WO2006070608A1 - Display drive method for information display panel - Google Patents

Display drive method for information display panel Download PDF

Info

Publication number
WO2006070608A1
WO2006070608A1 PCT/JP2005/023034 JP2005023034W WO2006070608A1 WO 2006070608 A1 WO2006070608 A1 WO 2006070608A1 JP 2005023034 W JP2005023034 W JP 2005023034W WO 2006070608 A1 WO2006070608 A1 WO 2006070608A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
information
display medium
pulse voltage
display panel
Prior art date
Application number
PCT/JP2005/023034
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Tsuchida
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2006070608A1 publication Critical patent/WO2006070608A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • a display medium having optical reflectivity and chargeability is enclosed between two substrates, at least one of which is transparent, and the display medium is moved by applying an electric field to the display medium.
  • the present invention relates to a display driving method for an information display panel for displaying information.
  • the electrophoretic method has a problem that the response speed becomes slow due to the viscous resistance of the liquid because the particles migrate in the liquid.
  • particles with high specific gravity such as titanium oxide are dispersed in a solution with low specific gravity, they tend to settle, and it is difficult to maintain the stability of the dispersed state. I have it.
  • the cell size is reduced to the microcapsule level, apparently making the above-mentioned drawbacks difficult to appear, and the essential problems have not been solved.
  • a display medium is sealed between two substrates, at least one of which is transparent, and an electric field is applied to the display medium to move the display medium.
  • An information display panel for displaying information is known.
  • Non-Patent Document 1 Kunihiro Tsuji, 3 others, “New Toner Display Device (1)", July 21, 1999, Annual Meeting of the Imaging Society of Japan (83 times in total) "Japan Hardcopy '99” Proceedings, p.249_ 252
  • FIG. 10 is a flowchart for explaining an example of a display driving method of a conventional information display panel.
  • the drive for displaying information such as an image on the information display panel is performed by erasing the previously displayed information and then applying the write pulse voltage sequentially for each line and writing the data for each line. I was going by.
  • a write pulse voltage is applied to each line, and the write pulse voltage is also applied to pixels that do not contribute to display on the line. .
  • a crosstalk voltage is applied to the non-selected pixels, and the density of the non-selected pixels changes, resulting in a problem that the contrast is lowered or the density is not uniform between the pixels.
  • Another problem was that the display medium would not move if it was repeatedly displayed, adversely affecting information display.
  • the object of the present invention is to eliminate the above-described problems, to eliminate a decrease in contrast and non-uniform density between pixels when writing display information, and to adversely affect information display due to the durability of the display medium.
  • the present invention intends to provide a display driving method for an information display panel that can be eliminated.
  • the display driving method of the information display panel according to the first aspect of the present invention includes sealing a display medium having optical reflectivity and charging characteristics between two substrates, at least one of which is transparent, into the display medium.
  • a pulse voltage having a shorter application time than the writing pulse voltage is applied to the entire screen before displaying the information. It is characterized by being applied more than once.
  • a display medium having optical reflectivity and charging characteristics is sealed between two substrates, at least one of which is transparent, Displaying information by moving the display medium by applying an electric field to the display medium
  • a pulse voltage having an amplitude smaller than the write pulse voltage is applied to the entire screen before displaying the information. It is characterized in that it is applied at least once.
  • the display driving method of the information display panel according to the third invention of the present invention encloses a display medium having optical reflectance and charging characteristics between two substrates, at least one of which is transparent,
  • a display driving method for an information display panel that displays information by moving the display medium by applying an electric field to the display medium, a pulse having a shorter application time and smaller amplitude than the write pulse voltage is displayed before the information is displayed. The voltage is applied to the entire screen at least once.
  • the predetermined nore voltage according to the first to third inventions described above is applied to the entire screen. May be applied more than once and then information may be displayed.
  • the pulse voltage is applied to the entire screen at least once, whether the application time is shorter than the write pulse voltage or the amplitude is smaller, or the write pulse voltage is written.
  • Applying a pulse voltage with a shorter application time and smaller amplitude than the pulse voltage to the entire screen at least once eliminates the decrease in contrast and non-uniform density between pixels when writing information. It is possible to obtain a display driving method for an information display panel that can eliminate the adverse effect of the resulting information display.
  • FIG. L] (a) and (b) are diagrams showing an example of an information display panel which is an object of the display driving method of the present invention.
  • FIG. 2] (a) and (b) are diagrams showing other examples of an information display panel which is an object of the display driving method of the present invention.
  • FIG. 3 (a) and (b) are views showing still other examples of the information display panel to be subjected to the display driving method of the present invention.
  • FIG. 4 is a flow chart for explaining an example of a display driving method of the information display panel of the present invention.
  • FIG. 5 (a) to (d) show examples of pulse voltages used in the display driving method of the present invention.
  • FIG. 6 is a diagram showing an example of a display image used in a comparative experiment.
  • FIG. 7 is a diagram showing a pulse voltage with an amplitude VZ2 increased by 1 ⁇ sec from 1 ⁇ sec to the write pulse voltage width t_l ⁇ sec used in the comparative experiment.
  • FIG. 8 is a diagram showing the results of a comparative experiment.
  • FIG. 9 is a diagram showing an example of the shape of a partition wall in the information display panel of the present invention.
  • FIG. 10 is a flow chart for explaining an example of a display driving method of a conventional information display panel.
  • the information display panel of the present invention an electric field is applied to a display medium sealed between two opposing substrates.
  • the charged display medium is attracted by the force of the electric field or the Coulomb force, and the display medium changes the moving direction by the change of the electric field direction due to the switching of the potential. Display is made. Therefore, it is necessary to design an information display panel so that the display medium can move uniformly and maintain the stability when the display information is rewritten repeatedly or when the display information is continuously displayed.
  • the force applied to the particles composing the display medium may be an electromirror force with the electrode or substrate, intermolecular force, liquid bridge force, gravity, etc., in addition to the force attracted by the Coulomb force of the particles. .
  • FIGS. 1 (a) and (b) An example of an information display panel that is a target of the display driving method of the present invention will be described with reference to FIGS. 1 (a) and (b) to FIGS. 3 (a) and 3 (b).
  • a display media 3 here, white display media
  • white display medium 3W consisting of particles of 3Wa
  • black display medium 3B consisting of particles of 3Ba black display medium 3B
  • the black display medium 3B is visually recognized by the observer to display black, or the white display medium 3W is visually recognized by the observer to display white.
  • a partition 4 is provided between the substrates 1 and 2, for example, in the form of a lattice to form a cell.
  • the front partition is omitted.
  • a display media 3 (here, white display media) having at least one or more kinds of particles and having different optical reflectance and charging characteristics are used.
  • White display medium 3W composed of particles of 3Wa and black display medium 3B composed of particles of 3Ba for black display medium
  • electrode 5 provided on substrate 1 and electrode 6 provided on substrate 2
  • the substrate is moved perpendicularly to the substrates 1 and 2, and the black display medium 3B is visually recognized by the observer to display black, or the white display medium 3W is A white color is displayed by the observer.
  • a partition 4 is provided between the substrates 1 and 2 to form cells, for example. In FIG. 2 (b), the partition in front is omitted.
  • one type of display medium 3 (here, particles for white display medium) having optical reflectivity and chargeability composed of at least one type of particles.
  • a lattice-shaped partition wall 4 is provided between the substrates 1 and 2 to form a cell.
  • the partition in front is omitted.
  • FIG. 4 is a flowchart for explaining an example of the display driving method of the information display panel of the present invention.
  • the present invention will be described according to the example shown in FIG. Delete information such as images.
  • the pulse voltage with a shorter application time than the write pulse voltage (first invention) or the amplitude smaller than the write pulse voltage is applied to the entire screen, that is, all lines on the screen.
  • a pulse voltage (second invention) or a pulse voltage (third invention) having a shorter amplitude and smaller amplitude than the write pulse voltage is applied one or more times.
  • information is displayed by sequentially applying a write pulse voltage for each line and writing data for each line.
  • FIGS. 5A to 5D show examples of pulse voltages.
  • Figure 5 (a) shows the write pulse voltage with amplitude V at application time t.
  • Fig. 5 (b) shows a pulse voltage with an application time of t / 2 as an example of the pulse voltage (first invention) with a shorter application time than the write pulse voltage.
  • 5 (c) shows a pulse voltage with an amplitude of V / 2 as an example of a pulse voltage with a smaller amplitude than the write pulse voltage (second invention)
  • Fig. 5 (d) shows a shorter application time than the write pulse voltage.
  • the pulse voltage with application time t / 2 and amplitude V / 2 is shown.
  • the application time is set to t / 2 and the amplitude is set to V / 2.
  • the density value did not change due to the effect of crosstalk, or the change could be suppressed. Therefore, it was possible to suppress the reduction in contrast due to crosstalk, and to make the density nonuniformity between pixels uniform.
  • the inventive example was able to increase the black density S and the contrast as compared with the conventional example.
  • the density (optical density) was measured with a reflection image densitometer RD-191 (manufactured by Macbeth).
  • At least one of the substrates has the above-mentioned characteristics of the present invention, and at least one of the substrates is a transparent substrate 2 on which the color of the display medium 3 can be confirmed from the outside of the panel.
  • a material having high transmittance and good heat resistance is suitable.
  • Substrate 1 can be transparent or opaque. Examples of the substrate material include polymer sheets such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic, flexible materials such as metal sheets, and glass, quartz And non-flexible inorganic sheets.
  • the thickness of the substrate is preferably 2 to 500 / im force S, and more preferably 5 to 2000 / im force S. If it is too thin, the strength and the uniformity of the distance between the substrates will be maintained, and it is thicker than 5000 / m. Inconvenient for a thin information display panel.
  • Electrodes for forming electrodes on the information display panel include metals such as aluminum, silver, nickel, copper, and gold, and conductive materials such as ITO , indium oxide, conductive tin oxide, and conductive zinc oxide. Examples thereof include conductive polymers such as metal oxides, polyaniline, polypyrrole, and polythiophene, which are appropriately selected and used.
  • the electrode can be formed by, for example, forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a solvent or synthetic resin binder. The method of applying is used.
  • the electrode provided on the viewing side (display side) substrate needs to be transparent, but the electrode provided on the back side substrate does not need to be transparent.
  • the above-mentioned material that is conductive and capable of pattern formation can be suitably used.
  • the electrode thickness is good as long as the conductivity can be secured and the light transmittance is not affected. 3 to 1000 nm, preferably 5 to 400 nm is preferred.
  • the material and thickness of the electrode provided on the rear substrate need not be the same as the electrode provided on the display substrate described above. In this case, the external voltage input may be superimposed with direct current or alternating current.
  • the shape of the partition walls 4 provided on the substrate is appropriately set according to the type of display medium involved in the display, and is not limited in general, but the width of the partition walls is 2 to: 100 ⁇ m, Preferably, the height of the partition wall is adjusted to 3 to 50 ⁇ m, and the height of the partition wall is adjusted to 10 to 500 ⁇ m, preferably 10 to 200 ⁇ m.
  • the cells formed by the partition walls made up of these ribs are exemplified by a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the substrate plane direction.
  • the shape and the mesh shape are exemplified. It is better to make the part (area of the cell frame) corresponding to the partition wall section visible from the display surface side as small as possible.
  • the "powder fluid” in the present invention is a substance in an intermediate state of both fluid and particle characteristics that exhibits fluidity by itself without borrowing the force of gas or liquid.
  • a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity that is a characteristic of a liquid and anisotropy (optical properties) that is a characteristic of a solid (Heibonsha: Large Encyclopedia). ).
  • anisotropy optical properties
  • the definition of a particle is an object with a finite mass even if it is negligible, and is said to be affected by gravity (Maruzen: Physics Encyclopedia).
  • the pulverulent fluid in the present invention is in an intermediate state having both the characteristics of particles and liquid as in the definition of liquid crystal (liquid and solid intermediate phase), and has the characteristics of the particles described above. It is a substance that shows a unique state with high fluidity that is extremely difficult to be affected by gravity. Such a substance can be obtained in an aerosol state, that is, in a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the information display panel of the present invention disperses the solid substance in a dispersoid. It is what.
  • An information display panel to which the display driving method of the present invention is applied is an aerosol in which solid particles are stably suspended as a dispersoid, for example, as a display medium, between opposing substrates, at least one of which is transparent.
  • a powder fluid that exhibits high fluidity in a state is enclosed, and such a powder fluid can be easily and stably moved by a Coulomb force with a small electric field force.
  • the powder fluid used as a display medium in the present invention is an intermediate state of both fluid and particle characteristics that exhibit fluidity by themselves without borrowing the force of gas or liquid. It is a substance.
  • This powder fluid can be in an aerosol state in particular, and the information display panel of the present invention is used in a state where a solid substance floats relatively stably as a dispersoid in the gas.
  • display medium particles (hereinafter also referred to as particles) constituting the display medium in the information display panel will be described.
  • the display medium particles are composed of the display medium particles as they are to form a display medium.
  • the display medium particles are combined with other particles to form a display medium. Or used.
  • the particles can contain a charge control agent, a colorant, an inorganic additive, etc., if necessary, in the resin as the main component, if necessary.
  • a charge control agent e.g., a colorant, an inorganic additive, etc.
  • resins, charge control agents, colorants, and other additives are given below.
  • the resin examples include urethane resin, urea resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, acrylic fluororesin, silicone resin, acrylic silicone resin, epoxy resin Polystyrene resin, styrene acrylic resin, polyolefin resin, petital resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, polycarbonate resin, polysulfone Resin, polyether resin, polyamide resin and the like, and two or more kinds can be mixed.
  • acrylic urethane resin, acrylic silicone resin, acrylic fluororesin, acrylic urethane silicone resin, acrylic urethane fluororesin, fluororesin, and silicone resin are suitable from the viewpoint of controlling the adhesion with the substrate.
  • the charge control agent is not particularly limited.
  • the negative charge control agent include salicinoleate metal complexes, metal-containing azo dyes, metal-containing oil-soluble dyes (including metal ions and metal atoms). Quaternary ammonium salt compounds, force-rich allene compounds, boron-containing compounds (boronyl boron complexes), nitroimidazole derivatives, and the like.
  • the positive charge control agent include a nigue mouth dye, a triphenyl methane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative.
  • metal oxides such as ultrafine silica, ultrafine titanium oxide and ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and their derivatives and salts, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. Can also be used as a charge control agent.
  • colorant various organic and inorganic pigments and dyes as exemplified below can be used.
  • black colorant examples include carbon black, copper oxide, manganese dioxide, aniline black, and activated carbon.
  • Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, Dark Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, First Sky Blue, Indanthrene Blue BC, etc.
  • Red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risor red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Aliza Linleke, Brilliant Carmine 3B, CI Pigment Red 2, etc.
  • Yellow colorants include yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, Nikkenore Titanium yellow, Neve Nore Yellow, Naftono Reyello S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzine Yellow GR, Quinoline Yellow Lake, Permanente Yellow NCG, Tartra Gin Lake, CI Pigment Yellow 12 etc.
  • green colorants include chrome green, chromium oxide, pigment green B, C.I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, and the like.
  • Orange colorants include red yellow lead, molybdenum orange, permanent orange GTR, pyrazolone orange, nonolecan orange, indanthrene brilliant orange RK: benzidine orange G, indanthrene brilliant orange GK :, CI pigment orange 3 1 etc.
  • Purple colorants include manganese purple, first violet B, and methyl violet lake.
  • white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.
  • extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white.
  • various dyes such as basic, acidic, disperse, and direct dyes include Niguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow, and Ultramarine Benole.
  • inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium.
  • examples include orange, titanium yellow, bitumen, ultramarine, cobalt violet, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder.
  • These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as a black pigment, and titanium oxide is preferred as a white pigment.
  • the average particle diameter d (0.5) of the particles of the present invention is preferably in the range of 0.:! To 20 ⁇ m, and preferably uniform. When the average particle diameter d (0.5) is larger than this range, the display is not clear. When the average particle diameter d (0.5) is smaller than this range, the cohesive force between the particles becomes too large, which hinders movement as a display medium.
  • the particle size distribution Sp of each particle is represented by the following formula. An is less than 5, preferably less than 3.
  • d (0.5) is a numerical value expressed by / im that the particle size is 50% larger than this, and 50% smaller than this
  • d (0.1) is the ratio of particles below 10%.
  • the particle diameter is expressed in ⁇ m
  • d (0.9) is the numerical value expressed in xm when the particle size is 90% or less.
  • the ratio of the d (0.5) of the particles having the smallest diameter to the d (0.5) of the particles having the largest diameter among the used particles is 50 or less, preferably 10 or less. It is important to do this. Even if the particle size distribution Span is reduced, particles with different charging properties move in opposite directions, so that particles with close particle sizes can easily move in the opposite direction by the equivalent amount. Is preferred, and this is in this range
  • the particle size distribution and particle size described above can be obtained from a laser diffraction / scattering method or the like.
  • laser light is irradiated onto the particles to be measured, a light intensity distribution pattern of diffracted / scattered light is generated spatially, and this light intensity pattern has a corresponding relationship with the particle diameter, so that the particle diameter and particle diameter distribution can be measured. .
  • the particle size and particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, particles were introduced into a nitrogen stream, and attached analysis software (software based on volume reference distribution using Mie theory) The particle size and particle size distribution can be measured.
  • Mastersizer2000 Malvern Instruments Ltd.
  • analysis software software based on volume reference distribution using Mie theory
  • the charge amount of the display medium particles naturally depends on the measurement conditions, the charge amount of the display medium particles in the information display panel is almost the initial charge amount, the contact with the partition walls, the contact with the substrate, It was found that the saturation value of the charging behavior of the particles for display media was a dominant factor depending on the charge decay with time.
  • the present inventors measured the charge amount of the particles used for the display medium using the same carrier particles in the blow-off method, and thus the range of the appropriate charging characteristic value of the particles for the display medium. It was found that can be evaluated.
  • the gas in the void surrounding the display medium between the substrates can be managed. It is important and contributes to improved display stability. Specifically, it is important that the relative humidity at 25 ° C is 60% RH or less, preferably 50% RH or less for the gas humidity in the voids.
  • This gap is defined by the electrodes 5 and 6 (electrodes inside the substrate) from the portion sandwiched between the opposing substrates 1 and 2 in FIGS. 1 (a), (b) to 3 (a), (b). ),
  • the display medium (particle group or powdered fluid) 3 occupies the area, the partition 4 occupies (when the partition is provided), and the so-called display medium except the seal part of the information display panel. It shall refer to the gas part.
  • the gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are preferable.
  • This gas must be sealed in the information display panel so that the humidity is maintained. For example, filling of the display medium and assembly of the information display panel are performed in a predetermined humidity environment. It is important to use sealing materials and sealing methods that prevent moisture from entering from the outside.
  • the present invention can also be applied to a case where a display medium composed of particles for display medium is driven to display in an insulating liquid.
  • the distance between the substrates in the information display panel that is the target of the display driving method of the present invention is not limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500 / im, preferably Adjusted to 10-200 ⁇ m.
  • the volume occupancy of the display medium in the space between the opposing substrates is preferably 5 to 70%, more preferably 5 to 60%. It is. If it exceeds 70%, the movement of the display medium will be hindered. If it is less than 5%, the contrast tends to be unclear.
  • Information display panels subject to the display driving method of the present invention include display units of notebook computers, PDAs, mobile phones, handy terminals and other mopile equipment, electronic books, electronic newspapers, etc. Electronic paper, billboards, posters, blackboards, calculators, home appliances, automotive supplies, etc., point cards, card displays such as IC cards, electronic advertisements, electronic points (POP) (Point Of Presence, Point Of Purchase advertising) It is suitable for use in electronic price tags, kameko individual bills, 'good!

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

There is provided a display drive method for an information display panel for sealing a display medium having an optical reflection ratio and charging characteristic between two substrates, at least one of which is transparent and applying an electric field to the display medium so as to move the display medium and display information. Before displaying information, a pulse voltage is applied to the entire screen once or more times by an application time shorter than the write pulse voltage or a pulse voltage having a small amplitude is applied to the entire screen once or more times. This prevents lowering of the contrast during write of display information, eliminates uneven concentration between pixels, and eliminates an adverse affect of the information display attributed to the durability of the display medium.

Description

明 細 書  Specification
情報表示用パネルの表示駆動方法  Display driving method of information display panel
技術分野  Technical field
[0001] 本発明は、少なくとも一方が透明な 2枚の基板間に光学的反射率および帯電性を 有する表示媒体を封入し、表示媒体に電界を付与することによって、表示媒体を移 動させて情報を表示する情報表示用パネルの表示駆動方法に関するものである。 背景技術  In the present invention, a display medium having optical reflectivity and chargeability is enclosed between two substrates, at least one of which is transparent, and the display medium is moved by applying an electric field to the display medium. The present invention relates to a display driving method for an information display panel for displaying information. Background art
[0002] 従来より、液晶(LCD)に代わる情報表示装置として、電気泳動方式、エレクト口クロ ミック方式、サーマル方式、 2色粒子回転方式等の技術を用いた情報表示装置が提 案されている。  [0002] Conventionally, as an information display device that replaces liquid crystal (LCD), an information display device using techniques such as an electrophoresis method, an electochromic method, a thermal method, and a two-color particle rotation method has been proposed. .
[0003] これら従来技術は、 LCDと比較すると、通常の印刷物に近い広い視野角が得られ る、消費電力が小さい、メモリー機能を有している等のメリットがあることから、次世代 の安価な情報表示装置に使用可能な技術として考えられており、携帯端末用情報表 示、電子ペーパー等への展開が期待されている。特に最近では、分散粒子と着色溶 液から成る分散液をマイクロカプセル化し、これを対向する基板間に配置して成る電 気泳動方式が提案され、期待が寄せられている。  [0003] Compared to LCDs, these conventional technologies have advantages such as a wide viewing angle close to that of ordinary printed materials, low power consumption, and a memory function. It is considered as a technology that can be used for various information display devices, and is expected to expand to information display for mobile terminals, electronic paper, and so on. Recently, an electrophoretic method in which a dispersion composed of dispersed particles and a colored solution is microencapsulated and placed between opposing substrates has been proposed and is expected.
[0004] し力、しながら、電気泳動方式では、液中を粒子が泳動するために液の粘性抵抗に より応答速度が遅くなるという問題がある。さらに、低比重の溶液中に酸化チタン等の 高比重の粒子を分散させているため沈降しやすくなつており、分散状態の安定性維 持が難しぐ情報表示の繰り返し安定性に欠けるという問題を抱えている。また、マイ クロカプセル化にしても、セルサイズをマイクロカプセルレベルにして、見かけ上、上 述した欠点が現れにくくしているだけであって、本質的な問題は何ら解決されていな レ、。  However, the electrophoretic method has a problem that the response speed becomes slow due to the viscous resistance of the liquid because the particles migrate in the liquid. In addition, since particles with high specific gravity such as titanium oxide are dispersed in a solution with low specific gravity, they tend to settle, and it is difficult to maintain the stability of the dispersed state. I have it. Even with microencapsulation, the cell size is reduced to the microcapsule level, apparently making the above-mentioned drawbacks difficult to appear, and the essential problems have not been solved.
[0005] 一方、溶液中での挙動を利用する電気泳動方式に対し、溶液を使わず、導電性粒 子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めている(例えば、 非特許文献 1参照)。しかし、電荷輸送層、さらには電荷発生層を配置するために構 造が複雑化するとともに、導電性粒子に電荷を一定に注入することは難しいため、表 示安定性に欠けるという問題もある。 [0005] On the other hand, a method in which a conductive particle and a charge transport layer are incorporated into a part of a substrate without using a solution has been proposed (for example, non-electrophoresis) that uses a behavior in a solution. (See Patent Document 1). However, since the structure becomes complicated due to the arrangement of the charge transport layer and further the charge generation layer, and it is difficult to uniformly inject the charge into the conductive particles, There is also a problem of lack of stability.
[0006] 上述した種々の問題を解決するための一方法として、少なくとも一方が透明な 2枚 の基板間に表示媒体を封入し、表示媒体に電界を付与することによって、表示媒体 を移動させて情報を表示する情報表示用パネルが知られている。  [0006] As a method for solving the various problems described above, a display medium is sealed between two substrates, at least one of which is transparent, and an electric field is applied to the display medium to move the display medium. An information display panel for displaying information is known.
非特許文献 1 :趙 国来、外 3名、 "新しいトナーディスプレイデバイス (1) "、 1999年 7 月 21日、 日本画像学会年次大会(通算 83回)" Japan Hardcopy' 99"論文集、 p.249_ 252  Non-Patent Document 1: Kunihiro Tsuji, 3 others, "New Toner Display Device (1)", July 21, 1999, Annual Meeting of the Imaging Society of Japan (83 times in total) "Japan Hardcopy '99" Proceedings, p.249_ 252
[0007] 図 10は従来の情報表示用パネルの表示駆動方法の一例を説明するためのフロー チャートである。図 10において、情報表示用パネルにおいて画像等の情報を表示す るための駆動は、前の表示した情報を消去後、書き込みパルス電圧をライン毎に順 に印加して、ライン毎にデータを書き込むことで行っていた。し力 ながら、上述した 従来の情報表示用パネルの表示駆動方法では、ライン毎に書き込みパルス電圧を 印加しており、そのライン上で表示に寄与しない画素にも書き込みパルス電圧が印 カロされていた。そのため、クロストーク電圧が非選択画素に印加されることとなり、非 選択画素の濃度が変化して、コントラストが低下したり、画素間において濃度が均一 とならない問題があった。また、繰り返し表示をしていると表示媒体が動かなくなり、情 報表示に悪影響を与える問題もあつた。  FIG. 10 is a flowchart for explaining an example of a display driving method of a conventional information display panel. In FIG. 10, the drive for displaying information such as an image on the information display panel is performed by erasing the previously displayed information and then applying the write pulse voltage sequentially for each line and writing the data for each line. I was going by. However, in the display driving method of the conventional information display panel described above, a write pulse voltage is applied to each line, and the write pulse voltage is also applied to pixels that do not contribute to display on the line. . For this reason, a crosstalk voltage is applied to the non-selected pixels, and the density of the non-selected pixels changes, resulting in a problem that the contrast is lowered or the density is not uniform between the pixels. Another problem was that the display medium would not move if it was repeatedly displayed, adversely affecting information display.
発明の開示  Disclosure of the invention
[0008] 本発明の目的は上述した課題を解消して、表示情報を書き込む時のコントラストの 低下や画素間の濃度不均一をなくし、さらに、表示媒体の耐久性に起因する情報表 示の悪影響もなくすことのできる情報表示用パネルの表示駆動方法を提供しようとす るものである。  [0008] The object of the present invention is to eliminate the above-described problems, to eliminate a decrease in contrast and non-uniform density between pixels when writing display information, and to adversely affect information display due to the durability of the display medium. The present invention intends to provide a display driving method for an information display panel that can be eliminated.
[0009] 本発明の第 1発明に係る情報表示用パネルの表示駆動方法は、少なくとも一方が 透明な 2枚の基板間に光学的反射率および帯電特性を有する表示媒体を封入し、 表示媒体に電界を付与することによって、表示媒体を移動させて情報を表示する情 報表示用パネルの表示駆動方法において、情報を表示する前に、書き込みパルス 電圧より印加時間が短いパルス電圧を画面全体に一回以上印加することを特徴とす るものである。 [0010] また、本発明の第 2発明に係る情報表示用パネルの表示駆動方法は、少なくとも一 方が透明な 2枚の基板間に光学的反射率および帯電特性を有する表示媒体を封入 し、表示媒体に電界を付与することによって、表示媒体を移動させて情報を表示する 情報表示用パネルの表示駆動方法において、情報を表示する前に、書き込みパル ス電圧より振幅が小さいパルス電圧を画面全体に一回以上印加することを特徴とす るものである。 [0009] The display driving method of the information display panel according to the first aspect of the present invention includes sealing a display medium having optical reflectivity and charging characteristics between two substrates, at least one of which is transparent, into the display medium. In the display driving method of the information display panel that displays information by moving the display medium by applying an electric field, a pulse voltage having a shorter application time than the writing pulse voltage is applied to the entire screen before displaying the information. It is characterized by being applied more than once. [0010] Further, in the display driving method of the information display panel according to the second invention of the present invention, a display medium having optical reflectivity and charging characteristics is sealed between two substrates, at least one of which is transparent, Displaying information by moving the display medium by applying an electric field to the display medium In the display driving method of the information display panel, a pulse voltage having an amplitude smaller than the write pulse voltage is applied to the entire screen before displaying the information. It is characterized in that it is applied at least once.
[0011] さらに、本発明の第 3発明に係る情報表示用パネルの表示駆動方法は、少なくとも 一方が透明な 2枚の基板間に光学的反射率および帯電特性を有する表示媒体を封 入し、表示媒体に電界を付与することによって、表示媒体を移動させて情報を表示 する情報表示用パネルの表示駆動方法において、情報を表示する前に、書き込み パルス電圧より印加時間が短いとともに振幅が小さいパルス電圧を画面全体に一回 以上印加することを特徴とするものである。  [0011] Further, the display driving method of the information display panel according to the third invention of the present invention encloses a display medium having optical reflectance and charging characteristics between two substrates, at least one of which is transparent, In a display driving method for an information display panel that displays information by moving the display medium by applying an electric field to the display medium, a pulse having a shorter application time and smaller amplitude than the write pulse voltage is displayed before the information is displayed. The voltage is applied to the entire screen at least once.
[0012] なお、本発明の情報表示用パネルの表示駆動方法における好適例としては、表示 した情報を消去した後に、上述した第 1発明〜第 3発明に係る所定のノ^レス電圧を 画面全体に一回以上印加し、その後情報を表示することがある。  [0012] Note that, as a preferred example of the display driving method of the information display panel of the present invention, after the displayed information is erased, the predetermined nore voltage according to the first to third inventions described above is applied to the entire screen. May be applied more than once and then information may be displayed.
[0013] 本発明によれば、情報を表示する前に、書き込みパルス電圧より印加時間が短い か、または、振幅が小さいかいすれかの、パルス電圧を画面全体に一回以上印加し たり、書き込みパルス電圧より印加時間が短ぐかつ、振幅が小さいパルス電圧を画 面全体に一回以上印加することで、情報書き込み時のコントラストの低下や画素間の 濃度不均一をなくし、さらに、表示媒体に起因する情報表示の悪影響もなくすことの できる情報表示用パネルの表示駆動方法を得ることができる。  [0013] According to the present invention, before displaying information, the pulse voltage is applied to the entire screen at least once, whether the application time is shorter than the write pulse voltage or the amplitude is smaller, or the write pulse voltage is written. Applying a pulse voltage with a shorter application time and smaller amplitude than the pulse voltage to the entire screen at least once eliminates the decrease in contrast and non-uniform density between pixels when writing information. It is possible to obtain a display driving method for an information display panel that can eliminate the adverse effect of the resulting information display.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 l] (a)、(b)はそれぞれ本発明の表示駆動方法の対象となる情報表示用パネルの 一例を示す図である。  [0014] [Fig. L] (a) and (b) are diagrams showing an example of an information display panel which is an object of the display driving method of the present invention.
[図 2] (a)、 (b)はそれぞれ本発明の表示駆動方法の対象となる情報表示用パネルの 他の例を示す図である。  [FIG. 2] (a) and (b) are diagrams showing other examples of an information display panel which is an object of the display driving method of the present invention.
[図 3] (a)、 (b)はそれぞれ本発明の表示駆動方法の対象となる情報表示用パネルの さらに他の例を示す図である。 [図 4]本発明の情報表示用パネルの表示駆動方法の一例を説明するためのフローチ ヤートである。 [FIG. 3] (a) and (b) are views showing still other examples of the information display panel to be subjected to the display driving method of the present invention. FIG. 4 is a flow chart for explaining an example of a display driving method of the information display panel of the present invention.
[図 5] (a)〜(d)はそれぞれ本発明の表示駆動方法で用いるパルス電圧の一例を示 す。  [FIG. 5] (a) to (d) show examples of pulse voltages used in the display driving method of the present invention.
[図 6]比較実験で用いる、表示画像の一例を示す図である。  FIG. 6 is a diagram showing an example of a display image used in a comparative experiment.
[図 7]比較実験で用いる、 1 β sec〜書き込みパルス電圧幅 t_ l μ secまで 1 μ secず つ増やした振幅 VZ2のパルス電圧を示す図である。  FIG. 7 is a diagram showing a pulse voltage with an amplitude VZ2 increased by 1 μsec from 1 β sec to the write pulse voltage width t_l μ sec used in the comparative experiment.
[図 8]比較実験の結果を示す図である。  FIG. 8 is a diagram showing the results of a comparative experiment.
[図 9]本発明の情報表示用パネルにおける隔壁の形状の一例を示す図である。  FIG. 9 is a diagram showing an example of the shape of a partition wall in the information display panel of the present invention.
[図 10]従来の情報表示用パネルの表示駆動方法の一例を説明するためのフローチ ヤートである。  FIG. 10 is a flow chart for explaining an example of a display driving method of a conventional information display panel.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] まず、本発明の表示駆動方法の対象となる情報表示用パネルの基本的な構成に ついて説明する。本発明の情報表示用パネルでは、対向する 2枚の基板間に封入し た表示媒体に電界が付与される。付与された電界方向にそって、帯電した表示媒体 が電界による力やクーロン力などによって引き寄せられ、表示媒体が電位の切替によ る電界方向の変化によって移動方向を変えることにより、画像等の情報表示がなされ る。従って、表示媒体が、均一に移動し、かつ、繰り返し表示情報を書き換える時ある いは表示情報を継続して表示させる時の安定性を維持できるように、情報表示用パ ネルを設計する必要がある。ここで、表示媒体を構成する粒子にかかる力は、粒子同 士のクーロン力により引き付けあう力の他に、電極や基板との電気鏡像力、分子間力 、液架橋力、重力などが考えられる。  First, a basic configuration of an information display panel that is an object of the display driving method of the present invention will be described. In the information display panel of the present invention, an electric field is applied to a display medium sealed between two opposing substrates. Along with the applied electric field direction, the charged display medium is attracted by the force of the electric field or the Coulomb force, and the display medium changes the moving direction by the change of the electric field direction due to the switching of the potential. Display is made. Therefore, it is necessary to design an information display panel so that the display medium can move uniformly and maintain the stability when the display information is rewritten repeatedly or when the display information is continuously displayed. is there. Here, the force applied to the particles composing the display medium may be an electromirror force with the electrode or substrate, intermolecular force, liquid bridge force, gravity, etc., in addition to the force attracted by the Coulomb force of the particles. .
[0016] 本発明の表示駆動方法の対象となる情報表示用パネルの例を、図 1 (a)、 (b)〜図 3 (a) , (b)に基づき説明する。  An example of an information display panel that is a target of the display driving method of the present invention will be described with reference to FIGS. 1 (a) and (b) to FIGS. 3 (a) and 3 (b).
[0017] 図 1 (a)、 (b)に示す例では、少なくとも 1種以上の粒子から構成される光学的反射 率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (ここでは白色表示媒体 用粒子 3Waの粒子群からなる白色表示媒体 3Wと黒色表示媒体用粒子 3Baの粒子 群からなる黒色表示媒体 3Bを示す)を、基板 1、 2の外部から加えられる電界に応じ て、基板 1、 2と垂直に移動させ、黒色表示媒体 3Bを観察者に視認させて黒色の表 示を行うか、あるいは、白色表示媒体 3Wを観察者に視認させて白色の表示を行って いる。なお、図 1 (b)に示す例では、図 1 (a)に示す例に加えて、基板 1、 2との間に例 えば格子状に隔壁 4を設けセルを形成している。また、図 1 (b)において、手前にある 隔壁は省略している。 [0017] In the example shown in Figs. 1 (a) and (b), at least two or more display media 3 (here, white display media) having at least one or more particles having different optical reflectance and charging characteristics are used. White display medium 3W consisting of particles of 3Wa and black display medium 3B consisting of particles of 3Ba black display medium 3B) according to the electric field applied from the outside of the substrates 1 and 2 The black display medium 3B is visually recognized by the observer to display black, or the white display medium 3W is visually recognized by the observer to display white. Yes. In the example shown in FIG. 1 (b), in addition to the example shown in FIG. 1 (a), a partition 4 is provided between the substrates 1 and 2, for example, in the form of a lattice to form a cell. In Fig. 1 (b), the front partition is omitted.
[0018] 図 2 (a)、 (b)に示す例では、少なくとも 1種以上の粒子から構成される光学的反射 率および帯電特性の異なる少なくとも 2種以上の表示媒体 3 (ここでは白色表示媒体 用粒子 3Waの粒子群からなる白色表示媒体 3Wと黒色表示媒体用粒子 3Baの粒子 群からなる黒色表示媒体 3Bを示す)を、基板 1に設けた電極 5と基板 2に設けた電極 6との間に電圧を印加することにより発生する電界に応じて、基板 1、 2と垂直に移動 させ、黒色表示媒体 3Bを観察者に視認させて黒色の表示を行うか、あるいは、白色 表示媒体 3Wを観察者に視認させて白色の表示を行っている。なお、図 2 (b)に示す 例では、図 2 (a)に示す例に加えて、基板 1、 2との間に例えば格子状に隔壁 4を設け セルを形成している。また、図 2 (b)において、手前にある隔壁は省略している。  [0018] In the example shown in Figs. 2 (a) and (b), at least two or more display media 3 (here, white display media) having at least one or more kinds of particles and having different optical reflectance and charging characteristics are used. White display medium 3W composed of particles of 3Wa and black display medium 3B composed of particles of 3Ba for black display medium), and electrode 5 provided on substrate 1 and electrode 6 provided on substrate 2 Depending on the electric field generated by applying a voltage between them, the substrate is moved perpendicularly to the substrates 1 and 2, and the black display medium 3B is visually recognized by the observer to display black, or the white display medium 3W is A white color is displayed by the observer. In the example shown in FIG. 2 (b), in addition to the example shown in FIG. 2 (a), a partition 4 is provided between the substrates 1 and 2 to form cells, for example. In FIG. 2 (b), the partition in front is omitted.
[0019] 図 3 (a)、 (b)に示す例では、少なくとも 1種以上の粒子から構成される光学的反射 率および帯電性を有する 1種類の表示媒体 3 (ここでは白色表示媒体用粒子 3Waの 粒子群からなる白色表示媒体 3Wを示す)を、基板 1に設けた電極 5と電極 6との間に 電圧を印加することにより発生する電界に応じて、基板 1、 2と平行方向に移動させ、 白色表示媒体 3Wを観察者に視認させて白色の表示を行うか、あるいは、電極 6また は基板 1の色を観察者に視認させて電極 6または基板 1の色の表示を行っている。な お、図 3 (b)に示す例では、図 3 (a)に示す例に加えて、基板 1、 2との間に例えば格 子状の隔壁 4を設けセルを形成している。また、図 3 (b)において、手前にある隔壁は 省略している。  [0019] In the example shown in FIGS. 3 (a) and 3 (b), one type of display medium 3 (here, particles for white display medium) having optical reflectivity and chargeability composed of at least one type of particles. A white display medium consisting of 3Wa particles (showing 3W) in a direction parallel to the substrates 1 and 2 according to the electric field generated by applying a voltage between the electrode 5 and the electrode 6 provided on the substrate 1. Move the white display medium 3W to the viewer to display the white color, or display the color of the electrode 6 or the substrate 1 to the viewer and display the color of the electrode 6 or the substrate 1 Yes. In the example shown in FIG. 3 (b), in addition to the example shown in FIG. 3 (a), for example, a lattice-shaped partition wall 4 is provided between the substrates 1 and 2 to form a cell. In Fig. 3 (b), the partition in front is omitted.
[0020] 以上の説明は、粒子群からなる白色表示媒体 3Wを粉流体からなる白色表示媒体 に、粒子群からなる黒色表示媒体 3Bを粉流体からなる黒色表示媒体に、それぞれ 置き換えた場合も同様に適用することが出来る。粉流体については後述する。  [0020] The above description is the same when the white display medium 3W composed of particle groups is replaced with a white display medium composed of powdered fluid, and the black display medium 3B composed of particle groups is replaced with a black display medium composed of powdered fluid. It can be applied to. The powder fluid will be described later.
[0021] 図 4は本発明の情報表示用パネルの表示駆動方法の一例を説明するためのフロ 一チャートである。図 4に示す例に従って本発明を説明すると、まず、すでに表示さ れている画像等の情報を消去する。次に、新しい情報を表示する前に、画面全体す なわち画面上の全ラインに対し、書き込みパルス電圧より印加時間が短いパルス電 圧(第 1発明)、または、書き込みパルス電圧より振幅の小さいパルス電圧(第 2発明) 、または、書き込みパルス電圧より印加時間が短いとともに振幅が小さいパルス電圧 (第 3発明)を、一回以上印加する。その後、書き込みパルス電圧をライン毎に順次印 加して、ライン毎にデータを書き込むことで、情報表示を行っている。 FIG. 4 is a flowchart for explaining an example of the display driving method of the information display panel of the present invention. The present invention will be described according to the example shown in FIG. Delete information such as images. Next, before displaying new information, the pulse voltage with a shorter application time than the write pulse voltage (first invention) or the amplitude smaller than the write pulse voltage is applied to the entire screen, that is, all lines on the screen. A pulse voltage (second invention) or a pulse voltage (third invention) having a shorter amplitude and smaller amplitude than the write pulse voltage is applied one or more times. After that, information is displayed by sequentially applying a write pulse voltage for each line and writing data for each line.
[0022] 図 5 (a)〜(d)のそれぞれにパルス電圧の一例を示す。図 5 (a)に印加時間 tで振幅 Vの書き込みパルス電圧を示す。この書き込みパルス電圧に対し、図 5 (b)に書き込 みパルス電圧より印加時間が短レ、パルス電圧(第 1発明)の一例として、印加時間を t /2としたパルス電圧を示し、図 5 (c)に書き込みパルス電圧より振幅の小さいパルス 電圧(第 2発明)の一例として、振幅を V/2としたパルス電圧を示し、図 5 (d)に書き 込みパルス電圧より印加時間が短いとともに振幅が小さいパルス電圧(第 3発明)の 一例として、印加時間を t/2とするとともに振幅を V/2としたパルス電圧を示す。な お、上述した例において、印加時間を t/2とし、振幅を V/2としたのは一例であり、 上記各発明の条件を満たすノ^レス電圧であればこれ以外のものも使用できることは レ、うまでもない。 [0022] FIGS. 5A to 5D show examples of pulse voltages. Figure 5 (a) shows the write pulse voltage with amplitude V at application time t. For this write pulse voltage, Fig. 5 (b) shows a pulse voltage with an application time of t / 2 as an example of the pulse voltage (first invention) with a shorter application time than the write pulse voltage. 5 (c) shows a pulse voltage with an amplitude of V / 2 as an example of a pulse voltage with a smaller amplitude than the write pulse voltage (second invention), and Fig. 5 (d) shows a shorter application time than the write pulse voltage. As an example of a pulse voltage with small amplitude (Invention 3), the pulse voltage with application time t / 2 and amplitude V / 2 is shown. In the above example, the application time is set to t / 2 and the amplitude is set to V / 2. This is an example, and other voltages can be used as long as they satisfy the conditions of the above inventions. There is no need.
[0023] 以下、実際に本発明例と比較例とに従ってテスト画像を表示させて比べた例につ いて説明する。まず、図 6に示す表示画像において、右半分は図 10に示す従来例に 従って表示させ、左半分は図 4に示す本発明例のうち第 3発明に従って表示させた。 すなわち、右半分の従来例では、画面消去後すぐに図 6に示す情報を表示した。一 方、左半分の本発明例では、画面消去後、図 7に示すように 1 μ sec〜書き込みパル ス電圧幅 t_ l μ secまで 1 μ secずつ増やした振幅 V/2のパルス電圧を順次全画 面に対し印加し、その後図 6に示す情報を表示した。  [0023] Hereinafter, an example in which test images are actually displayed and compared according to the present invention example and the comparative example will be described. First, in the display image shown in FIG. 6, the right half was displayed according to the conventional example shown in FIG. 10, and the left half was displayed according to the third invention of the example of the present invention shown in FIG. That is, in the conventional example in the right half, the information shown in FIG. 6 was displayed immediately after the screen was erased. On the other hand, in the example of the present invention in the left half, after the screen erase, as shown in Fig. 7, the pulse voltage of amplitude V / 2 increased by 1 μsec from 1 μsec to the write pulse voltage width t_ l μsec is sequentially applied. It was applied to the entire screen, and then the information shown in Fig. 6 was displayed.
[0024] 結果を図 8に示す。なお、消去時の濃度は、本発明例、従来例とも、濃度 0. 79で あった。図 8において、右半分の従来例では、(f)、(g)と消去時の濃度 0. 79とから、 (f)、(g)ではクロストークの影響により、濃度値が増え白色が黒色にシフトしてコントラ ストが低下した。また、例えば同じ濃度値でなくてはならない(f)、(g)の濃度値が異 なり、画素間で濃度が均一にならなかった。一方、図 8において、左半分の本発明例 では、(b)、(c)と消去時の濃度 0· 79とから、(b)、(c)では、クロストークの影響で濃 度値が変化しない、もしくは変化を抑えることができた。従って、クロストークによる、コ ントラストの低下を抑えることができたとともに、画素間における濃度不均一を均一に すること力 Sできた。また、(a)と(e)とから、本発明例では従来例と比べて、黒濃度を上 げること力 Sでき、コントラストを向上させることもできた。なお、濃度(光学濃度)の測定 は反射画像濃度計 RD— 191 (Macbeth社製)にて行った。 The results are shown in FIG. The density at the time of erasing was 0.79 for both the inventive example and the conventional example. In FIG. 8, in the conventional example in the right half, from (f) and (g) and the density at the time of erasing 0.79, in (f) and (g), the density value increases due to the crosstalk, and the white color is black. The contrast decreased due to the shift to. Also, for example, the density values (f) and (g), which must have the same density value, differed, and the density did not become uniform between pixels. On the other hand, in FIG. Then, from (b) and (c) and density 0 · 79 at the time of erasure, in (b) and (c), the density value did not change due to the effect of crosstalk, or the change could be suppressed. Therefore, it was possible to suppress the reduction in contrast due to crosstalk, and to make the density nonuniformity between pixels uniform. In addition, from (a) and (e), the inventive example was able to increase the black density S and the contrast as compared with the conventional example. The density (optical density) was measured with a reflection image densitometer RD-191 (manufactured by Macbeth).
[0025] 以下、本発明の表示駆動方法の対象となる情報表示用パネルを構成する各部材 について説明する。 Hereinafter, each member constituting the information display panel which is a target of the display driving method of the present invention will be described.
[0026] 基板については、少なくとも一方の基板が上記本発明の特性を有するとともに、少 なくとも一方の基板はパネル外側から表示媒体 3の色が確認できる透明な基板 2であ り、可視光の透過率が高くかつ耐熱性の良い材料が好適である。基板 1は透明でも 不透明でもかまわない。基板材料を例示すると、ポリエチレンテレフタレート、ポリエ チレンナフタレート、ポリエーテルサルフォン、ポリエチレン、ポリカーボネート、ポリイ ミド、アクリルなどのポリマーシートや、金属シートのように可とう性のあるもの、および 、ガラス、石英などの可とう性のない無機シートが挙げられる。基板の厚みは、 2〜50 00 /i m力 S好ましく、さらに 5〜2000 /i m力 S好適であり、薄すぎると、強度、基板間の 間隔均一性を保ちに《なり、 5000 / mより厚いと、薄型情報表示用パネルとする場 合に不都合がある。  [0026] Regarding the substrate, at least one of the substrates has the above-mentioned characteristics of the present invention, and at least one of the substrates is a transparent substrate 2 on which the color of the display medium 3 can be confirmed from the outside of the panel. A material having high transmittance and good heat resistance is suitable. Substrate 1 can be transparent or opaque. Examples of the substrate material include polymer sheets such as polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyethylene, polycarbonate, polyimide, and acrylic, flexible materials such as metal sheets, and glass, quartz And non-flexible inorganic sheets. The thickness of the substrate is preferably 2 to 500 / im force S, and more preferably 5 to 2000 / im force S. If it is too thin, the strength and the uniformity of the distance between the substrates will be maintained, and it is thicker than 5000 / m. Inconvenient for a thin information display panel.
[0027] 情報表示用パネルに電極を設ける場合の電極形成材料としては、アルミニウム、銀 、ニッケル、銅、金等の金属類や ITO、酸化インジウム、導電性酸化錫、導電性酸化 亜鉛等の導電金属酸化物類、ポリア二リン、ポリピロール、ポリチォフェンなどの導電 性高分子類が例示され、適宜選択して用いられる。電極の形成方法としては、上記 例示の材料をスパッタリング法、真空蒸着法、 CVD (化学蒸着)法、塗布法等で薄膜 状に形成する方法や、導電剤を溶媒や合成樹脂バインダーに混合して塗布したりす る方法が用いられる。視認側(表示面側)基板に設ける電極は透明である必要がある が、背面側基板に設ける電極は透明である必要がない。いずれの場合もパターン形 成可能である導電性である上記材料を好適に用いることができる。なお、電極厚みは 、導電性が確保でき光透過性に支障がなければ良ぐ 3〜: 1000nm、好ましくは 5〜 400nmが好適である。背面側基板に設ける電極の材質や厚みなどは上述した表示 側基板に設ける電極と同様である力 透明である必要はない。なお、この場合の外部 電圧入力は、直流あるいは交流を重畳しても良い。 [0027] Electrodes for forming electrodes on the information display panel include metals such as aluminum, silver, nickel, copper, and gold, and conductive materials such as ITO , indium oxide, conductive tin oxide, and conductive zinc oxide. Examples thereof include conductive polymers such as metal oxides, polyaniline, polypyrrole, and polythiophene, which are appropriately selected and used. The electrode can be formed by, for example, forming the above-described materials into a thin film by sputtering, vacuum deposition, CVD (chemical vapor deposition), coating, or the like, or mixing a conductive agent with a solvent or synthetic resin binder. The method of applying is used. The electrode provided on the viewing side (display side) substrate needs to be transparent, but the electrode provided on the back side substrate does not need to be transparent. In any case, the above-mentioned material that is conductive and capable of pattern formation can be suitably used. The electrode thickness is good as long as the conductivity can be secured and the light transmittance is not affected. 3 to 1000 nm, preferably 5 to 400 nm is preferred. The material and thickness of the electrode provided on the rear substrate need not be the same as the electrode provided on the display substrate described above. In this case, the external voltage input may be superimposed with direct current or alternating current.
[0028] 必要に応じて基板に設ける隔壁 4については、その形状は表示にかかわる表示媒 体の種類により適宜最適設定され、一概には限定されないが、隔壁の幅は 2〜: 100 μ m、好ましくは 3〜50 μ mに、隔壁の高さは 10〜500 μ m、好ましくは 10〜200 μ mに調整される。これらのリブからなる隔壁により形成されるセルは、図 9に示すごとく 、基板平面方向からみて四角状、三角状、ライン状、円形状、六角状が例示され、配 置としては格子状ゃハニカム状や網目状が例示される。表示面側から見える隔壁断 面部分に相当する部分 (セルの枠部の面積)はできるだけ小さくした方が良ぐ表示 の鮮明さが増す。 [0028] If necessary, the shape of the partition walls 4 provided on the substrate is appropriately set according to the type of display medium involved in the display, and is not limited in general, but the width of the partition walls is 2 to: 100 μm, Preferably, the height of the partition wall is adjusted to 3 to 50 μm, and the height of the partition wall is adjusted to 10 to 500 μm, preferably 10 to 200 μm. As shown in FIG. 9, the cells formed by the partition walls made up of these ribs are exemplified by a square shape, a triangular shape, a line shape, a circular shape, and a hexagonal shape as viewed from the substrate plane direction. The shape and the mesh shape are exemplified. It is better to make the part (area of the cell frame) corresponding to the partition wall section visible from the display surface side as small as possible.
[0029] 次に、本発明の表示駆動方法の対象となる情報表示用パネルで表示媒体として例 えば用いる粉流体について説明する。なお、本発明の表示媒体としての粉流体の名 称については、本出願人が「電子粉流体 (登録商標):登録番号 4636931」の権利 を得ている。  [0029] Next, a powder fluid used as a display medium in the information display panel that is a target of the display driving method of the present invention will be described. As for the name of the powder fluid as the display medium of the present invention, the applicant has the right of “Electronic Powder Fluid (registered trademark): Registration No. 4636931”.
[0030] 本発明における「粉流体」は、気体の力も液体の力も借りずに、 自ら流動性を示す、 流体と粒子の特性を兼ね備えた両者の中間状態の物質である。例えば、液晶は液 体と固体の中間的な相と定義され、液体の特徴である流動性と固体の特徴である異 方性 (光学的性質)を有するものである(平凡社:大百科事典)。一方、粒子の定義は 、無視できるほどの大きさであっても有限の質量をもった物体であり、重力の影響を 受けるとされている(丸善:物理学事典)。ここで、粒子でも、気固流動層体、液固流 動体という特殊状態があり、粒子に底板から気体を流すと、粒子には気体の速度に 対応して上向きの力が作用し、この力が重力とつりあう際に、流体のように容易に流 動できる状態になるものを気固流動層体と呼び、同じぐ流体により流動化させた状 態を液固流動体と呼ぶとされている(平凡社:大百科事典)。このように気固流動層体 や液固流動体は、気体や液体の流れを利用した状態である。本発明では、このよう な気体の力も、液体の力も借りずに、 自ら流動性を示す状態の物質を、特異的に作り 出せることが判明し、これを粉流体と定義した。 [0031] すなわち、本発明における粉流体は、液晶(液体と固体の中間相)の定義と同様に 、粒子と液体の両特性を兼ね備えた中間的な状態で、先に述べた粒子の特徴である 重力の影響を極めて受け難ぐ高流動性を示す特異な状態を示す物質である。この ような物質はエアロゾノレ状態、すなわち気体中に固体状もしくは液体状の物質が分 散質として安定に浮遊する分散系で得ることができ、本発明の情報表示用パネルで 固体状物質を分散質とするものである。 [0030] The "powder fluid" in the present invention is a substance in an intermediate state of both fluid and particle characteristics that exhibits fluidity by itself without borrowing the force of gas or liquid. For example, a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity that is a characteristic of a liquid and anisotropy (optical properties) that is a characteristic of a solid (Heibonsha: Large Encyclopedia). ). On the other hand, the definition of a particle is an object with a finite mass even if it is negligible, and is said to be affected by gravity (Maruzen: Physics Encyclopedia). Here, even in the case of particles, there are special states of gas-solid fluidized bed and liquid-solid fluidized bodies. When gas is flowed from the bottom plate to the particles, upward force is applied to the particles according to the velocity of the gas. When it is balanced with gravity, it is called a gas-solid fluidized bed that is in a state where it can easily flow like a fluid, and a state fluidized by the same fluid is called a liquid-solid fluid. (Heibonsha: Encyclopedia). As described above, the gas-solid fluidized bed body and the liquid-solid fluid body are in a state using a flow of gas or liquid. In the present invention, it has been found that a substance in a state of fluidity can be created specifically without borrowing the force of such gas and liquid, and this is defined as powder fluid. That is, the pulverulent fluid in the present invention is in an intermediate state having both the characteristics of particles and liquid as in the definition of liquid crystal (liquid and solid intermediate phase), and has the characteristics of the particles described above. It is a substance that shows a unique state with high fluidity that is extremely difficult to be affected by gravity. Such a substance can be obtained in an aerosol state, that is, in a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the information display panel of the present invention disperses the solid substance in a dispersoid. It is what.
[0032] 本発明の表示駆動方法の対象となる情報表示用パネルは、少なくとも一方が透明 な、対向する基板間に、表示媒体として例えば、気体中に固体粒子が分散質として 安定に浮遊するエアロゾル状態で高流動性を示す粉流体を封入するものであり、こ のような粉流体は、小さな電界の力でクーロン力などにより容易に安定して移動させ ること力 Sできる。  [0032] An information display panel to which the display driving method of the present invention is applied is an aerosol in which solid particles are stably suspended as a dispersoid, for example, as a display medium, between opposing substrates, at least one of which is transparent. A powder fluid that exhibits high fluidity in a state is enclosed, and such a powder fluid can be easily and stably moved by a Coulomb force with a small electric field force.
本発明に表示媒体として例えば用いる粉流体とは、先に述べたように、気体の力も 液体の力も借りずに、 自ら流動性を示す、流体と粒子の特性を兼ね備えた両者の中 間状態の物質である。この粉流体は、特にエアロゾル状態とすることができ、本発明 の情報表示用パネルでは、気体中に固体状の物質が分散質として比較的安定に浮 遊する状態で用いられる。  As described above, for example, the powder fluid used as a display medium in the present invention is an intermediate state of both fluid and particle characteristics that exhibit fluidity by themselves without borrowing the force of gas or liquid. It is a substance. This powder fluid can be in an aerosol state in particular, and the information display panel of the present invention is used in a state where a solid substance floats relatively stably as a dispersoid in the gas.
[0033] 次に、情報表示用パネルにおいて表示媒体を構成する表示媒体用粒子(以下、粒 子ともいう)について説明する。表示媒体用粒子は、そのまま該表示媒体用粒子だけ で構成して表示媒体としたり、その他の粒子と合わせて構成して表示媒体としたり、 粉流体となるように調整、構成して表示媒体としたりして用いられる。  [0033] Next, display medium particles (hereinafter also referred to as particles) constituting the display medium in the information display panel will be described. The display medium particles are composed of the display medium particles as they are to form a display medium. The display medium particles are combined with other particles to form a display medium. Or used.
粒子には、その主成分となる樹脂に、必要に応じて、従来と同様に、荷電制御剤、 着色剤、無機添加剤等を含ますことができる。以下に、樹脂、荷電制御剤、着色剤、 その他添加剤を例示する。  The particles can contain a charge control agent, a colorant, an inorganic additive, etc., if necessary, in the resin as the main component, if necessary. Examples of resins, charge control agents, colorants, and other additives are given below.
[0034] 樹脂の例としては、ウレタン樹脂、ゥレア樹脂、アクリル樹脂、ポリエステル樹脂、ァ クリルウレタン樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフッ素樹脂、ァ クリルフッ素樹脂、シリコーン樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ポリスチレ ン樹脂、スチレンアクリル樹脂、ポリオレフイン樹脂、プチラール樹脂、塩化ビニリデン 樹脂、メラミン樹脂、フヱノール樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリスルフォ ン樹脂、ポリエーテル樹脂、ポリアミド樹脂等が挙げられ、 2種以上混合することもで きる。特に、基板との付着力を制御する観点から、アクリルウレタン樹脂、アクリルシリ コーン樹脂、アクリルフッ素樹脂、アクリルウレタンシリコーン樹脂、アクリルウレタンフ ッ素樹脂、フッ素樹脂、シリコーン樹脂が好適である。 [0034] Examples of the resin include urethane resin, urea resin, acrylic resin, polyester resin, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, acrylic fluororesin, silicone resin, acrylic silicone resin, epoxy resin Polystyrene resin, styrene acrylic resin, polyolefin resin, petital resin, vinylidene chloride resin, melamine resin, phenol resin, fluorine resin, polycarbonate resin, polysulfone Resin, polyether resin, polyamide resin and the like, and two or more kinds can be mixed. In particular, acrylic urethane resin, acrylic silicone resin, acrylic fluororesin, acrylic urethane silicone resin, acrylic urethane fluororesin, fluororesin, and silicone resin are suitable from the viewpoint of controlling the adhesion with the substrate.
[0035] 荷電制御剤としては、特に制限はないが、負荷電制御剤としては例えば、サリチノレ 酸金属錯体、含金属ァゾ染料、含金属 (金属イオンや金属原子を含む)の油溶性染 料、 4級アンモニゥム塩系化合物、力リックスアレン化合物、含ホウ素化合物(ベンジ ル酸ホウ素錯体)、ニトロイミダゾール誘導体等が挙げられる。正荷電制御剤としては 例えば、ニグ口シン染料、トリフヱニルメタン系化合物、 4級アンモニゥム塩系化合物、 ポリアミン樹脂、イミダゾール誘導体等が挙げられる。その他、超微粒子シリカ、超微 粒子酸化チタン、超微粒子アルミナ等の金属酸化物、ピリジン等の含窒素環状化合 物及びその誘導体や塩、各種有機顔料、フッ素、塩素、窒素等を含んだ樹脂等も荷 電制御剤として用いることもできる。 The charge control agent is not particularly limited. Examples of the negative charge control agent include salicinoleate metal complexes, metal-containing azo dyes, metal-containing oil-soluble dyes (including metal ions and metal atoms). Quaternary ammonium salt compounds, force-rich allene compounds, boron-containing compounds (boronyl boron complexes), nitroimidazole derivatives, and the like. Examples of the positive charge control agent include a nigue mouth dye, a triphenyl methane compound, a quaternary ammonium salt compound, a polyamine resin, and an imidazole derivative. In addition, metal oxides such as ultrafine silica, ultrafine titanium oxide and ultrafine alumina, nitrogen-containing cyclic compounds such as pyridine and their derivatives and salts, various organic pigments, resins containing fluorine, chlorine, nitrogen, etc. Can also be used as a charge control agent.
[0036] 着色剤としては、以下に例示するような、有機または無機の各種、各色の顔料、染 料が使用可能である。 [0036] As the colorant, various organic and inorganic pigments and dyes as exemplified below can be used.
[0037] 黒色着色剤としては、カーボンブラック、酸化銅、二酸化マンガン、ァニリンブラック 、活性炭等がある。  [0037] Examples of the black colorant include carbon black, copper oxide, manganese dioxide, aniline black, and activated carbon.
青色着色剤としては、 C. I.ビグメントブルー 15 : 3、 C. I.ビグメントブルー 15、紺 青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニン ブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファー ストスカイブルー、インダンスレンブルー BC等がある。  Blue colorants include CI Pigment Blue 15: 3, CI Pigment Blue 15, Dark Blue, Cobalt Blue, Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chlorides, First Sky Blue, Indanthrene Blue BC, etc.
赤色着色剤としては、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パー マネントレッド 4R、リソールレッド、ピラゾロンレッド、ウォッチングレッド、カルシウム塩 、レーキレッド D、ブリリアントカーミン 6B、ェォシンレーキ、ローダミンレーキ B、ァリザ リンレーキ、ブリリアントカーミン 3B、 C. I.ビグメントレッド 2等がある。  Red colorants include bengara, cadmium red, red lead, mercury sulfide, cadmium, permanent red 4R, risor red, pyrazolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, Aliza Linleke, Brilliant Carmine 3B, CI Pigment Red 2, etc.
[0038] 黄色着色剤としては、黄鉛、亜鉛黄、カドミウムイェロー、黄色酸化鉄、ミネラルファ 一ストイェロー、ニッケノレチタンイェロー、ネーブノレイエロー、ナフトーノレイェロー S、 ハンザイェロー G、ハンザイェロー 10G、ベンジジンイェロー G、ベンジジンイェロー GR、キノリンイェローレーキ、パーマネントイェロー NCG、タートラジンレーキ、 C. I. ビグメントイエロー 12等がある。 [0038] Yellow colorants include yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral first yellow, Nikkenore Titanium yellow, Neve Nore Yellow, Naftono Reyello S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzine Yellow GR, Quinoline Yellow Lake, Permanente Yellow NCG, Tartra Gin Lake, CI Pigment Yellow 12 etc.
緑色着色剤としては、クロムグリーン、酸化クロム、ビグメントグリーン B、 C. I.ピグメ ントグリーン 7、マラカイトグリーンレーキ、ファイナルイェローグリーン G等がある。 橙色着色剤としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジ GTR、 ピラゾロンオレンジ、ノ ノレカンオレンジ、インダンスレンブリリアントオレンジ RK:、ベン ジジンオレンジ G、インダンスレンブリリアントオレンジ GK:、 C. I.ビグメントオレンジ 3 1等がある。  Examples of green colorants include chrome green, chromium oxide, pigment green B, C.I. Pigment Green 7, Malachite Green Lake, Final Yellow Green G, and the like. Orange colorants include red yellow lead, molybdenum orange, permanent orange GTR, pyrazolone orange, nonolecan orange, indanthrene brilliant orange RK: benzidine orange G, indanthrene brilliant orange GK :, CI pigment orange 3 1 etc.
紫色着色剤としては、マンガン紫、ファーストバイオレット B、メチルバイオレットレー キ等がある。  Purple colorants include manganese purple, first violet B, and methyl violet lake.
白色着色剤としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛等がある。  Examples of white colorants include zinc white, titanium oxide, antimony white, and zinc sulfide.
[0039] 体質顔料としては、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タル ク、アルミナホワイト等がある。また、塩基性、酸性、分散、直接染料等の各種染料と して、ニグ口シン、メチレンブルー、ローズベンガル、キノリンイェロー、ウルトラマリン ブノレ一等がある。 [0039] Examples of extender pigments include barite powder, barium carbonate, clay, silica, white carbon, talc, and alumina white. Examples of various dyes such as basic, acidic, disperse, and direct dyes include Niguchi Shin, Methylene Blue, Rose Bengal, Quinoline Yellow, and Ultramarine Benole.
[0040] 無機系添加剤の例としては、酸化チタン、亜鉛華、硫化亜鉛、酸化アンチモン、炭 酸カルシウム、鉛白、タルク、シリカ、ケィ酸カルシウム、アルミナホワイト、カドミウムィ エロー、カドミウムレッド、カドミウムオレンジ、チタンイェロー、紺青、群青、コバルトブ ノレ一、コバルトグリーン、コバルトバイオレット、酸化鉄、カーボンブラック、マンガンフ エライトブラック、コバルトフェライトブラック、銅粉、アルミニウム粉などが挙げられる。 これらの顔料および無機系添加剤は、単独であるいは複数組み合わせて用いるこ とができる。このうち特に黒色顔料としてカーボンブラック力 白色顔料として酸化チ タンが好ましい。  [0040] Examples of inorganic additives include titanium oxide, zinc white, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium. Examples include orange, titanium yellow, bitumen, ultramarine, cobalt violet, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, and aluminum powder. These pigments and inorganic additives can be used alone or in combination. Of these, carbon black is particularly preferred as a black pigment, and titanium oxide is preferred as a white pigment.
[0041] また、本発明の粒子は平均粒子径 d(0.5)が、 0.:!〜 20 μ mの範囲であり、均一で 揃っていることが好ましい。平均粒子径 d(0.5)がこの範囲より大きいと表示上の鮮明さ に欠け、この範囲より小さいと粒子同士の凝集力が大きくなりすぎるために表示媒体 としての移動に支障をきたすようになる。  [0041] The average particle diameter d (0.5) of the particles of the present invention is preferably in the range of 0.:! To 20 μm, and preferably uniform. When the average particle diameter d (0.5) is larger than this range, the display is not clear. When the average particle diameter d (0.5) is smaller than this range, the cohesive force between the particles becomes too large, which hinders movement as a display medium.
[0042] 更に本発明では、各粒子の粒子径分布に関して、下記式に示される粒子径分布 Sp anを 5未満、好ましくは 3未満とする。 [0042] Further, in the present invention, the particle size distribution Sp of each particle is represented by the following formula. An is less than 5, preferably less than 3.
Span= (d(0.9) - d(0.1)) /d(0.5)  Span = (d (0.9)-d (0.1)) /d(0.5)
(但し、 d(0.5)は粒子の 50%がこれより大きぐ 50%がこれより小さいという粒子径を/ i mで表した数値、 d(0.1)はこれ以下の粒子の比率が 10%である粒子径を μ mで表し た数値、 d(0.9)はこれ以下の粒子が 90%である粒子径を x mで表した数値である。 ) Spanを 5以下の範囲に納めることにより、各粒子のサイズが揃レ、、均一な表示媒体 としての移動が可能となる。  (However, d (0.5) is a numerical value expressed by / im that the particle size is 50% larger than this, and 50% smaller than this, and d (0.1) is the ratio of particles below 10%. The particle diameter is expressed in μm, and d (0.9) is the numerical value expressed in xm when the particle size is 90% or less.) By keeping Span within 5 or less, It is possible to move as a uniform display medium with uniform size.
[0043] さらにまた、各粒子の相関について、使用した粒子の内、最大径を有する粒子の d( 0.5)に対する最小径を有する粒子の d(0.5)の比を 50以下、好ましくは 10以下とするこ とが肝要である。たとえ粒子径分布 Spanを小さくしたとしても、互いに帯電特性の異な る粒子が互いに反対方向に動くので、互いの粒子サイズが近ぐ互いの粒子が当量 ずつ反対方向に容易に移動できるようにするのが好適であり、それがこの範囲となる [0043] Further, regarding the correlation of each particle, the ratio of the d (0.5) of the particles having the smallest diameter to the d (0.5) of the particles having the largest diameter among the used particles is 50 or less, preferably 10 or less. It is important to do this. Even if the particle size distribution Span is reduced, particles with different charging properties move in opposite directions, so that particles with close particle sizes can easily move in the opposite direction by the equivalent amount. Is preferred, and this is in this range
[0044] なお、上記の粒子径分布および粒子径は、レーザー回折/散乱法などから求める ことができる。測定対象となる粒子にレーザー光を照射すると空間的に回折/散乱 光の光強度分布パターンが生じ、この光強度パターンは粒子径と対応関係があるこ とから、粒子径および粒子径分布が測定できる。 [0044] The particle size distribution and particle size described above can be obtained from a laser diffraction / scattering method or the like. When laser light is irradiated onto the particles to be measured, a light intensity distribution pattern of diffracted / scattered light is generated spatially, and this light intensity pattern has a corresponding relationship with the particle diameter, so that the particle diameter and particle diameter distribution can be measured. .
ここで、本発明における粒子径および粒子径分布は、体積基準分布から得られた ものである。具体的には、 Mastersizer2000(Malvern Instruments Ltd.)測定機を用レヽ て、窒素気流中に粒子を投入し、付属の解析ソフト (Mie理論を用いた体積基準分布 を基本としたソフト)にて、粒子径および粒子径分布の測定を行なうことができる。  Here, the particle size and particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring instrument, particles were introduced into a nitrogen stream, and attached analysis software (software based on volume reference distribution using Mie theory) The particle size and particle size distribution can be measured.
[0045] 表示媒体用粒子の帯電量は当然その測定条件に依存するが、情報表示用パネル における表示媒体用粒子の帯電量はほぼ、初期帯電量、隔壁との接触、基板との接 触、経過時間に伴う電荷減衰に依存し、特に表示媒体用粒子の帯電挙動の飽和値 が支配因子となっているということが分かった。  [0045] Although the charge amount of the display medium particles naturally depends on the measurement conditions, the charge amount of the display medium particles in the information display panel is almost the initial charge amount, the contact with the partition walls, the contact with the substrate, It was found that the saturation value of the charging behavior of the particles for display media was a dominant factor depending on the charge decay with time.
[0046] 本発明者らは鋭意検討の結果、ブローオフ法において同一のキャリア粒子を用い て、表示媒体に用いる粒子の帯電量測定を行うことにより、表示媒体用粒子の適正 な帯電特性値の範囲を評価できることを見出した。 [0047] 更に、表示媒体用粒子で構成する粒子群や粉流体等の表示媒体を乾式の情報表 示用パネルに適用する場合において、基板間の表示媒体を取り巻く空隙部分の気 体の管理が重要であり、表示安定性向上に寄与する。具体的には、空隙部分の気体 の湿度について、 25°Cにおける相対湿度を 60%RH以下、好ましくは 50%RH以下と することが重要である。 [0046] As a result of intensive studies, the present inventors measured the charge amount of the particles used for the display medium using the same carrier particles in the blow-off method, and thus the range of the appropriate charging characteristic value of the particles for the display medium. It was found that can be evaluated. [0047] Further, when a display medium such as particles composed of particles for display medium or a powder fluid is applied to a dry information display panel, the gas in the void surrounding the display medium between the substrates can be managed. It is important and contributes to improved display stability. Specifically, it is important that the relative humidity at 25 ° C is 60% RH or less, preferably 50% RH or less for the gas humidity in the voids.
この空隙部分とは、図 1 (a)、(b)〜図 3 (a)、 (b)において、対向する基板 1、基板 2 に挟まれる部分から、電極 5、 6 (基板の内側に電極を設けた場合)、表示媒体 (粒子 群あるいは粉流体) 3の占有部分、隔壁 4の占有部分 (隔壁を設けた場合)、情報表 示用パネルのシール部分を除いた、いわゆる表示媒体が接する気体部分を指すも のとする。  This gap is defined by the electrodes 5 and 6 (electrodes inside the substrate) from the portion sandwiched between the opposing substrates 1 and 2 in FIGS. 1 (a), (b) to 3 (a), (b). ), The display medium (particle group or powdered fluid) 3 occupies the area, the partition 4 occupies (when the partition is provided), and the so-called display medium except the seal part of the information display panel. It shall refer to the gas part.
空隙部分の気体は、先に述べた湿度領域であれば、その種類は問わないが、乾燥 空気、乾燥窒素、乾燥アルゴン、乾燥ヘリウム、乾燥二酸化炭素、乾燥メタンなどが 好適である。この気体は、その湿度が保持されるように情報表示用パネルに封入する ことが必要であり、例えば、表示媒体の充填、情報表示用パネルの組み立てなどを 所定湿度環境下にて行い、さらに、外からの湿度侵入を防ぐシール材、シール方法 を施すことが肝要である。  The gas in the gap is not limited as long as it is in the humidity region described above, but dry air, dry nitrogen, dry argon, dry helium, dry carbon dioxide, dry methane, and the like are preferable. This gas must be sealed in the information display panel so that the humidity is maintained. For example, filling of the display medium and assembly of the information display panel are performed in a predetermined humidity environment. It is important to use sealing materials and sealing methods that prevent moisture from entering from the outside.
また、表示媒体用粒子で構成する表示媒体を、絶縁性の液体中にて表示駆動させ る場合にも本発明を適用することができる。  The present invention can also be applied to a case where a display medium composed of particles for display medium is driven to display in an insulating liquid.
[0048] 本発明の表示駆動方法の対象となる情報表示用パネルにおける基板と基板との間 隔は、表示媒体が移動できて、コントラストを維持できればよいが、通常 10〜500 /i m、好ましくは 10〜200 μ mに調整される。 [0048] The distance between the substrates in the information display panel that is the target of the display driving method of the present invention is not limited as long as the display medium can be moved and the contrast can be maintained, but is usually 10 to 500 / im, preferably Adjusted to 10-200 μm.
表示媒体に粒子群または粉流体を用いる場合、対向する基板間の空間(気体中ま たは液体中)における表示媒体の体積占有率は 5〜70%が好ましぐさらに好ましく は 5〜60%である。 70%を超える場合には表示媒体の移動の支障をきたし、 5%未 満の場合にはコントラストが不明確となり易い。  When a particle group or powder fluid is used for the display medium, the volume occupancy of the display medium in the space between the opposing substrates (in gas or liquid) is preferably 5 to 70%, more preferably 5 to 60%. It is. If it exceeds 70%, the movement of the display medium will be hindered. If it is less than 5%, the contrast tends to be unclear.
産業上の利用可能性  Industrial applicability
[0049] 本発明の表示駆動方法の対象となる情報表示用パネルは、ノートパソコン、 PDA, 携帯電話、ハンディターミナル等のモパイル機器の表示部、電子ブック、電子新聞等 の電子ペーパー、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品 等の表示部、ポイントカード、 ICカード等のカード表示部、電子広告、電子 P〇P(Poin t Of Presence, Point Of Purchase advertising)^電子値札、亀子个朋札、 ' 幸! ¾ 一ド、 電子楽譜、 RF— ID機器の表示部などに好適に用レ、られる。 [0049] Information display panels subject to the display driving method of the present invention include display units of notebook computers, PDAs, mobile phones, handy terminals and other mopile equipment, electronic books, electronic newspapers, etc. Electronic paper, billboards, posters, blackboards, calculators, home appliances, automotive supplies, etc., point cards, card displays such as IC cards, electronic advertisements, electronic points (POP) (Point Of Presence, Point Of Purchase advertising) It is suitable for use in electronic price tags, kameko individual bills, 'good!

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一方が透明な 2枚の基板間に光学的反射率および帯電特性を有する表 示媒体を封入し、表示媒体に電界を付与することによって、表示媒体を移動させて 情報を表示する情報表示用パネルの表示駆動方法において、情報を表示する前に 、書き込みパルス電圧より印加時間が短いパルス電圧を画面全体に一回以上印加 することを特徴とする情報表示用パネルの表示駆動方法。  [1] A display medium having optical reflectivity and charging characteristics is sealed between two substrates, at least one of which is transparent, and an electric field is applied to the display medium to move the display medium to display information. A display drive method for an information display panel, wherein a pulse voltage having a shorter application time than a write pulse voltage is applied to the entire screen at least once before displaying information.
[2] 少なくとも一方が透明な 2枚の基板間に光学的反射率および帯電特性を有する表 示媒体を封入し、表示媒体に電界を付与することによって、表示媒体を移動させて 情報を表示する情報表示用パネルの表示駆動方法において、情報を表示する前に 、書き込みパルス電圧より振幅が小さいパルス電圧を画面全体に一回以上印加する ことを特徴とする情報表示用パネルの表示駆動方法。  [2] A display medium having optical reflectivity and charging characteristics is sealed between two substrates, at least one of which is transparent, and an electric field is applied to the display medium, thereby moving the display medium to display information. A display drive method for an information display panel, wherein a pulse voltage having an amplitude smaller than a write pulse voltage is applied to the entire screen at least once before displaying information.
[3] 少なくとも一方が透明な 2枚の基板間に光学的反射率および帯電特性を有する表 示媒体を封入し、表示媒体に電界を付与することによって、表示媒体を移動させて 情報を表示する情報表示用パネルの表示駆動方法において、情報を表示する前に 、書き込みパルス電圧より印加時間が短いとともに振幅が小さいパルス電圧を画面全 体に一回以上印加することを特徴とする情報表示用パネルの表示駆動方法。  [3] A display medium having optical reflectance and charging characteristics is enclosed between two substrates, at least one of which is transparent, and information is displayed by moving the display medium by applying an electric field to the display medium. In the display driving method for an information display panel, an information display panel is characterized in that a pulse voltage having a shorter application time and smaller amplitude than the write pulse voltage is applied to the entire screen at least once before displaying information. Display drive method.
[4] 前の情報を消去した後に、請求項 1〜3のいずれ力 4項に記載の所定のパルス電 圧を画面全体に一回以上印加し、その後新しレ、情報を表示することを特徴とする情 報表示用パネルの表示駆動方法。  [4] After erasing the previous information, apply the predetermined pulse voltage described in any one of claims 1 to 3 to the entire screen at least once, and then display the information again. A display driving method for a characteristic information display panel.
PCT/JP2005/023034 2004-12-27 2005-12-15 Display drive method for information display panel WO2006070608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004376859 2004-12-27
JP2004-376859 2004-12-27

Publications (1)

Publication Number Publication Date
WO2006070608A1 true WO2006070608A1 (en) 2006-07-06

Family

ID=36614728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023034 WO2006070608A1 (en) 2004-12-27 2005-12-15 Display drive method for information display panel

Country Status (1)

Country Link
WO (1) WO2006070608A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079323A1 (en) * 2002-03-15 2003-09-25 Koninklijke Philips Electronics N.V. Electrophoretic active matrix display device
WO2003100515A1 (en) * 2001-03-14 2003-12-04 Koninklijke Philips Electronics N.V. Electrophoretic display device and driving method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100515A1 (en) * 2001-03-14 2003-12-04 Koninklijke Philips Electronics N.V. Electrophoretic display device and driving method therefor
WO2003079323A1 (en) * 2002-03-15 2003-09-25 Koninklijke Philips Electronics N.V. Electrophoretic active matrix display device

Similar Documents

Publication Publication Date Title
JP5054953B2 (en) Driving method of information display panel
JP2007140129A (en) Panel for information display
JP4945119B2 (en) Driving method of information display panel
JP5046660B2 (en) Information display device
JP4939778B2 (en) Driving method of information display panel
JP5046594B2 (en) Information display device
JP5129919B2 (en) Driving method of image display device
JP2007156444A (en) Panel for information display
JP2005331936A (en) Driving method for information display device
JP4614711B2 (en) Manufacturing method of image display panel
JP4124180B2 (en) Driving method of image display device
JP2006113267A (en) Particles for display medium to be used for information display panel
WO2008035740A1 (en) Information display panel drive method
JP4657639B2 (en) Image forming method for image display panel
WO2006070608A1 (en) Display drive method for information display panel
JP4925771B2 (en) Manufacturing method of information display panel
JP2007164155A (en) Method of driving information display panel
JPWO2009148123A1 (en) Driving method of information display panel
JP2008096495A (en) Information display
JP4763985B2 (en) Image display device
JP2007156445A (en) Information display panel
JP4624080B2 (en) Information display panel
JP4657677B2 (en) Information display panel and information display device
JP5002225B2 (en) Driving method of information display panel
JP2006058548A (en) Image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05816868

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5816868

Country of ref document: EP