to an insulation treatment by a method such as anodization is not limited thereto.
[0044] (陽極) [0044] (Anode)
陽極を構成する材料は、有機層に正孔を注入しやすいように、仕事関数が大きい 材料により構成されて ヽることが好ま ヽ。仕事関数が大きく正孔注入に好適な材料 としては、具体的には、例えば、インジウム錫酸ィ匕物 (ITO) (仕事関数 φ = 5. OeV) 、インジウム亜鉛酸ィ匕物 (IZO) ( = 5. OeV)等の透明導電性酸化物や、金 (Au) ( = 5. leV)、プラチナ(Pt) ( φ = 5. 65eV)、二ッケノレ(Ni) ( φ = 5. 15eV)等の 金属材料が挙げられる。そして、上記陽極の形成方法 (成膜方法)としては、例えば、 抵抗加熱蒸着法、電子ビーム蒸着法、イオンプレーティング法、レーザーァプレーシ ヨン法、スパッタリング法、 CVD法等が挙げられる。また、これらの導電性材料を榭脂 材料に分散させた材料を使用することができる。使用できる榭脂材料としては、例え ばアクリル榭脂、エポキシ榭脂等が挙げられる力 何らこれに限定されるものではな い。 The material constituting the anode is preferably composed of a material having a high work function so that holes can be easily injected into the organic layer. Specific examples of materials having a large work function and suitable for hole injection include indium stannate (ITO) (work function φ = 5. OeV), indium zinc oxide (IZO) ( = 5. OeV) and other transparent conductive oxides, gold (Au) (= 5. leV), platinum (Pt) (φ = 5.65 eV), Nikkenore (Ni) (φ = 5. 15 eV), etc. Metal materials. And, as a method of forming the anode (film formation method), for example, Examples include resistance heating evaporation, electron beam evaporation, ion plating, laser exposure, sputtering, and CVD. In addition, a material in which these conductive materials are dispersed in a resin material can be used. Examples of the resin material that can be used include, but are not limited to, acrylic resin, epoxy resin, and the like.
[0045] 陰極を構成する材料としては、電子注入層に電子を輸送することが可能な導電性 材料であればよぐ上記導電性材料としては、具体的には、例えば、アルミニウム (A1 )、銀 (Ag)、ニッケル (Ni)、パラジウム (Pd)、プラチナ (Pt)等の金属材料や、インジ ゥム錫酸化物 (ITO)、インジウム亜鉛酸ィ匕物 (IZO)、酸化亜鉛 (ZnO)等の透明導 電性酸化物が挙げられる。そして、上記陰極の形成方法 (成膜方法)としては、例え ば、抵抗加熱蒸着法、電子ビーム蒸着法、イオンプレーティング法、レーザーアブレ ーシヨン法、スパッタリング法、 CVD法等が挙げられる。また、陰極は、上記導電性材 料の混合物を使用することも可能である。また、これらの導電性材料を榭脂材料に分 散させた材料を使用することができる。使用できる榭脂材料としては、例えばアクリル 榭脂、エポキシ榭脂等が挙げられるが、何らこれに限定されるものではない。  [0045] The material constituting the cathode is not particularly limited as long as it is a conductive material capable of transporting electrons to the electron injection layer. Specific examples of the conductive material include aluminum (A1), Metal materials such as silver (Ag), nickel (Ni), palladium (Pd), platinum (Pt), indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO) And transparent conductive oxides such as Examples of the cathode forming method (film forming method) include a resistance heating evaporation method, an electron beam evaporation method, an ion plating method, a laser abrasion method, a sputtering method, and a CVD method. In addition, a mixture of the above conductive materials can be used for the cathode. In addition, a material in which these conductive materials are dispersed in a resin material can be used. Examples of the resin material that can be used include acrylic resin, epoxy resin, and the like, but are not limited thereto.
[0046] また、例えば、陽極が基板に形成されており、陽極または基板が透光性を有してい な 、場合には、有機 EL素子から光を取り出すために陰極は透光性を有して 、る必 要がある。また、例えば、陰極が基板に形成されており、陰極または基板が透光性を 有して ヽな ヽ場合には、有機 EL素子から光を取り出すために陽極は透光性を有し ている必要がある。そして、上記陰極および陽極を構成する材料として透明導電性 の材料 (例えば透明導電性酸ィ匕物等)を用いた場合には、有機 EL素子の両側 (陰 極側と陽極側と)力も光を取り出すことができる。  In addition, for example, in the case where the anode is formed on the substrate and the anode or the substrate does not have translucency, the cathode has translucency in order to extract light from the organic EL element. It is necessary to In addition, for example, when the cathode is formed on the substrate and the cathode or the substrate has a light-transmitting property, the anode has a light-transmitting property in order to extract light from the organic EL element. There is a need. When a transparent conductive material (for example, a transparent conductive oxide) is used as the material constituting the cathode and anode, the force on both sides (negative electrode side and anode side) of the organic EL element is also light. Can be taken out.
[0047] (電子注入層)  [0047] (Electron injection layer)
本実施の形態に力かる有機 EL素子における電子注入層は、少なくとも酸ィ匕物層と ノ、ロゲンィ匕物層とを含んで構成されている。そして、上記ハロゲン化物層は、酸ィ匕物 層よりも有機層に近い側に配置され、上記酸化物層は、ハロゲンィ匕物層よりも陰極に 近い側に配置されている。換言すると、上記有機 EL素子は、陽極、有機層、ハロゲ ン化物層、酸ィ匕物層および陰極がこの順に積層されている。なお、上記「この順に積 層されている」とは、単に、相対的な積層順を示したものであり、例えば、各層の間に 、他の層が形成されていてもよい。特に、上記電子注入層は、酸ィ匕物層とハロゲンィ匕 物層とを少なくとも含んでいればよぐ例えば、酸化物層とハロゲン化物層との間、ハ ロゲン化物層と有機層との間、および、酸ィ匕物層と陰極との間の少なくとも 1つの間にThe electron injecting layer in the organic EL device which is effective in the present embodiment is configured to include at least an oxide layer and a no-logous layer. The halide layer is disposed closer to the organic layer than the oxide layer, and the oxide layer is disposed closer to the cathode than the halide layer. In other words, the organic EL element has an anode, an organic layer, a halide layer, an oxide layer, and a cathode laminated in this order. In addition, the above "product in this order “Layered” simply indicates a relative stacking order, and for example, other layers may be formed between the layers. In particular, the electron injection layer only needs to include at least an oxide layer and a halide layer, for example, between an oxide layer and a halide layer, and between a halide layer and an organic layer. And at least one between the oxide layer and the cathode
、他の層が形成されていてもよい。なお、電子注入層の具体的な構成については後 述する。 Other layers may be formed. The specific configuration of the electron injection layer will be described later.
[0048] (酸化物層)  [0048] (Oxide layer)
上記酸化物層は、 1種類の酸ィ匕物または酸ィ匕物の混合物で形成することが可能で ある。また、酸化物層を構成する材料としては、上記酸化物の化学量論組成比から 外れた過酸化物や酸素欠損がある酸化物を使用することもできる。酸化物層を構成 する好適な材料としては、例えば、酸ィ匕アルミニウム (Al O )、酸化ランタン (La O )  The oxide layer can be formed of one kind of oxide or a mixture of acids. Further, as a material constituting the oxide layer, a peroxide deviating from the stoichiometric composition ratio of the oxide or an oxide having oxygen vacancies can be used. Suitable materials for forming the oxide layer include, for example, aluminum oxide (Al 2 O 3) and lanthanum oxide (La 2 O 3).
2 3 2 3 2 3 2 3
、酸化セリウム(CeO 、 Ce O )、酸化イットリウム(Y Ο )、酸化ジルコニウム(ZrO ) , Cerium oxide (CeO, CeO), yttrium oxide (YΟ), zirconium oxide (ZrO)
2 2 3 2 3 2 等が挙げられる。  2 2 3 2 3 2 etc.
[0049] さらに、酸化物層は、アルカリ金属またはアルカリ土類金属の酸ィ匕物を含むことがよ り好ましい。アルカリ金属やアルカリ土類金属の酸ィ匕物は、仕事関数が低いため、当 該アルカリ金属やアルカリ土類金属酸化物を酸化物層として用いることにより、有機 層への電子の注入効率を向上させることができる。そして、上記アルカリ金属または アルカリ土類金属の酸ィ匕物の中でも、特に、酸化リチウム (Li 0)、酸ィ匕カリウム (K O  [0049] Furthermore, the oxide layer more preferably contains an alkali metal or alkaline earth metal oxide. Since alkali metals and alkaline earth metal oxides have a low work function, the use of the alkali metal or alkaline earth metal oxide as the oxide layer improves the efficiency of electron injection into the organic layer. Can be made. Among the above alkali metal or alkaline earth metal oxides, lithium oxide (Li 0), acid potassium (K 2 O 2)
2 2 twenty two
)、酸化ルビジウム(Rb O)、酸化セシウム(Cs O) ( =0. 75eV)、酸化カルシウム ), Rubidium oxide (Rb 2 O), cesium oxide (Cs 2 O) (= 0.75 eV), calcium oxide
2 2  twenty two
(CaO) ( φ = 1. 76eV)、酸化ストロンチウム(SrO) ( φ = 1. 27eV)、酸化バリウム( BaO) ( φ =0. 99eV)が酸ィ匕物層を構成する材料として好ましい。  (CaO) (φ = 1.76 eV), strontium oxide (SrO) (φ = 1.27 eV), and barium oxide (BaO) (φ = 0.99 eV) are preferable as the material constituting the oxide layer.
[0050] (ハロゲン化物層) [0050] (halide layer)
上記ハロゲン化物層は、フッ化物、塩化物、臭化物、ヨウ化物力 なる群より選ばれ る少なくとも 1種類のハロゲンィ匕物力も構成されていることがより好ましい。上記ハロゲ ン化物層は、 1種類のハロゲンィ匕物およびノヽロゲンィ匕物の混合物で形成することが 可能である。ハロゲンィ匕物層を構成する好適な材料としては、例えば。フッ化アルミ二 ゥム(A1F )、フッ化鉄(FeF )、フッ化スカンジウム(ScF )、フッ化ランタン(LaF )、  More preferably, the halide layer also comprises at least one halide strength selected from the group consisting of fluoride, chloride, bromide, and iodide strength. The halogenated layer can be formed of a mixture of one kind of halogenated material and a nonogenous material. As a suitable material constituting the halogenated material layer, for example. Aluminum fluoride (A1F), iron fluoride (FeF), scandium fluoride (ScF), lanthanum fluoride (LaF),
3 3 3 3 塩ィ匕アルミニウム (A1C1 )、塩ィ匕ランタン (LaCl )等が挙げられる。 [0051] そして、上記ハロゲン化物層は、アルカリ金属またはアルカリ土類金属のハロゲン 化物からなることがより好ましい。上記アルカリ金属またはアルカリ土類金属のハロゲ ン化物の絶縁層をハロゲンィ匕物層として用いることにより、有機層と陰極との電子注 入障壁高さを低下させることができる。また、アルカリ金属またはアルカリ土類金属の ハロゲン化物としては、例えば、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ 化カリウム(KF)、フッ化ルビジウム(RbF)、フッ化セシウム(CsF)、フッ化マグネシゥ ム(MgF )、フッ化カルシウム(CaF )、フッ化ストロンチウム(SrF )、フッ化バリウム( 3 3 3 3 Salt-aluminum (A1C1), salt-lanthanum (LaCl), and the like. [0051] The halide layer is more preferably made of an alkali metal or alkaline earth metal halide. By using the alkali metal or alkaline earth metal halide insulating layer as the halide layer, the electron injection barrier height between the organic layer and the cathode can be lowered. Examples of alkali metal or alkaline earth metal halides include lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), rubidium fluoride (RbF), and cesium fluoride (CsF). ), Magnesium fluoride (MgF), calcium fluoride (CaF), strontium fluoride (SrF), barium fluoride (
2 2 2 2 2 2
BaF )等のフッ化物、塩化リチウム(LiCl)、塩化カリウム(KC1)、塩化ルビジウム (RbFluorides such as BaF), lithium chloride (LiCl), potassium chloride (KC1), rubidium chloride (Rb
2 2
C1)、塩化セシウム(CsCl)、塩化カルシウム(CaCl )、塩化ストロンチウム(SrCl )、  C1), cesium chloride (CsCl), calcium chloride (CaCl), strontium chloride (SrCl),
2 2 塩化バリウム(BaCl )等の塩化物、臭化カリウム (KBr)、臭ィ匕ルビジウム (RbBr)、臭  2 2 Chlorides such as barium chloride (BaCl), potassium bromide (KBr), odorous rubidium (RbBr), odor
2  2
化セシウム(CsBr)、臭化カルシウム(CaBr )、臭化ストロンチウム(SrBr )、臭化バリ  Cesium fluoride (CsBr), Calcium bromide (CaBr), Strontium bromide (SrBr), Bali bromide
2 2 ゥム(BaBr )等の臭化物、ヨウ化カリウム (KI)、ヨウ化ルビジウム (Rbl)、ヨウ化セシゥ  2 2 Bum (BaBr) and other bromides, potassium iodide (KI), rubidium iodide (Rbl), cesium iodide
2  2
ム(Csl)、ヨウ化カルシウム(Cal )、ヨウ化ストロンチウム(Sri )、ヨウ化バリウム(Bal  (Csl), calcium iodide (Cal), strontium iodide (Sri), barium iodide (Bal
2 2 2 2 2 2
)等のヨウ化物等が挙げられる。 ) And the like.
[0052] そして、ハロゲン化物層は、フッ化物で構成されて 、ることが特に好ま 、。フツイ匕 物をハロゲンィ匕物層として用いることで、有機層と陰極との電子注入障壁高さをより 一層低下させることができる。そして、上記フッ化物の中でも、特に、 LiF、 RbF、 CsF 、 CaF、 SrF、 BaFが好ましい。 [0052] The halide layer is particularly preferably made of a fluoride. By using the fluoride as the halide layer, the height of the electron injection barrier between the organic layer and the cathode can be further reduced. Of the above fluorides, LiF, RbF, CsF, CaF, SrF, and BaF are particularly preferable.
2 2 2  2 2 2
[0053] (電子注入層の構成)  [0053] (Configuration of electron injection layer)
図 1は、本実施の形態にカゝかる有機 EL素子 1における電子注入層 13の一例を説 明する断面図である。ここで、上記電子注入層 13の構成例について、図 1を参照し て説明する。なお、以下の説明では、電子注入層 13が、ハロゲン化物層 22と酸ィ匕物 層 23との 2つの層力もなる場合について説明する力 特に限定されるものではない。  FIG. 1 is a cross-sectional view illustrating an example of the electron injection layer 13 in the organic EL element 1 according to the present embodiment. Here, a configuration example of the electron injection layer 13 will be described with reference to FIG. In the following description, the force for explaining the case where the electron injection layer 13 also has two layer forces of the halide layer 22 and the oxide layer 23 is not particularly limited.
[0054] 上記電子注入層 13が酸ィ匕物層 23とハロゲンィ匕物層 22との積層で構成されている 場合、酸ィ匕物層 23は、陰極 14と接しており、ハロゲンィ匕物は有機層 12と接している 。具体的には、ハロゲンィ匕物層 22と酸ィ匕物層 23とが互いに十分な厚さを有している 場合、図 1に示すように、ハロゲンィ匕物層 22と酸ィ匕物層 23との両層が積層された構 造であることが好ましい。この場合には、上記ハロゲン化物層 22は、有機層 12と酸化 物層 23とのみに接しており、上記酸化物層 23は、陰極 14とハロゲン化物層 22との みに接している。 [0054] When the electron injection layer 13 is composed of a stack of an oxide layer 23 and a halide layer 22, the oxide layer 23 is in contact with the cathode 14, and the halide is In contact with the organic layer 12. Specifically, when the halide layer 22 and the oxide layer 23 have a sufficient thickness, the halide layer 22 and the oxide layer 23 are formed as shown in FIG. And a structure in which both layers are laminated. In this case, the halide layer 22 is oxidized with the organic layer 12. The oxide layer 23 is in contact only with the cathode 14 and the halide layer 22.
[0055] また、本実施の形態に力かる有機 EL素子 1においては、上記電子注入層 13が有 機層 12に対して島状に分布していてもよい。より具体的には、上記ハロゲン化物層 2 2が有機層 12の一部のみと接している、および Zまたは、上記酸化物層 23が陰極 1 4の一部のみと接している構成であってもよい。以下、これについて説明する。  Further, in the organic EL element 1 according to the present embodiment, the electron injection layer 13 may be distributed in an island shape with respect to the organic layer 12. More specifically, the halide layer 22 is in contact with only part of the organic layer 12, and Z or the oxide layer 23 is in contact with only part of the cathode 14. Also good. This will be described below.
[0056] 図 2は、電子注入層 13の他の例を説明する断面図である。  FIG. 2 is a cross-sectional view illustrating another example of the electron injection layer 13.
[0057] この電子注入層 13は、図 2に示すように、電子注入層 13の一部分において酸化物 層 23が陰極 14に面し、ハロゲン化物が有機層 12に面している。すなわち、図 2に示 すように、ハロゲンィ匕物層 22は、有機層 12を構成している発光層 21の一部と酸ィ匕物 層 23と接するように形成されている。また、上記酸ィ匕物層 23は、ハロゲンィ匕物層 22と 上記発光層 21 (有機層 12)と陰極 14と接するように形成されている。  In the electron injection layer 13, as shown in FIG. 2, the oxide layer 23 faces the cathode 14 and the halide faces the organic layer 12 in a part of the electron injection layer 13. That is, as shown in FIG. 2, the halide layer 22 is formed so as to be in contact with a portion of the light emitting layer 21 constituting the organic layer 12 and the oxide layer 23. The oxide layer 23 is formed so as to be in contact with the halide layer 22, the light emitting layer 21 (organic layer 12), and the cathode 14.
[0058] すなわち、電子注入層 13を構成するハロゲンィ匕物層 22は、有機層 12 (ここでは、 発光層 21)の全面ではなく一部のみに積層されていてもよい。換言すると、上記ハロ ゲンィ匕物層 22は、有機層 12に複数の島状に分布するように積層されて 、てもよ!/、。 より具体的には、上記ハロゲン化物層 22は、上記有機層 12と複数の領域で接してい る。  That is, the halide layer 22 constituting the electron injection layer 13 may be laminated not on the entire surface of the organic layer 12 (here, the light emitting layer 21) but on only a part thereof. In other words, the halogenated material layer 22 may be laminated on the organic layer 12 so as to be distributed in a plurality of island shapes. More specifically, the halide layer 22 is in contact with the organic layer 12 in a plurality of regions.
[0059] ここで、上記「島状分布」について説明する。上記島状分布とは、上記有機層 12の 表面に対してハロゲンィ匕物層 22が、複数の島を形成するように分布していることを示 している。  Here, the “island distribution” will be described. The island distribution indicates that the halide layer 22 is distributed so as to form a plurality of islands with respect to the surface of the organic layer 12.
[0060] 図 3は、電子注入層 13のさらに他の例を説明する断面図である。  FIG. 3 is a cross-sectional view illustrating still another example of the electron injection layer 13.
[0061] この電子注入層 13は、図 3に示すように、ハロゲン化物層 22は、有機層 12の全面 に積層されており、上記酸ィ匕物層 23は、ハロゲンィ匕物層 22の表面に島状に分布す るように積層されている。つまり、上記酸ィ匕物層 23は、陰極 14の一部のみとハロゲン 化物層 22とに接しており、上記ハロゲン化物層 22は、上記有機層 12 (ここでは発光 層 21)と酸ィ匕物層 23と陰極 14とに接している。より具体的には、上記酸化物層 23は 、複数の領域でノヽロゲンィ匕物層 22と接している。 As shown in FIG. 3, the electron injection layer 13 has a halide layer 22 laminated on the entire surface of the organic layer 12, and the oxide layer 23 is formed on the surface of the halide layer 22. They are stacked so that they are distributed in islands. That is, the oxide layer 23 is in contact with only a part of the cathode 14 and the halide layer 22, and the halide layer 22 is in contact with the organic layer 12 (here, the light emitting layer 21) and the oxide layer 23. It is in contact with the material layer 23 and the cathode 14. More specifically, the oxide layer 23 is in contact with the neurogenic layer 22 in a plurality of regions.
[0062] 図 4は、電子注入層 13のさらに他の例を説明する断面図である。 [0063] この電子注入層 13は、図 4に示すように、ハロゲン化物層 22は、有機層 12の表面 の一部のみに積層されているとともに、有機層 12と酸ィ匕物層 23と陰極 14とに接して いる。また、酸ィ匕物層 23は、陰極 14とハロゲン化物層 22と有機層 12とに接している 。つまり、この場合には、酸ィ匕物層 23とハロゲン化物層 22が、有機層 12の表面の一 部のみに、複数の島状に分布するように積層されている。このため、この有機 EL素 子 1では、陰極 14と有機層 12とが接している部分が存在する。また、有機 EL素子 1 では、上記酸ィ匕物層 23が陰極 14と有機層 12とのみに接している領域およびハロゲ ン化物送 22が陰極 14と有機層 12とのみに接して 、る領域が存在する。 FIG. 4 is a cross-sectional view for explaining still another example of the electron injection layer 13. As shown in FIG. 4, the electron injection layer 13 has a halide layer 22 laminated on only a part of the surface of the organic layer 12, and the organic layer 12 and the oxide layer 23. In contact with the cathode 14. The oxide layer 23 is in contact with the cathode 14, the halide layer 22, and the organic layer 12. That is, in this case, the oxide layer 23 and the halide layer 22 are laminated so as to be distributed in a plurality of islands only on a part of the surface of the organic layer 12. Therefore, in this organic EL element 1, there is a portion where the cathode 14 and the organic layer 12 are in contact with each other. Further, in the organic EL element 1, the region where the oxide layer 23 is in contact only with the cathode 14 and the organic layer 12 and the region where the halide transport 22 is in contact only with the cathode 14 and the organic layer 12 Exists.
[0064] つまり、図 2〜図 4にかかる電子注入層 13では、陰極から注入される電子を一箇所 に集中させるための電子集中部(突出部)を有している。具体的には、ハロゲン化物 層 22および Zまたは酸ィ匕物層 23を陰極方向に突出するように積層させることがより 好ましい。また、例えば、ハロゲンィ匕物層 22または酸ィ匕物層 23が、有機層 12または ハロゲンィ匕物層 22の全面に積層されており、各ハロゲン化物層 22または酸化物層 2 3の表面に複数の突出部 (電子集中部)を有していても良い。  That is, the electron injection layer 13 according to FIGS. 2 to 4 has an electron concentration portion (protruding portion) for concentrating electrons injected from the cathode in one place. Specifically, it is more preferable to laminate the halide layer 22 and the Z or oxide layer 23 so as to protrude in the cathode direction. Further, for example, the halide layer 22 or the oxide layer 23 is laminated on the entire surface of the organic layer 12 or the halide layer 22, and a plurality of layers are formed on the surface of each halide layer 22 or oxide layer 23. May have a protruding portion (electron concentration portion).
[0065] また、電子注入層 13の膜厚としては、 0. l〜20nmの範囲内であることが好ましい 。電子注入層 13は有機層 12に効率よく電子を注入しなければならないため、電子 注入層 13の層厚が 0. lnmよりも薄い場合には、電子注入層 13としての効果が薄く 、有機層 12への電子注入が十分行なわれない場合がある。特に、電子注入層 13〖こ 含まれているハロゲンィ匕物層 22または酸ィ匕物層 23が、島状に分布している場合で あって、電子注入層 13の厚さが 0. lnmよりも薄いと電子注入が十分行われない場 合がある。また、電子注入層 13を構成している酸ィ匕物とハロゲンィ匕物とは基本的に は絶縁物である。そのため、電子注入層 13が 20nmよりも厚いと、電子注入層 13を 電子が移動しづらくなり、その結果、有機 EL素子 1に電流が流れなくなる場合がある 。また、酸化物層 23およびハロゲン化物層 22の層厚は、それぞれ 0. 1〜: LOnmの範 囲内であることが好ましい。  [0065] The thickness of the electron injection layer 13 is preferably in the range of 0.1 to 20 nm. Since the electron injection layer 13 must efficiently inject electrons into the organic layer 12, when the thickness of the electron injection layer 13 is less than 0.1 nm, the effect as the electron injection layer 13 is small, and the organic layer In some cases, sufficient electron injection into 12 is not performed. In particular, when the electron injection layer 13 is contained in the halogenated oxide layer 22 or the oxide oxide layer 23 distributed in an island shape, the thickness of the electron injection layer 13 is less than 0.1 nm. However, if it is too thin, electron injection may not be performed sufficiently. Further, the oxides and halogens constituting the electron injection layer 13 are basically insulators. Therefore, if the electron injection layer 13 is thicker than 20 nm, it becomes difficult for electrons to move through the electron injection layer 13, and as a result, current may not flow through the organic EL element 1. The layer thicknesses of the oxide layer 23 and the halide layer 22 are each preferably in the range of 0.1 to LOnm.
[0066] 以上のように、本実施の形態に力かる有機 EL素子 1は、陽極 11と、陰極 14と、上 記陽極 11と陰極 14との間に設けられた発光層 21を少なくとも含む有機層 12と、上 記陰極 14と有機層 12との間に設けられた、酸ィ匕物層 23とハロゲンィ匕物層 22とを少 なくとも含む電子注入層 13とを備え、上記陽極 11、有機層 12、ハロゲン化物層 22、 酸ィ匕物層 23および陰極 14がこの順に積層されてなる構成である。 [0066] As described above, the organic EL element 1 according to the present embodiment includes at least the anode 11, the cathode 14, and the light emitting layer 21 provided between the anode 11 and the cathode 14. Layer 12 and an oxide layer 23 and a halogen oxide layer 22 provided between the cathode 14 and the organic layer 12 are reduced. The electron injection layer 13 is included, and the anode 11, the organic layer 12, the halide layer 22, the oxide layer 23, and the cathode 14 are laminated in this order.
[0067] 上記電子注入層 13を上記構成とすることにより、有機層 12への電子の注入効率が 著しく向上し、その結果駆動電圧が低下するため、消費電力の少ない有機 EL素子 1 を得ることが可能となる。また、電子注入層 13は酸素に対して非常に安定である酸ィ匕 物とハロゲン化物とを含んで形成されているため、有機 EL素子 1が例えば、酸素雰 囲気下に置かれた場合であっても、電子注入層 13が酸ィ匕することがない。このため、 電子注入層 13の発光層 21への電子注入効率が低下することがなぐまた電子注入 層 13が他の層との界面で剥離することもない。また、電子注入層 13を構成している 材料として、非常に安定な酸ィ匕物とハロゲンィ匕物とを用いているので、長期間使用し た場合でも有機 EL素子 1の劣化を抑制することができる。従って、本実施の形態に おける有機 EL素子 1は、低消費電力で長時間使用した場合でも素子劣化の少ない 有機 EL素子 1を実現することができる。  [0067] By configuring the electron injection layer 13 as described above, the efficiency of electron injection into the organic layer 12 is remarkably improved, and as a result, the driving voltage is lowered. Is possible. Further, since the electron injection layer 13 is formed to contain an oxide and a halide that are very stable with respect to oxygen, the organic EL element 1 is, for example, placed in an oxygen atmosphere. Even if it exists, the electron injection layer 13 does not oxidize. For this reason, the electron injection efficiency of the electron injection layer 13 into the light emitting layer 21 does not decrease, and the electron injection layer 13 does not peel off at the interface with other layers. In addition, since very stable oxides and halides are used as the material constituting the electron injection layer 13, it is possible to suppress the deterioration of the organic EL element 1 even when used for a long period of time. Can do. Therefore, the organic EL element 1 in the present embodiment can realize the organic EL element 1 with little element deterioration even when used for a long time with low power consumption.
[0068] 次に、本実施の形態に力かる有機 EL素子 1の製造方法について説明する。上記 有機 EL素子 1の製造方法は、上記有機層 12の表面の少なくとも一部にハロゲンィ匕 物層 22を形成するハロゲンィ匕物層 22形成工程と、上記ハロゲンィ匕物層 22の少なく とも一部に酸化物層 23を形成する酸化物層 23形成工程とを含む方法である。  [0068] Next, a method for manufacturing the organic EL element 1 according to the present embodiment will be described. The manufacturing method of the organic EL element 1 includes a step of forming a halide layer 22 on at least a part of the surface of the organic layer 12, and a step of forming the halide layer 22 at least in part of the halide layer 22. And the oxide layer 23 forming step of forming the oxide layer 23.
[0069] 具体的には、基板 10の上に陽極 11を形成し、その陽極 11の上に発光層 21を少な くとも含む有機層 12を形成する。そして、上記有機層 12の表面の少なくとも一部 (一 部であってもよぐ全部であってもよい)にハロゲンィ匕物層 22を形成する。次に、上記 ハロゲンィ匕物層 22の表面の少なくとも一部(一部であってもよぐ全部であってもよ!/、 )に酸化物層 23を形成する。そして、最後に酸ィ匕物層 23の上に少なくとも酸ィ匕物層 23と接するように陰極 14を形成することによって上記有機 EL素子 1を製造すること ができる。  Specifically, the anode 11 is formed on the substrate 10, and the organic layer 12 including at least the light emitting layer 21 is formed on the anode 11. Then, the halide layer 22 is formed on at least a part (or part or all) of the surface of the organic layer 12. Next, an oxide layer 23 is formed on at least a part of the surface of the halide layer 22 (which may be a part or all of it! /,). Finally, the organic EL element 1 can be manufactured by forming the cathode 14 on the oxide layer 23 so as to be in contact with at least the oxide layer 23.
[0070] 上記有機層 12の表面の少なくとも一部にハロゲンィ匕物層 22を形成するには、例え ば、電子ビーム蒸着法、イオンプレーティング法、レーザーァプレーシヨン法、スパッ タリング法、 CVD法等の方法を用いればよい。  [0070] In order to form the halide layer 22 on at least a part of the surface of the organic layer 12, for example, an electron beam evaporation method, an ion plating method, a laser exposure method, a sputtering method, a CVD method, etc. Or the like.
[0071] また、上記ハロゲンィ匕物層 22の上に酸ィ匕物層 23を形成するには、例えば、電子ビ ーム蒸着法、イオンプレーティング法、レーザーァプレーシヨン法、スパッタリング法、In addition, in order to form the oxide layer 23 on the halogen oxide layer 22, for example, an electronic vinyl Vapor deposition method, ion plating method, laser exposure method, sputtering method,
CVD法等の方法を用いればょ 、。 Use a method such as CVD.
[0072] また、上記有機 EL素子 1の製造方法では、例えば、有機層 12の表面の一部のみ にハロゲンィ匕物層 22を形成し、上記酸ィ匕物層 23を上記ハロゲン化物層 22と上記有 機層 12とに接するように形成してもよ!/、。 [0072] Further, in the method of manufacturing the organic EL element 1, for example, the halide layer 22 is formed only on a part of the surface of the organic layer 12, and the oxide layer 23 is combined with the halide layer 22. It may be formed in contact with the above organic layer 12! /.
[0073] また、上記有機 EL素子 1の製造方法では、例えば、上記酸化物層 23を上記ハロゲ ン化物層 22の表面の一部のみに形成し、上記酸化物層 23とハロゲン化物層 22と〖こ 接するように陰極 14を形成してもよい。この場合には、上記ハロゲン化物層 22は、有 機層 12の一部のみに形成していてもよぐ有機層 12の (積層面の全面)に形成して ちょい。 [0073] In the method of manufacturing the organic EL element 1, for example, the oxide layer 23 is formed only on a part of the surface of the halide layer 22, and the oxide layer 23, the halide layer 22, The cathode 14 may be formed so as to be in contact with each other. In this case, the halide layer 22 may be formed on the organic layer 12 (entire surface of the laminated surface) which may be formed only on a part of the organic layer 12.
[0074] また、上記有機 EL素子 1の製造方法では、例えば、有機層 12の一部にハロゲンィ匕 物層 22を形成し、上記ハロゲンィ匕物層 22を覆うように酸ィ匕物層 23を形成し、上記有 機層 12と酸ィ匕物層 23と接するように陰極 14を形成してもよい。そして、この場合には 、陰極 14と有機層 12とが接していても良い。  Further, in the method for manufacturing the organic EL element 1, for example, the halide layer 22 is formed on a part of the organic layer 12, and the oxide layer 23 is formed so as to cover the halide layer 22. The cathode 14 may be formed so as to be in contact with the organic layer 12 and the oxide layer 23. In this case, the cathode 14 and the organic layer 12 may be in contact with each other.
[0075] ここで、上記陰極 14に透明導電性の材料を用いた有機 EL素子 1について説明す る。  [0075] Here, the organic EL element 1 using a transparent conductive material for the cathode 14 will be described.
[0076] 図 5は、有機 EL素子 1の他の例を示す断面図である。本実施の形態に力かる有機 EL素子 1は、図 5に示すように、陰極 14が透明導電性酸ィ匕物力もなる構成としてもよ い。上記有機 EL素子 1の陰極 14として透明導電性酸ィ匕物を用いることにより、有機 EL素子 1の陰極 14側および陽極 11側の両面力も発光した光を取り出すことが可能 となり、有機 EL素子 1の利用範囲を大きく広げることが可能となる。つまり、上記構成 とすることにより、陽極 11に透明導電性酸ィ匕物を用い陰極 14に金属を用いる従来の 構成と比べて、有機 EL素子 1の両面力 光を取り出すことができる。  FIG. 5 is a cross-sectional view showing another example of the organic EL element 1. As shown in FIG. 5, the organic EL element 1 that is useful in the present embodiment may have a configuration in which the cathode 14 also has a transparent conductive acidity. By using a transparent conductive oxide as the cathode 14 of the organic EL element 1, it is possible to take out the light emitted from both the cathode 14 side and the anode 11 side of the organic EL element 1, and the organic EL element 1 It becomes possible to greatly expand the use range of. That is, with the above configuration, it is possible to extract double-sided light of the organic EL element 1 as compared with the conventional configuration in which a transparent conductive oxide is used for the anode 11 and a metal is used for the cathode 14.
[0077] ところで、良好な透明性を有しながら導電性を有する透明導電性酸ィ匕物を得るには 、酸素雰囲気下で成膜を行なうことが必要である。従来の有機 ELでは、電子注入層 13がアルカリ金属やアルカリ土類金属で構成されているため、透明導電性酸ィ匕物を 成膜する際に電子注入層 13酸素と反応してしまい、有機層 12との界面で剥がれて しまう問題があつたが、本実施の形態における有機 EL素子 1の電子注入層 13は、酸 化物層 23とハロゲン化物層 22とを含む構成であるため、酸素雰囲気下でも、電子注 入層 13は酸素と反応することがなく安定である。そのため、電子注入層 13上に透明 導電性酸ィ匕物膜を成膜しても、電子注入層 13が劣化することなく安定であるため、 電子注入層 13から有機層 12に効率よく電子注入を行なうことが可能となる。 Incidentally, in order to obtain a transparent conductive oxide having good transparency and conductivity, it is necessary to form a film in an oxygen atmosphere. In the conventional organic EL, since the electron injection layer 13 is composed of alkali metal or alkaline earth metal, the electron injection layer 13 reacts with oxygen when forming a transparent conductive oxide, and the organic injection layer 13 Although there is a problem of peeling at the interface with the layer 12, the electron injection layer 13 of the organic EL element 1 in the present embodiment is Since the structure includes the halide layer 23 and the halide layer 22, the electron injection layer 13 does not react with oxygen and is stable even in an oxygen atmosphere. Therefore, even if a transparent conductive oxide film is formed on the electron injection layer 13, the electron injection layer 13 is stable without deterioration, so that the electron injection from the electron injection layer 13 to the organic layer 12 efficiently. Can be performed.
[0078] また、電子注入層 13を構成している酸ィ匕物とハロゲン化物とは、どちらも良好な透 光性を有しているため、電子注入層 13を上記構成とすることで、有機 EL素子 1が劣 化することなぐ陰極 14側、陽極 11側の両面力 発光した光を取り出すことが可能と なる。 [0078] Further, since both the oxide and the halide constituting the electron injection layer 13 have good translucency, the electron injection layer 13 is configured as described above. It is possible to extract the emitted light from both sides of cathode 14 and anode 11 without degradation of organic EL element 1.
[0079] 上記透明導電酸ィ匕物としては、具体的には、例えば、インジウム錫酸化物 (ITO)、 インジウム亜鉛酸ィ匕物 (IZO)の酸化亜鉛 (ZnO)等を挙げることができる。これら透明 導電酸ィ匕物を陰極 14として用いる場合には、例えば、電子ビーム蒸着法、イオンプ レーティング法、レーザーァプレーシヨン法、スパッタリング法、 CVD法等の成膜方法 によって当該陰極 14を形成することができる。また、透明導電酸化物は、上記透明 導電酸化物材料の混合物を使用することも可能である。また、これらの透明導電酸化 物を榭脂材料に分散させた材料を使用することができる。使用できる榭脂材料として は、例えばアクリル榭脂、エポキシ榭脂等が挙げられるが、何らこれに限定されるもの ではない。  Specific examples of the transparent conductive oxide include indium tin oxide (ITO) and zinc oxide (ZnO) of indium zinc oxide (IZO). When these transparent conductive oxides are used as the cathode 14, for example, the cathode 14 is formed by a film forming method such as an electron beam evaporation method, an ion plating method, a laser exposure method, a sputtering method, or a CVD method. be able to. Further, as the transparent conductive oxide, a mixture of the above transparent conductive oxide materials can be used. In addition, a material in which these transparent conductive oxides are dispersed in a resin material can be used. Examples of the resin material that can be used include, but are not limited to, acrylic resin, epoxy resin, and the like.
[0080] また、上記有機 EL素子 1において、陽極 11に光を反射する反射材料を用いること も可能である。上記構成とすることで、陰極 14側のみ力も発光した光を取り出すこと ができる。上記反射材料としては、例えば、金 (Au)、プラチナ(Pt)、ニッケル (Ni)等 の仕事関数が大きぐ光の反射率が大き!、金属材料が好ま 、。  In the organic EL element 1, it is also possible to use a reflective material that reflects light on the anode 11. By adopting the above-described configuration, it is possible to take out light that has also been emitted with power only on the cathode 14 side. As the reflective material, for example, gold (Au), platinum (Pt), nickel (Ni) and the like have a high work function and high light reflectance, and metal materials are preferred.
[0081] また、上記陽極 11として、アルミニウム (A1)や銀 (Ag)のような光反射率が大きい金 属の上に、仕事関数が大きぐ有機層 12への正孔の注入が行ないやすい透明導電 性酸ィ匕物である ITOや IZOを積層したものを用いることも可能である。そして、上記の 陽極 11の構成とすることで、有機層 12への正孔の注入効率が向上する点と高い光 反射率を得られる点の 2点でメリットがある。  [0081] Further, as the anode 11, a hole is easily injected into the organic layer 12 having a large work function on a metal having a high light reflectance such as aluminum (A1) or silver (Ag). It is also possible to use a laminate of ITO and IZO, which are transparent conductive oxides. The configuration of the anode 11 described above is advantageous in that the efficiency of injecting holes into the organic layer 12 is improved and a high light reflectance can be obtained.
[0082] (有機エレクト口ルミネッセンス表示パネル)  [0082] (Organic Elect Mouth Luminescence Display Panel)
ここで、上記有機 EL素子 1を複数備えた、情報の表示が可能な有機エレクト口ルミ ネッセンス表示パネル(以下、有機 EL表示パネル 30と称する)について説明する。 Here, a plurality of organic EL elements 1 are provided, and an organic electrification lamp capable of displaying information is provided. The nsence display panel (hereinafter referred to as the organic EL display panel 30) will be described.
[0083] 図 6 (a)は上記パッシブマトリックス駆動方式の有機 EL表示パネル 30の概略構成 を示す断面図であり、図 6 (b)は当該有機 EL表示パネル 30の基板 10側力も見た図 面である。この図 6 (a)および図 6 (b)を参照して、パッシブマトリックス駆動方式の有 機 EL表示パネル 30の構成を説明する。上記パッシブマトリックス駆動方式の有機 E L表示パネル 30は、短冊状に配置された複数列の陽極 11上に、正孔輸送層 20、発 光層 21、ハロゲン化物層 22、酸化物層 23、陰極 14がこの順に積層された積層構造 をしている。そして、上記パッシブマトリックス駆動方式の有機 EL表示パネル 30は、 上記短冊状に配置された複数列の陰極 14が陽極 11と直交するように設けられ、陽 極 11と陰極 14との交点が発光部となり、複数の発光部により情報を表示することが できる。 FIG. 6 (a) is a cross-sectional view showing a schematic configuration of the organic EL display panel 30 of the above-described passive matrix drive system, and FIG. Surface. With reference to FIG. 6 (a) and FIG. 6 (b), the configuration of the organic EL display panel 30 of the passive matrix drive system will be described. The organic EL display panel 30 of the above passive matrix driving system has a hole transport layer 20, a light emitting layer 21, a halide layer 22, an oxide layer 23, a cathode 14 on a plurality of rows of anodes 11 arranged in a strip shape. Has a laminated structure in which these layers are laminated in this order. The passive matrix driving type organic EL display panel 30 is provided such that the plurality of rows of cathodes 14 arranged in a strip shape are orthogonal to the anode 11, and the intersection of the cathode 11 and the cathode 14 is a light emitting portion. Thus, information can be displayed by a plurality of light emitting units.
[0084] 図 7は、アクティブマトリックス駆動方式の有機 EL表示パネル 30の概略の構成を示 す断面図である。上記アクティブマトリックス駆動方式の有機 EL表示パネル 30では、 図 7に示すように、アクティブマトリクス基板 31 (基板 10)の上に有機 EL素子 1が形成 されている。アクティブマトリクス基板 31は、基板 34と、基板 34の上に画素ごとに形 成された複数の TFTと、これらの TFTを覆う平坦ィ匕膜 32とを有している。各 TFTは、 ゲート電極 38と、ゲート電極 38の上にゲート絶縁膜 33を介して形成された島状半導 体層 40と、当該島状半導体層 40の両端部をそれぞれ覆うように設けられた TFT電 極 36 (ソース、ドレイン電極)とを有している(ボトムゲート構造)。各 TFTは、ソース配 線 39およびゲート配線 37と接続されている。平坦ィ匕膜 32には、各 TFTのドレイン電 極に達するスルーホール 35が設けられている。平坦ィ匕膜 32の上には、有機 EL素子 1が形成されている。有機 EL素子 1の陽極 11は、透明導電膜より構成され、平坦ィ匕 膜 32の上およびスルーホール 35の内部に堆積された透明導電膜をパターユングす ることにより、画素ごとに形成されている。各陽極 11は、対応する TFTのドレイン電極 とスルーホール 35を介して接続されている。これらの陽極 11は、各陽極 11のそれぞ れのエッジ部およびスルーホール 35を覆うように形成された絶縁膜 41によって互!ヽ に絶縁されている。そして、この陽極 11および絶縁膜の上に、正孔輸送層 20、発光 層 21、ハロゲン化物層 22、酸化物層 23、陰極 14がこの順で形成 (積層)されること により本実施の形態にカゝかる有機 EL素子 1が形成されている。なお、上記有機 EL素 子 1は、上記構成に限定されるものではなぐ本発明にかかる有機 EL素子 1であれ ば、どのような有機 EL素子 1を用いても良い。 FIG. 7 is a cross-sectional view showing a schematic configuration of an active matrix driving type organic EL display panel 30. In the organic EL display panel 30 of the active matrix driving method, as shown in FIG. 7, the organic EL element 1 is formed on the active matrix substrate 31 (substrate 10). The active matrix substrate 31 includes a substrate 34, a plurality of TFTs formed for each pixel on the substrate 34, and a flat film 32 covering these TFTs. Each TFT is provided so as to cover the gate electrode 38, the island-shaped semiconductor layer 40 formed on the gate electrode 38 via the gate insulating film 33, and both ends of the island-shaped semiconductor layer 40. TFT electrodes 36 (source and drain electrodes) (bottom gate structure). Each TFT is connected to the source wiring 39 and the gate wiring 37. The flat film 32 is provided with a through hole 35 reaching the drain electrode of each TFT. On the flat film 32, the organic EL element 1 is formed. The anode 11 of the organic EL element 1 is composed of a transparent conductive film, and is formed for each pixel by patterning the transparent conductive film deposited on the flat film 32 and inside the through hole 35. Yes. Each anode 11 is connected to the corresponding drain electrode of TFT through a through hole 35. These anodes 11 are mutually insulated by insulating films 41 formed so as to cover the respective edge portions of the respective anodes 11 and the through holes 35. A hole transport layer 20, a light emitting layer 21, a halide layer 22, an oxide layer 23, and a cathode 14 are formed (laminated) in this order on the anode 11 and the insulating film. As a result, the organic EL element 1 which is similar to the present embodiment is formed. The organic EL element 1 is not limited to the above configuration, and any organic EL element 1 may be used as long as it is the organic EL element 1 according to the present invention.
[0085] 本実施の形態に力かるアクティブマトリックス駆動方式の有機 EL表示パネル 30の 構成は、上記に限定されるものではない。例えば、 TFTはトップゲート構造を有して いても良い。また、アクティブマトリックス駆動方式の有機 EL表示パネル 30には、画 素ごとに 2個の TFTを必要とする電圧駆動方式を採用してもよいし、画素ごとに 4個 の TFTを必要とする電流駆動方式を採用してもょ 、。  The configuration of the organic EL display panel 30 of the active matrix driving system that is useful for the present embodiment is not limited to the above. For example, the TFT may have a top gate structure. In addition, the active matrix driving type organic EL display panel 30 may adopt a voltage driving method that requires two TFTs for each pixel, or a current that requires four TFTs for each pixel. Adopt a drive system.
[0086] なお、本実施の形態に力かる有機 EL素子 1は、陽極 11と、陰極 14と、陽極 11と陰 極 14との間に設けられた発光層 21を少なくとも含む有機層 12と、陰極 14と有機層 1 2との間に設けられた電子注入層 13とを備えた有機エレクト口ルミネッセンス素子で あって、上記電子注入層 13は、酸ィ匕物層 23とハロゲン化物層 22を少なくとも含む積 層構造からなり、ハロゲンィ匕物層 22は有機層 12に面しており、酸ィ匕物層 23は陰極 1 4に面して 、る構成であってもよ!/、。  Note that the organic EL element 1 according to the present embodiment includes an anode 11, a cathode 14, and an organic layer 12 including at least a light-emitting layer 21 provided between the anode 11 and the anode 14; An organic electroluminescent device comprising an electron injection layer 13 provided between a cathode 14 and an organic layer 12, wherein the electron injection layer 13 comprises an oxide layer 23 and a halide layer 22. It may have a layered structure including at least the halide layer 22 facing the organic layer 12, and the oxide layer 23 facing the cathode 14! /.
[0087] また、本実施の形態に力かる有機 EL素子 1は、上記有機層 12はハロゲンィ匕物層 2 2および酸ィ匕物層 23と接しており、上記陰極 14はハロゲンィ匕物層 22と接していない 構成であってもよい。  In addition, in the organic EL device 1 according to the present embodiment, the organic layer 12 is in contact with the halide layer 22 and the oxide layer 23, and the cathode 14 is the halide layer 22. The structure which is not touching may be sufficient.
[0088] また、本実施の形態に力かる有機 EL素子 1は、上記有機層 12と陰極 14とが接して いる構成であってもよい。また、本実施の形態に力かる有機 EL素子 1は、上記陰極 1 4はハロゲンィ匕物層 22および酸ィ匕物層 23と接しており、上記有機層 12は酸ィ匕物層 2 3と接していない構成であってもよい。また、本実施の形態に力かる有機 EL素子 1の 製造方法は、上記酸ィ匕物層 23形成工程では、さらに、酸ィ匕物層 23を上記有機層 12 と接するように形成する構成であってもよい。また、本実施の形態に力かる有機 EL素 子 1の製造方法は、上記陰極 14形成工程では、さらに、陰極 14をハロゲンィ匕物層 2 2と接するように形成する構成であってもよい。また、本実施の形態に力かる有機 EL 素子 1の製造方法は、上記陰極 14形成工程では、さらに、陰極 14を有機層 12と接 するように形成する構成であってもよ 、。  [0088] Further, the organic EL element 1 according to the present embodiment may have a configuration in which the organic layer 12 and the cathode 14 are in contact with each other. Further, in the organic EL device 1 according to the present embodiment, the cathode 14 is in contact with the halide layer 22 and the oxide layer 23, and the organic layer 12 is coupled with the oxide layer 23. The structure which is not in contact may be sufficient. In addition, the manufacturing method of the organic EL element 1 according to the present embodiment has a configuration in which the oxide layer 23 is further formed in contact with the organic layer 12 in the oxide layer 23 forming step. There may be. In addition, the method of manufacturing the organic EL device 1 according to the present embodiment may be configured such that the cathode 14 is further formed in contact with the halide layer 22 in the cathode 14 forming step. Further, the method of manufacturing the organic EL element 1 according to the present embodiment may be configured such that the cathode 14 is further formed in contact with the organic layer 12 in the cathode 14 forming step.
[0089] また、本実施の形態に力かる有機 EL素子 1は、ハロゲンィ匕物層 22および/または 酸ィ匕物層 22は、平坦ィ匕されていないことがより好ましい。また、本実施の形態にかか る有機 EL素子 1は、ハロゲンィ匕物層 22が有機層 12から複数の突出部を有するよう に形成されていることがより好ましい。また、本実施の形態に力かる有機 EL素子 1は 、酸ィ匕物層 22がハロゲンィ匕物層 22から複数の突出部を有するように形成されて!、る ことがより好ましい。 [0089] Further, the organic EL element 1 which is useful in the present embodiment includes the halogenated material layer 22 and / or More preferably, the oxide layer 22 is not flattened. The organic EL element 1 according to the present embodiment is more preferably formed so that the halide layer 22 has a plurality of protrusions from the organic layer 12. Further, the organic EL element 1 according to the present embodiment is more preferably formed such that the oxide layer 22 has a plurality of protrusions from the halogen layer 22.
[0090] 〔実施例〕 [Example]
以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらの 実施例および比較例に限定されるものではない。なお、以下の実施例では、図 1に 示すように、基板 10の上に、陽極 11、正孔輸送層 20、発光層 21、ハロゲン化物層 2 2、酸化物層 23、陰極 14がこの順に積層した構造であり、ハロゲンィ匕物層 22が発光 層 21と酸ィ匕物層 23とのみに接しており、酸化物層 23が陰極 14とハロゲン化物層 22 とのみに接している構造の有機 EL素子 1を用いている。また、比較例では、電子注 入層 13の構成が異なるものを用いて 、る。  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples and a comparative example. In the following examples, as shown in FIG. 1, the anode 11, the hole transport layer 20, the light emitting layer 21, the halide layer 22, the oxide layer 23, and the cathode 14 are arranged in this order on the substrate 10. An organic structure in which the halide layer 22 is in contact only with the light-emitting layer 21 and the oxide layer 23 and the oxide layer 23 is in contact only with the cathode 14 and the halide layer 22 EL element 1 is used. In the comparative example, the electron injection layer 13 having a different configuration is used.
[0091] 〔実施例 1〕  [Example 1]
ここで、上記有機 EL素子の製造方法について説明する。まず、透明導電膜である インジウム?スズ酸ィ匕物(以下、 ITOと称する)を 25mm角の基板上に、スパッタリング 装置を用いて、酸素とアルゴンの混合雰囲気中で 150nmの厚さで形成した。次にフ オトリゾグラフィー技術を用いて、上記 ITOを幅 2mm、長さ 25mmのストライプ状にパ ターニングを行ない、これを陽極とした。  Here, a method for manufacturing the organic EL element will be described. First, indium stannate (hereinafter referred to as ITO), which is a transparent conductive film, was formed on a 25 mm square substrate with a thickness of 150 nm in a mixed atmosphere of oxygen and argon using a sputtering apparatus. . Next, using the photolithography technique, the ITO was patterned in a stripe shape having a width of 2 mm and a length of 25 mm, and this was used as an anode.
[0092] 次に、この陽極上に PEDOT— PSS溶液を、スピンコート法により塗布し、 200°Cで 10分間乾燥して、正孔輸送層を形成した。正孔輸送層の膜厚は、溶液の濃度、スピ ンコート時の回転数を制御することにより約 70nmの厚さとした。次に、ポリフルオレン 誘導体の溶液を同様にスピンコート法で上記正孔輸送層の上に塗布し、 150°Cで 1 0分間乾燥することにより発光層を形成した。当該発光層の膜厚は、溶液の濃度、ス ピンコート時の回転数を制御することにより約 70nmの厚さとした。  Next, a PEDOT-PSS solution was applied on the anode by a spin coating method and dried at 200 ° C. for 10 minutes to form a hole transport layer. The thickness of the hole transport layer was set to about 70 nm by controlling the concentration of the solution and the number of rotations during spin coating. Next, a solution of a polyfluorene derivative was similarly applied onto the hole transport layer by spin coating, and dried at 150 ° C. for 10 minutes to form a light emitting layer. The film thickness of the light emitting layer was set to about 70 nm by controlling the concentration of the solution and the number of rotations during spin coating.
[0093] 次に、発光層上に、フッ化物であるフッ化リチウム (LiF)膜を抵抗加熱蒸着法にて、 陽極のストライプと直交するように、幅 2mm、長さ 25mmのストライプ状に 3nmの膜 厚で形成した (ハロゲン化物積層工程)。次に、酸化物である酸化バリウム (BaO)膜 を電子ビーム蒸着法にて、 LiF膜上に LiFと同じ形状になるように、幅 2mm、長さ 25 mmのストライプ状に 3nmの膜厚で形成し (酸ィ匕物積層工程)、 LiFと BaOの積層膜 を電子注入層とした。つまり、本実施例では、ハロゲンィ匕物層にアルカリ金属のフッ 化物を用い、酸ィ匕物層にアルカリ土類金属の酸ィ匕物を用いている。そして、最後に 陰極としてアルミニウム (A1)を、電子ビーム蒸着装置を用いて、 BaO薄膜上に電子 注入層と同じ形状になるように、幅 2mm、長さ 25mmのストライプ状に lOOnmの厚さ で形成した。これにより、発光面が 2mm X 2mmの本実施例にカゝかる有機 EL素子を 得た。 [0093] Next, a lithium fluoride (LiF) film, which is a fluoride, is formed on the light emitting layer by a resistance heating vapor deposition method in a stripe shape having a width of 2 mm and a length of 25 mm so as to be orthogonal to the stripe of the anode. (Thickness stacking step). Next, oxide barium oxide (BaO) film Is formed on the LiF film in a stripe shape with a width of 2mm and a length of 25mm with a film thickness of 3nm by the electron beam evaporation method (acid-oxide stacking process). The stacked film of BaO was used as the electron injection layer. In other words, in this embodiment, an alkali metal fluoride is used for the halide layer, and an alkaline earth metal oxide is used for the oxide layer. Finally, aluminum (A1) is used as the cathode, and using an electron beam evaporation system, the striped shape is 2 mm wide and 25 mm long so that it has the same shape as the electron injection layer on the BaO thin film, with a thickness of lOOnm. Formed. As a result, an organic EL device having a light emitting surface of 2 mm × 2 mm, which is covered in this example, was obtained.
[0094] そして、得られた有機 EL素子の素子特性を測定した。具体的には、有機 EL素子 の駆動電圧に対する有機 EL素子に流れる電流の電流密度を測定した。また、上記 有機 EL素子の駆動電圧に対する有機 EL素子の発光輝度を測定した。その結果を それぞれ図 8および図 9に示す。  [0094] Then, device characteristics of the obtained organic EL device were measured. Specifically, the current density of the current flowing in the organic EL element relative to the driving voltage of the organic EL element was measured. In addition, the emission luminance of the organic EL element with respect to the driving voltage of the organic EL element was measured. The results are shown in Figs. 8 and 9, respectively.
[0095] 〔比較例 1〜4〕  [Comparative Examples 1 to 4]
また、上記有機 EL素子の電子注入層の構成以外は、上記実施例 1と同様の方法 で比較例である比較有機 EL素子を作成した。  Further, a comparative organic EL element as a comparative example was prepared in the same manner as in Example 1 except for the configuration of the electron injection layer of the organic EL element.
[0096] 具体的には、陽極 Z有機層 ZBa (金属) Z陰極の構成の比較有機 EL素子を比較 例 1、陽極 Z有機層 ZBaO (酸化物) Z陰極の構成の比較有機 EL素子を比較例 2、 陽極 Z有機層 ZLiF (ハロゲンィ匕物) Z陰極の構成の比較有機 EL素子を比較例 3、 陽極 Z有機層 ZBaO (酸化物) /LiF (ハロゲンィ匕物) Z陰極の構成の比較有機 EL 素子を比較例 4としてそれぞれ作製した。そして、これら、比較例 1〜4の比較有機 E L素子の素子特性を調べた。その結果を図 8、 9に示す。  [0096] Specifically, the comparison organic EL device of the configuration of anode Z organic layer ZBa (metal) Z cathode is compared. Example 1, comparison of the organic EL device of configuration of anode Z organic layer ZBaO (oxide) Z cathode is compared. Example 2, Anode Z organic layer ZLiF (halogenated) Z cathode composition comparison Organic EL device Comparative Example 3, Anode Z organic layer ZBaO (oxide) / LiF (halogenated) Z cathode composition comparative organic An EL device was fabricated as Comparative Example 4, respectively. Then, the device characteristics of the comparative organic EL devices of Comparative Examples 1 to 4 were examined. The results are shown in Figs.
[0097] なお、図 8、 9中の各記号は以下の通りである。  [0097] Symbols in Figs. 8 and 9 are as follows.
參:陽極 Z有機層 ZLiF (ハロゲンィ匕物) ZBaO (酸化物) Z陰極 (実施例 1) □:陽極 Z有機層 ZBa (金属) Z陰極 (比較例 1)  參: Anode Z Organic layer ZLiF (Halogen) ZBaO (Oxide) Z cathode (Example 1) □: Anode Z Organic layer ZBa (Metal) Z cathode (Comparative example 1)
♦:陽極 Z有機層 ZBaO (酸化物) Z陰極 (比較例 2)  ♦: Anode Z Organic layer ZBaO (Oxide) Z cathode (Comparative example 2)
▲:陽極 Z有機層 ZLiF (ハロゲンィ匕物) Z陰極 (比較例 3)  ▲: Anode Z Organic layer ZLiF (Halogenide) Z Cathode (Comparative Example 3)
△:陽極 Z有機層 ZBaO (酸化物) /LiF (ハロゲンィ匕物) Z陰極 (比較例 4) 上記図 8の結果より、本実施例 1における電子注入層の構成である LiFZBaOZA 1構造の有機 EL素子の電圧 電流密度特性は電圧 4Vにおいて電流密度 10.8mA Zcm2であるのに対し、電子注入層がアルカリ土類金属で構成されている BaZAlの 比較有機 EL素子 (比較例 1)は電圧 4Vにおいて電流密度 2.6mAZcm2と低ぐまた 電子注入層が酸化物で構成されて ヽる BaOZAlの比較有機 EL素子 (比較例 2)は 電圧 4Vにおいて電流密度は 1.8mAZcm2、また電子注入層がハロゲン化物で構成 されて 、る LiFZAlの比較有機 EL素子(比較例 3)は電圧 4Vにお 、て電流密度は 3 •OmAZcm2となって 、ることから、本実施例 1における電子注入層の構成では低!ヽ 電圧で電流を流すことができることが分かる。これは、本実施例 1における電子注入 層の構成が効率よく有機層に電子を注入することができるためである。また、電子注 入層の構成が陽極 Z有機層 ZBaO (酸化物) /LiF (ハロゲンィ匕物) Z陰極と、うよう に、電子注入層の構成が本実施例 1における電子注入層とは逆に積層した比較有 機 EL素子(比較例 4)では、電圧 4Vにおいて電流密度 0.5mAZcm2となっており、 本実施例 1の電子注入層の構成の有機 EL素子の電流密度と比較して非常に電流 が流れに《なっている。このことから電子注入層は単に酸ィ匕物とハロゲンィ匕物から 構成されていればよいわけではなぐ陽極 Z有機層 Zハロゲン化物 Z酸化物 Z陰極 t 、う本実施例 1における電子注入層の構成にすることにより、有機 EL素子に低 ヽ 電圧で電流を流すことが可能となる。 Δ: Anode Z Organic layer ZBaO (oxide) / LiF (Halogen compound) Z cathode (Comparative example 4) From the result of FIG. 8 above, LiFZBaOZA which is the configuration of the electron injection layer in Example 1 The voltage and current density characteristics of the organic EL device with one structure are 10.8mA Zcm 2 at a voltage of 4V, while the comparative organic EL device of BaZAl in which the electron injection layer is made of alkaline earth metal (Comparative Example 1 ) Is a low current density of 2.6 mAZcm 2 at a voltage of 4 V, and the BaOZAl comparative organic EL device (Comparative Example 2) has an electron injection layer made of oxide.The current density is 1.8 mAZcm 2 at a voltage of 4 V Since the injection layer is composed of a halide, the LiFZAl comparative organic EL device (Comparative Example 3) has a voltage of 4 V and a current density of 3 • OmAZcm 2. It can be seen that the injection layer configuration allows a current to flow at a low voltage. This is because the structure of the electron injection layer in Example 1 can efficiently inject electrons into the organic layer. Also, the structure of the electron injection layer is the anode Z organic layer ZBaO (oxide) / LiF (halogenated material) Z cathode, and the structure of the electron injection layer is opposite to that of the electron injection layer in Example 1. In the comparative organic EL device (Comparative Example 4) stacked on the substrate, the current density is 0.5 mAZcm 2 at a voltage of 4 V, which is much higher than the current density of the organic EL device having the electron injection layer configuration of Example 1. The current is flowing through. Therefore, the electron injection layer is not necessarily composed of an oxide and a halide. The anode Z organic layer Z halide Z oxide Z cathode t. With this configuration, it is possible to pass a current through the organic EL element at a low voltage.
また、図 9は上記各有機 EL素子の駆動電圧に対する、各有機 EL素子の発光輝度 の関係を表したグラフである。上記図 9の結果より、本実施例 1における電子注入層 の構成である LiFZBaOZAl構造の有機 EL素子の電圧—発光輝度特性では電圧 4Vにおいて発光輝度 614cdZm2であるのに対し、比較例 1の比較有機 EL素子で は電圧 4Vにお 、て発光輝度 59cd/m2と低ぐまた比較例 2の比較有機 EL素子で は電圧 4Vにおいて発光輝度は 31cdZm2、また比較例 3の比較有機 EL素子は電 圧 4Vにお 、て発光輝度 143cd/m2、また比較例 4の比較有機 EL素子では電圧 4 Vにお 、て発光輝度 3cdZm2となって ヽることから、本実施例 1における電子注入層 の構成が低電圧で高い発光輝度を得ることができるということが分かる。これは、図 8 で前述したように、本実施例 1における電子注入層の構成の有機 EL素子では非常 に効率よく有機層に電子を注入することが可能となって 、るためである。 [0099] 〔実施例 2〕 FIG. 9 is a graph showing the relationship between the light emission luminance of each organic EL element and the driving voltage of each organic EL element. From the results of FIG. 9 above, the voltage-luminescence luminance characteristic of the organic EL device having the LiFZBaOZAl structure, which is the configuration of the electron injection layer in Example 1, shows a luminance of 614 cdZm 2 at a voltage of 4 V, while the comparison of Comparative Example 1 The organic EL device has a low emission luminance of 59 cd / m 2 at a voltage of 4 V. The comparative organic EL device of Comparative Example 2 has a light emission luminance of 31 cdZm 2 at a voltage of 4 V, and the comparative organic EL device of Comparative Example 3 has Since the emission luminance is 143 cd / m 2 at a voltage of 4 V, and the emission luminance is 3 cdZm 2 at a voltage of 4 V in the comparative organic EL device of Comparative Example 4, the electron injection in Example 1 is performed. It can be seen that the layer structure can achieve high emission luminance at a low voltage. This is because, as described above with reference to FIG. 8, in the organic EL element having the structure of the electron injection layer in Example 1, electrons can be injected into the organic layer very efficiently. [Example 2]
電子注入層のハロゲン化物層は塩化リチウム (LiCl)を抵抗加熱蒸着法により 6nm の厚さに成膜し、酸化物層は酸化セシウム (Cs O)を電子ビーム蒸着法により 6nm  The electron injection layer halide layer is lithium chloride (LiCl) deposited to a thickness of 6 nm by resistance heating vapor deposition, and the oxide layer is cesium oxide (CsO) 6 nm thick by electron beam vapor deposition.
2  2
の厚さに成膜した以外は実施例 1と同様に有機 EL素子を作製した。つまり、本実施 例では、ハロゲンィ匕物層にアルカリ金属の塩ィ匕物を用い、酸化物層にアルカリ金属 の酸ィ匕物を用いている。そして、得られた有機 EL素子の素子特性 (駆動電圧 4Vを かけた際の素子特性)を測定した。その結果を表 1に示す。  An organic EL device was produced in the same manner as in Example 1 except that the film was formed to a thickness of 2 mm. That is, in this embodiment, an alkali metal salt is used for the halide layer and an alkali metal oxide is used for the oxide layer. Then, the element characteristics (element characteristics when a driving voltage of 4 V was applied) of the obtained organic EL element were measured. The results are shown in Table 1.
[0100] 〔実施例 3〕 [Example 3]
電子注入層のハロゲン化物層はフッ化バリウム (BaF )を抵抗加熱蒸着法により 5n  The electron injection layer halide layer is 5n of resistance heating vapor deposition of barium fluoride (BaF).
2  2
mの厚さに成膜し、酸化物層は酸化カルシウム(CaO)を電子ビーム蒸着法により 5n mの厚さに成膜した以外は実施例 1と同様に有機 EL素子を作製した。つまり、本実 施例では、ハロゲンィ匕物層にアルカリ土類金属のフッ化物を用い、酸化物層にアル カリ土類金属の酸ィ匕物を用いている。そして、得られた有機 EL素子の素子特性を測 定した。その結果を表 1に示す。  An organic EL device was fabricated in the same manner as in Example 1 except that the film was formed to a thickness of m and the oxide layer was formed to a thickness of 5 nm by an electron beam evaporation method using calcium oxide (CaO). In other words, in this embodiment, an alkaline earth metal fluoride is used for the halide layer, and an alkaline earth metal oxide is used for the oxide layer. The device characteristics of the obtained organic EL device were measured. The results are shown in Table 1.
[0101] 〔実施例 4〕 [0101] [Example 4]
電子注入層のハロゲンィ匕物層はフッ化スカンジウム(ScF )を電子ビーム蒸着法に  The electron injection layer is made of scandium fluoride (ScF) for electron beam evaporation.
3  Three
より 2nmの厚さに成膜し、酸化物層は酸化バリウム (BaO)を電子ビーム蒸着法により 5nmの厚さに成膜した以外は実施例 1と同様に有機 EL素子を作製した。つまり、本 実施例では、ハロゲン化物層にフッ化物を用い、酸化物層にアルカリ土類金属の酸 化物を用いている。そして、得られた有機 EL素子の素子特性を測定した。その結果 を表 1に示す。  An organic EL device was produced in the same manner as in Example 1 except that the film was formed to a thickness of 2 nm and the oxide layer was formed to a thickness of 5 nm by an electron beam evaporation method using barium oxide (BaO). That is, in this embodiment, fluoride is used for the halide layer, and an alkaline earth metal oxide is used for the oxide layer. And the element characteristic of the obtained organic EL element was measured. The results are shown in Table 1.
[0102] 〔実施例 5〕 [Example 5]
電子注入層のハロゲン化物層は LiFを抵抗加熱蒸着法により、 2nmの厚さに成膜 し、酸ィ匕物層は酸ィ匕アルミニウム (Al O )を電子ビーム蒸着法により 2nmの厚さに成  The electron injection layer has a halide layer with a thickness of 2 nm formed by LiF using resistance heating vapor deposition, and the oxide layer is formed with an acid aluminum layer (Al 2 O 3) by electron beam evaporation to a thickness of 2 nm. Completion
2 3  twenty three
膜した以外は実施例 1と同様に有機 EL素子を作製した。つまり、本実施例では、ハ ロゲン化物層にアルカリ金属のフッ化物を用い、酸ィ匕物層に酸ィ匕物を用いている。そ して、得られた有機 EL素子の素子特性を測定した。その結果を表 1に示す。  An organic EL device was produced in the same manner as in Example 1 except that the film was formed. That is, in this embodiment, an alkali metal fluoride is used for the halide layer and an oxide is used for the oxide layer. Then, the device characteristics of the obtained organic EL device were measured. The results are shown in Table 1.
[0103] [表 1] 電流密度 発光輝度 電子注入層 [0103] [Table 1] Current density Luminance Luminance Electron injection layer
(m A/ c m ) c d /m ) 実施例 1 10. 8 614 実施例 2 8. 5 480 実施例 3 9. 1 493 実施例 4 6. 4 312 実施例 5 4. 4 185  (m A / cm) c d / m) Example 1 10. 8 614 Example 2 8. 5 480 Example 3 9. 1 493 Example 4 6. 4 312 Example 5 4.4 4 185
上記表 1の結果より、実施例 1のように、ハロゲンィヒ物層にアルカリ金属のフッ化物 を用い、酸化物層にアルカリ土類金属の酸化物を用いることで、電流密度および発 光輝度が著しく高レ、ことが分かる。また、実施例 1〜実施例 4と実施例 5とを比較する ことで、酸ィ匕物層にアルカリ金属またはアルカリ土類金属の酸ィ匕物を用いることで、 電流密度および発光輝度をより高くすることができることが分かる。また、実施例 1お よび実施例 3と実施例 4とによって、ハロゲンィ匕物層にアルカリ金属またはアルカリ土 類金属のフッ化物を用いることで、電流密度および発光輝度をより高くすることができ ることが分かる。 From the results in Table 1 above, the current density and light emission luminance are remarkably increased by using an alkali metal fluoride for the halogen layer and an alkaline earth metal oxide for the oxide layer as in Example 1. I understand that it ’s high. In addition, by comparing Example 1 to Example 4 and Example 5, by using an alkali metal or alkaline earth metal oxide for the oxide layer, the current density and emission luminance can be further increased. It can be seen that it can be raised. Further, according to Example 1, Example 3, and Example 4, the use of an alkali metal or alkaline earth metal fluoride for the halide layer can increase the current density and the emission luminance. I understand that.
[0104] 〔実施例 6〕 [Example 6]
次に、陰極に透明導電性を有する材料を用いて有機 EL素子を作製した実施例に ついて説明する。  Next, an example in which an organic EL element is manufactured using a material having transparent conductivity for the cathode will be described.
[0105] まず、透明導電膜であるインジウム?スズ酸ィ匕物(ITO)を 25mm角の基板上に、ス ノ ッタリング装置を用いて、酸素とアルゴンの混合雰囲気中で 150nmの厚さとなるよ うに形成した。次に、フォトリゾグラフィー技術を用いて、 ITOを幅 2mm、長さ 25mm のストライプ状にパターニングを行な!/、、これを陽極とした。  [0105] First, indium stannate (ITO), which is a transparent conductive film, is formed on a 25 mm square substrate to a thickness of 150 nm in a mixed atmosphere of oxygen and argon using a sputtering device. Formed. Next, using photolithography technology, ITO is patterned into stripes 2mm wide and 25mm long! / This was the anode.
[0106] そして、この陽極上に PEDOT— PSSをスピンコート法により塗布して、 200°Cで 10 分間乾燥することにより正孔輸送層を形成した。正孔輸送層の膜厚は溶液の濃度、 スピンコート時の回転数を制御することにより約 70nmの厚さとした。次に、ポリフルォ レン誘導体の溶液を同様にスピンコート法によって上記正孔輸送層に塗布し 150°C で 10分間乾燥することにより発光層を形成した。当該発光層の膜厚は溶液の濃度、 スピンコート時の回転数を制御することにより約 70nmの厚さとした。 [0106] Then, PEDOT-PSS was applied onto the anode by spin coating, and dried at 200 ° C for 10 minutes to form a hole transport layer. The film thickness of the hole transport layer is the concentration of the solution, The thickness was about 70 nm by controlling the number of rotations during spin coating. Next, a solution of the polyfluorene derivative was similarly applied to the hole transport layer by spin coating, and dried at 150 ° C. for 10 minutes to form a light emitting layer. The film thickness of the light emitting layer was set to about 70 nm by controlling the concentration of the solution and the number of rotations during spin coating.
[0107] 次に発光層上に、フッ化物であるフッ化セシウム (CsF)膜を電子ビーム蒸着装置に て、陽極のストライプと直交するように、幅 2mm、長さ 25mmのストライプ状に 3nmの 膜厚で形成した。次に酸化物である酸化ストロンチウム(SrO)膜を電子ビーム蒸着 装置にて、ハロゲンィ匕物層である CsF膜上に当該 CsFと同じ形状になるように、幅 2 mm、長さ 25mmのストライプ状に 3nmの膜厚で形成し、 CsF (ノヽロゲン化物層)と Sr o (酸ィ匕物層)の積層膜を電子注入層とした。つまり、本実施例では、ハロゲン化物層 にアルカリ金属のフッ化物を用い、酸化物層にアルカリ土類金属の酸ィ匕物を用いて いる。そして、最後に陰極として ITOを、スパッタリング装置を用いて、酸素とアルゴン の混合雰囲気中で、 SrO薄膜上に電子注入層と同じ形状で 150nmの厚さで形成し た。これにより、発光面が 2mm X 2mmの有機 EL素子を得た。この有機 EL素子を駆 動させ、そのときの輝度を測定したところ、 4. 5Vにて陽極側で 510cd/m2、陰極側 で 470cdZm2の発光を得ることができ、良好な両面発光の有機 EL素子を得ることが できた。 [0107] Next, a cesium fluoride (CsF) film, which is a fluoride, is formed on the light-emitting layer by an electron beam evaporation apparatus so that the stripe is 2 mm wide and 25 mm long so as to be perpendicular to the anode stripe. It was formed with a film thickness. Next, a strontium oxide (SrO) film, which is an oxide, is striped in a 2 mm width and 25 mm length so that it has the same shape as the CsF on the CsF film, which is a halide layer, using an electron beam evaporation system. The film was formed to a thickness of 3 nm, and a laminated film of CsF (a non-oxide layer) and Sr o (an oxide layer) was used as an electron injection layer. That is, in this embodiment, an alkali metal fluoride is used for the halide layer, and an alkaline earth metal oxide is used for the oxide layer. Finally, ITO as the cathode was formed on the SrO thin film in the same shape as the electron injection layer with a thickness of 150 nm in a mixed atmosphere of oxygen and argon using a sputtering apparatus. As a result, an organic EL device having a light emitting surface of 2 mm × 2 mm was obtained. When this organic EL device was driven and the brightness at that time was measured, it was possible to obtain light emission of 510 cd / m 2 on the anode side and 470 cdZm 2 on the cathode side at 4.5 V. An EL device was obtained.
[0108] 本発明に係る有機 EL素子は、陽極と、陰極と、陽極と陰極との間に設けられた有 機発光層を少なくとも含む有機層と、陰極と有機層との間に設けられた電子注入層と 、を備えた有機エレクト口ルミネッセンス素子であって、上記陽極、有機層、ハロゲン 化物層、酸ィ匕物層および陰極力この順に積層されてなる構成である。電子注入層を 上記構造にすることにより、有機層への電子注入がスムーズに行われ、その結果駆 動電圧の低減が可能となる。さらに、本発明における電子注入層は酸素との反応が 起こり難い酸ィ匕物とハロゲンィ匕物とで構成することにより、電子注入層を非常に安定 性なものとすることができる。すなわち、上記有機 EL素子は非常に安定性に優れて いる。また、電子注入層の酸ィ匕物層はアルカリ金属またはアルカリ金属土類の酸ィ匕 物で構成されて ヽることが好ま ヽ。アルカリ金属またはアルカリ金属土類の酸ィ匕物 は仕事関数が低いため、有機層への電子注入効率を上げることができる。また、電子 注入層のハロゲン化物層はアルカリ金属またはアルカリ土類金属のハロゲン化物で 構成されていることが好ましい。アルカリ金属またはアルカリ土類金属のハロゲンィ匕物 は陰極と有機層との電子注入障壁高さを低下させる。また、ハロゲンィ匕物層はフツイ匕 物で構成されていることが好ましい。フッ化物も陰極と有機層との電子注入障壁高さ を低下させる。また、電子注入層の厚さは 0. l〜20nmにすることにより、効率よく有 機層に電子注入することが可能となる。また、本発明における有機 EL素子の電子注 入層の構成では透明導電性酸化物膜を成膜した場合であっても、上記電子注入層 が水および酸素に対して非常に化学的に安定であるため、透明導電性酸ィ匕膜から なる陰極を備えた有機 EL素子の安定性を非常に優れたものとすることができる。 [0108] The organic EL device according to the present invention is provided between an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and the cathode and the organic layer. And an electron injection layer, wherein the anode, the organic layer, the halide layer, the oxide layer, and the cathode force are stacked in this order. By making the electron injection layer have the above structure, electrons are smoothly injected into the organic layer, and as a result, the driving voltage can be reduced. Furthermore, the electron injection layer in the present invention is composed of an acid compound and a halogen compound that hardly react with oxygen, whereby the electron injection layer can be made very stable. That is, the organic EL device is very stable. In addition, the oxide layer of the electron injection layer is preferably made of an alkali metal or alkaline earth metal oxide. Alkali metal or alkali metal earth oxides have a low work function, so that the efficiency of electron injection into the organic layer can be increased. Also electronic The halide layer of the injection layer is preferably composed of an alkali metal or alkaline earth metal halide. Alkali metal or alkaline earth metal halides lower the electron injection barrier height between the cathode and the organic layer. The halogenated material layer is preferably composed of a foodstuff. Fluoride also reduces the electron injection barrier height between the cathode and the organic layer. Further, by setting the thickness of the electron injection layer to 0.1 to 20 nm, it becomes possible to efficiently inject electrons into the organic layer. Further, in the structure of the electron injection layer of the organic EL device in the present invention, even when a transparent conductive oxide film is formed, the electron injection layer is very chemically stable against water and oxygen. Therefore, the stability of an organic EL device having a cathode made of a transparent conductive oxide film can be made extremely excellent.
[0109] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性 [0109] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention. Industrial applicability
[0110] 本発明に係る有機 EL素子は、陽極と、陰極と、上記陽極と陰極との間に設けられ た有機発光層を少なくとも含む有機層と、上記陰極と有機層との間に設けられた、酸 化物層とハロゲン化物層とを少なくとも含む電子注入層とを備え、上記陽極、有機層 、ハロゲン化物層、酸ィ匕物層および陰極力この順に積層されてなる構成である。  [0110] An organic EL device according to the present invention is provided between an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and the cathode and the organic layer. In addition, an electron injection layer including at least an oxide layer and a halide layer is provided, and the anode, the organic layer, the halide layer, the oxide layer, and the cathode force are laminated in this order.
[0111] それゆえ、従来と比べて、低消費電力で長時間でも素子劣化の少ない有機 EL素 子を実現することができる。  [0111] Therefore, it is possible to realize an organic EL element with low power consumption and less element degradation even for a long time as compared with the conventional one.
[0112] 従って、本発明にかかる有機 EL素子は、例えば、情報を表示する表示パネル等に 好適に適用できる。  Therefore, the organic EL device according to the present invention can be suitably applied to, for example, a display panel for displaying information.

Claims

請求の範囲 The scope of the claims
[1] 陽極と、  [1] an anode,
陰極と、  A cathode,
上記陽極と陰極との間に設けられた有機発光層を少なくとも含む有機層と、 上記陰極と有機層との間に設けられた、酸化物層とハロゲン化物層とを少なくとも 含む電子注入層とを備え、  An organic layer including at least an organic light emitting layer provided between the anode and the cathode; and an electron injection layer including at least an oxide layer and a halide layer provided between the cathode and the organic layer. Prepared,
上記陽極、有機層、ハロゲン化物層、酸ィ匕物層および陰極がこの順に積層されて なることを特徴とする有機エレクト口ルミネッセンス素子。  An organic electoluminescence device, wherein the anode, the organic layer, the halide layer, the oxide layer, and the cathode are laminated in this order.
[2] 上記酸ィ匕物層が上記陰極の少なくとも一部と接している、および Zまたは、ハロゲ ン化物層が上記有機層の少なくとも一部と接していることを特徴とする請求項 1記載 の有機エレクト口ルミネッセンス素子。  [2] The oxide layer according to claim 1, wherein the oxide layer is in contact with at least a part of the cathode, and Z or the halide layer is in contact with at least a part of the organic layer. Organic-elect mouth luminescence element.
[3] 上記ハロゲン化物層と酸ィ匕物層とが接していることを特徴とする請求項 1記載の有 機エレクト口ルミネッセンス素子。  [3] The organic electoluminescence device according to [1], wherein the halide layer and the oxide layer are in contact with each other.
[4] 上記酸化物層を構成する材料は、アルカリ金属またはアルカリ土類金属の酸ィ匕物 であること特徴とする請求項 1記載の有機エレクト口ルミネッセンス素子。  [4] The organic electoluminescence device according to [1], wherein the material constituting the oxide layer is an alkali metal or alkaline earth metal oxide.
[5] 上記ハロゲン化物層を構成している材料は、アルカリ金属またはアルカリ土類金属 のハロゲンィ匕物であることを特徴とする請求項 1記載の有機エレクト口ルミネッセンス 素子。  [5] The organic electoluminescence device according to [1], wherein the material constituting the halide layer is an alkali metal or alkaline earth metal halide.
[6] 上記ハロゲン化物層を構成している材料は、フッ化物であることを特徴とする請求 項 1記載の有機エレクト口ルミネッセンス素子。  [6] The organic electoluminescence device according to [1], wherein the material constituting the halide layer is a fluoride.
[7] 上記電子注入層の厚さが、 0. l〜20nmの範囲内であることを特徴とする請求項 1 記載の有機エレクト口ルミネッセンス素子。 7. The organic electroluminescent mouth luminescence device according to claim 1, wherein the electron injection layer has a thickness in the range of 0.1 to 20 nm.
[8] 上記陰極を構成して ヽる材料は、透明導電性酸化物であることを特徴とする請求 項 1記載の有機エレクト口ルミネッセンス素子。 [8] The organic electroluminescent device according to [1], wherein the material constituting the cathode is a transparent conductive oxide.
[9] 陽極と、陰極と、陽極と陰極との間に設けられた有機発光層を少なくとも含む有機 層と、上記陰極と有機層との間に設けられた電子注入層とを備えた有機エレクトロル ミネッセンス素子の製造方法であって、 [9] An organic electro- device comprising an anode, a cathode, an organic layer including at least an organic light emitting layer provided between the anode and the cathode, and an electron injection layer provided between the cathode and the organic layer. A method of manufacturing a luminance element,
上記有機層の表面の少なくとも一部にハロゲンィ匕物層を形成するハロゲンィ匕物層 形成工程と、 A halide layer forming a halide layer on at least a part of the surface of the organic layer Forming process;
上記ハロゲン化物層の少なくとも一部に酸ィ匕物層を形成する酸ィ匕物層形成工程と を含むことを特徴とする有機エレクト口ルミネッセンス素子の製造方法。  And an oxide layer forming step of forming an oxide layer on at least a part of the halide layer. A method for producing an organic electoluminescence device, comprising:
請求項 1に記載の有機エレクト口ルミネッセンス素子を備えることを特徴とする有機 エレクトロノレミネッセンス表示パネノレ。  An organic electroluminescence display panel, comprising the organic electoluminescence device according to claim 1.
PCT/JP2006/301064 2005-01-26 2006-01-24 Organic electroluminescent device, method for manufacturing same, and organic electroluminescent display panel WO2006080315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005018702 2005-01-26
JP2005-018702 2005-01-26

Publications (1)

Publication Number Publication Date
WO2006080315A1 true WO2006080315A1 (en) 2006-08-03

Family

ID=36740345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301064 WO2006080315A1 (en) 2005-01-26 2006-01-24 Organic electroluminescent device, method for manufacturing same, and organic electroluminescent display panel

Country Status (1)

Country Link
WO (1) WO2006080315A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238509A (en) * 2009-03-31 2010-10-21 Sumitomo Chemical Co Ltd Manufacturing method of organic electroluminescent element
WO2015194189A1 (en) * 2014-06-20 2015-12-23 株式会社Joled Organic light-emitting device and display apparatus
EP2265094B1 (en) * 2008-04-07 2020-01-22 Pioneer Corporation Light emitting element and display panel
EP4207325A4 (en) * 2021-05-27 2024-05-01 Boe Technology Group Co Ltd Display device and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163158A (en) * 1992-11-19 1994-06-10 Pioneer Electron Corp Organic electroluminescence element
JPH11149985A (en) * 1997-09-18 1999-06-02 Eastman Kodak Co Organic electroluminescent device having inorganic electron transport layer
JPH11233263A (en) * 1997-11-17 1999-08-27 Lg Electronics Inc Organic el element
JP2002260862A (en) * 2001-02-28 2002-09-13 Eastman Kodak Co Organic light-emitting diode device
JP2004288621A (en) * 2003-02-17 2004-10-14 Seiko Epson Corp Electro-optic device and its manufacturing method and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163158A (en) * 1992-11-19 1994-06-10 Pioneer Electron Corp Organic electroluminescence element
JPH11149985A (en) * 1997-09-18 1999-06-02 Eastman Kodak Co Organic electroluminescent device having inorganic electron transport layer
JPH11233263A (en) * 1997-11-17 1999-08-27 Lg Electronics Inc Organic el element
JP2002260862A (en) * 2001-02-28 2002-09-13 Eastman Kodak Co Organic light-emitting diode device
JP2004288621A (en) * 2003-02-17 2004-10-14 Seiko Epson Corp Electro-optic device and its manufacturing method and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2265094B1 (en) * 2008-04-07 2020-01-22 Pioneer Corporation Light emitting element and display panel
JP2010238509A (en) * 2009-03-31 2010-10-21 Sumitomo Chemical Co Ltd Manufacturing method of organic electroluminescent element
WO2015194189A1 (en) * 2014-06-20 2015-12-23 株式会社Joled Organic light-emitting device and display apparatus
JPWO2015194189A1 (en) * 2014-06-20 2017-04-20 株式会社Joled Organic light emitting device and display device
US10038034B2 (en) 2014-06-20 2018-07-31 Joled Inc. Organic light-emitting device and display apparatus
US10535717B2 (en) 2014-06-20 2020-01-14 Joled Inc. Organic light-emitting device
EP4207325A4 (en) * 2021-05-27 2024-05-01 Boe Technology Group Co Ltd Display device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US20060181199A1 (en) Organic light emitting device comprising multilayer cathode
US7049741B2 (en) Organic light emitting diode with improved light emission through substrate
JP5237541B2 (en) Organic electroluminescence device
JP2005209660A (en) Opto-electronics device
KR20060120505A (en) Intermediate electrodes for stacked oleds
JP2011522391A (en) Organic electroluminescence device
JP2000260572A (en) Organic electroluminescence panel
JP2008218396A (en) Organic electroluminescence element
US7906901B2 (en) Organic electroluminescent device and organic electroluminescent display device
JP2008294356A (en) Organic electrominescence element
JP4872805B2 (en) Organic electroluminescence device
WO2006080315A1 (en) Organic electroluminescent device, method for manufacturing same, and organic electroluminescent display panel
TW200931700A (en) Thin film active element group, thin film active element array, organic light emitting device, display device and method for manufacturing thin film active element group
US20160315280A1 (en) Light-emitting device and method for fabricating light-emitting device
JP4494595B2 (en) Organic electroluminescent device
JP2007123124A (en) Organic electroluminescent element
JP5281271B2 (en) Organic electroluminescence device
JP2003297554A (en) Light-emitting element, and display device and lighting apparatus using the same
JP5249075B2 (en) Organic electroluminescence device
JP2020155766A (en) Self-luminous element, manufacturing method of the same, self-luminous display device, and electronic device
JP2010033973A (en) Organic electroluminescent element
JPH11312584A (en) Organic el element
JP3893386B2 (en) Method for manufacturing organic electroluminescence display device
JP2008078036A (en) Organic electroluminescent element and organic electroluminescent display
JP2017130408A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06712280

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712280

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP