WO2006030622A1 - Laser therapeutic device - Google Patents

Laser therapeutic device Download PDF

Info

Publication number
WO2006030622A1
WO2006030622A1 PCT/JP2005/015629 JP2005015629W WO2006030622A1 WO 2006030622 A1 WO2006030622 A1 WO 2006030622A1 JP 2005015629 W JP2005015629 W JP 2005015629W WO 2006030622 A1 WO2006030622 A1 WO 2006030622A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
scanning
laser beam
treatment apparatus
lens
Prior art date
Application number
PCT/JP2005/015629
Other languages
French (fr)
Japanese (ja)
Inventor
Isami Nitta
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2006535117A priority Critical patent/JPWO2006030622A1/en
Publication of WO2006030622A1 publication Critical patent/WO2006030622A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • A61B2018/20355Special scanning path or conditions, e.g. spiral, raster or providing spot overlap

Definitions

  • the present invention relates to a laser treatment apparatus that performs treatment by irradiating a living body tissue with laser light, particularly a tissue such as a nevi, skin tumor, or hemangioma.
  • a photothermal treatment method in which a lesioned tissue caused by a bruise is irradiated with laser light has been performed.
  • blue bruise and black bruise are skin diseases in which melanin increases locally and may increase in the epidermis or in the dermis.
  • the principle of photothermia treatment for blue bruises and black bruises is a method that treats bruises by absorbing laser light into melanin, a lesion pigment, causing thermal destruction, and phagocytosing the destroyed melanin by macrophages. is there.
  • red bruises are skin lesions that appear red due to the presence of a large number of red blood cells in the dermis or subcutaneous adipose tissue, where blood vessels dilate and grow.
  • the principle of photothermia treatment for red bruises is that the hemoglobin in the red blood cells absorbs the laser light, the red blood cells are thermally coagulated 'thermally destroyed, and the blood vessels are shrunk to create a thrombus, thereby crushing the blood vessels and treating the bruises It is a method to do.
  • photothermal therapy is performed by irradiating a diseased tissue with laser light, causing the lesion cells that form the diseased tissue to absorb the light energy, and converting the absorbed light energy into heat.
  • the diseased cells are destroyed by heat and the affected tissue is removed, coagulated and destroyed.
  • the wavelength of the laser beam and the irradiation time of the laser beam are important parameters.
  • the laser absorptance of the lesion yarn and weave varies depending on the wavelength of the laser beam, and the depth (light penetration depth) at which the laser beam reaches the living tissue also varies.
  • the laser beam irradiation time even if the laser beam is selectively absorbed by a diseased tissue such as a bruise, if the irradiation time is too long, a thermal effect is exerted on the surrounding tissue due to thermal diffusion, causing burns. Gatsutsu Therefore, it is necessary to select the wavelength and irradiation time of the laser beam according to the type of bruise, and the problem that the laser beam has to be irradiated in a shorter time than the time of heat diffusion (thermal relaxation time). was there.
  • the temperature of the diseased tissue has to be about 60 to 65 ° C. This is because the temperature of the diseased tissue is lower than 60 ° C. In this case, the laser beam energy is only stimulated and mildly heated, and the structural change of the diseased tissue does not occur, and it is higher than 65 ° C and higher than 100 ° C. If the temperature is lower, the moisture of the living tissue is reduced, and the tissue is dried and contracted. Further, when the temperature exceeds 100 ° C, the living tissue is burned and carbonized, and the living tissue is lost.
  • a laser treatment apparatus disclosed in Patent Document 1 is known as a laser treatment apparatus capable of easily adjusting a desired irradiation energy density and performing appropriate treatment.
  • This apparatus is a laser treatment apparatus that irradiates an affected area of a patient with a therapeutic laser beam, and variably sets the output energy setting means for variably setting the output energy of the laser beam and the beam diameter of the laser beam on the affected area.
  • Patent Document 1 describes that, according to this apparatus, the irradiation beam diameter can be varied in the range of 3 to 10 mm by the beam diameter setting means for variably setting the beam diameter of the laser beam.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-60894
  • Non-Patent Document 1 "Laser treatment of bruises” by Hirayama Shun, Tezuka Tadashi, Ohara Kuniaki edited by Katsuseido Publishing (1st edition), 21-37, 131-147, 1997
  • the present invention provides a laser treatment apparatus that reduces thermal injury to normal tissue around a lesion to be treated and can apply laser light accurately and uniformly only to the treatment site. For the purpose.
  • the laser treatment device includes a laser oscillator that generates laser light, a beam expander that expands a beam size of the laser light emitted from the laser oscillator, and the beam extractor.
  • Laser scanning means for scanning laser light incident through the panda in an arbitrary pattern, condensing means for finely narrowing the laser light scanned by the laser scanning means, and finely condensed by the condensing means
  • an irradiation control means for controlling the irradiation time of the laser beam.
  • the laser treatment device is the laser treatment device according to claim 1, wherein the condensing means includes an f ⁇ lens composed of a plurality of lenses, and the f ⁇ lens. It is characterized by comprising a lens barrel to be stored and a joining member for joining the f ⁇ lens and the lens barrel.
  • the laser treatment device is characterized in that, in claim 1, the laser scanning means includes a galvanometer mirror.
  • the laser treatment device is the laser treatment device according to claim 1, wherein the irradiation control means includes an acousto-optic element, and the acousto-optic element is used to reduce the irradiation time of the laser light. It is characterized by being configured to control in seconds.
  • the laser treatment device according to claim 5 of the present invention is the laser treatment device according to claim 1, wherein the spot diameter of the laser beam focused by the focusing means is 15 m or less.
  • a laser treatment apparatus is the laser treatment apparatus according to any one of claims 1 to 5, wherein scanning by the laser scanning means is It is characterized by pine pattern scanning.
  • the laser treatment device is the laser treatment device according to any one of claims 1 to 5, wherein the scanning by the laser scanning means is a line.
  • the necessary amount of laser is effectively applied only to the treatment site by irradiating the finely focused laser beam in the entire scanning region. Can be irradiated. In addition, there is no thermal injury to normal cells. Furthermore, by scanning the laser in an arbitrary pattern and irradiating the laser beam to a single point for a long time, it is possible to eliminate the thermal damage to the surrounding tissue caused by thermal diffusion and enhance the cooling effect.
  • the laser treatment device described in claim 2 of the present invention it is possible to finely focus the laser beam.
  • the laser treatment device described in claim 2 of the present invention it is possible to effectively irradiate only the treatment site with the necessary amount of laser.
  • the use of the f ⁇ lens makes the linear velocity constant on the scanning plane and enables two-dimensional scanning at an arbitrary speed optimal for treatment.
  • the galvanometer mirror can precisely detect even if the beam spot diameter is fine.
  • the beam scanning position can be controlled. Further, since it is not manual, there is no possibility of unevenness in the laser irradiation amount.
  • the irradiation time of the laser beam is precisely controlled in nanosecond units, so that it is given to the local position of the affected part by fine time control.
  • the laser energy can be precisely controlled.
  • the laser beam can be irradiated in a shorter time than the time during which heat is diffused.
  • the laser treatment device of claim 5 of the present invention since the beam diameter of the fine laser beam is used, it is possible to effectively irradiate the affected area with the necessary amount of laser. .
  • the laser effect can be accurately applied only to the treatment site with a high cooling effect and a strong force.
  • thermal injury to normal tissues around the lesion to be treated can be reduced.
  • a checkerboard pattern is scanned.
  • the portion of the laser light power ⁇ point is irradiated for a time optimal for the treatment, so that heat diffusion can be achieved.
  • the cooling effect can be enhanced by eliminating the thermal injury to the surrounding tissue.
  • FIG. 1 is a front view of a laser treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a laser treatment apparatus according to an embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of a light collecting means in one embodiment of the present invention.
  • FIG. 4 is a block diagram showing a main configuration of a laser treatment apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a spot diameter measurement range in a laser scanning region.
  • FIG. 6 is an explanatory diagram of the spot diameter of the laser treatment apparatus according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing a measurement result of a spot diameter of the laser treatment apparatus in one embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of a mesh for analyzing the relationship between temperature and time.
  • FIG. 9 is a diagram showing a temperature change when laser irradiation with a diameter of lmm and a diameter of 12 m is performed.
  • FIG. 10 is a diagram showing an example of a laser scanning pattern of the laser treatment apparatus according to one embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of a laser scanning pattern of the laser treatment apparatus according to one embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a laser scanning pattern of the laser treatment apparatus according to one embodiment of the present invention.
  • FIG. 1 is a front view of a schematic external view of the laser treatment apparatus
  • FIG. 2 is a plan view of the schematic external view of the laser treatment apparatus.
  • the laser treatment apparatus of this embodiment includes an Nd: YAG laser oscillator 1 as a laser oscillator that emits laser light, a beam expander 10 for expanding the beam size of the laser light emitted from the laser oscillator, A Ganolevano mirror 12 as a laser scanning means capable of scanning the laser light in an arbitrary pattern; a condensing means 16 for finely focusing the laser light scanned by the laser scanning means 12 on the treatment site; AOM (acousto-optic element) 6 as an irradiation control means for changing the irradiation time of the laser beam finely condensed by the XYZ stage 17 as a mounting table for the subject X, and the like.
  • the term “fine” refers to a range of 15 / z m or less, preferably 10 m or less, and most preferably 5 ⁇ m or less.
  • the Nd: YAG laser oscillator body 1 is fixed to the upper part of the Nd: YAG laser tilt'height adjustment base 2.
  • the Nd: YAG laser oscillator body 1 can be manufactured by ELFORLIGHT, and its specifications are a wavelength of 532 nm, an output of 200 mW, a beam diameter of 1 mm, continuous oscillation, and a spread angle of lmrad.
  • the Nd: YAG laser is taken as an example.
  • Nd: YAG laser tilt 'height adjustment stand 2 is fixed to the system upper plate 19, and Nd: YAG laser oscillator 1 is fixed to the top, and is used to adjust the tilt and height to match the optical axis. This tilt / height is adjusted by a screw screw.
  • Reference numeral 3 denotes a shutter for cutting off the laser when it is not necessary to irradiate the laser.
  • Reference numeral 4 denotes the front and rear lenses of AOM6 and a lens barrel that houses the front and rear lenses.
  • a concave lens and a convex lens are respectively provided before and after AOM6.
  • the incident beam diameter to AOM6 is focused to a diameter of 0.1 mm, for example.
  • AOM6 for example, one manufactured by Crystal Technology can be used.
  • the lens on the AOM entrance side is used to collect light, and the lens on the AOM exit side is used to return the expanded beam to parallel light.
  • Reference numeral 5 denotes a holder for fixing the lens barrel 4 for the front and rear lenses of the AOM, and positioning pins are used for positioning the lens barrel holder 5 for the front and rear lenses of the AOM.
  • the AOM 6 is installed at the Bragg's angle by the angle adjusting jig 15. It is a mechanism that pushes AOM6 with a spring from one side and finely adjusts the angle of AOM6 with the screw on the other side, and is fixed to the side surface of AOM mounting base 7.
  • Reference numeral 13 denotes an AOM driver for supplying ultrasonic waves (high frequency) to the AOM6.
  • the AOM6 is connected to the AOM6 by a cable.
  • Reference numeral 8 denotes a reflection mirror for changing the direction of the oscillated laser light by 180 ° to match the incident optical axis of the galvano mirror 12.
  • the reflecting mirror 8 has a coating that reflects almost 100% of the laser beam. Fine adjustment of the tilting direction of the reflecting mirror 8 can be performed by the reflecting mirror holder 9.
  • a concave lens that expands the laser light is incorporated in the incident side of the beam expander 10, and a convex lens that collimates the laser light magnified by the concave lens on the exit side is incorporated in the lens barrel. .
  • the position can be finely adjusted by using an XYZ stage.
  • a pinhole plate 11 is used for aligning the optical axis of the laser beam. For example, a hole having a diameter of about lmm is provided in the metal pinhole plate 11, and the position of the pinhole plate 11 is determined by a positioning pin.
  • the maximum rotation angle of the galvanometer mirror 12 for scanning laser light is, for example, about ⁇ 20 °, and the rotation angle is controlled by a personal computer or the like.
  • the two rotatable galvanometer mirrors 12 are driven by two galvanometers and rotate the first galvanometer mirror 12.
  • the laser beam is scanned in the X-axis direction, and by rotating the second galvanometer mirror 12, the laser beam is scanned in the Y-axis direction. Therefore, by controlling the second galvanometer mirror 12 simultaneously, it is possible to scan the laser with respect to the XY plane.
  • Reference numeral 14 denotes a light shielding plate for shielding laser light.
  • the galvanometer mirror 12 for example, a product made by GSI LUMONICS can be used.
  • Reference numeral 16 denotes a condensing unit that finely narrows the laser beam scanned by the laser scanning unit 12.
  • the light collecting means 16 includes f 0 lenses 31 to 36 including a plurality of lenses 31, 32, 33, 34, 35, and 36.
  • the f 0 lens is a lens whose purpose is to convert the deflected light beam into a point image (spot) scan with a constant linear velocity on the running surface.
  • the lenses are arranged in order from the laser incident direction (upper side in the figure).
  • a plurality of lenses 31 to 36 are provided.
  • Each lens 31 to 36 is joined to the bonding member 40 in the lens barrel 50.
  • the joining members 40 and 41 are made of a polymer material (for example, a resin such as polyimide, acrylic, or polyacetal) having a larger coefficient of thermal expansion than the material of the lens barrel 50 (for example, a metal such as aluminum). It is formed in a cylindrical shape. Since plastic joining members 40 and 41 are incorporated between the lenses 31 to 36 and the lens barrel 50, an interference fit can be achieved. Further, the optical axes of the lenses 31 to 36 coincide with each other, so that the laser can be finely narrowed down over the entire scanning region. Further, even when temperature fluctuation occurs, the lens is always fastened with a constant force due to the thermal expansion of the joining members 40 and 41, so that the optical performance such as the spot diameter can be kept constant.
  • a polymer material for example, a resin such as polyimide, acrylic, or polyacetal
  • the joining member 41 has grooves 51, 52 in the circumferential direction of the outer periphery surrounding the lens group.
  • the grooves 51, 52 join the lens group by passing a string or a wire. This is for fixing the joining member 41.
  • the lens 36 is concave on both sides and has a wide joint surface, the lens curved surface is easily deformed with a slight tightening pressure. In order to prevent such deformation, a joint surface 53 narrower than the outer peripheral thickness of the lens 36 is provided, and the joint width between the joint member 41 and the lens 36 is smaller than the lens thickness. It is trying to become.
  • the focal length is 166.5 mm
  • the design spot diameter is 15 ⁇ m
  • the focal length is ll lmm
  • the design spot diameter is 10 m, but is not limited thereto.
  • the spot diameter is 15 ⁇ m or less, it is possible to irradiate cells with a size of about 5 to: LOO ⁇ m.
  • the XYZ stage 17 is used to move the laser spot measuring device to the entire scanning region, and the Z stage is used to adjust the laser spot measuring device to the height at which the laser beam forms an image.
  • the tilt of the XYZ stage 17 can be finely adjusted by the tilt stage 18.
  • 22 is a galvano scan controller (base). When input data is sent from a personal computer, it is converted into an optimal signal and a rotation angle is given to the galvanometer.
  • Reference numeral 24 denotes a YAG laser oscillator power supply unit (for example, manufactured by ELFORLIGHT), which is used to supply power to the YAG laser oscillator main body.
  • Reference numeral 25 denotes an AOM control device that controls AOM 6 in accordance with a control signal from the galvano scan controller 22.
  • AOM controller software continuous output, one-shot output * Pulse output frequency, pulse width, etc. can be set, and in this embodiment, a short of approximately 12.5 ns (nanosecond) by pulse width modulation. Pulse irradiation is performed.
  • FIG. 4 is a block diagram showing the main configuration of the laser treatment apparatus according to this embodiment.
  • the laser beam 30 emitted from the laser oscillator 1 passes through the irradiation control means 6. Then, the direction of the laser beam 30 that has passed through the irradiation control means 6 is changed by the reflecting mirror 8.
  • the laser beam whose direction has been changed is expanded by the concave lens on the incident side of the beam expander 10 before being guided to the f 0 lens, and becomes parallel light by the convex lens on the output side.
  • the laser light 30 that has become parallel light is scanned by the laser scanning means 12, and the laser light 30 is finely condensed by the condensing means 16, and then focused on the subject X on the XYZ stage 17.
  • the laser treatment apparatus of the present invention it is possible to accurately and uniformly irradiate only a treatment site with a necessary amount by irradiating a finely focused laser beam in the entire scanning region. .
  • the effect of heat dissipation can be enhanced by irradiating a treatment site with no side effects on normal cells with a laser beam finely focused by the condensing means 16.
  • the cooling effect can be further enhanced by scanning the laser with an arbitrary pattern.
  • instantaneous laser irradiation is possible by passing laser beam 30 through AOM6.
  • the laser beam 30 can be alternately turned on and off at a high speed on the order of nanoseconds.
  • the beam expander 10 is used to expand the beam diameter of the laser beam 30, so that the minute laser Spots can be formed.
  • the laser treatment apparatus of the present invention includes skin tumors (mole, warts, xanthomas, seborrheic keratosis, etc.), nevus (Ota nevus, flat nevus, ectopic mongolia), It can be applied to hemangiomas, traumatic pigmentation, stains, senile plaques, and acne scars.
  • the laser oscillator 1 that generates the laser light 30, the beam expander 10 that expands the beam size of the laser light 30 emitted from the laser oscillator 1, and the beam expander 10 are provided.
  • Laser scanning means 12 that scans the laser beam 30 incident through the laser beam into an arbitrary pattern, a light collecting means 16 that finely narrows the laser light 30 scanned by the laser scanning means 12, and a light collecting means 16
  • the irradiation control means 6 that changes the irradiation time of the focused laser beam 30, so that it is effective only for the treatment site by irradiating the laser beam that is finely focused over the entire scanning area. It is possible to irradiate the required amount of laser. In addition, there is no thermal injury to normal cells. Furthermore, by irradiating the laser in an arbitrary pattern and irradiating the laser beam to one spot for a long time, the thermal effect on the surrounding tissue caused by thermal diffusion can be eliminated and the cooling effect can be enhanced. it can.
  • the light converging means 16 includes the f ⁇ lenses 31 to 36 including the plurality of lenses 31, 32, 33, 34, 3 5, and 36, and the f ⁇ lens 31 as described above. Since the lens barrel 50 that accommodates .about.36 and the joining members 40 and 41 that join the f.theta. Lenses 31 to 36 and the lens barrel 50 are provided, the laser beam 30 can be narrowed down finely. Further, by irradiating the laser beam 30 that is finely focused in the entire scanning region, it is possible to effectively irradiate only the treatment site with the necessary amount of laser. In addition, by using f 0 lenses 31 to 36, two-dimensional scanning can be performed with a constant linear velocity on the scanning surface.
  • the laser scanning unit 12 includes the galvanometer mirror 12, the beam scanning position can be precisely controlled by the galvanometer mirror 12 even if the beam spot diameter is fine. it can. Furthermore, since it is not manual, there is no risk of unevenness in the amount of laser irradiation.
  • the acoustooptic device (AOM) 6 is provided as an irradiation control means as described above, and the acoustooptic device 6 causes the irradiation time of the laser light 30 to be about 12.5 ns (nanosecond).
  • the irradiation time of the laser beam 30 is precisely controlled in nanoseconds, so that the laser energy given to the local position of the affected area can be precisely controlled by fine time control. Furthermore, the laser beam 30 can be irradiated in a shorter time than the time during which heat is diffused.
  • the spot diameter of the laser beam 30 condensed by the condensing means 16 is 15 m or less, a necessary amount of laser can be effectively irradiated onto the affected area. Is possible.
  • the cooling effect is high and the laser treatment can be accurately performed only on the treatment site.
  • thermal injury to normal tissues around the lesion to be treated can be reduced.
  • an Nd: YAG laser light source is used.
  • the joining members 40 and 41 may be integrated with the separated force.
  • the laser treatment apparatus of the present invention may be provided with an image observation means for specifying the position of the affected part such as a CCD camera or a laser microscope with high accuracy.
  • image observation means for example, when laser treatment is applied to blood vessel types, only the position of the blood vessel is identified with high accuracy by performing CCD observation or laser scanning detection, and the laser beam is precisely detected by the galvanometer mirror 12. The scanning position can be controlled and only the blood vessels can be irradiated with laser, so there is no risk of damaging normal tissue.
  • the spot diameter in a 12 mm square laser scanning region was measured.
  • the measurement positions are 13 points each in the upper right direction as shown by ⁇ and in the lower right direction as shown by ⁇ .
  • the spot diameter is the beam diameter where the beam intensity is at the peak value of lZe 2 (13.5%).
  • a beam scan was used as a spot diameter measurement device.
  • the spot diameter was measured on both the X-axis and y-axis, and the average value was taken.
  • the galvanometer mirror is rotated by a predetermined angle to measure the laser beam. Moved to position.
  • the XY stage was moved to the laser beam coordinates, and the spot diameter was measured with a beam scan.
  • the diameter of the laser beam incident on the galvanometer mirror was 13 mm.
  • Fig. 7 shows the measurement results. From Fig. 7, it was confirmed that the laser spot diameter was about 11 to 13 m in all the measurement range.
  • the atmosphere temperature was 25 ° C
  • the atmosphere on the skin surface was ambient air conditioning, and the heat transfer coefficient was 3.
  • OWZm 2 'K Heat is given as laser energy (W / cm 2 ), and the maximum power density of the laser treatment device of the present invention is 79.6 kWZ cm 2 on the skin surface, and reflection on the skin surface, scattering in the skin 'absorption process is performed. In consideration, energy 51. Ok WZcm 2 was given at a skin depth of 0.25 mm. In both cases, the laser was irradiated for 200 s.
  • the analysis results are shown in FIG.
  • the vertical axis is temperature
  • the horizontal axis is time.
  • the temperature increased from the start of laser irradiation to 200 s after the end of irradiation.
  • the temperature rose to a maximum of approximately 67.5 ° C.
  • the maximum temperature was about 65 ° C.
  • the temperature dropped, but in the case of laser irradiation with a diameter, the temperature dropped by about 5 ° C after 1 ms. In other words, it was confirmed that the cooling effect was higher when the laser beam was narrowed down.
  • Example 3 In the present embodiment, a pattern example of laser scanning is shown.
  • the laser irradiation pattern shown below is an example, and the present invention is not limited to this.
  • 10 to 12 show the laser irradiation region of the laser treatment apparatus of the present invention described in the above embodiment. If all of this area is the target to be treated, it is necessary to irradiate all of this area with the laser.
  • FIG. 10 shows an example of sequential scanning in which laser irradiation is performed in a spot shape and the laser is scanned linearly.
  • the numbers in the circles in the figure represent the order of laser irradiation.
  • the force drawn so that the laser spots do not overlap.
  • the spots may partially overlap, or multiple spots may be overlapped, or the lasers may be irradiated continuously. You may shoot. When the scanning of one row is finished, it is shifted to the side and the second row is scanned linearly. In this case, the first and second rows do not overlap in the example in the figure, but they may overlap partially.
  • FIG. 11 shows an example of interlaced scanning with a gap between each row.
  • the laser beam can be irradiated at a single point for an optimal time for treatment, thereby eliminating the thermal injury to the surrounding tissue caused by thermal diffusion and enhancing the cooling effect. .
  • the cooling effect produced by finely focusing the laser can be further enhanced.
  • the gap is not limited to one row, and any gap can be made.
  • the laser scanning direction may be a scanning force that is a vertical force, or may be scanned at an arbitrary angle.
  • FIG. 12 shows an example of a pine pattern scanning in which a laser is irradiated like a pine pattern from the first spot as indicated by numerals.
  • the laser spot spacing may be uniform or non-uniform. Further, the order of irradiation may be regular or random.
  • scanning like this it is possible to eliminate the thermal injury to the surrounding tissue caused by thermal diffusion and improve the cooling effect by irradiating the laser beam to one point for the optimal time for treatment. You can.
  • the cooling effect of the finely focused laser can be enhanced.

Abstract

A laser therapeutic device capable of applying a laser beam uniformly and accurately only to a location to be treated with little thermal damage to normal tissues surrounding a lesion to be treated. The device comprises a laser oscillator (1) for generating a laser beam (30), a beam expander (10) for expanding the beam size of the laser beam (30) emitted from the laser oscillator (1), a laser scanning means (12) for scanning in an appropriate pattern the laser beam (30) incident via the beam expander (10), a condensing means (16) for finely narrowing down the laser beam (30) scanned by the laser scanning means (12), and an irradiation control means (6) for changing the irradiation time of the laser beam (30) finely condensed by the condensing means (16). A laser beam finely narrowed down is applied over the entire scanning area to enable a necessary amount to be applied effectively to only a location to be treated.

Description

明 細 書  Specification
レーザ治療装置  Laser therapy device
技術分野  Technical field
[0001] 本発明は、生体組織の特に母斑,皮膚腫瘍,血管腫などの組織に対してレーザ光 を照射させて治療を行うレーザ治療装置に関するものである。  [0001] The present invention relates to a laser treatment apparatus that performs treatment by irradiating a living body tissue with laser light, particularly a tissue such as a nevi, skin tumor, or hemangioma.
背景技術  Background art
[0002] 近年、皮膚科や形成外科などにおいて例えば母斑,皮膚腫瘍,血管腫などの病変 組織の治療に当たり、レーザ光による光熱療法や光化学療法などが行われるように なってきた。  In recent years, photothermal therapy and photochemotherapy using laser light have been performed in the treatment of lesion tissues such as nevus, skin tumors, and hemangiomas in dermatology and plastic surgery.
[0003] 例えば、あざによって生じた病変組織に対してレーザ光を照射する光熱治療法が 行われている。あざの中でも青あざや黒あざはメラニンが局限的に増加する皮膚病 変であり、表皮内で増加する場合と真皮内で増加する場合がある。このような青あざ や黒あざにおける光熱治療法の原理は、病変色素であるメラニンに対してレーザ光 を吸収させ熱破壊し、破壊されたメラニンをマクロファージによって貪食させて、あざ を治療する方法である。一方、赤あざは、真皮あるいは皮下脂肪組織中に血管の拡 張や増生が見られ、赤血球が多数存在するために赤く見える皮膚病変である。この ような赤あざにおける光熱治療法の原理は、赤血球内のヘモグロビンにレーザ光を 吸収させ、赤血球を熱凝固 '熱破壊させ、血管を収縮し血栓を作ることによって血管 を潰して、あざを治療する方法である。  [0003] For example, a photothermal treatment method in which a lesioned tissue caused by a bruise is irradiated with laser light has been performed. Among the bruises, blue bruise and black bruise are skin diseases in which melanin increases locally and may increase in the epidermis or in the dermis. The principle of photothermia treatment for blue bruises and black bruises is a method that treats bruises by absorbing laser light into melanin, a lesion pigment, causing thermal destruction, and phagocytosing the destroyed melanin by macrophages. is there. On the other hand, red bruises are skin lesions that appear red due to the presence of a large number of red blood cells in the dermis or subcutaneous adipose tissue, where blood vessels dilate and grow. The principle of photothermia treatment for red bruises is that the hemoglobin in the red blood cells absorbs the laser light, the red blood cells are thermally coagulated 'thermally destroyed, and the blood vessels are shrunk to create a thrombus, thereby crushing the blood vessels and treating the bruises It is a method to do.
[0004] 上述のように、光熱治療法は、レーザ光を病変組織に照射し、病変組織を形成する 病変細胞に光エネルギーを吸収させ、吸収された光エネルギーが熱に変換されるこ とによって、病変細胞を熱破壊し、病変組織を除去 ·凝固 ·破壊する療法である。この ようなレーザ治療法にぉ 、て、レーザ光の波長 ·レーザ光の照射時間は重要なパラメ ータとなる。例えば、レーザ光の波長によって病変糸且織のレーザ吸収率が異なり、生 体組織においてレーザ光が到達する深さ (光侵達長)も異なる。また、レーザ光照射 時間に関しては、レーザ光があざなどの病変組織に選択的に吸収されても、照射時 間が長すぎると熱拡散により周辺組織へ熱影響が及び、火傷を引き起こす。したがつ て、あざの種類'深さによってレーザ光の波長や照射時間を選択する必要があり、熱 が拡散する時間 (熱緩和時間)よりも短時間でレーザ光を照射しなければならないと いった問題があった。 [0004] As described above, photothermal therapy is performed by irradiating a diseased tissue with laser light, causing the lesion cells that form the diseased tissue to absorb the light energy, and converting the absorbed light energy into heat. In this therapy, the diseased cells are destroyed by heat and the affected tissue is removed, coagulated and destroyed. In such a laser treatment method, the wavelength of the laser beam and the irradiation time of the laser beam are important parameters. For example, the laser absorptance of the lesion yarn and weave varies depending on the wavelength of the laser beam, and the depth (light penetration depth) at which the laser beam reaches the living tissue also varies. In addition, regarding the laser beam irradiation time, even if the laser beam is selectively absorbed by a diseased tissue such as a bruise, if the irradiation time is too long, a thermal effect is exerted on the surrounding tissue due to thermal diffusion, causing burns. Gatsutsu Therefore, it is necessary to select the wavelength and irradiation time of the laser beam according to the type of bruise, and the problem that the laser beam has to be irradiated in a shorter time than the time of heat diffusion (thermal relaxation time). was there.
[0005] また、光熱治療法において、病変組織のタンパク質を凝固'変性させて熱破壊する ために、病変組織の温度を約 60〜65°Cにする必要があった。なぜなら、病変組織の 温度が 60°Cより低!、場合、レーザ光のエネルギーは病変組織の刺激や軽度の加熱 にとどまり病変組織の構造変化は起きず、また、 65°Cより高く 100°Cより低い場合、生 体組織の水分が減少し、組織は乾燥'収縮し、さら〖こ、 100°C以上になると生体組織 が燃焼'炭化して、生体組織が失われるためである。  [0005] Further, in the photothermal treatment method, in order to coagulate and denature the protein in the diseased tissue to cause thermal destruction, the temperature of the diseased tissue has to be about 60 to 65 ° C. This is because the temperature of the diseased tissue is lower than 60 ° C. In this case, the laser beam energy is only stimulated and mildly heated, and the structural change of the diseased tissue does not occur, and it is higher than 65 ° C and higher than 100 ° C. If the temperature is lower, the moisture of the living tissue is reduced, and the tissue is dried and contracted. Further, when the temperature exceeds 100 ° C, the living tissue is burned and carbonized, and the living tissue is lost.
[0006] そこで、所望する照射エネルギー密度を容易に調整でき、適切な治療が行えるレ 一ザ治療装置として、例えば特許文献 1に開示されているものが知られている。この 装置は、治療用のレーザ光を患者の患部上に照射するレーザ治療装置において、 レーザ光の出力エネルギーを可変設定する出力エネルギー設定手段と、患部上で のレーザ光のビーム径を可変設定するビーム径設定手段と、設定された出力エネル ギー及びビーム径に基づいて患部上でのレーザ光のエネルギー密度を求めるエネ ルギー密度算出手段と、求められたエネルギー密度を表示するエネルギー密度表 示手段とを備えているものである。また、前記特許文献 1には、この装置によればレー ザ光のビーム径を可変設定するビーム径設定手段により照射ビーム径が直径 3〜10 mmの範囲で可変すると記載されている。  [0006] Therefore, for example, a laser treatment apparatus disclosed in Patent Document 1 is known as a laser treatment apparatus capable of easily adjusting a desired irradiation energy density and performing appropriate treatment. This apparatus is a laser treatment apparatus that irradiates an affected area of a patient with a therapeutic laser beam, and variably sets the output energy setting means for variably setting the output energy of the laser beam and the beam diameter of the laser beam on the affected area. A beam diameter setting means, an energy density calculation means for calculating the energy density of the laser beam on the affected area based on the set output energy and beam diameter, and an energy density display means for displaying the obtained energy density It is equipped with. Patent Document 1 describes that, according to this apparatus, the irradiation beam diameter can be varied in the range of 3 to 10 mm by the beam diameter setting means for variably setting the beam diameter of the laser beam.
特許文献 1:特開 2000— 60894号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-60894
非特許文献 1 :「あざのレーザ治療」平山峻、手塚正、大原國章 編集、克誠堂出版( 第 1版)、 21— 37、 131— 147、 1997年  Non-Patent Document 1: "Laser treatment of bruises" by Hirayama Shun, Tezuka Tadashi, Ohara Kuniaki edited by Katsuseido Publishing (1st edition), 21-37, 131-147, 1997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、前記特許文献 1に記載の装置および従来のレーザ治療装置 (非特 許文献 1)では、レーザビーム径 (直径約 2〜: LOmm)が大きいことから、照射する必 要のない正常組織にもレーザを照射してしまう問題があった。そのため、あざなどの 治療はできるが、副次的に火傷になる虞があり、それらの治癒を含めると治療期間の 長期化を招いていた。さらに、従来のレーザ治療装置は広範囲の病変組織に対して レーザ光を手動により複数回照射しなければならないため、レーザ照射量にムラが 発生していた。 [0007] However, in the apparatus described in Patent Document 1 and the conventional laser treatment apparatus (Non-Patent Document 1), the laser beam diameter (diameter: about 2 to: LOmm) is large. There was a problem that the tissue was also irradiated with laser. Therefore, it can treat bruises, but there is a risk of secondary burns. It has been protracted. Furthermore, since the conventional laser treatment apparatus has to manually irradiate a wide range of lesioned tissue with a laser beam a plurality of times, the amount of laser irradiation has become uneven.
[0008] そこで、本発明は、治療対象とする病巣の周辺の正常組織への熱傷害を少なくし、 し力も治療部位にのみ正確に、かつ均一にレーザ光を照射できるレーザ治療装置を 提供することを目的とする。  [0008] Therefore, the present invention provides a laser treatment apparatus that reduces thermal injury to normal tissue around a lesion to be treated and can apply laser light accurately and uniformly only to the treatment site. For the purpose.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の請求の範囲第 1項記載のレーザ治療装置は、レーザ光を発生するレーザ 発振器と、前記レーザ発振器から出射されたレーザ光のビームサイズを拡大するビ ームエキスパンダと、前記ビームエキスパンダを介して入射したレーザ光を任意のパ ターンに走査するレーザ走査手段と、前記レーザ走査手段により走査されるレーザ 光を微細に絞る集光手段と、前記集光手段により微細に集光されたレーザ光の照射 時間を制御する照射制御手段とを備えたことを特徴とする。 [0009] The laser treatment device according to claim 1 of the present invention includes a laser oscillator that generates laser light, a beam expander that expands a beam size of the laser light emitted from the laser oscillator, and the beam extractor. Laser scanning means for scanning laser light incident through the panda in an arbitrary pattern, condensing means for finely narrowing the laser light scanned by the laser scanning means, and finely condensed by the condensing means And an irradiation control means for controlling the irradiation time of the laser beam.
[0010] 本発明の請求の範囲第 2項記載のレーザ治療装置は、請求の範囲第 1項において 、前記集光手段は、複数のレンズから構成される f Θレンズと、前記 f Θレンズを収納 する鏡筒と、前記 f Θレンズと前記鏡筒とを接合する接合部材とを備えたことを特徴と する。 [0010] The laser treatment device according to claim 2 of the present invention is the laser treatment device according to claim 1, wherein the condensing means includes an fΘ lens composed of a plurality of lenses, and the fΘ lens. It is characterized by comprising a lens barrel to be stored and a joining member for joining the fΘ lens and the lens barrel.
[0011] 本発明の請求の範囲第 3項記載のレーザ治療装置は、請求の範囲第 1項において 、前記レーザ走査手段はガルバノミラーを備えたことを特徴とする。  [0011] The laser treatment device according to claim 3 of the present invention is characterized in that, in claim 1, the laser scanning means includes a galvanometer mirror.
[0012] 本発明の請求の範囲第 4項記載のレーザ治療装置は、請求の範囲第 1項において 、前記照射制御手段は音響光学素子を備え、前記音響光学素子によりレーザ光の 照射時間をナノ秒単位で制御するよう構成したことを特徴とする。  [0012] The laser treatment device according to claim 4 of the present invention is the laser treatment device according to claim 1, wherein the irradiation control means includes an acousto-optic element, and the acousto-optic element is used to reduce the irradiation time of the laser light. It is characterized by being configured to control in seconds.
[0013] 本発明の請求の範囲第 5項記載のレーザ治療装置は、請求の範囲第 1項において 、前記集光手段により集光されたレーザ光のスポット径が、 15 m以下であることを 特徴とする。  [0013] The laser treatment device according to claim 5 of the present invention is the laser treatment device according to claim 1, wherein the spot diameter of the laser beam focused by the focusing means is 15 m or less. Features.
[0014] 本発明の請求の範囲第 6項記載のレーザ治療装置は、請求の範囲第 1〜5項のい ずれかに記載のレーザ治療装置であって、前記レーザ走査手段による走査が、巿松 模様走査であることを特徴とする。 [0015] 本発明の請求の範囲第 7項記載のレーザ治療装置は、請求の範囲第 1〜5項のい ずれかに記載のレーザ治療装置であって、前記レーザ走査手段による走査が、線飛 び越し走査であることを特徴とするレーザ治療装置。 [0014] A laser treatment apparatus according to claim 6 of the present invention is the laser treatment apparatus according to any one of claims 1 to 5, wherein scanning by the laser scanning means is It is characterized by pine pattern scanning. [0015] The laser treatment device according to claim 7 of the present invention is the laser treatment device according to any one of claims 1 to 5, wherein the scanning by the laser scanning means is a line. A laser treatment apparatus characterized by interlaced scanning.
発明の効果  The invention's effect
[0016] 本発明の請求の範囲第 1項記載のレーザ治療装置によれば、全走査領域におい て微細に絞られたレーザ光を照射することにより治療部位にのみに効果的にレーザ の必要量を照射することが可能である。また、正常細胞への熱傷害がない。さらに、 レーザを任意のパターンに走査することによって、レーザ光が 1点の個所に長時間照 射することにより、熱拡散で生じる周辺組織への熱傷害をなくして冷却効果を高める ことができる。  [0016] According to the laser treatment device of claim 1 of the present invention, the necessary amount of laser is effectively applied only to the treatment site by irradiating the finely focused laser beam in the entire scanning region. Can be irradiated. In addition, there is no thermal injury to normal cells. Furthermore, by scanning the laser in an arbitrary pattern and irradiating the laser beam to a single point for a long time, it is possible to eliminate the thermal damage to the surrounding tissue caused by thermal diffusion and enhance the cooling effect.
[0017] 本発明の請求の範囲第 2項記載のレーザ治療装置によれば、レーザ光を微細に絞 ることが可能である。また、全走査領域において微細に絞られたレーザ光を照射する ことにより治療部位にのみに効果的にレーザの必要量を照射することが可能である。 さらに、 f Θレンズを用いることにより、走査面上で線速度を一定化し、及び治療に最 適な任意の速度での 2次元の走査を可能とする。  [0017] According to the laser treatment device described in claim 2 of the present invention, it is possible to finely focus the laser beam. In addition, by irradiating a finely focused laser beam in the entire scanning region, it is possible to effectively irradiate only the treatment site with the necessary amount of laser. Furthermore, the use of the fΘ lens makes the linear velocity constant on the scanning plane and enables two-dimensional scanning at an arbitrary speed optimal for treatment.
[0018] 本発明の請求の範囲第 3項記載のレーザ治療装置によれば、前記レーザ走査手 段はガルバノミラーを備えているため、ガルバノミラーにより、ビームスポット径が微細 であっても精密にビーム走査位置を制御することができる。さらに、手動ではないた め、レーザ照射量にムラが発生する虞がない。  [0018] According to the laser treatment device of claim 3 of the present invention, since the laser scanning device includes the galvanometer mirror, the galvanometer mirror can precisely detect even if the beam spot diameter is fine. The beam scanning position can be controlled. Further, since it is not manual, there is no possibility of unevenness in the laser irradiation amount.
[0019] 本発明の請求の範囲第 4項記載のレーザ治療装置によれば、レーザ光の照射時 間をナノ秒単位で精密に制御しているので、細かい時間制御により患部の局所位置 に与えるレーザのエネルギーを精密に制御できる。さらに、熱が拡散する時間よりも 短時間でレーザ光を照射できる。  [0019] According to the laser treatment device according to claim 4 of the present invention, the irradiation time of the laser beam is precisely controlled in nanosecond units, so that it is given to the local position of the affected part by fine time control. The laser energy can be precisely controlled. Furthermore, the laser beam can be irradiated in a shorter time than the time during which heat is diffused.
[0020] 本発明の請求の範囲第 5項記載のレーザ治療装置によれば、微細なレーザ光のビ ーム径であるため、効果的に患部にレーザを必要量照射することが可能である。さら に、冷却効果が高ぐし力も治療部位にのみ正確にレーザ治療を施すことができる。 また、治療対象とする病巣の周辺の正常組織への熱傷害を少なくすることができる。  [0020] According to the laser treatment device of claim 5 of the present invention, since the beam diameter of the fine laser beam is used, it is possible to effectively irradiate the affected area with the necessary amount of laser. . In addition, the laser effect can be accurately applied only to the treatment site with a high cooling effect and a strong force. In addition, thermal injury to normal tissues around the lesion to be treated can be reduced.
[0021] 本発明の請求の範囲第 6項記載のレーザ治療装置によれば、市松模様走査するこ とによって、レーザ光が 1点の個所に治療に最適な時間照射することにより、熱拡散 で生じる周辺組織への熱傷害をなくしてより冷却効果を高めることができる。 [0021] According to the laser treatment apparatus of the sixth aspect of the present invention, a checkerboard pattern is scanned. Thus, by irradiating the laser beam to a single point for an optimal time for treatment, it is possible to eliminate the thermal injury to the surrounding tissue caused by thermal diffusion and enhance the cooling effect.
[0022] 本発明の請求の範囲第 7項記載のレーザ治療装置によれば、線飛び越し走査する ことによって、レーザ光力 ^点の個所に治療に最適な時間照射することにより、熱拡 散で生じる周辺組織への熱傷害をなくしてより冷却効果を高めることができる。  [0022] According to the laser treatment device of claim 7 of the present invention, by performing interlaced scanning, the portion of the laser light power ^ point is irradiated for a time optimal for the treatment, so that heat diffusion can be achieved. The cooling effect can be enhanced by eliminating the thermal injury to the surrounding tissue.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の一実施形態におけるレーザ治療装置の正面図である。 FIG. 1 is a front view of a laser treatment apparatus according to an embodiment of the present invention.
[図 2]本発明の一実施形態におけるレーザ治療装置の平面図である。  FIG. 2 is a plan view of a laser treatment apparatus according to an embodiment of the present invention.
[図 3]本発明の一実施形態における集光手段の縦断面図である。  FIG. 3 is a longitudinal sectional view of a light collecting means in one embodiment of the present invention.
[図 4]本発明の一実施形態におけるレーザ治療装置の要部構成を示すブロック図で ある。  FIG. 4 is a block diagram showing a main configuration of a laser treatment apparatus according to an embodiment of the present invention.
[図 5]レーザ走査領域におけるスポット径の測定範囲を示す図である。  FIG. 5 is a diagram showing a spot diameter measurement range in a laser scanning region.
[図 6]本発明の一実施形態におけるレーザ治療装置のスポット径の説明図である。  FIG. 6 is an explanatory diagram of the spot diameter of the laser treatment apparatus according to one embodiment of the present invention.
[図 7]本発明の一実施形態におけるレーザ治療装置のスポット径の測定結果を示す 図である。  FIG. 7 is a diagram showing a measurement result of a spot diameter of the laser treatment apparatus in one embodiment of the present invention.
[図 8]温度と時間の関係を解析するためのメッシュの説明図である。  FIG. 8 is an explanatory diagram of a mesh for analyzing the relationship between temperature and time.
[図 9]直径 lmmと直径 12 mのレーザ照射をした場合の温度変化を示す図である。  FIG. 9 is a diagram showing a temperature change when laser irradiation with a diameter of lmm and a diameter of 12 m is performed.
[図 10]本発明の一実施形態におけるレーザ治療装置のレーザ走査パターンの一例 を示す図である。  FIG. 10 is a diagram showing an example of a laser scanning pattern of the laser treatment apparatus according to one embodiment of the present invention.
[図 11]本発明の一実施形態におけるレーザ治療装置のレーザ走査パターンの一例 を示す図である。  FIG. 11 is a diagram showing an example of a laser scanning pattern of the laser treatment apparatus according to one embodiment of the present invention.
[図 12]本発明の一実施形態におけるレーザ治療装置のレーザ走査パターンの一例 を示す図である。  FIG. 12 is a diagram showing an example of a laser scanning pattern of the laser treatment apparatus according to one embodiment of the present invention.
符号の説明  Explanation of symbols
[0024] 1 レーザ発振器 (Nd:YAGレーザ発振器) [0024] 1 Laser oscillator (Nd: YAG laser oscillator)
6 照射制御手段 (AOM)  6 Irradiation control means (AOM)
10 ビームエキスパンダ  10 beam expander
12 レーザ走査手段 (ガルバノミラー) 16 集光手段 12 Laser scanning means (galvanomirror) 16 Condensing means
30 レーザ光  30 Laser light
31 , 32, 33, 34, 35, 36 レンズ (f Θレンズ)  31, 32, 33, 34, 35, 36 lenses (f Θ lenses)
40, 41 接合部材  40, 41 Joining member
50 鏡筒  50 tube
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の一実施形態を示すレーザ治療装置について、図面を参照しながら 説明する。図 1はレーザ治療装置の外観略図の正面図であり、図 2はレーザ治療装 置の外観略図の平面図である。本実施形態のレーザ治療装置は、レーザ光を出射 するレーザ発振器としての Nd : YAGレーザ発振器 1と、前記レーザ発振器から出射 されたレーザ光のビームサイズを拡大するためのビームエキスパンダ 10と、前記レー ザ光を任意のパターンで走査可能なレーザ走査手段としてのガノレバノミラー 12と、レ 一ザ走査手段 12により走査されるレーザ光を治療部位上で微細に絞る集光手段 16と 、集光手段 16により微細に集光されたレーザ光の照射時間を変化させる照射制御手 段としての AOM (音響光学素子) 6と、被検体 Xの載置台たる XYZステージ 17等を 備えている。なお、本発明において微細とは、 15 /z m以下、好ましくは 10 m以下、 最も好ましくは 5 μ m以下の範囲のことを 、う。  Hereinafter, a laser treatment apparatus showing an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of a schematic external view of the laser treatment apparatus, and FIG. 2 is a plan view of the schematic external view of the laser treatment apparatus. The laser treatment apparatus of this embodiment includes an Nd: YAG laser oscillator 1 as a laser oscillator that emits laser light, a beam expander 10 for expanding the beam size of the laser light emitted from the laser oscillator, A Ganolevano mirror 12 as a laser scanning means capable of scanning the laser light in an arbitrary pattern; a condensing means 16 for finely focusing the laser light scanned by the laser scanning means 12 on the treatment site; AOM (acousto-optic element) 6 as an irradiation control means for changing the irradiation time of the laser beam finely condensed by the XYZ stage 17 as a mounting table for the subject X, and the like. In the present invention, the term “fine” refers to a range of 15 / z m or less, preferably 10 m or less, and most preferably 5 μm or less.
[0026] Nd : YAGレーザ発振器本体 1は、 Nd : YAGレーザ傾き'高さ調整台 2の上部に固 定されている。なお、 Nd : YAGレーザ発振器本体 1としては ELFORLIGHT社製の ものを使用でき、その仕様は、波長 532nm、出力 200mW、ビーム径 lmm、連続発 振、広がり角 lmradである。ここでは Nd : YAGレーザを例として挙げている力 治療 目的によって最適なレーザを選択することができる。 Nd : YAGレーザ傾き'高さ調整 台 2は、システム上板 19に固定されており、 Nd : YAGレーザ発振器 1を上部に固定し て傾き ·高さを調整し光軸を一致させるために用い、この傾き ·高さはスクリューネジに よって調整する機構となっている。 3はレーザを照射する必要がない時にレーザを遮 断させるためのシャッターである。  The Nd: YAG laser oscillator body 1 is fixed to the upper part of the Nd: YAG laser tilt'height adjustment base 2. The Nd: YAG laser oscillator body 1 can be manufactured by ELFORLIGHT, and its specifications are a wavelength of 532 nm, an output of 200 mW, a beam diameter of 1 mm, continuous oscillation, and a spread angle of lmrad. Here, the Nd: YAG laser is taken as an example. Nd: YAG laser tilt 'height adjustment stand 2 is fixed to the system upper plate 19, and Nd: YAG laser oscillator 1 is fixed to the top, and is used to adjust the tilt and height to match the optical axis. This tilt / height is adjusted by a screw screw. Reference numeral 3 denotes a shutter for cutting off the laser when it is not necessary to irradiate the laser.
[0027] また、 4は AOM6の前後レンズおよび該前後レンズを収納する鏡筒であり、 AOM6 の立ち上がり時間を高速にするために AOM6の前後にそれぞれ凹レンズ '凸レンズ の組合せレンズを用い、 AOM6への入射ビーム径を例えば直径 0. 1mmに集光さ せる。なお、 AOM6としては、例えば Crystal Technology社製のものなどを用いるこ とができる。 AOM入射側のレンズは集光させるために用いられ、 AOM出射側のレ ンズは拡大されたビームを平行光に戻すために用いられる。なお、ここで用いたレン ズの仕様は凹レンズ ·凸レンズともに、外径 12mm、焦点距離 160. Omm、バックフォ 一カス 50. 5mm、スポット径 0. 1mmであるが、これに限定されない。 5は AOM前後 レンズ用鏡筒 4を固定するためのホルダーであり、 AOM前後レンズ用鏡筒ホルダー 5を位置決めするために、位置決めピンを用いる。 AOM6を上部に固定するための 取付台 7の上部には位置決めピンがついており、これは AOMの結晶の中心位置を 決めるために用いて 、る。ピンは光軸がこのピンの中心を通るように設置されて!、る。 また、 AOM6は角度調整治具 15によって、ブラッグ 'アングルに設置されている。片 側からばねで AOM6を押し、もう片側のネジで AOM6の角度を微調整する機構とな つており、 AOM取付台 7の側面に固定されている。 13は AOM6に超音波 (高周波)を 供給するための AOMドライバーであり、 AOM6とはケーブルによって接続されてい る。 [0027] Reference numeral 4 denotes the front and rear lenses of AOM6 and a lens barrel that houses the front and rear lenses. In order to increase the rise time of AOM6, a concave lens and a convex lens are respectively provided before and after AOM6. Using this combination lens, the incident beam diameter to AOM6 is focused to a diameter of 0.1 mm, for example. As AOM6, for example, one manufactured by Crystal Technology can be used. The lens on the AOM entrance side is used to collect light, and the lens on the AOM exit side is used to return the expanded beam to parallel light. The specifications of the lenses used here are 12 mm for the outer diameter, 160 mm for the focal length, 50.5 mm for the back focus, and 0.1 mm for the spot diameter for both concave and convex lenses, but are not limited thereto. Reference numeral 5 denotes a holder for fixing the lens barrel 4 for the front and rear lenses of the AOM, and positioning pins are used for positioning the lens barrel holder 5 for the front and rear lenses of the AOM. There is a positioning pin on the top of the mounting base 7 for fixing the AOM 6 to the top, which is used to determine the center position of the AOM crystal. The pin is placed so that the optical axis passes through the center of this pin! The AOM 6 is installed at the Bragg's angle by the angle adjusting jig 15. It is a mechanism that pushes AOM6 with a spring from one side and finely adjusts the angle of AOM6 with the screw on the other side, and is fixed to the side surface of AOM mounting base 7. Reference numeral 13 denotes an AOM driver for supplying ultrasonic waves (high frequency) to the AOM6. The AOM6 is connected to the AOM6 by a cable.
[0028] 8は、発振されたレーザ光の方向を 180° 転換してガルバノミラー 12の入射光軸に 合わせるための反射ミラーである。反射ミラー 8にはレーザ光をほぼ 100%反射する コーティングがされている。反射ミラー 8の傾き'方向の微調整は反射ミラーホルダー 9によって行うことができる。  [0028] Reference numeral 8 denotes a reflection mirror for changing the direction of the oscillated laser light by 180 ° to match the incident optical axis of the galvano mirror 12. The reflecting mirror 8 has a coating that reflects almost 100% of the laser beam. Fine adjustment of the tilting direction of the reflecting mirror 8 can be performed by the reflecting mirror holder 9.
[0029] ビームエキスパンダ 10の入射側にはレーザ光を拡大する凹レンズと、出射側には前 記凹レンズにより拡大されたレーザ光を平行光にする凸レンズとが、それぞれ鏡筒に 組込まれている。なお、 XYZステージ等を用いることにより位置を微調整することがで きる。 11はレーザ光の光軸合わせに用いるためのピンホール板である。金属製のピン ホール板 11には例えば直径約 lmmの穴が設けてあり、ピンホール板 11の位置は位 置決めピンにより決められる。  [0029] A concave lens that expands the laser light is incorporated in the incident side of the beam expander 10, and a convex lens that collimates the laser light magnified by the concave lens on the exit side is incorporated in the lens barrel. . The position can be finely adjusted by using an XYZ stage. A pinhole plate 11 is used for aligning the optical axis of the laser beam. For example, a hole having a diameter of about lmm is provided in the metal pinhole plate 11, and the position of the pinhole plate 11 is determined by a positioning pin.
[0030] レーザ光を走査するためのガルバノミラー 12の最大回転角は例えば約 ± 20° で、 回転角はパソコン等で制御されるようになっている。なお、回転可能な 2枚のガルバノ ミラー 12は 2つのガルバノメータによって駆動され、 1枚目のガルバノミラー 12を回転 させることによってレーザ光を X軸方向に走査し、 2枚目のガルバノミラー 12を回転さ せることによってレーザ光を Y軸方向に走査するようになっている。従って、 2枚目の ガルバノミラー 12を同時に制御することによって、 X—Y平面に対してレーザを走査す ることが可能となっている。また、 14はレーザ光を遮光するための遮光板である。なお 、ガルバノミラー 12としては、例えば GSI LUMONICS社製のものを用いることがで きる。 [0030] The maximum rotation angle of the galvanometer mirror 12 for scanning laser light is, for example, about ± 20 °, and the rotation angle is controlled by a personal computer or the like. The two rotatable galvanometer mirrors 12 are driven by two galvanometers and rotate the first galvanometer mirror 12. By scanning, the laser beam is scanned in the X-axis direction, and by rotating the second galvanometer mirror 12, the laser beam is scanned in the Y-axis direction. Therefore, by controlling the second galvanometer mirror 12 simultaneously, it is possible to scan the laser with respect to the XY plane. Reference numeral 14 denotes a light shielding plate for shielding laser light. As the galvanometer mirror 12, for example, a product made by GSI LUMONICS can be used.
16はレーザ走査手段 12により走査されるレーザ光を微細に絞る集光手段である。こ こで、集光手段 16の一実施形態の縦断面図を示す図 3を参照しながら説明する。集 光手段 16は、複数のレンズ 31, 32, 33, 34, 35, 36から構成される f 0レンズ 31〜36と Reference numeral 16 denotes a condensing unit that finely narrows the laser beam scanned by the laser scanning unit 12. Here, a description will be given with reference to FIG. 3 showing a longitudinal sectional view of an embodiment of the light collecting means 16. The light collecting means 16 includes f 0 lenses 31 to 36 including a plurality of lenses 31, 32, 33, 34, 35, and 36.
、 f Θレンズ 31〜36を収納する鏡筒 50と、 f Θレンズ 31〜36と鏡筒 50とを接合する接合 部材 (シュリンクフイツタ) 40, 41とを備えている。なお、 f 0レンズとは、偏向光束を、走 查面上で線速度が一定な、点像 (スポット)の走査に変換することを目的とするレンズ である。レンズは、レーザが入射する方向(図中上側)から順に、レンズ 31, 32, 33, 34, F Θ lenses 31 to 36, and joining members (shrink filters) 40 and 41 for joining the f Θ lenses 31 to 36 and the lens barrel 50 are provided. The f 0 lens is a lens whose purpose is to convert the deflected light beam into a point image (spot) scan with a constant linear velocity on the running surface. The lenses are arranged in order from the laser incident direction (upper side in the figure).
, 35, 36に配列されている。本実施例では、レンズ 31〜36が複数個備えられているが, 35, 36. In this embodiment, a plurality of lenses 31 to 36 are provided.
、個数は適宜変えることが可能である。各レンズ 31〜36は、鏡筒 50内で接合部材 40,The number can be changed as appropriate. Each lens 31 to 36 is joined to the bonding member 40 in the lens barrel 50.
41により接合されている。接合部材 40, 41は、熱膨張係数が鏡筒 50の材質 (例えば、 アルミニウム等の金属など)よりも大きい高分子材料 (例えば、ポリイミド,アクリル,ポリ ァセタールなどの榭脂など)を用いて、円筒形状に形成されている。レンズ 31〜36と 鏡筒 50の間に、プラスチック製の接合部材 40, 41が組み込まれていることより、締りば めを可能としている。さらに、各レンズ 31〜36の光軸が一致し、全走査領域にわたつ てレーザを微細に絞り込むことが可能となっている。また、温度変動が生じた場合で も接合部材 40, 41の熱膨張によりレンズを常に一定の力で締結するため、スポット径 などの光学性能を一定に保つことが可能となっている。接合部材 41は、レンズ群を囲 んでいる外周の円周方向に溝 51, 52を有しており、この溝 51, 52は、ひもや針金など を通すことにより、レンズ群を接合している接合部材 41を固定するためのものである。 また、レンズ 36は、両面が凹面であり接合面が広いため、わずかな締め付け圧力でレ ンズ曲面の変形が生じやすい。このような変形を防止するために、レンズ 36の外周厚 より狭い接合面 53を設け、接合部材 41とレンズ 36の接合幅がレンズの厚みより小さく なるようにしている。なお、本実施形態において、焦点距離を 166. 5mm,設計スポ ット径を 15 μ m、または、焦点距離を l l lmm、設計スポット径を 10 mとするがこれ に限定されない。スポット径を 15 μ m以下とした場合、約 5〜: LOO μ mの大きさの細 胞に対して照射可能である。 41 is joined. The joining members 40 and 41 are made of a polymer material (for example, a resin such as polyimide, acrylic, or polyacetal) having a larger coefficient of thermal expansion than the material of the lens barrel 50 (for example, a metal such as aluminum). It is formed in a cylindrical shape. Since plastic joining members 40 and 41 are incorporated between the lenses 31 to 36 and the lens barrel 50, an interference fit can be achieved. Further, the optical axes of the lenses 31 to 36 coincide with each other, so that the laser can be finely narrowed down over the entire scanning region. Further, even when temperature fluctuation occurs, the lens is always fastened with a constant force due to the thermal expansion of the joining members 40 and 41, so that the optical performance such as the spot diameter can be kept constant. The joining member 41 has grooves 51, 52 in the circumferential direction of the outer periphery surrounding the lens group. The grooves 51, 52 join the lens group by passing a string or a wire. This is for fixing the joining member 41. In addition, since the lens 36 is concave on both sides and has a wide joint surface, the lens curved surface is easily deformed with a slight tightening pressure. In order to prevent such deformation, a joint surface 53 narrower than the outer peripheral thickness of the lens 36 is provided, and the joint width between the joint member 41 and the lens 36 is smaller than the lens thickness. It is trying to become. In this embodiment, the focal length is 166.5 mm, the design spot diameter is 15 μm, or the focal length is ll lmm, and the design spot diameter is 10 m, but is not limited thereto. When the spot diameter is 15 μm or less, it is possible to irradiate cells with a size of about 5 to: LOO μm.
[0032] XYZステージ 17はレーザスポットの測定機器を全走査領域に移動するために用い 、 Zステージはレーザ光が結像する高さにレーザスポットの測定装置を合わせるため に用いる。 XYZステージ 17は傾斜ステージ 18によって傾斜を微調整できる。 22はガ ルバノスキャンコントローラー (基盤)である。パソコンより入力データが送られると最適 な信号に変換してガルバノメータへ回転角を与える。 24は YAGレーザ発振器電源ュ ニット(例えば、 ELFORLIGHT社製)であり、 YAGレーザ発振器本体に電源を供給 するために用いる。 25は AOM制御装置であり、ガルバノスキャンコントローラー 22か らの制御信号に従い、 AOM6を制御する。 AOM制御装置専用ソフトにより、連続出 力'ワンショット出力 *パルス出力の周波数 ·パルス幅などの設定が可能であり、本実 施形態では、パルス幅変調による約 12. 5ns (ナノ秒)の短パルス照射を行う。  [0032] The XYZ stage 17 is used to move the laser spot measuring device to the entire scanning region, and the Z stage is used to adjust the laser spot measuring device to the height at which the laser beam forms an image. The tilt of the XYZ stage 17 can be finely adjusted by the tilt stage 18. 22 is a galvano scan controller (base). When input data is sent from a personal computer, it is converted into an optimal signal and a rotation angle is given to the galvanometer. Reference numeral 24 denotes a YAG laser oscillator power supply unit (for example, manufactured by ELFORLIGHT), which is used to supply power to the YAG laser oscillator main body. Reference numeral 25 denotes an AOM control device that controls AOM 6 in accordance with a control signal from the galvano scan controller 22. With the AOM controller software, continuous output, one-shot output * Pulse output frequency, pulse width, etc. can be set, and in this embodiment, a short of approximately 12.5 ns (nanosecond) by pulse width modulation. Pulse irradiation is performed.
[0033] 以上のように構成されたレーザ治療装置について、その動作を図 4を参照しながら 説明する。なお、図 4は本実施形態におけるレーザ治療装置の要部構成を示すプロ ック図である。レーザ発振器 1から出射されたレーザ光 30は、照射制御手段 6を通過 する。そして、照射制御手段 6を通過したレーザ光 30は、反射ミラー 8によって方向転 換する。この方向転換したレーザ光は、 f 0レンズに導かれる前にビームエキスパン ダ 10の入射側の凹レンズにより拡大し、出射側の凸レンズにより平行光となる。平行 光になったレーザ光 30はレーザ走査手段 12によって走査され、集光手段 16によって レーザ光 30を微細に集光して絞り、 XYZステージ 17上の被検体 Xに照射される。  The operation of the laser treatment apparatus configured as described above will be described with reference to FIG. FIG. 4 is a block diagram showing the main configuration of the laser treatment apparatus according to this embodiment. The laser beam 30 emitted from the laser oscillator 1 passes through the irradiation control means 6. Then, the direction of the laser beam 30 that has passed through the irradiation control means 6 is changed by the reflecting mirror 8. The laser beam whose direction has been changed is expanded by the concave lens on the incident side of the beam expander 10 before being guided to the f 0 lens, and becomes parallel light by the convex lens on the output side. The laser light 30 that has become parallel light is scanned by the laser scanning means 12, and the laser light 30 is finely condensed by the condensing means 16, and then focused on the subject X on the XYZ stage 17.
[0034] 以上の本発明のレーザ治療装置において、全走査領域で微細に絞られたレーザ 光を照射することにより治療部位にのみに正確に、かつ均一に必要量を照射すること が可能である。また、正常細胞への副作用がなぐ治療部位には集光手段 16で微細 に絞られたレーザ光を照射することで放熱効果を高めることができる。さらに、レーザ を任意のパターンで走査することにより、さらに冷却効果を高めることができる。また、 レーザ光 30を AOM6に通過させることによって、瞬間的なレーザ照射が可能であり、 レーザ光 30を高速にナノ秒の時間オーダで交互にオン'オフすることができる。さらに 、レーザのスポット径は ί"θレンズ入射前のビーム径に反比例して小さくなることから、 ビームエキスパンダ 10を使用してレーザ光 30のビーム径を拡大しているため、微小の レーザのスポットを形成できる。 In the laser treatment apparatus of the present invention described above, it is possible to accurately and uniformly irradiate only a treatment site with a necessary amount by irradiating a finely focused laser beam in the entire scanning region. . In addition, the effect of heat dissipation can be enhanced by irradiating a treatment site with no side effects on normal cells with a laser beam finely focused by the condensing means 16. Furthermore, the cooling effect can be further enhanced by scanning the laser with an arbitrary pattern. In addition, instantaneous laser irradiation is possible by passing laser beam 30 through AOM6. The laser beam 30 can be alternately turned on and off at a high speed on the order of nanoseconds. Further, since the laser spot diameter is reduced in inverse proportion to the beam diameter before incidence of the ί "θ lens, the beam expander 10 is used to expand the beam diameter of the laser beam 30, so that the minute laser Spots can be formed.
[0035] また、本発明のレーザ治療装置は、例えば皮膚腫瘍 (ほくろ,イボ,黄色腫,脂漏 性角化症など),母斑 (太田母斑,扁平母斑,異所性蒙古斑),血管腫,外傷性色素 沈着症,しみ'老斑,二キビ跡などに適用することができる。  [0035] The laser treatment apparatus of the present invention includes skin tumors (mole, warts, xanthomas, seborrheic keratosis, etc.), nevus (Ota nevus, flat nevus, ectopic mongolia), It can be applied to hemangiomas, traumatic pigmentation, stains, senile plaques, and acne scars.
[0036] このように本実施形態では、レーザ光 30を発生するレーザ発振器 1と、レーザ発振 器 1から出射されたレーザ光 30のビームサイズを拡大するビームエキスパンダ 10と、 ビームエキスパンダ 10を介して入射したレーザ光 30を任意のパターンに走査するレ 一ザ走査手段 12と、レーザ走査手段 12により走査されるレーザ光 30を微細に絞る集 光手段 16と、集光手段 16により微細に集光されたレーザ光 30の照射時間を変化させ る照射制御手段 6とを備えたので、全走査領域にぉ 、て微細に絞られたレーザ光を 照射することにより治療部位にのみに効果的にレーザの必要量を照射することが可 能である。また、正常細胞への熱傷害がない。さらに、レーザを任意のパターンに走 查することによって、レーザ光が 1点の個所に長時間照射することにより、熱拡散で生 じる周辺組織への熱傷害をなくして冷却効果を高めることができる。  As described above, in this embodiment, the laser oscillator 1 that generates the laser light 30, the beam expander 10 that expands the beam size of the laser light 30 emitted from the laser oscillator 1, and the beam expander 10 are provided. Laser scanning means 12 that scans the laser beam 30 incident through the laser beam into an arbitrary pattern, a light collecting means 16 that finely narrows the laser light 30 scanned by the laser scanning means 12, and a light collecting means 16 And the irradiation control means 6 that changes the irradiation time of the focused laser beam 30, so that it is effective only for the treatment site by irradiating the laser beam that is finely focused over the entire scanning area. It is possible to irradiate the required amount of laser. In addition, there is no thermal injury to normal cells. Furthermore, by irradiating the laser in an arbitrary pattern and irradiating the laser beam to one spot for a long time, the thermal effect on the surrounding tissue caused by thermal diffusion can be eliminated and the cooling effect can be enhanced. it can.
[0037] さらに、このように本実施形態では、集光手段 16は、複数のレンズ 31, 32, 33, 34, 3 5, 36から構成される f Θレンズ 31〜36と、 f Θレンズ 31〜36を収納する鏡筒 50と、 f Θ レンズ 31〜36と鏡筒 50とを接合する接合部材 40, 41とを備えたので、レーザ光 30を微 細に絞ることが可能である。また、全走査領域において微細に絞られたレーザ光 30を 照射することにより治療部位にのみに効果的にレーザの必要量を照射することが可 能である。さらに、 f 0レンズ 31〜36を用いることにより、走査面上で線速度を一定に して 2次元の走査を可能とする。  Further, in the present embodiment, the light converging means 16 includes the f Θ lenses 31 to 36 including the plurality of lenses 31, 32, 33, 34, 3 5, and 36, and the f Θ lens 31 as described above. Since the lens barrel 50 that accommodates .about.36 and the joining members 40 and 41 that join the f.theta. Lenses 31 to 36 and the lens barrel 50 are provided, the laser beam 30 can be narrowed down finely. Further, by irradiating the laser beam 30 that is finely focused in the entire scanning region, it is possible to effectively irradiate only the treatment site with the necessary amount of laser. In addition, by using f 0 lenses 31 to 36, two-dimensional scanning can be performed with a constant linear velocity on the scanning surface.
[0038] また、このように本実施形態では、レーザ走査手段 12はガルバノミラー 12を備えた ので、ガルバノミラー 12により、ビームスポット径が微細であっても精密にビーム走査 位置を制御することができる。さらに、手動ではないため、レーザ照射量にムラが発 生する虞がない。 [0039] さらに、このように本実施形態では、照射制御手段としての音響光学素子 (AOM) 6を備え、音響光学素子 6によりレーザ光 30の照射時間を短パルス照射により約 12. 5ns (ナノ秒)単位で制御するよう構成したため、レーザ光 30の照射時間をナノ秒単 位で精密に制御しているので、細かい時間制御により患部の局所位置に与えるレー ザのエネルギーを精密に制御できる。さらに、熱が拡散する時間よりも短時間でレー ザ光 30を照射できる。 [0038] Further, in this embodiment, since the laser scanning unit 12 includes the galvanometer mirror 12, the beam scanning position can be precisely controlled by the galvanometer mirror 12 even if the beam spot diameter is fine. it can. Furthermore, since it is not manual, there is no risk of unevenness in the amount of laser irradiation. [0039] Furthermore, in this embodiment, the acoustooptic device (AOM) 6 is provided as an irradiation control means as described above, and the acoustooptic device 6 causes the irradiation time of the laser light 30 to be about 12.5 ns (nanosecond). Since it is configured to control in units of seconds, the irradiation time of the laser beam 30 is precisely controlled in nanoseconds, so that the laser energy given to the local position of the affected area can be precisely controlled by fine time control. Furthermore, the laser beam 30 can be irradiated in a shorter time than the time during which heat is diffused.
[0040] また、このように本実施形態では、集光手段 16により集光されたレーザ光 30のスポッ ト径が、 15 m以下であるので、効果的に患部にレーザを必要量照射することが可 能である。さらに、冷却効果が高ぐし力も治療部位にのみ正確にレーザ治療を施す ことができる。また、治療対象とする病巣の周辺の正常組織への熱傷害を少なくする ことができる。  [0040] Further, in this embodiment, since the spot diameter of the laser beam 30 condensed by the condensing means 16 is 15 m or less, a necessary amount of laser can be effectively irradiated onto the affected area. Is possible. In addition, the cooling effect is high and the laser treatment can be accurately performed only on the treatment site. In addition, thermal injury to normal tissues around the lesion to be treated can be reduced.
[0041] なお、本発明は上記実施形態に限定されるものではなぐ本発明の要旨の範囲内 において種々の変形実施が可能であり、例えば本実施形態では、 Nd:YAGレーザ 光源を使用したが、例えば COレ レ  [0041] The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. For example, in this embodiment, an Nd: YAG laser light source is used. For example, CO
2 ーザ光源など、形成外科用の様々な ーザ光源を 使用できる。また、本実施例では、接合部材 40, 41は分離していた力 一体としてもよ い。さら〖こ、別の実施形態として、本発明のレーザ治療装置に、 CCDカメラやレーザ 顕微鏡などの患部の位置を高精度に特定するための画像観察手段を配設してもよ い。画像観察手段を設けることによって、例えば血管種に対してレーザ治療を適用 する場合、 CCD観察やレーザ走査検出を行って血管の位置のみを高精度に特定し 、ガルバノミラー 12により精密にレーザのビーム走査位置を制御し、血管のみに対し てレーザ照射を行うことができ、正常な組織に損傷を与える虞がな 、。  2 A variety of plastic light sources for plastic surgery, such as laser light sources, can be used. In the present embodiment, the joining members 40 and 41 may be integrated with the separated force. Furthermore, as another embodiment, the laser treatment apparatus of the present invention may be provided with an image observation means for specifying the position of the affected part such as a CCD camera or a laser microscope with high accuracy. By providing image observation means, for example, when laser treatment is applied to blood vessel types, only the position of the blood vessel is identified with high accuracy by performing CCD observation or laser scanning detection, and the laser beam is precisely detected by the galvanometer mirror 12. The scanning position can be controlled and only the blood vessels can be irradiated with laser, so there is no risk of damaging normal tissue.
実施例 1  Example 1
[0042] 図 5に示すように 12mm四方のレーザ走査領域におけるスポット径を測定した。測 定位置は、〇印で示すように斜め右上方向と、△印で示すように斜め右下方向への 各 13点である。スポット径とは図 6に示すように、ビーム強度がピーク値の lZe2 (13. 5%)のところのビームの径である。スポット径の測定装置としてビームスキャンを使用 した。スポット径は X軸と y軸の両方を測定し、その平均値とした。パソコンに回転角指 令値を入力することにより、ガルバノミラーを所定の角度回転させ、レーザ光を測定 位置に移動させた。次に、 XYステージをレーザ光の座標に移動させ、ビームスキヤ ンでスポット径を測定した。ガルバノミラーへのレーザ光の入射径は直径 13mmとし た。 As shown in FIG. 5, the spot diameter in a 12 mm square laser scanning region was measured. The measurement positions are 13 points each in the upper right direction as shown by ◯ and in the lower right direction as shown by △. As shown in Fig. 6, the spot diameter is the beam diameter where the beam intensity is at the peak value of lZe 2 (13.5%). A beam scan was used as a spot diameter measurement device. The spot diameter was measured on both the X-axis and y-axis, and the average value was taken. By inputting the rotation angle command value to the personal computer, the galvanometer mirror is rotated by a predetermined angle to measure the laser beam. Moved to position. Next, the XY stage was moved to the laser beam coordinates, and the spot diameter was measured with a beam scan. The diameter of the laser beam incident on the galvanometer mirror was 13 mm.
[0043] 測定結果を図 7に示す。図 7より、レーザのスポット径は、測定範囲のすべての領域 で 11〜13 m程度の値が得られることが確認された。  [0043] Fig. 7 shows the measurement results. From Fig. 7, it was confirmed that the laser spot diameter was about 11 to 13 m in all the measurement range.
実施例 2  Example 2
[0044] 次に、直径約 12 mに集光したレーザ光と、直径 lmmのレーザ光を照射した場合 の、照射後の冷却効果を調べた。解析は汎用有限要素解析ソフト Marc (Ver. 7. 3) を用いて 2次元問題として行った。解析に用いたメッシュの一部を図 8に示す。熱伝 導係数、比熱、密度は全て表皮の物性値とし、表皮温度は 36. 5°C、熱を与える幅 はスポット径である 12 mか lmmとした。熱を与える深さは皮膚表面から 0. 25mm 、レーザ走査速度は OmmZsすなわちレーザ走査は行わなかった。雰囲気温度は 2 5°C、皮膚表面上の雰囲気はアンビエント空調として、熱伝達率を 3. OWZm2'Kとし た。熱はレーザのエネルギー (W/cm2)として与え、皮膚表面上では本発明のレーザ 治療装置の最大パワー密度 79. 6kWZcm2とし、皮膚表面上での反射、皮膚内で の散乱'吸収過程を考慮し、皮膚の深さ位置 0. 25mmにおいてエネルギー 51. Ok WZcm2を与えた。どちらの場合も 200 sの時間レーザを照射した。 [0044] Next, the cooling effect after irradiation when laser light focused to a diameter of about 12 m and laser light with a diameter of 1 mm were irradiated was examined. The analysis was performed as a two-dimensional problem using the general-purpose finite element analysis software Marc (Ver. 7.3). Figure 8 shows a part of the mesh used in the analysis. The heat transfer coefficient, specific heat, and density were all the physical properties of the skin, the skin temperature was 36.5 ° C, and the heat application width was the spot diameter of 12 m or lmm. The depth of heat application was 0.25 mm from the skin surface, and the laser scanning speed was OmmZs, that is, no laser scanning was performed. The atmosphere temperature was 25 ° C, the atmosphere on the skin surface was ambient air conditioning, and the heat transfer coefficient was 3. OWZm 2 'K. Heat is given as laser energy (W / cm 2 ), and the maximum power density of the laser treatment device of the present invention is 79.6 kWZ cm 2 on the skin surface, and reflection on the skin surface, scattering in the skin 'absorption process is performed. In consideration, energy 51. Ok WZcm 2 was given at a skin depth of 0.25 mm. In both cases, the laser was irradiated for 200 s.
[0045] 解析した結果を図 9に示す。縦軸は温度、横軸は時間である。どちらの場合も、レ 一ザ照射開始から照射終了の 200 sまで温度が上昇した。直径 lmmのレーザ照 射の場合は、最高で温度が約 67. 5°Cまで上昇した。直径約 12 mのレーザ照射の 場合は、最高温度が約 65°Cであった。その後、温度が降下するが、直径 で のレーザ照射の場合のほうが、 1ms後には約 5°C程度温度が余分に降下した。すな わち、レーザ光を極細に絞った場合のほうが冷却効果が高いことが確認された。さら に、約 60〜65°Cは、蛋白質変性および凝固が開始する温度であり、熱を加えている 周辺部は火傷開始温度 65°Cよりも小さくなつているのが確認された。したがって、熱 を与えて!/ヽる部分は病変組織を熱破壊する温度まで上昇し、周辺組織に熱影響を 与えていないことがわ力る。  [0045] The analysis results are shown in FIG. The vertical axis is temperature, and the horizontal axis is time. In both cases, the temperature increased from the start of laser irradiation to 200 s after the end of irradiation. In the case of laser irradiation with a diameter of 1 mm, the temperature rose to a maximum of approximately 67.5 ° C. In the case of laser irradiation with a diameter of about 12 m, the maximum temperature was about 65 ° C. After that, the temperature dropped, but in the case of laser irradiation with a diameter, the temperature dropped by about 5 ° C after 1 ms. In other words, it was confirmed that the cooling effect was higher when the laser beam was narrowed down. Furthermore, about 60-65 ° C was the temperature at which protein denaturation and coagulation began, and it was confirmed that the peripheral area where heat was applied was lower than the burn initiation temperature of 65 ° C. Therefore, it can be seen that the part that gives heat! / Swells rises to a temperature at which the affected tissue is thermally destroyed and does not affect the surrounding tissue.
実施例 3 [0046] 本実施例では、レーザ走査のパターン例を示す。以下に示すレーザ照射のパター ンは一例であり、これに限定されるものではない。図 10から図 12は、上記実施例で 説明した本発明のレーザ治療装置のレーザ照射領域である。この領域すべてが治 療すべき対象の場合には、レーザをこの領域すべてに照射する必要がある。 Example 3 In the present embodiment, a pattern example of laser scanning is shown. The laser irradiation pattern shown below is an example, and the present invention is not limited to this. 10 to 12 show the laser irradiation region of the laser treatment apparatus of the present invention described in the above embodiment. If all of this area is the target to be treated, it is necessary to irradiate all of this area with the laser.
[0047] 図 10では、レーザ照射をスポット状に行い、直線状にレーザを走査する順次走査 の例を示している。図中の丸の中の数字はレーザ照射の順番を表している。図で示 している例では、レーザのスポットが重ならないように描いている力 各スポットが部分 的に重なっても良いし、また多重にスポットを重ねても良いし、連続的にレーザを照 射しても良い。 1列の走査が終わると横にずらして、 2列目を直線状に走査している。 この際、図の例では 1列目と 2列目は重なっていないが、部分的に重なっても良い。  [0047] FIG. 10 shows an example of sequential scanning in which laser irradiation is performed in a spot shape and the laser is scanned linearly. The numbers in the circles in the figure represent the order of laser irradiation. In the example shown in the figure, the force drawn so that the laser spots do not overlap. The spots may partially overlap, or multiple spots may be overlapped, or the lasers may be irradiated continuously. You may shoot. When the scanning of one row is finished, it is shifted to the side and the second row is scanned linearly. In this case, the first and second rows do not overlap in the example in the figure, but they may overlap partially.
[0048] 図 11では、各列の間に隙間をあけた線飛び越し走査の例を示している。このように 線飛び越し走査することで、レーザ光が 1点の個所に治療に最適な時間照射するこ とにより、熱拡散で生じる周辺組織への熱傷害をなくして冷却効果を高めることがで きる。また、微細にレーザを集光することで生じる冷却効果をさらに高めることができ る。隙間は 1列分に限らず任意の隙間を空けることができる。以上の説明においては 、レーザ走査方向は縦になっている力 横方向に走査してもよいし、任意の角度だけ 傾けて走査しても良い。  FIG. 11 shows an example of interlaced scanning with a gap between each row. By performing interlaced scanning in this manner, the laser beam can be irradiated at a single point for an optimal time for treatment, thereby eliminating the thermal injury to the surrounding tissue caused by thermal diffusion and enhancing the cooling effect. . In addition, the cooling effect produced by finely focusing the laser can be further enhanced. The gap is not limited to one row, and any gap can be made. In the above description, the laser scanning direction may be a scanning force that is a vertical force, or may be scanned at an arbitrary angle.
[0049] 図 12では、数字で示したように一番目のスポットから巿松模様のようにレーザを照 射する巿松模様走査の例を示している。レーザのスポットの間隔は、均等でもよく不 均一でも良い。また、照射の順番は規則的でもランダムでも良い。このように巿松模 様走査することによって、レーザ光が 1点の個所に治療に最適な時間照射することに より、熱拡散で生じる周辺組織への熱傷害をなくしてより冷却効果を高めることができ る。また、微細に集光したレーザの冷却効果を高めることができる。さらに、従来は、 レーザの照射時間とパワーだけが制御パラメータであつたが、本発明の装置を使用 することにより、レーザ照射の空間的パターンも変えることができ、これまでにない治 療パターンを開発することができる。  FIG. 12 shows an example of a pine pattern scanning in which a laser is irradiated like a pine pattern from the first spot as indicated by numerals. The laser spot spacing may be uniform or non-uniform. Further, the order of irradiation may be regular or random. By scanning like this, it is possible to eliminate the thermal injury to the surrounding tissue caused by thermal diffusion and improve the cooling effect by irradiating the laser beam to one point for the optimal time for treatment. You can. In addition, the cooling effect of the finely focused laser can be enhanced. Furthermore, conventionally, only the laser irradiation time and power were the control parameters, but by using the apparatus of the present invention, the spatial pattern of the laser irradiation can be changed, and an unprecedented treatment pattern can be obtained. Can be developed.

Claims

請求の範囲 The scope of the claims
[1] レーザ光を発生するレーザ発振器と、前記レーザ発振器力 出射されたレーザ光の ビームサイズを拡大するビームエキスパンダと、前記ビームエキスパンダを介して入 射したレーザ光を任意のパターンに走査するレーザ走査手段と、前記レーザ走査手 段により走査されるレーザ光を微細に絞る集光手段と、前記集光手段により微細に 集光されたレーザ光の照射時間を制御する照射制御手段とを備えたことを特徴とす るレーザ治療装置。  [1] A laser oscillator that generates laser light, a beam expander that expands the beam size of the laser light emitted from the laser oscillator force, and a laser beam incident through the beam expander is scanned in an arbitrary pattern. A laser scanning unit that performs focusing, a condensing unit that finely narrows the laser beam scanned by the laser scanning unit, and an irradiation control unit that controls the irradiation time of the laser beam finely condensed by the condensing unit. A laser treatment apparatus characterized by comprising.
[2] 前記集光手段は、複数のレンズから構成される f Θレンズと、前記 f Θレンズを収納す る鏡筒と、前記 f Θレンズと前記鏡筒とを接合する接合部材とを備えたことを特徴とす る請求の範囲第 1項記載のレーザ治療装置。  [2] The condensing unit includes an fΘ lens composed of a plurality of lenses, a lens barrel that houses the fΘ lens, and a joining member that joins the fΘ lens and the lens barrel. 2. The laser treatment apparatus according to claim 1, wherein the laser treatment apparatus is characterized in that:
[3] 前記レーザ走査手段はガルバノミラーを備えたことを特徴とする請求の範囲第 1項記 載のレーザ治療装置。  [3] The laser treatment device according to [1], wherein the laser scanning means includes a galvanometer mirror.
[4] 前記照射制御手段は音響光学素子を備え、前記音響光学素子によりレーザ光の照 射時間をナノ秒単位で制御するよう構成したことを特徴とする請求の範囲第 1項記載 のレーザ治療装置。  [4] The laser treatment according to claim 1, wherein the irradiation control means includes an acoustooptic device, and the acoustooptic device is configured to control the irradiation time of the laser beam in nanosecond units. apparatus.
[5] 前記集光手段により集光されたレーザ光のスポット径が、 15 μ m以下であることを特 徴とする請求の範囲第 1項記載のレーザ治療装置。  5. The laser treatment apparatus according to claim 1, wherein the spot diameter of the laser beam condensed by the condensing means is 15 μm or less.
[6] 請求の範囲第 1〜5項のいずれかに記載のレーザ治療装置であって、前記レーザ走 查手段による走査が、市松模様走査であることを特徴とするレーザ治療装置。 6. The laser treatment apparatus according to any one of claims 1 to 5, wherein the scanning by the laser scanning means is a checkered pattern scanning.
[7] 請求の範囲第 1〜5項のいずれかに記載のレーザ治療装置であって、前記レーザ走 查手段による走査が、線飛び越し走査であることを特徴とするレーザ治療装置。 7. The laser treatment apparatus according to any one of claims 1 to 5, wherein the scanning by the laser scanning means is a line jump scanning.
PCT/JP2005/015629 2004-09-01 2005-08-29 Laser therapeutic device WO2006030622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535117A JPWO2006030622A1 (en) 2004-09-01 2005-08-29 Laser therapy equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004254589 2004-09-01
JP2004-254589 2004-09-01

Publications (1)

Publication Number Publication Date
WO2006030622A1 true WO2006030622A1 (en) 2006-03-23

Family

ID=36059877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015629 WO2006030622A1 (en) 2004-09-01 2005-08-29 Laser therapeutic device

Country Status (2)

Country Link
JP (1) JPWO2006030622A1 (en)
WO (1) WO2006030622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508898B2 (en) 2014-08-28 2016-11-29 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285570A (en) * 1986-06-04 1987-12-11 Konica Corp Semiconductor laser protection circuit
JPH10314212A (en) * 1998-04-06 1998-12-02 Topcon Corp Photocoagulation device
JP2001514057A (en) * 1997-08-29 2001-09-11 アサハ メディコ エ/エス Tissue treatment device
JP2003199782A (en) * 2001-12-28 2003-07-15 Nidek Co Ltd Cornea operation device
JP2003532483A (en) * 2000-05-08 2003-11-05 オプトテック リミテッド Non-perforated filtration surgery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422710B2 (en) * 1999-01-19 2003-06-30 科学技術振興事業団 Optical lens joining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285570A (en) * 1986-06-04 1987-12-11 Konica Corp Semiconductor laser protection circuit
JP2001514057A (en) * 1997-08-29 2001-09-11 アサハ メディコ エ/エス Tissue treatment device
JPH10314212A (en) * 1998-04-06 1998-12-02 Topcon Corp Photocoagulation device
JP2003532483A (en) * 2000-05-08 2003-11-05 オプトテック リミテッド Non-perforated filtration surgery
JP2003199782A (en) * 2001-12-28 2003-07-15 Nidek Co Ltd Cornea operation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508898B2 (en) 2014-08-28 2016-11-29 Samsung Electronics Co., Ltd. Nanostructure semiconductor light emitting device

Also Published As

Publication number Publication date
JPWO2006030622A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
US11172987B2 (en) Method and apparatus for selective treatment of biological tissue
JP5458250B2 (en) Method and apparatus for performing skin therapy EMR treatment
US8308717B2 (en) Thermal energy applicator
JP4056091B2 (en) Dermatological treatment method and apparatus
EP3013213B1 (en) Measurement device for skin properties and non-invasive treatment device
US20070239147A1 (en) Method, system and apparatus for dermatological treatment and fractional skin resurfacing
US20190038353A1 (en) Device for irradiating the skin
US20180271597A1 (en) Skin Treatment Apparatus And Method
JP7408906B2 (en) Diffractive optics for tissue treatment using EMR
WO2006030622A1 (en) Laser therapeutic device
Jaunich et al. Ultra-short pulsed laser tissue ablation using focused laser beam
IL180030A (en) Thermal energy applicator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535117

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase