WO2006029677A1 - Laser markable and laser weldable polymer materials - Google Patents

Laser markable and laser weldable polymer materials Download PDF

Info

Publication number
WO2006029677A1
WO2006029677A1 PCT/EP2005/008677 EP2005008677W WO2006029677A1 WO 2006029677 A1 WO2006029677 A1 WO 2006029677A1 EP 2005008677 W EP2005008677 W EP 2005008677W WO 2006029677 A1 WO2006029677 A1 WO 2006029677A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
markable
boride
polymers according
weldable
Prior art date
Application number
PCT/EP2005/008677
Other languages
German (de)
French (fr)
Inventor
Silvia Rosenberger
Manfred Kieser
Reinhold Rueger
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of WO2006029677A1 publication Critical patent/WO2006029677A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene

Definitions

  • the present invention relates to laser-markable and laser-weldable polymeric materials, which are characterized in that they contain at least one boride compound as an absorber.
  • Barcodes can also be applied to a non-planar surface at high speed. Since the inscription is located in the plastic body itself, it is permanently resistant to abrasion.
  • the marking of plastics by laser marking as well as the welding of plastic parts by means of laser energy is known per se. Both are effected by absorption of the laser energy in the plastic material either directly by interaction with the polymer or indirectly by means of a plastic material added laser-sensitive agent.
  • the laser-sensitive agent may be an organic dye or a pigment which causes absorption of the laser energy.
  • laser marking this causes a local visible discoloration of the plastic or the compound is converted when irradiated with laser light from an invisible, colorless in a visible form.
  • the plastic material is so strongly heated by absorption of the laser energy in the joining area that the plastic melts and weld both parts together.
  • Nd YAG lasers are increasingly being used for the laser marking of plastics.
  • the commonly used YAG lasers emit a pulsed energy beam with a characteristic wavelength of 1064 nm or 532 nm.
  • the absorber material must show a pronounced absorption in this special NIR range in order to show a sufficient response in the fast labeling processes.
  • the object of the present invention was therefore to find laser-markable or laser-weldable polymeric materials which, when exposed to laser light, produce a mark with high contrast or a good contrast
  • the absorber or the successful one Absorbent should therefore hardly change the polymer properties and at the same time only have to be used in very small amounts.
  • the laser marking of polymeric materials, in particular the contrast of the label, as well as the laser welding can be improved if one uses a boride compound in low concentrations as an absorber.
  • the boride compound shows such low intrinsic coloration in the visible spectral range (light wavelength 400-750 nm) in low concentrations that it is particularly suitable for crystal-clear polymers.
  • the doped polymer shows a mark with high contrast and pronounced edge sharpness.
  • CW Nd: YAG lasers even transparent plastics can be welded very well.
  • a boride compound in particular in concentrations of from 0.001 to 10% by weight, preferably from 0.001 to 7% by weight, and in particular from 0.0015 to 3% by weight, based on the polymer, is used in the laser marking of polymers significantly higher contrast achieved than with the commercially available absorbers at comparable concentrations Konzen ⁇ .
  • the boride compound is preferably used in concentrations of from 0.001 to 10% by weight, in particular from 0.001 to 7% by weight and very particularly preferably from 0.01 to 3% by weight.
  • the invention thus relates to a laser-markable or laser-weldable polymeric material, characterized in that the polymer contains at least one boride compound as absorber.
  • the concentration of the absorber in the polymer preferably thermoplastics, thermosets, elastomers, however, depends on the polymer material used.
  • the low proportion of absorber changes the polymer system insignificantly and does not affect its processability.
  • Boride compounds are, in particular, aluminum boride, magnesium boride, molybdenum boride, chromium boride, niobium boride, silicon hexaboride, - A -
  • the boride compounds have particle sizes in the range of 50 nm -
  • 100 ⁇ m preferably from 0.05 to 50 ⁇ m and in particular from 0.05 to 10 ⁇ m. Very particular preference is given to particle sizes of 0.1-5 ⁇ m.
  • the commercially available boride compounds usually have particle sizes significantly> 50 microns, so they are before use as
  • Absorber with a suitable grinding device e.g. a bead mill or ball mill, must be milled to the appropriate particle sizes.
  • the fine grinding is preferably carried out in suspension in water, organic solvents or solvent mixtures, if appropriate in the presence of dispersants.
  • Preferred dispersing aids are those which simultaneously facilitate the incorporation of the finely divided inorganic borides into the plastics compositions, e.g. by hydrophobization of the particle surfaces.
  • the borides are preferably stretched with an inert substance that has no intrinsic color and is compatible with the plastics.
  • Suitable diluents are e.g. precipitated silicas or pyrogens
  • Silicic acids or inorganic fillers e.g. Kaolin or mica.
  • the fabrics can be added before or after fine grinding.
  • the laser light absorbing substances suitable for the marking are preferably based on anthracene, pentaerythritol, copper phosphates, copper hydroxide phosphates, eg libethenite, molybdenum disulfide, molybdenum oxide, antimony (III) oxide and bismuth oxychloride, platelet-shaped, in particular transparent or semitransparent, substrates of e.g. B. Schicht ⁇ silicates, such as synthetic or natural mica, talc, kaolin, glass flakes, SiO 2 platelets or synthetic carrier-free platelets.
  • platelet-shaped metal oxides such as Example, platelet-shaped iron oxide, alumina, titanium dioxide, silicon dioxide, LCP's (liquid crystal polymers), holographic pigments, conductive pigments or coated or uncoated graphite platelets into consideration.
  • metal flakes which may be uncoated or else covered with one or more metal oxide layers; preferred are z.
  • AI, Fe or steel plates are used uncoated, they are preferably coated with a protective polymer layer.
  • Particularly preferred substances are uncoated or coated with one or more metal oxides mica flakes.
  • metal oxides mica flakes are used as metal oxides, as well as colored metal oxides, such.
  • Particularly preferred is as a laser light absorbing substance
  • Antimony (III) oxide, antimony tin oxide or combinations of tin oxide with antimony (III) oxide used.
  • Pigments based on transparent or semitransparent platelet-shaped substrates are e.g. As described in German patents and patent applications 14 67 468, 19 59 998, 20 09 566, 22 14 454, 22 15 191, 22 44 298, 23 13 331, 25 22 572, 31 37 808, 31 37 809, 31 51 343, 31 51 354, 31 51 355, 32 11 602, 32 35 017, 38 42 330, 44 41 223, 196 18 569, 196 38 708, 197 07 806 and 198 03 550.
  • Coated SiO 2 platelets are z. B. known from WO 93/08237 (wet-chemical coating) and DE-OS 196 14 637 (CVD method).
  • Multilayered pigments based on phyllosilicates are known, for example, from German published patent applications DE 196 18 569, DE 196 38 708, DE 197 07 806 and DE 198 03 550. Particularly suitable are multilayer pigments which have the following structure:
  • laser light absorbing substances are natural or synthetic mica, coated with TiO 2 mica platelets, conductive pigments, such as with (Sn, Sb) O 2 coated platelet-shaped substrates, antimony and antimony (III) oxide, anthracene, pentaerythritol, copper (hydroxide) phosphates , Molybdenum disulfide, molybdenum oxide, undoped or antimony-doped tin oxide and bismuth oxychloride, and mixtures of said substances.
  • the mixing ratio boride compound with a further laser-light-sensitive substance is preferably 1:10 to 10: 1, in particular 1:10.
  • Preferred absorber mixtures are
  • Particularly preferred mixtures contain lathanhexaboride.
  • the total concentration of the mixture absorber / light-sensitive substance should not exceed 10% by weight, based on the polymer, in the case of laser marking.
  • the concentration should be ⁇ 10% by weight in the joining area.
  • compositions of the absorber the addition of small amounts of a metal halide, preferably calcium chloride, ⁇ 5% by weight is advantageous for the laser marking contrast of the polymer.
  • colorants can be added to the polymers which allow color variations of any kind and at the same time ensure retention of the laser marking or of the laser welding.
  • Suitable colorants are in particular colored metal oxide pigments and organic pigments and dyes.
  • thermoplastics in particular thermoplastics, furthermore thermosetting plastics and elastomers, are suitable, as described, for example, in Ulimann, Vol. 15, p. 457 ff., Verlag VCH.
  • Suitable polymers are, for example, polyethylene, polypropylene, polyamides, polyesters, polyester esters, polyether esters, polyphenylene ethers, polyacetal, polyurethane, polybutylene terephthalate (PBT), polymethyl methacrylate, polyvinyl acetal, polystyrene, acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene Acrylic ester (ASA), polycarbonate, polyether sulfones and polyether ketones and their copolymers, mixtures, and / or polymer blends, such as PC / ABS, MABS.
  • drilling compound (s) and optionally another laser-sensitive substance, e.g. an effect pigment, molybdenum oxide,
  • Kupferphoshats, an antimony compound and / or phyllosilicate, in the polymer, preferably a thermoplastic takes place by the polymer granules are mixed with the absorber and then deformed under hills ⁇ effect.
  • the addition of the absorber or absorber mixture to the polymer can take place simultaneously or successively.
  • adhesives, organic polymer-compatible solvents, stabilizers and / or surfactants which are stable under the working conditions may be added to the polymer, preferably a plastic granulate.
  • the preparation of the doped plastic granules is usually carried out so that presented in a suitable mixer, the plastic granules, wetted with any additives and then the absorber is added and mixed.
  • the pigmentation of the polymer is generally carried out via a color concentrate (masterbatch) or compound.
  • the mixture thus obtained can then be processed directly in an extruder or an injection molding machine.
  • the shaped bodies formed during processing show a very homogeneous distribution of the absorber.
  • the laser marking takes place with a suitable laser.
  • the invention also provides a process for the preparation of the doped polymeric materials according to the invention, characterized in that a polymeric material is mixed with the absorber and then deformed under the action of heat.
  • the inscription with the laser takes place in such a way that the specimen is brought into the beam path of a pulsed laser, preferably an Nd: YAG laser. Furthermore, a lettering with an excimer laser, for example via a mask technique, possible. However, the desired results are also to be achieved with other conventional laser types which have a wavelength in a range of high absorption of the pigment used.
  • the label obtained is replaced by the time (or pulse rate in pulse lasers) and irradiation power of the laser and the plastic system used. The power of the laser used depends on the particular application and can be determined in individual cases by the skilled person readily.
  • the laser used generally has a wavelength in the range of 157 nm to 10.6 ⁇ m, preferably in the range of 532 nm to 10.6 ⁇ m.
  • a wavelength in the range of 157 nm to 10.6 ⁇ m, preferably in the range of 532 nm to 10.6 ⁇ m.
  • CO 2 lasers (10.6 ⁇ m) and Nd: YAG lasers (1064 or 532 nm) or pulsed UV lasers.
  • the excimer lasers have the following wavelengths: F 2 excimer laser (157 nm), ArF excimer laser (193 nm), KrCl excimer laser (222 nm), KrF excimer laser (248 nm), XeCl excimer laser (308 nm), XeF excimer laser (351 nm), frequency-multiplied Nd: YAG lasers with wavelengths of 355 nm (frequency tripled) or 265 nm (frequency-quadrupled). Particular preference is given to using Nd: YAG lasers (1064 or 532 nm) and CO 2 lasers.
  • the energy densities of the lasers used are generally in the range of 0.3 mJ / cm 2 to 50 J / cm 2 , preferably 0.3 mJ / cm 2 to 10 J / cm 2 .
  • the pulse frequency is generally in the range of 1 to 30 kHz.
  • Corresponding lasers which can be used in the process according to the invention are commercially available.
  • the laser welding is carried out in such a way that a laser-transparent material is welded to a laser-absorbing material.
  • the boride compound may be added in a concentration of 0.001 to 10% by weight, preferably 0.001 to 7% by weight, and more preferably 0.01 to 3% by weight, based on the polymer.
  • CW diode lasers or Nd: YAG lasers are preferably suitable at wavelengths of 800-1100 nm, preferably 808-1080 nm.
  • the energy densities of the lasers used are generally in the range from 0.3 mJ / cm 2 to 200 J. / cm 2 , preferably 0.5 J / cm 2 to 150 J / cm 2 .
  • inventively doped polymer can be done in all areas where hitherto customary welding processes or Druckver ⁇ used for labeling or for joining plastics become.
  • molding compounds, semi-finished products and finished parts of the polymer according to the invention can be used in the electrical, electronics and motor vehicle industries.
  • the marking and labeling of eg cables, wires, trim strips or functional parts in the heating, ventilation and cooling area or switches, plugs, levers and handles, which consist of the inventively doped polymers can be marked even in hard to reach places with the help of laser light become.
  • the polymer system according to the invention can be used in packaging in the food sector or in the toy sector.
  • the markings on the packaging are characterized by the fact that they are wipe and scratch resistant, stable in subsequent sterilization processes, and hygienically pure in the marking process can be applied.
  • Complete label images can be permanently applied to the packaging for a reusable system.
  • the polymer system according to the invention finds application in medical technology, for example in the labeling of petri dishes, microtiter plates, disposable syringes, ampoules, sample containers, supply hoses and medical collection bags or storage bags.
  • a barcode system stores the information that is specific to the animal. These can be recalled when needed with the help of a scanner.
  • the label must be very durable, because the mark sometimes remain on the animals for several years.
  • the plates show a dark and abrasion-resistant lettering with high contrast.
  • PP-HD Stamylen PPH 10 from DSM
  • PP-HD Stamylen PPH 10 from DSM
  • PP-HD Stamylen PPH 10 from DSM
  • 0.01% magnesium boride of particle size 50 ⁇ m from HC Starck
  • Colortek OT-0005-BON processed by injection molding. After labeling with a 12 W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering high contrast.
  • PVC (Decelith 87700 crystal clear from Eilenburger Compound Werk GmbH) is injection molded by addition of 0.01% lanthanum hexaboride of particle size 50 ⁇ m (from HC Starck) and 0.02% Colortek OT-0005-BON , After labeling with a 12 W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering high contrast.
  • PC (Makrolon 2807 from Bayer AG) is injection-molded by addition of 0.01% lanthanum hexaboride of particle size 50 ⁇ m (H.C. Starck Co.) and 0.02% Colortek OT-0005-BON.
  • Lanthanum hexaboride (HC Starck) is ground with a bead mill to a particle size of about 50 nm and incorporated as a paste preparation in PMMA 1 plexiglass Plexiglas 7N granules (Röhm, Darmstadt). The preparation contains about 0.01% LaB 6 .
  • injection molding 1, 5 mm thick plates are produced. After labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates already show a light gray at the lowest lamp energy , almost white abrasion-resistant lettering with good edge definition on clear transparent background. Reference plates without LaB 6 additive show only a weak fuzzy mark at the highest lamp energy.
  • PP-HD Stamylen PPH 10 from DSM
  • PP-HD Stamylen PPH 10 from DSM
  • the lanthanum hexaboride (H. C. Starck) is ground with a bead mill to a particle size of about 50 nm and incorporated as a paste preparation in PC.
  • a PC (Makrolon 2807 Fa. Bayer AG) is by
  • PP granules (Metocene X50081, Basell) are mixed with 0.1% titanium diboride particle size 2-6 microns (ABCR, Düsseldorf) and 0.2% Colortek OT 0005-BON (product of Colortek, adhesives based on of fatty acid and fatty acid esters) and processed by injection molding. It will receive a transparent approximately 1, 5 mm thick plate with a slight gray haze. After labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering with high Contrast.
  • YAG laser SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz
  • silanized pyrogenic silica (Cab-O-Sil TS610, Cabot Co.) are stirred into the suspension. The suspension is then drawn dry in vacuo. This gives a finely powdered residue which consists of finely divided SiO 2 , the protective colloid and finely divided lanthanum hexaboride. From this preparation, 5 g are mixed with 5 kg of PP granules (Metocene X50081, Basell). Samples of the mixture are injection-molded into 1, 5 mm thick plates. The plastic plates contain about 0.01% LaB 6 and appear colorless and highly transparent, with an eightfold magnifying glass no particles are recognizable.
  • PP-HD Stamylen PPH 10 from DSM
  • PP-HD Stamylen PPH 10 from DSM
  • Adhesives based on fatty acid and fatty acid esters are processed by injection molding.
  • the platelets are welded with PP platelets in the transmission process.
  • a 100W Nd: YAG laser (Rofin-Sinar) one obtains a load-bearing weld seam with a high welding depth (1500 ⁇ m) at line energies of approx. 85 J / cm.

Abstract

The invention relates to laser markable and laser weldable polymer materials which are characterized by comprising at least one boride compound as the absorber.

Description

Lasermarkierbare und laserschweißbare polymere MaterialienLaser-markable and laser-weldable polymeric materials
Die vorliegende Erfindung betrifft lasermarkierbare und laserschweißbare polymere Materialien, die sich dadurch auszeichnen, dass sie als Absorber mindestens eine Boridverbindung enthalten.The present invention relates to laser-markable and laser-weldable polymeric materials, which are characterized in that they contain at least one boride compound as an absorber.
Die Kennzeichnung von Produktionsgütern wird in fast allen Industrie¬ zweigen zunehmend wichtiger. So müssen häufig z. B. Produktionsdaten, Chargennummern, Verfallsdaten, Barcodes, Firmenlogos, Seriennum- mern, etc., auf Kunststoffen oder Kunststofffolien aufgebracht werden. Derzeit werden diese Markierungen überwiegend mit konventionellen Techniken wie Drucken, Prägen, Stempeln und Etikettieren ausgeführt. Wachsende Bedeutung gewinnt aber die berührungslose, sehr schnelle und flexible Markierung mit Lasern, insbesondere bei Kunststoffen. Mit dieser Technik ist es möglich graphische Beschriftungen, wie z.B.The labeling of production goods is becoming increasingly important in almost all branches of industry. So z. For example, production data, batch numbers, expiry dates, barcodes, company logos, serial numbers, etc., can be applied to plastics or plastic films. Currently, these markings are predominantly carried out by conventional techniques such as printing, embossing, stamping and labeling. Growing importance, however, wins the contactless, very fast and flexible marking with lasers, especially in plastics. With this technique it is possible to use graphic labels, such as e.g.
Barcodes, mit hoher Geschwindigkeit auch auf eine nicht plane Oberfläche aufzubringen. Da sich die Beschriftung im Kunststoffkörper selbst befindet, ist sie dauerhaft abriebbeständig.Barcodes can also be applied to a non-planar surface at high speed. Since the inscription is located in the plastic body itself, it is permanently resistant to abrasion.
Die Kennzeichnung von Kunststoffen durch Lasermarkierung wie auch das Schweißen von Kunststoffteilen mittels Laserenergie ist an sich bekannt. Beides wird durch Absorption der Laserenergie im Kunststoffmaterial entweder direkt durch Wechselwirkung mit dem Polymer oder indirekt mit einem Kunststoffmaterial zugesetzten lasersensitiven Mittel bewirkt.The marking of plastics by laser marking as well as the welding of plastic parts by means of laser energy is known per se. Both are effected by absorption of the laser energy in the plastic material either directly by interaction with the polymer or indirectly by means of a plastic material added laser-sensitive agent.
Das lasersensitive Mittel kann ein organischer Farbstoff oder ein Pigment sein, welches eine Absorption der Laserenergie bewirkt. Beim Lasermarkieren bewirkt dies eine lokale sichtbare Verfärbung des Kunststoffes oder die Verbindung wird bei Bestrahlung mit Laserlicht von einer unsichtbaren, farblosen in eine sichtbare Form umgewandelt. Beim Laserschweißen wird das Kunststoffmaterial durch Absorption der Laserenergie im Fügebereich so stark erwärmt, dass der Kunststoff aufschmilzt und beide Teile miteinander verschweißen.The laser-sensitive agent may be an organic dye or a pigment which causes absorption of the laser energy. When laser marking this causes a local visible discoloration of the plastic or the compound is converted when irradiated with laser light from an invisible, colorless in a visible form. In laser welding, the plastic material is so strongly heated by absorption of the laser energy in the joining area that the plastic melts and weld both parts together.
Viele Kunststoffe, wie z.B. Polyolefine und Polystyrole, zeigen eine zu geringe Laserlichtabsorption und lassen sich bisher nur schwierig oder überhaupt nicht mit dem Laser markieren oder verschweißen. Ein CO2- Laser, der Licht im Infrarotbereich bei 10,6 μm aussendet, bewirkt bei Polyolefinen und Polystyrolen selbst bei sehr hohen Leistungen nur eine schwache, kaum lesbare Markierung. Im Falle der Elastomeren PoIy- urethan und Polyetherestem tritt mit Nd-YAG-Lasern (Neodym-dotierteMany plastics, such as polyolefins and polystyrenes, show too low a laser light absorption and can be difficult or impossible do not mark or weld with the laser at all. A CO 2 laser that emits light in the infrared range at 10.6 microns, causes in polyolefins and polystyrenes even at very high power only a weak, barely legible marking. In the case of the elastomers polyurethane and Polyetherestem occurs with Nd-YAG lasers (neodymium-doped
Yttrium-Aluminium-Granat-Laser) keine Wechselwirkung, bei CO2-Lasern dagegen eine Gravur auf. Der Kunststoff darf das Laserlicht nicht völlig reflektieren oder durchlassen, da es dann zu keiner Wechselwirkung kommt. Es darf aber auch nicht zu einer starken Absorption kommen, da in diesem Fall der Kunststoff verdampft und nur eine Gravur zurückbleibt. Die Absorption der Laserstrahlen und somit die Wechselwirkung mit der Materie ist abhängig von dem chemischen Aufbau des Kunststoffes und der verwendeten Wellenlänge des Lasers. Vielfach ist es notwendig, damit Kunststoffe laserbeschriftbar oder -schweißbar werden, entsprechende Zusatzstoffe, z.B. Absorber, zuzugeben.Yttrium aluminum garnet laser) no interaction, in CO 2 lasers, however, an engraving on. The plastic must not completely reflect or let through the laser light, because then there is no interaction. But it must not come to a strong absorption, since in this case the plastic evaporates and only one engraving remains. The absorption of the laser beams and thus the interaction with the matter depends on the chemical structure of the plastic and the wavelength of the laser used. It is often necessary for plastics to be laser-inscribable or weldable, to add appropriate additives, for example absorbers.
Für die Laserkennzeichnung von Kunststoffen werden neben CO2-Lasern zunehmend Nd :YAG-Laser verwendet. Die üblicherweise verwendeten YAG-Laser geben einen gepulsten Energiestrahl mit einer charakteristi- sehen Wellenlänge von 1064 nm oder 532 nm ab. Das Absorbermaterial muss in diesem speziellen NIR-Bereich eine ausgeprägte Absorption zeigen, um bei den schnellen Beschriftungsvorgängen eine ausreichende Reaktion zu zeigen.In addition to CO 2 lasers, Nd: YAG lasers are increasingly being used for the laser marking of plastics. The commonly used YAG lasers emit a pulsed energy beam with a characteristic wavelength of 1064 nm or 532 nm. The absorber material must show a pronounced absorption in this special NIR range in order to show a sufficient response in the fast labeling processes.
Die meisten aus dem Stand der Technik bekannten Absorber besitzen aber alle den Nachteil, dass sie den zu beschriftenden Kunststoff nachhaltig einfärben und folglich die Laserbeschriftung, die üblicherweise eine dunkle Schrift auf einem hellen Untergrund ist, dann nicht mehr ausreichend kontrastreich ist. Außerdem müssen sie in vergleichsweise hohen Konzentrationen zugesetzt werden und sind häufig toxikologisch nicht unbedenklich.However, most of the absorbers known from the prior art all have the disadvantage that they permanently color the plastic to be inscribed and consequently the laser inscription, which is usually a dark writing on a light background, is then no longer sufficiently rich in contrast. In addition, they must be added in comparatively high concentrations and are often not toxicologically harmless.
Aufgabe der vorliegenden Erfindung war es daher lasermarkierbare bzw. laserschweißbare polymere Materialien zu finden, die unter Einwirkung von Laserlicht eine Markierung mit hohem Kontrast oder eine guteThe object of the present invention was therefore to find laser-markable or laser-weldable polymeric materials which, when exposed to laser light, produce a mark with high contrast or a good contrast
Verschweißung ermöglichen. Der Absorber bzw. das erfolgreiche Absorptionsmittel sollte daher die Polymereigenschaften kaum verändern und gleichzeitig nur in sehr geringen Mengen eingesetzt werden müssen.Enable welding. The absorber or the successful one Absorbent should therefore hardly change the polymer properties and at the same time only have to be used in very small amounts.
Überraschenderweise wurde gefunden, dass sich die Lasermarkierbarkeit von polymeren Materialien, insbesondere der Kontrast der Markierung, sowie das Laserschweißen sich verbessern läßt, wenn man als Absorber eine Boridverbindung in geringen Konzentrationen einsetzt. Die Boridverbindung zeigt in geringen Konzentrationen eine so geringe Eigenfärbung im sichtbaren Spektralbereich (Lichtwellenlänge 400 - 750 nm), dass es insbesondere auch für glasklare Polymere geeignet ist. Unter Einwirkung von Laserlicht zeigt das dotierte Polymer eine Markierung mit hohem Kontrast und ausgeprägter Kantenschärfe. Insbesondere bei der Verwendung von CW Nd:YAG Lasern lassen sich auch transparente Kunststoffe sehr gut verschweißen.Surprisingly, it has been found that the laser marking of polymeric materials, in particular the contrast of the label, as well as the laser welding can be improved if one uses a boride compound in low concentrations as an absorber. The boride compound shows such low intrinsic coloration in the visible spectral range (light wavelength 400-750 nm) in low concentrations that it is particularly suitable for crystal-clear polymers. Under the action of laser light, the doped polymer shows a mark with high contrast and pronounced edge sharpness. Particularly when using CW Nd: YAG lasers, even transparent plastics can be welded very well.
Durch den Zusatz einer Boridverbindung, insbesondere in Konzen¬ trationen von 0,001 bis 10 Gew.%, vorzugsweise 0,001 bis 7 Gew.%, und insbesondere 0,0015 bis 3 Gew.%, bezogen auf das Polymer, wird bei der Läsermarkierung von Polymeren ein deutlich höherer Kontrast erreicht als mit den kommerziell erhältlichen Absorbern bei vergleichbaren Konzen¬ trationen. Beim Laserschweißen wird die Boridverbindung vorzugsweise in Konzentrationen von 0,001 bis 10 Gew.%, insbesondere von 0,001 bis 7 Gew.% und ganz besonders bevorzugt 0,01 bis 3 Gew.% eingesetzt.By adding a boride compound, in particular in concentrations of from 0.001 to 10% by weight, preferably from 0.001 to 7% by weight, and in particular from 0.0015 to 3% by weight, based on the polymer, is used in the laser marking of polymers significantly higher contrast achieved than with the commercially available absorbers at comparable concentrations Konzen¬. In laser welding, the boride compound is preferably used in concentrations of from 0.001 to 10% by weight, in particular from 0.001 to 7% by weight and very particularly preferably from 0.01 to 3% by weight.
Gegenstand der Erfindung ist somit ein lasermarkierbares bzw. laser¬ schweißbares polymeres Material, dadurch gekennzeichnet, dass das Polymer als Absorber mindestens eine Boridverbindung enthält.The invention thus relates to a laser-markable or laser-weldable polymeric material, characterized in that the polymer contains at least one boride compound as absorber.
Die Konzentration des Absorbers im Polymeren, vorzugsweise Thermoplasten, Duroplasten, Elastomeren, ist allerdings abhängig von dem eingesetzten Polymermaterial. Der geringe Anteil an Absorber verändert das Polymersystem unwesentlich und beeinflußt nicht dessen Verarbeitbarkeit.The concentration of the absorber in the polymer, preferably thermoplastics, thermosets, elastomers, however, depends on the polymer material used. The low proportion of absorber changes the polymer system insignificantly and does not affect its processability.
Als Boridverbindungen sind insbesondere Aluminiumborid, Magnesium- borid, Molybdänborid, Chromborid, Niobborid, Siliziumhexaborid, - A -Boride compounds are, in particular, aluminum boride, magnesium boride, molybdenum boride, chromium boride, niobium boride, silicon hexaboride, - A -
Lanthanborid, Yttriumborid, Europiumborid, Zirkonborid, Vanadiumborid, Calciumborid oder Titanborid oder deren Gemische, geeignet. Besonders bevorzugt ist das Lanthanhexaborid.Lanthanum boride, yttrium boride, europium boride, zirconium boride, vanadium boride, calcium boride or titanium boride or mixtures thereof. Particularly preferred is the lanthanum hexaboride.
Die Boridverbindungen besitzen Partikelgrößen im Bereich von 50 nm -The boride compounds have particle sizes in the range of 50 nm -
100 μm, vorzugsweise von 0,05 - 50 μm und insbesondere von 0,05 - 10 μm. Ganz besonders bevorzugt sind Partikelgrößen von 0,1 - 5 μm.100 μm, preferably from 0.05 to 50 μm and in particular from 0.05 to 10 μm. Very particular preference is given to particle sizes of 0.1-5 μm.
Die kommerziell erhältlichen Boridverbindungen besitzen meist Teilchengrößen deutlich > 50 μm, so dass sie vor dem Einsatz alsThe commercially available boride compounds usually have particle sizes significantly> 50 microns, so they are before use as
Absorber mit einem geeigneten Mahlgerät, z.B. einer Perlmühle oder Kugelmühle, zu den entsprechenden Partikelgrößen vermahlt werden müssen. Die Feinmahlung erfolgt vorzugsweise in Suspension in Wasser, organischen Lösungsmitteln oder Lösemittelgemischen, ggf. in Gegenwart von Dispergierhilfsmitteln. Bevorzugte Dispergierhilfsmittel sind solche, die gleichzeitig die Einarbeitung der feinteiligen anorganischen Boride in die Kunststoffmassen erleichtern, z.B. durch Hydrophobierung der Partikeloberflächen.Absorber with a suitable grinding device, e.g. a bead mill or ball mill, must be milled to the appropriate particle sizes. The fine grinding is preferably carried out in suspension in water, organic solvents or solvent mixtures, if appropriate in the presence of dispersants. Preferred dispersing aids are those which simultaneously facilitate the incorporation of the finely divided inorganic borides into the plastics compositions, e.g. by hydrophobization of the particle surfaces.
Wegen der geringen Einsatzkonzentrationen der feinstgemahlenen Boride in den Kunststoffzubereitungen ist es für die Dosierbarkeit vorteilhaft, zunächst eine stark verdünnte Zubereitung der Boride herzustellen. Dabei werden die Boride vorzugsweise mit einem inerten Stoff gestreckt, der keine Eigenfarbe hat und mit den Kunststoffen verträglich ist. Geeignete Verdünnungsmittel sind z.B. gefällte Kieselsäuren oder pyrogeneBecause of the low use concentrations of finely ground borides in the plastic preparations, it is advantageous for the meterability to first prepare a highly diluted preparation of the borides. The borides are preferably stretched with an inert substance that has no intrinsic color and is compatible with the plastics. Suitable diluents are e.g. precipitated silicas or pyrogens
Kieselsäuren oder anorganische Füllstoffe, wie z.B. Kaoline oder Glimmer. Die Stoffe können vor der Feinmahlung zugesetzt werden oder auch danach.Silicic acids or inorganic fillers, e.g. Kaolin or mica. The fabrics can be added before or after fine grinding.
In einer anderen vorteilhaften Ausführungsform wird zunächst einIn another advantageous embodiment, a first
Masterbatch des Kunststoffs mit einer höheren Konzentration des Borides hergestellt und dieser dann als Granulat in geringer Menge der Hauptmasse des Kunststoffs bei der Kunststoffverarbeitung zugesetzt.Made masterbatch of the plastic with a higher concentration of boride and then added as granules in a small amount of the bulk of the plastic in the plastics processing.
Gute Markier- und Schweißergebnisse werden ebenfalls erhalten, wenn man ein oder mehrere Boridverbindungen im Gemisch mit weiteren geeigneten laserlichtabsorbierenden Substanzen einsetzt. Die für die Markierung geeigneten laserlichtabsorbierenden Substanzen basieren vorzugsweise auf Anthracen, Pentaerythrit, Kupferphosphaten, Kupfer¬ hydroxidphosphaten, z.B. Libethenit, Molybdändisulfid, Molybdänoxid, Antimon(lll)oxid und Wismuthoxychlorid, plättchenförmigen, insbesondere transparenten oder semi-transparenten, Substraten aus z. B. Schicht¬ silikaten, wie etwa synthetischer oder natürlicher Glimmer, Talkum, Kaolin, Glasplättchen, SiO2-Plättchen oder synthetischen trägerfreien Plättchen. Weiterhin kommen auch plättchenförmige Metalloxide wie z. B. plättchenförmiges Eisenoxid, Aluminiumoxid, Titandioxid, Siliziumdioxid, LCP's (Liquid Crystal Polymers), holographische Pigmente, leitfähige Pigmente oder beschichtete oder unbeschichtete Graphitplättchen in Betracht.Good marking and welding results are also obtained by adding one or more boride compounds in admixture with others suitable laser light absorbing substances used. The laser light absorbing substances suitable for the marking are preferably based on anthracene, pentaerythritol, copper phosphates, copper hydroxide phosphates, eg libethenite, molybdenum disulfide, molybdenum oxide, antimony (III) oxide and bismuth oxychloride, platelet-shaped, in particular transparent or semitransparent, substrates of e.g. B. Schicht¬ silicates, such as synthetic or natural mica, talc, kaolin, glass flakes, SiO 2 platelets or synthetic carrier-free platelets. Furthermore, platelet-shaped metal oxides such. Example, platelet-shaped iron oxide, alumina, titanium dioxide, silicon dioxide, LCP's (liquid crystal polymers), holographic pigments, conductive pigments or coated or uncoated graphite platelets into consideration.
Als plättchenförmige Pigmente können auch Metallplättchen eingesetzt werden, die unbeschichtet oder auch mit einer oder mehreren Metalloxidschichten bedeckt sein können; bevorzugt sind z. B. AI-, Cr-, Fe-, Au-, Ag- und Stahlplättchen. Sollten korrosionsanfällige Metallplättchen, wie z. B. AI-, Fe- oder Stahlplättchen, unbeschichtet eingesetzt werden, werden sie vorzugsweise mit einer schützenden Polymerschicht überzogen.As platelet-shaped pigments it is also possible to use metal flakes which may be uncoated or else covered with one or more metal oxide layers; preferred are z. B. Al, Cr, Fe, Au, Ag and steel platelets. Should corrosion-prone metal flakes, such. As AI, Fe or steel plates are used uncoated, they are preferably coated with a protective polymer layer.
Besonders bevorzugte Substanzen sind unbeschichtete oder mit ein oder mehreren Metalloxiden beschichtete Glimmerschuppen. Als Metalloxide werden dabei sowohl farblose hochbrechende Metalloxide, wie insbesondere Titandioxid, Antimon(lll)oxid, Zinkoxid, Zinnoxid und/oder Zirkoniumdioxid verwendet als auch farbige Metalloxide, wie z. B. Chromoxid, Nickeloxid, Kupferoxid, Kupferhydroxidphosphat, Molybdänoxid, Kobaltoxid und insbesondere Eisenoxid (Fe2O3, Fe3O4). Insbesondere bevorzugt wird als laserlichtabsorbierende SubstanzParticularly preferred substances are uncoated or coated with one or more metal oxides mica flakes. Both colorless high-index metal oxides, in particular titanium dioxide, antimony (III) oxide, zinc oxide, tin oxide and / or zirconium dioxide are used as metal oxides, as well as colored metal oxides, such. For example, chromium oxide, nickel oxide, copper oxide, copper hydroxide phosphate, molybdenum oxide, cobalt oxide and iron oxide in particular (Fe 2 O 3 , Fe 3 O 4 ). Particularly preferred is as a laser light absorbing substance
Antimon(lll)σxid, Antimon-Zinn-Oxid oder Kombinationen von Zinnoxid mit Antimon(lll)oxid verwendet.Antimony (III) oxide, antimony tin oxide or combinations of tin oxide with antimony (III) oxide used.
Pigmente auf der Basis transparenter oder semitransparenter plättchen- förmiger Substrate werden z. B. beschrieben in den deutschen Patenten und Patentanmeldungen 14 67 468, 19 59 998, 20 09 566, 22 14 454, 22 15 191 , 22 44 298, 23 13 331 , 25 22 572, 31 37 808, 31 37 809, 31 51 343, 31 51 354, 31 51 355, 32 11 602, 32 35 017, 38 42 330, 44 41 223, 196 18 569, 196 38 708, 197 07 806 und 198 03 550.Pigments based on transparent or semitransparent platelet-shaped substrates are e.g. As described in German patents and patent applications 14 67 468, 19 59 998, 20 09 566, 22 14 454, 22 15 191, 22 44 298, 23 13 331, 25 22 572, 31 37 808, 31 37 809, 31 51 343, 31 51 354, 31 51 355, 32 11 602, 32 35 017, 38 42 330, 44 41 223, 196 18 569, 196 38 708, 197 07 806 and 198 03 550.
Diese Substrate sind bekannt und größtenteils kommerziell erhältlich, z. B. unter der Marke Lazerflair® der Fa. Merck KGaA, und/oder können nach dem Fachmann bekannten Standardverfahren hergestellt werden.These substrates are known and mostly commercially available, for. B. under the brand Lazerflair ® Fa. Merck KGaA, and / or can be prepared by standard methods known in the art.
Beschichtete SiO2-Plättchen sind z. B. bekannt aus der WO 93/08237 (nasschemische Beschichtung) und der DE-OS 196 14 637 (CVD- Verfahren).Coated SiO 2 platelets are z. B. known from WO 93/08237 (wet-chemical coating) and DE-OS 196 14 637 (CVD method).
Mehrschichtpigmente basierend auf Schichtsilikaten sind beispielsweise aus den deutschen Offenlegungsschriften DE 196 18 569, DE 196 38 708, DE 197 07 806 und DE 198 03 550 bekannt. Besonders geeignet sind Mehrschichtpigmente, die folgenden Aufbau besitzen:Multilayered pigments based on phyllosilicates are known, for example, from German published patent applications DE 196 18 569, DE 196 38 708, DE 197 07 806 and DE 198 03 550. Particularly suitable are multilayer pigments which have the following structure:
Glimmer + TiO2 + SiO2 + TiO2 Mica + TiO 2 + SiO 2 + TiO 2
Glimmer + TiO2 + SiO2 + TiO2/Fe2O3 Glimmer + TiO2 + SiO2 + (Sn, Sb)O2 Mica + TiO 2 + SiO 2 + TiO 2 / Fe 2 O 3 mica + TiO 2 + SiO 2 + (Sn, Sb) O 2
Glimmer + SiO2 + (Sn, Sb)2OMica + SiO 2 + (Sn, Sb) 2 O
AI2O3-Plättchen + TiO2 + SiO2 + (Sn, Sb)O2 Al 2 O 3 platelets + TiO 2 + SiO 2 + (Sn, Sb) O 2
SiO2-Plättchen + TiO2 + SiO2 + TiO2 SiO 2 platelets + TiO 2 + SiO 2 + TiO 2
SiO2-Plättchen + TiO2 + SiO2 + (Sn, Sb)O2 Glas-Plättchen + TiO2 + SiO2 + (Sn, Sb)O2 SiO 2 flakes + TiO 2 + SiO 2 + (Sn, Sb) O 2 glass flakes + TiO 2 + SiO 2 + (Sn, Sb) O 2
Glas-Plättchen + SiO2 + TiO2 + SiO2 + (Sn, Sb)O2 Glass flakes + SiO 2 + TiO 2 + SiO 2 + (Sn, Sb) O 2
Besonders bevorzugte laserlichtabsorbierende Substanzen sind natürlicher oder synthetischer Glimmer, mit TiO2 beschichtete Glimmerplättchen, leitfähige Pigmente, wie z.B. mit (Sn, Sb)O2 beschichtete plättchenförmige Substrate, Antimon und Antimon(lll)oxid, Anthracen, Pentaerythrit, Kupfer(hydroxid)phosphate, Molybdändisulfid, Molybdänoxid, undotiertes oder mit Antimon dotiertes Zinnoxid und Bismutoxichlorid sowie Gemische der genannten Substanzen. Das Mischungsverhältnis Boridverbindung mit einer weiteren laserlichtsensitiven Substanz beträgt vorzugsweise 1 : 10 bis 10 : 1 , insbesondere 1 : 10. Bevorzugte Absorbergemische sindParticularly preferred laser light absorbing substances are natural or synthetic mica, coated with TiO 2 mica platelets, conductive pigments, such as with (Sn, Sb) O 2 coated platelet-shaped substrates, antimony and antimony (III) oxide, anthracene, pentaerythritol, copper (hydroxide) phosphates , Molybdenum disulfide, molybdenum oxide, undoped or antimony-doped tin oxide and bismuth oxychloride, and mixtures of said substances. The mixing ratio boride compound with a further laser-light-sensitive substance is preferably 1:10 to 10: 1, in particular 1:10. Preferred absorber mixtures are
Boridverbindung / SchichtsilikatBoride compound / layered silicate
Boridverbindung / TiO2 beschichtetes GlimmerpigmentBoride compound / TiO 2 coated mica pigment
Boridverbindung / ein mit (Sn, Sb)O2 beschichtetes GlimmerpigmentBoride compound / a (Sn, Sb) O 2 -coated mica pigment
Boridverbindung / KupferphosphatBoride compound / copper phosphate
Boridverbindung / Molybdänoxid.Boride compound / molybdenum oxide.
Besonders bevorzugte Gemische enthalten Lathanhexaborid.Particularly preferred mixtures contain lathanhexaboride.
Die Gesamtkonzentration des Gemisches Absorber/lichtsensitive Substanz sollte 10 Gew.% bezogen auf das Polymer bei der Lasermarkierung nicht übersteigen. Beim Laserschweißen sollte die Konzentration < 10 Gew. % im Fügebereich sein.The total concentration of the mixture absorber / light-sensitive substance should not exceed 10% by weight, based on the polymer, in the case of laser marking. For laser welding, the concentration should be <10% by weight in the joining area.
In bestimmten Zusammensetzungen des Absorbers ist der Zusatz geringer Mengen eines Metallhalogenids, vorzugsweise Calciumchlorid, < 5 Gew. % für den Kontrast der Lasermarkierung des Polymers vorteilhaft.In certain compositions of the absorber, the addition of small amounts of a metal halide, preferably calcium chloride, <5% by weight is advantageous for the laser marking contrast of the polymer.
Ferner können den Polymeren Farbmittel zugesetzt werden, die farbliche Variationen jeder Art zulassen und gleichzeitig eine Beibehaltung der Lasermarkierung bzw. des Laserschweißens gewährleisten. Geeignete Farbmittel sind insbesondere farbige Metalloxidpigmente sowie organische Pigmente und Farbstoffe.Furthermore, colorants can be added to the polymers which allow color variations of any kind and at the same time ensure retention of the laser marking or of the laser welding. Suitable colorants are in particular colored metal oxide pigments and organic pigments and dyes.
Als polymere Materialien für die Lasermarkierung bzw. für das Laserschweißen sind insbesondere alle bekannten Kunststoffe, insbesondere Thermoplasten, ferner Duroplasten und Elastomere, ge¬ eignet, wie sie z.B. im Ulimann, Bd. 15, S. 457 ff., Verlag VCH beschrieben werden. Geeignete Polymere sind z.B. Polyethylen, Poly¬ propylen, Polyamide, Polyester, Polyesterester, Polyetherester, PoIy- phenylenether, Polyacetal, Polyurethan, Polybutylenterephthalat (PBT), Polymethylmethacrylat, Polyvinylacetal, Polystyrol, Acrylnitril-Butadien- Styrol (ABS), Acrylnitril-Styrol-Acrylester (ASA), Polycarbonat, Polyether- sulfone und Polyetherketone sowie deren Copolymeren, Mischungen, und/oder Polymerblends, wie z.B. PC/ABS, MABS.As polymeric materials for laser marking or for laser welding, in particular all known plastics, in particular thermoplastics, furthermore thermosetting plastics and elastomers, are suitable, as described, for example, in Ulimann, Vol. 15, p. 457 ff., Verlag VCH. Suitable polymers are, for example, polyethylene, polypropylene, polyamides, polyesters, polyester esters, polyether esters, polyphenylene ethers, polyacetal, polyurethane, polybutylene terephthalate (PBT), polymethyl methacrylate, polyvinyl acetal, polystyrene, acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene Acrylic ester (ASA), polycarbonate, polyether sulfones and polyether ketones and their copolymers, mixtures, and / or polymer blends, such as PC / ABS, MABS.
Die Einarbeitung der Bohdverbindung(en) und optional einer weiteren lasersensitiven Substanz, wie z.B. eines Effektpigments, Molybdänoxids,The incorporation of the drilling compound (s) and optionally another laser-sensitive substance, e.g. an effect pigment, molybdenum oxide,
Kupferphoshats, einer Antimonverbindung und/oder Schichtsilikats, in das Polymer, vorzugsweise einem thermoplastischen Kunststoff, erfolgt, indem das Polymergranulat mit dem Absorber gemischt und dann unter Wärme¬ einwirkung verformt wird. Die Zugabe des Absorbers bzw. Absorber- gemisches zu dem Polymeren kann gleichzeitig oder nacheinander erfolgen. Dem Polymeren, vorzugsweise einem Kunststoffgranulat, können bei der Einarbeitung des Absorbers gegebenenfalls Haftmittel, organische polymerverträgliche Lösemittel, Stabilisatoren und/oder unter den Arbeits¬ bedingungen temperaturstabile Tenside zugesetzt werden. Die Herstellung der dotierten Kunststoffgranulate erfolgt in der Regel so, dass in einem geeigneten Mischer das Kunststoffgranulat vorgelegt, mit eventuellen Zusätzen benetzt und danach der Absorber zugesetzt und untergemischt wird. Die Pigmentierung des Polymeren erfolgt in der Regel über ein Farbkonzentrat (Masterbatch) oder Compound. Die so erhaltene Mischung kann dann direkt in einem Extruder oder einer Spritzgießmaschine verarbeitet werden. Die bei der Verarbeitung gebildeten Formkörper zeigen eine sehr homogene Verteilung des Absorbers. Anschließend findet die Lasermarkierung mit einem geeigneten Laser statt.Kupferphoshats, an antimony compound and / or phyllosilicate, in the polymer, preferably a thermoplastic, takes place by the polymer granules are mixed with the absorber and then deformed under Wärme¬ effect. The addition of the absorber or absorber mixture to the polymer can take place simultaneously or successively. In the course of the incorporation of the absorber, adhesives, organic polymer-compatible solvents, stabilizers and / or surfactants which are stable under the working conditions may be added to the polymer, preferably a plastic granulate. The preparation of the doped plastic granules is usually carried out so that presented in a suitable mixer, the plastic granules, wetted with any additives and then the absorber is added and mixed. The pigmentation of the polymer is generally carried out via a color concentrate (masterbatch) or compound. The mixture thus obtained can then be processed directly in an extruder or an injection molding machine. The shaped bodies formed during processing show a very homogeneous distribution of the absorber. Subsequently, the laser marking takes place with a suitable laser.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen dotierten polymeren Materialien, dadurch gekennzeichnet, dass ein polymeres Material mit dem Absorber gemischt und dann unter Wärmeeinwirkung verformt wird.The invention also provides a process for the preparation of the doped polymeric materials according to the invention, characterized in that a polymeric material is mixed with the absorber and then deformed under the action of heat.
Die Beschriftung mit dem Laser erfolgt derart, dass der Probenkörper in den Strahlengang eines gepulsten Lasers, vorzugsweise eines Nd:YAG- Lasers gebracht wird. Ferner ist eine Beschriftung mit einem Excimer- Laser, z.B. über eine Maskentechnik, möglich. Jedoch sind auch mit ande¬ ren herkömmlichen Lasertypen, die eine Wellenlänge in einem Bereich hoher Absorption des verwendeten Pigments aufweisen, die gewünschten Ergebnisse zu erzielen. Die erhaltene Markierung wird durch die Bestrah- lungszeit (bzw. Pulszahl bei Pulslasern) und Bestrahlungsleistung des Lasers sowie des verwendeten Kunststoffsystems bestimmt. Die Leistung der verwendeten Laser hängt von der jeweiligen Anwendung ab und kann im Einzelfall vom Fachmann ohne weiteres ermittelt werden.The inscription with the laser takes place in such a way that the specimen is brought into the beam path of a pulsed laser, preferably an Nd: YAG laser. Furthermore, a lettering with an excimer laser, for example via a mask technique, possible. However, the desired results are also to be achieved with other conventional laser types which have a wavelength in a range of high absorption of the pigment used. The label obtained is replaced by the time (or pulse rate in pulse lasers) and irradiation power of the laser and the plastic system used. The power of the laser used depends on the particular application and can be determined in individual cases by the skilled person readily.
Der verwendete Laser hat im allgemeinen eine Wellenlänge im Bereich von 157 nm bis 10,6 μm, vorzugsweise im Bereich von 532 nm bis 10,6 μm. Beispielsweise seien hier CO2-Laser (10,6 μm) und Nd:YAG- Laser (1064 bzw. 532 nm) oder gepulste UV-Laser erwähnt. Die Excimer- laser weisen folgende Wellenlängen auf: F2-Excimerlaser (157 nm), ArF- Excimerlaser (193 nm), KrCI-Excimerlaser (222 nm), KrF-Excimerlaser (248 nm), XeCI-Excimerlaser (308 nm), XeF-Excimerlaser (351 nm), frequenzvervielfachte Nd:YAG-Laser mit Wellenlängen von 355 nm (frequenzverdreifacht) oder 265 nm (frequenzvervierfacht). Besonders bevorzugt werden Nd:YAG-Laser (1064 bzw. 532 nm) und CO2-Laser eingesetzt. Die Energiedichten der eingesetzten Laser liegen im allgemei¬ nen im Bereich von 0,3 mJ/cm2 bis 50 J/cm2, vorzugsweise 0,3 mJ/cm2 bis 10 J/cm2. Bei der Verwendung von gepulsten Lasern liegt die Pulsfrequenz im allgemeinen im Bereich von 1 bis 30 kHz. Entsprechende Laser, die im erfindungsgemäßen Verfahren eingesetzt werden können, sind kommerziell erhältlich.The laser used generally has a wavelength in the range of 157 nm to 10.6 μm, preferably in the range of 532 nm to 10.6 μm. For example, mention may be made here of CO 2 lasers (10.6 μm) and Nd: YAG lasers (1064 or 532 nm) or pulsed UV lasers. The excimer lasers have the following wavelengths: F 2 excimer laser (157 nm), ArF excimer laser (193 nm), KrCl excimer laser (222 nm), KrF excimer laser (248 nm), XeCl excimer laser (308 nm), XeF excimer laser (351 nm), frequency-multiplied Nd: YAG lasers with wavelengths of 355 nm (frequency tripled) or 265 nm (frequency-quadrupled). Particular preference is given to using Nd: YAG lasers (1064 or 532 nm) and CO 2 lasers. The energy densities of the lasers used are generally in the range of 0.3 mJ / cm 2 to 50 J / cm 2 , preferably 0.3 mJ / cm 2 to 10 J / cm 2 . When using pulsed lasers, the pulse frequency is generally in the range of 1 to 30 kHz. Corresponding lasers which can be used in the process according to the invention are commercially available.
Das Laserschweißen erfolgt in der Weise, dass ein lasertransparentes Material mit einem laserabsorbierenden Material verschweißt wird. Als laserabsorbierendes Material kann die Boridverbindung in Konzentration von 0,001 bis 10 Gew.%, vorzugsweise 0,001 bis 7 Gew.% und insbesondere 0,01 bis 3 Gew. %, bezogen auf das Polymer zugesetzt werden. Für das Laserschweißen eignen sich vorzugsweise CW Dioden¬ laser oder Nd:YAG Laser bei Wellenlängen von 800 - 1100 nm vorzugsweise von 808 - 1080 nm. Die Energiedichten der eingesetzten Laser liegen im allgemeinen im Bereich von 0,3 mJ/cm2 bis 200 J/cm2, vorzugsweise 0,5 J/cm2 bis 150 J/cm2.The laser welding is carried out in such a way that a laser-transparent material is welded to a laser-absorbing material. As the laser absorbing material, the boride compound may be added in a concentration of 0.001 to 10% by weight, preferably 0.001 to 7% by weight, and more preferably 0.01 to 3% by weight, based on the polymer. For laser welding, CW diode lasers or Nd: YAG lasers are preferably suitable at wavelengths of 800-1100 nm, preferably 808-1080 nm. The energy densities of the lasers used are generally in the range from 0.3 mJ / cm 2 to 200 J. / cm 2 , preferably 0.5 J / cm 2 to 150 J / cm 2 .
Die Verwendung des erfindungsgemäß dotierten Polymeren kann auf allen Gebieten erfolgen, wo bisher übliche Schweißverfahren oder Druckver¬ fahren zur Beschriftung oder zum Fügen von Kunststoffen eingesetzt werden. Beispielsweise können Formmassen, Halbzeuge und Fertigteile aus dem erfindungsgemäßen Polymeren in der Elektro-, Elektronik- und Kraftfahrzeugindustrie Anwendung finden. Die Kennzeichnung und Beschriftung von z.B. Kabeln, Leitungen, Zierleisten bzw. Funktionsteilen im Heizungs-, Lüftungs- und Kühlbereich oder Schalter, Stecker, Hebel und Griffe, die aus dem erfindungsgemäß dotiertem Polymeren bestehen, können selbst an schwer zugänglichen Stellen mit Hilfe von Laserlicht markiert werden. Weiterhin kann das erfindungsgemäße Polymersystem bei Verpackungen im Lebensmittelbereich oder im Spielzeugbereich eingesetzt werden. Die Markierungen auf den Verpackungen zeichnen sich dadurch aus, dass sie wisch- und kratzfest, stabil bei nachträglichen Sterilisationsprozessen, und hygienisch rein beim Markierungsprozess aufbringbar sind. Komplette Etikettenbilder können dauerhaft auf die Verpackung für ein Mehrwegsystem aufgebracht werden. Weiterhin findet das erfindungsgemäße Polymersystem Anwendung in der Medizintechnik, beispielsweise bei der Markierung von Petrischalen, Microtiterplatten, Einmalspritzen, Ampullen, Probenbehälter, Versorgungsschläuche und medizinische Auffangbeutel bzw. Vorratsbeutel.The use of the inventively doped polymer can be done in all areas where hitherto customary welding processes or Druckver¬ used for labeling or for joining plastics become. For example, molding compounds, semi-finished products and finished parts of the polymer according to the invention can be used in the electrical, electronics and motor vehicle industries. The marking and labeling of eg cables, wires, trim strips or functional parts in the heating, ventilation and cooling area or switches, plugs, levers and handles, which consist of the inventively doped polymers can be marked even in hard to reach places with the help of laser light become. Furthermore, the polymer system according to the invention can be used in packaging in the food sector or in the toy sector. The markings on the packaging are characterized by the fact that they are wipe and scratch resistant, stable in subsequent sterilization processes, and hygienically pure in the marking process can be applied. Complete label images can be permanently applied to the packaging for a reusable system. Furthermore, the polymer system according to the invention finds application in medical technology, for example in the labeling of petri dishes, microtiter plates, disposable syringes, ampoules, sample containers, supply hoses and medical collection bags or storage bags.
Ein weiteres wichtiges Anwendungsgebiet für die Laserbeschriftung sind Kunststoffmarken zur individuellen Kennzeichnung von Tieren, sogenannte Cattle Tags oder Ohrmarken. Über ein Barcodesystem werden die Informationen gespeichert, welche spezifisch dem Tier zugehörig sind. Diese können bei Bedarf wieder mit Hilfe eines Scanners abgerufen werden. Die Beschriftung muss sehr dauerhaft werden, da die Marke teilweise über mehrere Jahre an den Tieren verbleiben.Another important field of application for laser marking are plastic brands for the individual marking of animals, so-called cattle tags or ear tags. A barcode system stores the information that is specific to the animal. These can be recalled when needed with the help of a scanner. The label must be very durable, because the mark sometimes remain on the animals for several years.
Die Lasermarkierung von Formmassen, Halbzeugen und Fertigteilen, die aus dem erfindungsgemäßen Polymer bestehen, ist somit möglich.The laser marking of molding compounds, semi-finished products and finished parts, which consist of the polymer according to the invention, is thus possible.
Die folgenden Beispiele sollen die Erfindung erläutern ohne sie jedoch zu begrenzen. Die angegebenen Prozentangaben sind Gewichtsprozent. BeispieleThe following examples are intended to illustrate the invention without, however, limiting it. The percentages given are percent by weight. Examples
Beispiel 1example 1
99,79 % PP-Granulat (PP-HD, Stamylen PPH 10 der Fa. DSM) wird durch99.79% PP granules (PP-HD, Stamylen PPH 10 from DSM) is passed through
Zusatz von 0,01 % Lanthanhexaborid der Teilchengröße 50 μm (Fa. H. C. Starck) und 0,2 % Colortek OT-0005-BON (Produkt der Fa. Colortek, Haftmittel auf Basis von Fettsäure und Fettsäureestern) im Spritzguss verarbeitet. Nach der Beschriftung mit einem 12 W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 %Addition of 0.01% Lanthanhexaborid the particle size 50 microns (H. C. Starck) and 0.2% Colortek OT-0005-BON (product of Colortek, adhesives based on fatty acid and fatty acid esters) processed by injection molding. After labeling with a 12 W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90%
Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast.Lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering with high contrast.
Beispiel 2Example 2
99,79 % PP-Granulat (PP-HD, Stamylen PPH 10 der Fa. DSM) wird durch Zusatz von 0,01 % Magnesiumborid der Teilchengröße 50 μm (Fa. H. C. Starck) und 0,2 % Colortek OT-0005-BON im Spritzguss verarbeitet. Nach der Beschriftung mit einem 12 W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast.99.79% PP granules (PP-HD, Stamylen PPH 10 from DSM) is prepared by adding 0.01% magnesium boride of particle size 50 μm (from HC Starck) and 0.2% Colortek OT-0005-BON processed by injection molding. After labeling with a 12 W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering high contrast.
Beispiel 3Example 3
99,79 % PVC (Decelith 87700 glasklar der Fa. Eilenburger Compound Werk GmbH) wird durch Zusatz von 0,01 % Lanthanhexaborid der Teilchengröße 50 μm (Fa. H.C. Starck) und 0,02 % Colortek OT-0005- BON im Spritzguss verarbeitet. Nach der Beschriftung mit einem 12 W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast. Beispiel 499.79% PVC (Decelith 87700 crystal clear from Eilenburger Compound Werk GmbH) is injection molded by addition of 0.01% lanthanum hexaboride of particle size 50 μm (from HC Starck) and 0.02% Colortek OT-0005-BON , After labeling with a 12 W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering high contrast. Example 4
99,79 % PC (Makrolon 2807 der Fa. Bayer AG) wird durch Zusatz von 0,01 % Lanthanhexaborid der Teilchengröße 50 μm (Fa. H. C. Starck) und 0,02 % Colortek OT-0005-BON im Spritzguss verarbeitet. Nach der99.79% PC (Makrolon 2807 from Bayer AG) is injection-molded by addition of 0.01% lanthanum hexaboride of particle size 50 μm (H.C. Starck Co.) and 0.02% Colortek OT-0005-BON. After
Beschriftung mit einem 12W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5- 15kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast.Labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp power and a frequency of 5-15kHz), the plates show a dark and abrasion-resistant high contrast labeling.
Beispiel 5Example 5
Lanthanhexaborid (Fa. H. C. Starck) wird mit einer Perlmühle auf eine Teilchengröße von ca. 50 nm gemahlen und als Pastenpräparation in PMMA1 Plexiglas Plexiglas 7N Granulat (Fa. Röhm, Darmstadt) eingearbeitet. Die Zubereitung enthält ca. 0,01 % LaB6. Im Spritzguß werden 1 ,5 mm dicke Platten hergestellt. Nach der Beschriftung mit einem 12W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40- 90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten schon bei der niedrigsten Lampenenergie eine hellgrau, fast weiße abriebfeste Beschriftung mit guter Randschärfe auf klar transparentem Hintergrund. Vergleichsplatten ohne LaB6-Zusatz zeigen erst bei der höchsten Lampenenergie eine schwache unscharfe Markierung.Lanthanum hexaboride (HC Starck) is ground with a bead mill to a particle size of about 50 nm and incorporated as a paste preparation in PMMA 1 plexiglass Plexiglas 7N granules (Röhm, Darmstadt). The preparation contains about 0.01% LaB 6 . In injection molding, 1, 5 mm thick plates are produced. After labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates already show a light gray at the lowest lamp energy , almost white abrasion-resistant lettering with good edge definition on clear transparent background. Reference plates without LaB 6 additive show only a weak fuzzy mark at the highest lamp energy.
Beispiel 6Example 6
99,79 % PP-Granulat (PP-HD, Stamylen PPH 10 der Fa. DSM) wird durch Zusatz von 0,01 % Lanthanhexaborid der Teilchengröße 50 μm99.79% PP granules (PP-HD, Stamylen PPH 10 from DSM) is made by adding 0.01% Lanthanhexaborid the particle size of 50 microns
(Fa. H. C. Starck) und 0,2 % Colortek OT-0005-BON (Produkt der Fa. Colortek, Haftmittel auf Basis von Fettsäure und Fettsäureestern) im Spritzguss verarbeitet. Nach der Beschriftung mit einem CO2-Maskenlaser (Fa. Alltec, 29 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast. Beispiel 7(Fa. HC Starck) and 0.2% Colortek OT-0005-BON (product of Colortek, adhesive based on fatty acid and fatty acid esters) by injection molding. After labeling with a CO 2 mask laser (Alltec, 29 kHz), the plates show a dark and abrasion-resistant lettering with high contrast. Example 7
Das Lanthanhexaborid (Fa. H. C. Starck) wird mit einer Perlmühle auf eine Teilchengröße von ca. 50 nm gemahlen und als Pastenpräparation in PC eingearbeitet. Ein PC (Makrolon 2807 der Fa. Bayer AG) wird durchThe lanthanum hexaboride (H. C. Starck) is ground with a bead mill to a particle size of about 50 nm and incorporated as a paste preparation in PC. A PC (Makrolon 2807 Fa. Bayer AG) is by
Zusatz von 0,01 % Lanthanhexaborid der Teilchengröße 50 nm im Spritzguss verarbeitet. Nach der Beschriftung mit einem 12W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast.Addition of 0.01% lanthanum hexaboride particle size 50 nm processed by injection molding. After labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering with high Contrast.
Beispiel 8Example 8
PP-Granulat (Metocene X50081 , Basell) wird mit 0,1 % Titandiborid der Teilchengröße 2-6 μm (Fa. ABCR, Karlsruhe) und 0,2 % Colortek OT- 0005-BON (Produkt der Fa. Colortek, Haftmittel auf Basis von Fettsäure und Fettsäureestern) vermischt und im Spritzguss verarbeitet. Es wird eine transparente ca. 1 ,5 mm dicke Platte mit einem leichten Grauschleier erhalten. Nach der Beschriftung mit einem 12W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast.PP granules (Metocene X50081, Basell) are mixed with 0.1% titanium diboride particle size 2-6 microns (ABCR, Karlsruhe) and 0.2% Colortek OT 0005-BON (product of Colortek, adhesives based on of fatty acid and fatty acid esters) and processed by injection molding. It will receive a transparent approximately 1, 5 mm thick plate with a slight gray haze. After labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering with high Contrast.
Beispiel 9Example 9
Lanthanhexaborid (Fa. ABCR, Teilchengröße ca. 5 μm) wird in einer Perlmühle mit Zirkonperlen in schwach saurer wässriger Suspension (pH=2) feinstgemahlen. Die durchschnittliche Teilchengröße beträgt 0,07 μm. 100 ml der ca. 20 %igen Suspension werden mit 15 g polymerem Schutzkolloid (statistisches Laurylmethacrylat/Hydroxymethylmethacrylat- Copolymer, Molmasse ca. 5000) versetzt. Die Mischung wird mittels Ultraschall oder einem Hochdruckhomogenisator emulgiert. Die Lösungsmittel werden im Vakuum abgezogen. Man erhält einen pastösen Rückstand, der aus feinteiligem Lanthanhexaborid und Schutzkolloid besteht. Von dieser Zubereitung werden 1 g mit 5 kg PP-Granulat (Metocene X50081 , Basell) vermischt. Proben der Mischung werden im Spritzguss zu 1 ,5 mm dicken Platten verarbeitet. Die Kunststoffplatten erscheinen farblos und optisch völlig klar, mit einer achtfachen Lupe sind keine Partikel erkennbar. Nach der Beschriftung mit einem 12W Nd:YAGLanthanum hexaboride (ABCR company, particle size about 5 microns) is finely ground in a bead mill with zirconium beads in a slightly acidic aqueous suspension (pH = 2). The average particle size is 0.07 μm. 100 ml of the approximately 20% suspension are mixed with 15 g of polymeric protective colloid (random lauryl methacrylate / hydroxymethyl methacrylate copolymer, molecular weight about 5000). The mixture is emulsified by means of ultrasound or a high-pressure homogenizer. The solvents are removed in vacuo. A pasty residue obtained from finely divided lanthanum hexaboride and protective colloid consists. 1 g of this preparation is mixed with 5 kg of PP granules (Metocene X50081, Basell). Samples of the mixture are injection-molded into 1, 5 mm thick plates. The plastic plates appear colorless and visually completely clear, with an eightfold magnifying glass no particles are recognizable. After labeling with a 12W Nd: YAG
Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast.Laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz) show the plates a dark and abrasion-resistant high contrast labeling.
Beispiel 10Example 10
Lanthanhexaborid (Fa. ABCR, Teilchengröße ca. 5 μm) wird in einer Perlmühle mit Zirkonperlen in schwach saurer wässriger Suspension (pH=2) feinstgemahlen. Die durchschnittliche Teilchengröße beträgt 0,07 μm. 100 ml der 20 %igen Suspension werden mit 20 g polymerem Schutzkolloid aus einem statistischen Laurylmethacrylat/Hydroxymethyl- methacrylat-Copolymer, Molmasse ca. 5000) versetzt und mit Ultraschall homogenisiert. Das Wasser wird im Vakuum abgezogen, der verbleibende Rückstand in 1 I Toluol aufgenommen und filtriert. In die Suspension werden 174 g silanisierte pyrogene Kieselsäure (Cab-O-Sil TS610, Fa. Cabot) eingerührt. Anschließend wird die Suspension im Vakuum trocken gezogen. Man erhält einen feinpulvrigen Rückstand, der aus feinteiligem Siθ2, dem Schutzkolloid und feinteiligem Lanthanhexaborid besteht. Von dieser Zubereitung werden 5 g mit 5 kg PP-Granulat (Metocene X50081 , Basell) vermischt. Proben der Mischung werden im Spritzguss zu 1 ,5 mm dicken Platten verarbeitet. Die Kunststoffplatten enthalten ca. 0,01 % LaB6 und erscheinen farblos und hochtransparent, mit einer achtfachen Lupe sind keine Partikel erkennbar. Nach der Beschriftung mit einem 12W Nd:YAG Laser (Fa. SHT bei 300 mm/s und 0,03 mm Strahlbreite; 40-90 % Lampenenergie und einer Frequenz von 5-15 kHz) zeigen die Platten eine dunkle und abriebfeste Beschriftung mit hohem Kontrast. Beispiel 11 - LaserschweißenLanthanum hexaboride (ABCR company, particle size about 5 microns) is finely ground in a bead mill with zirconium beads in a slightly acidic aqueous suspension (pH = 2). The average particle size is 0.07 μm. 100 ml of the 20% suspension are mixed with 20 g of polymeric protective colloid of a random lauryl methacrylate / hydroxymethyl methacrylate copolymer, molecular weight about 5000) and homogenized with ultrasound. The water is removed in vacuo, the remaining residue is taken up in 1 l of toluene and filtered. 174 g of silanized pyrogenic silica (Cab-O-Sil TS610, Cabot Co.) are stirred into the suspension. The suspension is then drawn dry in vacuo. This gives a finely powdered residue which consists of finely divided SiO 2 , the protective colloid and finely divided lanthanum hexaboride. From this preparation, 5 g are mixed with 5 kg of PP granules (Metocene X50081, Basell). Samples of the mixture are injection-molded into 1, 5 mm thick plates. The plastic plates contain about 0.01% LaB 6 and appear colorless and highly transparent, with an eightfold magnifying glass no particles are recognizable. After labeling with a 12W Nd: YAG laser (SHT at 300 mm / s and 0.03 mm beam width, 40-90% lamp energy and a frequency of 5-15 kHz), the plates show a dark and abrasion-resistant lettering with high Contrast. Example 11 - Laser Welding
99,79 % PP-Granulat (PP-HD, Stamylen PPH 10 der Fa. DSM) wird durch Zusatz von 0,01 % Lanthanhexaborid der Teilchengröße 50 μm (Fa. H. C. Starck) und 0,2 % Colortek OT-0005-BON (Produkt der Fa. Colortek,99.79% PP granules (PP-HD, Stamylen PPH 10 from DSM) is prepared by adding 0.01% lanthanum hexaboride of particle size 50 μm (from HC Starck) and 0.2% Colortek OT-0005-BON (Product of the company Colortek,
Haftmittel auf Basis von Fettsäure und Fettsäureestern) im Spritzguss verarbeitet. Die Plättchen werden mit PP-Plättchen im Transmissions¬ verfahren verschweißt. Mit einem 100W Nd:YAG Laser (Fa. Rofin-Sinar), erhält man eine belastbare Schweißnaht mit hoher Einschweißtiefe (1500 μm) bei Streckenenergien von ca. 85 J/cm. Adhesives based on fatty acid and fatty acid esters) are processed by injection molding. The platelets are welded with PP platelets in the transmission process. With a 100W Nd: YAG laser (Rofin-Sinar), one obtains a load-bearing weld seam with a high welding depth (1500 μm) at line energies of approx. 85 J / cm.

Claims

Patentansprüche claims
1. Lasermarkierbare und/oder laserschweißbare Polymere, dadurch gekennzeichnet, dass sie als Absorber mindestens eine Boridverbindung enthalten.1. Laser-markable and / or laser-weldable polymers, characterized in that they contain as absorber at least one boride compound.
2. Lasermarkierbare und/oder laserschweißbare Polymere nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei der Boridverbindung um Aluminiumborid, Magnesiumborid, Molybdänborid, Chromborid, Niobborid, Siliziumhexaborid, Lanthanborid, Yttriumborid,2. Laser-markable and / or laser-weldable polymers according to claim 1, characterized in that the boride compound is aluminum boride, magnesium boride, molybdenum boride, chromium boride, niobium boride, silicon hexaboride, lanthanum boride, yttrium boride,
Europiumborid, Zirkonborid, Calciumborid und/oder Titanborid handelt.Europiumborid, zirconium boride, calcium boride and / or titanium boride.
3. Lasermarkierbare und/oder laserschweißbare Polymere nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei der Lanthan- Verbindung um Lanthanhexaborid handelt.3. Laser-markable and / or laser-weldable polymers according to claim 1 or 2, characterized in that the lanthanum compound is lanthanum hexaboride.
4. Lasermarkierbare und/oder laserschweißbare Polymere nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Polymer als Absorber neben der Boridverbindung zusätzlich eine oder mehrere laserlichtsensitive Substanzen enthält.4. Laser-markable and / or laser-weldable polymers according to one of claims 1 to 3, characterized in that the polymer additionally contains one or more laser-light-sensitive substances as absorber in addition to the boride compound.
5. Lasermarkierbare und/oder laserschweißbare Polymere nach Anspruch5. Laser-markable and / or laser-weldable polymers according to claim
4, dadurch gekennzeichnet, dass die laserlichtsensitiven Substanzen ausgewählt sind aus der Gruppe Anthracen, Pentaerythrit, Kupferphosphat, Kupferhydroxidphosphat, Molybdändisulfid,4, characterized in that the laser light-sensitive substances are selected from the group of anthracene, pentaerythritol, copper phosphate, copper hydroxide phosphate, molybdenum disulfide,
Molybdänoxid, Antimon(lll)oxid, Bismutoxichlorid, Effektpigment, beschichtete oder unbeschichtete Schichtsilikate, beschichtete oder unbeschichtete, transparente oder semi-transparente Metall-, Metalloxid- oder Glasplättchen, LCP's (Liquid Crystal Polymers), holographische Pigmente, leitfähige Pigmente.Molybdenum oxide, antimony (III) oxide, bismuth oxychloride, effect pigment, coated or uncoated phyllosilicates, coated or uncoated, transparent or semi-transparent metal, metal oxide or glass flakes, LCP's (liquid crystal polymers), holographic pigments, conductive pigments.
6. Lasermarkierbare und/oder laserschweißbare Polymere nach Anspruch6. Laser-markable and / or laser-weldable polymers according to claim
5, dadurch gekennzeichnet, dass das Schichtsilikat ein natürliches oder synthetisches Glitterplättchen ist. 5, characterized in that the layered silicate is a natural or synthetic glitter plate.
7. Lasermarkierbare und/oder laserschweißbare Polymere nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass das Perlglanzpigment auf natürlichem oder synthetischem Glimmer basiert.7. Laser-markable and / or laser-weldable polymers according to one of claims 5 or 6, characterized in that the pearlescent pigment is based on natural or synthetic mica.
8. Lasermarkierbare und/oder laserschweißbare Polymere nach Anspruch8. Laser-markable and / or laser-weldable polymers according to claim
7, dadurch gekennzeichnet, dass das Perlglanzpigment ein mit TiO2 und/oder Antimon-Zinn-Oxid beschichtetes Glimmerpigment ist.7, characterized in that the pearlescent pigment is a coated with TiO 2 and / or antimony-tin oxide mica pigment.
9. Lasermarkierbare und/oder laserschweißbare Polymere nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Absorber in9. Laser-markable and / or laser-weldable polymers according to one of claims 1 to 8, characterized in that the absorber in
Konzentrationen von 0,001 bis 10 Gew.% bezogen auf das Polymer eingesetzt wird.Concentrations of 0.001 to 10 wt.% Based on the polymer is used.
10. Lasermarkierbare und/oder laserschweißbare Polymere nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die10. Laser-markable and / or laser-weldable polymers according to one of claims 1 to 9, characterized in that the
Boridverbindung Partikelgrößen von 50 nm - 50 μm aufweist.Boride compound has particle sizes of 50 nm - 50 microns.
11. Lasermarkierbare und/oder laserschweißbare Polymere nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Polymer ein Thermoplast, Duroplast oder Elastomer ist.11. Laser-markable and / or laser-weldable polymers according to any one of claims 1 to 10, characterized in that the polymer is a thermoplastic, thermoset or elastomer.
12. Lasermarkierbare und/oder laserschweißbare Polymere nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Polymer zusätzlich Farbpigmente enthält.12. Laser-markable and / or laser-weldable polymers according to one of claims 1 to 11, characterized in that the polymer additionally contains color pigments.
13. Verfahren zur Herstellung von lasermarkierbaren und/oder laserschweißbaren Polymeren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man zu dem Polymer den Absorber bzw. das Absorbergemisch gleichzeitig oder nacheinander und gegebenenfalls weitere Hilfsstoffe zugibt und dann das Polymer unter13. A process for the preparation of laser-markable and / or laser-weldable polymers according to any one of claims 1 to 12, characterized in that one adds to the polymer the absorber or the absorber mixture simultaneously or sequentially and optionally further auxiliaries and then the polymer under
Wärmewirkung verformt.Heat effect deformed.
14. Verwendung der lasermarkierbaren und/oder laserschweißbaren Polymere nach einem der Ansprüche 1 bis 12 als Material zur Herstellung von Formmassen, Halbzeugen und Fertigteilen, die mit14. Use of the laser-markable and / or laser-weldable polymers according to one of claims 1 to 12 as a material for the production of molding compositions, semi-finished products and finished parts, with
Hilfe von Laser-Strahlung markiert oder geschweißt werden. Help by laser radiation can be marked or welded.
15. Formmassen, Halbzeuge und Fertigteile bestehend aus dem lasermarkierbaren und laserschweißbaren Polymer nach einem der Ansprüche 1 bis 12. 15. Molding compounds, semi-finished products and finished parts consisting of the laser-markable and laser-weldable polymer according to one of claims 1 to 12.
PCT/EP2005/008677 2004-09-16 2005-08-10 Laser markable and laser weldable polymer materials WO2006029677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045305A DE102004045305A1 (en) 2004-09-16 2004-09-16 Laser-markable and laser-weldable polymeric materials
DE102004045305.5 2004-09-16

Publications (1)

Publication Number Publication Date
WO2006029677A1 true WO2006029677A1 (en) 2006-03-23

Family

ID=35094085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008677 WO2006029677A1 (en) 2004-09-16 2005-08-10 Laser markable and laser weldable polymer materials

Country Status (2)

Country Link
DE (1) DE102004045305A1 (en)
WO (1) WO2006029677A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107407A1 (en) * 2006-03-20 2007-09-27 Basf Se Nanoparticulate metal boride composition and its use for identification-marking plastic parts
WO2009000252A2 (en) * 2007-06-22 2008-12-31 Grafe Color Batch Gmbh Mechanically reinforced thermoplastic plastic product for laser-based joining processes
DE102008049595A1 (en) 2008-09-30 2010-04-01 Merck Patent Gmbh Infrared absorbing inks
CN102417646A (en) * 2011-10-24 2012-04-18 上海交通大学 Laser-markable polyethylene composition
US8318262B2 (en) 2006-12-22 2012-11-27 Eckart Gmbh Use of spherical metal particles as laser-marking or laser-weldability agents, and laser-markable and/or laser-weldable plastic
US8778494B2 (en) 2009-03-18 2014-07-15 Merck Patent Gmbh Pigment for laser marking
EP1944152B2 (en) 2007-01-11 2014-08-13 Sumitomo Metal Mining Co., Ltd. Light-absorbing resin composition for use in laser welding, light-absorbing resin molded article, and method for manufacturing light-absorbing resin molded article
US8877332B2 (en) 2007-11-30 2014-11-04 Eckart Gmbh Use of a mixture comprising spherical metal particles and metal flakes as laser-marking or laser-weldability agents and laser markable and/or laser weldable plastic
WO2015188917A1 (en) * 2014-06-10 2015-12-17 Merck Patent Gmbh Laser markable and laser weldable polymer materials
US9745465B2 (en) 2012-06-06 2017-08-29 Mitsubishi Engineering-Plastics Corporation Resin composition for laser direct structuring, resin-molded article, and method for manufacturing molded article with plated layer
DE102016213372A1 (en) 2016-07-21 2018-01-25 Few Chemicals Gmbh NIR absorber Additives for the laser beam welding of plastics
CN113025969A (en) * 2019-12-09 2021-06-25 斯沃奇集团研究和开发有限公司 Method for producing a decorative surface

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130451A1 (en) * 2007-11-19 2009-05-21 Tony Farrell Laser-weldable thermoplastics, methods of manufacture, and articles thereof
US20130168133A1 (en) * 2011-03-18 2013-07-04 Mitsubishi Chemical Europe Gmbh Process for producing a circuit carrier
TWI531601B (en) 2011-03-18 2016-05-01 三菱化學歐洲股份有限公司 A resin molded product, a resin molded product, and a resin molded article having a plating layer
DE102014008963A1 (en) * 2014-06-23 2016-01-07 Merck Patent Gmbh Additive for LDS plastics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580393A2 (en) * 1992-07-20 1994-01-26 Presstek, Inc. Lithographic printing plate
EP0770495A1 (en) * 1995-10-24 1997-05-02 Agfa-Gevaert N.V. A method for making a lithographic printing plate involving on press development
DE10101240A1 (en) * 2001-01-11 2002-07-18 Basf Ag Process for the production of laser-welded composite molded parts and these composite molded parts
WO2002060988A1 (en) * 2000-11-14 2002-08-08 Solutia, Inc. Infrared (ir) absorbing polyvinyl butyral composition, sheet thereof and laminate containing the same
US6569601B1 (en) * 2000-09-14 2003-05-27 Alcoa Inc. Radiation treatable printing plate
EP1319683A1 (en) * 2001-12-11 2003-06-18 Asahi Glass Co., Ltd. Heat radiation blocking fluororesin film
US20040071957A1 (en) * 2002-09-25 2004-04-15 Sumitomo Metal Mining Co., Ltd. Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580393A2 (en) * 1992-07-20 1994-01-26 Presstek, Inc. Lithographic printing plate
EP0770495A1 (en) * 1995-10-24 1997-05-02 Agfa-Gevaert N.V. A method for making a lithographic printing plate involving on press development
US6569601B1 (en) * 2000-09-14 2003-05-27 Alcoa Inc. Radiation treatable printing plate
WO2002060988A1 (en) * 2000-11-14 2002-08-08 Solutia, Inc. Infrared (ir) absorbing polyvinyl butyral composition, sheet thereof and laminate containing the same
DE10101240A1 (en) * 2001-01-11 2002-07-18 Basf Ag Process for the production of laser-welded composite molded parts and these composite molded parts
EP1319683A1 (en) * 2001-12-11 2003-06-18 Asahi Glass Co., Ltd. Heat radiation blocking fluororesin film
US20040071957A1 (en) * 2002-09-25 2004-04-15 Sumitomo Metal Mining Co., Ltd. Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107407A1 (en) * 2006-03-20 2007-09-27 Basf Se Nanoparticulate metal boride composition and its use for identification-marking plastic parts
US8318262B2 (en) 2006-12-22 2012-11-27 Eckart Gmbh Use of spherical metal particles as laser-marking or laser-weldability agents, and laser-markable and/or laser-weldable plastic
EP1944152B2 (en) 2007-01-11 2014-08-13 Sumitomo Metal Mining Co., Ltd. Light-absorbing resin composition for use in laser welding, light-absorbing resin molded article, and method for manufacturing light-absorbing resin molded article
WO2009000252A2 (en) * 2007-06-22 2008-12-31 Grafe Color Batch Gmbh Mechanically reinforced thermoplastic plastic product for laser-based joining processes
WO2009000252A3 (en) * 2007-06-22 2009-02-19 Grafe Color Batch Gmbh Mechanically reinforced thermoplastic plastic product for laser-based joining processes
US8877332B2 (en) 2007-11-30 2014-11-04 Eckart Gmbh Use of a mixture comprising spherical metal particles and metal flakes as laser-marking or laser-weldability agents and laser markable and/or laser weldable plastic
DE102008049595A1 (en) 2008-09-30 2010-04-01 Merck Patent Gmbh Infrared absorbing inks
US8778494B2 (en) 2009-03-18 2014-07-15 Merck Patent Gmbh Pigment for laser marking
CN102417646A (en) * 2011-10-24 2012-04-18 上海交通大学 Laser-markable polyethylene composition
US9745465B2 (en) 2012-06-06 2017-08-29 Mitsubishi Engineering-Plastics Corporation Resin composition for laser direct structuring, resin-molded article, and method for manufacturing molded article with plated layer
WO2015188917A1 (en) * 2014-06-10 2015-12-17 Merck Patent Gmbh Laser markable and laser weldable polymer materials
CN106459483A (en) * 2014-06-10 2017-02-22 默克专利股份有限公司 Laser markable and laser weldable polymer materials
CN106459483B (en) * 2014-06-10 2019-03-08 默克专利股份有限公司 Can laser labelling and can laser welding polymer material
DE102016213372A1 (en) 2016-07-21 2018-01-25 Few Chemicals Gmbh NIR absorber Additives for the laser beam welding of plastics
CN113025969A (en) * 2019-12-09 2021-06-25 斯沃奇集团研究和开发有限公司 Method for producing a decorative surface

Also Published As

Publication number Publication date
DE102004045305A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
WO2006029677A1 (en) Laser markable and laser weldable polymer materials
EP1145864B1 (en) Laser markable plastics
EP0797511B1 (en) Laser-markable plastics
EP1524909B1 (en) Laser markable carrier unit
EP0991523B1 (en) Plastics which can be laser-marked
DE10035204A1 (en) Laser-markable plastic, e.g. for production of markable components for cars or for plastic packaging, comprises thermoplastic containing effect pigment coated with anthracene or pentaerythritol
EP3157995B1 (en) Microspheres
EP3215347B1 (en) Laser-markable and laser-weldable polymer materials
EP0750012A1 (en) Lasermarkable plastics
EP3055253B1 (en) Pigments based on bismuth compounds
WO1998003583A1 (en) Laser-markable plastics
EP1108747A1 (en) Lasermarkable plastics
EP3094594B1 (en) Pigments based on bismuth compounds
EP1418204A2 (en) Laser-markable pigments
WO2017016645A1 (en) Laser-markable polymers and coatings
EP3233423B1 (en) Laser-markable and laser-weldable polymer materials
WO2014206523A1 (en) Microspheres
EP3155039B1 (en) Laser markable and laser weldable polymer materials
DE102015009854A1 (en) Laser-markable polymers and coatings

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase