WO2006030569A1 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
WO2006030569A1
WO2006030569A1 PCT/JP2005/010877 JP2005010877W WO2006030569A1 WO 2006030569 A1 WO2006030569 A1 WO 2006030569A1 JP 2005010877 W JP2005010877 W JP 2005010877W WO 2006030569 A1 WO2006030569 A1 WO 2006030569A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
circuit
voltage
discharge lamp
diode
Prior art date
Application number
PCT/JP2005/010877
Other languages
French (fr)
Japanese (ja)
Inventor
Norikazu Tateishi
Takashi Ohsawa
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2006030569A1 publication Critical patent/WO2006030569A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices

Definitions

  • the present invention relates to a discharge lamp lighting device that supplies DC power for a long time at the start of lighting of a discharge lamp.
  • a discharge lamp lighting device is provided with an inverter circuit for applying an AC voltage to a discharge lamp, and an H-bridge inverter circuit is generally used.
  • An H-bridge type inverter circuit is composed of a switching element that outputs a high potential side of an AC voltage and a switching element that outputs a low potential side.
  • the switching element includes, for example, a field effect transistor (hereinafter referred to as FET). Is used.
  • FET field effect transistor
  • An H-bridge inverter circuit equipped with a bootstrap circuit forms a bootstrap circuit when the high-potential side FET is OFF and the low-potential side FET connected in series to the high-voltage side FET is ON.
  • the capacitor is charged, and the voltage generated in the capacitor due to this charging is applied to the gate of the high-side FET in the ON state to stabilize the ON state of the FET, and AC power is output to the discharge lamp (for example, (See Patent Document 1).
  • a drive circuit using a full bridge circuit in which a bootstrap circuit is connected to the gate of a transistor of the full bridge circuit.
  • This circuit is equipped with an auxiliary capacitor that compensates for the charge stored in the capacitor of the bootstrap circuit when the ONZOFF state of the opposing transistor is switched in the full bridge circuit.
  • the auxiliary capacitor of the bootstrap circuit connected to its own gate is charged. In this circuit configuration, the charging current is not supplied to the auxiliary capacitor unless full bridge circuit power AC power is output (see, for example, Patent Document 2).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-166258 (page 4, FIG. 2)
  • Patent Document 2 Japanese Patent Laid-Open No. 11-69842 (Pages 4, 5 and 1) [0005]
  • the conventional discharge lamp lighting device is configured as described above. Therefore, the ON state of the high potential side switching element is longer than that during steady lighting until the discharge phenomenon is stabilized at the start of lighting of the discharge lamp.
  • it is necessary to provide a capacitor with a large capacity, and it is necessary to secure a space for mounting a large-capacitance capacitor, and there is a problem that the cost increases due to the provision of the large-capacity capacitor.
  • the present invention has been made to solve the above-described problems, and is a discharge lamp that can output DC power for a long time at the start of lighting of the discharge lamp without using a large-capacity capacitor.
  • the object is to obtain a lighting device.
  • a discharge lamp lighting device includes a bootstrap circuit capacitor as a power supply for securing a gate voltage of a high-potential side switching element constituting an H-bridge inverter circuit, and an H-bridge inverter circuit connected to the capacitor. And a charging means for supplying a charging current to the capacitor at a potential higher than the high potential side.
  • FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention.
  • FIG. 2A is a circuit diagram showing a part of an H-bridge inverter circuit of the discharge lamp lighting device according to Embodiment 1.
  • FIG. 2B is an explanatory diagram showing the operating state of the high potential side switching transistor and the current flowing through the capacitor of the bootstrap circuit.
  • FIG. 3A is an explanatory diagram showing a part of a circuit of a discharge lamp lighting device according to Embodiment 1.
  • FIG. 3B is an explanatory view showing a part of the circuit of the discharge lamp lighting device according to Embodiment 1.
  • FIG. 3C is an explanatory diagram showing a current flowing through the diode and a voltage across the diode.
  • FIG. 4 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention.
  • FIG. 5 is a circuit diagram showing a schematic configuration of a discharge lamp lighting device according to Embodiment 3 of the present invention.
  • FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention.
  • Power supply 1 is a DC power supply such as a battery, and is connected to supply DC voltage to DCZDC converter (converter circuit) 2 and the like.
  • the DCZDC converter 2 is connected so that its output voltage is supplied to an H-bridge inverter circuit (hereinafter abbreviated as an inverter) 3.
  • the inverter 3 is connected to supply load power to the HID bulb (discharge lamp) 6 through the igniter 5.
  • the high potential side of power supply 1 is connected to one end of the primary winding of transformer 7 of DCZDC converter 2.
  • the other end of the primary winding of the transformer 7 is connected to the drain of a transistor switch 8 which is a MOS transistor, for example, and the source of the transistor switch 8 is connected to the low potential side of the power source 1.
  • An oscillator equal force pulse signal (not shown) is input to the gate of the transistor switch 8.
  • One end of the secondary winding of the transformer 7 is connected to the anode of the diode 9 and one end of the capacitor 11.
  • One end of the capacitor 10 is connected to the power sword of the diode 9.
  • the other end of the capacitor 10 is connected to the other end of the secondary winding of the transformer 7.
  • the connection point between the secondary winding of the capacitor 10 and the transformer 7 is grounded.
  • the DC / DC converter 2 includes a transformer 7, a transistor switch 8, a diode 9, and a capacitor 10 connected in this way.
  • Capacitor 11 having one end connected to diode 9 of DCZDC converter 2 has the other end connected to a connection point between the force sword of diode 12 and the anode of diode 13.
  • One end of a capacitor 14 is connected to the anode of the diode 12.
  • the other end of the capacitor 14 is connected to the power sword of the diode 13.
  • the connection point between the diode 12 and the capacitor 14 is connected to the connection point between the capacitor 10 and the diode 9 in the DC / DC converter 2.
  • the capacitor 11, the diodes 12, 13 and the capacitor 14 connected in this way constitute a high potential power supply unit (charging means, booster circuit) 4.
  • the high potential power supply 4 and the DCZDC converter 2 are shown separately. You can configure source 4 as part of DCZDC converter 2! /.
  • the DCZDC converter 2 is supplied with electric power supplied to the drains of switching transistors 15 and 16, which will be described later, and a capacitor (charger) 20 and 25 and a resistor (charger and current limiter) 21 and 26 through a capacitor ( Power is output to the capacitors 23 and 28 of the bootstrap circuit.
  • the capacitors 23 and 28 function as a power supply for securing the gate voltage of the high-potential side switching element constituting the H-bridge inverter circuit.
  • the inverter 3 forms an H-bridge type inverter circuit.
  • the switching transistors 15 to 18 of N-type MOS transistors are used as switching elements.
  • a bootstrap circuit configured as described later is connected to the gates of the switching transistors 15 and 16 that output the power on the high potential side.
  • a voltage Vcc is applied from the power source 1 to the anode of the diode 19.
  • the power sword of the diode 19 is connected to one end of the resistors 21 and 22 and the capacitor 23.
  • the other end of resistor 21 is connected to a diode 20 force sword.
  • the anode of the diode 20 is connected to the connection point between the diode 13 and the capacitor 14 of the high potential power supply unit 4.
  • the other end of the resistor 22 is connected to the gate of the switching transistor 15.
  • a connection point between the resistor 22 and the gate of the switching transistor 15 is connected to the collector of the drive transistor 31.
  • a resistor 35 is connected to the base of the drive transistor 31.
  • the drain of the switching transistor 15 is connected to the connection point of the diode 9 and the capacitor 10 that become the power output section of the DC / DC converter 2.
  • the source of the switching transistor 15 is connected to the other end of the capacitor 23 and the drain of the switching transistor 17. Further, this connection point serves as an AC power output section of the inverter 3 and is connected to one end side of the HID valve 6 through the igniter 5.
  • the source of the switching transistor 17 is grounded.
  • the gate of the switching transistor 17 is connected to one end of the resistor 29 and the collector of the drive transistor 32.
  • the other end of the resistor 29 is connected to the application terminal of the power source 1 voltage Vcc.
  • One end of a resistor 36 is connected to the base of the drive transistor 32.
  • a voltage Vcc is applied from the power source 1 to the anode of the diode 24.
  • the power sword of the diode 24 is connected to one end of the resistors 26 and 27 and the capacitor 28.
  • the other end of resistor 26 is connected to a diode 25 force sword.
  • the anode of the diode 25 is It is connected to the connection point between the diode 13 and the capacitor 14.
  • the other end of the resistor 27 is connected to the gate of the switching transistor 16.
  • the connection point between the resistor 27 and the gate of the switching transistor 16 is connected to the collector of the drive transistor 33.
  • a resistor 37 is connected to the base of the drive transistor 33.
  • the drain of the switching transistor 16 is connected to the connection point between the diode 9 and the capacitor 10 of the DC / DC converter 2.
  • the source of the switching transistor 16 is connected to the other end of the capacitor 28 and the drain of the switching transistor 18. Further, this connection point becomes an output part of the inverter 3 and is connected to the other end of the
  • the source of the switching transistor 18 is grounded.
  • the gate of the switching transistor 18 is connected to one end of the resistor 30 and the collector of the drive transistor 34.
  • the other end of resistor 30 is connected to the voltage Vcc application terminal of power supply 1.
  • One end of a resistor 38 is connected to the base of the drive transistor 34.
  • the other end of the resistor 35 and the other end of the resistor 38 are connected, and a drive signal a is input to this connection point from a control means (not shown). Further, the other end of the resistor 36 and the other end of the resistor 37 are connected, and a control means equal force drive signal b (not shown) is input to this connection point.
  • the drive transistors 31 to 34 also have, for example, NPN bipolar transistor power, and the emitters are grounded.
  • the inverter 3 of the discharge lamp lighting device according to the first embodiment is configured as described above, and the high-potential side switching transistor 15 is a boot configured by a diode 19, a resistor 22, a capacitor 23, a transistor 31, and a resistor 35. It is driven by a strap circuit. Similarly, the high potential side switching transistor 16 is driven by a bootstrap circuit including a diode 24, a resistor 27, a capacitor 28, a transistor 33, and a resistor 37.
  • the DCZDC converter 2 supplied with the voltage Vcc of the DC voltage 12 [V] from the power source 1 performs the ONZOFF operation based on the pulse signal input to the transistor switch 8 connected to the primary winding of the transformer 7 from the external force.
  • the current flowing in the primary side winding is turned ON and OFF, and the induced electromotive force is generated in the secondary side winding of the transformer 7.
  • the current generated in the secondary winding of transformer 7 is rectified in a fixed direction by diode 9 and Smoothed by the capacitor 10.
  • the DCZDC converter 2 outputs DC power boosted to, for example, 85 V from the connection point between the power sword of the diode 9 and the capacitor 10.
  • the DC power output from the DC / DC converter 2 is input to the inverter 3 and supplied to the drains of the transistors 15 and 16.
  • the voltage at which the switching transistor 15 is turned ON by the ONZOFF operation of the drive transistor 31 (hereinafter, each switching transistor 15 to 18 is turned ON) is connected to the gate of the high potential side switching transistor 15 of the inverter 3 Either a gate voltage is described as an ON voltage) or a voltage at which the switching transistor 15 is turned off (hereinafter, a gate voltage at which each switching transistor 15 to 18 is turned off is referred to as an OFF voltage). Is done.
  • the ONZOFF state of the drive transistor 31 is set by a drive signal a input to the base of the drive transistor 31 via the resistor 35.
  • An ON voltage or an OFF voltage is applied to the gate of the high potential side switching transistor 16 by the ONZ OFF operation of the drive transistor 33.
  • the ONZOFF state of the drive transistor 33 is set by the drive signal b input to the base of the drive transistor 33 through the resistor 37.
  • the gate voltage of the low potential side switching transistor 17 connected in series to the high potential side switching transistor 15 is the same as the voltage Vcc applied through the resistor 29 by the ON / OFF operation of the drive transistor 32. Set to ON voltage or OFF voltage.
  • the ONZOFF state of the drive transistor 32 is set by a drive signal b input to the base of the drive transistor 32 via the resistor 36.
  • the gate voltage of the low-potential side switching transistor 18 connected in series to the high-potential side switching transistor 16 is the voltage Vcc applied via the resistor 30.
  • the ONZOFF state of the drive transistor 34 is set by a drive signal a input to the base of the drive transistor 34 via the resistor 38.
  • the high potential side switching transistor 15 and the low potential side switching transistor 18 are ONZOFF by the drive signal a, and the high potential side switching transistor 16 and the low potential side switching transistor 17 are ONZOFF by the drive signal b. Operation is controlled, high potential side Switching transistor 15 and low potential ⁇ jSwitching transistor 18 is driven to be turned on or off at the same time, and high potential side switching transistor 16 and low potential side switching transistor 17 are turned on or off at the same time. Driven by.
  • Drive signal a and drive signal b indicate ON state or OFF state alternately, and high-potential side switching transistors 15 and 16 are alternately turned ON or OFF, and each source of switching transistors 15 and 16
  • the high-potential side load current is alternately output from the low-side switching transistors 17 and 18, and the drains of the switching transistors 17 and 18 are alternately connected to the ground.
  • Power The HID valve 6 is supplied with power.
  • FIG. 2A is a circuit diagram showing a part of an H-bridge type inverter circuit of the discharge lamp lighting device according to Embodiment 1.
  • the same reference numerals are used for parts that are the same as or equivalent to those shown in FIG.
  • This figure is a circuit diagram in which a part of the bootstrap circuit connected to the high potential side switching transistor 15 shown in FIG. 1 is extracted.
  • FIG. 2B is an explanatory diagram showing the operating state of the high-potential side switching transistor and the current flowing through the capacitor of the bootstrap circuit.
  • This figure shows, for example, the current Ic flowing in the capacitor 23 in each ONZOFF state of the high potential side switching transistor 15. It is a thing.
  • the switching transistor 15 is driven to the ON state, the electrostatic capacity existing between the gate Z and the source of the switching transistor 15 is charged, so that the energy accumulated in the capacitor 23 is absorbed and the capacitor 23 Current Ic flows out sharply.
  • the current Ic flowing out of the capacitor 23 flows in the circuit as shown by the solid line arrow X in FIG. 2A, and when the switching transistor 15 is driven to the ON state, it becomes approximately the gate current of the switching transistor 15.
  • the current Ic becomes a charging current flowing into the capacitor 23.
  • a current Ic flows through the circuit as shown by a broken arrow Y in FIG. 2A, and a current supplied from the power source 1 through the diode 19 flows into the capacitor 23 and charging is performed.
  • the capacitor 23 thus supplements the power energy released in the ON state of the switching transistor 15.
  • the output power of the high potential power supply unit 4 is supplied to the capacitor 23 via the resistor 21 and the diode 20 as shown in FIG. 1 and FIG. 2A.
  • the capacitor 23 is applied to the drain of the switching transistor 15 so that the capacitor 23 is charged even when the switching transistor 15 is turned on and the potential at the connection point between the switching transistor 15 and the capacitor 23 becomes high. Or a source potential of the switching transistor 15, that is, a potential higher than the high potential side of the load power is applied. Further, the high potential as described above is always applied to the capacitor 23 from the high-potential power supply unit 4 while the inverter 3 is operating, and a current limited by the resistor 21 flows.
  • the capacitor 23 is continuously charged, and the voltage force S across the capacitor 23 is prevented from becoming small.
  • the voltage across the capacitor 23 is maintained at a voltage value that can keep the switching transistor 15 ON.
  • the bootstrap circuit including the capacitor 23 compensates for the current Ic flowing out of the capacitor 23 even after the energy is absorbed by the capacitance between the gate Z source of the switching transistor 15 and the gate of the switching transistor 15.
  • the leakage current and the current consumption of the bootstrap circuit that drives the switching transistor 15 can continue to flow, and the gate voltage of the switching transistor 15 is secured.
  • the ON time of the switching transistor 15 can be kept long without depending on the capacitance of the capacitor 23, and the drive signal a
  • the ON state of the switching transistor 15 can be maintained until the ON state force is switched to the OFF state.
  • the power of the switching transistor 15, the bootstrap circuit connected to the switching transistor 15, the capacitor 23, the diode 20, and the resistor 21 of the circuit are described.
  • the high-potential side switching transistor 16 paired with the switching transistor 15 operates in the same manner, and the bootstrap circuit connected to the switching transistor 16 and the capacitor 28 corresponding to the capacitor 23 operate in the same manner as described above.
  • the diode 24 in the bootstrap circuit that drives the switching transistor 16 corresponds to the diode 19
  • the resistor 27 corresponds to the resistor 22
  • the diode 25 corresponds to the diode 20
  • the resistor 26 corresponds to the resistor 21.
  • the potential applied from the resistor 21 to the capacitor 23 is charged to the capacitor 23 so that the potential is high as described above.
  • the current flowing from the resistor 21 to the capacitor 23 is the leakage current of the gate of the switching transistor 15.
  • the current consumed by the bootstrap circuit are equal to or greater than the combined current, the current limited by the resistor 21 is very small. The same applies to the current flowing from the resistor 26 to the capacitor 28. In this way, by suppressing the charging current constantly flowing to the capacitors 23 and 28, the load on the high potential power supply unit 4 and the DCZDC converter 2 is reduced.
  • the capacitor 23 is always connected via the diode 20 and the resistor 21 and the capacitor 28 is connected to the diode 28 while the inverter 3 is operating as described above. Charging is performed through 25 and resistor 26. This operation eliminates the need to increase the capacities of capacitors 23 and 28 in order to keep the high-side switching transistors 15 and 16 on for a long time at the start of lighting. Small and large capacitors 23 and 28 can be used in the bootstrap circuit.
  • 3A and 3B are explanatory diagrams showing a part of the circuit of the discharge lamp lighting device according to Embodiment 1.
  • FIG. The same parts as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • 3A shows a diode 9 and a capacitor 10 connected to the secondary winding of the transformer 7 of the DC / DC converter
  • FIG. 3B shows a diode 9 connected to the secondary winding of the transformer 7.
  • Capacitor 10, capacitor 11, diodes 12, 13 and capacitor 14 constituting the high-potential power supply unit 4.
  • FIG. 3C is an explanatory diagram showing the current flowing through the diode and the voltage across the diode. This figure shows the change with time of the current ID flowing through the diode 9 and the voltage VD across the diode 9 in the circuit shown in FIG. 3A.
  • the induced electromotive force generated in the secondary winding of the transformer 7 of the DCZDC converter 2 is rectified by the diode 9, and a current ID as shown in FIG. 3C flows.
  • a current ID as shown in FIG. 3C flows.
  • a voltage VD as shown in FIG.
  • the forward current ID flows through the diode 9
  • a voltage drop occurs at both ends of the diode 9
  • the voltage VD shown in FIG. 3C is generated.
  • the induced electromotive force generated in the secondary winding of the transformer 7 regenerates energy through the diode 9, that is, when the induced electromotive force is generated so that a reverse current flows through the diode 9,
  • This reverse current flows when the direction in which the induced electromotive force is generated changes. As shown in Fig. 3C, the reverse current ID is cut off in diode 9 and converges to 0 [A]. A surge voltage represented as an undershoot portion of a rectangular wave is applied to the VD waveform.
  • This surge voltage is generated when, for example, a voltage of 400 [V] is generated.
  • the secondary side winding of the wire may reach about 800 [V].
  • diode 9 To prevent diode 9 from being damaged by surge voltage, diode 9 must have a high withstand voltage rating.
  • the capacitor 11 is connected to the connection point between the secondary winding of the transformer 7 and the anode of the diode 9, and a reverse current is passed through the diode 9.
  • the energy generated in the secondary winding of the transformer 7, that is, the surge voltage is absorbed by the capacitor 11 via the diode 12.
  • the energy stored in the capacitor 11 is used for the operation of the high potential power supply unit 4.
  • the high-potential power supply unit 4 shown in FIG. 1 inputs and boosts the output voltage of the DCZDC converter 2.
  • the high-potential power supply unit 4 also receives the power of the power sword force of the diode 9 and outputs a potential obtained by adding the potential generated by the energy accumulated in the capacitor 14 to the potential of the power sword of the diode 9.
  • the output potential of the high potential power supply unit 4 becomes higher than the potential of the power sword of the diode 9, that is, the potential applied to the high potential side switching transistors 15 and 16 of the H bridge type inverter 3.
  • the energy of the surge voltage accumulated in the capacitor 11 is such that after a current flows from the diode 9 to the diode 12, a current flows from the diode 12 to the diode 13, and the voltage across the capacitor 14 becomes the force sword potential of the diode 9, that is, DCZDC.
  • the inverter 3 can be efficiently operated by the high-potential power supply unit 4 that is used when added to the output voltage of the converter 2 and is simply configured.
  • the capacitors 23 and 28 of the bootstrap circuit that drives the high-potential side switching transistors 15 and 16 are constantly charged with the high-potential power supply unit 4 and the diodes 20 and 20.
  • 25, resistors 21 and 26 are provided, so that the high-side switching transistors 15 and 16 are kept on for a long time even when the small-capacitance capacitors 23 and 28 adapted for steady lighting are used in the bootstrap circuit. Therefore, DC load power can be supplied for a long time from the inverter 3 when the discharge lamp starts lighting.
  • the inverter 3 can be configured without using a large-capacitance capacitor, the inverter 3 can be reduced in size and cost can be reduced.
  • FIG. 4 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention.
  • the same reference numerals are used for parts that are the same as or equivalent to those shown in FIG. 1, and descriptions thereof are omitted.
  • the discharge lamp lighting device according to the second embodiment is provided with a DCZDC converter (charging means, booster circuit) 40 instead of the four high-potential power supply units shown in FIG. 1, and other configurations are the same as those of the first embodiment.
  • the discharge lamp lighting device described above is the same.
  • the description of the parts configured in the same manner as the discharge lamp lighting device of Embodiment 1 is omitted.
  • the 4 includes a DCZDC converter 40 that can obtain an output potential higher than the output potential of the DCZDC converter 2, and supplies the output power of the DCZDC converter 40 to the anodes of the diodes 20 and 25. It is configured.
  • the DCZDC converter 40 illustrated in FIG. 4 is used to input the output voltage Vcc of the power source 1.
  • the DCZDC converter 40 can be any type as long as it outputs a higher potential than the DCZDC converter 2.
  • the power supply for supplying power to the DCZDC converter 40 is not limited to the power supply 1 shown in the figure, and the input voltage is not limited to the voltage Vcc.
  • the discharge lamp lighting device operates in the same manner as described in the first embodiment except that the potential output from the DCZDC converter 40 is applied to the capacitors 23 and 28. The description is omitted.
  • the potential output from the DCZDC converter 40 is the same as that output from the high potential power supply unit 4 shown in FIG. 1, and the switching transistor 15 shown in FIG.
  • the capacitor 28 connected to the switching transistor 16 has a potential higher than the potential applied to the drain of the switching transistor 16 so that the charging current flows even when the switching transistor 16 is turned on.
  • DC / DC converter 40 Applied by DC / DC converter 40.
  • the capacitor 23 shown in FIG. 4 is connected via a diode 20 and a resistor 21.
  • the capacitor 28 is applied with a high potential from the DCZDC converter 40 via the diode 25 and the resistor 26.
  • the operational effects of the diodes 20 and 25 and the resistors 21 and 26 shown in FIG. 4 are the same as those described in the first embodiment with reference to FIG.
  • the DCZDC converter 40, the diode 20, and the capacitor 20, 23 of the bootstrap circuit that drives the high potential side switching transistors 15, 16 are always charged.
  • 25 and resistors 21 and 26 enable the switching transistors 15 and 16 to be kept on for a long time even when the small-capacitance capacitors 23 and 28 adapted for steady lighting are used in the bootstrap circuit.
  • DC load power can be supplied for a long time from the inverter 3 when the discharge lamp starts to light.
  • the inverter 3 can be configured without using a large-capacitance capacitor, the inverter 3 can be reduced in size and the cost can be reduced.
  • FIG. 5 is a circuit diagram showing a schematic configuration of a discharge lamp lighting device according to Embodiment 3 of the present invention.
  • the same reference numerals are used for parts that are the same as or equivalent to those shown in FIGS.
  • FIG. 5 is a circuit diagram of a part of the discharge lamp lighting device according to the third embodiment, and shows a part of an H-bridge type inverter circuit using IC46.
  • the DC / DC converter 2a shown in FIG. 5 corresponds to the DC / DC converter 2 in FIG. 1, and boosts the voltage input from the power source 1.
  • the DCZDC converter 40a shown in FIG. 5 corresponds to the DCZDC converter 40 shown in FIG. 4.
  • the power of the power source 1 is input and a voltage higher than the output voltage of the DCZDC converter 2a is output.
  • the control power supply unit la that inputs power from the power supply 1 controls and supplies power to the bootstrap circuit, and outputs, for example, power of DC voltage 12 [V].
  • IC 46 is an integrated circuit (hereinafter referred to as IC) in which a bootstrap circuit that drives a switching transistor of an H-bridge inverter circuit is integrated.
  • IC integrated circuit
  • the circuit elements corresponding to 32 and resistors 35 and 36 are connected and configured as in the circuit of FIG.
  • the IC 46 includes a terminal for connecting the diode 41 and the capacitor 44 as illustrated in FIG. 5, for example. By connecting both ends of 41 and one end of the capacitor 44, a bootstrap circuit for driving the high potential side switching transistor as described in the first embodiment is configured.
  • the IC 46 includes terminals for inputting the drive signal a and the drive signal b described above. The output terminal of the IC 46 is connected to the gates of the high potential side switching transistor 15a and the low potential side switching transistor 17a.
  • the anode of the diode 41 connected to the terminal of the IC 46 is connected to the control power supply unit la, the force sword of the diode 41 is connected to the terminal of the IC 46, and one end of the capacitor 44 is connected.
  • one end of a resistor (charging means, current limiting means) 43 and a force sword of a Zener diode (voltage limiting element) 45 are connected to this connection point.
  • the other end of the resistor 43 is connected to a power sword of a diode (charging means) 42, and the anode of the diode 42 is connected to a DCZDC converter 40a.
  • the Zener diode 52 has a Zener voltage with a rating of, for example, 12 [V] to 20 [V].
  • the diode 42 corresponds to the diode 20 or the like, and the resistor 43 corresponds to the resistor 21 or the like.
  • the switching transistor 15a shown in FIG. 5 corresponds to the switching transistor 15 shown in FIG. 1 and the like, and the switching transistor 17a in FIG. 5 corresponds to the switching transistor 17 in FIG. .
  • the high-potential side switching transistor 15a and the low-potential side switching transistor 17a are connected in series, and the connection point between the source of the switching transistor 15a and the drain of the switching transistor 17a is the output section of the H-bridge inverter circuit.
  • the other end of the capacitor 44 and the anode of the Zener diode 45 are connected to this connection point.
  • the output power of the DCZDC converter 2a is supplied to the drain of the switching transistor 15a, and the source of the switching transistor 17a is grounded.
  • the discharge lamp lighting device includes a high-potential side switching transistor and a low-potential side transistor, both of which are not shown in the figure, together with the high-potential side switching transistor 15a and the low-potential side switching transistor 17a constituting the H-bridge inverter circuit.
  • a bootstrap circuit with an IC (not shown) that drives these switching transistors and a diode, a capacitor, a resistor, and the like constituting the bootstrap circuit are configured in the same manner as described above. Yes.
  • the description of these similarly configured parts is omitted. Next, the operation will be described.
  • the discharge lamp lighting device according to the third embodiment operates in the same manner as that described in the first embodiment and the like except that it is provided with the corner diode 45 shown in FIG. Description of operations similar to those described in Embodiment 1 will be omitted, and operations that characterize the discharge lamp lighting device according to Embodiment 3 will be described.
  • the discharge lamp lighting device shown in Fig. 5 is driven by an IC46 in which switching transistors on the high potential side and low potential side of the H-bridge inverter circuit are stacked.
  • the withstand voltage of an IC or the gate withstand voltage of a MOS transistor used for a switching transistor is about 20 [V], and if a voltage higher than that is applied, it may be destroyed.
  • a high potential similar to the potential output from the high potential power supply unit 4 described in the first embodiment is always applied to the capacitor 44 from the DC / DC comparator 40a via the diode 42 and the resistor 43, and the capacitor 44 is charged. If the current continues to flow, the voltage across capacitor 44 may exceed the withstand voltage of IC46.
  • a Zener diode 45 is connected in parallel with the capacitor 44, and the voltage across the capacitor 44 is changed from 12 [V] to 20 [V] as described above using the Zener effect. Limit the voltage so that it is not greater than any other voltage. If the Zener voltage is lower than 12 [V] and the Zener diode 45 is provided, almost all of the current supplied from the control power supply unit la flows to the Zener diode 45, and each circuit cannot operate. . Therefore, a Zener diode 45 whose rating of the Zener voltage is higher than the output voltage of the control power supply unit la and is equal to or lower than the withstand voltage of the IC 46 or the like is used.
  • the Zener diode that limits the voltage across the capacitor 44 of the bootstrap circuit so as not to exceed the withstand voltage of each element constituting the H-bridge inverter circuit 45 Therefore, it is possible to construct a circuit using an IC or the like having a relatively low withstand voltage.
  • the cost of the H-bridge inverter circuit can be reduced by using an IC or the like.
  • the discharge lamp lighting device is suitable for outputting DC power for a long time at the start of lighting of the discharge lamp without using a large capacity capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter (3) of an H-bridge inverter circuit is provided with a bootstrap circuit for driving high potential side switching transistors (15, 16), a high potential power supply unit (4) for constantly supplying a charging current to capacitors (23, 28) by applying a potential higher than that of a load power on the high potential side outputted from the high potential side switching transistors (15, 16), diodes (20, 25), and resistors (21, 26).

Description

明 細 書  Specification
放電灯点灯装置  Discharge lamp lighting device
技術分野  Technical field
[0001] この発明は、放電灯の点灯開始時に直流電力を長時間供給する放電灯点灯装置 に関するものである。  The present invention relates to a discharge lamp lighting device that supplies DC power for a long time at the start of lighting of a discharge lamp.
背景技術  Background art
[0002] 放電灯点灯装置には、放電灯へ交流電圧を印加するインバータ回路が備えられ、 一般に Hブリッジ形インバータ回路が使用されている。 Hブリッジ形インバータ回路は 、交流電圧の高電位側を出力するスイッチング素子と低電位側を出力するスィッチン グ素子によって構成され、このスイッチング素子には、例えば電界効果トランジスタ( 以下、 FETと記載する)が用いられる。 Hブリッジ形インバータ回路には、高電位側を 出力する FETを駆動させるブートストラップ回路を備えたものがある。ブートストラップ 回路を備えた Hブリッジ形インバータ回路は、高電位側 FETが OFF状態、また、この 高電圧側 FETに直列接続された低電位側 FETが ON状態のとき、ブートストラップ回 路を構成するコンデンサに充電を行い、この充電によってコンデンサに生じた電圧を ON状態の高電位側 FETのゲートへ印加して当該 FETの ON状態を安定させ、放電 灯へ交流電力を出力している(例えば、特許文献 1参照)。  [0002] A discharge lamp lighting device is provided with an inverter circuit for applying an AC voltage to a discharge lamp, and an H-bridge inverter circuit is generally used. An H-bridge type inverter circuit is composed of a switching element that outputs a high potential side of an AC voltage and a switching element that outputs a low potential side. The switching element includes, for example, a field effect transistor (hereinafter referred to as FET). Is used. Some H-bridge inverter circuits are equipped with a bootstrap circuit that drives an FET that outputs the high potential side. An H-bridge inverter circuit equipped with a bootstrap circuit forms a bootstrap circuit when the high-potential side FET is OFF and the low-potential side FET connected in series to the high-voltage side FET is ON. The capacitor is charged, and the voltage generated in the capacitor due to this charging is applied to the gate of the high-side FET in the ON state to stabilize the ON state of the FET, and AC power is output to the discharge lamp (for example, (See Patent Document 1).
[0003] また、フルブリッジ回路を用いた駆動回路にぉ 、て、当該フルブリッジ回路のトラン ジスタのゲートにブートストラップ回路を接続したものがある。この回路は、ブートストラ ップ回路のコンデンサに蓄積されている電荷が不足したとき、電荷を補う補助コンデ ンサを備えたもので、フルブリッジ回路において対向するトランジスタの ONZOFF状 態が切り替えられたとき、自らのゲートに接続されているブートストラップ回路の補助 コンデンサに充電が行われるように構成したものである。なお、この回路構成ではフ ルブリッジ回路力 交流電力が出力されないと補助コンデンサに充電電流が供給さ れない (例えば、特許文献 2参照)。  [0003] In addition, there is a drive circuit using a full bridge circuit in which a bootstrap circuit is connected to the gate of a transistor of the full bridge circuit. This circuit is equipped with an auxiliary capacitor that compensates for the charge stored in the capacitor of the bootstrap circuit when the ONZOFF state of the opposing transistor is switched in the full bridge circuit. The auxiliary capacitor of the bootstrap circuit connected to its own gate is charged. In this circuit configuration, the charging current is not supplied to the auxiliary capacitor unless full bridge circuit power AC power is output (see, for example, Patent Document 2).
[0004] 特許文献 1 :特開 2000— 166258号公報 (第 4頁、図 2)  [0004] Patent Document 1: Japanese Unexamined Patent Publication No. 2000-166258 (page 4, FIG. 2)
特許文献 2 :特開平 11— 69842号公報 (第 4, 5頁、図 1) [0005] 従来の放電灯点灯装置は以上のように構成されて!、るので、放電灯の点灯開始時 に放電現象が安定するまで定常点灯時よりも長く高電位側スイッチング素子の ON状 態を維持するために容量の大きなコンデンサを備える必要があり、大容量のコンデン サを搭載するスペースを確保しなければならないと共に当該大容量のコンデンサを 備えることによってコストが高くなるという課題があった。 Patent Document 2: Japanese Patent Laid-Open No. 11-69842 (Pages 4, 5 and 1) [0005] The conventional discharge lamp lighting device is configured as described above. Therefore, the ON state of the high potential side switching element is longer than that during steady lighting until the discharge phenomenon is stabilized at the start of lighting of the discharge lamp. In order to maintain this, it is necessary to provide a capacitor with a large capacity, and it is necessary to secure a space for mounting a large-capacitance capacitor, and there is a problem that the cost increases due to the provision of the large-capacity capacitor.
[0006] この発明は上記のような課題を解決するためになされたもので、大容量のコンデン サを使用することなく放電灯の点灯開始時に長時間直流電力を出力することができ る放電灯点灯装置を得ることを目的とする。  [0006] The present invention has been made to solve the above-described problems, and is a discharge lamp that can output DC power for a long time at the start of lighting of the discharge lamp without using a large-capacity capacitor. The object is to obtain a lighting device.
発明の開示  Disclosure of the invention
[0007] この発明に係る放電灯点灯装置は、 Hブリッジ形インバータ回路を構成する高電位 側スイッチング素子のゲート電圧確保用電源としてのブートストラップ回路のコンデン サと、このコンデンサに Hブリッジ形インバータ回路の高電位側より高 、電位でコンデ ンサに充電電流を供給する充電手段とを備えたものである。  [0007] A discharge lamp lighting device according to the present invention includes a bootstrap circuit capacitor as a power supply for securing a gate voltage of a high-potential side switching element constituting an H-bridge inverter circuit, and an H-bridge inverter circuit connected to the capacitor. And a charging means for supplying a charging current to the capacitor at a potential higher than the high potential side.
[0008] このことによって、大容量のコンデンサを備えることなく点灯開始時に長時間直流電 力を出力することができると 、う効果がある。  [0008] With this, it is possible to output DC power for a long time at the start of lighting without providing a large-capacity capacitor.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]この発明の実施の形態 1による放電灯点灯装置の構成を示す回路図である。  FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention.
[図 2A]実施の形態 1による放電灯点灯装置の Hブリッジ形のインバータ回路の一部 分を示す回路図である。  FIG. 2A is a circuit diagram showing a part of an H-bridge inverter circuit of the discharge lamp lighting device according to Embodiment 1.
[図 2B]高電位側スイッチングトランジスタの動作状態とブートストラップ回路のコンデ ンサに流れる電流を示す説明図である。  FIG. 2B is an explanatory diagram showing the operating state of the high potential side switching transistor and the current flowing through the capacitor of the bootstrap circuit.
[図 3A]実施の形態 1による放電灯点灯装置の回路の一部を示す説明図である。  FIG. 3A is an explanatory diagram showing a part of a circuit of a discharge lamp lighting device according to Embodiment 1.
[図 3B]実施の形態 1による放電灯点灯装置の回路の一部を示す説明図である。  FIG. 3B is an explanatory view showing a part of the circuit of the discharge lamp lighting device according to Embodiment 1.
[図 3C]ダイオードに流れる電流とダイオードの両端電圧とを示した説明図である。  FIG. 3C is an explanatory diagram showing a current flowing through the diode and a voltage across the diode.
[図 4]この発明の実施の形態 2による放電灯点灯装置の構成を示す回路図である。  FIG. 4 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention.
[図 5]この発明の実施の形態 3による放電灯点灯装置の概略構成を示す回路図であ る。  FIG. 5 is a circuit diagram showing a schematic configuration of a discharge lamp lighting device according to Embodiment 3 of the present invention.
発明を実施するための最良の形態 [0010] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to explain the present invention in more detail, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態 1.  Embodiment 1.
図 1は、この発明の実施の形態 1による放電灯点灯装置の構成を示す回路図であ る。電源 1はバッテリなどの直流電源で、直流電圧を DCZDCコンバータ(コンバータ 回路) 2などへ供給するように接続される。 DCZDCコンバータ 2は、その出力電圧が Hブリッジ形インバータ回路 (以下、インバータと略称する) 3へ供給するように接続さ れる。インバータ 3はィグナイタ 5を介して HIDバルブ (放電灯) 6へ負荷電力を供給 するように接続される。  FIG. 1 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 1 of the present invention. Power supply 1 is a DC power supply such as a battery, and is connected to supply DC voltage to DCZDC converter (converter circuit) 2 and the like. The DCZDC converter 2 is connected so that its output voltage is supplied to an H-bridge inverter circuit (hereinafter abbreviated as an inverter) 3. The inverter 3 is connected to supply load power to the HID bulb (discharge lamp) 6 through the igniter 5.
電源 1の高電位側は DCZDCコンバータ 2のトランス 7の一次側巻き線の一端へ接 続される。トランス 7の一次側巻き線の他端には、例えば MOSトランジスタであるトラ ンジスタスイッチ 8のドレインが接続され、このトランジスタスィッチ 8のソースは電源 1 の低電位側へ接続される。トランジスタスィッチ 8のゲートには、図示を省略した発振 器等力 パルス信号が入力される。トランス 7の二次側巻き線の一端にはダイオード 9 のアノードとコンデンサ 11の一端が接続される。ダイオード 9の力ソードにはコンデン サ 10の一端が接続される。コンデンサ 10の他端はトランス 7の二次側巻き線の他端 に接続される。コンデンサ 10とトランス 7の二次側巻き線の接続点は接地される。 DC /DCコンバータ 2は、このように接続されたトランス 7、トランジスタスィッチ 8、ダイォ ード 9、及び、コンデンサ 10により構成される。  The high potential side of power supply 1 is connected to one end of the primary winding of transformer 7 of DCZDC converter 2. The other end of the primary winding of the transformer 7 is connected to the drain of a transistor switch 8 which is a MOS transistor, for example, and the source of the transistor switch 8 is connected to the low potential side of the power source 1. An oscillator equal force pulse signal (not shown) is input to the gate of the transistor switch 8. One end of the secondary winding of the transformer 7 is connected to the anode of the diode 9 and one end of the capacitor 11. One end of the capacitor 10 is connected to the power sword of the diode 9. The other end of the capacitor 10 is connected to the other end of the secondary winding of the transformer 7. The connection point between the secondary winding of the capacitor 10 and the transformer 7 is grounded. The DC / DC converter 2 includes a transformer 7, a transistor switch 8, a diode 9, and a capacitor 10 connected in this way.
[0011] DCZDCコンバータ 2のダイオード 9に一端が接続されたコンデンサ 11は、その他 端がダイオード 12の力ソードとダイオード 13のアノードとの接続点に接続される。ダイ オード 12のアノードにはコンデンサ 14の一端が接続される。コンデンサ 14の他端は ダイオード 13の力ソードに接続される。また、ダイオード 12とコンデンサ 14の接続点 は、 DC/DCコンバータ 2のコンデンサ 10とダイオード 9の接続点に接続される。この ように接続されたコンデンサ 11、ダイオード 12, 13、及び、コンデンサ 14により高電 位電源部 (充電手段、昇圧回路) 4が構成される。 Capacitor 11 having one end connected to diode 9 of DCZDC converter 2 has the other end connected to a connection point between the force sword of diode 12 and the anode of diode 13. One end of a capacitor 14 is connected to the anode of the diode 12. The other end of the capacitor 14 is connected to the power sword of the diode 13. The connection point between the diode 12 and the capacitor 14 is connected to the connection point between the capacitor 10 and the diode 9 in the DC / DC converter 2. The capacitor 11, the diodes 12, 13 and the capacitor 14 connected in this way constitute a high potential power supply unit (charging means, booster circuit) 4.
図 1では、高電位電源部 4と DCZDCコンバータ 2とを分けて示している力 ダイォ ード 12, 13、コンデンサ 11, 14を DCZDCコンバータ 2の構成要素とし、高電位電 源部 4を DCZDCコンバータ 2の一部分として構成してもよ!/、。このときの DCZDCコ ンバータ 2は、後述するスイッチングトランジスタ 15, 16のドレインへ供給する電力と、 ダイオード (充電手段) 20, 25及び抵抗 (充電手段、電流制限手段) 21, 26を介して コンデンサ(ブートストラップ回路のコンデンサ) 23, 28へ電力を出力するものとなる。 このコンデンサ 23, 28は、 Hブリッジ形インバータ回路を構成する高電位側スィッチ ング素子のゲート電圧確保用電源として機能する。 In Fig. 1, the high potential power supply 4 and the DCZDC converter 2 are shown separately. You can configure source 4 as part of DCZDC converter 2! /. At this time, the DCZDC converter 2 is supplied with electric power supplied to the drains of switching transistors 15 and 16, which will be described later, and a capacitor (charger) 20 and 25 and a resistor (charger and current limiter) 21 and 26 through a capacitor ( Power is output to the capacitors 23 and 28 of the bootstrap circuit. The capacitors 23 and 28 function as a power supply for securing the gate voltage of the high-potential side switching element constituting the H-bridge inverter circuit.
[0012] インバータ 3は、前述のように Hブリッジ形インバータ回路を成すもので、例えば N 型 MOSトランジスタのスイッチングトランジスタ 15〜 18をスイッチング素子としたもの である。高電位側の電力を出力するスイッチングトランジスタ 15, 16のゲートには、後 述するように構成されるブートストラップ回路が接続される。  [0012] As described above, the inverter 3 forms an H-bridge type inverter circuit. For example, the switching transistors 15 to 18 of N-type MOS transistors are used as switching elements. A bootstrap circuit configured as described later is connected to the gates of the switching transistors 15 and 16 that output the power on the high potential side.
ダイオード 19のアノードには、電源 1から電圧 Vccが印加される。ダイオード 19の力 ソードは、抵抗 21, 22及びコンデンサ 23の一端に接続される。抵抗 21の他端は、ダ ィオード 20の力ソードに接続される。ダイオード 20のアノードは、高電位電源部 4の ダイオード 13とコンデンサ 14との接続点に接続される。抵抗 22の他端はスィッチン グトランジスタ 15のゲートに接続される。抵抗 22とスイッチングトランジスタ 15のゲート との接続点はドライブトランジスタ 31のコレクタに接続される。ドライブトランジスタ 31 のベースには抵抗 35が接続される。スイッチングトランジスタ 15のドレインは、 DC/ DCコンバータ 2の電力出力部となるダイオード 9とコンデンサ 10の接続点に接続さ れる。スイッチングトランジスタ 15のソースは、コンデンサ 23の他端とスイッチングトラ ンジスタ 17のドレインに接続される。また、この接続点はインバータ 3の交流電力の出 力部となり、ィグナイタ 5を介して HIDバルブ 6の一端側に接続される。  A voltage Vcc is applied from the power source 1 to the anode of the diode 19. The power sword of the diode 19 is connected to one end of the resistors 21 and 22 and the capacitor 23. The other end of resistor 21 is connected to a diode 20 force sword. The anode of the diode 20 is connected to the connection point between the diode 13 and the capacitor 14 of the high potential power supply unit 4. The other end of the resistor 22 is connected to the gate of the switching transistor 15. A connection point between the resistor 22 and the gate of the switching transistor 15 is connected to the collector of the drive transistor 31. A resistor 35 is connected to the base of the drive transistor 31. The drain of the switching transistor 15 is connected to the connection point of the diode 9 and the capacitor 10 that become the power output section of the DC / DC converter 2. The source of the switching transistor 15 is connected to the other end of the capacitor 23 and the drain of the switching transistor 17. Further, this connection point serves as an AC power output section of the inverter 3 and is connected to one end side of the HID valve 6 through the igniter 5.
スイッチングトランジスタ 17のソースは接地される。スイッチングトランジスタ 17のゲ ートは、抵抗 29の一端とドライブトランジスタ 32のコレクタが接続される。抵抗 29の他 端は、電源 1の電圧 Vccの印加端子に接続される。ドライブトランジスタ 32のベース は抵抗 36の一端が接続される。  The source of the switching transistor 17 is grounded. The gate of the switching transistor 17 is connected to one end of the resistor 29 and the collector of the drive transistor 32. The other end of the resistor 29 is connected to the application terminal of the power source 1 voltage Vcc. One end of a resistor 36 is connected to the base of the drive transistor 32.
[0013] ダイオード 24のアノードには、電源 1から電圧 Vccが印加される。ダイオード 24の力 ソードは、抵抗 26, 27及びコンデンサ 28の一端に接続される。抵抗 26の他端は、ダ ィオード 25の力ソードに接続される。ダイオード 25のアノードは、高電位電源部 4の ダイオード 13とコンデンサ 14との接続点に接続される。抵抗 27の他端はスィッチン グトランジスタ 16のゲートに接続される。抵抗 27とスイッチングトランジスタ 16のゲート との接続点はドライブトランジスタ 33のコレクタに接続される。ドライブトランジスタ 33 のベースには抵抗 37が接続される。スイッチングトランジスタ 16のドレインは、 DC/ DCコンバータ 2のダイオード 9とコンデンサ 10との接続点に接続される。スイッチング トランジスタ 16のソースは、コンデンサ 28の他端とスイッチングトランジスタ 18のドレイ ンに接続される。また、この接続点はインバータ 3の出力部となり、ィグナイタ 5を介し て HIDバルブ 6の他端に接続される。 A voltage Vcc is applied from the power source 1 to the anode of the diode 24. The power sword of the diode 24 is connected to one end of the resistors 26 and 27 and the capacitor 28. The other end of resistor 26 is connected to a diode 25 force sword. The anode of the diode 25 is It is connected to the connection point between the diode 13 and the capacitor 14. The other end of the resistor 27 is connected to the gate of the switching transistor 16. The connection point between the resistor 27 and the gate of the switching transistor 16 is connected to the collector of the drive transistor 33. A resistor 37 is connected to the base of the drive transistor 33. The drain of the switching transistor 16 is connected to the connection point between the diode 9 and the capacitor 10 of the DC / DC converter 2. The source of the switching transistor 16 is connected to the other end of the capacitor 28 and the drain of the switching transistor 18. Further, this connection point becomes an output part of the inverter 3 and is connected to the other end of the HID valve 6 via the igniter 5.
スイッチングトランジスタ 18のソースは接地される。スイッチングトランジスタ 18のゲ ートは、抵抗 30の一端とドライブトランジスタ 34のコレクタが接続される。抵抗 30の他 端には電源 1の電圧 Vccの印加端子に接続される。ドライブトランジスタ 34のベース は抵抗 38の一端が接続される。  The source of the switching transistor 18 is grounded. The gate of the switching transistor 18 is connected to one end of the resistor 30 and the collector of the drive transistor 34. The other end of resistor 30 is connected to the voltage Vcc application terminal of power supply 1. One end of a resistor 38 is connected to the base of the drive transistor 34.
[0014] 抵抗 35の他端と抵抗 38の他端が接続され、この接続点に図示されない制御手段 等カゝら駆動信号 aが入力される。また、抵抗 36の他端と抵抗 37の他端が接続され、 この接続点に図示されない制御手段等力 駆動信号 bが入力される。ドライブトラン ジスタ 31〜34は、例えば NPN型バイポーラトランジスタ力もなり、それぞれェミッタは 接地される。実施の形態 1による放電灯点灯装置のインバータ 3は、このように接続構 成され、高電位側スイッチングトランジスタ 15は、ダイオード 19、抵抗 22、コンデンサ 23、トランジスタ 31、及び抵抗 35によって構成されるブートストラップ回路により駆動 される。また、同様に高電位側スイッチングトランジスタ 16は、ダイオード 24、抵抗 27 、コンデンサ 28、トランジスタ 33、及び抵抗 37によって構成されるブートストラップ回 路により駆動される。  [0014] The other end of the resistor 35 and the other end of the resistor 38 are connected, and a drive signal a is input to this connection point from a control means (not shown). Further, the other end of the resistor 36 and the other end of the resistor 37 are connected, and a control means equal force drive signal b (not shown) is input to this connection point. The drive transistors 31 to 34 also have, for example, NPN bipolar transistor power, and the emitters are grounded. The inverter 3 of the discharge lamp lighting device according to the first embodiment is configured as described above, and the high-potential side switching transistor 15 is a boot configured by a diode 19, a resistor 22, a capacitor 23, a transistor 31, and a resistor 35. It is driven by a strap circuit. Similarly, the high potential side switching transistor 16 is driven by a bootstrap circuit including a diode 24, a resistor 27, a capacitor 28, a transistor 33, and a resistor 37.
[0015] 次に動作について説明する。  Next, the operation will be described.
電源 1から例えば直流電圧 12 [V]の電圧 Vccを供給された DCZDCコンバータ 2 は、トランス 7の一次側巻き線に接続されたトランジスタスィッチ 8が外部力 入力され たパルス信号に基づいて ONZOFF動作を繰り返すことにより、一次側巻き線に流 れる電流を ONZOFFして、トランス 7の二次側巻き線に誘導起電力を発生させる。ト ランス 7の二次側巻き線に生じた電流は、ダイオード 9により一定方向に整流され、ま たコンデンサ 10により平滑される。 DCZDCコンバータ 2は、ダイオード 9の力ソードと コンデンサ 10の接続点から、例えば 85Vに昇圧した直流電力を出力する。 DC/D Cコンバータ 2から出力された直流電力はインバータ 3へ入力され、トランジスタ 15, 1 6のドレインへ供給される。 For example, the DCZDC converter 2 supplied with the voltage Vcc of the DC voltage 12 [V] from the power source 1 performs the ONZOFF operation based on the pulse signal input to the transistor switch 8 connected to the primary winding of the transformer 7 from the external force. By repeating, the current flowing in the primary side winding is turned ON and OFF, and the induced electromotive force is generated in the secondary side winding of the transformer 7. The current generated in the secondary winding of transformer 7 is rectified in a fixed direction by diode 9 and Smoothed by the capacitor 10. The DCZDC converter 2 outputs DC power boosted to, for example, 85 V from the connection point between the power sword of the diode 9 and the capacitor 10. The DC power output from the DC / DC converter 2 is input to the inverter 3 and supplied to the drains of the transistors 15 and 16.
[0016] インバータ 3の高電位側スイッチングトランジスタ 15のゲートには、ドライブトランジス タ 31の ONZOFF動作により、当該スイッチングトランジスタ 15が ON状態となる電圧 (以下、各スイッチングトランジスタ 15〜18が ON状態となるゲート電圧を ON電圧と 記載する)、あるいはスイッチングトランジスタ 15が OFF状態となる電圧(以下、各スィ ツチングトランジスタ 15〜18が OFF状態となるゲート電圧を OFF電圧と記載する)の いずれかが印加される。ドライブトランジスタ 31の ONZOFF状態は、抵抗 35を介し て当該ドライブトランジスタ 31のベースへ入力される駆動信号 aによって設定される。 高電位側スイッチングトランジスタ 16のゲートには、ドライブトランジスタ 33の ONZ OFF動作により ON電圧あるいは OFF電圧が印加される。ドライブトランジスタ 33の ONZOFF状態は、抵抗 37を介して当該ドライブトランジスタ 33のベースへ入力され る駆動信号 bによって設定される。  [0016] The voltage at which the switching transistor 15 is turned ON by the ONZOFF operation of the drive transistor 31 (hereinafter, each switching transistor 15 to 18 is turned ON) is connected to the gate of the high potential side switching transistor 15 of the inverter 3 Either a gate voltage is described as an ON voltage) or a voltage at which the switching transistor 15 is turned off (hereinafter, a gate voltage at which each switching transistor 15 to 18 is turned off is referred to as an OFF voltage). Is done. The ONZOFF state of the drive transistor 31 is set by a drive signal a input to the base of the drive transistor 31 via the resistor 35. An ON voltage or an OFF voltage is applied to the gate of the high potential side switching transistor 16 by the ONZ OFF operation of the drive transistor 33. The ONZOFF state of the drive transistor 33 is set by the drive signal b input to the base of the drive transistor 33 through the resistor 37.
[0017] 高電位側スイッチングトランジスタ 15に直列接続された低電位側スイッチングトラン ジスタ 17のゲート電圧は、抵抗 29を介して印加される電圧 Vccをドライブトランジスタ 32の ON/OFF動作によってスイッチングトランジスタ 17の ON電圧あるいは OFF 電圧に設定する。ドライブトランジスタ 32の ONZOFF状態は、抵抗 36を介して当該 ドライブトランジスタ 32のベースへ入力される駆動信号 bによって設定される。高電位 側スイッチングトランジスタ 16に直列接続された低電位側スイッチングトランジスタ 18 のゲート電圧は、抵抗 30を介して印加される電圧 Vccをドライブトランジスタ 34の ON ZOFF動作によってスイッチングトランジスタ 18の ON電圧あるいは OFF電圧に設 定する。ドライブトランジスタ 34の ONZOFF状態は、抵抗 38を介して当該ドライブト ランジスタ 34のベースへ入力される駆動信号 aによって設定される。  [0017] The gate voltage of the low potential side switching transistor 17 connected in series to the high potential side switching transistor 15 is the same as the voltage Vcc applied through the resistor 29 by the ON / OFF operation of the drive transistor 32. Set to ON voltage or OFF voltage. The ONZOFF state of the drive transistor 32 is set by a drive signal b input to the base of the drive transistor 32 via the resistor 36. The gate voltage of the low-potential side switching transistor 18 connected in series to the high-potential side switching transistor 16 is the voltage Vcc applied via the resistor 30. Set to. The ONZOFF state of the drive transistor 34 is set by a drive signal a input to the base of the drive transistor 34 via the resistor 38.
[0018] このようにして、高電位側スイッチングトランジスタ 15と低電位側スイッチングトランジ スタ 18は駆動信号 aにより、また高電位側スイッチングトランジスタ 16と低電位側スィ ツチングトランジスタ 17は駆動信号 bによって ONZOFF動作が制御され、高電位側 スイッチングトンランジスタ 15と低電位佃 jスイッチングトランジスタ 18は同時に ON状 態あるいは OFF状態となるように駆動され、高電位側スィッチングトランジスタ 16と低 電位側スイッチングトランジスタ 17は同時に ON状態あるいは OFF状態となるように 駆動される。 In this way, the high potential side switching transistor 15 and the low potential side switching transistor 18 are ONZOFF by the drive signal a, and the high potential side switching transistor 16 and the low potential side switching transistor 17 are ONZOFF by the drive signal b. Operation is controlled, high potential side Switching transistor 15 and low potential 佃 jSwitching transistor 18 is driven to be turned on or off at the same time, and high potential side switching transistor 16 and low potential side switching transistor 17 are turned on or off at the same time. Driven by.
駆動信号 aと駆動信号 bは、交互に ON状態あるいは OFF状態を示すもので、高電 位側スイッチングトランジスタ 15, 16は交互に ON状態あるいは OFF状態になり、ス イッチングトランジスタ 15, 16の各ソースから交互に高電位側の負荷電流が出力され 、低電位側スイッチングトランジスタ 17, 18も交互に ON状態あるいは OFF状態にな り、スイッチングトランジスタ 17, 18の各ドレインが交互に接地接続され、インバータ 3 力 HIDバルブ 6へ電力供給が行われる。  Drive signal a and drive signal b indicate ON state or OFF state alternately, and high-potential side switching transistors 15 and 16 are alternately turned ON or OFF, and each source of switching transistors 15 and 16 The high-potential side load current is alternately output from the low-side switching transistors 17 and 18, and the drains of the switching transistors 17 and 18 are alternately connected to the ground. Power The HID valve 6 is supplied with power.
[0019] HIDバルブ 6の点灯を開始する場合は、インバータ 3から直流電力を出力させてお き、この直流電力にィグナイタ 5によって発生させた例えば 400[V]程度の高電位の パルス電圧をカ卩えて HIDバルブ 6へ供給する。ィグナイタ 5の電力供給が済んだ後、 インバータ 3は、 HIDバルブ 6の放電現象が定常点灯時の状態になるまで直流電力 の出力を続け、 HIDバルブ 6に直流の負荷電流を流し続ける。インバータ 3から直流 電力を出力し続ける間は、 Hブリッジ形インバータ回路にぉ 、て対を成す高電位側ス イッチングトランジスタと低電位佃 jスイッチングトランジスタとを ON状態に保つように、 また、これらのスイッチングトランジスタに対向する各スイッチングトランジスタを OFF 状態に保つように駆動する。この駆動制御は、駆動信号 a, bによって行われる。 HID バルブ 6が定常点灯状態になった後、インバータ 3は周期的に負荷電流の向きを切り 替えて交流電力を出力する。  [0019] When starting to turn on the HID bulb 6, DC power is output from the inverter 3, and a pulse voltage with a high potential of about 400 [V] generated by the igniter 5 is applied to the DC power. Prepare to supply to HID valve 6. After the power supply to the igniter 5 is completed, the inverter 3 continues to output DC power until the discharge phenomenon of the HID valve 6 reaches the state of steady lighting, and continues to supply a DC load current to the HID valve 6. While the DC power is continuously output from the inverter 3, the H-bridge inverter circuit is kept in the ON state with the high-potential side switching transistor and the low-potential switching transistor that are paired with each other. Each switching transistor facing the switching transistor is driven to be kept in the OFF state. This drive control is performed by drive signals a and b. After the HID valve 6 is in a steady lighting state, the inverter 3 periodically switches the direction of the load current and outputs AC power.
[0020] 図 2Aは、実施の形態 1による放電灯点灯装置の Hブリッジ形のインバータ回路の 一部分を示す回路図である。図 1に示したものと同一あるいは相当する部分に同じ符 号を使用し、その説明を省略する。この図は、図 1に示した高電位側スイッチングトラ ンジスタ 15に接続されるブートストラップ回路の部分を抽出した回路図である。  FIG. 2A is a circuit diagram showing a part of an H-bridge type inverter circuit of the discharge lamp lighting device according to Embodiment 1. The same reference numerals are used for parts that are the same as or equivalent to those shown in FIG. This figure is a circuit diagram in which a part of the bootstrap circuit connected to the high potential side switching transistor 15 shown in FIG. 1 is extracted.
図 2Bは、高電位側スイッチングトランジスタの動作状態とブートストラップ回路のコ ンデンサに流れる電流を示す説明図である。この図は、例えば高電位側スイッチング トランジスタ 15の ONZOFFの各状態においてコンデンサ 23に流れる電流 Icを示し たものである。スイッチングトランジスタ 15が ON状態に駆動されたとき、当該スィッチ ングトランジスタ 15のゲート Zソース間に存在する静電容量に充電が行われるため、 コンデンサ 23に蓄積されているエネルギが吸収され、コンデンサ 23から電流 Icが急 峻に流れ出る。コンデンサ 23から流れ出る電流 Icは、図 2Aに実線の矢印 Xで示した ように回路中を流れ、スイッチングトランジスタ 15を ON状態に駆動したとき、概ねスィ ツチングトランジスタ 15のゲート電流となる。 FIG. 2B is an explanatory diagram showing the operating state of the high-potential side switching transistor and the current flowing through the capacitor of the bootstrap circuit. This figure shows, for example, the current Ic flowing in the capacitor 23 in each ONZOFF state of the high potential side switching transistor 15. It is a thing. When the switching transistor 15 is driven to the ON state, the electrostatic capacity existing between the gate Z and the source of the switching transistor 15 is charged, so that the energy accumulated in the capacitor 23 is absorbed and the capacitor 23 Current Ic flows out sharply. The current Ic flowing out of the capacitor 23 flows in the circuit as shown by the solid line arrow X in FIG. 2A, and when the switching transistor 15 is driven to the ON state, it becomes approximately the gate current of the switching transistor 15.
また、スイッチングトランジスタ 15が OFF状態になったとき、電流 Icはコンデンサ 23 に流れ込む充電電流になる。このとき回路中には図 2Aに破線の矢印 Yで示したよう に電流 Icが流れ、ダイオード 19を介して電源 1から供給される電流がコンデンサ 23 へ流れ込み、充電が行われる。コンデンサ 23は、このようにスイッチングトランジスタ 1 5の ON状態において放出した電力エネルギを補う。  Further, when the switching transistor 15 is turned off, the current Ic becomes a charging current flowing into the capacitor 23. At this time, a current Ic flows through the circuit as shown by a broken arrow Y in FIG. 2A, and a current supplied from the power source 1 through the diode 19 flows into the capacitor 23 and charging is performed. The capacitor 23 thus supplements the power energy released in the ON state of the switching transistor 15.
コンデンサ 23には、図 1や図 2Aに示したように抵抗 21及びダイオード 20を介して 高電位電源部 4の出力電力が供給される。コンデンサ 23には、スイッチングトランジ スタ 15が ON状態になりスイッチングトランジスタ 15とコンデンサ 23の接続点の電位 が高くなつたときでもコンデンサ 23に充電が行われるように、スイッチングトランジスタ 15のドレインに印加されている電位、またはスイッチングトランジスタ 15のソース電位 即ち負荷電力の高電位側よりも高い電位が印加される。また、コンデンサ 23には、ィ ンバータ 3が動作している間は常に高電位電源部 4から前述のような高電位が印加さ れ、抵抗 21によって制限された電流が流れ込む。このようにスイッチングトランジスタ 15を駆動するブートストラップ回路に充電手段を構成するダイオード 20と抵抗 21とを 接続することによりコンデンサ 23に充電を行い続け、当該コンデンサ 23の両端電圧 力 S小さくなることを抑え、スイッチングトランジスタ 15を ON状態に保つことができる電 圧値にコンデンサ 23の両端電圧を維持している。  The output power of the high potential power supply unit 4 is supplied to the capacitor 23 via the resistor 21 and the diode 20 as shown in FIG. 1 and FIG. 2A. The capacitor 23 is applied to the drain of the switching transistor 15 so that the capacitor 23 is charged even when the switching transistor 15 is turned on and the potential at the connection point between the switching transistor 15 and the capacitor 23 becomes high. Or a source potential of the switching transistor 15, that is, a potential higher than the high potential side of the load power is applied. Further, the high potential as described above is always applied to the capacitor 23 from the high-potential power supply unit 4 while the inverter 3 is operating, and a current limited by the resistor 21 flows. By connecting the diode 20 and the resistor 21 constituting the charging means to the bootstrap circuit that drives the switching transistor 15 in this way, the capacitor 23 is continuously charged, and the voltage force S across the capacitor 23 is prevented from becoming small. Thus, the voltage across the capacitor 23 is maintained at a voltage value that can keep the switching transistor 15 ON.
そのため、コンデンサ 23を備えたブートストラップ回路は、スイッチングトランジスタ 1 5のゲート Zソース間の静電容量にエネルギを吸収された後でも、コンデンサ 23から 流れ出る電流 Icが補われ、スイッチングトランジスタ 15のゲートの漏れ電流と、スイツ チングトランジスタ 15を駆動するブートストラップ回路の消費電流とを流し続けること ができ、スイッチングトランジスタ 15のゲート電圧が確保される。 [0022] このように高電位電源部 4からコンデンサ 23へ高電位の電力供給を行うことにより、 コンデンサ 23の容量に依存することなくスイッチングトランジスタ 15の ON時間を長く 保つことができ、駆動信号 aによって ON状態力 OFF状態へ切り替え制御されるま で、スイッチングトランジスタ 15の ON状態を維持することができる。 Therefore, the bootstrap circuit including the capacitor 23 compensates for the current Ic flowing out of the capacitor 23 even after the energy is absorbed by the capacitance between the gate Z source of the switching transistor 15 and the gate of the switching transistor 15. The leakage current and the current consumption of the bootstrap circuit that drives the switching transistor 15 can continue to flow, and the gate voltage of the switching transistor 15 is secured. By supplying high potential power from the high potential power supply unit 4 to the capacitor 23 in this way, the ON time of the switching transistor 15 can be kept long without depending on the capacitance of the capacitor 23, and the drive signal a Thus, the ON state of the switching transistor 15 can be maintained until the ON state force is switched to the OFF state.
ここではスイッチングトランジスタ 15について、またスイッチングトランジスタ 15に接 続されたブートストラップ回路や当該回路のコンデンサ 23、ダイオード 20、抵抗 21に ついて動作を説明した力 Hブリッジ形のインバータ 3において、高電位側スィッチン グトランジスタ 15と対を成す高電位側スイッチングトランジスタ 16も同様に動作し、当 該スイッチングトランジスタ 16に接続されたブートストラップ回路や、コンデンサ 23に 相当するコンデンサ 28も前述の説明と同様に動作 Z作用する。スイッチングトランジ スタ 16を駆動するブートストラップ回路のダイオード 24はダイオード 19に、抵抗 27は 抵抗 22に相当し、また、ダイオード 25はダイオード 20に、抵抗 26は抵抗 21に相当 する。ここではスイッチングトランジスタ 16やこれに接続されるブートストラップ回路、 当該回路のコンデンサ 28の動作説明を省略する。  Here, the power of the switching transistor 15, the bootstrap circuit connected to the switching transistor 15, the capacitor 23, the diode 20, and the resistor 21 of the circuit are described. The high-potential side switching transistor 16 paired with the switching transistor 15 operates in the same manner, and the bootstrap circuit connected to the switching transistor 16 and the capacitor 28 corresponding to the capacitor 23 operate in the same manner as described above. To do. The diode 24 in the bootstrap circuit that drives the switching transistor 16 corresponds to the diode 19, the resistor 27 corresponds to the resistor 22, the diode 25 corresponds to the diode 20, and the resistor 26 corresponds to the resistor 21. Here, description of the operation of the switching transistor 16, the bootstrap circuit connected thereto, and the capacitor 28 of the circuit is omitted.
また、抵抗 21からコンデンサ 23へ印加される電位は、コンデンサ 23に充電を行うた め前述のような高電位となる力 抵抗 21からコンデンサ 23へ流れる電流は、スィッチ ングトランジスタ 15のゲートの漏れ電流とブートストラップ回路の消費電流とを合わせ た電流と同等またはそれ以上であればよぐ抵抗 21により制限された電流は微小な ものになる。これは抵抗 26からコンデンサ 28へ流れる電流も同様である。このように コンデンサ 23, 28へ常に流される充電電流を小さく抑えることにより、高電位電源部 4さらに DCZDCコンバータ 2の負荷が軽減される。  In addition, the potential applied from the resistor 21 to the capacitor 23 is charged to the capacitor 23 so that the potential is high as described above. The current flowing from the resistor 21 to the capacitor 23 is the leakage current of the gate of the switching transistor 15. And the current consumed by the bootstrap circuit are equal to or greater than the combined current, the current limited by the resistor 21 is very small. The same applies to the current flowing from the resistor 26 to the capacitor 28. In this way, by suppressing the charging current constantly flowing to the capacitors 23 and 28, the load on the high potential power supply unit 4 and the DCZDC converter 2 is reduced.
[0023] 放電灯の定常点灯時は、スイッチングトランジスタ 15〜18の各 ON状態を 1. 25 [m Sec. ]維持するだけでよいので、容量の少ないコンデンサ 23, 28を使用してもブー トストラップ回路は十分な動作を行うことが可能であるが、点灯開始時は放電現象が 安定するまで定常点灯時よりも長くスイッチングトランジスタ 15〜 18の ON状態を保 つ必要があり、概ね 1 [Sec. ]弱の間 ON状態を維持しなければならない。高電位側 スイッチングトランジスタ 15, 16の ON状態を長時間維持するためには、スイッチング トランジスタ 15, 16のゲート電圧を長時間に渡って安定させる必要があり、この発明 ではコンデンサ 23, 28の各両端電圧が小さくならないように、前述のようにインバー タ 3が動作している間は常に、コンデンサ 23にはダイオード 20及び抵抗 21を介して 、またコンデンサ 28にはダイオード 25及び抵抗 26を介して充電を行っている。このよ うに動作することにより、点灯開始時に高電位側スイッチングトランジスタ 15, 16の O N状態を長時間保っためにコンデンサ 23, 28の容量を大きくする必要がなくなり、定 常点灯時に適合させた比較的小さ 、容量のコンデンサ 23, 28をブートストラップ回 路に使用することが可能になる。 [0023] When the discharge lamp is steadily lit, it is only necessary to maintain the ON state of the switching transistors 15 to 18 at 1.25 [m Sec.]. The strap circuit can operate sufficiently, but at the start of lighting, it is necessary to keep the ON state of the switching transistors 15 to 18 longer than that during steady lighting until the discharge phenomenon is stabilized. ] Must remain on for a short time. In order to keep the ON state of the high potential side switching transistors 15 and 16 for a long time, it is necessary to stabilize the gate voltage of the switching transistors 15 and 16 for a long time. In order to prevent the voltage across the capacitors 23 and 28 from becoming small, the capacitor 23 is always connected via the diode 20 and the resistor 21 and the capacitor 28 is connected to the diode 28 while the inverter 3 is operating as described above. Charging is performed through 25 and resistor 26. This operation eliminates the need to increase the capacities of capacitors 23 and 28 in order to keep the high-side switching transistors 15 and 16 on for a long time at the start of lighting. Small and large capacitors 23 and 28 can be used in the bootstrap circuit.
[0024] 図 3A及び図 3Bは、実施の形態 1による放電灯点灯装置の回路の一部を示す説明 図である。図 1に示したものと同一部分に同じ符号を使用し、その説明を省略する。 図 3Aは、 DC/DCコンバータのトランス 7の二次側巻き線に接続されるダイオード 9 及びコンデンサ 10を示したもので、図 3Bは、トランス 7の二次側巻き線に接続される ダイオード 9、コンデンサ 10、コンデンサ 11、また高電位電源部 4を構成するダイォ ード 12, 13、コンデンサ 14を示したものである。 3A and 3B are explanatory diagrams showing a part of the circuit of the discharge lamp lighting device according to Embodiment 1. FIG. The same parts as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. 3A shows a diode 9 and a capacitor 10 connected to the secondary winding of the transformer 7 of the DC / DC converter, and FIG. 3B shows a diode 9 connected to the secondary winding of the transformer 7. , Capacitor 10, capacitor 11, diodes 12, 13 and capacitor 14 constituting the high-potential power supply unit 4.
図 3Cは、ダイオードに流れる電流とダイオードの両端電圧とを示した説明図である 。この図は、図 3Aに示した回路のダイオード 9に流れる電流 IDとダイオード 9の両端 電圧 VDの経時変化を示したものである。  FIG. 3C is an explanatory diagram showing the current flowing through the diode and the voltage across the diode. This figure shows the change with time of the current ID flowing through the diode 9 and the voltage VD across the diode 9 in the circuit shown in FIG. 3A.
DCZDCコンバータ 2のトランス 7の二次側巻き線に生じた誘導起電力は、ダイォ ード 9により整流され、図 3Cに示したような電流 IDが流れる。この電流 IDが流れると き、ダイオード 9の両端に図 3Cに示したような電圧 VDが生じる。ダイオード 9に順方 向の電流 IDが流れるときには、ダイオード 9の両端において電圧降下が生じ、図 3C に示した電圧 VDが発生する。トランス 7の二次側巻き線に発生した誘導起電力がダ ィオード 9を介してエネルギを回生させるとき、即ちダイオード 9に逆方向電流を流す ように誘導起電力が発生して 、るときは、図 3Cに示した 0 [ A]よりも低 、値の電流 ID が流れる。この逆方向電流は誘導起電力の発生する方向が変わるときに流れ、ダイ オード 9には、図 3Cに示したように逆方向の電流 IDが遮断されて 0[A]に収束すると き、電圧 VDの波形にぉ 、て矩形波のアンダーシュート部分のように表されたサージ 電圧が印加される。  The induced electromotive force generated in the secondary winding of the transformer 7 of the DCZDC converter 2 is rectified by the diode 9, and a current ID as shown in FIG. 3C flows. When this current ID flows, a voltage VD as shown in FIG. When the forward current ID flows through the diode 9, a voltage drop occurs at both ends of the diode 9, and the voltage VD shown in FIG. 3C is generated. When the induced electromotive force generated in the secondary winding of the transformer 7 regenerates energy through the diode 9, that is, when the induced electromotive force is generated so that a reverse current flows through the diode 9, A current ID with a value lower than 0 [A] shown in Fig. 3C flows. This reverse current flows when the direction in which the induced electromotive force is generated changes. As shown in Fig. 3C, the reverse current ID is cut off in diode 9 and converges to 0 [A]. A surge voltage represented as an undershoot portion of a rectangular wave is applied to the VD waveform.
[0025] このサージ電圧は、例えば電圧 400[V]の電圧を発生させているときには、トランス の二次側巻き線において 800[V]程度に達することもある。サージ電圧によるダイォ ード 9の破損を防ぐため、ダイオード 9は耐電圧定格の大きなものを使用しなければ ならない。 [0025] This surge voltage is generated when, for example, a voltage of 400 [V] is generated. The secondary side winding of the wire may reach about 800 [V]. To prevent diode 9 from being damaged by surge voltage, diode 9 must have a high withstand voltage rating.
実施の形態 1による放電灯点灯装置では、図 3Bに示したようにトランス 7の二次側 巻き線とダイオード 9のアノードとの接続点にコンデンサ 11を接続し、ダイオード 9に 逆方向電流を流すようにトランス 7の二次側巻き線に発生したエネルギを、即ちサー ジ電圧をダイオード 12を介してコンデンサ 11に吸収させて!/、る。コンデンサ 11に蓄 積されたエネルギは、高電位電源部 4の動作に使用される。コンデンサ 11にサージ 電圧を吸収させることにより、耐電圧定格の低いダイオード素子をダイオード 9として 使用することができ、コスト抑制を図ることができる。  In the discharge lamp lighting device according to Embodiment 1, as shown in FIG. 3B, the capacitor 11 is connected to the connection point between the secondary winding of the transformer 7 and the anode of the diode 9, and a reverse current is passed through the diode 9. In this way, the energy generated in the secondary winding of the transformer 7, that is, the surge voltage is absorbed by the capacitor 11 via the diode 12. The energy stored in the capacitor 11 is used for the operation of the high potential power supply unit 4. By allowing the capacitor 11 to absorb the surge voltage, a diode element having a low withstand voltage rating can be used as the diode 9 and the cost can be reduced.
[0026] 図 1に示した高電位電源部 4は、 DCZDCコンバータ 2の出力電圧を入力して昇圧 するものである。高電位電源部 4は、ダイオード 9の力ソード力も電力を入力し、ダイォ ード 9の力ソードの電位にコンデンサ 14に蓄積されているエネルギによって生じる電 位を上乗せした電位を出力する。このように高電位電源部 4の出力電位は、ダイォー ド 9の力ソードの電位、即ち Hブリッジ形のインバータ 3の高電位側スイッチングトラン ジスタ 15, 16に印加される電位よりも高くなる。コンデンサ 11に蓄積されたサージ電 圧のエネルギは、ダイオード 9からダイオード 12へ電流が流れた後、ダイオード 12か らダイオード 13へ電流が流れてコンデンサ 14の両端電圧がダイオード 9の力ソード 電位即ち DCZDCコンバータ 2の出力電圧に上乗せされるときに使用され、簡単に 構成された高電位電源部 4によってインバータ 3を効率よく動作させることができる。  [0026] The high-potential power supply unit 4 shown in FIG. 1 inputs and boosts the output voltage of the DCZDC converter 2. The high-potential power supply unit 4 also receives the power of the power sword force of the diode 9 and outputs a potential obtained by adding the potential generated by the energy accumulated in the capacitor 14 to the potential of the power sword of the diode 9. Thus, the output potential of the high potential power supply unit 4 becomes higher than the potential of the power sword of the diode 9, that is, the potential applied to the high potential side switching transistors 15 and 16 of the H bridge type inverter 3. The energy of the surge voltage accumulated in the capacitor 11 is such that after a current flows from the diode 9 to the diode 12, a current flows from the diode 12 to the diode 13, and the voltage across the capacitor 14 becomes the force sword potential of the diode 9, that is, DCZDC. The inverter 3 can be efficiently operated by the high-potential power supply unit 4 that is used when added to the output voltage of the converter 2 and is simply configured.
[0027] 以上のように実施の形態 1によれば、高電位側スイッチングトランジスタ 15, 16を駆 動するブートストラップ回路のコンデンサ 23, 28に、常に充電を行う高電位電源部 4 、ダイオード 20, 25、抵抗 21, 26を備えたので、定常点灯時に適合させた小さい容 量のコンデンサ 23, 28をブートストラップ回路に使用したときでも長時間高電位側ス イッチングトランジスタ 15, 16を ON状態に保つことができ、インバータ 3から放電灯 の点灯開始時に直流の負荷電力を長時間供給することができるという効果がある。 また、大容量のコンデンサを使用することなくインバータ 3を構成することができるの で、インバータ 3の小型化が図れ、またコストを抑制することができるという効果がある [0028] 実施の形態 2. As described above, according to the first embodiment, the capacitors 23 and 28 of the bootstrap circuit that drives the high-potential side switching transistors 15 and 16 are constantly charged with the high-potential power supply unit 4 and the diodes 20 and 20. 25, resistors 21 and 26 are provided, so that the high-side switching transistors 15 and 16 are kept on for a long time even when the small-capacitance capacitors 23 and 28 adapted for steady lighting are used in the bootstrap circuit. Therefore, DC load power can be supplied for a long time from the inverter 3 when the discharge lamp starts lighting. In addition, since the inverter 3 can be configured without using a large-capacitance capacitor, the inverter 3 can be reduced in size and cost can be reduced. [0028] Embodiment 2.
図 4は、この発明の実施の形態 2による放電灯点灯装置の構成を示す回路図であ る。図 1に示したものと同一あるいは相当する部分に同じ符号を使用し、その説明を 省略する。実施の形態 2による放電灯点灯装置は、図 1に示した高電位電源部 4〖こ 代えて DCZDCコンバータ (充電手段、昇圧回路) 40を備えたもので、その他の構 成は実施の形態 1にお 、て説明した放電灯点灯装置と同様である。ここでは実施の 形態 1の放電灯点灯装置と同様に構成された部分の説明を省略する。図 4に示した 放電灯点灯装置は、 DCZDCコンバータ 2の出力電位よりも高い出力電位が得られ る DCZDCコンバータ 40を備え、 DCZDCコンバータ 40の出力電力をダイオード 2 0, 25のアノードへ供給するように構成したものである。図 4に例示した DCZDCコン バータ 40は、電源 1の出力電圧 Vccを入力するものである力 DCZDCコンバータ 4 0は、 DCZDCコンバータ 2よりも高い電位を出力するものであれば、どのようなもの でもよぐ DCZDCコンバータ 40へ電力を供給する電源は図示した電源 1に限定さ れず、入力電圧も電圧 Vccに限定されない。  FIG. 4 is a circuit diagram showing a configuration of a discharge lamp lighting device according to Embodiment 2 of the present invention. The same reference numerals are used for parts that are the same as or equivalent to those shown in FIG. 1, and descriptions thereof are omitted. The discharge lamp lighting device according to the second embodiment is provided with a DCZDC converter (charging means, booster circuit) 40 instead of the four high-potential power supply units shown in FIG. 1, and other configurations are the same as those of the first embodiment. The discharge lamp lighting device described above is the same. Here, the description of the parts configured in the same manner as the discharge lamp lighting device of Embodiment 1 is omitted. The discharge lamp lighting device shown in FIG. 4 includes a DCZDC converter 40 that can obtain an output potential higher than the output potential of the DCZDC converter 2, and supplies the output power of the DCZDC converter 40 to the anodes of the diodes 20 and 25. It is configured. The DCZDC converter 40 illustrated in FIG. 4 is used to input the output voltage Vcc of the power source 1. The DCZDC converter 40 can be any type as long as it outputs a higher potential than the DCZDC converter 2. The power supply for supplying power to the DCZDC converter 40 is not limited to the power supply 1 shown in the figure, and the input voltage is not limited to the voltage Vcc.
[0029] 次に動作について説明する。  Next, the operation will be described.
実施の形態 2による放電灯点灯装置は、 DCZDCコンバータ 40から出力された電 位をコンデンサ 23, 28へ印加する以外は、実施の形態 1で説明したものと同様に動 作するもので、ここではその説明を省略する。 DCZDCコンバータ 40から出力される 電位は、図 1に示した高電位電源部 4から出力されるものと同様に、図 4に示したスィ ツチングトランジスタ 15が ON状態になり、スイッチングトランジスタ 15とコンデンサ 23 との接続点の電位が高くなつたときでもコンデンサ 23に充電電流が流れるように、ス イッチングトランジスタ 15のドレインに印加されている電位、またはスイッチングトラン ジスタ 15のソース電位即ち負荷電力の高電位側よりも高い電位が印加される。スイツ チングトランジスタ 16に接続されているコンデンサ 28も同様に、スイッチングトランジ スタ 16が ON状態になったときでも充電電流が流れるようにスイッチングトランジスタ 1 6のドレインに印加されている電位よりも高い電位が DC/DCコンバータ 40によって 印加される。なお、図 4に示したコンデンサ 23はダイオード 20と抵抗 21を介して、ま たコンデンサ 28はダイオード 25と抵抗 26を介して DCZDCコンバータ 40から高電 位が印加される。図 4に示したダイオード 20, 25、抵抗 21, 26の作用効果は、実施 の形態 1で図 1を用いて説明したものと同様である。 The discharge lamp lighting device according to the second embodiment operates in the same manner as described in the first embodiment except that the potential output from the DCZDC converter 40 is applied to the capacitors 23 and 28. The description is omitted. The potential output from the DCZDC converter 40 is the same as that output from the high potential power supply unit 4 shown in FIG. 1, and the switching transistor 15 shown in FIG. The potential applied to the drain of the switching transistor 15 or the source potential of the switching transistor 15, i.e., the high potential of the load power, so that the charging current flows through the capacitor 23 even when the potential at the connection point to 23 is high. A higher potential is applied than the side. Similarly, the capacitor 28 connected to the switching transistor 16 has a potential higher than the potential applied to the drain of the switching transistor 16 so that the charging current flows even when the switching transistor 16 is turned on. Applied by DC / DC converter 40. The capacitor 23 shown in FIG. 4 is connected via a diode 20 and a resistor 21. The capacitor 28 is applied with a high potential from the DCZDC converter 40 via the diode 25 and the resistor 26. The operational effects of the diodes 20 and 25 and the resistors 21 and 26 shown in FIG. 4 are the same as those described in the first embodiment with reference to FIG.
[0030] 以上のように実施の形態 2によれば、高電位側スイッチングトランジスタ 15, 16を駆 動するブートストラップ回路のコンデンサ 23, 28に、常に充電を行う DCZDCコンパ ータ 40、ダイオード 20, 25、抵抗 21, 26を備えたので、定常点灯時に適合させた小 さい容量のコンデンサ 23, 28をブートストラップ回路に使用したときでも長時間スイツ チングトランジスタ 15, 16を ON状態に保つことができ、インバータ 3から放電灯の点 灯開始時に直流の負荷電力を長時間供給することができるという効果がある。 As described above, according to the second embodiment, the DCZDC converter 40, the diode 20, and the capacitor 20, 23 of the bootstrap circuit that drives the high potential side switching transistors 15, 16 are always charged. 25 and resistors 21 and 26 enable the switching transistors 15 and 16 to be kept on for a long time even when the small-capacitance capacitors 23 and 28 adapted for steady lighting are used in the bootstrap circuit. In addition, DC load power can be supplied for a long time from the inverter 3 when the discharge lamp starts to light.
また、大容量のコンデンサを使用することなくインバータ 3を構成することができるの で、インバータ 3の小型化が図れ、またコストを抑制することができるという効果がある  In addition, since the inverter 3 can be configured without using a large-capacitance capacitor, the inverter 3 can be reduced in size and the cost can be reduced.
[0031] 実施の形態 3. [0031] Embodiment 3.
図 5は、この発明の実施の形態 3による放電灯点灯装置の概略構成を示す回路図 である。図 1, 4に示したものと同一あるいは相当する部分に同じ符号を使用し、その 説明を省略する。図 5は、実施の形態 3による放電灯点灯装置の一部分の回路図で 、 IC46を使用した Hブリッジ形インバータ回路の一部分を示したものである。図 5に 示した DC/DCコンバータ 2aは図 1の DC/DCコンバータ 2に相当し、電源 1から入 力した電圧を昇圧する。図 5に示した DCZDCコンバータ 40aは図 4の DCZDCコン バータ 40に相当し、例えば電源 1の電力を入力して DCZDCコンバータ 2aの出力 電圧よりも高い電圧を出力する。電源 1から電力を入力する制御電源部 laは、ブート ストラップ回路へ電力を制御して供給するもので、例えば直流電圧 12 [V]の電力を 出力する。  FIG. 5 is a circuit diagram showing a schematic configuration of a discharge lamp lighting device according to Embodiment 3 of the present invention. The same reference numerals are used for parts that are the same as or equivalent to those shown in FIGS. FIG. 5 is a circuit diagram of a part of the discharge lamp lighting device according to the third embodiment, and shows a part of an H-bridge type inverter circuit using IC46. The DC / DC converter 2a shown in FIG. 5 corresponds to the DC / DC converter 2 in FIG. 1, and boosts the voltage input from the power source 1. The DCZDC converter 40a shown in FIG. 5 corresponds to the DCZDC converter 40 shown in FIG. 4. For example, the power of the power source 1 is input and a voltage higher than the output voltage of the DCZDC converter 2a is output. The control power supply unit la that inputs power from the power supply 1 controls and supplies power to the bootstrap circuit, and outputs, for example, power of DC voltage 12 [V].
[0032] IC46は、 Hブリッジ形インバータ回路のスイッチングトランジスタを駆動するブートス トラップ回路を集積した Integrated Circuit (以下 ICと記載する)で、例えば、図 1に 示した抵抗 22, 29、スイッチングトランジスタ 31, 32、抵抗 35, 36に相当する回路素 子を当該図 1の回路のように接続構成させたものである。 IC46は、例えば図 5に例示 したようにダイオード 41やコンデンサ 44を接続する端子を備え、このようにダイオード 41の両端やコンデンサ 44の一端を接続させることにより実施の形態 1で説明したよう な高電位側スイッチングトランジスタを駆動するブートストラップ回路が構成される。ま た IC46は、前述の駆動信号 aと駆動信号 bとをそれぞれ入力する端子を備える。 IC4 6の出力端子は、高電位側スイッチングトランジスタ 15aと低電位側スイッチングトラン ジスタ 17aの各ゲートにそれぞれ接続される。 [0032] IC 46 is an integrated circuit (hereinafter referred to as IC) in which a bootstrap circuit that drives a switching transistor of an H-bridge inverter circuit is integrated. For example, the resistors 22, 29, switching transistors 31, and 31 shown in FIG. The circuit elements corresponding to 32 and resistors 35 and 36 are connected and configured as in the circuit of FIG. The IC 46 includes a terminal for connecting the diode 41 and the capacitor 44 as illustrated in FIG. 5, for example. By connecting both ends of 41 and one end of the capacitor 44, a bootstrap circuit for driving the high potential side switching transistor as described in the first embodiment is configured. Further, the IC 46 includes terminals for inputting the drive signal a and the drive signal b described above. The output terminal of the IC 46 is connected to the gates of the high potential side switching transistor 15a and the low potential side switching transistor 17a.
[0033] IC46の端子と接続されたダイオード 41のアノードは制御電源部 laに接続され、ダ ィオード 41の力ソードは IC46の端子に接続されると共にコンデンサ 44の一端が接 続される。また、この接続点には抵抗 (充電手段、電流制限手段) 43の一端とツエナ 一ダイオード (電圧制限素子) 45の力ソードが接続される。抵抗 43の他端はダイォー ド(充電手段) 42の力ソードが接続され、ダイオード 42のアノードは DCZDCコンパ ータ 40aに接続される。ツエナーダイオード 52は、ツエナー電圧が例えば 12[V]〜2 0[V]の定格を有するものである。ダイオード 42はダイオード 20等に相当し、抵抗 43 は抵抗 21等に相当する。  [0033] The anode of the diode 41 connected to the terminal of the IC 46 is connected to the control power supply unit la, the force sword of the diode 41 is connected to the terminal of the IC 46, and one end of the capacitor 44 is connected. In addition, one end of a resistor (charging means, current limiting means) 43 and a force sword of a Zener diode (voltage limiting element) 45 are connected to this connection point. The other end of the resistor 43 is connected to a power sword of a diode (charging means) 42, and the anode of the diode 42 is connected to a DCZDC converter 40a. The Zener diode 52 has a Zener voltage with a rating of, for example, 12 [V] to 20 [V]. The diode 42 corresponds to the diode 20 or the like, and the resistor 43 corresponds to the resistor 21 or the like.
[0034] 図 5に示したスイッチングトランジスタ 15aは、図 1等に示したスイッチングトランジス タ 15に相当するもので、図 5のスイッチングトランジスタ 17aは図 1等のスイッチングト ランジスタ 17に相当するものである。高電位側スイッチングトランジスタ 15aと低電位 側スイッチングトランジスタ 17aは直列接続され、スイッチングトランジスタ 15aのソー スとスイッチングトランジスタ 17aのドレインとの接続点が Hブリッジ形インバータ回路 の出力部となる。またこの接続点にはコンデンサ 44の他端とツエナーダイオード 45の アノードが接続される。スイッチングトランジスタ 15aのドレインには、 DCZDCコンパ ータ 2aの出力電力が供給され、スイッチングトランジスタ 17aのソースは接地される。 また、実施の形態 3による放電灯点灯装置は、 Hブリッジ形インバータ回路を構成す る高電位側スイッチングトランジスタ 15a及び低電位側スイッチングトランジスタ 17aと 共に図示を省略した高電位側スイッチングトランジスタと低電位側スイッチングトラン ジスタとを備え、また、これらのスイッチングトランジスタを駆動する、図示されない IC ィ匕されたブートストラップ回路や当該ブートストラップ回路を成すダイオード、コンデン サ、抵抗等を前記説明と同様に構成している。ここでは、これらの同様に構成された 部分の説明を省略する。 [0035] 次に動作について説明する。 [0034] The switching transistor 15a shown in FIG. 5 corresponds to the switching transistor 15 shown in FIG. 1 and the like, and the switching transistor 17a in FIG. 5 corresponds to the switching transistor 17 in FIG. . The high-potential side switching transistor 15a and the low-potential side switching transistor 17a are connected in series, and the connection point between the source of the switching transistor 15a and the drain of the switching transistor 17a is the output section of the H-bridge inverter circuit. The other end of the capacitor 44 and the anode of the Zener diode 45 are connected to this connection point. The output power of the DCZDC converter 2a is supplied to the drain of the switching transistor 15a, and the source of the switching transistor 17a is grounded. Further, the discharge lamp lighting device according to Embodiment 3 includes a high-potential side switching transistor and a low-potential side transistor, both of which are not shown in the figure, together with the high-potential side switching transistor 15a and the low-potential side switching transistor 17a constituting the H-bridge inverter circuit. In addition, a bootstrap circuit with an IC (not shown) that drives these switching transistors and a diode, a capacitor, a resistor, and the like constituting the bootstrap circuit are configured in the same manner as described above. Yes. Here, the description of these similarly configured parts is omitted. Next, the operation will be described.
実施の形態 3による放電灯点灯装置は、図 5に示したッヱナ一ダイオード 45を備え たことによる動作以外は、実施の形態 1等で説明したものと同様に動作するもので、こ こでは実施の形態 1で説明したものと同様な動作について説明を省略し、実施の形 態 3による放電灯点灯装置の特徴となる動作を説明する。  The discharge lamp lighting device according to the third embodiment operates in the same manner as that described in the first embodiment and the like except that it is provided with the corner diode 45 shown in FIG. Description of operations similar to those described in Embodiment 1 will be omitted, and operations that characterize the discharge lamp lighting device according to Embodiment 3 will be described.
図 5に示した放電灯点灯装置は、 Hブリッジ形インバータ回路の高電位側及び低電 位側の各スイッチングトランジスタをブートストラップ回路^^積させた IC46により駆 動する。一般的に ICの耐電圧やスイッチングトランジスタに使用される MOS型トラン ジスタのゲート耐電圧は 20 [V]程度で、それ以上の電圧が印加されると破壊するお それがある。コンデンサ 44には、ダイオード 42及び抵抗 43を介して DC/DCコンパ ータ 40aから、実施の形態 1で説明した高電位電源部 4から出力される電位と同様な 高電位が常に印加され、充電電流が流れ続けることによりコンデンサ 44の両端電圧 が IC46などの耐電圧を超える場合がある。コンデンサ 44の両端電圧が例えば 20 [V ]を超えて、この電圧が IC46などに印加されると Hブリッジ形インバータ回路を構成し ている各素子を破壊してしまう。このような破壊を防ぐため、ツエナーダイオード 45を コンデンサ 44と並列に接続し、ツエナー効果を用 ヽてコンデンサ 44の両端電圧を前 述のように 12 [V]〜20 [V]の!、ずれかの電圧より大きくならな 、ように制限する。ツ ナー電圧が 12 [V]より低 、ツエナーダイオード 45を備えると、制御電源部 laから供 給される電流が概ね全てツエナーダイオード 45に流れることになり、各回路が動作す ることができなくなる。そのため、ツエナー電圧の定格が制御電源部 laの出力電圧よ りも高ぐなおかつ IC46などの耐電圧以下もしくはそれより低いものをツエナーダイォ ード 45として使用する。  The discharge lamp lighting device shown in Fig. 5 is driven by an IC46 in which switching transistors on the high potential side and low potential side of the H-bridge inverter circuit are stacked. Generally, the withstand voltage of an IC or the gate withstand voltage of a MOS transistor used for a switching transistor is about 20 [V], and if a voltage higher than that is applied, it may be destroyed. A high potential similar to the potential output from the high potential power supply unit 4 described in the first embodiment is always applied to the capacitor 44 from the DC / DC comparator 40a via the diode 42 and the resistor 43, and the capacitor 44 is charged. If the current continues to flow, the voltage across capacitor 44 may exceed the withstand voltage of IC46. If the voltage across the capacitor 44 exceeds 20 [V], for example, and this voltage is applied to the IC 46, etc., each element constituting the H-bridge inverter circuit will be destroyed. In order to prevent such destruction, a Zener diode 45 is connected in parallel with the capacitor 44, and the voltage across the capacitor 44 is changed from 12 [V] to 20 [V] as described above using the Zener effect. Limit the voltage so that it is not greater than any other voltage. If the Zener voltage is lower than 12 [V] and the Zener diode 45 is provided, almost all of the current supplied from the control power supply unit la flows to the Zener diode 45, and each circuit cannot operate. . Therefore, a Zener diode 45 whose rating of the Zener voltage is higher than the output voltage of the control power supply unit la and is equal to or lower than the withstand voltage of the IC 46 or the like is used.
[0036] 以上のように実施の形態 3によれば、ブートストラップ回路のコンデンサ 44の両端電 圧を、 Hブリッジ形インバータ回路を構成する各素子の耐電圧を超えないように制限 するツエナーダイオード 45を備えたので、耐電圧の比較的低!ヽ IC等を使用して回路 を構成することができると 、う効果がある。  As described above, according to the third embodiment, the Zener diode that limits the voltage across the capacitor 44 of the bootstrap circuit so as not to exceed the withstand voltage of each element constituting the H-bridge inverter circuit 45 Therefore, it is possible to construct a circuit using an IC or the like having a relatively low withstand voltage.
また、 IC等を使用することにより Hブリッジ形インバータ回路のコストを抑制すること ができるという効果がある。 産業上の利用可能性 In addition, the cost of the H-bridge inverter circuit can be reduced by using an IC or the like. Industrial applicability
以上のように、この発明に係る放電灯点灯装置は、大容量のコンデンサを使用する ことなく放電灯の点灯開始時に長時間直流電力を出力するのに適している。  As described above, the discharge lamp lighting device according to the present invention is suitable for outputting DC power for a long time at the start of lighting of the discharge lamp without using a large capacity capacitor.

Claims

請求の範囲 The scope of the claims
[1] 放電灯へ供給する電力を生成するコンバータ回路と、前記コンバータ回路から出 力された電力を用いて前記放電灯へ負荷電力を出力する Hブリッジ形インバータ回 路とを備えた放電灯点灯装置において、  [1] A discharge lamp lighting comprising: a converter circuit that generates electric power to be supplied to the discharge lamp; and an H-bridge inverter circuit that outputs load power to the discharge lamp using the electric power output from the converter circuit In the device
前記 Hブリッジ形インバータ回路を構成する高電位側スイッチング素子のゲート電 圧確保用電源としてのブートストラップ回路のコンデンサと、  A capacitor of a bootstrap circuit as a power supply for securing a gate voltage of a high-potential side switching element constituting the H-bridge inverter circuit;
前記コンデンサに前記 Hブリッジ形インバータ回路の高電位側より高い電位で前記 コンデンサに充電電流を供給する充電手段とを備えた放電灯点灯装置。  A discharge lamp lighting device comprising: charging means for supplying a charging current to the capacitor at a potential higher than a high potential side of the H-bridge inverter circuit.
[2] 充電手段は、スイッチング素子が ON状態に駆動されたときブートストラップ回路の コンデンサの両端電圧が維持される大きさに充電電流を制限する電流制限手段を備 えたことを特徴とする請求項 1記載の放電灯点灯装置。 [2] The charging means includes current limiting means for limiting the charging current to a magnitude that maintains the voltage across the capacitor of the bootstrap circuit when the switching element is driven to the ON state. The discharge lamp lighting device according to 1.
[3] 充電手段は、コンバータ回路の出力電圧を昇圧する昇圧回路力 なることを特徴と する請求項 1記載の放電灯点灯装置。 3. The discharge lamp lighting device according to claim 1, wherein the charging means is a booster circuit that boosts the output voltage of the converter circuit.
[4] 充電手段は、コンバータ回路が放電灯へ供給する電力を生成するとき発生するサ ージ電圧を吸収し当該吸収したエネルギを充電電流に使用するコンデンサを備えた ことを特徴とする請求項 1記載の放電灯点灯装置。 [4] The charging means includes a capacitor that absorbs a surge voltage generated when the converter circuit generates electric power to be supplied to the discharge lamp and uses the absorbed energy for the charging current. The discharge lamp lighting device according to 1.
[5] 充電手段は、コンバータ回路の電源の電圧を昇圧する昇圧回路力 なることを特 徴とする請求項 1記載の放電灯点灯装置。 5. The discharge lamp lighting device according to claim 1, wherein the charging means is a booster circuit that boosts the voltage of the power supply of the converter circuit.
[6] ブートストラップ回路は、ブートストラップ回路のコンデンサの両端電圧を当該回路 を構成する各素子の耐電圧以下に制限する電圧制限素子を備えたことを特徴とする 請求項 1記載の放電灯点灯装置。 [6] The discharge lamp lighting according to claim 1, wherein the bootstrap circuit includes a voltage limiting element that limits a voltage across the capacitor of the bootstrap circuit to a withstand voltage of each element constituting the circuit or less. apparatus.
PCT/JP2005/010877 2004-09-13 2005-06-14 Discharge lamp lighting device WO2006030569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004265349A JP2006080024A (en) 2004-09-13 2004-09-13 Discharge lamp lighting device
JP2004-265349 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030569A1 true WO2006030569A1 (en) 2006-03-23

Family

ID=36059830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010877 WO2006030569A1 (en) 2004-09-13 2005-06-14 Discharge lamp lighting device

Country Status (2)

Country Link
JP (1) JP2006080024A (en)
WO (1) WO2006030569A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259657A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Motor drive circuit
EP2595316A1 (en) * 2011-11-15 2013-05-22 Lextar Electronics Corp. Electronic device using a bootstrap circuit
WO2012171938A3 (en) * 2011-06-14 2013-05-30 Merus Audio Aps Power transistor gate driver
WO2013182867A1 (en) * 2012-06-05 2013-12-12 Freescale Semiconductor, Inc. Method and apparatus for charging a bootstrap charge storage device
CN103683866A (en) * 2012-11-26 2014-03-26 崇贸科技股份有限公司 Transistor gate driver with charge pump circuit of power converter
DE102015119492B4 (en) 2014-11-13 2023-02-23 Analog Devices, Inc. Power supply circuits for gate drivers and power supply methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262647B2 (en) * 2008-12-05 2013-08-14 岩崎電気株式会社 High pressure discharge lamp lighting device, projector, and high pressure discharge lamp starting method
JP2013089461A (en) * 2011-10-18 2013-05-13 Panasonic Corp Power supply device
JP6074721B2 (en) * 2013-06-13 2017-02-08 パナソニックIpマネジメント株式会社 Discharge lamp lighting device and lighting device using the same
JP6074722B2 (en) * 2013-06-13 2017-02-08 パナソニックIpマネジメント株式会社 Discharge lamp lighting device and lighting device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117150A (en) * 1995-10-13 1997-05-02 Matsushita Electric Works Ltd Power supply
JP2003244966A (en) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp Drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117150A (en) * 1995-10-13 1997-05-02 Matsushita Electric Works Ltd Power supply
JP2003244966A (en) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp Drive circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259657A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Motor drive circuit
WO2012171938A3 (en) * 2011-06-14 2013-05-30 Merus Audio Aps Power transistor gate driver
CN103620954A (en) * 2011-06-14 2014-03-05 梅鲁斯音频有限公司 Power transistor gate driver
US9231583B2 (en) 2011-06-14 2016-01-05 Merus Audio Aps Power transistor gate driver
EP2595316A1 (en) * 2011-11-15 2013-05-22 Lextar Electronics Corp. Electronic device using a bootstrap circuit
WO2013182867A1 (en) * 2012-06-05 2013-12-12 Freescale Semiconductor, Inc. Method and apparatus for charging a bootstrap charge storage device
US9407192B2 (en) 2012-06-05 2016-08-02 Freescale Semiconductor, Inc. Method and apparatus for charging a bootstrap charge storage device
CN103683866A (en) * 2012-11-26 2014-03-26 崇贸科技股份有限公司 Transistor gate driver with charge pump circuit of power converter
DE102015119492B4 (en) 2014-11-13 2023-02-23 Analog Devices, Inc. Power supply circuits for gate drivers and power supply methods

Also Published As

Publication number Publication date
JP2006080024A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
WO2006030569A1 (en) Discharge lamp lighting device
JP4347249B2 (en) DC-DC converter, control circuit for DC-DC converter, and control method for DC-DC converter
JP4712519B2 (en) Charge pump circuit for high side drive circuit and driver drive voltage circuit
JP3300683B2 (en) Switching power supply
JP6500999B2 (en) Semiconductor device
JP2003018822A (en) Rush current limiting circuit for charge pump
JP2004173481A (en) Switching regulator and power supply
KR100449356B1 (en) Drive circuit of capacitive load and integrated circuit for driving capacitive load
JP7070830B2 (en) Switching power supply
JP5825433B2 (en) Switching power supply
KR20010111459A (en) Power supply, electronic device using the same and output short-circuit protection method for the same
US9780690B2 (en) Resonant decoupled auxiliary supply for a switched-mode power supply controller
WO2007015520A1 (en) Power supply device
US6429635B2 (en) Drive circuit for insulated gate type FETs
JP5200739B2 (en) Power converter
JP6834311B2 (en) Programmable logic controller
US6111365A (en) Fast starting, surge limited, electronic ballast
JP3469455B2 (en) Switching power supply
JP3618310B2 (en) Power control circuit
WO2006087850A1 (en) Power supply unit
JP4683477B2 (en) DC / DC converter
JPH08107669A (en) Step-up chopper regulator
JP6950495B2 (en) Power converter
JP4000621B2 (en) Vehicle load drive device
JP2004215411A (en) Power factor improvement method of power supply system, power supply system, switching power supply, and uninterruptible power supply

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP