WO2006048934A1 - Link-adaptation system in mimo-ofdm system, and method therefor - Google Patents

Link-adaptation system in mimo-ofdm system, and method therefor Download PDF

Info

Publication number
WO2006048934A1
WO2006048934A1 PCT/JP2004/016343 JP2004016343W WO2006048934A1 WO 2006048934 A1 WO2006048934 A1 WO 2006048934A1 JP 2004016343 W JP2004016343 W JP 2004016343W WO 2006048934 A1 WO2006048934 A1 WO 2006048934A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
antenna
amc
receiver
vector information
Prior art date
Application number
PCT/JP2004/016343
Other languages
French (fr)
Japanese (ja)
Inventor
Lee Ying Loh
Choo Eng Yap
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006542204A priority Critical patent/JPWO2006048934A1/en
Priority to PCT/JP2004/016343 priority patent/WO2006048934A1/en
Priority to EP04822360A priority patent/EP1802017A1/en
Priority to CNA2004800443432A priority patent/CN101053190A/en
Priority to US11/718,569 priority patent/US20090067528A1/en
Publication of WO2006048934A1 publication Critical patent/WO2006048934A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme

Definitions

  • the present invention relates to a link adaptation system and method in a multiple-input multiple-output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM).
  • MIMO multiple-input multiple-output
  • OFDM orthogonal wave frequency division multiplexing
  • MIMO communication systems that use antennas.
  • the signal travels through multiple paths from the transmitting antenna and is reflected and diffused before reaching the receiving antenna.
  • An important feature of the Ml MO system is its ability to take advantage of multipath propagation and turn it into user convenience.
  • One of these advantages is the increase in system capacity using spatial multiplexing, which is usually achieved by transmitting independent data over separate transmission links.
  • Non-Patent Document 1 A well-known technique for increasing the data rate by spatial multiplexing is discussed in Non-Patent Document 1.
  • MIMO techniques were originally designed for narrowband wireless systems, ie, flat'fading * channels. Therefore, it is difficult to obtain a high effect in the frequency selective channel. Therefore, OFDM has been used in conjunction with MIMO systems to overcome the frequency selective channel proposed in the wireless environment!
  • OFDM can transform a frequency selective channel into a set of independent sub-channels of parallel frequencies. Since the frequencies of these subchannels are orthogonal and overlap each other, spectrum efficiency is improved and intercarrier interference is minimized. Multipath effects are further reduced by attaching a cyclic prefix to the OFDM symbol.
  • IFFT Inverse Fast Fourier Transform
  • a plurality of communication channels existing between a transmission antenna and a reception antenna are usually changed over time. Each link state becomes different.
  • a MIMO system with feedback provides channel state information (CSI) to the transmitter and allows the use of methods such as link adaptation or water filling to provide a higher level of performance.
  • CSI channel state information
  • Adaptive bit loading in OFDM systems has been discussed in various technical papers.
  • adaptive 'bit' loading has the objective of optimizing the data rate without degrading system quality.
  • This technique works on the fact that each different subcarrier has a variable attenuation depending on the channel conditions. Allocation decisions are usually made using specific feedback information such as channel state information (CSI) and signal-to-noise ratio (SNR) for each subcarrier.
  • CSI channel state information
  • SNR signal-to-noise ratio
  • AMC adaptive modulation Z code scheme
  • MCS modulation and coding scheme
  • the transmitter determines the modulation and coding scheme (MCS) level to use from a predefined set of levels. This determination is usually made by comparing the post-detection SNR measured at the receiver with the threshold and value corresponding to each MCS level. This method has a high processing complexity because the power SNR must be calculated for each received symbol, which is accurate in selecting the MCS level. In addition, the overhead of signal feedback is also pressing down on the limited radio resources available.
  • Non-Patent Literature 1 V-BLAST: an architecture for realising very high data rates over the rich-scattering wireless channel "by PW Wolniansky et al in the published papers of the 1998 URSI International Symposium on Signals, Systems and Electronics, Pisa, Italy , Sep. 29 to Oct. 2, 1998.
  • An object of the present invention is to provide a link adaptation system capable of performing optimum bit allocation while suppressing processing complexity and reducing signal feedback overhead in a MIMO-OFDM system and its Is to provide a method.
  • the present invention adaptively controls the number of bits allocated to each subcarrier transmitted by different antennas and the power of each transmission antenna based on feedback information provided by the V-BLAST processing unit on the receiver side. To do. Further, according to the present invention, on the receiver side, depending on the ACK / NACK information, an AMC level increase / decrease in each transmission antenna is determined in the next frame transmission, and obtained by V-BLAST processing. Depending on a set of link quality information, the AMC level increase Z decrease amount is determined.
  • link adaptation in a MIMO-OFDM system, link adaptation can be performed while processing complexity is reduced and signal feedback overhead is reduced.
  • FIG. 3 is a diagram showing an embodiment of a closed loop system employed for the purpose of link adaptation according to the present invention.
  • FIG. 4 is a flowchart showing a V-BLAST signal processing method and information acquisition in an embodiment of the present invention.
  • FIG. 6 is a diagram showing another embodiment of a closed loop system employed for the purpose of link adaptation of the present invention.
  • FIG. 1 is a block diagram of a transmitter 100 in a multiple-input multiple-output communication system (that is, MIMO-OFDM system) using orthogonal wave frequency division multiplexing.
  • FIG. 2 is a block diagram of the receiver 200 of the same system. Both figures show the power of a system that uses two transmit antennas and two receive antennas.
  • the present invention uses multiple (N) transmit antennas and multiple (N
  • transmitter 100 data processing is performed for each individual antenna chain. Different streams of independent data are transmitted from each transmit antenna.
  • a cyclic redundancy check (CRC) code is added to the input data by the CRC adding unit 102.
  • channel code keys such as convolutional coding and turbo code keys are executed in the code key unit 104.
  • the encoded data is then interleaved with interleaver 106 to reduce burst errors in the data.
  • Multi-level modulation constellation 'symbol mapping is executed by the mapping unit 108 on the interleaved data.
  • a pilot signal is inserted in pilot insertion section 110 with respect to the mapped signal. Inserting a no-lot signal facilitates channel evaluation at the receiver.
  • the SZP converter 112 converts a serial data stream into a parallel data stream.
  • IFFT section 114 makes generated subcarriers orthogonal to each other.
  • a cyclic prefix for reducing the multipath effect is added to the OFD M symbol by the CP adder 118.
  • the digital signal Prior to transmission, the digital signal is converted to an analog signal by the DZ A converter 120. After various processing in each transmitter chain, the signal is ready to be transmitted by its assigned transmitting antenna 122.
  • receiver 200 the received signal from receiving antenna 202 is processed in the reverse manner, that is, conversion from analog to digital (AZD converter 204), cyclic prefix removal (CP Processing such as a removal unit 206), serial-parallel conversion (SZP conversion unit 208), fast Fourier transform (FFT unit 210), and parallel-serial conversion (PZS conversion unit 212) are performed. Since the received signal has a signal strength that overlaps multiple transmit antenna forces, it is necessary to separate this signal into separate streams. In this case, a zero-forcing (ZF) or minimum mean square error (MMSE) t, a V-BLAST decoder 214 that utilizes the technique is used to perform this function.
  • ZF zero-forcing
  • MMSE minimum mean square error
  • cyclic redundancy check (CRC processing unit 222) is performed on each packet. Confirm that the data is correct. If the inspected bucket is determined to be error free, an acknowledgment (ACK) is sent to the transmitter and the transmitter does not retransmit the packet. If there is an error, a negative response (NACK) is sent to the transmitter 100 to request retransmission.
  • ACK acknowledgment
  • NACK negative response
  • FIG. 3 is a diagram showing a closed loop system adopted for the purpose of link adaptation of the present invention.
  • the system shown in FIG. 3 employs a configuration including an adaptive bit allocation unit 304 and an adaptive power allocation unit 306 on the transmitter side.
  • the input data is turbo-coded by a turbo code key unit 302.
  • the systematic bits and parity bits generated by the turbo code are output to the adaptive bit allocation unit 304.
  • Adaptive bit allocation section 304 adaptively controls the number of bits to be allocated for each subcarrier transmitted by different antennas.
  • the adaptive power allocation unit 306 adaptively allocates power to each antenna. The number of allocated bits and the amount of power depend on the previous transmit power obtained antenna state. This information is provided by the V-BLAST processing unit 308, stored in the vector information output unit 312, and sent to the transmitter through the error free channel 310.
  • V-BLAST processing section 308 performs V-BLAST processing for separating a received signal into a data stream corresponding to a plurality of antennas of the transmitter.
  • the demapping unit 314 demaps each bit subjected to V—BLAST processing.
  • FIG. 4 is a flowchart showing a V-BLAST signal processing method and information acquisition in an embodiment of the present invention. Based on the information obtained from the V—BLAST process, the antenna SNRs are ranked. The V-BLAST technique using the ZF criterion and the antenna ranking procedure are described below.
  • V-BLAST aims to detect hybrids and separate them into valid data streams.
  • the V-BLAST technique is performed for each sequence of symbols obtained from all received antenna power (this is called the received vector).
  • the channel matrix obtained from the channel evaluation corresponding to each received vector is also required for V-BLAST processing.
  • the first step after setting the received vector (r) and the corresponding channel matrix (H) set is to calculate the pseudo inverse of H to obtain the set of matrices G (step 404). ).
  • the norm of each row of G is calculated (step 406).
  • This step is to select the first detection target layer. It has already been proven that better performance can be achieved if detection is performed first at the layer with the highest signal-to-noise ratio (SNR) after detection. This is equivalent to detecting the row of G with the minimum norm.
  • SNR signal-to-noise ratio
  • This vector zeros (disables) all signals except those transmitted at k th .
  • the V-BLAST processing unit 308 internally generates a reception vector (r) and a weight vector (w).
  • the symbols transmitted from the k th transmission antenna are detected (step 410).
  • the detected symbols are remapped by slicing to the nearest value in the signal constellation (step 412). In this way, the evaluation for signal cancellation performed in the next step is efficiently processed.
  • step 4114 By subtracting the vector force of the received signal from the detected signal part (step 414), the number of layers to be zeroed in the next step is reduced. This erasure process corrects the received signal vector to a vector with a reduced interference signal component. It also reduces detection complexity. [0032] Corresponding to this, by deleting the k th column (step 416), the channel matrix also needs to be corrected.
  • the present invention uses this information for antenna ranking.
  • the order of detection for each symbol in the frame is stored as a vector in the receiver.
  • the receiver then feeds back the information vector to the transmitter through an error-free 'channel.
  • the transmitter uses this vector for link adaptation in the next transmission frame.
  • This storage and feedback process is repeated at the desired frequency.
  • These two steps may be performed for each frame received at the receiver or may be performed for every desired m frames.
  • feedback is performed in a shorter period for a radio channel that fluctuates quickly.
  • slow-changing channels should update information at longer intervals to save resources and keep complexity at a minimum level.
  • FIG. 5 is a diagram showing the performance of each detected transmission layer on the assumption that error propagation does not occur during V-BLAST detection.
  • the horizontal axis is E ZN and the vertical axis is BER (b O
  • Fig. 5 communication is performed between a transmitter with four transmitting antennas and a receiver with four receiving antennas, and the signals of transmitting antenna 4 (Tx4) are separated in order from the signal of transmitting antenna 1 (Txl). Show the error curve for the case.
  • the diversity level is lowest when the first detection target layer is detected. For each detected layer, each received antenna is constant, but the detected layer is erased, and as a result, the diversity level of the system increases as the layer progresses. This is clearly shown in FIG.
  • the error curve of antenna 1 detected in the first decoding 'step gradually falls as the SNR increases (diversity level of antenna 1).
  • the error curves for antennas 2, 3, and 4 drop much more rapidly than for antenna 1. Earlier symbols are subtracted and gained, increasing the diversity level power in subsequent layers. Level 4 occurs when it is detected by four receiving antennas. This is the case when only one signal remains.
  • the adaptive bit allocation unit 304 and the adaptive power allocation unit 306 can reduce the number of bits for the antenna that has become the first detection target layer to improve the performance in this specific antenna link. High transmit power or both should be provided.
  • FIG. 1 Another embodiment of the present invention is shown in FIG. In this embodiment, AMC is used.
  • V In addition to BLAST information, the system uses CRC information to facilitate AMC processing.
  • Multiple CRC adding section 604 in transmitter 602 adds a CRC bit to the signal transmitted from each antenna chain 608. Therefore, in the receiver 612, each frame received by each individual reception antenna and demodulated by the demodulation decoder 616 is subjected to CRC for error detection in the multiplexed CRC detection unit 618.
  • AMC selection section 624 obtains a CRC result (ACKZNACK) from multiplexed CRC detection section 618.
  • the AMC selection unit 624 determines whether to increase or decrease the AMC level in each antenna 608 of the transmitter 602 in the next frame transmission according to the ACKZ NACK information for the signal received by each reception antenna 610.
  • the AMC selection unit 624 increases the AMC level in the next frame transmission for the antenna that has received the ACK in the current transmission, and decreases the AMC level in the next frame transmission for the antenna that has received the NACK. .
  • the AMC selection unit 624 determines an increase Z decrease amount of the AMC level depending on a set of link quality information obtained by the V-BLAST decoder 614. Generated norm information force Used as a means to determine the link state evaluation of each antenna.
  • the AMC selector 624 increases the AMC level significantly for antennas with relatively low error probabilities, and when the AMC level needs to be reduced. For antennas with a relatively high error probability, the AMC level is greatly reduced.
  • multiplexing AMC unit 606 in transmitter 602 can efficiently assign an AMC level to each transmission antenna.
  • assigning the appropriate AMC level to each antenna based on the link quality determined during the previous transmission the system can better utilize the channel state differences and variations to improve overall system performance. It is out.
  • SNR measuring section 622 measures the SNR using the received pilot signal transmitted from each transmitting antenna 608.
  • AMC selection section 624 evaluates the channel state of each transmitting antenna 608 based on the measured SNR, and periodically resets the AMC level according to the SNR after detecting the pilot signal transmitted as the reference value. In addition, the AMC selection unit 624 executes allocation based on the AMC level SNR in the initial setting period. This prevents the actual AMC level range power that the system can support from deviating too much from the AMC level assigned by the above method.
  • the present invention is suitable for use in a multiple-input multiple-output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM).
  • MIMO multiple-input multiple-output
  • OFDM orthogonal wave frequency division multiplexing

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A link-adaptation system in a MIMO-OFDM system. In this system, a V-BLAST processing unit (308) executes a V-BLAST operation to separate a received signal into data streams in a manner to correspond to a plurality of antennas of a sender. A vector information output unit (312) sends the feedback-vector information obtained by the V-BLAST operation, to the sender. On the basis of the feedback-vector information, an adaptive bit assignment unit (304) controls the number of bits to be assigned, adaptively for every sub-carriers sent through different antennas. On the basis of the feedback-vector information, an adaptive power assignment unit (306) assigns the power adaptively to the individual antennas.

Description

明 細 書  Specification
MIMO— OFDMシステムにおけるリンク'ァダプテーシヨンシステム及び その方法  MIMO—Link Adaptation System and Method in OFDM System
技術分野  Technical field
[0001] 本発明は、直交波周波数分割多重 (OFDM)を用いる複数入力複数出力(MIMO )通信システムにおけるリンク'ァダプテーシヨンシステム及びその方法に関係する。 背景技術  [0001] The present invention relates to a link adaptation system and method in a multiple-input multiple-output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM). Background art
[0002] 複数データストリームの同時送信は、多数 (N )の送信アンテナと多数 (N )の受信  [0002] Simultaneous transmission of multiple data streams involves multiple (N) transmit antennas and multiple (N) receive
T R  T R
アンテナを使用する MIMO通信システムで実施されて ヽる。信号は送信アンテナか ら複数のパスを経て進み、受信アンテナに到達するまでに反射と拡散を受ける。 Ml MOシステムの重要な特長は、マルチパス伝播をうまく利用してそれをユーザの利便 に変える能力である。こうした長所の一つが空間的多重化を利用したシステム容量の 増加であり、通常、これは個別の送信リンクで独立したデータを送信することにより実 現される。  It is implemented in MIMO communication systems that use antennas. The signal travels through multiple paths from the transmitting antenna and is reflected and diffused before reaching the receiving antenna. An important feature of the Ml MO system is its ability to take advantage of multipath propagation and turn it into user convenience. One of these advantages is the increase in system capacity using spatial multiplexing, which is usually achieved by transmitting independent data over separate transmission links.
[0003] 空間的多重化によりデータ速度を高速化するよく知られた技法は、非特許文献 1で 論じられている。  A well-known technique for increasing the data rate by spatial multiplexing is discussed in Non-Patent Document 1.
[0004] MIMO技法は当初、狭帯域無線システム、すなわち、フラット'フエ一ディング*チヤ ネルを想定して設計された。従って、周波数選択性チャネルにおいては高い効果を 得ることは困難である。そこで、無線環境で提起された周波数選択性チャネルを克服 するために、 OFDMが MIMOシステムと連携して使用されて!、る。  [0004] MIMO techniques were originally designed for narrowband wireless systems, ie, flat'fading * channels. Therefore, it is difficult to obtain a high effect in the frequency selective channel. Therefore, OFDM has been used in conjunction with MIMO systems to overcome the frequency selective channel proposed in the wireless environment!
[0005] 逆高速フーリエ変換 (IFFT)を用いて、 OFDMは周波数選択性チャネルを独立し たパラレルな周波数の一定な複数サブチャネルの組に変換することができる。これら のサブチャネルのそれぞれの周波数は直交し互いに重なりあうため、スペクトラム効 率を向上させるとともにキャリア間干渉を最小にする。サイクリックプレフィックス( Cyclic Prefix)を OFDMシンボルに付カ卩することで、マルチパス効果をさらに低減す る。  [0005] Using Inverse Fast Fourier Transform (IFFT), OFDM can transform a frequency selective channel into a set of independent sub-channels of parallel frequencies. Since the frequencies of these subchannels are orthogonal and overlap each other, spectrum efficiency is improved and intercarrier interference is minimized. Multipath effects are further reduced by attaching a cyclic prefix to the OFDM symbol.
[0006] 送信アンテナと受信アンテナ間に存在する複数の通信チャネルは、通常、経時変 化しつつそれぞれ異なるリンク状態になる。フィードバックを有する MIMOシステムは 、送信機にチャネル状態情報 (CSI)を提供し、より高いレベルの性能を与えるために リンク ·ァダプテーションゃウォーター ·フイリング等の方法の使用を可能にする。 [0006] A plurality of communication channels existing between a transmission antenna and a reception antenna are usually changed over time. Each link state becomes different. A MIMO system with feedback provides channel state information (CSI) to the transmitter and allows the use of methods such as link adaptation or water filling to provide a higher level of performance.
[0007] OFDMシステムにおけるァダプティブ ·ビット'ローデイングは、 ヽろ 、ろな技術論文 で論じられてきた。 OFDMサブキャリアに割り当てるビット数を変えることで、ァダプテ イブ'ビット'ローデイングはシステムの品質を落とさずにデータ速度を最適化するねら いをもつ。この技法は、それぞれ異なるサブキャリアはチャネル状態に依存する変動 的な減衰度を有するという事実に基づいて機能する。割当ての決定は、通常、各サ ブキャリアのチャネル状態情報 (CSI)や信号対雑音比(SNR)等の特定のフィードバ ック情報により行われる。  [0007] Adaptive bit loading in OFDM systems has been discussed in various technical papers. By changing the number of bits allocated to OFDM subcarriers, adaptive 'bit' loading has the objective of optimizing the data rate without degrading system quality. This technique works on the fact that each different subcarrier has a variable attenuation depending on the channel conditions. Allocation decisions are usually made using specific feedback information such as channel state information (CSI) and signal-to-noise ratio (SNR) for each subcarrier.
[0008] リンク'ァダプテーシヨンの別の例は、適応変調 Z符号ィ匕方式 (AMC)である。従来 のシステムでは、予め定義されたレベルの組の中から使用すべき変調及び符号化方 式 (MCS)レベルを送信機が決定する。通常、この決定は、受信機で測定された検 出後 SNRを各 MCSレベルに対応するしき!、値と比較することによってなされる。この 方法は MCSレベルを選択する点では正確である力 SNRを受信シンボルごとに計 算しなければならな 、ので処理複雑度が高 、。また信号フィードバックのオーバへッ ドも高ぐ限られた利用可能な無線資源を圧迫している。  [0008] Another example of link adaptation is the adaptive modulation Z code scheme (AMC). In conventional systems, the transmitter determines the modulation and coding scheme (MCS) level to use from a predefined set of levels. This determination is usually made by comparing the post-detection SNR measured at the receiver with the threshold and value corresponding to each MCS level. This method has a high processing complexity because the power SNR must be calculated for each received symbol, which is accurate in selecting the MCS level. In addition, the overhead of signal feedback is also pressing down on the limited radio resources available.
[0009] 処理複雑度と高いフィードバック 'オーバヘッドを低減する技術が、特許文献 1にお いて提示されている。上記文献に記述された技術では、定期的な特定のフィードバッ ク ·メッセージとともに肯定応答 (ACK)及び否定応答 (NACK)に基づ ヽて MCSレ ベルを決定する。 [0009] Processing complexity and high feedback A technique for reducing overhead is presented in Patent Document 1. In the technique described in the above document, the MCS level is determined based on an acknowledgment ( ACK ) and a negative acknowledgment (NACK) together with a specific periodic feedback message.
非特干文献 1: V- BLAST: an architecture for realising very high data rates over the rich-scattering wireless channel" by P W Wolniansky et al in the published papers of the 1998 URSI International Symposium on Signals, Systems and Electronics, Pisa, Italy, Sep. 29 to Oct. 2, 1998.  Non-Patent Literature 1: V-BLAST: an architecture for realising very high data rates over the rich-scattering wireless channel "by PW Wolniansky et al in the published papers of the 1998 URSI International Symposium on Signals, Systems and Electronics, Pisa, Italy , Sep. 29 to Oct. 2, 1998.
特百午文献丄: A mobile communication system and method for adaptive modulation and coding, combining pilot-aided and ACK/NACK based decision on the employed modulation and coding scheme level" by Cho Myeon— gyunand Kim Ho— jin, patent number EP1289181, filed 5thMarch 2003. Special Hundred Literature: A mobile communication system and method for adaptive modulation and coding, combining pilot-aided and ACK / NACK based decision on the employed modulation and coding scheme level "by Cho Myeon— gyunand Kim Ho— jin, patent number EP1289181, filed 5thMarch 2003.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、リンク'ァダプテーシヨンを MIMO— OFDMシステムに応用する技術 は開示されていない。 [0010] However, a technique for applying link adaptation to a MIMO-OFDM system is not disclosed.
[0011] 本発明の目的は、 MIMO— OFDMシステムにおいて、処理複雑度を低く抑え、信 号フィードバックのオーバヘッドを低減しつつ、最適なビット割当てを行うことができる リンク ·ァダプテーシヨンシステム及びその方法を提供することである。  An object of the present invention is to provide a link adaptation system capable of performing optimum bit allocation while suppressing processing complexity and reducing signal feedback overhead in a MIMO-OFDM system and its Is to provide a method.
課題を解決するための手段  Means for solving the problem
[0012] 本発明は、受信機側の V-BLAST処理部により提供されたフィードバック情報に基 づき、異なるアンテナで送られるサブキャリア毎に割り当てるビット数、各送信アンテ ナの電力を適応的に制御する。また、本発明は、受信機側において、 ACK/NAC K情報に依存して、次のフレーム送信において各送信アンテナにおける AMCレべ ルの上げ Z下げを決定し、 V-BLAST処理により得られた一組のリンク品質情報に 依存して AMCレベルの増加 Z減少量を決定する。 [0012] The present invention adaptively controls the number of bits allocated to each subcarrier transmitted by different antennas and the power of each transmission antenna based on feedback information provided by the V-BLAST processing unit on the receiver side. To do. Further, according to the present invention, on the receiver side, depending on the ACK / NACK information, an AMC level increase / decrease in each transmission antenna is determined in the next frame transmission, and obtained by V-BLAST processing. Depending on a set of link quality information, the AMC level increase Z decrease amount is determined.
発明の効果  The invention's effect
[0013] 本発明によれば、 MIMO— OFDMシステムにおいて、処理複雑度を低く抑え、信 号フィードバックのオーバヘッドを低減しつつ、リンク'ァダプテーシヨンを行うことがで きる。  [0013] According to the present invention, in a MIMO-OFDM system, link adaptation can be performed while processing complexity is reduced and signal feedback overhead is reduced.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]ΜΙΜΟ— OFDM通信システムの送信機のブロック図 [Fig. 1] ΜΙΜΟ—Block diagram of transmitter in OFDM communication system
[図 2]MIMO— OFDM通信システムの受信機のブロック図  [Fig.2] MIMO—Block diagram of receiver in OFDM communication system
[図 3]本発明のリンク'ァダプテーシヨンを目的に採用された閉ループシステムの一実 施例を示す図  FIG. 3 is a diagram showing an embodiment of a closed loop system employed for the purpose of link adaptation according to the present invention.
[図 4]本発明の一実施例での V— BLAST信号処理方法及び情報取得を示すフロー チャート  FIG. 4 is a flowchart showing a V-BLAST signal processing method and information acquisition in an embodiment of the present invention.
[図 5]エラー伝播が発生しないことを前提とした、各送信レイヤの検出処理の性能を 示す図 [Figure 5] The detection processing performance of each transmission layer on the assumption that error propagation does not occur Illustration
[図 6]本発明のリンク'ァダプテーシヨンを目的に採用された閉ループシステムの別の 実施例を示す図  FIG. 6 is a diagram showing another embodiment of a closed loop system employed for the purpose of link adaptation of the present invention.
[図 7]7段階の AMCレベルでそれぞれ異なる変調方式と符号ィ匕率の組合せの例を 示す図  [Fig. 7] Diagram showing examples of combinations of different modulation schemes and code rate at 7 AMC levels
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016] 図 1は、直交波周波数分割多重を利用する複数入力複数出力通信システム (すな わち、 MIMO— OFDMシステム)における送信機 100のブロック図である。図 2は、同 システムの受信機 200のブロック図である。両図は 2基の送信アンテナと 2基の受信 アンテナを使用するシステムを示す力 本発明は多数 (N )の送信アンテナと多数 (N FIG. 1 is a block diagram of a transmitter 100 in a multiple-input multiple-output communication system (that is, MIMO-OFDM system) using orthogonal wave frequency division multiplexing. FIG. 2 is a block diagram of the receiver 200 of the same system. Both figures show the power of a system that uses two transmit antennas and two receive antennas. The present invention uses multiple (N) transmit antennas and multiple (N
T  T
)の受信アンテナを使用するシステムに拡張可能である。  ) Can be extended to a system using a receiving antenna.
R  R
[0017] 送信機 100において、各個別アンテナ 'チェーンごとにデータ処理が行われる。独 立データのそれぞれ異なるストリームが各送信アンテナから送信されて 、る。入力デ ータは、まず CRC付加部 102で巡回冗長検査 (CRC)符号が付加される。その後、 畳み込み符号化、ターボ符号ィ匕などのチャネル符号ィ匕が符号ィ匕部 104で実行され る。符号化されたデータは次に、データ中のバーストエラーを減少させるためにインタ 一リーバ 106でインタリーブされる。インタリーブされたデータに対して、多値変調コン ステレーシヨン'シンボル ·マッピングがマッピング部 108で実行される。マッピングさ れた信号に対してパイロット挿入部 110でパイロット信号が挿入される。ノ ィロット信 号を挿入することにより受信機でのチャネル評価を容易にする。  In transmitter 100, data processing is performed for each individual antenna chain. Different streams of independent data are transmitted from each transmit antenna. First, a cyclic redundancy check (CRC) code is added to the input data by the CRC adding unit 102. Thereafter, channel code keys such as convolutional coding and turbo code keys are executed in the code key unit 104. The encoded data is then interleaved with interleaver 106 to reduce burst errors in the data. Multi-level modulation constellation 'symbol mapping is executed by the mapping unit 108 on the interleaved data. A pilot signal is inserted in pilot insertion section 110 with respect to the mapped signal. Inserting a no-lot signal facilitates channel evaluation at the receiver.
[0018] OFDM変調を行う前に SZP変換部 112でシリアルなデータストリームをパラレルな データストリームに変換する。 IFFT部 114は生成サブキャリアを互いに直交させる。 PZS変換部 116でパラレルデータをシリアルデータに変換した後、 CP付加部 118 でマルチパス効果を低減するためのサイクリックプレフィックス(cyclic prefix)が OFD Mシンボルに付加される。送信前に、 DZ A変換部 120によってデジタル信号はアナ ログ信号に変換される。各送信機チェーンでの各種処理を経た後、信号はそれぞれ の割り当てられた送信アンテナ 122によって送信可能な状態になる。 [0019] 受信機 200では、受信アンテナ 202からの受信信号に対して、上記と逆の処理、す なわち、アナログからデジタルへの変換 (AZD変換部 204)、サイクリックプレフィック ス除去 (CP除去部 206)、シリアルパラレル変換 (SZP変換部 208)、高速フーリエ 変換 (FFT部 210)、パラレルシリアル変換 (PZS変換部 212)といった処理が行わ れる。受信信号は複数の送信アンテナ力 の重なり合う信号力 なるため、この信号 をそれぞれ個別のストリームに分離する必要がある。この場合、ゼロ'フォーシング (Z F)または最小平均二乗誤差 (MMSE) t 、つた技法を利用する V-BLASTデコーダ 214をこの機能を実行するために使用する。 [0018] Before performing OFDM modulation, the SZP converter 112 converts a serial data stream into a parallel data stream. IFFT section 114 makes generated subcarriers orthogonal to each other. After the parallel data is converted into serial data by the PZS converter 116, a cyclic prefix for reducing the multipath effect is added to the OFD M symbol by the CP adder 118. Prior to transmission, the digital signal is converted to an analog signal by the DZ A converter 120. After various processing in each transmitter chain, the signal is ready to be transmitted by its assigned transmitting antenna 122. [0019] In receiver 200, the received signal from receiving antenna 202 is processed in the reverse manner, that is, conversion from analog to digital (AZD converter 204), cyclic prefix removal (CP Processing such as a removal unit 206), serial-parallel conversion (SZP conversion unit 208), fast Fourier transform (FFT unit 210), and parallel-serial conversion (PZS conversion unit 212) are performed. Since the received signal has a signal strength that overlaps multiple transmit antenna forces, it is necessary to separate this signal into separate streams. In this case, a zero-forcing (ZF) or minimum mean square error (MMSE) t, a V-BLAST decoder 214 that utilizes the technique is used to perform this function.
[0020] さらにデマッピング(デマッピング部 216)、ディンタリービング(ディンターリーバ 21 8)及びデコーディング (復号部 220)を行った後、各パケットについて巡回冗長検査( CRC処理部 222)が行われ、当該データが正しいことを確認する。検査されたバケツ トがエラーなしと判定される場合は、肯定応答 (ACK)が送信機に送信されて、送信 機は当該パケットを再送信しない。もしエラーがあれば、再送信を要求するために否 定応答 (NACK)が送信機 100に送信される。  [0020] Further, after performing demapping (demapping unit 216), dingtering (Dinterleaver 218), and decoding (decoding unit 220), cyclic redundancy check (CRC processing unit 222) is performed on each packet. Confirm that the data is correct. If the inspected bucket is determined to be error free, an acknowledgment (ACK) is sent to the transmitter and the transmitter does not retransmit the packet. If there is an error, a negative response (NACK) is sent to the transmitter 100 to request retransmission.
[0021] 図 3は、本発明のリンク'ァダプテーシヨンを目的に採用された閉ループシステムを 示す図である。図 3に示すシステムは、送信機側の適応ビット割当て部 304と適応電 力割当て部 306を含む構成を採る。  FIG. 3 is a diagram showing a closed loop system adopted for the purpose of link adaptation of the present invention. The system shown in FIG. 3 employs a configuration including an adaptive bit allocation unit 304 and an adaptive power allocation unit 306 on the transmitter side.
[0022] 入力データはターボ符号ィ匕部 302でターボ符号ィ匕される。ターボ符号ィ匕によって 生成されたシステマチックビットとパリティビットは適応ビット割当て部 304に出力され る。  The input data is turbo-coded by a turbo code key unit 302. The systematic bits and parity bits generated by the turbo code are output to the adaptive bit allocation unit 304.
[0023] 適応ビット割当て部 304は、異なるアンテナで送られるサブキャリア毎に、割り当て るビット数を適応的に制御する。適応電力割当て部 306は、各アンテナに適応的に 電力を割り当てる。割当られるビット数と電力量は、前の送信力 得られたアンテナ状 態に依存する。この情報は、 V— BLAST処理部 308によって与えられ、ベクトル情報 出力部 312に保存され、エラーフリー'チャネル 310を通じて送信機へ送られる。  Adaptive bit allocation section 304 adaptively controls the number of bits to be allocated for each subcarrier transmitted by different antennas. The adaptive power allocation unit 306 adaptively allocates power to each antenna. The number of allocated bits and the amount of power depend on the previous transmit power obtained antenna state. This information is provided by the V-BLAST processing unit 308, stored in the vector information output unit 312, and sent to the transmitter through the error free channel 310.
[0024] V - BLAST処理部 308は、送信機の複数アンテナに対応して受信信号をデータス トリームに分離する V— BLAST処理を行う。デマッピング部 314は、 V— BLAST処理 された各ビットをデマッピングする。 [0025] 図 4は、本発明の一実施例での V— BLAST信号処理方法及び情報取得を示すフ ローチャートである。 V— BLAST処理から得られた情報をもとに、アンテナの SNRの 順位付けが行われる。以下に、 ZFクライテリオンを用いる V— BLAST技法とアンテナ 順位付け手順を説明する。 [0024] V-BLAST processing section 308 performs V-BLAST processing for separating a received signal into a data stream corresponding to a plurality of antennas of the transmitter. The demapping unit 314 demaps each bit subjected to V—BLAST processing. FIG. 4 is a flowchart showing a V-BLAST signal processing method and information acquisition in an embodiment of the present invention. Based on the information obtained from the V—BLAST process, the antenna SNRs are ranked. The V-BLAST technique using the ZF criterion and the antenna ranking procedure are described below.
[0026] 各受信アンテナで受信された信号は、各送信アンテナからの信号の混成物からな る。したがって、 V— BLASTは混成物を検出し、妥当なデータストリームに分離するこ とをめざす。 V— BLAST技法は、すべての受信アンテナ力 得たシンボルの各列(こ れを受信ベクトルという)に対して実行される。各受信ベクトルに対応する、チャネル 評価から取得されるチャネル行列も V— BLAST処理に必要となる。  [0026] The signal received by each receiving antenna is composed of a mixture of signals from each transmitting antenna. Therefore, V-BLAST aims to detect hybrids and separate them into valid data streams. The V-BLAST technique is performed for each sequence of symbols obtained from all received antenna power (this is called the received vector). The channel matrix obtained from the channel evaluation corresponding to each received vector is also required for V-BLAST processing.
[0027] 受信ベクトル (r )と対応するチャネル行列(H )の組を設定した後の最初のステップ は、行列 Gの組を得るために Hの擬似逆形を計算することである (ステップ 404)。  [0027] The first step after setting the received vector (r) and the corresponding channel matrix (H) set is to calculate the pseudo inverse of H to obtain the set of matrices G (step 404). ).
[0028] チャネル行列の擬似逆形を得た後、 Gの各行のノルムを計算する(ステップ 406)。  [0028] After obtaining the pseudo inverse of the channel matrix, the norm of each row of G is calculated (step 406).
このステップの目的は、第一の検出対象レイヤを選択することである。最大の検出後 信号対雑音比(SNR)を示すレイヤで最初に検出を実行すれば、よりよ!/、性能が得ら れることはすでに証明済みである。これは、最小ノルムをもつ Gの行を検出することに 相当する。  The purpose of this step is to select the first detection target layer. It has already been proven that better performance can be achieved if detection is performed first at the layer with the highest signal-to-noise ratio (SNR) after detection. This is equivalent to detecting the row of G with the minimum norm.
[0029] したがって、最小ノルムをもつ Gの行をゼロ化ベクトル (w )として選択する(ステップ  [0029] Therefore, select the row of G with the minimum norm as the zeroization vector (w) (step
i k  i k
408)。このベクトルは、 kthで送信した信号を除き、すべての信号をゼロ化 (無効に) する。 V-BLAST処理部 308は、受信ベクトル (r)及び重みベクトル (w )を内部で作 408). This vector zeros (disables) all signals except those transmitted at k th . The V-BLAST processing unit 308 internally generates a reception vector (r) and a weight vector (w).
i k  i k
成することにより、 kth送信アンテナカゝら送信されたシンボルの検出を行う(ステップ 41 0)。 As a result, the symbols transmitted from the k th transmission antenna are detected (step 410).
[0030] 検出されたシンボルは、信号コンステレーシヨン内の最も近い値にスライシングして 再マッピングされる (ステップ 412)。こうすることで、次のステップで実行される信号消 去のための評価が効率よく処理される。  [0030] The detected symbols are remapped by slicing to the nearest value in the signal constellation (step 412). In this way, the evaluation for signal cancellation performed in the next step is efficiently processed.
[0031] 一つのレイヤが検出されれば、その後のレイヤの検出処理は効率よく行える。検出 された信号部分を受信信号のベクトル力も差し引くことで (ステップ 414)、次のステツ プでのゼロ化対象レイヤ数は減少される。この消去処理は、受信信号ベクトルを妨害 信号成分が低下したベクトルに修正することになる。また検出の複雑さも低減する。 [0032] これに対応して の kth列を消去することで (ステップ 416)、チャネル行列も修正す る必要がある。 If one layer is detected, subsequent layer detection processing can be performed efficiently. By subtracting the vector force of the received signal from the detected signal part (step 414), the number of layers to be zeroed in the next step is reduced. This erasure process corrects the received signal vector to a vector with a reduced interference signal component. It also reduces detection complexity. [0032] Corresponding to this, by deleting the k th column (step 416), the channel matrix also needs to be corrected.
[0033] すべてのレイヤがうまく検出されるまで全部の処理を繰り返す (ステップ 418)。なお 、 V— BLAST検出は、受信ベクトルのほかの組についても引き続き実行される。  [0033] The entire process is repeated until all layers are successfully detected (step 418). Note that V-BLAST detection continues for other sets of received vectors.
[0034] ノルムは各送信レイヤの検出後 SNRの指示値であるので、本発明はこの情報をァ ンテナ順位付けに利用している。フレーム中の各シンボルについて検出の順序が、 受信機内でベクトルとして保存される。受信機は、その後、エラーフリー'チャネルを 通じて情報ベクトルを送信機へフィードバックする。送信機は、このベクトルを次の送 信フレームにおけるリンク'ァダプテーシヨンに利用する。この保存とフィードバックの プロセスは、望ましい周期で繰り返される。これらの二つのステップは、受信機で受信 したフレームごとに実行してもよいし、または望ましい m個のフレームごとに実行しても よい。通則的なガイドラインとしては、変動の早い無線チャネルであれば、より短い周 期でフィードバックを行う。他方、変動が遅いチャネルでは、資源を節約し、複雑さを 最小レベルに保っために、より長い間隔で情報を更新するようにする。  [0034] Since the norm is an indication value of SNR after detection of each transmission layer, the present invention uses this information for antenna ranking. The order of detection for each symbol in the frame is stored as a vector in the receiver. The receiver then feeds back the information vector to the transmitter through an error-free 'channel. The transmitter uses this vector for link adaptation in the next transmission frame. This storage and feedback process is repeated at the desired frequency. These two steps may be performed for each frame received at the receiver or may be performed for every desired m frames. As a general guideline, feedback is performed in a shorter period for a radio channel that fluctuates quickly. On the other hand, slow-changing channels should update information at longer intervals to save resources and keep complexity at a minimum level.
[0035] 図 5は V-BLAST検出中にエラー伝播が発生しないことを前提とした、検出された 各送信レイヤの性能を示す図である。図 5において、横軸は E ZN 、縦軸は BER( b O  FIG. 5 is a diagram showing the performance of each detected transmission layer on the assumption that error propagation does not occur during V-BLAST detection. In Fig. 5, the horizontal axis is E ZN and the vertical axis is BER (b O
Bit Error Rate)である。図 5では、 4つの送信アンテナの送信機と 4つの受信アンテナ の受信機との間で通信を行い、送信アンテナ 1 (Txl)の信号カゝら順に送信アンテナ 4 (Tx4)の信号まで分離する場合のエラー曲線を示して 、る。  Bit Error Rate). In Fig. 5, communication is performed between a transmitter with four transmitting antennas and a receiver with four receiving antennas, and the signals of transmitting antenna 4 (Tx4) are separated in order from the signal of transmitting antenna 1 (Txl). Show the error curve for the case.
[0036] 理論的には、第一の検出対象レイヤの検出時はダイバーシチレベルがいちばん低 い。検出された各レイヤについて、各受信アンテナはずつと一定であるのに検出され たレイヤは消去されて 、くので、結果としてシステムのダイバーシチレベルはレイヤが 進むにつれて増加する。このことは図 5に明白に示されている。第一のデコーディン グ 'ステップで検出されるアンテナ 1のエラー曲線は、 SNRが増えるにしたがって緩 やかに降下する(アンテナ 1のダイバーシチレベル)。アンテナ 2、 3、 4のエラー曲線 は、アンテナ 1のものよりもずっと急に降下する。それよりも前に検出されたシンボル は差し引かれて 、る t 、う利を得ることにより、後続のレイヤではダイバーシチレベル 力 まで増加する。レベル 4が発生するのは、 4基の受信アンテナによる検出対象とし てただ一つの信号が残っている場合である。したがって、この観測例から結論づけら れるのは、順位付け後の第一の検出対象レイヤは最高の検出後 SNRをもつが、そ の後に検出されるほかの送信レイヤに比べて、その性能は低くなるということである。 したがって、適応ビット割当て部 304及び適応電力割当て部 306は、第一の検出対 象レイヤとなったアンテナに対して、この特定のアンテナ 'リンクにおける性能を向上 させるために、より少ないビット数かより高い送信電力、またはこれらの両方を与える べきである。 Theoretically, the diversity level is lowest when the first detection target layer is detected. For each detected layer, each received antenna is constant, but the detected layer is erased, and as a result, the diversity level of the system increases as the layer progresses. This is clearly shown in FIG. The error curve of antenna 1 detected in the first decoding 'step gradually falls as the SNR increases (diversity level of antenna 1). The error curves for antennas 2, 3, and 4 drop much more rapidly than for antenna 1. Earlier symbols are subtracted and gained, increasing the diversity level power in subsequent layers. Level 4 occurs when it is detected by four receiving antennas. This is the case when only one signal remains. Therefore, it can be concluded from this observation that the first detection target layer after ranking has the highest post-detection SNR, but its performance is lower than other transmission layers detected after that. That is. Therefore, the adaptive bit allocation unit 304 and the adaptive power allocation unit 306 can reduce the number of bits for the antenna that has become the first detection target layer to improve the performance in this specific antenna link. High transmit power or both should be provided.
[0037] 本発明の別の実施例を図 6に示す。この実施例では AMCを用いる。 V— BLAST 情報に加えて、 AMC処理を容易にするためにシステムは CRC情報を利用する。送 信機 602内の多重 CRC付加部 604は、各アンテナ 'チェーン 608から送信する信号 に CRCビットを付加する。したがって、受信機 612では、多重 CRC検出部 618にお いて、各個別受信アンテナで受信され、復調デコーダ 616で復調された各フレーム がエラー検出のために CRCを受ける。  [0037] Another embodiment of the present invention is shown in FIG. In this embodiment, AMC is used. V—In addition to BLAST information, the system uses CRC information to facilitate AMC processing. Multiple CRC adding section 604 in transmitter 602 adds a CRC bit to the signal transmitted from each antenna chain 608. Therefore, in the receiver 612, each frame received by each individual reception antenna and demodulated by the demodulation decoder 616 is subjected to CRC for error detection in the multiplexed CRC detection unit 618.
[0038] AMC選択部 624は、多重CRC検出部618からCRCの結果(ACKZNACK)を 得る。 AMC選択部 624は、各受信アンテナ 610に受信された信号に対する ACKZ NACK情報によって、次のフレーム送信において送信機 602の各アンテナ 608にお ける AMCレベルを上げる力または下げるかを決定する。 AMC選択部 624は、現在 の送信で ACKを受信したアンテナでは次のフレーム送信ではその AMCレベルを上 げるようにし、 NACKを受信したアンテナでは次のフレーム送信でその AMCレベル を下げるようにする。  [0038] AMC selection section 624 obtains a CRC result (ACKZNACK) from multiplexed CRC detection section 618. The AMC selection unit 624 determines whether to increase or decrease the AMC level in each antenna 608 of the transmitter 602 in the next frame transmission according to the ACKZ NACK information for the signal received by each reception antenna 610. The AMC selection unit 624 increases the AMC level in the next frame transmission for the antenna that has received the ACK in the current transmission, and decreases the AMC level in the next frame transmission for the antenna that has received the NACK. .
[0039] また、 AMC選択部 624は、 V- BLASTデコーダ 614により得られた一組のリンク品 質情報に依存して AMCレベルの増加 Z減少量を決定する。生成されたノルム情報 力 各アンテナのリンク状態の評価を決定するための手段として用いられる。前述し たアンテナ順位付けのコンセプトを利用することで、 AMC選択部 624は、エラー確 率が比較的小さいアンテナではその AMCレベルをより大幅に増加させ、 AMCレべ ルの減少が必要な場合にはエラー確率が比較的大きいアンテナではその AMCレべ ルをより大幅に減少させる。  In addition, the AMC selection unit 624 determines an increase Z decrease amount of the AMC level depending on a set of link quality information obtained by the V-BLAST decoder 614. Generated norm information force Used as a means to determine the link state evaluation of each antenna. By using the antenna ranking concept described above, the AMC selector 624 increases the AMC level significantly for antennas with relatively low error probabilities, and when the AMC level needs to be reduced. For antennas with a relatively high error probability, the AMC level is greatly reduced.
[0040] ARQとリンク品質の両方の情報に基づいて、 AMC選択部 624は、適切な AMCレ ベルを選択し、フィードバックチャネル 626を通じてこの選択をフィードバックする。こ こで注目されるのは、すべての演算及び選択処理が受信機で実行されることである。 その結果、送信機に送る必要があるオーバヘッドと信号情報量が減少する。 [0040] Based on both the ARQ and link quality information, the AMC selector 624 determines whether the appropriate AMC Select the bell and feed back this selection through feedback channel 626. It should be noted here that all computation and selection processes are performed at the receiver. As a result, the overhead and amount of signal information that needs to be sent to the transmitter is reduced.
[0041] このフィードバック情報を用いて、送信機 602内の多重 AMC部 606は、各送信ァ ンテナに AMCレベルを効率よく割り当てることができる。前の送信時に決定されたリ ンク品質に基づいて、各アンテナに適切な AMCレベルを割り当てることにより、シス テムはチャネル状態の差や変動をうまく利用してシステム全体の性能をよりよくするこ とがでさる。 Using this feedback information, multiplexing AMC unit 606 in transmitter 602 can efficiently assign an AMC level to each transmission antenna. By assigning the appropriate AMC level to each antenna based on the link quality determined during the previous transmission, the system can better utilize the channel state differences and variations to improve overall system performance. It is out.
[0042] SNR測定部 622は、各送信アンテナ 608から送信された受信パイロット信号を用い て SNRを測定する。 AMC選択部 624は、測定された SNRに基づき各送信アンテナ 608のチャネル状態を評価し、定期的に、基準値として送信されたパイロット信号の 検出後 SNRに応じて AMCレベルをリセットする。また、 AMC選択部 624は、 AMC レベルの SNRに基づく割当てを初期設定期間に実行する。これにより、システムがサ ポート可能な実際の AMCレベル範囲力 上記の方法により割り当てられた AMCレ ベルがあまりに大きく逸脱してしまうのを防ぐことができる。  [0042] SNR measuring section 622 measures the SNR using the received pilot signal transmitted from each transmitting antenna 608. AMC selection section 624 evaluates the channel state of each transmitting antenna 608 based on the measured SNR, and periodically resets the AMC level according to the SNR after detecting the pilot signal transmitted as the reference value. In addition, the AMC selection unit 624 executes allocation based on the AMC level SNR in the initial setting period. This prevents the actual AMC level range power that the system can support from deviating too much from the AMC level assigned by the above method.
[0043] AMCレベルの多様化の例を図 7に示す。ここでは、 7段階のレベルがあり、変調方 式が QPSKから 64QAMまで変動し、符号化率が 1/4、 1/2, 3/4と変動する。割 り当てられた AMCレベルがより高いほど、データ率が高くなる。エラー率を許容限度 内に抑えつつ高いデータ率を得るためには、信号の SNRが各 AMCレベルに対応 するしき ヽ値を常に上回るようにする。  FIG. 7 shows an example of AMC level diversification. Here, there are seven levels, the modulation method varies from QPSK to 64QAM, and the coding rate varies from 1/4, 1/2, and 3/4. The higher the AMC level assigned, the higher the data rate. To obtain a high data rate while keeping the error rate within acceptable limits, the signal's SNR should always be above the threshold corresponding to each AMC level.
[0044] なお、上記の説明は本発明の好適な実施例とみなされる力 本発明は、開示した 実施例に限定されるものではなぐ多様な形態と実施態様で実現可能であり、本発 明の範囲は、以下に記載する特許請求事項およびその等価物に参照して決定され るものである。  Note that the above description is considered to be a preferred embodiment of the present invention. The present invention is not limited to the disclosed embodiment, and can be implemented in various forms and embodiments. The scope is determined with reference to the following claims and their equivalents.
産業上の利用可能性  Industrial applicability
[0045] 本発明は、直交波周波数分割多重 (OFDM)を用いる複数入力複数出力(MIMO )通信システムに用いるに好適である。 The present invention is suitable for use in a multiple-input multiple-output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM).

Claims

請求の範囲 The scope of the claims
[1] 直交波周波数分割多重 (OFDM)を用いる複数入力複数出力(MIMO)通信シス テムにおけるリンク'ァダプテーシヨンシステムであって、  [1] A link adaptation system in a multiple input multiple output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM),
受信機が、送信機の複数アンテナに対応して受信信号をデータストリームに分離す る V— BLAST処理を行う V-BLAST信号処理部と、 V— BLAST処理によって得られ るフィードバック 'ベクトル情報を送信機へ送るベクトル情報出力部と、を具備し、 前記送信機が、異なるアンテナで送られるサブキャリア毎に前記フィードバック 'ベ タトル情報に基づ 、て、割り当てるビット数を適応的に制御するビット割当て部と、を 具備する。  The receiver separates the received signal into data streams corresponding to the multiple antennas of the transmitter V-BLAST signal processing unit that performs B-BLAST processing, and feedback “vector information obtained by V-BLAST processing is transmitted. A bit allocation for adaptively controlling the number of bits allocated by the transmitter based on the feedback vector information for each subcarrier transmitted by a different antenna. A part.
[2] 請求項 1に記載のシステムは、  [2] The system according to claim 1,
前記送信機が、前記フィードバック 'ベクトル情報に基づいて、各アンテナに適応的 に電力を割り当てる電力割当て部をさらに含む。  The transmitter further includes a power allocation unit that adaptively allocates power to each antenna based on the feedback vector information.
[3] 請求項 1に記載のシステムは、 [3] The system according to claim 1,
前記受信機が、前記フィードバック 'ベクトル情報として最高の検出後 SNRを有す るアンテナ位置を示す情報を前記送信機へ送り、  The receiver sends information indicating the antenna position having the highest post-detection SNR as the feedback vector information to the transmitter;
前記送信機のビット割当て部が、前記フィードバック 'ベクトル情報のアンテナに、よ り少な 、ビット数を割り当てる。  The bit allocation unit of the transmitter allocates a smaller number of bits to the antenna of the feedback vector information.
[4] 請求項 2に記載のシステムは、 [4] The system according to claim 2,
前記受信機が、前記フィードバック 'ベクトル情報として最高の検出後 SNRを有す るアンテナ位置を示す情報を前記送信機へ送り、  The receiver sends information indicating the antenna position having the highest post-detection SNR as the feedback vector information to the transmitter;
前記送信機の電力割当て部力 前記フィードバック 'ベクトル情報のアンテナに、よ り高い送信電力を割り当てる。  The power allocation capacity of the transmitter allocates higher transmission power to the antenna of the feedback vector information.
[5] 直交波周波数分割多重 (OFDM)を用いる複数入力複数出力(MIMO)通信シス テムにおけるリンク'ァダプテーシヨンシステムであって、 [5] A link adaptation system in a multiple input multiple output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM),
受信機が、送信機の複数アンテナに対応して受信信号をデータストリームに分離す る V— BLAST処理を行う V-BLAST信号処理部と、データストリーム毎に誤り検出を 行う CRC検出部と、前記送信機の送信アンテナごとに、誤り検出結果に依存して適 応変調 Z符号化方式 (AMC)レベルの上げ Z下げを決定し、 V - BLAST処理によ つて得られるリンク品質情報に依存して AMCレベルの増加 Z減少量を決定する AM C選択部と、を具備し、 The receiver separates the received signal into data streams corresponding to the multiple antennas of the transmitter, V-BLAST signal processing unit for performing BLAST processing, CRC detection unit for performing error detection for each data stream, For each transmitter antenna of the transmitter, an adaptive modulation Z coding system (AMC) level increase / decrease is determined depending on the error detection result, and V-BLAST processing is performed. An AMC selection unit that determines an increase or decrease in AMC level depending on link quality information obtained, and
前記送信機が、送信信号に誤り検出用のビットを付加する CRC付加部と、前記 A MC選択部の結果に基づいて、各送信アンテナに AMCを割り当てる多重 AMC部と 、を具備する。  The transmitter includes: a CRC adding unit that adds an error detection bit to a transmission signal; and a multiple AMC unit that assigns an AMC to each transmission antenna based on a result of the AMC selection unit.
[6] 請求項 5に記載のシステムは、 [6] The system according to claim 5,
前記受信機の AMC選択部が、現在の送信で肯定応答 (ACK)を受信したアンテ ナでは次のフレーム送信でその AMCレベルを上げるようにし、アンテナが否定応答 (NACK)を受信したアンテナでは次のフレーム送信でその AMCレベルを下げるよ うにする。  The AMC selector of the receiver raises the AMC level in the next frame transmission for the antenna that received the acknowledgment (ACK) in the current transmission, and the next in the antenna that received the negative acknowledgment (NACK). The AMC level is lowered by sending a frame.
[7] 請求項 5に記載のシステムは、  [7] The system according to claim 5,
前記受信機の AMC選択部力 AMCレベルの増加が必要な場合にはエラー確率 が比較的小さ 、アンテナ程その AMCレベルをより増加させ、 AMCレベルの減少が 必要な場合にはエラー確率が比較的大きいアンテナ程その AMCレベルをより減少 させる。  AMC selection power of the receiver When the AMC level needs to be increased, the error probability is relatively small, the antenna increases its AMC level more, and when the AMC level needs to be decreased, the error probability is relatively low. Larger antennas reduce their AMC level more.
[8] 請求項 5に記載のシステムは、  [8] The system according to claim 5,
前記受信機が、前記送信機の各送信アンテナカゝら送信された受信パイロット信号を 用いて信号対雑音比 (SNR)を測定する SNR測定部をさらに具備し、  The receiver further includes an SNR measurement unit that measures a signal-to-noise ratio (SNR) using a received pilot signal transmitted from each transmitting antenna of the transmitter;
前記 AMC選択部は、測定された SNRに基づき各送信アンテナのチャネル状態を 評価し、 SNRに応じて定期的に AMCレベルをリセットする。  The AMC selection unit evaluates the channel state of each transmit antenna based on the measured SNR, and periodically resets the AMC level according to the SNR.
[9] 直交波周波数分割多重 (OFDM)を用いる複数入力複数出力(MIMO)通信シス テムにおけるリンク'ァダプテーシヨン方法であって、 [9] A link adaptation method in a multiple-input multiple-output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM),
受信機において、送信機の複数アンテナに対応して受信信号をデータストリームに 分離する V— BLAST処理を行うステップと、 V— BLAST処理によって得られるフィー ドバック ·ベクトル情報を送信機へ送るステップと、を具備し、  In the receiver, performing a V-BLAST process that separates the received signal into data streams corresponding to the multiple antennas of the transmitter; sending feedback vector information obtained by the V-BLAST process to the transmitter; Comprising
前記送信機において、異なるアンテナで送られるサブキャリア毎に前記フィードバッ ク 'ベクトル情報に基づいて、割り当てるビット数を適応的に制御するステップと、を具 備する。 In the transmitter, the method includes adaptively controlling the number of bits to be allocated based on the feedback vector information for each subcarrier transmitted by different antennas.
[10] 請求項 9に記載の方法は、 [10] The method of claim 9,
前記送信機において、前記フィードバック 'ベクトル情報に基づいて、各アンテナに 適応的に電力を割り当てるステップをさらに含む。  The transmitter further includes adaptively allocating power to each antenna based on the feedback vector information.
[11] 請求項 9に記載の方法は、 [11] The method of claim 9,
前記受信機において、前記フィードバック 'ベクトル情報として最高の検出後 SNR を有するアンテナ位置を示す情報を前記送信機へ送り、  In the receiver, information indicating the antenna position having the highest post-detection SNR as the feedback vector information is sent to the transmitter,
前記送信機において、前記フィードバック 'ベクトル情報のアンテナに、より少ないビ ット数を割り当てる。  In the transmitter, a smaller number of bits is allocated to the antenna of the feedback vector information.
[12] 請求項 10に記載の方法は、 [12] The method of claim 10,
前記受信機において、前記フィードバック 'ベクトル情報として最高の検出後 SNR を有するアンテナ位置を示す情報を前記送信機へ送り、  In the receiver, information indicating the antenna position having the highest post-detection SNR as the feedback vector information is sent to the transmitter,
前記送信機において、前記フィードバック 'ベクトル情報のアンテナに、より高い送 信電力を割り当てる。  In the transmitter, higher transmission power is allocated to the antenna of the feedback vector information.
[13] 直交波周波数分割多重 (OFDM)を用いる複数入力複数出力(MIMO)通信シス テムにおけるリンク'ァダプテーシヨン方法であって、  [13] A link adaptation method in a multiple-input multiple-output (MIMO) communication system using orthogonal wave frequency division multiplexing (OFDM),
受信機において、送信機の複数アンテナに対応して受信信号をデータストリームに 分離する V— BLAST処理を行うステップと、データストリーム毎に誤り検出を行うステ ップと、前記送信機の送信アンテナごとに、誤り検出結果に依存して適応変調 Z符 号化方式 (AMC)レベルの上げ Z下げを決定し、 V— BLAST処理によって得られる リンク品質情報に依存して AMCレベルの増加 Z減少量を決定するステップと、を具 備し、  At the receiver, a step of performing a V-BLAST process for separating a received signal into a data stream corresponding to a plurality of antennas of the transmitter, a step of performing error detection for each data stream, and a step of transmitting each of the transmission antennas of the transmitter Then, the adaptive modulation Z coding (AMC) level is increased or decreased depending on the error detection result, and the AMC level increase or decrease is decreased depending on the link quality information obtained by V-BLAST processing. A step for determining, and
前記送信機において、送信信号に誤り検出用のビットを付加するステップと、前記 AMCレベルの決定結果に基づ!/、て、各送信アンテナに AMCレベルを割り当てるス テツプと、を具備する。  The transmitter includes a step of adding an error detection bit to a transmission signal and a step of assigning an AMC level to each transmission antenna based on the determination result of the AMC level.
[14] 請求項 13に記載の方法は、 [14] The method of claim 13,
前記受信機にぉ ヽて、現在の送信で肯定応答 (ACK)を受信したアンテナでは次 のフレーム送信でその AMCレベルを上げるようにし、アンテナが否定応答(NACK) を受信したアンテナでは次のフレーム送信でその AMCレベルを下げるようにする。 The receiver receives the acknowledgment (ACK) in the current transmission and raises its AMC level in the next frame transmission, and the antenna receives the negative acknowledgment (NACK) in the next frame. Reduce the AMC level on transmission.
[15] 請求項 13に記載の方法は、 [15] The method of claim 13,
前記受信機において、 AMCレベルの増加が必要な場合にはエラー確率が比較的 小さ 、アンテナ程その AMCレベルをより増加させ、 AMCレベルの減少が必要な場 合にはエラー確率が比較的大きいアンテナ程その AMCレベルをより減少させる。  In the receiver, if the AMC level needs to be increased, the error probability is relatively small, the antenna increases the AMC level more, and if the AMC level needs to be decreased, the error probability is relatively large. The AMC level is further reduced.
[16] 請求項 13に記載の方法は、 [16] The method of claim 13,
前記受信機にぉ ヽて、前記送信機の各送信アンテナカゝら送信された受信パイロット 信号を用いて信号対雑音比 (SNR)を測定するステップをさらに具備し、  Further comprising the step of measuring a signal-to-noise ratio (SNR) using a received pilot signal transmitted from each transmitting antenna cable of the transmitter to the receiver;
測定された SNRに基づき各送信アンテナのチャネル状態を評価し、 SNRに応じて 定期的に AMCレベルをリセットする。  The channel state of each transmit antenna is evaluated based on the measured SNR, and the AMC level is reset periodically according to the SNR.
PCT/JP2004/016343 2004-11-04 2004-11-04 Link-adaptation system in mimo-ofdm system, and method therefor WO2006048934A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006542204A JPWO2006048934A1 (en) 2004-11-04 2004-11-04 Link adaptation system and method in MIMO-OFDM system
PCT/JP2004/016343 WO2006048934A1 (en) 2004-11-04 2004-11-04 Link-adaptation system in mimo-ofdm system, and method therefor
EP04822360A EP1802017A1 (en) 2004-11-04 2004-11-04 Link-adaptation system in mimo-ofdm system, and method therefor
CNA2004800443432A CN101053190A (en) 2004-11-04 2004-11-04 Link-adaptation system in mimo-ofdm system, and method therefor
US11/718,569 US20090067528A1 (en) 2004-11-04 2004-11-11 Link-adaptation system in mimo-ofdm system, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016343 WO2006048934A1 (en) 2004-11-04 2004-11-04 Link-adaptation system in mimo-ofdm system, and method therefor

Publications (1)

Publication Number Publication Date
WO2006048934A1 true WO2006048934A1 (en) 2006-05-11

Family

ID=36318954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016343 WO2006048934A1 (en) 2004-11-04 2004-11-04 Link-adaptation system in mimo-ofdm system, and method therefor

Country Status (5)

Country Link
US (1) US20090067528A1 (en)
EP (1) EP1802017A1 (en)
JP (1) JPWO2006048934A1 (en)
CN (1) CN101053190A (en)
WO (1) WO2006048934A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312007A (en) * 2007-06-15 2008-12-25 Toshiba Corp Wireless communication system, and mobile wireless terminal
JP2009538570A (en) * 2006-05-24 2009-11-05 クゥアルコム・インコーポレイテッド Multi-input multi-output (MIMO) orthogonal frequency division multiple access (OFDMA) communication system
JP2011205192A (en) * 2010-03-24 2011-10-13 Saxa Inc Radio communication device and method
KR20140119637A (en) * 2013-04-01 2014-10-10 한국전자통신연구원 Method and apparatus for opportunistic interference alignment in single-user multi-input multi-output transmission
KR20140119638A (en) * 2013-04-01 2014-10-10 한국전자통신연구원 Method and apparatus for opportunistic interference alignment in multi-user multi-input multi-output transmission

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873948B1 (en) * 2005-04-18 2013-01-23 Mitsubishi Denki Kabushiki Kaisha Sending station, receiving station, and radio communication method
US7602837B2 (en) * 2005-10-20 2009-10-13 Freescale Semiconductor, Inc. Beamforming for non-collaborative, space division multiple access systems
US20080159434A1 (en) * 2006-12-28 2008-07-03 Mewtel Technology Inc. Method of efficient techniques in an orthogonal frequency division multiplexing system with channel evaluation
KR20080086033A (en) * 2007-03-21 2008-09-25 삼성전자주식회사 Apparatus and method for automatic repeat request in multi input multi output system
US7778340B2 (en) 2007-09-06 2010-08-17 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Accurate channel quality indicator for link adaptation of MIMO communication systems
US8249179B2 (en) * 2007-10-25 2012-08-21 Sharp Kabushiki Kaisha Communication apparatus, multicarrier communication system and communication method
CN101170386B (en) * 2007-11-06 2010-06-30 东南大学 Self-adapted multi-antenna receiving and transmission method based on mean and covariance
CN101227254B (en) * 2008-01-23 2013-02-27 中兴通讯股份有限公司 Method for detecting V-BLAST in MIMO system
US8855257B2 (en) 2008-02-11 2014-10-07 Intel Mobile Communications GmbH Adaptation techniques in MIMO
CN101615932B (en) * 2008-06-25 2013-01-30 鼎桥通信技术有限公司 Power distribution method for multi-input multi-output hybrid automatic retransmission request system
US8737319B2 (en) * 2008-12-15 2014-05-27 Samsung Electronics Co., Ltd. Method and apparatus for reducing map overhead in a broadand wireless communication system
CN101944942B (en) * 2010-08-10 2014-12-10 北京邮电大学 Low-complexity adaptive transmission multi-antenna transmission method and system
CN102638431A (en) * 2011-02-10 2012-08-15 富士通株式会社 Bit dispensing equipment, transmitter, bit distribution method and power distribution method
WO2014021859A1 (en) * 2012-07-31 2014-02-06 Hewlett-Packard Development Company, L.P. Management of modulation and coding scheme implementation
CN105024781B (en) * 2014-04-30 2019-06-21 中兴通讯股份有限公司 A kind of processing method of feedback information, apparatus and system
US10944500B2 (en) * 2016-10-07 2021-03-09 Cable Television Laboratories, Inc. Systems and methods for DOCSIS profile management
CN113283571A (en) 2017-06-19 2021-08-20 弗吉尼亚科技知识产权有限公司 Encoding and decoding of information transmitted wirelessly using a multi-antenna transceiver
US10749594B1 (en) * 2017-08-18 2020-08-18 DeepSig Inc. Learning-based space communications systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179821A (en) * 2002-11-26 2004-06-24 Matsushita Electric Ind Co Ltd Wireless transmitter and wireless receiver
JP2004215254A (en) * 2002-12-26 2004-07-29 Korea Electronics Telecommun Adaptive modulator/demodulator to be applied to multi-input/multi-output system having detector of hierarchical space-time structure, and its method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631127B1 (en) * 2002-05-29 2003-10-07 Motorola, Inc, Apparatus and method for dynamically selecting an ARQ method
US8116262B2 (en) * 2004-06-22 2012-02-14 Rockstar Bidco Lp Methods and systems for enabling feedback in wireless communication networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179821A (en) * 2002-11-26 2004-06-24 Matsushita Electric Ind Co Ltd Wireless transmitter and wireless receiver
JP2004215254A (en) * 2002-12-26 2004-07-29 Korea Electronics Telecommun Adaptive modulator/demodulator to be applied to multi-input/multi-output system having detector of hierarchical space-time structure, and its method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NG K-W. ET AL: "A simplified bit allocation for V-BLAST based OFDM MIMO Systems in Frequency Selective Fading Channels", ICC 2002. IEEE INTERNATIONAL CONFERENCE, vol. 1, no. 28, 28 April 2002 (2002-04-28) - 2 May 2002 (2002-05-02), pages 411 - 415, XP010589527 *
NISHIMURA T. ET AL.: "MIMO Channel ni Okeru E-SDM to Omomi Tsuki BLAST no Tokusei Hikaku", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU, vol. 102, no. 551, 10 January 2003 (2003-01-10), pages 127 - 132, XP003006180 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538570A (en) * 2006-05-24 2009-11-05 クゥアルコム・インコーポレイテッド Multi-input multi-output (MIMO) orthogonal frequency division multiple access (OFDMA) communication system
US8406335B2 (en) 2006-05-24 2013-03-26 Qualcomm Incorporated Multi input multi output (MIMO) orthogonal frequency division multiple access (OFDMA) communication system
JP2008312007A (en) * 2007-06-15 2008-12-25 Toshiba Corp Wireless communication system, and mobile wireless terminal
JP2011205192A (en) * 2010-03-24 2011-10-13 Saxa Inc Radio communication device and method
KR20140119637A (en) * 2013-04-01 2014-10-10 한국전자통신연구원 Method and apparatus for opportunistic interference alignment in single-user multi-input multi-output transmission
KR20140119638A (en) * 2013-04-01 2014-10-10 한국전자통신연구원 Method and apparatus for opportunistic interference alignment in multi-user multi-input multi-output transmission
KR102164972B1 (en) * 2013-04-01 2020-10-13 한국전자통신연구원 Method and apparatus for opportunistic interference alignment in multi-user multi-input multi-output transmission
KR102236286B1 (en) * 2013-04-01 2021-04-05 한국전자통신연구원 Method and apparatus for opportunistic interference alignment in single-user multi-input multi-output transmission

Also Published As

Publication number Publication date
JPWO2006048934A1 (en) 2008-05-22
US20090067528A1 (en) 2009-03-12
CN101053190A (en) 2007-10-10
EP1802017A1 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
WO2006048934A1 (en) Link-adaptation system in mimo-ofdm system, and method therefor
US8625692B2 (en) Transmission/reception apparatus and method for improving throughput in a multi-input multi-output communication system
US9680611B2 (en) Automatic retransmission in communications systems
EP2135398B1 (en) Method and apparatus for transmission within a multi-carrier communication system
US7826557B2 (en) Retransmitting method and transmitting method in multi-antenna transmission
JP4741495B2 (en) Incremental redundancy transmission in MIMO communication systems
KR100779734B1 (en) Power and bit loading allocation in a communication system with a plurality of channels
US7596133B2 (en) Apparatus and method for data transmission/reception using channel state information in wireless communication system
WO2006109436A1 (en) Transmitting apparatus and transmitting method
EP1515471A1 (en) A system and method of dynamically optimizing a transmission mode of wirelessly transmitted information
WO2009084927A1 (en) Method for packet retransmission employing feedback information
EP2181519B1 (en) Method for retransmitting packets according to decoding failures or reliability
WO2006080180A1 (en) Wireless transmitter and wireless receiver
KR101467764B1 (en) Method for packet retransmission employing feedback information
WO2006075662A1 (en) Adaptive transmission detection method in multi-antenna communication system and multi-antenna reception device
WO2006030479A1 (en) Turbo encoding bit assignment system and turbo encoding bit assignment retransmission method in mimo-ofdm system
Svensson et al. Coding and resource scheduling in packet oriented adaptive TDMA/OFDMA systems
Qi et al. Cross-layer design of enhanced AMC with truncated ARQ protocols
JP2006186991A (en) Packet transmission method using adaptive modulation
Kim et al. WLC36-3: Selective Virtual Antenna Permutation for Layered OFDM-MIMO Transmission
KR20110034567A (en) Transmitting/receiving apparatus and method for improving a throughput in a multi input multi output communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006542204

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004822360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11718569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200480044343.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004822360

Country of ref document: EP