WO2006040999A1 - Fuel cell power generation device - Google Patents

Fuel cell power generation device Download PDF

Info

Publication number
WO2006040999A1
WO2006040999A1 PCT/JP2005/018526 JP2005018526W WO2006040999A1 WO 2006040999 A1 WO2006040999 A1 WO 2006040999A1 JP 2005018526 W JP2005018526 W JP 2005018526W WO 2006040999 A1 WO2006040999 A1 WO 2006040999A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
fuel cell
power generation
cell power
Prior art date
Application number
PCT/JP2005/018526
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Hatoh
Teruhisa Kanbara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006040999A1 publication Critical patent/WO2006040999A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell power generator, and more particularly, to a device equipped with a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell As a typical fuel cell, a polymer electrolyte fuel cell is known! In this polymer electrolyte fuel cell, fuel and an oxidant are respectively supplied to a pair of electrodes sandwiching a polymer electrolyte membrane, that is, an anode and a cathode, and a chemical reaction between the supplied fuel and the oxidant is performed. Generate electricity.
  • the electrode of this polymer electrolyte fuel cell is formed by laminating a catalyst layer in contact with the polymer electrolyte membrane and a gas diffusion layer in contact with the separator.
  • a catalyst layer in which an inert gas is sealed in the oxidant flow path and the fuel gas flow path when the operation is stopped has been proposed because the performance deteriorates due to the drought (for example, Patent Document 1). reference).
  • the catalyst layer is usually formed by mixing conductive carbon particles carrying a noble metal such as platinum and a hydrogen ion conductive polymer electrolyte membrane such as perfluorosulfonic acid. Therefore, it is considered that sealing with a gas not containing oxygen can prevent the oxidation of the platinum surface, thereby suppressing deterioration of battery performance.
  • the electrode catalyst layer is placed in an inert gas atmosphere during operation stoppage, oxidation of the electrode catalyst layer is suppressed, thereby Therefore, it is possible to prevent deterioration of the performance of the polymer electrolyte fuel cell.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-272738
  • the fuel cell is frequently operated to be repeatedly started and stopped (hereinafter referred to as a high-frequency start / stop operation).
  • a high-frequency start / stop operation In such a fuel cell used in an electric vehicle, it is not necessary to perform simple start-up / stop operation. It is necessary to evaluate the fuel cell from the viewpoint of long life. Therefore, when the fuel cell was evaluated from such a viewpoint, the fuel gas and the oxidant were not replaced at the time of stopping.
  • the life of the fuel cell was further increased by the frequent start / stop operation. It turned out to be shorter.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell power generator capable of extending the life under high-frequency start / stop operation.
  • the present inventor diligently investigated the mechanism for shortening the life of the fuel cell by frequent start / stop operation. As a result, the following facts were found.
  • the material of the catalyst layer of the electrode of the polymer electrolyte fuel cell is oxidized while the fuel cell is stopped and eluted into the polymer electrolyte membrane, and this eluted material of the catalyst layer is generated during the power generation (operation) of the fuel cell.
  • the material of the catalyst layer of the electrode of the polymer electrolyte fuel cell is oxidized while the fuel cell is stopped and eluted into the polymer electrolyte membrane, and this eluted material of the catalyst layer is generated during the power generation (operation) of the fuel cell.
  • elution and deposition of the material of the catalyst layer are repeated to increase the particle size of the catalyst particles constituting the catalyst layer, thereby degrading the catalyst performance of the catalyst layer.
  • a fuel cell power generator stores a fuel gas substantially composed of hydrogen gas, supplies a fuel gas reservoir, supplies an air, and supplies the fuel.
  • a fuel cell that supplies the fuel gas from a gas reservoir and the air from the air supply device to an anode and a power sword sandwiching an electrolyte membrane, respectively, and generates power by a chemical reaction between the supplied fuel gas and air;
  • the fuel cell power generator includes the air sealed in the power sword and consumes oxygen in the air while continuing the power generation in this state, and oxygen is discharged from the cathode. Then, the power generation is stopped, and then the fuel gas or a mixed gas of the fuel gas and an inert gas is sealed in the anode and remains in the power sword.
  • the gas is replaced with the fuel gas from the fuel reservoir or a mixed gas of the fuel gas and the inert gas, and the replaced fuel gas or mixed gas is sealed at the cathode, and then the operation is stopped.
  • the open circuit voltage should be OV or more and 0.85V or less. maintain.
  • gases such as Ar, CO, CO, water vapor, methane, ethane, propane, butane, etc.
  • the anode contains platinum as a catalyst for the chemical reaction, and the open circuit voltage maintained is 0V or more and 0.85V or less.
  • the fuel cell power generation device After stopping the power generation, the fuel cell power generation device seals the fuel gas at the anode and replaces the gas remaining in the power sword with the fuel gas from the fuel reservoir. Then, the replaced fuel gas may be sealed, and then the operation may be stopped.
  • the fuel gas is used as the replacement gas for the power sword, so there is no need to provide a separate replacement gas supply means, and it is suitable as a power source for an electric vehicle that does not want to mount extra items. .
  • the fuel cell power generation apparatus includes an inert gas supply device that supplies an inert gas, and after the power generation is stopped, the fuel gas and the inert gas from the inert gas supply device are used as gas remaining in the anode.
  • the mixed gas replaced with the anode is sealed with the replaced mixed gas and the gas remaining in the power sword is inerted from the fuel gas from the fuel reservoir and the inert gas supplier. It is possible to replace the mixed gas with the gas and seal the replaced mixed gas on the cathode, and then stop the operation.
  • the fuel cell power generation device When starting the operation after the operation is stopped, the fuel cell power generation device releases the sealing of the gas sealed in the anode, supplies the fuel gas to the anode, and supplies the power.
  • the power generation may be started by discharging the gas sealed to the cathode from the sword and then supplying the air to the cathode. With such a configuration, air can be supplied to the power sword while preventing non-catalytic combustion due to mixing of fuel gas and air when the fuel cell is started.
  • the fuel cell power generator may be mounted on an electric vehicle as a driving power source.
  • the present invention has the configuration as described above, and in the fuel cell power generator, there is an effect that it is possible to extend the life under the high frequency start / stop operation.
  • FIG. 1 is a block diagram schematically showing a configuration of a fuel cell power generator according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a cell of the fuel cell of FIG.
  • FIG. 3 is a flowchart showing an outline of a stop mode of the fuel cell power generator of FIG.
  • Fig. 4 is a graph showing the change with time of the output voltage of the fuel cell in the stop mode.
  • FIG. 5 is a flowchart showing an outline of the start-up mode of the fuel cell power generator of FIG.
  • FIG. 6 is a block diagram schematically showing the configuration of the fuel cell power generator according to Embodiment 2 of the present invention. Explanation of symbols
  • FIG. 1 is a block diagram schematically showing the configuration of the fuel cell power generator according to Embodiment 1 of the present invention.
  • the fuel cell power generator 1 of the present embodiment includes, as main components, a fuel cell 2, a fuel source 3, an air supply device 4, a load switching circuit 5, A start / stop resistor 6, a control device 7, a sealing gas discharge pump 8, and a cooling system (not shown) for cooling the fuel cell 2 are provided.
  • fuel cell power generator 1 is for an electric vehicle.
  • the fuel cell 2 is composed of a polymer electrolyte fuel cell, in which fuel is supplied to the anode and oxidant is supplied to the power sword.
  • pure hydrogen gas is used in the present embodiment.
  • the fuel may contain a very small amount of impurities as long as it is substantially composed of hydrogen gas.
  • air is used as the oxidizing agent.
  • other oxidizing agents may be used.
  • the fuel source 3 is constituted by a hydrogen cylinder (fuel gas storage). Hydrogen gas from the fuel source 3 (hereinafter referred to as fuel gas) is supplied to the anode through the fuel supply path 51, where it is consumed and consumed for power generation. It is released into the atmosphere through the gas and gas discharge channel 52.
  • the fuel gas supplied to the fuel cell 2 may be referred to as a supply fuel gas! / ⁇
  • the fuel gas discharged from the fuel cell 2 may be referred to as an exhaust fuel gas.
  • the fuel gas supply passage 10 is provided with an on-off valve 10
  • the fuel gas discharge passage 52 is provided with an on-off valve 11. Thereby, the on-off valves 10 and 11 can be closed and the anode 23 can be sealed.
  • a humidifier for humidifying the fuel gas may be provided in the fuel supply path 51.
  • This The humidifier is configured to humidify and heat the supplied fuel gas by, for example, total heat exchange between the supplied fuel gas and the exhausted fuel gas, or to mix and humidify the exhausted fuel gas directly into the supplied fuel gas. Is done.
  • this total heat exchange type humidifier may be integrated with the stack of the fuel cells 2 to constitute an internal total heat exchanger. Further, the total heat exchange type humidifier may be configured such that the supplied fuel gas is heated by exchanging heat with a cooling medium described later. Further, when the cooling medium is water, the humidifier may be configured so that the cooling water at the outlet from the fuel cell 2 in the cooling water circulation passage and the supplied fuel gas are totally heat-exchanged.
  • the fuel gas flow system may be configured as a system that does not release the fuel gas supplied to the fuel cell 2 into the atmosphere and does not have an outlet.
  • the fuel gas is pure hydrogen
  • a system that uses up 100% of the fuel gas and does not discharge it to the outside can be considered.
  • a fuel gas humidifier may be unnecessary.
  • the air supply device 4 is here constituted by a blower, and supplies air (hereinafter referred to as oxidant gas) to the power sword of the fuel cell 2 through the oxidant gas supply path 53.
  • Oxidant gas supplied to the power sword (hereinafter sometimes referred to as supply oxidant gas) is used and consumed for power generation, and excess oxidant gas that has not been consumed (hereinafter referred to as exhausted oxygen gas). Is released from the fuel cell 2 into the atmosphere through the oxidant discharge channel 54.
  • the oxidant gas supply path 53 is provided with an on-off valve 12, and the oxidant gas discharge path 54 is provided with an on-off valve 13.
  • the open / close valves 12 and 13 and the open / close valve 16 of the sealing gas supply passage 55 described later can be closed to seal the force sword 24.
  • the oxidant gas supply path 53 and the oxidant gas discharge path 54 are provided with a humidifier 61 for humidifying the oxidant gas.
  • the humidifier 61 may be configured to humidify and heat the supply oxidant gas by total heat exchange between the supply oxidant gas and the exhaust oxidant gas.
  • the total heat exchange type humidifier 61 may be integrated with the stack of the fuel cells 2 to constitute an internal total heat exchanger. Further, the humidifier 61 may be configured such that the supplied oxidant gas is heated by exchanging heat with a cooling medium described later. Further, when the cooling medium is water, the humidifier 61 may be configured so that the cooling water at the outlet from the fuel cell 2 in the cooling water circulation passage and the supplied oxidant gas are totally heat-exchanged. . When the oxidant gas is air as in the present embodiment, humidification of the oxidant gas is almost necessary, and this total heat exchange type humidifier 61 Is considered essential.
  • a three-way valve 9 is disposed in a portion of the oxidant gas supply path 53 between the air supply device 4 and the on-off valve 12.
  • two of the three ports are connected to the oxidant gas flow path 53, and the remaining one port is connected to the suction port of the sealed gas discharge pump 8.
  • the discharge port of the sealing gas discharge pump 8 is open to the atmosphere.
  • the sealing gas discharge pump 8 is here constituted by a vacuum pump!
  • the sealing gas supply path 55 is provided with an on-off valve 16.
  • the fuel cell power generator 1 is provided with a cooling water circulation path for cooling the fuel cell 2 by circulating the cooling water so as to pass through the fuel cell 2, but is shown for simplicity of explanation. Is omitted.
  • the load switching circuit 5 is connected to one of the pair of electrical output terminals 2a and 2b of the fuel cell 2, and one of the load switching circuit and the pair of electrical output terminals 2a and 2b of the fuel cell fuel cell 2.
  • the start / stop resistor 6, the battery 14, and the load 15 are connected to the other 2b.
  • the load switching circuit 5 has a group of open / close switches (not shown). The open / close switches are turned on to connect the start / stop resistor 6, the battery 14, and the load 15 to a pair of electric output terminals of the fuel cell 2, respectively. It is configured so that it can be connected or not connected between 2a and 2b.
  • the starting resistor 6 is composed of a variable resistor, and is used as a load for gradually increasing and decreasing the power generation amount of the fuel cell 2 when the fuel cell power generator 2 is started and stopped.
  • the battery 14 is used to supply power other than driving power for the electric vehicle on which the fuel cell power generator 1 is mounted.
  • the load 15 is a motor that drives an electric vehicle on which the fuel cell power generator 1 is mounted.
  • the control device 7 is configured by an arithmetic device such as a microcomputer, and controls required components of the fuel cell power generation device 1 to control the operation of the fuel cell power generation device 1.
  • the control device also means a control device group in which a plurality of control devices connected by only a single control device cooperate to execute control. Therefore, the control device 7 is not necessarily a single control.
  • a plurality of control devices that are not necessarily configured by the control device may be arranged in a distributed manner so that they cooperate to control the operation of the fuel cell power generation device 1.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the cell of the fuel cell 2 of FIG.
  • a fuel cell 2 (more precisely, a stack) has a number of stacked cells 21, a pair of end plates (not shown) disposed at both ends thereof, and the pair of end plates A pair of electrical output terminals 2a and 2b are arranged on the board.
  • the cell 21 has a MEA (Membrane Electrode Assembly: polymer electrolyte membrane electrode assembly) 25.
  • the MEA 25 has a polymer electrolyte membrane 22, and an anode 23 and a force sword 24 formed on both sides of the polymer electrolyte membrane 22 except for the peripheral portion (inner side portion).
  • the anode 23 includes a catalyst layer 29 formed on the polymer electrolyte membrane 22 and a gas diffusion electrode layer 30 formed on the catalyst layer 29.
  • the force sword 24 includes a catalyst layer 31 formed on the polymer electrolyte membrane 22 and a gas diffusion electrode layer 32 formed on the catalyst layer 31.
  • a pair of gaskets 26 and 26 having an opening in the central portion on both sides of the peripheral portion (outer portion) of the polymer electrolyte membrane 22 of the MEA 25 so that the anode 23 and the force sword 24 are positioned in the openings, respectively. Arranged. Therefore, the anode 23 and the force sword 24 are exposed at the center part (inner part) of both sides of the joined body of the MEA 25 and the gaskets 26 and 26 (hereinafter referred to as MEA gasket joined body).
  • An anode separator 27 is placed in contact with the main surface on the anode side of this MEA gasket assembly, and a force sword separator 28 is placed in contact with the main surface on the force sword side of the MEA gasket assembly!
  • the anode separator 27 has a groove-shaped fuel gas flow path 34 formed on the inner surface thereof, and a groove-shaped cooling water flow path 36 A formed on the outer surface thereof.
  • a fuel gas supply manifold hole 41A, an oxidant gas supply manifold hole 42A, a cooling water supply manifold hole 43A, and a fuel gas discharge mask are formed at the peripheral edge of the anode separator 27 so as to penetrate the peripheral edge.
  • -A fold hole 41B, an oxidant gas discharge fold hole 42B, and a cooling water discharge fold hole 43B are formed.
  • the fuel gas passage 34 is connected to the fuel gas supply manifold hole 41 A and the fuel gas passage 34.
  • the cooling water flow path 36A is formed so as to connect the cooling water supply fold hole 43A and the cooling water discharge fold hole 43B.
  • the force sword separator 28 has a groove-like oxidant gas passage 35 formed on the inner surface thereof, and a groove-like cooling water passage 36B formed on the outer surface thereof.
  • a fuel gas supply mould hole 41A, an oxidant gas supply mould hole 42A, a cooling water supply mould hole 43, and a fuel gas so as to penetrate the peripheral edge of the cathode separator 28.
  • An exhaust manifold hole 41B, an oxidant gas exhaust manifold hole 42B, and a cooling water exhaust manifold hole 43B are formed.
  • the oxidant gas flow path 35 is formed so as to connect the oxidant gas supply manifold hole 42A and the oxidant gas discharge manifold hole 42B, and the cooling water flow path 36B is provided with the cooling water supply manifold hole 42B.
  • 43A and cooling water discharge manifold hole 43B are formed to be connected.
  • the MEA-gasket assembly also has a peripheral edge of the fuel gas supply manifold hole 41A and an oxidant gas so as to penetrate the peripheral edge so as to correspond to the anode separator 27 and the force sword separator 28.
  • Supply manifold hole 42A, cooling water supply manifold hole 43A, fuel gas exhaust manifold hole 41B, oxidant gas exhaust manifold hole 42B, and cooling water exhaust manifold hole 43B are formed. .
  • the fuel cell 2 includes a fuel gas supply manifold hole 41A, an oxidant gas supply manifold hole 42A, a cooling water supply manifold hole 43A, and a fuel gas discharge manifold hole for each cell 21.
  • 41B, Oxidant gas discharge manifold hole 42B, and Coolant discharge manifold hole 43B are connected to each other to connect the fuel gas supply mould, oxidant gas supply mould, cooling water supply mould, A fuel gas discharge mould, an oxidant gas discharge mould, and a cooling water discharge mould are formed.
  • the cooling water flow path 36A on the outer surface of the anode separator 27 and the cooling water flow path 36B on the outer surface of the force sword separator 28 are combined to form one cooling water flow path between two adjacent cells 21.
  • a fuel gas supply path 51 is connected to the fuel gas supply manifold, and a fuel gas discharge path 52 is connected to the fuel gas discharge manifold.
  • an oxidant gas supply path 53 is connected to the oxidant gas supply manifold, and an oxidant gas discharge path 54 is connected to the oxidant gas discharge manifold.
  • the cooling water supply muff A cooling water circuit (not shown) is connected to the old and to the cooling water discharge manifold.
  • the fuel gas supply manifold hole 41A, the oxidant gas supply manifold hole 42A, and the cooling water supply manifold hole 43A are indicated by two broken lines, and similarly the fuel The gas exhaust manifold 41B, the oxidant gas exhaust manifold 42B, and the cooling water exhaust manifold 43B are shown by two broken lines! Of course, these are overlapping! /, Showing that they are! /, And it goes without saying that they are formed individually rather than sharing one manifold hole. . Needless to say, each of the fold holes 41A to 43A and 41B to 43B can be arbitrarily arranged.
  • the polymer electrolyte membrane 22 is composed of a perfluorocarbon sulfonic acid membrane (Nafionll2 (registered trademark) manufactured by DUPONT).
  • the gas diffusion electrode layers 30 and 32 are composed of a powerful bon paper (TOGP TGP-H-090).
  • Catalyst layers 29 and 31 are formed by applying catalyst powder to the carbon paper.
  • the catalyst powder of the catalyst layer 29 of the anode 23 here, a catalyst powder in which 25% platinum having an average particle diameter of about 30 ⁇ m is supported on acetylene black carbon powder (DENKA BLACKFX-35 manufactured by Denki Kagaku Kogyo Co., Ltd.) Is used.
  • 25% platinum particles having an average particle size of about 30 ⁇ m are supported on the acetylene black carbon powder (DENKA BLACKFX-35 manufactured by Denki Kagaku Kogyo Co., Ltd.) as the catalyst powder of the catalyst layer 31 of the force sword 24. Catalyst powder is used.
  • the anode separator 27 and the force sword separator 28 are made of a conductive material such as carbon.
  • the operation of the fuel cell power generation device 1 is performed by the control of the control device 7 as described above.
  • the fuel cell power generator 1 has a start mode in which the fuel cell power generator 1 is started and smoothly transitions to a power generation state, a power generation mode in which power is generated, and a stop mode in which the fuel cell power generator 1 is smoothly stopped from the power generation state. And have.
  • the on-off valve 10 and the fuel gas of the fuel gas supply path 51 The on-off valve 11 of the discharge path 52 is open.
  • the on-off valve 12 of the oxidant gas supply path 53 and the on-off valve 11 of the oxidant gas discharge path 54 are opened.
  • the three-way valve 9 is switched so that the oxidant gas supply path communicates.
  • the on-off valve 16 of the sealing gas supply path 55 is closed.
  • the load switching circuit 5 connects the battery 14 and the load 15 as a load between the pair of electrical output terminals 2a and 2b of the fuel cell 2.
  • fuel gas is supplied from the fuel source 3 to the fuel cell 2.
  • the supplied fuel gas flows into the fuel gas flow path 34 through the fuel gas supply manifold (41 A). Then, it flows through the fuel gas flow path 34 while being in contact with the anode 23.
  • hydrogen is ionized by the catalytic action of the catalyst layer 29, and the hydrogen ions are transported to the force sword 24 through the polymer electrolyte membrane 22. Electrons ionized from hydrogen move from the gas diffusion electrode layer 30 to the gas diffusion electrode layer 32 of the force sword 24 through an electric circuit formed by the fuel cell 2 and an external load.
  • oxidant gas is supplied from the air supply device 4 to the fuel cell 2.
  • the supplied oxidant gas flows into the oxidant gas flow path 35 through the oxidant gas supply manifold (42A). Then, it flows through the oxidant gas flow path 35 in contact with the force sword 24.
  • the hydrogen ions transported to the cathode 24 combine with the electrons that have moved to the gas diffusion electrode layer 32 to return to hydrogen, and this hydrogen is used for the catalytic action of the catalyst layer 31.
  • water is produced under reaction with oxygen in oxidant gas, water is produced. O This reaction generates electricity and heat.
  • the generated electricity is output from the pair of electric output terminals 2a and 2b and consumed by the load 15, thereby driving the electric vehicle.
  • the surplus power is stored in the battery 14.
  • the generated heat is transmitted to the cooling water flowing through the cooling water flow paths 36A and 36B, whereby the fuel cell 2 is cooled and maintained at an appropriate temperature.
  • the fuel gas not used in the above reaction is released from the fuel gas discharge passage 52 into the atmosphere through the fuel gas discharge mold (41B). Further, the oxidant gas that has not been used in the above reaction is discharged into the atmosphere from the oxidant gas discharge path 54 through the oxidant gas discharge manifold (42B).
  • Fig. 3 is a flowchart showing an overview of the stop mode of the fuel cell power generator 1 in Fig. 1.
  • Fig. 4 shows the time course of the output voltage of the fuel cell 2 in the stop mode. It is a graph which shows a change.
  • step S14 in the power generation state (step S14), first, the on-off valve 12 of the oxidant gas supply path 53 is closed, and then the on-off valve 13 of the oxidant gas discharge path 54 is closed.
  • force sword 24 to be precise, force sword 24, oxidant gas passage between on-off valve 12 and on-off valve 13, and sealing gas between this oxidant gas passage and on-off valve 16
  • Air as an oxidant gas is sealed in the supply path 55) (step S1).
  • the load switching circuit 5 disconnects the load 15 and the battery 14 from the electrical output terminals 2a and 2b of the fuel cell 2, and instead of these, the start / stop resistor 6 is interposed between the electrical output terminals 2a and 2b. Connected (step S2).
  • the resistance value of the start / stop resistor 6 is gradually increased (that is, the load is gradually decreased), and the power generation amount is gradually decreased.
  • the power generation is automatically stopped, so it is not always necessary to increase the resistance value of the start / stop resistor 6, and this may be maintained constant.
  • oxygen in the sealed air is consumed and reduced by the reaction of power generation, and the output voltage of the fuel cell 2 (electrical output terminals 2a, 2b) is reduced as this oxygen decreases. For example, as shown in Fig. 4.
  • the output voltage becomes zero and power generation stops (no electricity is generated) (step S3).
  • the force sword 24 is in a negative pressure with respect to the atmosphere because oxygen in the sealed air is exhausted.
  • the output voltage is monitored by the control device 7.
  • the control device 7 detects that the output voltage has become zero (stop of power generation)
  • the on-off valve 10 of the fuel gas supply path 51 is detected.
  • the on-off valve 11 of the fuel gas discharge passage 52 is closed. Thereby, hydrogen gas as a fuel gas is sealed in the anode 23 (step S4).
  • the on-off valve 16 of the sealing gas supply path 55 is opened, and hydrogen gas, which is a fuel gas, is introduced from the fuel source 3 into the force sword 24 that has a negative pressure.
  • the open / close valve 13 of the oxidant discharge channel 54 is opened, and the gas remaining in the power sword (gas other than oxygen in the air) is purged with hydrogen gas.
  • the opening / closing valve 13 and the opening / closing valve 16 are sequentially closed, whereby the hydrogen gas is sealed in the cathode 24. In this way, by exhausting oxygen in the air sealed in the power sword 24 by power generation, by introducing hydrogen gas into the power sword 24, air Hydrogen can be sealed in the power sword 24 while preventing non-catalytic combustion due to the mixture of hydrogen and hydrogen gas.
  • the stop mode ends and the fuel cell power generator 1 stops.
  • the anode 23 of the fuel cell 2 and the power sword 24 power fuel cell power generator 1 are maintained at a potential determined by the materials of the catalyst layers 29 and 31 and the hydrogen gas as the atmosphere during the stop period.
  • the catalyst layer 29 of the anode 23 is made of platinum
  • the catalyst layer 29 of the anode 23 is maintained at the reduction potential OV.
  • the catalyst layer 31 of the force sword 24 is made of platinum
  • the catalyst layer 31 of the force sword 24 is maintained at OV which is the reduction potential.
  • the open circuit voltage of the fuel cell 2 is OV.
  • FIG. 5 is a flowchart showing an outline of the start-up mode of the fuel cell power generator 1 of FIG.
  • step Sl l hydrogen gas in the cathode 24 is first discharged (step Sl l). Specifically, first, the three-way valve 9 is switched so that the portion on the on-off valve 12 side of the oxidizing gas supply path 53 communicates with the sealing gas discharge pump 8, and then the sealing gas discharge pump 8 is activated. Next, the on-off valve 12 is opened, and the hydrogen gas sealed in the cathode 24 from the force sword 24 is sucked by the sealing gas discharge pump 8 and discharged into the atmosphere. When the pressure sword 24 is depressurized to a predetermined degree, the on-off valve 12 is closed, and then the sealing gas discharge pump 8 is stopped.
  • the three-way valve 9 is switched so that the oxidant gas supply path 53 communicates.
  • the pressure sword 24 is depressurized to a predetermined degree by, for example, providing a pressure sensor on the force sword 24 and detecting the control device 7 through the pressure sensor.
  • the on-off valve 12 of the oxidant gas supply path 53 is opened, and oxidant gas (air) is introduced from the air supply device 4 to the force sword 24.
  • the on-off valve 13 of the oxidant gas discharge passage 54 As a result, the oxidant gas is continuously supplied from the air supply device 4 to the power sword 24 (step S13). In this way, by supplying the air to the force sword 24 after sucking and discharging the hydrogen gas sealed in the force sword 24, the non-catalytic combustion due to the mixing of the hydrogen gas and air is prevented, and the force is reduced. Air can be supplied to Sword 24.
  • the resistance value of the start / stop resistor 6 is gradually decreased, whereby the power generation amount of the fuel cell 2 is gradually increased.
  • the load switching circuit 5 disconnects the start / stop resistor 6 from the electrical output terminals 2a, 2b of the fuel cell 2, and instead, the load 15 and the battery 14 are connected. It is connected between the electrical output terminals 2a and 2b of the fuel cell 2.
  • the start-up mode ends and the fuel cell power generator 1 shifts to the power generation state (power generation mode) (step S14).
  • the anode 23 and the force sword 24 of the fuel cell 2 are separated from the materials of the catalyst layers 29 and 31 during the stop period of the fuel cell power generator 1. It is maintained at a potential determined by the fuel gas which is each atmosphere.
  • platinum is used as the material of the anode catalyst layer 29
  • platinum is used as the material of the catalyst layer 31 of the force sword 24
  • pure hydrogen gas is used as the fuel gas. Is not limited to this configuration.
  • platinum is used as the material of the catalyst layer 29 of the anode 23 and the catalyst layer 31 of the force sword 24, respectively, and the fuel cell is used as the fuel gas and the oxidant gas. It is preferable to use the one whose open circuit voltage of 2 is OV or more and 0.85V or less. When the open-circuit voltage exceeds 0.85V, platinum becomes oxidized and is easily dissolved. Therefore, when such a condition is satisfied, the materials of the catalyst layers 29 and 31 are suppressed from being oxidized and eluted into the polymer electrolyte membrane 22 while the fuel cell 2 is stopped. This is because the deterioration of the catalyst performance of the catalyst layers 29 and 31 due to repeated reduction and reduction can be suppressed, and the life of the fuel cell 2 can be extended under the frequent start-stop operation.
  • FIG. 6 is a block diagram schematically showing the configuration of the fuel cell power generator according to Embodiment 2 of the present invention. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • an inert gas supply device (inert gas supply device) 62 is provided as a replacement gas supply means, and when the operation of the fuel cell power generator 1 is stopped, A mixed gas of fuel gas and inert gas is sealed in the anode and power sword of the fuel cell 2.
  • inert gas supply device inert gas supply device
  • the inert gas supply device 62 stores N gas as the inert gas here.
  • the inert gas supply device 62 can supply an inert gas to the anode of the fuel cell 2 through the first inert gas supply path 65 in which an on-off valve 63 is provided in the middle, and in the middle An inert gas can be supplied to the power sword of the fuel cell 2 through the second inert gas supply path 66 in which the open / close valve 64 is provided.
  • the on-off valve 63 is opened in step S4 of Fig. 3, and the inert gas is supplied from the inert gas supply device 62 to the inert gas supply path. Then, the mixed gas of the inert gas and the hydrogen gas from the fuel source 3 is supplied to the anode, and then the on-off valve 63 is closed together with the on-off valves 10 and 11, thereby mixing the mixture. Gas is sealed to the anode.
  • step S5 the on-off valve 64 is opened, and the inert gas is sent from the inert gas supply device 62 to the inert gas supply path 66, whereby the sealing gas supply path is connected from the inert gas and the fuel source 3.
  • the mixed gas with the hydrogen gas supplied through 55 is supplied to the power sword, and then the on-off valve 12 and 16 and the on-off valve 64 are closed to seal the mixed gas in the power sword.
  • the present invention is similarly applied to a fuel cell power generator for other uses. can do.
  • a fuel cell power generator used as an emergency power source includes a hydrogen cylinder as a fuel source
  • the use of the fuel cell power generator of Embodiment 1 for this eliminates the need for a replacement inert gas. Are particularly suitable.
  • the force discharged from the force sword by the pump 8 at the start of the fuel cell power generator 1 by the pump 8 is replaced by a predetermined purge gas in the force sword.
  • a predetermined purge gas for example, an inert gas
  • an inert gas is supplied and the cathode is sealed! / Purging gas can be purged.
  • the fuel cell power generator of the present invention is useful as a fuel cell power generator used in electric vehicles and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell power generation device (1) includes a fuel gas reservoir (3) for storing a fuel gas, i.e., substantially a hydrogen gas and supplying it; an air supply device (4) for supplying air; and a fuel cell (2) in which the fuel gas and the air are supplied to the anode and the cathode, respectively so that the chemical reaction between the supplied fuel gas and the air generates power. The fuel cell power generation device (1) seals the air in the cathode and consumes oxygen in the air while continuing power generation in that state so as to remove oxygen from the cathode. After this, power generation is stopped. After this, the fuel gas or a mixture of a fuel gas and an inactive gas is sealed in the anode. The gas remaining in the cathode is replaced by a fuel gas or a mixture of the fuel gas and the inactive gas. The fuel gas or mixed gas replaced is sealed in the cathode. After this, operation is stopped. During the stop period, the open voltage is maintained at not smaller than 0 V and not greater than 0.85 V.

Description

明 細 書  Specification
燃料電池発電装置  Fuel cell power generator
技術分野  Technical field
[0001] 本発明は、燃料電池発電装置に関し、特に高分子電解質型燃料電池を備えたも のに関する。  TECHNICAL FIELD [0001] The present invention relates to a fuel cell power generator, and more particularly, to a device equipped with a polymer electrolyte fuel cell.
背景技術  Background art
[0002] 典型的な燃料電池として高分子電解質型燃料電池が知られて!/ヽる。この高分子電 解質型燃料電池は、高分子電解質膜を挟む一対の電極、すなわちアノード及びカソ ードに燃料及び酸化剤をそれぞれ供給され、この供給された燃料と酸化剤との化学 反応により発電する。  [0002] As a typical fuel cell, a polymer electrolyte fuel cell is known! In this polymer electrolyte fuel cell, fuel and an oxidant are respectively supplied to a pair of electrodes sandwiching a polymer electrolyte membrane, that is, an anode and a cathode, and a chemical reaction between the supplied fuel and the oxidant is performed. Generate electricity.
[0003] ところで、この高分子電解質型燃料電池の電極は高分子電解質膜に接する側の触 媒層と、セパレータに接する側のガス拡散層とを積層したものであり、この触媒層は 酸ィ匕により性能が劣化するため、例えば、運転停止時に酸化剤流路及び燃料ガス流 路に不活性ガスを封止する高分子電解質型燃料電池が提案されて!ヽる (例えば、特 許文献 1参照)。つまり、通常、触媒層は、白金などの貴金属を担持した導電性炭素 粒子と、パーフルォロスルホン酸などの水素イオン伝導性高分子電解質膜とを混合 して形成されている。そこで、酸素を含有しないガスで封止すると、白金表面の酸ィ匕 が防止できるため、電池性能の劣化を抑制することができると考えられる。  [0003] By the way, the electrode of this polymer electrolyte fuel cell is formed by laminating a catalyst layer in contact with the polymer electrolyte membrane and a gas diffusion layer in contact with the separator. For example, a polymer electrolyte fuel cell in which an inert gas is sealed in the oxidant flow path and the fuel gas flow path when the operation is stopped has been proposed because the performance deteriorates due to the drought (for example, Patent Document 1). reference). That is, the catalyst layer is usually formed by mixing conductive carbon particles carrying a noble metal such as platinum and a hydrogen ion conductive polymer electrolyte membrane such as perfluorosulfonic acid. Therefore, it is considered that sealing with a gas not containing oxygen can prevent the oxidation of the platinum surface, thereby suppressing deterioration of battery performance.
[0004] このように、この高分子電解質型燃料電池によれば、運転停止中に電極の触媒層 が不活性ガス雰囲気中に置かれるので、この電極の触媒層の酸化が抑制され、それ により、高分子電解質型燃料電池の性能の劣化を防止することができる。  [0004] Thus, according to the polymer electrolyte fuel cell, since the electrode catalyst layer is placed in an inert gas atmosphere during operation stoppage, oxidation of the electrode catalyst layer is suppressed, thereby Therefore, it is possible to prevent deterioration of the performance of the polymer electrolyte fuel cell.
特許文献 1:特開平 7— 272738号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-272738
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、電気自動車では、燃料電池は頻繁に起動と停止とを繰り返すよう運転 (以 下、高頻度起動停止運転という)される。このような電気自動車に用いられる燃料電池 においては、連続運転による単なる性能の劣化ではなぐ高頻度起動停止運転下に おける寿命という観点から燃料電池を評価する必要がある。そこで、このような観点か ら燃料電池を評価したところ、停止時に燃料ガス及び酸化剤を置換しな ヽ従来の高 分子型燃料電池においては、高頻度起動停止運転により、燃料電池の寿命がさらに 短くなることが判明した。 [0005] By the way, in an electric vehicle, the fuel cell is frequently operated to be repeatedly started and stopped (hereinafter referred to as a high-frequency start / stop operation). In such a fuel cell used in an electric vehicle, it is not necessary to perform simple start-up / stop operation. It is necessary to evaluate the fuel cell from the viewpoint of long life. Therefore, when the fuel cell was evaluated from such a viewpoint, the fuel gas and the oxidant were not replaced at the time of stopping. In the conventional high molecular fuel cell, the life of the fuel cell was further increased by the frequent start / stop operation. It turned out to be shorter.
課題を解決するための手段 Means for solving the problem
本発明はこのような課題を解決するためになされたもので、高頻度起動停止運転下 における寿命を長くすることが可能な燃料電池発電装置を提供することを目的として いる。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell power generator capable of extending the life under high-frequency start / stop operation.
本件発明者は、上記目的を達成するために、高頻度起動停止運転による燃料電池 の短寿命化について、鋭意、そのメカニズムを調べた。その結果、以下の事実が判 明した。 In order to achieve the above-mentioned object, the present inventor diligently investigated the mechanism for shortening the life of the fuel cell by frequent start / stop operation. As a result, the following facts were found.
すなわち、高分子電解質型燃料電池の電極の触媒層の材料が燃料電池の停止中 に酸化されて高分子電解質膜中に溶出し、この溶出した触媒層の材料が燃料電池 の発電 (運転)中に還元されて高分子電解質膜中に析出する。そして、この触媒層の 材料の溶出と析出が繰り返されて触媒層を構成する触媒粒子の粒径が増大し、それ により、触媒層の触媒性能が劣化する。 That is, the material of the catalyst layer of the electrode of the polymer electrolyte fuel cell is oxidized while the fuel cell is stopped and eluted into the polymer electrolyte membrane, and this eluted material of the catalyst layer is generated during the power generation (operation) of the fuel cell. To be deposited in the polymer electrolyte membrane. Then, elution and deposition of the material of the catalyst layer are repeated to increase the particle size of the catalyst particles constituting the catalyst layer, thereby degrading the catalyst performance of the catalyst layer.
そこで、本発明に係る燃料電池発電装置は、実質的に水素ガスで構成される燃料ガ スを貯蔵し、これを供給する燃料ガス貯蔵器と、空気を供給する空気供給装置と、前 記燃料ガス貯蔵器からの前記燃料ガス及び前記空気供給装置からの前記空気を、 電解質膜を挟むアノード及び力ソードにそれぞれ供給され、該供給された燃料ガスと 空気との化学反応により発電する燃料電池と、を備えた燃料電池発電装置において 、前記燃料電池発電装置は、前記力ソードに前記空気を封止するとともにその状態 で前記発電を継続しながら該空気中の酸素を消費して該カソードから酸素を除去し 、その後、前記発電を停止し、その後、前記アノードに前記燃料ガス又は該燃料ガス と不活性ガスとの混合ガスを封止するとともに前記力ソード内に残留するガスを前記 燃料貯蔵器からの燃料ガス又は該燃料ガスと前記不活性ガスとの混合ガスで置換し て該カソードにこの置き換わった燃料ガス又は混合ガスを封止し、その後、前記運転 を停止し、その運転停止期間において、その開放電圧を OV以上かつ 0. 85V以下に 維持する。このような構成とすると、燃料電池発電装置の運転停止中にアノード及び 力ソードが還元電位に維持されるので、アノード及び力ソードの触媒層の材料の酸化 による溶出を的確に防止することができ、その結果、高頻度起動停止運転化におけ る燃料電池の寿命を長くすることができる。また、運転停止時に、燃料ガスと空気とが 混合して非触媒燃焼することを防止しつつ力ソードに燃料ガスを含むガスを封止する ことができる。ここで、本明細書及び請求の範囲において、「不活性ガス」には、 N、 Therefore, a fuel cell power generator according to the present invention stores a fuel gas substantially composed of hydrogen gas, supplies a fuel gas reservoir, supplies an air, and supplies the fuel. A fuel cell that supplies the fuel gas from a gas reservoir and the air from the air supply device to an anode and a power sword sandwiching an electrolyte membrane, respectively, and generates power by a chemical reaction between the supplied fuel gas and air; The fuel cell power generator includes the air sealed in the power sword and consumes oxygen in the air while continuing the power generation in this state, and oxygen is discharged from the cathode. Then, the power generation is stopped, and then the fuel gas or a mixed gas of the fuel gas and an inert gas is sealed in the anode and remains in the power sword. The gas is replaced with the fuel gas from the fuel reservoir or a mixed gas of the fuel gas and the inert gas, and the replaced fuel gas or mixed gas is sealed at the cathode, and then the operation is stopped. During the shutdown period, the open circuit voltage should be OV or more and 0.85V or less. maintain. With such a configuration, the anode and the power sword are maintained at the reduction potential during the shutdown of the fuel cell power generation apparatus, so that the elution due to the oxidation of the material of the catalyst layer of the anode and the power sword can be accurately prevented. As a result, the life of the fuel cell in the frequent start / stop operation can be extended. Further, when the operation is stopped, the gas containing the fuel gas can be sealed in the power sword while preventing non-catalytic combustion due to the mixture of the fuel gas and air. Here, in the present specification and claims, “inert gas” includes N,
2 2
Ar等のガス以外に、 CO、 CO、水蒸気、及びメタン、ェタン、プロパン、ブタン等の In addition to gases such as Ar, CO, CO, water vapor, methane, ethane, propane, butane, etc.
2  2
ガスハイド口カーボンを含む。 Includes gas hide carbon.
前記アノードが前記化学反応のための触媒として白金を含み、前記維持される前記 開放電圧が 0V以上かつ 0. 85V以下であることが好まし 、。 Preferably, the anode contains platinum as a catalyst for the chemical reaction, and the open circuit voltage maintained is 0V or more and 0.85V or less.
前記燃料電池発電装置は、前記発電を停止した後、前記アノードに前記燃料ガス を封止するとともに前記力ソード内に残留するガスを前記燃料貯蔵器力ゝらの燃料ガス で置換して該カソードにこの置き換わった燃料ガスを封止し、その後、前記運転を停 止してもよい。このような構成とすると、燃料ガスを力ソードの置換ガスに用いるので、 別途置換ガスの供給手段を設ける必要がなくなり、余分な物を搭載したくない電気自 動車の電源として好適なものとなる。  After stopping the power generation, the fuel cell power generation device seals the fuel gas at the anode and replaces the gas remaining in the power sword with the fuel gas from the fuel reservoir. Then, the replaced fuel gas may be sealed, and then the operation may be stopped. With such a configuration, the fuel gas is used as the replacement gas for the power sword, so there is no need to provide a separate replacement gas supply means, and it is suitable as a power source for an electric vehicle that does not want to mount extra items. .
前記燃料電池発電装置は不活性ガスを供給する不活性ガス供給器を備え、前記 発電を停止した後、前記アノードに残留するガスを前記燃料ガスと前記不活性ガス 供給器からの不活性ガスとの混合ガスで置換して該アノードにこの置き換わった混合 ガスを封止するとともに前記力ソード内に残留するガスを前記燃料貯蔵器力ゝらの燃料 ガスと前記不活性ガス供給器からの不活性ガスとの混合ガスで置換して該カソードに この置き換わった混合ガスを封止し、その後、前記運転を停止してもよい。  The fuel cell power generation apparatus includes an inert gas supply device that supplies an inert gas, and after the power generation is stopped, the fuel gas and the inert gas from the inert gas supply device are used as gas remaining in the anode. The mixed gas replaced with the anode is sealed with the replaced mixed gas and the gas remaining in the power sword is inerted from the fuel gas from the fuel reservoir and the inert gas supplier. It is possible to replace the mixed gas with the gas and seal the replaced mixed gas on the cathode, and then stop the operation.
前記燃料電池発電装置は、前記運転の停止の後その運転を開始する場合に、前記 アノードに封止されたガスの封止を解除して該アノードに前記燃料ガスを供給し、か つ前記力ソードから該カソードに封止されたガスを排出した後該カソードに前記空気 を供給するようにして前記発電を開始してもよい。このような構成とすると、燃料電池 の起動時に、燃料ガスと空気とが混合して非触媒燃焼することを防止しつつ力ソード に空気を供給することができる。 前記燃料電池発電装置は電気自動車に駆動用電源として搭載されるものであっても よい。 When starting the operation after the operation is stopped, the fuel cell power generation device releases the sealing of the gas sealed in the anode, supplies the fuel gas to the anode, and supplies the power. The power generation may be started by discharging the gas sealed to the cathode from the sword and then supplying the air to the cathode. With such a configuration, air can be supplied to the power sword while preventing non-catalytic combustion due to mixing of fuel gas and air when the fuel cell is started. The fuel cell power generator may be mounted on an electric vehicle as a driving power source.
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。  The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
発明の効果  The invention's effect
[0008] 本発明は以上のような構成を有し、燃料電池発電装置において、高頻度起動停止 運転下における寿命を長くすることができるという効果を奏する。  [0008] The present invention has the configuration as described above, and in the fuel cell power generator, there is an effect that it is possible to extend the life under the high frequency start / stop operation.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は本発明の実施の形態 1に係る燃料電池発電装置の構成を模式的に示す ブロック図である。  FIG. 1 is a block diagram schematically showing a configuration of a fuel cell power generator according to Embodiment 1 of the present invention.
[図 2]図 2は図 1の燃料電池のセルの概略の構成を示す断面図である。  FIG. 2 is a cross-sectional view showing a schematic configuration of a cell of the fuel cell of FIG.
[図 3]図 3は図 1の燃料電池発電装置の停止モードの概容を示すフローチャートであ る。  FIG. 3 is a flowchart showing an outline of a stop mode of the fuel cell power generator of FIG.
[図 4]図 4は停止モードにおける燃料電池の出力電圧の経時変化を示すグラフである  [Fig. 4] Fig. 4 is a graph showing the change with time of the output voltage of the fuel cell in the stop mode.
[図 5]図 5は図 1の燃料電池発電装置の起動モードの概容を示すフローチャートであ る。 FIG. 5 is a flowchart showing an outline of the start-up mode of the fuel cell power generator of FIG.
[図 6]図 6は本発明の実施の形態 2に係る燃料電池発電装置の構成を模式的に示す ブロック図である。 符号の説明  FIG. 6 is a block diagram schematically showing the configuration of the fuel cell power generator according to Embodiment 2 of the present invention. Explanation of symbols
[0010] 1 燃料電池発電装置 [0010] 1 Fuel cell power generator
2 燃料電池  2 Fuel cell
2a, 2b 電気出力端子  2a, 2b Electrical output terminal
3 燃料源  3 Fuel source
4 空気供給装置  4 Air supply device
5 負荷切換回路  5 Load switching circuit
6 起動停止用抵抗  6 Start / stop resistance
7 制御装置 - -13, 16 開閉弁 7 Control unit --13, 16 On-off valve
ノ ッテリ  Notteri
負荷  Load
セル  Cell
高分子電解質膜  Polymer electrolyte membrane
アノード  Anode
力ソード  Force sword
MEA  MEA
ガスケット  Gasket
アノードセパレータ  Anode separator
力ソードセパレータ Force sword separator
, 31 触媒層, 31 catalyst layer
, 32 ガス拡散電極層 , 32 Gas diffusion electrode layer
燃料ガス流路  Fuel gas flow path
酸化剤ガス流路 Oxidant gas flow path
A, 36B 冷却水流路 A, 36B Cooling water flow path
A 燃料ガス供給マ-フォールド孔B 燃料ガス排出マ-フォールド孔A 酸化剤ガス供給マ-フォールド孔B 酸化剤ガス排出マ-フォールド孔A 冷却水供給マ-フォールド孔B 冷却水排出マ-フォールド孔 燃料ガス供給路 A Fuel gas supply fold hole B Fuel gas discharge fold hole A Oxidant gas supply fold hole B Oxidant gas discharge fold hole A Cooling water supply fold hole B Cooling water discharge fold hole Fuel gas supply path
燃料ガス排出路  Fuel gas discharge path
酸化剤ガス供給路  Oxidant gas supply path
酸化剤ガス排出路  Oxidant gas discharge path
封止ガス供給路  Sealing gas supply path
加湿器 62 不活性ガス供給装置 humidifier 62 Inert gas supply equipment
63, 64 開閉弁  63, 64 On-off valve
65 第 1の封止ガス供給路  65 First sealing gas supply channel
66 第 2の封止ガス供給路  66 Second sealing gas supply channel
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1)  (Embodiment 1)
図 1は本発明の実施の形態 1に係る燃料電池発電装置の構成を模式的に示すブ ロック図である。  FIG. 1 is a block diagram schematically showing the configuration of the fuel cell power generator according to Embodiment 1 of the present invention.
[0012] 図 1に示すように、本実施の形態の燃料電池発電装置 1は、主な構成要素として、 燃料電池 2と、燃料源 3と、空気供給装置 4と、負荷切換回路 5と、起動停止用抵抗 6 と、制御装置 7と、封止ガス排出ポンプ 8と、燃料電池 2を冷却する冷却システム(図 示せず)とを備えている。  As shown in FIG. 1, the fuel cell power generator 1 of the present embodiment includes, as main components, a fuel cell 2, a fuel source 3, an air supply device 4, a load switching circuit 5, A start / stop resistor 6, a control device 7, a sealing gas discharge pump 8, and a cooling system (not shown) for cooling the fuel cell 2 are provided.
[0013] 燃料電池発電装置 1は、本実施の形態では、電気自動車 (electric vehicle)用のもの である。燃料電池 2は、高分子電解質型燃料電池で構成され、アノードに燃料が供 給され、力ソードに酸化剤が供給される。燃料として、本実施の形態では、純水素ガ スが用いられる。なお、燃料は、実質的に水素ガスで構成されていればよぐ微量の 不純物を含んでいても構わない。酸化剤として、本実施の形態では、空気が用いら れる。もちろんこれ以外の酸化剤を用いても構わない。  In the present embodiment, fuel cell power generator 1 is for an electric vehicle. The fuel cell 2 is composed of a polymer electrolyte fuel cell, in which fuel is supplied to the anode and oxidant is supplied to the power sword. As the fuel, pure hydrogen gas is used in the present embodiment. The fuel may contain a very small amount of impurities as long as it is substantially composed of hydrogen gas. In the present embodiment, air is used as the oxidizing agent. Of course, other oxidizing agents may be used.
燃料源 3は、ここでは水素ボンべ (燃料ガス貯蔵器)で構成されている。燃料源 3の水 素ガス (以下、燃料ガスという)は燃料供給路 51を通じてアノードに供給され、そこで 発電に用いられて消費され、消費されなカゝつた余剰の燃料ガスは燃料電池 2から燃 料ガス排出路 52を通じて大気中に放出される。以下では、燃料電池 2に供給される 燃料ガスを供給燃料ガスと!/ ヽ、燃料電池 2から排出される燃料ガスを排出燃料ガス という場合がある。燃料ガス供給路 10には開閉弁 10が配設され、燃料ガス排出路 5 2には開閉弁 11が配設されている。これにより、開閉弁 10, 11を閉じてアノード 23を 密閉することができる。  Here, the fuel source 3 is constituted by a hydrogen cylinder (fuel gas storage). Hydrogen gas from the fuel source 3 (hereinafter referred to as fuel gas) is supplied to the anode through the fuel supply path 51, where it is consumed and consumed for power generation. It is released into the atmosphere through the gas and gas discharge channel 52. Hereinafter, the fuel gas supplied to the fuel cell 2 may be referred to as a supply fuel gas! / ヽ, and the fuel gas discharged from the fuel cell 2 may be referred to as an exhaust fuel gas. The fuel gas supply passage 10 is provided with an on-off valve 10, and the fuel gas discharge passage 52 is provided with an on-off valve 11. Thereby, the on-off valves 10 and 11 can be closed and the anode 23 can be sealed.
ここで、燃料供給路 51に燃料ガスを加湿するための加湿器を設けてもよい。この加 湿器は、例えば、供給燃料ガスと排出燃料ガスとの全熱交換により供給燃料ガスを 加湿及び加熱するよう構成され、あるいは排出燃料ガスを供給燃料ガスに直接混入 して加湿及び加熱するよう構成される。また、この全熱交換型の加湿器を燃料電池2 のスタックと一体ィ匕して内部全熱交^^として構成してもよい。また、全熱交換型の 加湿器を、供給燃料ガスが後述する冷却媒体と熱交換して加熱されるよう構成しても よい。さらに、冷却媒体が水である場合には、冷却水循環流路の燃料電池 2からの出 口における冷却水と供給燃料ガスとを全熱交換するよう、加湿器を構成してもよい。 また、燃料ガスの通流システムを、燃料電池 2に供給した燃料ガスが大気中に放出さ れない、出口のないシステムとして構成してもよい。すなわち、燃料ガスが純水素であ る場合には、燃料ガスを 100%使い切り、外部に排出しないシステムが考えられる。 この場合には、燃料ガスの加湿器が不要である場合がある。 Here, a humidifier for humidifying the fuel gas may be provided in the fuel supply path 51. This The humidifier is configured to humidify and heat the supplied fuel gas by, for example, total heat exchange between the supplied fuel gas and the exhausted fuel gas, or to mix and humidify the exhausted fuel gas directly into the supplied fuel gas. Is done. Further, this total heat exchange type humidifier may be integrated with the stack of the fuel cells 2 to constitute an internal total heat exchanger. Further, the total heat exchange type humidifier may be configured such that the supplied fuel gas is heated by exchanging heat with a cooling medium described later. Further, when the cooling medium is water, the humidifier may be configured so that the cooling water at the outlet from the fuel cell 2 in the cooling water circulation passage and the supplied fuel gas are totally heat-exchanged. Further, the fuel gas flow system may be configured as a system that does not release the fuel gas supplied to the fuel cell 2 into the atmosphere and does not have an outlet. In other words, when the fuel gas is pure hydrogen, a system that uses up 100% of the fuel gas and does not discharge it to the outside can be considered. In this case, a fuel gas humidifier may be unnecessary.
空気供給装置 4は、ここではブロワで構成され、酸化剤ガス供給路 53を通じて空気( 以下、酸化剤ガスという)を燃料電池 2の力ソードに供給する。 The air supply device 4 is here constituted by a blower, and supplies air (hereinafter referred to as oxidant gas) to the power sword of the fuel cell 2 through the oxidant gas supply path 53.
力ソードに供給された酸化剤ガス (以下、供給酸化剤ガスという場合がある)はそこ で発電に用いられて消費され、消費されなかった余剰の酸化剤ガス(以下、排出酸 ィ匕剤ガスという場合がある)は燃料電池 2から酸化剤排出路 54を通じて大気中に放 出される。酸化剤ガス供給路 53には開閉弁 12が配設され、酸化剤ガス排出路 54〖こ は開閉弁 13が配設されている。これにより、開閉弁 12, 13と後述する封止ガス供給 路 55の開閉弁 16とを閉じて力ソード 24を密閉することができる。  Oxidant gas supplied to the power sword (hereinafter sometimes referred to as supply oxidant gas) is used and consumed for power generation, and excess oxidant gas that has not been consumed (hereinafter referred to as exhausted oxygen gas). Is released from the fuel cell 2 into the atmosphere through the oxidant discharge channel 54. The oxidant gas supply path 53 is provided with an on-off valve 12, and the oxidant gas discharge path 54 is provided with an on-off valve 13. As a result, the open / close valves 12 and 13 and the open / close valve 16 of the sealing gas supply passage 55 described later can be closed to seal the force sword 24.
また、酸化剤ガス供給路 53及び酸化剤ガス排出路 54には酸化剤ガスを加湿するた めの加湿器 61が設けられている。この加湿器 61は、供給酸化剤ガスと排出酸化剤 ガスとの全熱交換により供給酸化剤ガスを加湿及び加熱するよう構成されて ヽる。な お、この全熱交換型の加湿器 61を燃料電池 2のスタックと一体ィ匕して内部全熱交換 器として構成してもよい。また、加湿器 61を、供給酸化剤ガスが後述する冷却媒体と 熱交換して加熱されるよう構成してもよい。さらに、冷却媒体が水である場合には、冷 却水循環流路の燃料電池 2からの出口における冷却水と供給酸化剤ガスとを全熱交 換するよう、加湿器 61を構成してもよい。本実施の形態のように、酸化剤ガスが空気 である場合には、酸化剤ガスの加湿はほぼ必要であり、この全熱交換型の加湿器 61 は不可欠と考えられる。 The oxidant gas supply path 53 and the oxidant gas discharge path 54 are provided with a humidifier 61 for humidifying the oxidant gas. The humidifier 61 may be configured to humidify and heat the supply oxidant gas by total heat exchange between the supply oxidant gas and the exhaust oxidant gas. The total heat exchange type humidifier 61 may be integrated with the stack of the fuel cells 2 to constitute an internal total heat exchanger. Further, the humidifier 61 may be configured such that the supplied oxidant gas is heated by exchanging heat with a cooling medium described later. Further, when the cooling medium is water, the humidifier 61 may be configured so that the cooling water at the outlet from the fuel cell 2 in the cooling water circulation passage and the supplied oxidant gas are totally heat-exchanged. . When the oxidant gas is air as in the present embodiment, humidification of the oxidant gas is almost necessary, and this total heat exchange type humidifier 61 Is considered essential.
また、酸化剤ガス供給路 53の空気供給装置 4と開閉弁 12との間の部分には三方 弁 9が配設されている。三方弁 9は、 3つのポートのうち、 2つのポートが酸化剤ガス流 路 53に接続され、残りの 1つのポートが封止ガス排出ポンプ 8の吸入ポートに接続さ れている。封止ガス排出ポンプ 8の吐出ポートは大気に開放されている。封止ガス排 出ポンプ 8は、ここでは真空ポンプで構成されて!、る。  Further, a three-way valve 9 is disposed in a portion of the oxidant gas supply path 53 between the air supply device 4 and the on-off valve 12. In the three-way valve 9, two of the three ports are connected to the oxidant gas flow path 53, and the remaining one port is connected to the suction port of the sealed gas discharge pump 8. The discharge port of the sealing gas discharge pump 8 is open to the atmosphere. The sealing gas discharge pump 8 is here constituted by a vacuum pump!
さらに、酸化剤ガス供給路 53の燃料電池 2と開閉弁 12との間の部分には、燃料ガス 供給路 51の燃料源 3と開閉弁 10との間の部分力も分岐した封止ガス供給路 55が接 続されている。この封止ガス供給路 55には開閉弁 16が配設されている。 Further, a sealing gas supply path in which a partial force between the fuel source 3 of the fuel gas supply path 51 and the on-off valve 10 is also branched in a portion of the oxidant gas supply path 53 between the fuel cell 2 and the on-off valve 12. 55 is connected. The sealing gas supply path 55 is provided with an on-off valve 16.
なお、この燃料電池発電装置 1には、燃料電池 2を通るように冷却水を循環させて該 燃料電池 2を冷却する冷却水循環路が形成されているが、説明を簡略ィ匕するために 図示を省略する。 The fuel cell power generator 1 is provided with a cooling water circulation path for cooling the fuel cell 2 by circulating the cooling water so as to pass through the fuel cell 2, but is shown for simplicity of explanation. Is omitted.
負荷切換回路 5は、燃料電池 2の一対の電気出力端子 2a, 2bのうちの一方 2aに接 続され、この負荷切換回路と燃料電池燃料電池 2の一対の電気出力端子 2a, 2bのう ちの他方 2bとの間に起動停止用抵抗 6、バッテリ 14、及び負荷 15が接続されている 。負荷切換回路 5は、図示されない開閉スィッチ群を有し、この開閉スィッチをオンォ フして、起動停止用抵抗 6、バッテリ 14、及び負荷 15を、それぞれ、燃料電池 2の一 対の電気出力端子 2a, 2b間に接続し又は接続しないことが可能なように構成されて いる。 The load switching circuit 5 is connected to one of the pair of electrical output terminals 2a and 2b of the fuel cell 2, and one of the load switching circuit and the pair of electrical output terminals 2a and 2b of the fuel cell fuel cell 2. The start / stop resistor 6, the battery 14, and the load 15 are connected to the other 2b. The load switching circuit 5 has a group of open / close switches (not shown). The open / close switches are turned on to connect the start / stop resistor 6, the battery 14, and the load 15 to a pair of electric output terminals of the fuel cell 2, respectively. It is configured so that it can be connected or not connected between 2a and 2b.
起動用抵抗 6は、可変抵抗で構成され、燃料電池発電装置 2の起動時及び停止時 に燃料電池 2の発電量を徐々に増大させ及び低減させるための負荷として用いられ る。バッテリ 14は燃料電池発電装置 1が搭載される電気自動車の駆動用電力以外の 電力を賄うためのものである。負荷 15は、燃料電池発電装置 1が搭載される電気自 動車を駆動するモータである。 The starting resistor 6 is composed of a variable resistor, and is used as a load for gradually increasing and decreasing the power generation amount of the fuel cell 2 when the fuel cell power generator 2 is started and stopped. The battery 14 is used to supply power other than driving power for the electric vehicle on which the fuel cell power generator 1 is mounted. The load 15 is a motor that drives an electric vehicle on which the fuel cell power generator 1 is mounted.
制御装置 7は、マイコン等の演算装置で構成され、燃料電池発電装置 1の所要の 構成要素を制御して該燃料電池発電装置 1の動作を制御する。ここで、本明細書に おいては、制御装置とは、単独の制御装置だけでなぐ複数の制御装置が協働して 制御を実行する制御装置群をも意味する。よって、制御装置 7は、必ずしも単独の制 御装置で構成される必要はなぐ複数の制御装置が分散配置されていて、それらが 協働して燃料電池発電装置 1の動作を制御するよう構成されていてもよい。 The control device 7 is configured by an arithmetic device such as a microcomputer, and controls required components of the fuel cell power generation device 1 to control the operation of the fuel cell power generation device 1. Here, in the present specification, the control device also means a control device group in which a plurality of control devices connected by only a single control device cooperate to execute control. Therefore, the control device 7 is not necessarily a single control. A plurality of control devices that are not necessarily configured by the control device may be arranged in a distributed manner so that they cooperate to control the operation of the fuel cell power generation device 1.
[0015] 次に、燃料電池 2の構成を説明する。燃料電池 2は周知のもので構成されているの で、その詳細な説明は省略し、本発明と関連する部分のみ説明する。 Next, the configuration of the fuel cell 2 will be described. Since the fuel cell 2 is composed of well-known ones, detailed description thereof will be omitted, and only portions related to the present invention will be described.
[0016] 図 2は図 1の燃料電池 2のセルの概略の構成を示す断面図である。 FIG. 2 is a cross-sectional view showing a schematic configuration of the cell of the fuel cell 2 of FIG.
[0017] 図 1及び図 2において、燃料電池 2 (正確にはスタック)は、セル 21が多数積層され 、その両端に一対の端板(図示せず)が配置され、かつその一対の端板に一対の電 気出力端子 2a, 2bが配設されるようにして構成されて 、る。 In FIG. 1 and FIG. 2, a fuel cell 2 (more precisely, a stack) has a number of stacked cells 21, a pair of end plates (not shown) disposed at both ends thereof, and the pair of end plates A pair of electrical output terminals 2a and 2b are arranged on the board.
[0018] 図 2に示すように、セル 21は、 MEA (Membrane Electrode Assembly:高分子電解 質膜 電極接合体) 25を有している。 MEA25は、高分子電解質膜 22と、この高分 子電解質膜 22の周縁部を除く部分(内側部分)の両面にそれぞれ形成されたァノー ド 23及び力ソード 24とを有している。アノード 23は、高分子電解質膜 22の上に形成 された触媒層 29とこの触媒層 29の上に形成されたガス拡散電極層 30とで構成され ている。力ソード 24は、高分子電解質膜 22の上に形成された触媒層 31とこの触媒層 31の上に形成されたガス拡散電極層 32とで構成されている。そして、この MEA25 の高分子電解質膜 22の周縁部 (外側部分)の両面に、中央部に開口を有する一対 のガスケット 26, 26力 その開口にそれぞれアノード 23及び力ソード 24が位置する ようにして、配設されている。従って、アノード 23及び力ソード 24はこの MEA25とガ スケット 26, 26との接合体(以下、 MEA ガスケット接合体という)の両面の中央部( 内側部分)に露出している。この MEA ガスケット接合体のアノード側の主面に接す るようにアノードセパレータ 27が配設され、 MEA ガスケット接合体の力ソード側の 主面に接するように力ソードセパレータ 28が配設されて!/、る。アノードセパレータ 27 には、その内面に溝状の燃料ガス流路 34が形成され、その外面に溝状の冷却水流 路 36 Aが形成されている。アノードセパレータ 27の周縁部には該周縁部を貫通する ように、燃料ガス供給マ-フォールド孔 41 A、酸化剤ガス供給マ-フォールド孔 42A 、冷却水供給マ-フォールド孔 43A、燃料ガス排出マ-フォールド孔 41B、酸化剤 ガス排出マ-フォールド孔 42B、及び冷却水排出マ-フォールド孔 43Bがそれぞれ 形成されている。そして、燃料ガス流路 34は燃料ガス供給マ-フォールド孔 41 Aと燃 料ガス排出マ-フォールド孔 41Bとを接続するように形成され、冷却水流路 36Aは 冷却水供給マ-フォールド孔 43Aと冷却水排出マ-フォールド孔 43Bとを接続する ように形成されている。また、力ソードセパレータ 28は、その内面に溝状の酸化剤ガ ス流路 35が形成され、その外面に溝状の冷却水流路 36Bが形成されている。カソー ドセパレータ 28の周縁部には該周縁部を貫通するように、燃料ガス供給マ-フォー ルド孔 41A、酸化剤ガス供給マ-フォールド孔 42A、冷却水供給マ-フォールド孔 4 3A、燃料ガス排出マ-フォールド孔 41B、酸化剤ガス排出マ-フォールド孔 42B、 及び冷却水排出マ-フォールド孔 43Bがそれぞれ形成されている。そして、酸化剤 ガス流路 35は酸化剤ガス供給マ-フォールド孔 42Aと酸化剤ガス排出マ-フォール ド孔 42Bとを接続するように形成され、冷却水流路 36Bは冷却水供給マ-フォールド 孔 43Aと冷却水排出マ-フォールド孔 43Bとを接続するように形成されて 、る。そし て、 MEA—ガスケット接合体の周縁部にも、アノードセパレータ 27及び力ソードセパ レータ 28に対応するように、該周縁部を貫通するようにして燃料ガス供給マ-フォー ルド孔 41A、酸化剤ガス供給マ-フォールド孔 42A、冷却水供給マ-フォールド孔 4 3A、燃料ガス排出マ-フォールド孔 41B、酸化剤ガス排出マ-フォールド孔 42B、 及び冷却水排出マ-フォールド孔 43Bが形成されている。これにより、燃料電池 2に は、各セル 21の燃料ガス供給マ-フォールド孔 41 A、酸化剤ガス供給マ-フォール ド孔 42A、冷却水供給マ-フォールド孔 43A、燃料ガス排出マ-フォールド孔 41B、 酸化剤ガス排出マ-フォールド孔 42B、及び冷却水排出マ-フォールド孔 43Bがそ れぞれ繋がって燃料ガス供給マ-フォールド、酸化剤ガス供給マ-フォールド、冷却 水供給マ-フォールド、燃料ガス排出マ-フォールド、酸化剤ガス排出マ-フォール ド、及び冷却水排出マ-フォールドが形成されている。また、アノードセパレータ 27の 外面の冷却水流路 36Aと力ソードセパレータ 28の外面の冷却水流路 36Bとが合わ さって、隣接する 2つのセル 21の間に 1つの冷却水流路が形成されている。 As shown in FIG. 2, the cell 21 has a MEA (Membrane Electrode Assembly: polymer electrolyte membrane electrode assembly) 25. The MEA 25 has a polymer electrolyte membrane 22, and an anode 23 and a force sword 24 formed on both sides of the polymer electrolyte membrane 22 except for the peripheral portion (inner side portion). The anode 23 includes a catalyst layer 29 formed on the polymer electrolyte membrane 22 and a gas diffusion electrode layer 30 formed on the catalyst layer 29. The force sword 24 includes a catalyst layer 31 formed on the polymer electrolyte membrane 22 and a gas diffusion electrode layer 32 formed on the catalyst layer 31. Then, a pair of gaskets 26 and 26 having an opening in the central portion on both sides of the peripheral portion (outer portion) of the polymer electrolyte membrane 22 of the MEA 25 so that the anode 23 and the force sword 24 are positioned in the openings, respectively. Arranged. Therefore, the anode 23 and the force sword 24 are exposed at the center part (inner part) of both sides of the joined body of the MEA 25 and the gaskets 26 and 26 (hereinafter referred to as MEA gasket joined body). An anode separator 27 is placed in contact with the main surface on the anode side of this MEA gasket assembly, and a force sword separator 28 is placed in contact with the main surface on the force sword side of the MEA gasket assembly! / The anode separator 27 has a groove-shaped fuel gas flow path 34 formed on the inner surface thereof, and a groove-shaped cooling water flow path 36 A formed on the outer surface thereof. A fuel gas supply manifold hole 41A, an oxidant gas supply manifold hole 42A, a cooling water supply manifold hole 43A, and a fuel gas discharge mask are formed at the peripheral edge of the anode separator 27 so as to penetrate the peripheral edge. -A fold hole 41B, an oxidant gas discharge fold hole 42B, and a cooling water discharge fold hole 43B are formed. The fuel gas passage 34 is connected to the fuel gas supply manifold hole 41 A and the fuel gas passage 34. The cooling water flow path 36A is formed so as to connect the cooling water supply fold hole 43A and the cooling water discharge fold hole 43B. Further, the force sword separator 28 has a groove-like oxidant gas passage 35 formed on the inner surface thereof, and a groove-like cooling water passage 36B formed on the outer surface thereof. A fuel gas supply mould hole 41A, an oxidant gas supply mould hole 42A, a cooling water supply mould hole 43, and a fuel gas so as to penetrate the peripheral edge of the cathode separator 28. An exhaust manifold hole 41B, an oxidant gas exhaust manifold hole 42B, and a cooling water exhaust manifold hole 43B are formed. The oxidant gas flow path 35 is formed so as to connect the oxidant gas supply manifold hole 42A and the oxidant gas discharge manifold hole 42B, and the cooling water flow path 36B is provided with the cooling water supply manifold hole 42B. 43A and cooling water discharge manifold hole 43B are formed to be connected. The MEA-gasket assembly also has a peripheral edge of the fuel gas supply manifold hole 41A and an oxidant gas so as to penetrate the peripheral edge so as to correspond to the anode separator 27 and the force sword separator 28. Supply manifold hole 42A, cooling water supply manifold hole 43A, fuel gas exhaust manifold hole 41B, oxidant gas exhaust manifold hole 42B, and cooling water exhaust manifold hole 43B are formed. . Thus, the fuel cell 2 includes a fuel gas supply manifold hole 41A, an oxidant gas supply manifold hole 42A, a cooling water supply manifold hole 43A, and a fuel gas discharge manifold hole for each cell 21. 41B, Oxidant gas discharge manifold hole 42B, and Coolant discharge manifold hole 43B are connected to each other to connect the fuel gas supply mould, oxidant gas supply mould, cooling water supply mould, A fuel gas discharge mould, an oxidant gas discharge mould, and a cooling water discharge mould are formed. Further, the cooling water flow path 36A on the outer surface of the anode separator 27 and the cooling water flow path 36B on the outer surface of the force sword separator 28 are combined to form one cooling water flow path between two adjacent cells 21.
そして、図 1に示すように、燃料ガス供給マ-フォールドに燃料ガス供給路 51が接 続され、燃料ガス排出マ-フォールドに燃料ガス排出路 52が接続されている。また、 酸化剤ガス供給マ-フォールドに酸化剤ガス供給路 53が接続され、酸化剤ガス排出 マ-フォールドに酸化剤ガス排出路 54が接続されている。さらに、冷却水供給マ-フ オールドに及び冷却水排出マニフォ一ルドに図示されない冷却水循環路が接続され ている。 As shown in FIG. 1, a fuel gas supply path 51 is connected to the fuel gas supply manifold, and a fuel gas discharge path 52 is connected to the fuel gas discharge manifold. In addition, an oxidant gas supply path 53 is connected to the oxidant gas supply manifold, and an oxidant gas discharge path 54 is connected to the oxidant gas discharge manifold. In addition, the cooling water supply muff A cooling water circuit (not shown) is connected to the old and to the cooling water discharge manifold.
なお、図 2には、燃料ガス供給マ-フォールド孔 41 A、酸化剤ガス供給マ-フォール ド孔 42A、及び冷却水供給マ-フォールド孔 43Aが 2本の破線で示され、同様に燃 料ガス排出マ-フォールド孔 41B、酸化剤ガス排出マ-フォールド孔 42B、及び冷 却水排出マ-フォールド孔 43Bが 2本の破線で示されて!/、る力 これは図 2の断面視 にお!/、てこれらが重なって!/、ることを示して!/、るのであり、これらが 1つのマニフォ一 ルド孔を共用しているのではなく個別に形成されているのは言うまでもない。また、各 マ-フォールド孔 41A〜43A, 41B〜43Bを任意に配置することができることは言う までもない。  In FIG. 2, the fuel gas supply manifold hole 41A, the oxidant gas supply manifold hole 42A, and the cooling water supply manifold hole 43A are indicated by two broken lines, and similarly the fuel The gas exhaust manifold 41B, the oxidant gas exhaust manifold 42B, and the cooling water exhaust manifold 43B are shown by two broken lines! Of course, these are overlapping! /, Showing that they are! /, And it goes without saying that they are formed individually rather than sharing one manifold hole. . Needless to say, each of the fold holes 41A to 43A and 41B to 43B can be arbitrarily arranged.
[0020] 高分子電解質膜 22は、ここでは、パーフルォロカーボンスルホン酸膜(DUPONT製 Nafionll2 (登録商標))で構成されている。ガス拡散電極層 30, 32は、ここでは、力 一ボンぺーパ(TORAY製 TGP-H- 090)で構成されている。このカーボンぺーパに触 媒粉末が塗布されて触媒層 29, 31が形成されている。アノード 23の触媒層 29の触 媒粉末として、ここでは、アセチレンブラック系カーボン粉末 (電気化学工業株式会社 製 DENKA BLACKFX-35)に、平均粒径約 30 μ mの白金を 25%担持した触媒粉末 が用いられている。力ソード 24の触媒層 31の触媒粉末として、ここでは、アセチレン ブラック系カーボン粉末 (電気化学工業株式会社製 DENKA BLACKFX-35)に、平 均粒径約 30 μ mの白金粒子を 25%担持した触媒粉末が用いられて 、る。  [0020] Here, the polymer electrolyte membrane 22 is composed of a perfluorocarbon sulfonic acid membrane (Nafionll2 (registered trademark) manufactured by DUPONT). Here, the gas diffusion electrode layers 30 and 32 are composed of a powerful bon paper (TOGP TGP-H-090). Catalyst layers 29 and 31 are formed by applying catalyst powder to the carbon paper. Here, as the catalyst powder of the catalyst layer 29 of the anode 23, here, a catalyst powder in which 25% platinum having an average particle diameter of about 30 μm is supported on acetylene black carbon powder (DENKA BLACKFX-35 manufactured by Denki Kagaku Kogyo Co., Ltd.) Is used. Here, 25% platinum particles having an average particle size of about 30 μm are supported on the acetylene black carbon powder (DENKA BLACKFX-35 manufactured by Denki Kagaku Kogyo Co., Ltd.) as the catalyst powder of the catalyst layer 31 of the force sword 24. Catalyst powder is used.
[0021] アノードセパレータ 27及び力ソードセパレータ 28は、カーボン等の導電性材料で 構成されている。  [0021] The anode separator 27 and the force sword separator 28 are made of a conductive material such as carbon.
[0022] 次に、以上のように構成された燃料電池発電装置 1の動作を説明する。この燃料電 池発電装置 1の動作は、既述のように制御装置 7の制御により遂行される。燃料電池 発電装置 1は、燃料電池発電装置 1を起動して円滑に発電動状態に移行させる起動 モードと、発電を行う発電モードと、発電状態から燃料電池発電装置 1を円滑に停止 させる停止モードとを有して 、る。  [0022] Next, the operation of the fuel cell power generator 1 configured as described above will be described. The operation of the fuel cell power generation device 1 is performed by the control of the control device 7 as described above. The fuel cell power generator 1 has a start mode in which the fuel cell power generator 1 is started and smoothly transitions to a power generation state, a power generation mode in which power is generated, and a stop mode in which the fuel cell power generator 1 is smoothly stopped from the power generation state. And have.
[0023] まず、発電モードを説明する。  [0023] First, the power generation mode will be described.
[0024] 図 1及び図 2において、発電時には、燃料ガス供給路 51の開閉弁 10及び燃料ガス 排出路 52の開閉弁 11は開かれている。また、酸化剤ガス供給路 53の開閉弁 12及 び酸化剤ガス排出路 54の開閉弁 11は開かれている。また、三方弁 9は酸化剤ガス 供給路が連通するように切り換えられている。また、封止ガス供給路 55の開閉弁 16 は閉じられている。そして、負荷切換回路 5は、燃料電池 2の一対の電気出力端子 2 a, 2b間にバッテリ 14及び負荷 15を負荷として接続して 、る。 1 and 2, during power generation, the on-off valve 10 and the fuel gas of the fuel gas supply path 51 The on-off valve 11 of the discharge path 52 is open. The on-off valve 12 of the oxidant gas supply path 53 and the on-off valve 11 of the oxidant gas discharge path 54 are opened. The three-way valve 9 is switched so that the oxidant gas supply path communicates. Further, the on-off valve 16 of the sealing gas supply path 55 is closed. The load switching circuit 5 connects the battery 14 and the load 15 as a load between the pair of electrical output terminals 2a and 2b of the fuel cell 2.
この状態で、燃料源 3から燃料ガスが燃料電池 2に供給される。この供給された燃料 ガスは燃料ガス供給マ-フォールド (41 A)を通って燃料ガス流路 34に流入する。そ して、アノード 23と接触しながら燃料ガス流路 34を流れる。そして、この過程で、触媒 層 29の触媒作用によって水素がイオン化され、水素イオンは高分子電解質膜 22を 通って力ソード 24に輸送される。また、水素から電離した電子はガス拡散電極層 30 から燃料電池 2及び外部負荷により形成される電気回路を通って力ソード 24のガス 拡散電極層 32に移動する。一方、空気供給装置 4から酸化剤ガスが燃料電池 2に供 給される。この供給された酸化剤ガスは酸化剤ガス供給マ-フォールド (42A)を通つ て酸化剤ガス流路 35に流入する。そして、力ソード 24と接触しながら酸化剤ガス流 路 35を流れる。そして、この過程で、力ソード 24では、該カソード 24に輸送されてき た水素イオンがガス拡散電極層 32に移動してきた電子と結合して水素に戻り、この 水素が触媒層 31の触媒作用の下で酸化剤ガス中の酸素と反応して水が生成される oこの反応により、電気が発生するとともに熱が発生する。この発生した電気は一対 の電気出力端子 2a, 2bから出力されて負荷 15で消費され、それにより電気自動車 が駆動される。また、電気出力端子 2a, 2bから出力される電力が余る場合にはその 余剰の電力がバッテリ 14に蓄積される。一方、発生した熱は冷却水流路 36A, 36B を流れる冷却水に伝達され、それにより、燃料電池 2が冷却されて適宜な温度に維 持される。また、上記反応に用いられなカゝつた燃料ガスは、燃料ガス排出マ-フォー ルド (41B)を通って燃料ガス排出路 52から大気中に放出される。また、上記反応に 用いられな力つた酸化剤ガスは、酸化剤ガス排出マ-フォールド (42B)を通って酸 ィ匕剤ガス排出路 54から大気中に放出される。 In this state, fuel gas is supplied from the fuel source 3 to the fuel cell 2. The supplied fuel gas flows into the fuel gas flow path 34 through the fuel gas supply manifold (41 A). Then, it flows through the fuel gas flow path 34 while being in contact with the anode 23. In this process, hydrogen is ionized by the catalytic action of the catalyst layer 29, and the hydrogen ions are transported to the force sword 24 through the polymer electrolyte membrane 22. Electrons ionized from hydrogen move from the gas diffusion electrode layer 30 to the gas diffusion electrode layer 32 of the force sword 24 through an electric circuit formed by the fuel cell 2 and an external load. On the other hand, oxidant gas is supplied from the air supply device 4 to the fuel cell 2. The supplied oxidant gas flows into the oxidant gas flow path 35 through the oxidant gas supply manifold (42A). Then, it flows through the oxidant gas flow path 35 in contact with the force sword 24. In this process, in the force sword 24, the hydrogen ions transported to the cathode 24 combine with the electrons that have moved to the gas diffusion electrode layer 32 to return to hydrogen, and this hydrogen is used for the catalytic action of the catalyst layer 31. Under reaction with oxygen in oxidant gas, water is produced. O This reaction generates electricity and heat. The generated electricity is output from the pair of electric output terminals 2a and 2b and consumed by the load 15, thereby driving the electric vehicle. Further, when there is a surplus power output from the electrical output terminals 2a and 2b, the surplus power is stored in the battery 14. On the other hand, the generated heat is transmitted to the cooling water flowing through the cooling water flow paths 36A and 36B, whereby the fuel cell 2 is cooled and maintained at an appropriate temperature. The fuel gas not used in the above reaction is released from the fuel gas discharge passage 52 into the atmosphere through the fuel gas discharge mold (41B). Further, the oxidant gas that has not been used in the above reaction is discharged into the atmosphere from the oxidant gas discharge path 54 through the oxidant gas discharge manifold (42B).
次に、停止モードを説明する。図 3は、図 1の燃料電池発電装置 1の停止モードの 概容を示すフローチャート、図 4は停止モードにおける燃料電池 2の出力電圧の経時 変化を示すグラフである。 Next, the stop mode will be described. Fig. 3 is a flowchart showing an overview of the stop mode of the fuel cell power generator 1 in Fig. 1. Fig. 4 shows the time course of the output voltage of the fuel cell 2 in the stop mode. It is a graph which shows a change.
図 1〜図 4に示すように、発電状態 (ステップ S14)において、まず、酸化剤ガス供給 路 53の開閉弁 12が閉じられ、次いで、酸化剤ガス排出路 54の開閉弁 13が閉じられ る。これにより、力ソード 24 (正確には力ソード 24と、開閉弁 12と開閉弁 13との間の 酸化剤ガス流路と、この酸化剤ガス流路と開閉弁 16との間の封止ガス供給路 55)に 酸化剤ガスとしての空気が封止される (ステップ S 1)。 As shown in FIGS. 1 to 4, in the power generation state (step S14), first, the on-off valve 12 of the oxidant gas supply path 53 is closed, and then the on-off valve 13 of the oxidant gas discharge path 54 is closed. . As a result, force sword 24 (to be precise, force sword 24, oxidant gas passage between on-off valve 12 and on-off valve 13, and sealing gas between this oxidant gas passage and on-off valve 16) Air as an oxidant gas is sealed in the supply path 55) (step S1).
次いで、負荷切換回路 5によって、負荷 15及びバッテリ 14が燃料電池 2の電気出 力端子 2a, 2bから切り離され、これらに代わって起動停止用抵抗 6が該電気出力端 子 2a, 2bの間に接続される(ステップ S2)。  Next, the load switching circuit 5 disconnects the load 15 and the battery 14 from the electrical output terminals 2a and 2b of the fuel cell 2, and instead of these, the start / stop resistor 6 is interposed between the electrical output terminals 2a and 2b. Connected (step S2).
次いで、起動停止用抵抗 6の抵抗値が徐々に増大させられて (すなわち負荷が徐 々に減少させられて)発電量が徐々に減少させられる。なお、以下に説明するよう〖こ 発電は自動的に止まるので、必ずしも起動停止用抵抗 6の抵抗値を増大させる必要 はなぐこれを一定に維持してもよい。この過程で、力ソード 24においては、封止され た空気中の酸素が発電の反応により消費されて減少し、この酸素の減少に伴って燃 料電池 2の出力電圧 (電気出力端子 2a, 2b間の電圧)が、例えば図 4に示すように 低下する。そして、酸素が消費され尽くされた時点で出力電圧が零となって発電が止 まる(電気が発生しなくなる)(ステップ S3)。この状態で、力ソード 24は、封止された 空気中の酸素が消費され尽くしているので、大気に対し負圧になっている。  Next, the resistance value of the start / stop resistor 6 is gradually increased (that is, the load is gradually decreased), and the power generation amount is gradually decreased. As will be described below, the power generation is automatically stopped, so it is not always necessary to increase the resistance value of the start / stop resistor 6, and this may be maintained constant. In this process, in the power sword 24, oxygen in the sealed air is consumed and reduced by the reaction of power generation, and the output voltage of the fuel cell 2 (electrical output terminals 2a, 2b) is reduced as this oxygen decreases. For example, as shown in Fig. 4. When the oxygen is consumed up, the output voltage becomes zero and power generation stops (no electricity is generated) (step S3). In this state, the force sword 24 is in a negative pressure with respect to the atmosphere because oxygen in the sealed air is exhausted.
そして、この出力電圧が制御装置 7によって監視されており、制御装置 7によってこの 出力電圧が零になったこと (発電の停止)が検知されると、まず、燃料ガス供給路 51 の開閉弁 10が閉じられ、次いで、燃料ガス排出路 52の開閉弁 11が閉じられる。これ により、アノード 23に燃料ガスとしての水素ガスが封止される(ステップ S4)。 The output voltage is monitored by the control device 7. When the control device 7 detects that the output voltage has become zero (stop of power generation), first, the on-off valve 10 of the fuel gas supply path 51 is detected. Then, the on-off valve 11 of the fuel gas discharge passage 52 is closed. Thereby, hydrogen gas as a fuel gas is sealed in the anode 23 (step S4).
次いで、封止ガス供給路 55の開閉弁 16が開かれ、負圧となっている力ソード 24に燃 料源 3から燃料ガスである水素ガスが導入される。その後、酸化剤排出流路 54の開 閉弁 13が開かれ、力ソード中に残留するガス (空気中の酸素以外のガス)が水素ガス でパージされる。その後、開閉弁 13及び開閉弁 16が順次閉じられ、それにより、カソ ード 24に水素ガスが封止される。このように、力ソード 24に封止された空気中の酸素 を発電により消費し尽くした後に力ソード 24に水素ガスを導入することによって、空気 と水素ガスとの混合による非触媒燃焼を防止しつつ、力ソード 24に水素を封止するこ とがでさる。 Next, the on-off valve 16 of the sealing gas supply path 55 is opened, and hydrogen gas, which is a fuel gas, is introduced from the fuel source 3 into the force sword 24 that has a negative pressure. Thereafter, the open / close valve 13 of the oxidant discharge channel 54 is opened, and the gas remaining in the power sword (gas other than oxygen in the air) is purged with hydrogen gas. Thereafter, the opening / closing valve 13 and the opening / closing valve 16 are sequentially closed, whereby the hydrogen gas is sealed in the cathode 24. In this way, by exhausting oxygen in the air sealed in the power sword 24 by power generation, by introducing hydrogen gas into the power sword 24, air Hydrogen can be sealed in the power sword 24 while preventing non-catalytic combustion due to the mixture of hydrogen and hydrogen gas.
かくして、停止モードが終了し、燃料電池発電装置 1が停止する。これにより、燃料電 池 2のアノード 23及び力ソード 24力 燃料電池発電装置 1の停止期間の間、各々の 触媒層 29, 31の材料と各々の雰囲気である水素ガスとで定まる電位に維持される。 ここでは、アノード 23の触媒層 29が白金で構成されているので、アノード 23の触媒 層 29は還元電位である OVに維持される。また、力ソード 24の触媒層 31が白金で構 成されているので、力ソード 24の触媒層 31は還元電位である OVに維持される。この 場合の燃料電池 2の開放電圧は OVとなる。 Thus, the stop mode ends and the fuel cell power generator 1 stops. As a result, the anode 23 of the fuel cell 2 and the power sword 24 power fuel cell power generator 1 are maintained at a potential determined by the materials of the catalyst layers 29 and 31 and the hydrogen gas as the atmosphere during the stop period. The Here, since the catalyst layer 29 of the anode 23 is made of platinum, the catalyst layer 29 of the anode 23 is maintained at the reduction potential OV. Further, since the catalyst layer 31 of the force sword 24 is made of platinum, the catalyst layer 31 of the force sword 24 is maintained at OV which is the reduction potential. In this case, the open circuit voltage of the fuel cell 2 is OV.
その結果、燃料電池 2の停止中における触媒層 29, 31の劣化が防止され、高頻度 起動停止運転下における燃料電池 1の寿命を長くすることができる。  As a result, the deterioration of the catalyst layers 29 and 31 while the fuel cell 2 is stopped can be prevented, and the life of the fuel cell 1 under a high-frequency start / stop operation can be extended.
次に、起動モードを説明する。図 5は図 1の燃料電池発電装置 1の起動モードの概容 を示すフローチャートである。 Next, the activation mode will be described. FIG. 5 is a flowchart showing an outline of the start-up mode of the fuel cell power generator 1 of FIG.
図 1、図 2及び図 5に示すように、燃料電池発電装置 1を起動するには、まず、カソー ド 24の水素ガスが排出される (ステップ Sl l)。具体的には、まず、三方弁 9が、酸ィ匕 剤ガス供給路 53の開閉弁 12側の部分が封止ガス排出ポンプ 8に連通するように切り 換えられ、その後、封止ガス排出ポンプ 8が起動される。次いで、開閉弁 12が開かれ 、力ソード 24から該カソード 24に封入されていた水素ガスが封止ガス排出ポンプ 8に よって吸引されて大気中に排出される。そして、力ソード 24が所定の程度に減圧され ると、開閉弁 12が閉じられ、その後、封止ガス排出ポンプ 8が停止される。次いで、三 方弁 9が、酸化剤ガス供給路 53が連通するように切り換えられる。なお、力ソード 24 の上記所定の程度の減圧状態は、例えば、力ソード 24に圧力センサを設け、この圧 力センサを通じて制御装置 7により検知される。 As shown in FIG. 1, FIG. 2 and FIG. 5, in order to start the fuel cell power generator 1, hydrogen gas in the cathode 24 is first discharged (step Sl l). Specifically, first, the three-way valve 9 is switched so that the portion on the on-off valve 12 side of the oxidizing gas supply path 53 communicates with the sealing gas discharge pump 8, and then the sealing gas discharge pump 8 is activated. Next, the on-off valve 12 is opened, and the hydrogen gas sealed in the cathode 24 from the force sword 24 is sucked by the sealing gas discharge pump 8 and discharged into the atmosphere. When the pressure sword 24 is depressurized to a predetermined degree, the on-off valve 12 is closed, and then the sealing gas discharge pump 8 is stopped. Next, the three-way valve 9 is switched so that the oxidant gas supply path 53 communicates. It should be noted that the pressure sword 24 is depressurized to a predetermined degree by, for example, providing a pressure sensor on the force sword 24 and detecting the control device 7 through the pressure sensor.
次いで、燃料ガス供給路 51の開閉弁 10と燃料ガス排出路 52の開閉弁 11とが開か れ、燃料源 3から燃料ガス (水素ガス)が燃料電池 2のアノード 23に供給される (ステツ プ S12)。 Next, the on-off valve 10 of the fuel gas supply passage 51 and the on-off valve 11 of the fuel gas discharge passage 52 are opened, and fuel gas (hydrogen gas) is supplied from the fuel source 3 to the anode 23 of the fuel cell 2 (step) S12).
次いで、酸化剤ガス供給路 53の開閉弁 12が開かれ、空気供給装置 4から力ソード 2 4に酸化剤ガス (空気)が導入される。その後、酸化剤ガス排出路 54の開閉弁 13が 開かれ、それにより、空気供給装置 4から酸化剤ガスが力ソード 24に引き続き供給さ れる (ステップ S13)。このように、力ソード 24に封止された水素ガスを吸引して排出し た後に力ソード 24に空気を供給することによって、水素ガスと空気との混合による非 触媒燃焼を防止しつつ、力ソード 24に空気を供給することができる。 Next, the on-off valve 12 of the oxidant gas supply path 53 is opened, and oxidant gas (air) is introduced from the air supply device 4 to the force sword 24. After that, the on-off valve 13 of the oxidant gas discharge passage 54 As a result, the oxidant gas is continuously supplied from the air supply device 4 to the power sword 24 (step S13). In this way, by supplying the air to the force sword 24 after sucking and discharging the hydrogen gas sealed in the force sword 24, the non-catalytic combustion due to the mixing of the hydrogen gas and air is prevented, and the force is reduced. Air can be supplied to Sword 24.
そして、起動停止用抵抗 6の抵抗値が徐々に減少され、それにより、燃料電池 2の発 電量が徐々に増大させられる。そして、発電量が所定値に達すると、負荷切換回路 5 によって、起動停止用抵抗 6が燃料電池 2の電気出力端子 2a, 2bから切り離され、こ れらに代わって、負荷 15及びバッテリ 14が燃料電池 2の電気出力端子 2a, 2bの間 に接続される。 Then, the resistance value of the start / stop resistor 6 is gradually decreased, whereby the power generation amount of the fuel cell 2 is gradually increased. When the power generation amount reaches a predetermined value, the load switching circuit 5 disconnects the start / stop resistor 6 from the electrical output terminals 2a, 2b of the fuel cell 2, and instead, the load 15 and the battery 14 are connected. It is connected between the electrical output terminals 2a and 2b of the fuel cell 2.
かくして、起動モードが終了し、燃料電池発電装置 1は発電状態 (発電モード)に移 行する (ステップ S 14)。 Thus, the start-up mode ends and the fuel cell power generator 1 shifts to the power generation state (power generation mode) (step S14).
次に、以上のように構成された燃料電池発電装置 1の作用効果を説明する。 Next, the function and effect of the fuel cell power generator 1 configured as described above will be described.
本実施の形態の燃料電池発電装置 1では、前述のように、燃料電池 2のアノード 23 及び力ソード 24が、燃料電池発電装置 1の停止期間の間、各々の触媒層 29, 31の 材料と各々の雰囲気である燃料ガスとで定まる電位に維持される。本実施の形態で は、アノードの触媒層 29の材料として白金が用いられ、また力ソード 24の触媒層 31 の材料として白金が用いられ、燃料ガスとして純水素ガスが用いられたが、本発明は この構成には限定されない。  In the fuel cell power generator 1 of the present embodiment, as described above, the anode 23 and the force sword 24 of the fuel cell 2 are separated from the materials of the catalyst layers 29 and 31 during the stop period of the fuel cell power generator 1. It is maintained at a potential determined by the fuel gas which is each atmosphere. In the present embodiment, platinum is used as the material of the anode catalyst layer 29, platinum is used as the material of the catalyst layer 31 of the force sword 24, and pure hydrogen gas is used as the fuel gas. Is not limited to this configuration.
但し、本件発明者の検討結果によれば、本発明においては、アノード 23の触媒層 29 及び力ソード 24の触媒層 31の材料としてそれぞれ白金を用い、かつ燃料ガス及び 酸化剤ガスとして、燃料電池 2の開放電圧が OV以上 0. 85V以下となるようなものを 用いることが好ましい。開放電圧が 0. 85Vを超えると、白金が酸化状態となって溶け やすくなる。従って、このような条件が満たされる場合に、触媒層 29, 31の材料が燃 料電池 2の停止中に酸化されて高分子電解質膜 22中に溶出することが抑制され、そ れにより、酸化と還元の繰り返しによる触媒層 29, 31の触媒性能の劣化を抑制して 高頻度起動停止運転下における燃料電池 2の長寿命化を図ることができるからであ る。 However, according to the results of the study by the present inventors, in the present invention, platinum is used as the material of the catalyst layer 29 of the anode 23 and the catalyst layer 31 of the force sword 24, respectively, and the fuel cell is used as the fuel gas and the oxidant gas. It is preferable to use the one whose open circuit voltage of 2 is OV or more and 0.85V or less. When the open-circuit voltage exceeds 0.85V, platinum becomes oxidized and is easily dissolved. Therefore, when such a condition is satisfied, the materials of the catalyst layers 29 and 31 are suppressed from being oxidized and eluted into the polymer electrolyte membrane 22 while the fuel cell 2 is stopped. This is because the deterioration of the catalyst performance of the catalyst layers 29 and 31 due to repeated reduction and reduction can be suppressed, and the life of the fuel cell 2 can be extended under the frequent start-stop operation.
(実施の形態 2) 図 6は本発明の実施の形態 2に係る燃料電池発電装置の構成を模式的に示すブ ロック図である。図 6において、図 1と同一符号は同一又は相当する部分を示す。 (Embodiment 2) FIG. 6 is a block diagram schematically showing the configuration of the fuel cell power generator according to Embodiment 2 of the present invention. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
[0025] 図 6に示すように、本実施の形態では、置換ガス供給手段として不活性ガス供給装 置 (不活性ガス供給器) 62が設けられ、燃料電池発電装置 1の運転停止の際、燃料 電池 2のアノード及び力ソードに燃料ガスと不活性ガスとの混合ガスが封止される。こ れ以外の点は実施の形態 1と同様である。  As shown in FIG. 6, in the present embodiment, an inert gas supply device (inert gas supply device) 62 is provided as a replacement gas supply means, and when the operation of the fuel cell power generator 1 is stopped, A mixed gas of fuel gas and inert gas is sealed in the anode and power sword of the fuel cell 2. The other points are the same as in the first embodiment.
[0026] 具体的には、不活性ガス供給装置 62は、ここでは、不活性ガスとして Nガスを貯蔵  [0026] Specifically, the inert gas supply device 62 stores N gas as the inert gas here.
2 及び供給する窒素ボンベで構成されている。なお、不活性ガスとして、この他に、 Ar 、 CO、水蒸気、及びメタン、ェタン、プロパン、ブタン等のガスハイド口カーボンを用 2 and supply nitrogen cylinder. In addition, Ar, CO, water vapor, and gas hydrated carbon such as methane, ethane, propane, and butane are used as the inert gas.
2 2
いてもよい。  May be.
[0027] 不活性ガス供給装置 62は、途中に開閉弁 63が配設された第 1の不活性ガス供給 路 65を通じて不活性ガスを燃料電池 2のアノードに供給可能であり、また、途中に開 閉弁 64が配設された第 2の不活性ガス供給路 66を通じて不活性ガスを燃料電池 2 の力ソードに供給可能である。  [0027] The inert gas supply device 62 can supply an inert gas to the anode of the fuel cell 2 through the first inert gas supply path 65 in which an on-off valve 63 is provided in the middle, and in the middle An inert gas can be supplied to the power sword of the fuel cell 2 through the second inert gas supply path 66 in which the open / close valve 64 is provided.
[0028] そして、実施の形態 1の燃料電池発電装置 1の停止モードにおいて、図 3のステツ プ S4で開閉弁 63を開放して不活性ガスを不活性ガス供給装置 62から不活性ガス 供給路 65に送出し、それにより、この不活性ガスと燃料源 3からの水素ガスとの混合 ガスをアノードに供給し、その後、開閉弁 10, 11とともに開閉弁 63を閉止することに より、この混合ガスをアノードに封止する。そして、ステップ S5で開閉弁 64を開放して 不活性ガスを不活性ガス供給装置 62から不活性ガス供給路 66に送出し、それにより 、この不活性ガスと燃料源 3から封止ガス供給路 55を通じて供給される水素ガスとの 混合ガスを力ソードに供給し、その後、開閉弁 12, 16とともに開閉弁 64を閉止するこ とにより、この混合ガスを力ソードに封止する。  [0028] Then, in the stop mode of the fuel cell power generator 1 of the first embodiment, the on-off valve 63 is opened in step S4 of Fig. 3, and the inert gas is supplied from the inert gas supply device 62 to the inert gas supply path. Then, the mixed gas of the inert gas and the hydrogen gas from the fuel source 3 is supplied to the anode, and then the on-off valve 63 is closed together with the on-off valves 10 and 11, thereby mixing the mixture. Gas is sealed to the anode. In step S5, the on-off valve 64 is opened, and the inert gas is sent from the inert gas supply device 62 to the inert gas supply path 66, whereby the sealing gas supply path is connected from the inert gas and the fuel source 3. The mixed gas with the hydrogen gas supplied through 55 is supplied to the power sword, and then the on-off valve 12 and 16 and the on-off valve 64 are closed to seal the mixed gas in the power sword.
これ以降の動作は、実施の形態 1と同様である。  The subsequent operations are the same as those in the first embodiment.
以上に説明した本実施の形態によっても、実施の形態 1と同様の効果を得ることがで きる。  According to the present embodiment described above, the same effect as in the first embodiment can be obtained.
なお、実施の形態 1及び 2では、電気自動車用の燃料電池発電装置に本発明を適 用する場合を説明したが、他の用途の燃料電池発電装置にも本発明を同様に適用 することができる。例えば、非常用電源として用いられる燃料電池発電装置は、燃料 源として水素ボンべを備えているので、実施の形態 1の燃料電池発電装置をこれに 用いると、置換用不活性ガスが不要となって特に好適である。 In the first and second embodiments, the case where the present invention is applied to a fuel cell power generator for electric vehicles has been described. However, the present invention is similarly applied to a fuel cell power generator for other uses. can do. For example, since a fuel cell power generator used as an emergency power source includes a hydrogen cylinder as a fuel source, the use of the fuel cell power generator of Embodiment 1 for this eliminates the need for a replacement inert gas. Are particularly suitable.
また、実施の形態 1及び 2では、燃料電池発電装置 1の起動時において力ソードか ら該カソードに封止されているガスをポンプ 8で排出した力 これに代えて、力ソード に所定のパージガス (例えば不活性ガス)を供給して該カソードに封止されて!/ヽるガ スをパージしてもよい。  Further, in the first and second embodiments, the force discharged from the force sword by the pump 8 at the start of the fuel cell power generator 1 by the pump 8 is replaced by a predetermined purge gas in the force sword. (For example, an inert gas) is supplied and the cathode is sealed! / Purging gas can be purged.
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかで ある。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する 最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱 することなぐその構造及び Z又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of its structure and Z or function can be substantially changed without departing from the spirit of the present invention.
産業上の利用可能性 Industrial applicability
本発明の燃料電池発電装置は、電気自動車等に用いられる燃料電池発電装置と して有用である。  The fuel cell power generator of the present invention is useful as a fuel cell power generator used in electric vehicles and the like.

Claims

請求の範囲 The scope of the claims
[1] 実質的に水素ガスで構成される燃料ガスを貯蔵し、これを供給する燃料ガス貯蔵器 と、  [1] a fuel gas reservoir that stores and supplies fuel gas substantially composed of hydrogen gas;
空気を供給する空気供給装置と、  An air supply device for supplying air;
前記燃料ガス貯蔵器からの前記燃料ガス及び前記空気供給装置からの前記空気を 、電解質膜を挟むアノード及び力ソードにそれぞれ供給され、該供給された燃料ガス と空気との化学反応により発電する燃料電池と、を備えた燃料電池発電装置におい て、  The fuel gas from the fuel gas reservoir and the air from the air supply device are respectively supplied to an anode and a power sword sandwiching the electrolyte membrane, and a fuel that generates electricity by a chemical reaction between the supplied fuel gas and air In a fuel cell power generator equipped with a battery,
前記燃料電池発電装置は、前記力ソードに前記空気を封止するとともにその状態で 前記発電を継続しながら該空気中の酸素を消費して該カソードから酸素を除去し、 その後、前記発電を停止し、その後、前記アノードに前記燃料ガス又は該燃料ガスと 不活性ガスとの混合ガスを封止するとともに前記力ソード内に残留するガスを前記燃 料貯蔵器からの燃料ガス又は該燃料ガスと前記不活性ガスとの混合ガスで置換して 該カソードにこの置き換わった燃料ガス又は混合ガスを封止し、その後、前記運転を 停止し、  The fuel cell power generation device seals the air in the power sword and consumes oxygen in the air to remove oxygen from the cathode while continuing the power generation in that state, and then stops the power generation Thereafter, the fuel gas or a mixed gas of the fuel gas and an inert gas is sealed in the anode, and the gas remaining in the power sword is removed from the fuel gas or the fuel gas from the fuel reservoir. Substituting with the mixed gas with the inert gas, sealing the replaced fuel gas or mixed gas to the cathode, and then stopping the operation,
その運転停止期間において、その開放電圧を OV以上かつ 0. 85V以下に維持する Maintain the open-circuit voltage between OV and 0.85V during the shutdown period.
、燃料電池発電装置。 , Fuel cell power generator.
[2] 前記アノードが前記化学反応のための触媒として白金を含み、 [2] The anode includes platinum as a catalyst for the chemical reaction;
前記燃料電池発電装置が維持する前記開放電圧が OV以上かつ 0. 85V以下である The open-circuit voltage maintained by the fuel cell power generator is not less than OV and not more than 0.85V
、請求項 1記載の燃料電池発電装置。 The fuel cell power generator according to claim 1.
[3] 前記燃料電池発電装置は、前記発電を停止した後、前記アノードに前記燃料ガスを 封止するとともに前記力ソード内に残留するガスを前記燃料貯蔵器力ゝらの燃料ガスで 置換して該カソードにこの置き換わった燃料ガスを封止し、その後、前記運転を停止 する、請求項 1に記載の燃料電池発電装置。 [3] After stopping the power generation, the fuel cell power generation device seals the fuel gas at the anode and replaces the gas remaining in the power sword with the fuel gas from the fuel reservoir. 2. The fuel cell power generator according to claim 1, wherein the replaced fuel gas is sealed on the cathode, and then the operation is stopped.
[4] 不活性ガスを供給する不活性ガス供給器を備え、 [4] equipped with an inert gas supply device for supplying an inert gas,
前記燃料電池発電装置は、前記発電を停止した後、前記アノードに残留するガスを 前記燃料ガスと前記不活性ガス供給器力ゝらの不活性ガスとの混合ガスで置換して該 アノードにこの置き換わった混合ガスを封止するとともに前記力ソード内に残留する ガスを前記燃料貯蔵器力ゝらの燃料ガスと前記不活性ガス供給器からの不活性ガスと の混合ガスで置換して該カソードにこの置き換わった混合ガスを封止し、その後、前 記運転を停止する、請求項 1に記載の燃料電池発電装置。 After stopping the power generation, the fuel cell power generator replaces the gas remaining in the anode with a mixed gas of the fuel gas and an inert gas such as an inert gas feeder, and supplies the gas to the anode. The replaced gas mixture is sealed and remains in the power sword. The gas is replaced with a mixed gas of the fuel gas from the fuel reservoir and the inert gas supplied from the inert gas feeder, and the replaced mixed gas is sealed at the cathode. The fuel cell power generator according to claim 1, wherein the fuel cell power generator is stopped.
[5] 前記燃料電池発電装置は、前記運転の停止の後その運転を開始する場合に、前記 アノードに封止されたガスの封止を解除して該アノードに前記燃料ガスを供給し、か つ前記力ソードから該カソードに封止されたガスを排出した後該カソードに前記空気 を供給するようにして前記発電を開始する、請求項 1に記載の燃料電池発電装置。  [5] When the fuel cell power generation device starts the operation after the operation is stopped, the fuel cell power generation device releases the sealing of the gas sealed in the anode and supplies the fuel gas to the anode. 2. The fuel cell power generator according to claim 1, wherein the power generation is started by discharging the gas sealed to the cathode from the force sword and then supplying the air to the cathode.
[6] 前記燃料電池発電装置は電気自動車に駆動用電源として搭載されるものである、請 求項 1に記載の燃料電池発電装置。  [6] The fuel cell power generation device according to claim 1, wherein the fuel cell power generation device is mounted on an electric vehicle as a drive power source.
PCT/JP2005/018526 2004-10-08 2005-10-06 Fuel cell power generation device WO2006040999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004296883 2004-10-08
JP2004-296883 2004-10-08

Publications (1)

Publication Number Publication Date
WO2006040999A1 true WO2006040999A1 (en) 2006-04-20

Family

ID=36148294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018526 WO2006040999A1 (en) 2004-10-08 2005-10-06 Fuel cell power generation device

Country Status (1)

Country Link
WO (1) WO2006040999A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097836A (en) * 2006-10-05 2008-04-24 Toyota Motor Corp Cell life determination device
JP2008177162A (en) * 2006-12-18 2008-07-31 Gm Global Technology Operations Inc Method of mitigating fuel cell degradation due to startup and shutdown by hydrogen/nitrogen storage
JP2008177161A (en) * 2006-12-18 2008-07-31 Gm Global Technology Operations Inc Method of operating fuel cell stack
WO2010031601A1 (en) * 2008-09-17 2010-03-25 Belenos Clean Power Holding Ag Method of shut-down and starting of a fuel cell
EP2202834A1 (en) * 2008-12-17 2010-06-30 Honda Motor Co., Ltd Fuell cell system and method of starting fuel cell system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975569A (en) * 1982-10-21 1984-04-28 Toshiba Corp Storing method of fuel cell
JPS59149668A (en) * 1983-02-14 1984-08-27 Toshiba Corp Fuel battery
JPH06333586A (en) * 1993-05-20 1994-12-02 Sanyo Electric Co Ltd Method for stopping fuel cell
JP2002093448A (en) * 2000-09-11 2002-03-29 Osaka Gas Co Ltd Stopping method and stopping-retaining method for fuel cell
JP2004186137A (en) * 2002-11-21 2004-07-02 Denso Corp Fuel cell system
JP2005093115A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Fuel cell power generating device and its operating method
JP2005158557A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Fuel cell system
JP2005259664A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Operation method of fuel cell stack and fuel cell system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975569A (en) * 1982-10-21 1984-04-28 Toshiba Corp Storing method of fuel cell
JPS59149668A (en) * 1983-02-14 1984-08-27 Toshiba Corp Fuel battery
JPH06333586A (en) * 1993-05-20 1994-12-02 Sanyo Electric Co Ltd Method for stopping fuel cell
JP2002093448A (en) * 2000-09-11 2002-03-29 Osaka Gas Co Ltd Stopping method and stopping-retaining method for fuel cell
JP2004186137A (en) * 2002-11-21 2004-07-02 Denso Corp Fuel cell system
JP2005093115A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Fuel cell power generating device and its operating method
JP2005158557A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Fuel cell system
JP2005259664A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Operation method of fuel cell stack and fuel cell system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097836A (en) * 2006-10-05 2008-04-24 Toyota Motor Corp Cell life determination device
JP2008177162A (en) * 2006-12-18 2008-07-31 Gm Global Technology Operations Inc Method of mitigating fuel cell degradation due to startup and shutdown by hydrogen/nitrogen storage
JP2008177161A (en) * 2006-12-18 2008-07-31 Gm Global Technology Operations Inc Method of operating fuel cell stack
US8492046B2 (en) 2006-12-18 2013-07-23 GM Global Technology Operations LLC Method of mitigating fuel cell degradation due to startup and shutdown via hydrogen/nitrogen storage
WO2010031601A1 (en) * 2008-09-17 2010-03-25 Belenos Clean Power Holding Ag Method of shut-down and starting of a fuel cell
JP2012509552A (en) * 2008-09-17 2012-04-19 ベレノス・クリーン・パワー・ホールディング・アーゲー How to start and stop a fuel cell
US9413020B2 (en) 2008-09-17 2016-08-09 Belenos Clean Power Holding Ag Method of shut-down and starting of a fuel cell
EP2202834A1 (en) * 2008-12-17 2010-06-30 Honda Motor Co., Ltd Fuell cell system and method of starting fuel cell system
US8415062B2 (en) 2008-12-17 2013-04-09 Honda Motor Co., Ltd Fuel cell system and method of starting fuel cell system

Similar Documents

Publication Publication Date Title
CN101222064B (en) Method of mitigating fuel cell degradation due to startup and shutdown via hydrogen/nitrogen storage
JP2006512734A (en) Startup system and method for a fuel cell power plant using cathode electrode fuel purge
JP5109259B2 (en) Fuel cell system
WO2006040999A1 (en) Fuel cell power generation device
JP5269582B2 (en) Fuel cell system
WO2005122310A1 (en) Storing method and storably treated body of high polymer electrolyte fuel cell stack
JP2017168369A (en) Subzero point startup method of fuel cell system
WO2007116785A1 (en) Polymer electrolyte fuel cell and fuel cell system including the same
JP2006059734A (en) Fuel cell system and its starting/shutdown method
JP2005209635A (en) Power generation control method of fuel cell and its device
JP2002216823A (en) Fuel cell
JP2005251604A (en) Fuel cell stack
JP4772293B2 (en) Fuel cell system
KR101091662B1 (en) Fuel cell system having improved humidification performance
JP2005209609A (en) Control method at power generation stop of fuel cell and its device
JP2008071729A (en) Fuel cell system, and method of shutting down it
WO2008056615A1 (en) Fuel cell
JP2004152600A (en) Shutdown method and shutdown device for fuel cell
JP2001351666A (en) Fuel cell system using phosphoric acid and stopping method of the same
JP2022111406A (en) Fuel cell activation method and fuel cell activation system
JP5392973B2 (en) Fuel cell system
JP4547868B2 (en) Solid polymer electrolyte fuel cell
JP2009134977A (en) Fuel cell system
JP2003203649A (en) Fuel cell
JP2005196984A (en) Fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05790591

Country of ref document: EP

Kind code of ref document: A1