WO2006027823A1 - Electronic watermark device, authentication processing device, decoding processing device, and re-quantization device - Google Patents

Electronic watermark device, authentication processing device, decoding processing device, and re-quantization device Download PDF

Info

Publication number
WO2006027823A1
WO2006027823A1 PCT/JP2004/012947 JP2004012947W WO2006027823A1 WO 2006027823 A1 WO2006027823 A1 WO 2006027823A1 JP 2004012947 W JP2004012947 W JP 2004012947W WO 2006027823 A1 WO2006027823 A1 WO 2006027823A1
Authority
WO
WIPO (PCT)
Prior art keywords
authenticator
signal
quantizer
quantization
output
Prior art date
Application number
PCT/JP2004/012947
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Ito
Mitsuyoshi Suzuki
Ryousuke Fujii
Tomohiro Kimura
Koichi Magai
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006534936A priority Critical patent/JP4624359B2/en
Priority to PCT/JP2004/012947 priority patent/WO2006027823A1/en
Publication of WO2006027823A1 publication Critical patent/WO2006027823A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/005Robust watermarking, e.g. average attack or collusion attack resistant
    • G06T1/0057Compression invariant watermarking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/467Embedding additional information in the video signal during the compression process characterised by the embedded information being invisible, e.g. watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0052Embedding of the watermark in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/60Digital content management, e.g. content distribution
    • H04L2209/608Watermarking

Definitions

  • Digital watermarking device authentication processing device, decryption processing device, and requantization device
  • the present invention relates to, for example, a digital watermark device that embeds electronic watermarks in multimedia data such as image signals and audio signals, an authentication processing device that authenticates multimedia data in which digital watermarks are embedded, and a digital watermark
  • the present invention relates to a decoding processing device that decodes multimedia data in which is embedded, and a requantization device that requantizes multimedia data in which a digital watermark is embedded.
  • the principle of the electronic signature method is that the issuer creates an authentication code by encrypting the hash value of the digital data, and sends the authentication code together with the digital data.
  • the authentication code sent from the issuer is decrypted, the hash value of the digital data is recalculated, the authenticity of the digital data is compared with the authentication value and the authentication code. Confirm.
  • Non-Patent Document 1 a hash value is calculated from the DCT (Discrete Cosine Transform) coefficient for moving image data encoded in particular with MPEG (Motion Pictures Experts Group), and the no-shake value is electronically calculated.
  • DCT Discrete Cosine Transform
  • MPEG Motion Pictures Experts Group
  • a method of embedding as a permeability is disclosed. According to this method, if the DCT coefficient value in the code key data changes even a little, it is possible to detect the change on the receiving side.
  • Non-Patent Document 1 the code amount is reduced. For this reason, in a moving image, if temporally adjacent images are similar to each other, it is possible to perform predictive coding that transmits only the difference using the characteristic.
  • Non-Patent Document 1 R. Du and J. Fridrich, "Lossless authentication of MPE
  • the conventional electronic permeability device is configured as described above. Therefore, when the code amount is reduced by transmitting the differential signal of the moving image data adjacent to each other, the receiving side is required. Differential signal force Once the video data is decoded, the differential signal cannot be reproduced. For this reason, the hash value embedded in the difference signal also disappears simultaneously with the decoding of the moving image data, and the authentication function is lost.
  • the present invention has been made to solve the above-described problems, and can provide multimedia data without losing the authentication function even when multimedia data such as images and sounds are decoded.
  • the purpose is to obtain an electronic permeability device.
  • the present invention also provides an authentication processing device that authenticates multimedia data that is also provided with the above-described electronic transparency and device power, a decryption processing device that decrypts the multimedia data, and requantizes the multimedia data.
  • the object is to obtain a requantizer. Disclosure of the invention
  • the digital watermarking apparatus quantizes an input signal, calculates an authenticator from a quantum index cover of the input signal, and embeds the authenticator in the quantized index. While providing the signature means, obtain the difference signal between the input signal and the reference signal, quantize the difference signal according to the quantization index in which the authenticator is embedded by the signature means, and output the quantization index of the difference signal A sign means is provided.
  • FIG. 1 is a configuration diagram showing an electronic force transmission device according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an example of quantizing a k-th transform coefficient.
  • FIG. 3 is a flowchart showing processing contents of a correction circuit in a signature circuit.
  • Fig. 4 is a configuration diagram showing an electronic permeability device according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing an authentication processing device according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram showing the inside of a coefficient acquisition unit.
  • FIG. 7 is a block diagram showing the inside of a coefficient acquisition unit.
  • FIG. 8 is a block diagram showing a decoding processing apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a block diagram showing the inside of a decoding circuit.
  • FIG. 10 is a flowchart showing processing contents of a correction circuit.
  • FIG. 11 is a block diagram showing a requantization apparatus according to Embodiment 5 of the present invention.
  • FIG. 12 is a block diagram showing the inside of a coefficient acquisition circuit.
  • FIG. 1 is a block diagram showing an electronic power transmission device according to Embodiment 1 of the present invention.
  • a signature circuit 1 quantizes an image signal that is an input signal, and a quantization index of the image signal. Calculates the force authenticator and performs processing to embed the authenticator in the quantization index.
  • the signature circuit 1 constitutes a signature means.
  • the encoder 2 obtains the difference signal between the image signal and the reference signal, quantizes the difference signal according to the quantization index in which the authenticator is embedded by the signature circuit 1, and outputs the quantization index of the difference signal.
  • the encoder 2 constitutes a code key means.
  • a change 11 of the encoder 2 converts an image signal X (where X is a vector signal), which is an input signal, into a frequency domain signal T (X) in units of blocks.
  • the subtracter 12 of the encoder 2 is a reference image signal ⁇ previously encoded from the frequency domain signal ⁇ ( ⁇ ), which is the conversion result of the converter 11, where ⁇ is a vector of the reference image signal.
  • the frequency domain signal ⁇ ( ⁇ ) is subtracted to obtain the frequency domain prediction error ⁇ (X) — ⁇ ( ⁇ ).
  • the quantizer 13 of the signature circuit 1 converts the frequency domain signal ⁇ ( ⁇ ) output from the variable 11 into The signal is quantized and a quantization index Qw (T (X)) of the signal T (X) is output.
  • the correction circuit 14 of the signature circuit 1 has a quantization index Qw (T
  • the authenticator computing circuit 15 of the signature circuit 1 computes the quantized index Qw (T (X)) and the authenticator W (where W is a vector of authenticators) after being corrected by the correcting circuit 14.
  • the modulator 16 of the signature circuit 1 modulates a part of the corrected quantization index Qw (T (X)) according to the authenticator W calculated by the authenticator arithmetic circuit 15, and outputs the modulation result Yw. .
  • the quantizer 17 of the encoder 2 predicts the frequency domain calculated by the subtractor 12 according to the modulation result Yw of the modulator 16 (quantization index in which the authenticator W is embedded by the modulator 16). Quantizes the error T (X) -T (Xp) and outputs the quantization error Y of the prediction error T (X) -T (Xp) (where Y is a vector of quantum indices).
  • the inverse quantizer 18 of the encoder 2 performs inverse quantization on the quantization error Y of the prediction error output from the quantizer 17 and decodes the prediction error T (X) —T (Xp).
  • the adder 19 of the encoder 2 calculates the prediction error T (X)-T (Xp) decoded by the inverse quantizer 18 and the frequency domain signal ⁇ ( ⁇ ) of the reference image signal Xp output from the switch 23. Addition and output the addition signal ⁇ ( ⁇ ).
  • the inverse change of the encoder 2 converts the addition signal ⁇ ( ⁇ ) output from the adder 19 into the time domain, and outputs the signal in the time domain as the reference image signal Xp.
  • the storage circuit 21 of the encoder 2 stores the reference image signal Xp output from the inverse converter 20 for the moving time and outputs it.
  • the converter 22 of the encoder 2 converts the reference image signal Xp output from the storage circuit 21 into the frequency domain, and outputs a signal T (Xp) in the frequency domain.
  • the switch 23 of the encoder 2 supplies the frequency domain signal ⁇ ( ⁇ ) output from the variable to the subtractor 12 and the adder 19.
  • the frequency domain signal
  • the conversion 11 of the encoder 2 receives the image signal X, converts the image signal X into the frequency domain in units of blocks, and converts the signal T (X) in the frequency domain into the subtractor 12 and the signature. Output to the quantizer 13 of the nominal circuit 1.
  • ⁇ () is an operator of the converter 11.
  • the subtracter 12 of the encoder 2 receives the frequency domain signal T (X) from the converter 11, and the reference image signal ⁇ ⁇ encoded in the past from the converter 22 via the switch 23.
  • the frequency domain signal ⁇ ( ⁇ ) is received, the frequency domain signal ⁇ ( ⁇ ) is subtracted from the signal ⁇ ( ⁇ ) and the frequency domain prediction error ⁇ ( ⁇ ) - ⁇ ( ⁇ ) is calculated.
  • the quantizer 13 of the signature circuit 1 receives the signal ⁇ ( ⁇ ) in the frequency domain from the converter 11, the quantizer 13 quantizes the signal ⁇ ( ⁇ ) in the frequency domain. Output the generalized index Qw (T (X)).
  • Qw () is an operator of the quantizer 13.
  • the correction circuit 14 of the signature circuit 1 corrects the quantization index Qw (T (X)) output from the quantizer 13, and uses the corrected quantization index Qw (T (X)) as an authenticator. Output to arithmetic circuit 15 and modulator 16.
  • the authenticator calculation circuit 15 of the signature circuit 1 calculates the authenticator W from the quantized index Qw (T (X)) corrected by the correction circuit 14.
  • N transform blocks are grouped together, the hash value of all the quantization indexes is calculated, and the signature obtained by encrypting the hash value. If the number of bits in the hash value is equal to N, a 1-bit authenticator is calculated for each conversion block.
  • the modulator 16 of the signature circuit 1 receives the authentication when the authenticator operation circuit 15 calculates the authenticator W. A part of the corrected quantization index Qw (T (X)) is modulated according to the witness W, and the modulation result Yw is output.
  • the modulator 16 embeds the authenticator W in the quantization index Qw (T (X)) using the method described in the above document.
  • the value of the last quantization index of the zigzag scan is set to “1” or “+1” depending on whether the bit of the authenticator W is “0” or “1”.
  • the quantum index in which the authenticator W of the input image is embedded from 16 modulators is output.
  • the quantizer 17 of the encoder 2 receives the modulation result Yw from the modulator 16, and receives the frequency domain prediction error T (X) —T (Xp) from the subtractor 12
  • the frequency domain prediction error T (X) -T (Xp) is quantized according to the modulation result Yw of the modulator 16, and the quantization index Y of the prediction error T (X) -T (Xp) is output.
  • the quantizer 17 outputs a quantum index Y that minimizes d in the equation (3) under the condition that the following equation (2) is satisfied.
  • Qc _1 () is an operator of inverse quantization for the quantizer 17, II represents the norm of a vector.
  • Equation (2) Qc ⁇ 1 (Y) + T (Xp) is obtained by adding a prediction error signal obtained by inverse quantization to the transform coefficient of the reference frame. It represents the conversion coefficient.
  • Equation (2) gives the condition that the transform coefficient to be decoded becomes Yw when quantized with Qw.
  • Equation (3) is the difference between the reconstruction value of the prediction error and the true value T ( X) — gives T (Xp) It is.
  • the quantizer 17 has a prediction error T (X) — that minimizes the distortion caused by the sign key ⁇ under the condition that the modulation result Yw of the signature circuit 1 is stored in the decoded image signal. Outputs the quantization index ⁇ of ⁇ ( ⁇ ).
  • the quantizer 17 may perform the above operation for each transform coefficient.
  • FIG. 2 is an explanatory diagram showing an example of quantizing the kth transform coefficient.
  • the upper side shows the quantization characteristics of Qw
  • the lower side shows the quantization characteristics of Qc, expressed in terms of the quantization index and its quantization range.
  • the point on the center number line is the quantized representative value of Qc. Further, the subscript k on the right shoulder of the vector indicates the k-th component of the vector. q k and q k are the quantization widths of Qc and Qw for this transform coefficient, and are set to be Eq. (4)!
  • Qw is set as follows.
  • y (2Y + sign (Y)) Q (6)
  • the inverse quantizer 18 of the encoder 2 is used for the next electronic permeability embedding process when the quantizer 17 outputs the prediction error quantum index Y as described above.
  • the quantization index Y of the prediction error is inversely quantized to decode the prediction error T (X) ⁇ ( ⁇ ).
  • the adder 19 of the encoder 2 sets the switch 23 from the prediction error — ( ⁇ ) - ⁇ ( ⁇ ⁇ ) and the variable 22.
  • the signal ⁇ ( ⁇ ) in the frequency domain of the reference image signal Xp output via the signal is added, and the added signal ⁇ ( ⁇ ) is output.
  • the inverse change of encoder 2 is that when the addition signal T (X) is received from the adder 19, the addition signal ⁇ ( ⁇ ) is converted into the time domain, and the signal in the time domain is converted to the reference image signal Xp. Is stored in the memory circuit 21.
  • the converter 22 of the encoder 2 reads the reference image signal Xp shifted by the moving time from the storage circuit 21, converts the reference image signal Xp into the frequency domain, and converts the reference image signal Xp into the frequency domain via the switch 23.
  • the signal T (Xp) is supplied to the subtracter 12 and the adder 19.
  • the switch 23 needs to appropriately mix images that can be decoded without referring to other images.
  • “0” is subtracted from the subtractor 12.
  • the quantizer 17 operates so as to code the current input image as it is.
  • image quality degradation due to embedding of the authenticator W can be achieved by selecting a block that has as little obscure interference as possible (the part with the least influence of modulation) and applying modulation. Can be reduced. However, it must be possible to detect which block is modulated at the time of decoding.
  • the number of non-zero quantization indexes (significant coefficients) is obtained. It is sufficient to select a block having a significant coefficient greater than a predetermined number. At this time, the embedding of electronic permeability increases the number of significant coefficients by 1. The order of the significant coefficients of each block does not change, so that the embedding block can be uniquely identified during decoding. Any block with the same number of significant coefficients may be selected. In a flat part of an image where deterioration is conspicuous, since the number of significant coefficients is generally small, the probability of embedding a digital watermark is low. Accordingly, it is possible to generate a code image that is difficult to perceive interference due to embedding of an electronic watermark.
  • the authenticator calculation circuit 15 calculates the authenticator W based on the currently input image signal X related to the reference image, and the quantizer 17 embeds this authenticator W. Since the prediction error T (X) -T (Xp) is quantized so as to preserve the quantization index Yw, the signal output from the encoder 2 is a complete signature for authenticating the image signal in units of frames. Holds information. As will be described later, this signature information is extracted when a part of a frame is extracted from a moving image and its transform coefficient is re-encoded (for example, a moving image encoded by MPEG). In the case where a part is re-encoded with JPEG), it can be inherited without loss in the re-encoded signal.
  • signature information may disappear due to an error introduced in the process of decoding.
  • Such an error is generally a conversion factor. Occurs when a number is converted to a real force integer and when that integer value is clipped to a further fixed dynamic range. Therefore, unless sufficient measures are taken, signature information cannot be inherited by time domain images.
  • the correction circuit 14 of the signature circuit 1 corrects the quantum index Qw (T (X)) so that the decoded signal V does not greatly exceed the dynamic range.
  • This correction can be performed, for example, according to the procedure shown in FIG.
  • the correction circuit 14 determines that the embedded result of 0 does not greatly exceed the dynamic range (step ST2).
  • the correction circuit 14 inversely quantizes the quantization index Yw embedded with electronic permeability corresponding to Qw and inversely transforms it to obtain a vector X in the time domain.
  • the correction circuit 14 calculates a shortest distance d (x, A) between the vector X and the set A, where A is a set of vectors in which all components fall within the dynamic range, and the shortest distance d (x, Judge whether or not A) is within a certain value D.
  • the correction circuit 14 certifies that the result of zero embedding does not greatly exceed the dynamic range.
  • the correction circuit 14 determines that the embedded result of 0 does not greatly exceed the dynamic range, the correction circuit 14 performs a process of embedding 1 in the quantization index Qw (T (X)) (step S T3) .
  • the correction circuit 14 determines that the result of embedding 1 does not greatly exceed the dynamic range (step ST4). Since this determination method is the same as the determination method in step ST2, description thereof is omitted. If the correction circuit 14 certifies that the embedding result of 1 does not greatly exceed the dynamic range, the quantization index Qw (T (X)) is embedded in the authentication index W, which is electronic permeability, Since it is guaranteed that Qw (T (X)) is close to the set A, the quantized index value Qw (T (X)) is output to the authenticator operation circuit 15 and the modulator 16.
  • the quantization index Qw (T (X)) After embedding the authenticator W, which is the electronic permeability, it is not guaranteed that the quantized index Qw (T (X)) is close to the set A, so the quantized index Qw (T (X) ) Is corrected (step ST5).
  • the correction circuit 14 calculates a target vector t given by the following equation, and stores the target vector t.
  • P () is an operator representing the orthogonal projection for set A
  • t is the vector obtained by inverse quantization and inverse transformation of Qw (T (X))
  • s is the vector of all vectors belonging to set A. It is the closest to s, and the vector is transformed by T.
  • the correction circuit 14 inversely quantizes the current quantum index Qw (T (X)) to calculate Qw— ⁇ wO ⁇ X)), and compares this with the target vector t. Then, the quantization index of Qw (T (X)) corresponding to the component farthest from the target vector t is corrected by 1 in the direction of the target vector t.
  • This modification brings the quantization index Qw (T (X)) closer to the set A. If the quantization index Qw (T (X)) is already close enough to the target vector t, set the target vector t to the center vector of the set A (a vector with all components at intermediate gray levels). Switch to the one converted to, and repeat the modification of the quantization index Qw (T (X)).
  • the correction circuit 14 corrects the quantum index Qw (T (X)) so that the modulation result Yw of the modulator 16 does not greatly exceed the dynamic range.
  • the quantization index Qw (T (X)) is corrected so that the modulation result Yw of the modulator 16 is always within the dynamic range.
  • Equation (13) is set in Qw to eliminate the influence of rounding error, and the correction circuit 14 is installed in the signature circuit 1. Then, you need to take measures against clipping.
  • the equation (8), equation (9) and equation (13) force Qw should be set as follows:
  • an image signal is quantized, an authentication code is calculated from the quantization index of the image signal, and the authentication code is quantized.
  • the signature circuit 1 to be embedded in the index is provided, the difference signal between the image signal and the reference signal is obtained, and the difference signal is quantized according to the quantization index in which the authenticator is embedded by the signature circuit 1, Since the encoder 2 that outputs the quantization index of the difference signal is provided, it is possible to provide multimedia data without losing the authentication function even if multimedia data such as images and sounds are decoded. There is an effect that can be done.
  • the quantization index Qw (T (X)) output from the quantizer 13 is corrected, an image embedded with a digital watermark is converted into a dice. It is possible not to greatly exceed the dynamic range. Therefore, even when an image is decoded in the time domain, the authenticity of the image can be confirmed.
  • FIG. 4 is a block diagram showing an electronic permeability device according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description thereof will be omitted.
  • the quantizer 31 of the encoder 2 quantizes the frequency domain prediction error T (X) — ⁇ ( ⁇ ) calculated by the subtractor 12, and quantizes the prediction error ⁇ (X) — ⁇ ( ⁇ ). Outputs index ⁇ .
  • the inverse quantizer 32 of the signature circuit 1 decodes the quantization index ⁇ output from the quantizer 31 and outputs a frequency domain prediction error ⁇ ( ⁇ ) ⁇ ⁇ ( ⁇ ⁇ ).
  • the adder 33 of the signature circuit 1 includes the prediction error ⁇ ( ⁇ ) — ⁇ ( ⁇ ) output from the inverse quantizer 32 and the frequency domain signal ⁇ ( ⁇ ) of the reference image signal ⁇ output from the switch 23. ) Is added and the added signal ⁇ ( ⁇ ) is output.
  • the correction circuit 34 of the encoder 2 corrects the quantization index Y output from the quantizer 31 according to the modulation result Yw of the modulator 16 (quantization index in which the authenticator W is embedded by the modulator 16). To do.
  • the authenticator W is directly calculated from the input image.
  • the authenticator W is calculated on the basis of the prediction error signal cover and the decoded image. Please do it.
  • the quantizer 31 of the encoder 2 performs the prediction error T when the subtractor 12 outputs the prediction error T (X) — T (Xp) in the frequency domain in the same manner as in the first embodiment.
  • (X) —T (Xp) is quantized and the quantization index ⁇ of the prediction error T (X) —T (Xp) is output to the inverse quantizer 32 and the correction circuit 34.
  • the inverse quantizer 32 of the signature circuit 1 decodes the quantization index ⁇ ⁇ and adds a frequency domain prediction error ⁇ (X) -X (Xp) Output to 33.
  • the adder 33 of the signature circuit 1 uses the prediction error T (X)-T (Xp) output from the inverse quantizer 32 and the frequency domain signal ⁇ ( ⁇ ) of the reference image signal Xp output from the switch 23. Addition is performed, and the addition signal ⁇ ( ⁇ ) is output to the quantizer 13.
  • the correction circuit 34 of the encoder 2 receives the quantization index Y from the quantizer 31 and receives the modulation result Yw from the modulator 16, the correction circuit 34 is the same as the quantizer 17 of the first embodiment. Then, the quantization index Y output from the quantizer 31 is corrected according to the modulation result Yw.
  • the correction circuit 34 outputs a quantization index Y that minimizes d in the equation (17) under the condition that the following equation (16) is satisfied.
  • the prediction error signal having a small value is roughly quantized.
  • the authenticator W is generated from the decoded image signal.
  • FIG. 5 is a block diagram showing an authentication processing apparatus according to Embodiment 3 of the present invention.
  • the coefficient acquisition unit 41 is an encoding in which an authenticator is embedded by, for example, the electronic permeability device of FIG. 1 or FIG.
  • the conversion coefficient of the sign signal is acquired.
  • the quantizer 42 quantizes the transform coefficient acquired by the coefficient acquisition unit 41 and outputs the quantization index to the authenticator operation circuit 43 and the authenticator detector 44.
  • the coefficient acquisition unit 41 and the quantizer 42 constitute a quantization means.
  • the authenticator operation circuit 43 calculates an authenticator from the quantization index output from the quantizer 42.
  • the authenticator operation circuit 43 constitutes an authenticator operation means.
  • the authenticator detector 44 detects the authenticator embedded in the quantization index output from the quantizer 42.
  • the authenticator detector 44 constitutes an authenticator detecting means.
  • the comparator 45 compares the authenticator detected by the authenticator detector 44 with the authenticator calculated by the authenticator calculation circuit 43. If the two match, it is recognized that the authenticity of the image is maintained. If they do not match, it is determined that the authenticity of the image is lost.
  • the comparator 45 constitutes a comparison means.
  • FIG. 6 is a block diagram showing the inside of the coefficient acquisition unit 41.
  • the inverse quantizer 51 The adder 52 restores the prediction error conversion coefficient by decoding the quantization index, which is a sign signal, and the prediction error conversion coefficient restored by the coefficient acquisition unit 41 and the reference image transformed by the change. The conversion coefficient is added, and the addition result is output as the conversion coefficient of the encoded signal.
  • the inverse change 53 decodes the time domain image signal output from the adder 52 and stores the image signal in the storage circuit 54.
  • the conversion converts the image signal stored in the storage circuit 54 into the conversion coefficient of the reference image and outputs the conversion coefficient to the adder 52.
  • the coefficient acquisition unit 41 when the coefficient acquisition unit 41 receives an encoded signal in which an authenticator is embedded by the electronic permeability device of FIGS. 1 and 4, the coefficient acquisition unit 41 acquires a conversion coefficient of the code signal.
  • the input signal is a signal sequence in which transform coefficients are encoded
  • the portion corresponding to the signal sequence power may be extracted.
  • the input signal is decoded into the time domain.
  • the coefficient acquisition unit 41 may acquire the conversion coefficient using the conversion 56 (see FIG. 7) for converting the input image into the frequency domain.
  • the quantizer 42 quantizes the transform coefficient and outputs the quantization index to the authenticator calculation circuit 43 and the authenticator detector 44.
  • the authenticator operation circuit 43 calculates an authenticator from the quantum index.
  • the portion where the electronic permeability is embedded is not used for the calculation of the authenticator.
  • the last quantized index of the block in which the electronic watermark is embedded is 0, and the authenticator is calculated.
  • the authenticator detector 44 Upon receiving the quantization index from the quantizer 42, the authenticator detector 44 detects an authenticator embedded in the quantization index.
  • the electronic permeability is embedded by the method described in the first embodiment.
  • the authenticator is restored from the value of the last quantization index of the block in which the electronic permeability is embedded.
  • the comparator 45 compares both authenticators, and if the two match, the authenticity of the image is detected. It is recognized that the sexuality is maintained. On the other hand, if they do not match, it is determined that the authenticity of the image has been lost.
  • the authentication code is calculated depending on the input image, it is decoded not only by the encoded signal sequence power but also by decoding. Even from the image, there is an effect that the authenticity can be proved.
  • FIG. 8 is a block diagram showing a decryption processing apparatus according to Embodiment 4 of the present invention.
  • the decryption circuit 61 uses, for example, a signal sequence in which an authenticator is embedded by the electronic permeability device of FIG. 1 or FIG. When received, the signal sequence is decoded into a time domain signal. Note that the decryption circuit 61 constitutes decryption means!
  • the coefficient acquisition circuit 62 When the coefficient acquisition circuit 62 receives the signal sequence in which the authenticator is embedded, the coefficient acquisition circuit 62 restores the conversion coefficient used for calculating the authenticator from the signal sequence.
  • the quantizer 63 quantizes the transform coefficient restored by the coefficient acquisition circuit 62 with the same characteristics as those used for calculating the authenticator.
  • the coefficient acquisition circuit 62 and the quantizer 63 constitute a quantization means.
  • the correction circuit 64 corrects the decoding result of the decoding circuit 61 in accordance with the transform coefficient quantized by the quantizer 63.
  • the correction circuit 64 constitutes correction means.
  • FIG. 9 is a block diagram showing the inside of the decoding circuit 61.
  • the inverse quantizer 71 receives a quantization index of a prediction error that is a signal sequence in which an authenticator is embedded, Index force Restores the signal value of the prediction error.
  • the adder 72 adds the signal value of the prediction error restored by the inverse quantizer 71 and the signal value of the reference image, and outputs a transform coefficient of the decoded image.
  • Inverse transformation 73 converts the transform coefficient of the decoded image output from adder 72 into an image signal in the time domain. Therefore, the output of the inverse converter 73 is the image signal expressed in the time domain. Since the output of the inverse change is generally a real number, an integer such as rounding is applied. If the result exceeds the specified numerical range, clipping is performed to correct it to the specified range. The inverse change output is corrected by the correction circuit 64 as necessary, and becomes an image signal having an authenticator.
  • the storage circuit 74 stores the time-domain image signal converted by the inverse converter 73.
  • the converter 75 converts the time domain image signal stored by the storage circuit 74 into a reference image signal value.
  • the decoding circuit 61 When receiving the signal sequence in which the authenticator is embedded by, for example, the electronic permeability device of FIGS. 1 and 4, the decoding circuit 61 decodes the signal sequence into a time domain signal according to a certain rule.
  • the coefficient acquisition circuit 62 when the coefficient acquisition circuit 62 receives the signal sequence in which the authenticator is embedded, the coefficient acquisition circuit 62 restores the conversion coefficient used for calculating the authenticator from the signal sequence. However, as shown in FIG. 9, when the adder 72 of the decoding circuit 61 restores the transform coefficient and outputs it to the quantizer 63, the coefficient acquisition circuit 62 is unnecessary.
  • the quantizer 63 quantizes the transform coefficient restored by the coefficient acquisition circuit 62 with the same characteristics as those used for calculating the authenticator in the digital watermark device.
  • the transform coefficient Yw quantized by the quantizer 63 is given to the correction circuit 64 as a target for correcting the decoding result of the decoding circuit 61.
  • the correction circuit 64 corrects the decoding result of the decoding circuit 61 according to the conversion coefficient Yw.
  • the correction circuit 64 receives the integer vector X (decoding result) of the image signal output from the decoding circuit 61, when the image signal is converted and quantized, the image signal is converted into a conversion coefficient Yw. Modify the integer vector X of the image signal to match The reason for this modification is that if integer processing or clipping processing is included in the decryption process, the authenticator information embedded as a digital watermark may be lost due to errors in the processing. That's it.
  • FIG. 10 is a flowchart showing the processing contents of the correction circuit 64.
  • the processing contents of the correction circuit 64 will be specifically described with reference to FIG.
  • the correction circuit 64 determines whether or not the integer vector X of the image signal satisfies the condition of the following equation (18) (step ST11).
  • T () is an operator representing transformation
  • Qw () is an operator that performs quantization with the same characteristics as those used in the computation of the authenticator.
  • correction circuit 64 ends the correction process because vector X holds the authenticator information.
  • step ST11 the vector X is corrected (step ST12).
  • Correction of the vector X is performed by bringing the component of the solid X that is farthest from the real vector Xw by 1 closer to the real vector Xw, where Xw is the real vector from which the transformation coefficient Yw is restored.
  • the real vector Xw is given by the following equation.
  • the authentication code since the authentication code is calculated depending on the input image, the authentication code can be inherited to the decrypted image signal. There is an effect.
  • the decryption vector is corrected so as to have the authenticator, the effect of being able to inherit the authenticator in the image decoded into the time domain signal is obtained.
  • FIG. 11 is a block diagram showing a requantization apparatus according to Embodiment 5 of the present invention.
  • the coefficient acquisition circuit 81 is embedded with an authenticator, for example, by the electronic permeability device of FIG. 1 or FIG.
  • the conversion coefficient used to calculate the authenticator is restored from the image signal.
  • the coefficient acquisition circuit 81 constitutes conversion coefficient acquisition means.
  • the quantizer 82 quantizes the transform coefficient acquired by the coefficient acquisition circuit 81 with the same characteristics as those used for calculating the authenticator.
  • the quantizer 82 constitutes the first quantization means. It is made.
  • the quantizer 83 quantizes the transform coefficient acquired by the coefficient acquisition circuit 81 according to the quantization result of the quantizer 82.
  • the quantizer 83 constitutes the second quantizing means.
  • FIG. 12 is a block diagram showing the inside of the coefficient acquisition circuit 81.
  • the inverse quantizer 91 receives a quantization index of a prediction error that is a signal sequence in which an authenticator is embedded.
  • the signal value of the prediction error is restored from the quantization index.
  • the adder 92 adds the signal value of the prediction error restored by the inverse quantizer 91 and the signal value of the reference image, and outputs a transform coefficient of the decoded image.
  • the inverse transformer 93 converts the transform coefficient of the decoded image output from the adder 92 into a time domain image signal.
  • the storage circuit 94 stores the time domain image signal converted by the inverse converter 93.
  • the converter 95 converts the time domain image signal stored by the storage circuit 94 into a reference image signal value.
  • the coefficient acquisition circuit 81 when the coefficient acquisition circuit 81 receives an image signal in which an authenticator is embedded by the electronic permeability device shown in FIGS. 1 and 4, the coefficient acquisition circuit 81 restores the conversion coefficient used for calculating the authenticator from the image signal.
  • the input image signal may be a coded signal sequence or a decoded time domain signal.
  • the quantizer 82 When the quantizer 82 receives the transform coefficient from the coefficient acquisition circuit 81, the quantizer 82 converts the conversion coefficient acquired by the coefficient acquisition circuit 81 with the same characteristics as those used for calculating the authenticator by the digital watermarking device. Quantize.
  • the quantizer 83 When the quantizer 83 receives the transform coefficient Yw quantized by the quantizer 82, the quantizer 83 quantizes the transform coefficient so that the transform coefficient Yw is stored in the transform coefficient acquired by the coefficient acquisition circuit 81. Turn into.
  • the quantum device 83 outputs the vector Y that minimizes d in the equation (21) under the condition of the following equation (20). Quantize coefficient Turn into.
  • the authentication code is calculated depending on the input image, the authentication code is inherited by the re-encoded signal sequence. The effect that can be done. This is useful, for example, when a part of a frame of a moving image encoded by MPEG or the like is re-encoded by JPEG or the like as a still image.
  • the input signal is an image signal.
  • the present invention can be widely applied to multimedia data such as an audio signal.
  • the electronic force transmitting apparatus converts the electronic force to multimedia data so that the authentication function is not lost even if the multimedia data is decrypted. Suitable for things that need to be embedded.

Abstract

There is provided a signature circuit (1) for quantizing an image signal, calculating an authenticator from the quantization index of the image signal, an embedding the authenticator in the quantization index. On the other hand, there is provided an encoder (2) for calculating a difference signal between the image signal and the reference signal, quantizing the difference signal according to the quantization index having the authenticator embedded by the signature circuit (1), and outputting the quantization index of the difference signal.

Description

明 細 書  Specification
電子透かし装置、認証処理装置、復号処理装置及び再量子化装置 技術分野  Digital watermarking device, authentication processing device, decryption processing device, and requantization device
[0001] この発明は、例えば、画像信号や音声信号などのマルチメディアデータに電子透 かしを埋め込む電子透かし装置と、電子透かしが埋め込まれたマルチメディアデータ を認証する認証処理装置と、電子透かしが埋め込まれたマルチメディアデータを復 号する復号処理装置と、電子透かしが埋め込まれたマルチメディアデータを再量子 化する再量子化装置とに関するものである。  [0001] The present invention relates to, for example, a digital watermark device that embeds electronic watermarks in multimedia data such as image signals and audio signals, an authentication processing device that authenticates multimedia data in which digital watermarks are embedded, and a digital watermark The present invention relates to a decoding processing device that decodes multimedia data in which is embedded, and a requantization device that requantizes multimedia data in which a digital watermark is embedded.
背景技術  Background art
[0002] デジタルデータが正規に発行されたものであって、その後、いかなる改ざんも行わ れて 、な 、ことを認証する一般的な方法として、電子署名などの方法がある。  [0002] As a general method for authenticating digital data that has been properly issued and has not been altered, there is a method such as an electronic signature.
電子署名を実施する方法の原理は、発行者がデジタルデータのハッシュ値などを 暗号化することにより認証用コードを作成し、その認証用コードをデジタルデータと一 緒に送信する。  The principle of the electronic signature method is that the issuer creates an authentication code by encrypting the hash value of the digital data, and sends the authentication code together with the digital data.
受信側では、発行者から送信された認証用コードを復号するとともに、そのデジタ ルデータのハッシュ値を再計算し、そのノ、ッシュ値と当該認証用コードを比較して、 そのデジタルデータの真正性を確認する。  On the receiving side, the authentication code sent from the issuer is decrypted, the hash value of the digital data is recalculated, the authenticity of the digital data is compared with the authentication value and the authentication code. Confirm.
[0003] デジタルデータが画像データや音声データである場合、その認証用コードを電子 透かしとしてデジタルデータの中に埋め込むことによって、その認証用コードを確実 にデジタルデータと結びつける電子透力 装置が数多く提案されている(例えば、非 特許文献 1を参照)。 [0003] When digital data is image data or audio data, a number of electronic permeability devices have been proposed in which the authentication code is embedded in the digital data as a digital watermark so that the authentication code is securely linked to the digital data. (For example, see Non-Patent Document 1).
非特許文献 1には、特に MPEG (Motion Pictures Experts Group)で符号 ィ匕された動画像データに対して、その DCT (Discrete Cosine Transform)係数 からハッシュ値を計算し、そのノ、ッシュ値を電子透力しとして埋め込む方法が開示さ れている。この方法によれば、符号ィ匕データの中の DCT係数の値が少しでも変化す れば、受信側でその変化を検知することが可能である。  In Non-Patent Document 1, a hash value is calculated from the DCT (Discrete Cosine Transform) coefficient for moving image data encoded in particular with MPEG (Motion Pictures Experts Group), and the no-shake value is electronically calculated. A method of embedding as a permeability is disclosed. According to this method, if the DCT coefficient value in the code key data changes even a little, it is possible to detect the change on the receiving side.
なお、非特許文献 1に開示されている電子透力 装置では、符号量の削減を図る ため、動画像では時間的に隣接する画像が互いに似て 、ると 、う性質を利用して、 その差分だけを伝送する予測符号化を実施するようにして!ヽる。 In the electronic permeability device disclosed in Non-Patent Document 1, the code amount is reduced. For this reason, in a moving image, if temporally adjacent images are similar to each other, it is possible to perform predictive coding that transmits only the difference using the characteristic.
[0004] 非特許文献 1 :R. Du and J. Fridrich, "Lossless authentication of MPE[0004] Non-Patent Document 1: R. Du and J. Fridrich, "Lossless authentication of MPE
G— 2 video , Proceedings of IEEE International Conference on Imag e Processing, 2002年 9月 G— 2 video, Proceedings of IEEE International Conference on Image Processing, September 2002
[0005] 従来の電子透力し装置は以上のように構成されて 、るので、隣接して 、る動画像 データの差分信号を伝送することにより符号量を削減する場合には、受信側で差分 信号力 動画像データがー且復号されると、その差分信号を再現することができな 、 。このため、その差分信号に埋め込まれたハッシュ値も動画像データの復号と同時に 消失し、その認証機能が失われてしまうなどの課題があった。 [0005] The conventional electronic permeability device is configured as described above. Therefore, when the code amount is reduced by transmitting the differential signal of the moving image data adjacent to each other, the receiving side is required. Differential signal force Once the video data is decoded, the differential signal cannot be reproduced. For this reason, the hash value embedded in the difference signal also disappears simultaneously with the decoding of the moving image data, and the authentication function is lost.
[0006] この発明は上記のような課題を解決するためになされたもので、画像や音声などの マルチメディアデータが復号されても、認証機能を失わな 、マルチメディアデータを 提供することができる電子透力 装置を得ることを目的とする。 [0006] The present invention has been made to solve the above-described problems, and can provide multimedia data without losing the authentication function even when multimedia data such as images and sounds are decoded. The purpose is to obtain an electronic permeability device.
また、この発明は、上記の電子透力し装置力も提供されるマルチメディアデータを 認証する認証処理装置と、そのマルチメディアデータを復号する復号処理装置と、そ のマルチメディアデータを再量子化する再量子化装置とを得ることを目的とする。 発明の開示  The present invention also provides an authentication processing device that authenticates multimedia data that is also provided with the above-described electronic transparency and device power, a decryption processing device that decrypts the multimedia data, and requantizes the multimedia data. The object is to obtain a requantizer. Disclosure of the invention
[0007] この発明に係る電子透かし装置は、入力信号を量子化して、その入力信号の量子 ィ匕インデックスカゝら認証子を演算し、その認証子を当該量子化インデックスの中に埋 め込む署名手段を設ける一方、その入力信号と参照信号の差分信号を求め、その 署名手段により認証子が埋め込まれた量子化インデックスに応じて当該差分信号を 量子化し、その差分信号の量子化インデックスを出力する符号ィヒ手段を設けるように したものである。  [0007] The digital watermarking apparatus according to the present invention quantizes an input signal, calculates an authenticator from a quantum index cover of the input signal, and embeds the authenticator in the quantized index. While providing the signature means, obtain the difference signal between the input signal and the reference signal, quantize the difference signal according to the quantization index in which the authenticator is embedded by the signature means, and output the quantization index of the difference signal A sign means is provided.
[0008] このこと〖こよって、画像や音声などのマルチメディアデータが復号されても、認証機 能を失わないマルチメディアデータを提供することができる効果がある。  [0008] This makes it possible to provide multimedia data that does not lose the authentication function even if multimedia data such as images and sounds are decrypted.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]この発明の実施の形態 1による電子透力し装置を示す構成図である。 FIG. 1 is a configuration diagram showing an electronic force transmission device according to Embodiment 1 of the present invention.
[図 2]k番目の変換係数を量子化する一例を示す説明図である。 [図 3]署名回路における補正回路の処理内容を示すフローチャートである。 FIG. 2 is an explanatory diagram showing an example of quantizing a k-th transform coefficient. FIG. 3 is a flowchart showing processing contents of a correction circuit in a signature circuit.
[図 4]この発明の実施の形態 2による電子透力し装置を示す構成図である。  [Fig. 4] Fig. 4 is a configuration diagram showing an electronic permeability device according to Embodiment 2 of the present invention.
[図 5]この発明の実施の形態 3による認証処理装置を示す構成図である。  FIG. 5 is a block diagram showing an authentication processing device according to Embodiment 3 of the present invention.
[図 6]係数取得部の内部を示す構成図である。  FIG. 6 is a block diagram showing the inside of a coefficient acquisition unit.
[図 7]係数取得部の内部を示す構成図である。  FIG. 7 is a block diagram showing the inside of a coefficient acquisition unit.
[図 8]この発明の実施の形態 4による復号処理装置を示す構成図である。  FIG. 8 is a block diagram showing a decoding processing apparatus according to Embodiment 4 of the present invention.
[図 9]復号回路の内部を示す構成図である。  FIG. 9 is a block diagram showing the inside of a decoding circuit.
[図 10]補正回路の処理内容を示すフローチャートである。  FIG. 10 is a flowchart showing processing contents of a correction circuit.
[図 11]この発明の実施の形態 5による再量子化装置を示す構成図である。  FIG. 11 is a block diagram showing a requantization apparatus according to Embodiment 5 of the present invention.
[図 12]係数取得回路の内部を示す構成図である。  FIG. 12 is a block diagram showing the inside of a coefficient acquisition circuit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present invention in more detail, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態 1.  Embodiment 1.
図 1はこの発明の実施の形態 1による電子透力し装置を示す構成図であり、図にお いて、署名回路 1は入力信号である画像信号を量子化して、その画像信号の量子化 インデックス力 認証子を演算し、その認証子を当該量子化インデックスの中に埋め 込む処理を実施する。なお、署名回路 1は署名手段を構成している。  FIG. 1 is a block diagram showing an electronic power transmission device according to Embodiment 1 of the present invention. In the figure, a signature circuit 1 quantizes an image signal that is an input signal, and a quantization index of the image signal. Calculates the force authenticator and performs processing to embed the authenticator in the quantization index. The signature circuit 1 constitutes a signature means.
符号化器 2は画像信号と参照信号の差分信号を求め、署名回路 1により認証子が 埋め込まれた量子化インデックスに応じて当該差分信号を量子化し、その差分信号 の量子化インデックスを出力する。なお、符号化器 2は符号ィ匕手段を構成している。  The encoder 2 obtains the difference signal between the image signal and the reference signal, quantizes the difference signal according to the quantization index in which the authenticator is embedded by the signature circuit 1, and outputs the quantization index of the difference signal. The encoder 2 constitutes a code key means.
[0011] 符号化器 2の変 11は入力信号である画像信号 X(ただし、 Xは画像信号のベ タトルである)をブロック単位で周波数領域の信号 T(X)に変換する。 [0011] A change 11 of the encoder 2 converts an image signal X (where X is a vector signal), which is an input signal, into a frequency domain signal T (X) in units of blocks.
符号化器 2の減算器 12は変換器 11の変換結果である周波数領域の信号 Τ(Χ)か ら過去に符号ィ匕された参照画像信号 Χρ (ただし、 Χρは参照画像信号のベクトルであ る)の周波数領域の信号 Τ(Χρ)を減算して、その差分信号である周波数領域の予測 誤差 Τ (X)— Τ (Χρ)を求める。  The subtracter 12 of the encoder 2 is a reference image signal Χρ previously encoded from the frequency domain signal Τ (Χ), which is the conversion result of the converter 11, where Χρ is a vector of the reference image signal. The frequency domain signal Τ (Χρ) is subtracted to obtain the frequency domain prediction error Τ (X) — Τ (Χρ).
[0012] 署名回路 1の量子化器 13は変 11から出力された周波数領域の信号 Τ(Χ)を 量子化し、その信号 T (X)の量子化インデックス Qw (T (X) )を出力する。 署名回路 1の補正回路 14は量子化器 13から出力された量子化インデックス Qw(T[0012] The quantizer 13 of the signature circuit 1 converts the frequency domain signal Τ (Χ) output from the variable 11 into The signal is quantized and a quantization index Qw (T (X)) of the signal T (X) is output. The correction circuit 14 of the signature circuit 1 has a quantization index Qw (T
(X) )を補正し、補正後の量子化インデックス Qw(T(X) )を認証子演算回路 15及び 変調器 16に出力する。 (X)) is corrected, and the corrected quantization index Qw (T (X)) is output to the authenticator operation circuit 15 and the modulator 16.
署名回路 1の認証子演算回路 15は補正回路 14による補正後の量子化インデック ス Qw (T (X) )カゝら認証子 W (ただし、 Wは認証子のベクトルである)を演算する。 署名回路 1の変調器 16は認証子演算回路 15により演算された認証子 Wに応じて 補正後の量子化インデックス Qw (T (X) )の一部を変調し、その変調結果 Ywを出力 する。  The authenticator computing circuit 15 of the signature circuit 1 computes the quantized index Qw (T (X)) and the authenticator W (where W is a vector of authenticators) after being corrected by the correcting circuit 14. The modulator 16 of the signature circuit 1 modulates a part of the corrected quantization index Qw (T (X)) according to the authenticator W calculated by the authenticator arithmetic circuit 15, and outputs the modulation result Yw. .
[0013] 符号化器 2の量子化器 17は変調器 16の変調結果 Yw (変調器 16により認証子 W が埋め込まれた量子化インデックス)に応じて減算器 12により演算された周波数領域 の予測誤差 T (X) -T (Xp)を量子化し、その予測誤差 T (X) -T (Xp)の量子化イン デッタス Y (ただし、 Yは量子ィ匕インデックスのベクトルである)を出力する。  [0013] The quantizer 17 of the encoder 2 predicts the frequency domain calculated by the subtractor 12 according to the modulation result Yw of the modulator 16 (quantization index in which the authenticator W is embedded by the modulator 16). Quantizes the error T (X) -T (Xp) and outputs the quantization error Y of the prediction error T (X) -T (Xp) (where Y is a vector of quantum indices).
符号化器 2の逆量子化器 18は量子化器 17から出力された予測誤差の量子化イン デッタス Yを逆量子化して予測誤差 T (X)— T (Xp)を復号する。  The inverse quantizer 18 of the encoder 2 performs inverse quantization on the quantization error Y of the prediction error output from the quantizer 17 and decodes the prediction error T (X) —T (Xp).
符号化器 2の加算器 19は逆量子化器 18により復号された予測誤差 T(X) - T(Xp) とスィッチ 23から出力された参照画像信号 Xpの周波数領域の信号 Τ(Χρ)を加算し て、その加算信号 Τ(Χ)を出力する。  The adder 19 of the encoder 2 calculates the prediction error T (X)-T (Xp) decoded by the inverse quantizer 18 and the frequency domain signal Τ (Χρ) of the reference image signal Xp output from the switch 23. Addition and output the addition signal Τ (Χ).
[0014] 符号化器 2の逆変 は加算器 19から出力された加算信号 Τ(Χ)を時間領域 に変換し、その時間領域の信号を参照画像信号 Xpとして出力する。 [0014] The inverse change of the encoder 2 converts the addition signal Τ (Χ) output from the adder 19 into the time domain, and outputs the signal in the time domain as the reference image signal Xp.
符号化器 2の記憶回路 21は逆変換器 20から出力された参照画像信号 Xpをうごき 時間分だけ記憶して出力する。  The storage circuit 21 of the encoder 2 stores the reference image signal Xp output from the inverse converter 20 for the moving time and outputs it.
符号化器 2の変換器 22は記憶回路 21から出力された参照画像信号 Xpを周波数 領域に変換し、その周波数領域の信号 T(Xp)を出力する。  The converter 22 of the encoder 2 converts the reference image signal Xp output from the storage circuit 21 into the frequency domain, and outputs a signal T (Xp) in the frequency domain.
符号化器 2のスィッチ 23は変 から出力された周波数領域の信号 Τ(Χρ)を 減算器 12と加算器 19に与える。ただし、動画像を符号化する場合には、他の画像を 参照することなく復号できる画像を適当に混合する必要があるので、この場合には、 " 0"を減算器 12と加算器 19に与える。このときは、量子化器 17が現在の入力画像を そのまま符号化するように動作する。 The switch 23 of the encoder 2 supplies the frequency domain signal Τ (Χρ) output from the variable to the subtractor 12 and the adder 19. However, when encoding a moving image, it is necessary to appropriately mix images that can be decoded without referring to other images. In this case, “0” is added to the subtracter 12 and the adder 19. give. In this case, the quantizer 17 It operates to encode as it is.
[0015] 次に動作について説明する。  Next, the operation will be described.
まず、符号化器 2の変翻 11は、画像信号 Xを入力すると、その画像信号 Xをプロ ック単位で周波数領域に変換し、その周波数領域の信号 T(X)を減算器 12及び署 名回路 1の量子化器 13に出力する。  First, the conversion 11 of the encoder 2 receives the image signal X, converts the image signal X into the frequency domain in units of blocks, and converts the signal T (X) in the frequency domain into the subtractor 12 and the signature. Output to the quantizer 13 of the nominal circuit 1.
ここで、 Τ()は、変換器 11の演算子である。  Here, Τ () is an operator of the converter 11.
[0016] 符号化器 2の減算器 12は、変換器 11から周波数領域の信号 T(X)を受け、かつ、 変換器 22からスィッチ 23を介して、過去に符号化された参照画像信号 Χρの周波数 領域の信号 Τ(Χρ)を受けると、その周波数領域の信号 Τ(Χ)カゝら信号 Τ(Χρ)を減算 して、周波数領域の予測誤差 Τ(Χ)-Τ(Χρ)を求める。 [0016] The subtracter 12 of the encoder 2 receives the frequency domain signal T (X) from the converter 11, and the reference image signal に ρ encoded in the past from the converter 22 via the switch 23. When the frequency domain signal Τ (Χρ) is received, the frequency domain signal Χ (Χ) is subtracted from the signal Τ (Χρ) and the frequency domain prediction error Τ (Χ) -Τ (Χρ) is calculated. Ask.
一方、署名回路 1の量子化器 13は、変換器 11から周波数領域の信号 Τ(Χ)を受け ると、その周波数領域の信号 Τ(Χ)を量子化し、その信号 Τ(Χ)の量子化インデックス Qw(T(X) )を出力する。  On the other hand, when the quantizer 13 of the signature circuit 1 receives the signal Τ (Χ) in the frequency domain from the converter 11, the quantizer 13 quantizes the signal Τ (Χ) in the frequency domain. Output the generalized index Qw (T (X)).
ここで、 Qw()は、量子化器 13の演算子である。  Here, Qw () is an operator of the quantizer 13.
[0017] 署名回路 1の補正回路 14は、量子化器 13から出力された量子化インデックス Qw ( T(X) )を補正し、補正後の量子化インデックス Qw(T(X) )を認証子演算回路 15及 び変調器 16に出力する。 [0017] The correction circuit 14 of the signature circuit 1 corrects the quantization index Qw (T (X)) output from the quantizer 13, and uses the corrected quantization index Qw (T (X)) as an authenticator. Output to arithmetic circuit 15 and modulator 16.
補正回路 14の具体的な処理内容は後述する。  Specific processing contents of the correction circuit 14 will be described later.
[0018] 署名回路 1の認証子演算回路 15は、補正回路 14による補正後の量子化インデック ス Qw (T (X) )から認証子 Wを演算する。 The authenticator calculation circuit 15 of the signature circuit 1 calculates the authenticator W from the quantized index Qw (T (X)) corrected by the correction circuit 14.
この認証子の演算は、例えば、伊藤他、「JPEG画像の真正性を証明する電子透か しの方法」(電子情報通信学会全国大会、 2003年 3月)に述べられた方法などを用 いればよい。  For the calculation of this authenticator, for example, the method described in Ito et al., “Method of digital watermark to prove authenticity of JPEG image” (National Conference of the Institute of Electronics, Information and Communication Engineers, March 2003) is used. That's fine.
この方法は、 N個の変換ブロックをひとまとめにして、その全ての量子化インデック スのハッシュ値を計算し、そのノ、ッシュ値を暗号ィ匕したものを署名とするものである。 なお、ハッシュ値のビット数が Nに等しいとすれば、 1個の変換ブロックに対して 1ビッ トの認証子が計算されることになる。  In this method, N transform blocks are grouped together, the hash value of all the quantization indexes is calculated, and the signature obtained by encrypting the hash value. If the number of bits in the hash value is equal to N, a 1-bit authenticator is calculated for each conversion block.
[0019] 署名回路 1の変調器 16は、認証子演算回路 15が認証子 Wを演算すると、その認 証子 Wに応じて補正後の量子化インデックス Qw (T (X) )の一部を変調し、その変調 結果 Ywを出力する。 [0019] The modulator 16 of the signature circuit 1 receives the authentication when the authenticator operation circuit 15 calculates the authenticator W. A part of the corrected quantization index Qw (T (X)) is modulated according to the witness W, and the modulation result Yw is output.
Yw=Qw(T(X) ) +W (1)  Yw = Qw (T (X)) + W (1)
具体的には、変調器 16は、上記文献に述べられた方法などを用いて、量子化イン デッタス Qw (T (X) )の中に認証子 Wを埋め込むものである。  Specifically, the modulator 16 embeds the authenticator W in the quantization index Qw (T (X)) using the method described in the above document.
上記文献の方法では、各変換ブロックにおいて、ジグザグスキャンの最後の量子化 インデックスの値を、認証子 Wのビットが" 0"か" 1"かに応じて、 " 1"または" + 1"に 変更するものである。  In the method of the above document, in each transform block, the value of the last quantization index of the zigzag scan is set to “1” or “+1” depending on whether the bit of the authenticator W is “0” or “1”. To change.
[0020] これにより、変調器 16カゝら入力画像の認証子 Wが埋め込まれた量子ィ匕インデックス が出力されることになる。  As a result, the quantum index in which the authenticator W of the input image is embedded from 16 modulators is output.
なお、ここでは、それぞれの変換ブロックに 1ビットの署名を埋め込む方法を説明し た力 Nの値をハッシュ値のビット数よりも大きく設定すれば、変化の激しいブロックを 優先して、電子透力しを埋め込むことができる。  Here, if the value of force N, which explains how to embed a 1-bit signature in each conversion block, is set to be larger than the number of bits in the hash value, priority will be given to blocks that change rapidly, and the electronic permeability Can be embedded.
[0021] 符号化器 2の量子化器 17は、変調器 16から変調結果 Ywを受け、かつ、減算器 12 カゝら周波数領域の予測誤差 T(X)— T(Xp)を受けると、変調器 16の変調結果 Ywに 応じて周波数領域の予測誤差 T (X) -T (Xp)を量子化し、その予測誤差 T (X) -T ( Xp)の量子化インデックス Yを出力する。 [0021] The quantizer 17 of the encoder 2 receives the modulation result Yw from the modulator 16, and receives the frequency domain prediction error T (X) —T (Xp) from the subtractor 12 The frequency domain prediction error T (X) -T (Xp) is quantized according to the modulation result Yw of the modulator 16, and the quantization index Y of the prediction error T (X) -T (Xp) is output.
即ち、量子化器 17は、下記の式(2)が成立する条件の下で、式(3)の dが最小とな る量子ィ匕インデックス Yを出力する。  That is, the quantizer 17 outputs a quantum index Y that minimizes d in the equation (3) under the condition that the following equation (2) is satisfied.
Qw (Qc_1 (Y) +Τ (Xp) ) = Yw (2) Qw (Qc _1 (Y) + Τ (Xp)) = Yw (2)
d= I Qc— ^Y)— (T(X)— T(Xp) ) I (3)  d = I Qc— ^ Y) — (T (X) — T (Xp)) I (3)
[0022] ただし、 Qc_1 ()は、量子化器 17に対する逆量子化の演算子、 I Iはベクトルのノ ルムを表している。 [0022] However, Qc _1 () is an operator of inverse quantization for the quantizer 17, II represents the norm of a vector.
また、式(2)において、 Qc— 1 (Y) +T(Xp)は参照フレームの変換係数に、逆量子 ィ匕した予測誤差信号を加算したものであり、受信側で復号される画像の変換係数を 表している。 In Equation (2), Qc− 1 (Y) + T (Xp) is obtained by adding a prediction error signal obtained by inverse quantization to the transform coefficient of the reference frame. It represents the conversion coefficient.
式 (2)は復号される変換係数が、 Qwで量子化したときに Ywとなるという条件を与 えるものであり、式(3)は予測誤差の復元値と真の値との差 T(X)— T(Xp)を与えるも のである。 Equation (2) gives the condition that the transform coefficient to be decoded becomes Yw when quantized with Qw. Equation (3) is the difference between the reconstruction value of the prediction error and the true value T ( X) — gives T (Xp) It is.
したがって、量子化器 17は、署名回路 1の変調結果 Ywが、復号される画像信号に 保存されるという条件の下で、符号ィ匕による歪みを最小とするような予測誤差 T(X)— Τ(Χρ)の量子化インデックス Υを出力する。  Therefore, the quantizer 17 has a prediction error T (X) — that minimizes the distortion caused by the sign key 匕 under the condition that the modulation result Yw of the signature circuit 1 is stored in the decoded image signal. Outputs the quantization index Υ of Τ (Χρ).
量子化器 17は、変換係数のそれぞれに対して、上記の動作を実施すればよい。  The quantizer 17 may perform the above operation for each transform coefficient.
[0023] 図 2は k番目の変換係数を量子化する一例を示す説明図である。 FIG. 2 is an explanatory diagram showing an example of quantizing the kth transform coefficient.
上側が Qwの量子化特性、下側が Qcの量子化特性を示しており、量子化インデッ タスとその量子化範囲で表して 、る。  The upper side shows the quantization characteristics of Qw, and the lower side shows the quantization characteristics of Qc, expressed in terms of the quantization index and its quantization range.
中央の数直線上の点は Qcの量子化代表値である。また、ベクトルの右肩の添え字 kは、ベクトルの k番目の成分であることを示している。 q kと q kはこの変換係数に対す る Qcと Qwの量子化幅であり、式 (4)となるように設定されて!、る。 The point on the center number line is the quantized representative value of Qc. Further, the subscript k on the right shoulder of the vector indicates the k-th component of the vector. q k and q k are the quantization widths of Qc and Qw for this transform coefficient, and are set to be Eq. (4)!
q k≤q k (4) q k ≤q k (4)
[0024] 例えば、 Ywk=iであり、 T(X)^T(Xp)kが図 2の位置にあるとすれば、予測誤差 T For example, if Yw k = i and T (X) ^ T (Xp) k is in the position of FIG.
(X)k— T(Xp)kを Qcで量子化すると、その量子ィ匕インデックスは Y= 1である。 When (X) k — T (Xp) k is quantized with Qc, its quantum index is Y = 1.
し力し、その量子化代表値は、 Qwの i番目の量子化範囲に入っておらず、 Y= 1は 式 (2)の条件を満たさない。代表値力Qwの i番目の量子化範囲に属する T(X)kに最 も近 、量子ィ匕インデックスが Y= 2であるので、これが量子ィ匕器 17の出力となる。 However, the quantization representative value is not in the i-th quantization range of Qw, and Y = 1 does not satisfy the condition of equation (2). Since the quantum index is Y = 2 closest to T (X) k belonging to the i-th quantization range of the representative value Qw, this is the output of the quantum device 17.
[0025] ここで、上記の Υが常に存在するためには、 Qwの全ての量子化範囲に、 Qcの量 子化代表値が少なくとも一つ存在しなければならない。図 2のように、 Qcがー様な量 子化の場合は、全ての係数 kについて、式 (4)が成り立てばよい。ところが、 MPEG などの符号化では、 0付近が粗い不均一な量子化特性が用いられる。この場合には 、 Qcの量子化代表値の最も粗い部分の間隔が Tmaxkであるとすると、下記の式(5) が成立することが、 Yが存在する十分条件である。 [0025] Here, in order for the above Υ to always exist, at least one quantized representative value of Qc must exist in all quantization ranges of Qw. As shown in Fig. 2, if Qc is quantized, equation (4) should be established for all coefficients k. However, encoding such as MPEG uses non-uniform quantization characteristics that are coarse near 0. In this case, assuming that the interval of the coarsest part of the quantized representative value of Qc is Tmax k , the following equation (5) is satisfied, which is a sufficient condition for Y to exist.
q > =Tmax (5)  q> = Tmax (5)
w  w
[0026] 例えば、 H. 263の符号ィ匕規格による量子化器の場合には、 Qwは次のように設定 される。 H. 263の逆量子化演算は、符号量を制御する量子化パラメータが Q ( = l、 · ··、 31)であるとすると、 Qが奇数ならば、下記の式 (6)で規定され、 Qが偶数ならば 、式(7)で規定される。 y= (2Y+sign (Y) ) Q (6) [0026] For example, in the case of a quantizer according to the H.263 code standard, Qw is set as follows. H. 263 inverse quantization operation is defined by the following equation (6) when Q is an odd number if the quantization parameter that controls the amount of code is Q (= l, ..., 31). If Q is an even number, it is defined by equation (7). y = (2Y + sign (Y)) Q (6)
y= (2Y+ sign (Y) ) Q— sign (Y) (7)  y = (2Y + sign (Y)) Q— sign (Y) (7)
ただし、 yは復元される量子化代表値、 sign(Y)は、 Yく 0のとき 1、 Y=0のとき 0、 Υ > 0のとき 1となる関数である。  Where y is the representative quantized value to be restored, and sign (Y) is a function that becomes 1 when Y is 0, 0 when Y = 0, and 1 when Υ> 0.
[0027] この量子化器では、 Tmax= 3Q (Qが奇数)、または、 Tmax= 3Q— 1 (Qが偶数)と なるので、 Qwは以下のように設定すればよい。即ち、 Qが奇数のとき、下記の式(8) のように設定し、 Qが偶数のとき、下記の式(9)のように設定すればよい。 In this quantizer, Tmax = 3Q (Q is an odd number) or Tmax = 3Q−1 (Q is an even number), so Qw may be set as follows. That is, when Q is an odd number, the following equation (8) is set. When Q is an even number, the following equation (9) is set.
q k= 3Q (8) q k = 3Q (8)
w  w
q k= 3Q-l (9) q k = 3Q-l (9)
w  w
[0028] 符号化器 2の逆量子化器 18は、上記のようにして、量子化器 17が予測誤差の量子 ィ匕インデックス Yを出力すると、次回の電子透力しの埋め込み処理に使用する参照 画像を生成するため、予測誤差の量子化インデックス Yを逆量子化して予測誤差 T( X) - Τ(Χρ)を復号する。  [0028] The inverse quantizer 18 of the encoder 2 is used for the next electronic permeability embedding process when the quantizer 17 outputs the prediction error quantum index Y as described above. In order to generate a reference image, the quantization index Y of the prediction error is inversely quantized to decode the prediction error T (X) −Τ (Χρ).
符号化器 2の加算器 19は、逆量子化器 18が予測誤差 Τ(Χ)-Τ(Χρ)を復号すると 、その予測誤差 Τ(Χ)— Τ(Χρ)と変 22からスィッチ 23を介して出力された参照 画像信号 Xpの周波数領域の信号 Τ(Χρ)を加算して、その加算信号 Τ(Χ)を出力す る。  When the inverse quantizer 18 decodes the prediction error Τ (Χ) -Τ (Χρ), the adder 19 of the encoder 2 sets the switch 23 from the prediction error — (Χ) -Τ (変 ρ) and the variable 22. The signal 参照 (Χρ) in the frequency domain of the reference image signal Xp output via the signal is added, and the added signal Τ (Χ) is output.
[0029] 符号化器 2の逆変 は、加算器 19から加算信号 T(X)を受けると、その加算 信号 Τ(Χ)を時間領域に変換し、その時間領域の信号を参照画像信号 Xpとして記 憶回路 21に格納する。  [0029] The inverse change of encoder 2 is that when the addition signal T (X) is received from the adder 19, the addition signal Τ (Χ) is converted into the time domain, and the signal in the time domain is converted to the reference image signal Xp. Is stored in the memory circuit 21.
符号化器 2の変換器 22は、記憶回路 21からうごき時間分だけシフトした参照画像 信号 Xpを読み出して、その参照画像信号 Xpを周波数領域に変換し、スィッチ 23を 介して、その周波数領域の信号 T(Xp)を減算器 12と加算器 19に与える。  The converter 22 of the encoder 2 reads the reference image signal Xp shifted by the moving time from the storage circuit 21, converts the reference image signal Xp into the frequency domain, and converts the reference image signal Xp into the frequency domain via the switch 23. The signal T (Xp) is supplied to the subtracter 12 and the adder 19.
なお、スィッチ 23は、動画像を符号化する場合には、他の画像を参照することなく 復号できる画像を適当に混合する必要があるので、この場合には、 "0"を減算器 12 と加算器 19に与える。このときは、量子化器 17が現在の入力画像をそのまま符号ィ匕 するように動作する。  Note that when the moving image is encoded, the switch 23 needs to appropriately mix images that can be decoded without referring to other images. In this case, “0” is subtracted from the subtractor 12. Give to adder 19. At this time, the quantizer 17 operates so as to code the current input image as it is.
[0030] 上記の署名回路 1の説明では、 Ν個の変換ブロックをひとまとめにして、その全ての 量子ィ匕インデックスのハッシュ値を計算するものにっ 、て示したが、ノ、ッシュ値を計 算するブロックの数 Nに対して、ハッシュ値のビット数 Mが小さい場合(M<Nが成立 する場合)、変調器 16は、 N個の中カゝら M個のブロックを選択して、それらのブロック だけに変調を加えればよ!、。 [0030] In the description of the signature circuit 1 above, all the conversion blocks are grouped together. The hash value of the quantum index is shown as above, but when the number of bits M of the hash value is smaller than the number N of blocks that calculate the hash value (M <N holds) If so, the modulator 16 can select M blocks out of N and apply modulation only to those blocks!
このブロックの選択方法には自由度があるので、できるだけ妨害の目立たないプロ ック (変調に伴う影響が少な 、部分)を選択して変調を加えれば、認証子 Wの埋め込 みによる画質劣化を軽減することができる。ただし、どのブロックに変調を加えたかを 、復号時に検出できなければならない。  Since there is a degree of freedom in selecting this block, image quality degradation due to embedding of the authenticator W can be achieved by selecting a block that has as little obscure interference as possible (the part with the least influence of modulation) and applying modulation. Can be reduced. However, it must be possible to detect which block is modulated at the time of decoding.
[0031] このような方法はいくつかある力 ジグザグスキャンの最後の量子ィ匕インデックスの 値を変調する上記の方法を用いる場合には、例えば、 0でない量子化インデックス( 有意係数)の数を求め、その有意係数が所定数より多いブロックを選択するようにす ればよい。このとき、電子透力しの埋め込みによって、有意係数の数が 1だけ増加す る力 各ブロックの有意係数の順位は変わらないので、復号時に埋め込みブロックを 一意に特定することができる。なお、有意係数が同数のブロックは任意のブロックを 選択すればよい。劣化が目立ちやすい画像の平坦な部分では、一般に有意係数の 数が少ないので、電子透かしが埋め込まれる確率は低くなる。したがって、電子透か しの埋め込みによる妨害が知覚されにくい符号ィ匕画像を生成することが可能になる。 [0031] There are several such methods. When the above method for modulating the value of the last quantum index of a zigzag scan is used, for example, the number of non-zero quantization indexes (significant coefficients) is obtained. It is sufficient to select a block having a significant coefficient greater than a predetermined number. At this time, the embedding of electronic permeability increases the number of significant coefficients by 1. The order of the significant coefficients of each block does not change, so that the embedding block can be uniquely identified during decoding. Any block with the same number of significant coefficients may be selected. In a flat part of an image where deterioration is conspicuous, since the number of significant coefficients is generally small, the probability of embedding a digital watermark is low. Accordingly, it is possible to generate a code image that is difficult to perceive interference due to embedding of an electronic watermark.
[0032] 最後に、補正回路 14の処理内容を具体的に説明する。  Finally, the processing content of the correction circuit 14 will be specifically described.
上述したように、認証子演算回路 15が、参照画像に関係なぐ現在入力されている 画像信号 Xに基づいて認証子 Wを演算し、量子化器 17が、この認証子 Wが埋め込 まれた量子化インデックス Ywを保存するように予測誤差 T (X) -T (Xp)を量子化す るので、符号化器 2から出力される信号は、画像信号をフレーム単位で認証するため の完全な署名情報を保持している。この署名情報は、後述するように、動画像の中か ら一部のフレームを抽出して、その変換係数を再符号ィ匕するような場合 (例えば、 M PEGで符号化された動画像の一部を JPEGで再符号化するような場合)には、再符 号化された信号の中に欠落なく継承させることが可能である。  As described above, the authenticator calculation circuit 15 calculates the authenticator W based on the currently input image signal X related to the reference image, and the quantizer 17 embeds this authenticator W. Since the prediction error T (X) -T (Xp) is quantized so as to preserve the quantization index Yw, the signal output from the encoder 2 is a complete signature for authenticating the image signal in units of frames. Holds information. As will be described later, this signature information is extracted when a part of a frame is extracted from a moving image and its transform coefficient is re-encoded (for example, a moving image encoded by MPEG). In the case where a part is re-encoded with JPEG), it can be inherited without loss in the re-encoded signal.
[0033] しかし、画像を時間領域の信号に復号する場合は、復号処理の過程で導入される 誤差のために、署名情報が消滅する場合がある。このような誤差は、一般に、変換係 数が実数力 整数に変換されるときと、その整数値がさらに一定のダイナミックレンジ の間にクリップされるときに生じる。したがって、これに対して十分な対策を施さなけれ ば、時間領域の画像に署名情報を継承させることができな 、。 However, when decoding an image into a signal in the time domain, signature information may disappear due to an error introduced in the process of decoding. Such an error is generally a conversion factor. Occurs when a number is converted to a real force integer and when that integer value is clipped to a further fixed dynamic range. Therefore, unless sufficient measures are taken, signature information cannot be inherited by time domain images.
署名回路 1の補正回路 14は、復号された信号がダイナミックレンジを大きく超えな V、ように、量子ィ匕インデックス Qw (T (X) )を修正する。  The correction circuit 14 of the signature circuit 1 corrects the quantum index Qw (T (X)) so that the decoded signal V does not greatly exceed the dynamic range.
この修正は、例えば、図 3に示すような手順で行うことができる。  This correction can be performed, for example, according to the procedure shown in FIG.
[0034] 署名回路 1の補正回路 14は、量子化器 13から量子化インデックス Qw(T(X) )を受 けると、その量子化インデックス Qw(T(X) )に 0を埋め込む処理を実施する (ステップ ST1)。 [0034] When the correction circuit 14 of the signature circuit 1 receives the quantization index Qw (T (X)) from the quantizer 13, the correction circuit 14 embeds 0 in the quantization index Qw (T (X)). (Step ST1).
次に、補正回路 14は、 0の埋め込み結果がダイナミックレンジを大きく超えないこと を判定する (ステップ ST2)。  Next, the correction circuit 14 determines that the embedded result of 0 does not greatly exceed the dynamic range (step ST2).
即ち、補正回路 14は、電子透力しが埋め込まれた量子化インデックス Ywを Qwに 対応して逆量子化を行い、これを逆変換して、時間領域のベクトル Xを求める。  That is, the correction circuit 14 inversely quantizes the quantization index Yw embedded with electronic permeability corresponding to Qw and inversely transforms it to obtain a vector X in the time domain.
x=T_1 (Qw"1 (Qw (T (X) ) + W) ) (10) x = T _1 (Qw " 1 (Qw (T (X)) + W)) (10)
[0035] 補正回路 14は、全ての成分がダイナミックレンジの範囲に収まるベクトルの集合を Aとして、ベクトル Xと集合 Aの最短距離 d (x、 A)を計算し、その最短距離 d(x、 A)が 一定値 D以内であるカゝ否かを判定する。 The correction circuit 14 calculates a shortest distance d (x, A) between the vector X and the set A, where A is a set of vectors in which all components fall within the dynamic range, and the shortest distance d (x, Judge whether or not A) is within a certain value D.
d (x、A)≤D (11)  d (x, A) ≤ D (11)
補正回路 14は、最短距離 d (x、 A)が一定値 D以内であれば、 0の埋め込み結果が ダイナミックレンジを大きく超えな 、と認定する。  If the shortest distance d (x, A) is within a certain value D, the correction circuit 14 certifies that the result of zero embedding does not greatly exceed the dynamic range.
なお、 D = 0のときは、 Xが Aに含まれるときだけ、判定の条件は満たされるものとす る。  When D = 0, the judgment condition is satisfied only when X is included in A.
[0036] 次に、補正回路 14は、 0の埋め込み結果がダイナミックレンジを大きく超えないと認 定すると、量子化インデックス Qw(T(X) )に 1を埋め込む処理を実施する (ステップ S T3)。  Next, when the correction circuit 14 determines that the embedded result of 0 does not greatly exceed the dynamic range, the correction circuit 14 performs a process of embedding 1 in the quantization index Qw (T (X)) (step S T3) .
次に、補正回路 14は、 1の埋め込み結果がダイナミックレンジを大きく超えないこと を判定する (ステップ ST4)。この判定方法は、ステップ ST2の判定方法と同様である ため説明を省略する。 補正回路 14は、 1の埋め込み結果がダイナミックレンジを大きく超えないと認定する と、量子化インデックス Qw (T(X) )に電子透力しである認証子 Wを埋め込んだ後も、 量子化インデックス Qw (T (X) )が集合 Aに近 、ことが保証されるので、その量子化ィ ンデッタス Qw(T(X) )を認証子演算回路 15及び変調器 16に出力する。 Next, the correction circuit 14 determines that the result of embedding 1 does not greatly exceed the dynamic range (step ST4). Since this determination method is the same as the determination method in step ST2, description thereof is omitted. If the correction circuit 14 certifies that the embedding result of 1 does not greatly exceed the dynamic range, the quantization index Qw (T (X)) is embedded in the authentication index W, which is electronic permeability, Since it is guaranteed that Qw (T (X)) is close to the set A, the quantized index value Qw (T (X)) is output to the authenticator operation circuit 15 and the modulator 16.
[0037] しかし、 0の埋め込み結果がダイナミックレンジを大きく超えると認定する場合、ある いは、 1の埋め込み結果がダイナミックレンジを大きく超えると認定する場合、量子化 インデックス Qw(T(X) )に電子透力 である認証子 Wを埋め込んだ後は、量子化ィ ンデッタス Qw (T (X) )が集合 Aに近 、ことが保証されな 、ので、その量子化インデッ タス Qw (T (X) )を修正する(ステップ ST5)。  [0037] However, if it is determined that the embedding result of 0 greatly exceeds the dynamic range, or if it is determined that the embedding result of 1 greatly exceeds the dynamic range, the quantization index Qw (T (X)) After embedding the authenticator W, which is the electronic permeability, it is not guaranteed that the quantized index Qw (T (X)) is close to the set A, so the quantized index Qw (T (X) ) Is corrected (step ST5).
[0038] 即ち、補正回路 14は、次式で与えられる目標ベクトル tを計算し、その目標ベクトル tを保存する。  That is, the correction circuit 14 calculates a target vector t given by the following equation, and stores the target vector t.
t =T (P (T"1 (Qw-1 (Qw (T (X) ) ) ) ) ) (12) t = T (P (T '' 1 (Qw -1 (Qw (T (X))))))) (12)
ただし、 P ()は集合 Aに対する直交射影を表す演算子であり、 tは Qw(T(X) )を逆 量子化して逆変換したベクトルを sとするとき、集合 Aに属する全てのベクトルの中で 最も sに近 、ベクトルを Tで変換したものである。  Where P () is an operator representing the orthogonal projection for set A, and t is the vector obtained by inverse quantization and inverse transformation of Qw (T (X)), and s is the vector of all vectors belonging to set A. It is the closest to s, and the vector is transformed by T.
[0039] 次に、補正回路 14は、現在の量子ィ匕インデックス Qw(T(X) )を逆量子化して Qw— ^wO^X) )を計算し、これを目標ベクトル tと比較して、 目標ベクトル tから最も遠い 成分に対応する Qw (T (X) )の量子化インデックスを 1だけ目標ベクトル tの方向に修 正する。  [0039] Next, the correction circuit 14 inversely quantizes the current quantum index Qw (T (X)) to calculate Qw— ^ wO ^ X)), and compares this with the target vector t. Then, the quantization index of Qw (T (X)) corresponding to the component farthest from the target vector t is corrected by 1 in the direction of the target vector t.
この修正により、量子化インデックス Qw(T(X) )が集合 Aに近づくことになる。なお 、量子化インデックス Qw(T(X) )が既に十分目標ベクトル tに近い場合には、 目標べ タトル tを集合 Aの中心のベクトル(全ての成分が中間のグレーレベルであるようなべ タトル)に変換したものに切り換えて、量子化インデックス Qw(T(X) )の修正を繰り返 すようにする。  This modification brings the quantization index Qw (T (X)) closer to the set A. If the quantization index Qw (T (X)) is already close enough to the target vector t, set the target vector t to the center vector of the set A (a vector with all components at intermediate gray levels). Switch to the one converted to, and repeat the modification of the quantization index Qw (T (X)).
[0040] 上記のように、補正回路 14は、変調器 16の変調結果 Ywがダイナミックレンジを大 きく超過しな 、ように量子ィ匕インデックス Qw (T (X) )を修正する。特に D= 0であれば 、変調器 16の変調結果 Ywが必ず、ダイナミックレンジの範囲に入るように量子化ィ ンデッタス Qw (T (X) )を修正する。 [0041] なお、整数ィ匕による丸め誤差の問題は、 Qwを十分粗く設定することで回避できるこ と力 前述の伊藤らの文献に示されている。 As described above, the correction circuit 14 corrects the quantum index Qw (T (X)) so that the modulation result Yw of the modulator 16 does not greatly exceed the dynamic range. In particular, when D = 0, the quantization index Qw (T (X)) is corrected so that the modulation result Yw of the modulator 16 is always within the dynamic range. [0041] It should be noted that the problem of rounding errors due to integers can be avoided by setting Qw sufficiently coarse.
即ち、下記の式(13)は、丸め誤差によって、電子透力しが消失しない十分条件で ある。  That is, the following equation (13) is a sufficient condition that the electronic permeability is not lost due to rounding error.
q k≥R (13) q k ≥R (13)
w  w
8 8の001の場合には、 R=8とし、全ての係数の量子化幅を 8以上とすることに よって、丸め誤差の影響を除くことができることを証明することができる。  In the case of 8 001, it is proved that the effect of rounding error can be eliminated by setting R = 8 and making the quantization width of all coefficients 8 or more.
[0042] 以上より、時間領域に復号された画像信号に署名情報を保存するには、 Qwに式( 13)の制限を設けて丸め誤差の影響を排除し、署名回路 1に補正回路 14を搭載して クリッピングの対策を行えばよい。例えば、 H. 263の量子化を用いる場合には、式( 8)、式(9)及び式(13)力 Qwを以下のように設定すればょ 、。 [0042] As described above, in order to save the signature information in the image signal decoded in the time domain, the restriction of Equation (13) is set in Qw to eliminate the influence of rounding error, and the correction circuit 14 is installed in the signature circuit 1. Then, you need to take measures against clipping. For example, when using the quantization of H. 263, the equation (8), equation (9) and equation (13) force Qw should be set as follows:
即ち、 Qが奇数のときは、式(14)により設定し、 Qが偶数のとき、式(15)により設定 すればよい。  That is, when Q is an odd number, it can be set according to equation (14), and when Q is an even number, it can be set according to equation (15).
Qw=max (8, 3Q) (14)  Qw = max (8, 3Q) (14)
Qw=max (8, 3Q— 1) (15)  Qw = max (8, 3Q— 1) (15)
[0043] 以上で明らかなように、この実施の形態 1によれば、画像信号を量子化して、その画 像信号の量子化インデックスカゝら認証子を演算し、その認証子を当該量子化インデ ッタスの中に埋め込む署名回路 1を設ける一方、その画像信号と参照信号の差分信 号を求め、その署名回路 1により認証子が埋め込まれた量子化インデックスに応じて 当該差分信号を量子化し、その差分信号の量子化インデックスを出力する符号化器 2を設けるように構成したので、画像や音声などのマルチメディアデータが復号されて も、認証機能を失わな 、マルチメディアデータを提供することができる効果を奏する。 As apparent from the above, according to the first embodiment, an image signal is quantized, an authentication code is calculated from the quantization index of the image signal, and the authentication code is quantized. While the signature circuit 1 to be embedded in the index is provided, the difference signal between the image signal and the reference signal is obtained, and the difference signal is quantized according to the quantization index in which the authenticator is embedded by the signature circuit 1, Since the encoder 2 that outputs the quantization index of the difference signal is provided, it is possible to provide multimedia data without losing the authentication function even if multimedia data such as images and sounds are decoded. There is an effect that can be done.
[0044] また、この実施の形態 1によれば、量子化器 13から出力された量子化インデックス Qw (T (X) )を補正するように構成したので、電子透かしが埋め込まれた画像がダイ ナミックレンジを大きく超えないようにすることができる。そのため、時間領域に画像を 復号した場合でも、その画像の真正性を確認することができる効果を奏する。 Further, according to the first embodiment, since the quantization index Qw (T (X)) output from the quantizer 13 is corrected, an image embedded with a digital watermark is converted into a dice. It is possible not to greatly exceed the dynamic range. Therefore, even when an image is decoded in the time domain, the authenticity of the image can be confirmed.
[0045] 実施の形態 2. Embodiment 2.
図 4はこの発明の実施の形態 2による電子透力し装置を示す構成図であり、図にお いて、図 1と同一符号は同一または相当部分を示すので説明を省略する。 FIG. 4 is a block diagram showing an electronic permeability device according to Embodiment 2 of the present invention. The same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description thereof will be omitted.
符号化器 2の量子化器 31は減算器 12により演算された周波数領域の予測誤差 T( X)— Τ (Χρ)を量子化し、その予測誤差 Τ (X)— Τ (Χρ)の量子化インデックス Υを出力 する。  The quantizer 31 of the encoder 2 quantizes the frequency domain prediction error T (X) —Τ (Χρ) calculated by the subtractor 12, and quantizes the prediction error Τ (X) —Τ (Χρ). Outputs index Υ.
署名回路 1の逆量子化器 32は量子化器 31から出力された量子化インデックス Υを 復号して周波数領域の予測誤差 Τ(Χ)— Τ(Χρ)を出力する。  The inverse quantizer 32 of the signature circuit 1 decodes the quantization index Υ output from the quantizer 31 and outputs a frequency domain prediction error Τ (Χ) − Τ (の ρ).
[0046] 署名回路 1の加算器 33は逆量子化器 32から出力された予測誤差 Τ(Χ)— Τ(Χρ)と スィッチ 23から出力された参照画像信号 Χρの周波数領域の信号 Τ(Χρ)を加算して 、その加算信号 Τ(Χ)を出力する。 [0046] The adder 33 of the signature circuit 1 includes the prediction error Τ (Χ) —Τ (Χρ) output from the inverse quantizer 32 and the frequency domain signal Τ (Χρ) of the reference image signal Χρ output from the switch 23. ) Is added and the added signal Τ (Χ) is output.
符号化器 2の修正回路 34は変調器 16の変調結果 Yw (変調器 16により認証子 W が埋め込まれた量子化インデックス)に応じて量子化器 31から出力された量子化イン デッタス Yを修正する。  The correction circuit 34 of the encoder 2 corrects the quantization index Y output from the quantizer 31 according to the modulation result Yw of the modulator 16 (quantization index in which the authenticator W is embedded by the modulator 16). To do.
[0047] 上記実施の形態 1では、入力画像から直接認証子 Wを演算するものについて示し たが、予測誤差信号カゝらー且復号された復号画像を基準にして認証子 Wを演算す るようにしてちょい。  [0047] In the first embodiment, the case where the authenticator W is directly calculated from the input image has been described. However, the authenticator W is calculated on the basis of the prediction error signal cover and the decoded image. Please do it.
具体的には、下記のとおりである。  Specifically, it is as follows.
[0048] 符号化器 2の量子化器 31は、上記実施の形態 1と同様にして、減算器 12が周波数 領域の予測誤差 T (X)— T (Xp)を出力すると、その予測誤差 T (X)— T (Xp)を量子 化し、その予測誤差 T(X)— T(Xp)の量子化インデックス Υを逆量子化器 32及び修 正回路 34に出力する。 [0048] The quantizer 31 of the encoder 2 performs the prediction error T when the subtractor 12 outputs the prediction error T (X) — T (Xp) in the frequency domain in the same manner as in the first embodiment. (X) —T (Xp) is quantized and the quantization index Υ of the prediction error T (X) —T (Xp) is output to the inverse quantizer 32 and the correction circuit 34.
署名回路 1の逆量子化器 32は、量子化器 31から量子化インデックス Υを受けると、 その量子化インデックス Υを復号して周波数領域の予測誤差 Τ (X) -Τ (Xp)を加算 器 33に出力する。  When receiving the quantization index の from the quantizer 31, the inverse quantizer 32 of the signature circuit 1 decodes the quantization index し て and adds a frequency domain prediction error Τ (X) -X (Xp) Output to 33.
署名回路 1の加算器 33は、逆量子化器 32から出力された予測誤差 T(X) - T(Xp) とスィッチ 23から出力された参照画像信号 Xpの周波数領域の信号 Τ(Χρ)を加算し て、その加算信号 Τ(Χ)を量子化器 13に出力する。  The adder 33 of the signature circuit 1 uses the prediction error T (X)-T (Xp) output from the inverse quantizer 32 and the frequency domain signal Τ (Χρ) of the reference image signal Xp output from the switch 23. Addition is performed, and the addition signal Τ (Χ) is output to the quantizer 13.
量子化器 13から変調器 16に至る処理内容は、上記実施の形態 1と同様であるた め説明を省略する。 [0049] 符号化器 2の修正回路 34は、量子化器 31から量子化インデックス Yを受け、かつ、 変調器 16から変調結果 Ywを受けると、上記実施の形態 1の量子化器 17と同様に、 その変調結果 Ywに応じて量子化器 31から出力された量子化インデックス Yを修正 する。 Since the processing contents from the quantizer 13 to the modulator 16 are the same as those in the first embodiment, description thereof is omitted. [0049] When the correction circuit 34 of the encoder 2 receives the quantization index Y from the quantizer 31 and receives the modulation result Yw from the modulator 16, the correction circuit 34 is the same as the quantizer 17 of the first embodiment. Then, the quantization index Y output from the quantizer 31 is corrected according to the modulation result Yw.
即ち、修正回路 34は、下記の式(16)が成立する条件の下で、式(17)の dが最小 となる量子化インデックス Yを出力する。  That is, the correction circuit 34 outputs a quantization index Y that minimizes d in the equation (17) under the condition that the following equation (16) is satisfied.
Qw (Qc_1 (Y) +Τ (Χρ) ) = Yw (16) Qw (Qc _1 (Y) + Τ (Χρ)) = Yw (16)
d= I Qc— ^Y)— (T(X)— T(Xp) ) I (17)  d = I Qc— ^ Y) — (T (X) — T (Xp)) I (17)
[0050] 動画像の符号ィ匕では、雑音を抑圧するため、値の小さな予測誤差信号を粗く量子 化するが、この実施の形態 2では、復号された画像信号から認証子 Wを生成するの で、符号ィ匕における雑音抑圧機能を阻害することなぐ見かけ上、雑音の少ない符号 化画像を得ることができる効果を奏する。 [0050] In order to suppress the noise in the moving image code す る, the prediction error signal having a small value is roughly quantized. In the second embodiment, the authenticator W is generated from the decoded image signal. Thus, there is an effect that it is possible to obtain a coded image with little noise, without impairing the noise suppression function in the code i.
[0051] 実施の形態 3. [0051] Embodiment 3.
図 5はこの発明の実施の形態 3による認証処理装置を示す構成図であり、図におい て、係数取得部 41は例えば図 1や図 4の電子透力 装置により認証子が埋め込まれ た符号化信号を受けると、その符号ィ匕信号の変換係数を取得する。  FIG. 5 is a block diagram showing an authentication processing apparatus according to Embodiment 3 of the present invention. In the figure, the coefficient acquisition unit 41 is an encoding in which an authenticator is embedded by, for example, the electronic permeability device of FIG. 1 or FIG. When the signal is received, the conversion coefficient of the sign signal is acquired.
量子化器 42は係数取得部 41により取得された変換係数を量子化して量子化イン デッタスを認証子演算回路 43及び認証子検出器 44に出力する。なお、係数取得部 41及び量子化器 42から量子化手段が構成されている。  The quantizer 42 quantizes the transform coefficient acquired by the coefficient acquisition unit 41 and outputs the quantization index to the authenticator operation circuit 43 and the authenticator detector 44. The coefficient acquisition unit 41 and the quantizer 42 constitute a quantization means.
[0052] 認証子演算回路 43は量子化器 42より出力された量子化インデックスから認証子を 演算する。なお、認証子演算回路 43は認証子演算手段を構成している。 The authenticator operation circuit 43 calculates an authenticator from the quantization index output from the quantizer 42. The authenticator operation circuit 43 constitutes an authenticator operation means.
認証子検出器 44は量子化器 42より出力された量子化インデックスに埋め込まれて いる認証子を検出する。なお、認証子検出器 44は認証子検出手段を構成している。 比較器 45は認証子検出器 44により検出された認証子と認証子演算回路 43により 演算された認証子を比較し、両者が一致する場合には画像の真正性が保たれて ヽ ると認定し、一致しない場合には画像の真正性が失われていると認定する。なお、比 較器 45は比較手段を構成して 、る。  The authenticator detector 44 detects the authenticator embedded in the quantization index output from the quantizer 42. The authenticator detector 44 constitutes an authenticator detecting means. The comparator 45 compares the authenticator detected by the authenticator detector 44 with the authenticator calculated by the authenticator calculation circuit 43. If the two match, it is recognized that the authenticity of the image is maintained. If they do not match, it is determined that the authenticity of the image is lost. The comparator 45 constitutes a comparison means.
[0053] 図 6は係数取得部 41の内部を示す構成図であり、図において、逆量子化器 51は 符号ィ匕信号である量子化インデックスを復号して、予測誤差の変換係数を復元する 加算器 52は係数取得部 41により復元された予測誤差の変換係数と変 によ り変換された参照画像の変換係数を加算し、その加算結果を符号化信号の変換係 数として出力する。 FIG. 6 is a block diagram showing the inside of the coefficient acquisition unit 41. In the figure, the inverse quantizer 51 The adder 52 restores the prediction error conversion coefficient by decoding the quantization index, which is a sign signal, and the prediction error conversion coefficient restored by the coefficient acquisition unit 41 and the reference image transformed by the change. The conversion coefficient is added, and the addition result is output as the conversion coefficient of the encoded signal.
逆変 53は加算器 52より出力された変換係数カゝら時間領域の画像信号を復号 し、その画像信号を記憶回路 54に格納する  The inverse change 53 decodes the time domain image signal output from the adder 52 and stores the image signal in the storage circuit 54.
変 は記憶回路 54に格納されている画像信号を参照画像の変換係数に変 換し、その変換係数を加算器 52に出力する。  The conversion converts the image signal stored in the storage circuit 54 into the conversion coefficient of the reference image and outputs the conversion coefficient to the adder 52.
[0054] 次に動作について説明する。 Next, the operation will be described.
係数取得部 41は、例えば図 1や図 4の電子透力 装置により認証子が埋め込まれ た符号化信号を受けると、その符号ィ匕信号の変換係数を取得する。  For example, when the coefficient acquisition unit 41 receives an encoded signal in which an authenticator is embedded by the electronic permeability device of FIGS. 1 and 4, the coefficient acquisition unit 41 acquires a conversion coefficient of the code signal.
なお、入力された信号が、変換係数が符号化されている信号系列である場合には 、その信号系列力 該当する部分を抽出すればよいが、入力された信号が、時間領 域に復号された画像である場合には、係数取得部 41が入力画像を周波数領域に変 換する変翻 56 (図 7を参照)を用いて、変換係数を取得すればよい。  If the input signal is a signal sequence in which transform coefficients are encoded, the portion corresponding to the signal sequence power may be extracted. However, the input signal is decoded into the time domain. If the image is a converted image, the coefficient acquisition unit 41 may acquire the conversion coefficient using the conversion 56 (see FIG. 7) for converting the input image into the frequency domain.
[0055] 量子化器 42は、係数取得部 41が変換係数を取得すると、その変換係数を量子化 して量子化インデックスを認証子演算回路 43及び認証子検出器 44に出力する。 認証子演算回路 43は、量子化器 42から量子化インデックスを受けると、その量子 ィ匕インデックスから認証子を演算する。 [0055] When the coefficient acquisition unit 41 acquires the transform coefficient, the quantizer 42 quantizes the transform coefficient and outputs the quantization index to the authenticator calculation circuit 43 and the authenticator detector 44. When receiving the quantization index from the quantizer 42, the authenticator operation circuit 43 calculates an authenticator from the quantum index.
ただし、その量子化インデックスには電子透力しが埋め込まれて 、る場合があるの で、この電子透力しが埋め込まれている部分は認証子の計算に用いない。例えば、 上記実施の形態 1で述べた方法によって、電子透かしが埋め込まれている場合、電 子透カゝしが埋め込まれたブロックの最後の量子化インデックスは 0として認証子を計 算する。  However, there are cases where the electronic permeability is embedded in the quantization index, so the portion where the electronic permeability is embedded is not used for the calculation of the authenticator. For example, when a digital watermark is embedded by the method described in the first embodiment, the last quantized index of the block in which the electronic watermark is embedded is 0, and the authenticator is calculated.
[0056] 認証子検出器 44は、量子化器 42から量子化インデックスを受けると、その量子化 インデックスに埋め込まれている認証子を検出する。  [0056] Upon receiving the quantization index from the quantizer 42, the authenticator detector 44 detects an authenticator embedded in the quantization index.
例えば、上記実施の形態 1で述べた方法によって、電子透力しが埋め込まれている 場合、その電子透力しが埋め込まれたブロックの最後の量子化インデックスの値から 認証子を復元する。 For example, the electronic permeability is embedded by the method described in the first embodiment. In the case, the authenticator is restored from the value of the last quantization index of the block in which the electronic permeability is embedded.
[0057] 比較器 45は、認証子検出器 44が認証子を検出し、認証子演算回路 43が認証子 を演算すると、双方の認証子を比較し、両者が一致する場合には画像の真正性が保 たれていると認定する。一方、一致しない場合には画像の真正性が失われていると 認定する。  [0057] When the authenticator detector 44 detects the authenticator and the authenticator calculation circuit 43 calculates the authenticator, the comparator 45 compares both authenticators, and if the two match, the authenticity of the image is detected. It is recognized that the sexuality is maintained. On the other hand, if they do not match, it is determined that the authenticity of the image has been lost.
[0058] 以上で明らかなように、この実施の形態 3によれば、入力画像に依存して認証子を 計算するように構成したので、符号化された信号系列力もだけでなぐそれを復号し た画像からも、その真正性を証明することができる効果を奏する。  As apparent from the above, according to the third embodiment, since the authentication code is calculated depending on the input image, it is decoded not only by the encoded signal sequence power but also by decoding. Even from the image, there is an effect that the authenticity can be proved.
[0059] 実施の形態 4. [0059] Embodiment 4.
図 8はこの発明の実施の形態 4による復号処理装置を示す構成図であり、図におい て、復号回路 61は例えば図 1や図 4の電子透力 装置により認証子が埋め込まれた 信号系列を受けると、その信号系列を時間領域の信号に復号する。なお、復号回路 61は復号手段を構成して!/ヽる。  FIG. 8 is a block diagram showing a decryption processing apparatus according to Embodiment 4 of the present invention. In the figure, the decryption circuit 61 uses, for example, a signal sequence in which an authenticator is embedded by the electronic permeability device of FIG. 1 or FIG. When received, the signal sequence is decoded into a time domain signal. Note that the decryption circuit 61 constitutes decryption means!
係数取得回路 62は認証子が埋め込まれた信号系列を受けると、その信号系列か ら認証子の計算に用いられた変換係数を復元する。  When the coefficient acquisition circuit 62 receives the signal sequence in which the authenticator is embedded, the coefficient acquisition circuit 62 restores the conversion coefficient used for calculating the authenticator from the signal sequence.
量子化器 63は認証子の計算に用いられたものと同じ特性で、係数取得回路 62に より復元された変換係数を量子化する。なお、係数取得回路 62及び量子化器 63か ら量子化手段が構成されて ヽる。  The quantizer 63 quantizes the transform coefficient restored by the coefficient acquisition circuit 62 with the same characteristics as those used for calculating the authenticator. The coefficient acquisition circuit 62 and the quantizer 63 constitute a quantization means.
補正回路 64は量子化器 63により量子化された変換係数に応じて復号回路 61の復 号結果を補正する。なお、補正回路 64は補正手段を構成している。  The correction circuit 64 corrects the decoding result of the decoding circuit 61 in accordance with the transform coefficient quantized by the quantizer 63. The correction circuit 64 constitutes correction means.
[0060] 図 9は復号回路 61の内部を示す構成図であり、図において、逆量子化器 71は認 証子が埋め込まれた信号系列である予測誤差の量子化インデックスを受けると、その 量子化インデックス力 予測誤差の信号値を復元する。 FIG. 9 is a block diagram showing the inside of the decoding circuit 61. In FIG. 9, when the inverse quantizer 71 receives a quantization index of a prediction error that is a signal sequence in which an authenticator is embedded, Index force Restores the signal value of the prediction error.
加算器 72は逆量子化器 71により復元された予測誤差の信号値と参照画像の信号 値を加算して、復号画像の変換係数を出力する。  The adder 72 adds the signal value of the prediction error restored by the inverse quantizer 71 and the signal value of the reference image, and outputs a transform coefficient of the decoded image.
[0061] 逆変翻73は加算器 72から出力された復号画像の変換係数を時間領域の画像 信号に変換する。したがって、逆変換器 73の出力は時間領域で表現された画像信 号であり、逆変 の出力は一般に実数であるので、四捨五入などによる整数ィ匕 が施される。また、その結果が規定の数値の範囲を超えた場合には、それを規定の 範囲に修正するクリッピングが行われる。逆変 の出力は、補正回路 64で必要 に応じて補正され、認証子を保有した画像信号となる。 [0061] Inverse transformation 73 converts the transform coefficient of the decoded image output from adder 72 into an image signal in the time domain. Therefore, the output of the inverse converter 73 is the image signal expressed in the time domain. Since the output of the inverse change is generally a real number, an integer such as rounding is applied. If the result exceeds the specified numerical range, clipping is performed to correct it to the specified range. The inverse change output is corrected by the correction circuit 64 as necessary, and becomes an image signal having an authenticator.
記憶回路 74は逆変換器 73により変換された時間領域の画像信号を記憶する。 変換器 75は記憶回路 74により記憶された時間領域の画像信号を参照画像の信号 値に変換する。  The storage circuit 74 stores the time-domain image signal converted by the inverse converter 73. The converter 75 converts the time domain image signal stored by the storage circuit 74 into a reference image signal value.
[0062] 次に動作について説明する。 Next, the operation will be described.
復号回路 61は、例えば図 1や図 4の電子透力 装置により認証子が埋め込まれた 信号系列を受けると、一定の規則にしたがって、その信号系列を時間領域の信号に 復号する。  When receiving the signal sequence in which the authenticator is embedded by, for example, the electronic permeability device of FIGS. 1 and 4, the decoding circuit 61 decodes the signal sequence into a time domain signal according to a certain rule.
一方、係数取得回路 62は、その認証子が埋め込まれた信号系列を受けると、その 信号系列から認証子の計算に用いられた変換係数を復元する。ただし、図 9に示す ように、復号回路 61の加算器 72が変換係数を復元して量子化器 63に出力する場合 には、係数取得回路 62は不要である。  On the other hand, when the coefficient acquisition circuit 62 receives the signal sequence in which the authenticator is embedded, the coefficient acquisition circuit 62 restores the conversion coefficient used for calculating the authenticator from the signal sequence. However, as shown in FIG. 9, when the adder 72 of the decoding circuit 61 restores the transform coefficient and outputs it to the quantizer 63, the coefficient acquisition circuit 62 is unnecessary.
[0063] 量子ィ匕器 63は、電子透かし装置において、認証子の計算に用いられたものと同じ 特性で、係数取得回路 62により復元された変換係数を量子化する。 [0063] The quantizer 63 quantizes the transform coefficient restored by the coefficient acquisition circuit 62 with the same characteristics as those used for calculating the authenticator in the digital watermark device.
量子化器 63により量子化された変換係数 Ywは、復号回路 61の復号結果を補正 する目標として、補正回路 64に与えられる。  The transform coefficient Yw quantized by the quantizer 63 is given to the correction circuit 64 as a target for correcting the decoding result of the decoding circuit 61.
[0064] 補正回路 64は、量子化器 63から量子化された変換係数 Ywを受けると、その変換 係数 Ywに応じて復号回路 61の復号結果を補正する。 [0064] When receiving the quantized transform coefficient Yw from the quantizer 63, the correction circuit 64 corrects the decoding result of the decoding circuit 61 according to the conversion coefficient Yw.
即ち、補正回路 64は、復号回路 61から出力される画像信号の整数ベクトル X(復 号結果)を受けると、この画像信号を変換して量子化したときに、その画像信号が変 換係数 Ywと一致するように画像信号の整数ベクトル Xを修正する。この修正が必要 な理由は、復号の過程で整数化やクリッピングの処理が含まれると、その処理で生じ る誤差によって、電子透かしとして埋め込まれた認証子の情報が消失する場合があ るカゝらである。  That is, when the correction circuit 64 receives the integer vector X (decoding result) of the image signal output from the decoding circuit 61, when the image signal is converted and quantized, the image signal is converted into a conversion coefficient Yw. Modify the integer vector X of the image signal to match The reason for this modification is that if integer processing or clipping processing is included in the decryption process, the authenticator information embedded as a digital watermark may be lost due to errors in the processing. That's it.
[0065] 図 10は補正回路 64の処理内容を示すフローチャートである。 以下、図 10を参照して、補正回路 64の処理内容を具体的に説明する。 FIG. 10 is a flowchart showing the processing contents of the correction circuit 64. Hereinafter, the processing contents of the correction circuit 64 will be specifically described with reference to FIG.
補正回路 64は、画像信号の整数ベクトル Xが下記の式(18)の条件を満たす力否 かを判定する (ステップ ST11)。  The correction circuit 64 determines whether or not the integer vector X of the image signal satisfies the condition of the following equation (18) (step ST11).
Qw (T(X) ) =Yw (18)  Qw (T (X)) = Yw (18)
ここで、 T()は変換を表す演算子であり、 Qw ()は認証子の計算に用いられたものと 同一特性の量子化を行う演算子である。  Here, T () is an operator representing transformation, and Qw () is an operator that performs quantization with the same characteristics as those used in the computation of the authenticator.
[0066] 補正回路 64は、式(18)が成立する場合 (ステップ ST11)、ベクトル Xが認証子の 情報を保有するので、修正処理を終了する。 [0066] When equation (18) is satisfied (step ST11), correction circuit 64 ends the correction process because vector X holds the authenticator information.
しかし、式(18)が成立しない場合 (ステップ ST11)、ベクトル Xの補正を実施する( ステップ ST12)。  However, if equation (18) does not hold (step ST11), the vector X is corrected (step ST12).
ベクトル Xの補正は、変換係数 Ywを復元した実数ベクトルを Xwとするとき、ベタト ル Xの成分の中で、実数ベクトル Xwから最も遠い成分を 1だけ、実数ベクトル Xwに 近づけることによって行われる。ここで、実数ベクトル Xwは次式で与えられる。  Correction of the vector X is performed by bringing the component of the solid X that is farthest from the real vector Xw by 1 closer to the real vector Xw, where Xw is the real vector from which the transformation coefficient Yw is restored. Here, the real vector Xw is given by the following equation.
Xw = T— 1 (Qw— 1 (Yw) ) (19) Xw = T— 1 (Qw— 1 (Yw)) (19)
量子化 Qwについて、式(12)が成り立つとき、実数ベクトル Xwに最も近い整数べ タトルは必ず認証子の情報を保有することを証明できるから、ベクトル Xの修正を繰り 返すことによって、式(18)を満たす整数ベクトル Xを必ず見つけることができる。  For quantization Qw, when equation (12) holds, it can be proved that the integer vector closest to the real vector Xw always has the authenticator information, so by repeating the modification of vector X, equation (18) An integer vector X that satisfies) can always be found.
[0067] 以上で明らかなように、この実施の形態 4によれば、入力画像に依存して認証子を 計算するように構成したので、復号された画像信号に認証子を継承することができる 効果を奏する。また、復号ベクトルが認証子を保有するように補正するので、特に、時 間領域の信号に復号された画像に認証子を継承することができる効果を奏する。 As apparent from the above, according to the fourth embodiment, since the authentication code is calculated depending on the input image, the authentication code can be inherited to the decrypted image signal. There is an effect. In addition, since the decryption vector is corrected so as to have the authenticator, the effect of being able to inherit the authenticator in the image decoded into the time domain signal is obtained.
[0068] 実施の形態 5. [0068] Embodiment 5.
図 11はこの発明の実施の形態 5による再量子化装置を示す構成図であり、図にお いて、係数取得回路 81は例えば図 1や図 4の電子透力 装置により認証子が埋め込 まれた画像信号を受けると、その画像信号から認証子の計算に用いられた変換係数 を復元する。なお、係数取得回路 81は変換係数取得手段を構成している。  FIG. 11 is a block diagram showing a requantization apparatus according to Embodiment 5 of the present invention. In the figure, the coefficient acquisition circuit 81 is embedded with an authenticator, for example, by the electronic permeability device of FIG. 1 or FIG. When the received image signal is received, the conversion coefficient used to calculate the authenticator is restored from the image signal. The coefficient acquisition circuit 81 constitutes conversion coefficient acquisition means.
量子化器 82は認証子の計算に用いられたものと同じ特性で、係数取得回路 81に より取得された変換係数を量子化する。なお、量子化器 82は第 1の量子化手段を構 成している。 The quantizer 82 quantizes the transform coefficient acquired by the coefficient acquisition circuit 81 with the same characteristics as those used for calculating the authenticator. The quantizer 82 constitutes the first quantization means. It is made.
量子化器 83は量子化器 82の量子化結果に応じて係数取得回路 81により取得さ れた変換係数を量子化する。なお、量子化器 83は第 2の量子化手段を構成している  The quantizer 83 quantizes the transform coefficient acquired by the coefficient acquisition circuit 81 according to the quantization result of the quantizer 82. The quantizer 83 constitutes the second quantizing means.
[0069] 図 12は係数取得回路 81の内部を示す構成図であり、図において、逆量子化器 91 は認証子が埋め込まれた信号系列である予測誤差の量子化インデックスを受けるとFIG. 12 is a block diagram showing the inside of the coefficient acquisition circuit 81. In FIG. 12, when the inverse quantizer 91 receives a quantization index of a prediction error that is a signal sequence in which an authenticator is embedded.
、その量子化インデックスから予測誤差の信号値を復元する。 The signal value of the prediction error is restored from the quantization index.
加算器 92は逆量子化器 91により復元された予測誤差の信号値と参照画像の信号 値を加算して、復号画像の変換係数を出力する。  The adder 92 adds the signal value of the prediction error restored by the inverse quantizer 91 and the signal value of the reference image, and outputs a transform coefficient of the decoded image.
[0070] 逆変換器 93は加算器 92から出力された復号画像の変換係数を時間領域の画像 信号に変換する。 The inverse transformer 93 converts the transform coefficient of the decoded image output from the adder 92 into a time domain image signal.
記憶回路 94は逆変換器 93により変換された時間領域の画像信号を記憶する。 変換器 95は記憶回路 94により記憶された時間領域の画像信号を参照画像の信号 値に変換する。  The storage circuit 94 stores the time domain image signal converted by the inverse converter 93. The converter 95 converts the time domain image signal stored by the storage circuit 94 into a reference image signal value.
[0071] 次に動作について説明する。 Next, the operation will be described.
係数取得回路 81は、例えば図 1や図 4の電子透力 装置により認証子が埋め込ま れた画像信号を受けると、その画像信号から認証子の計算に用いられた変換係数を 復元する。  For example, when the coefficient acquisition circuit 81 receives an image signal in which an authenticator is embedded by the electronic permeability device shown in FIGS. 1 and 4, the coefficient acquisition circuit 81 restores the conversion coefficient used for calculating the authenticator from the image signal.
ただし、入力される画像信号は、符号化された信号系列でもよいし、復号された時 間領域の信号でもよい。  However, the input image signal may be a coded signal sequence or a decoded time domain signal.
[0072] 量子化器 82は、係数取得回路 81から変換係数を受けると、電子透かし装置により 認証子の計算に用いられたものと同じ特性で、係数取得回路 81により取得された変 換係数を量子化する。 [0072] When the quantizer 82 receives the transform coefficient from the coefficient acquisition circuit 81, the quantizer 82 converts the conversion coefficient acquired by the coefficient acquisition circuit 81 with the same characteristics as those used for calculating the authenticator by the digital watermarking device. Quantize.
量子化器 83は、量子化器 82により量子化された変換係数 Ywを受けると、その変 換係数 Ywが係数取得回路 81により取得された変換係数に保存されるように、その 変換係数を量子化する。  When the quantizer 83 receives the transform coefficient Yw quantized by the quantizer 82, the quantizer 83 quantizes the transform coefficient so that the transform coefficient Yw is stored in the transform coefficient acquired by the coefficient acquisition circuit 81. Turn into.
即ち、量子ィ匕器 83は、例えば、下記の式(20)の条件の下で、式(21)の dが最小と なるベクトル Yを出力するように、係数取得回路 81により取得された変換係数を量子 化する。 That is, for example, the quantum device 83 outputs the vector Y that minimizes d in the equation (21) under the condition of the following equation (20). Quantize coefficient Turn into.
Qw (Qc— 1 (Y) ) =Yw (20) Qw (Qc— 1 (Y)) = Yw (20)
d= I Qc- T(X) I (21)  d = I Qc- T (X) I (21)
[0073] 以上で明らかなように、この実施の形態 5によれば、入力画像に依存して認証子を 計算するように構成したので、再符号ィ匕した信号系列に認証子を継承することができ る効果を奏する。このことは、例えば、 MPEGなどで符号ィ匕された動画像の一部のフ レームを静止画像として JPEGなどで再符号ィ匕する場合などに有用である。 As apparent from the above, according to the fifth embodiment, since the authentication code is calculated depending on the input image, the authentication code is inherited by the re-encoded signal sequence. The effect that can be done. This is useful, for example, when a part of a frame of a moving image encoded by MPEG or the like is re-encoded by JPEG or the like as a still image.
[0074] 上記実施の形態 1一 5では、入力信号が画像信号であるものについて示したが、音 声信号などのマルチメディアデータに広く適用することができる。 [0074] In Embodiment 1-15, the input signal is an image signal. However, the present invention can be widely applied to multimedia data such as an audio signal.
産業上の利用可能性  Industrial applicability
[0075] 以上のように、この発明に係る電子透力し装置は、マルチメディアデータが復号さ れても、その認証機能が失われることがな 、ように電子透力しをマルチメディアデータ に埋め込む必要があるものなどに適して 、る。 As described above, the electronic force transmitting apparatus according to the present invention converts the electronic force to multimedia data so that the authentication function is not lost even if the multimedia data is decrypted. Suitable for things that need to be embedded.

Claims

請求の範囲 The scope of the claims
[1] 入力信号を量子化して、その入力信号の量子化インデックスから認証子を演算し、 その認証子を当該量子化インデックスの中に埋め込む署名手段と、その入力信号と 参照信号の差分信号を求め、上記署名手段により認証子が埋め込まれた量子化ィ ンデッタスに応じて当該差分信号を量子化し、その差分信号の量子化インデックスを 出力する符号ィヒ手段とを備えた電子透かし装置。  [1] Quantizes the input signal, calculates an authenticator from the quantization index of the input signal, embeds the authenticator in the quantization index, and a differential signal between the input signal and the reference signal An electronic watermarking apparatus comprising: an encoding means for quantizing the difference signal according to a quantization index in which an authenticator is embedded by the signing means and outputting a quantization index of the difference signal.
[2] 符号化手段は、入力信号を周波数領域の信号に変換する変換器と、上記変換器 力 出力された周波数領域の信号と参照信号の差分信号を求める減算器と、署名手 段により認証子が埋め込まれた量子化インデックスに応じて上記減算器により求めら れた差分信号を量子化し、その差分信号の量子化インデックスを出力する量子化器 とから構成されていることを特徴とする請求項 1記載の電子透力 装置。  [2] The encoding means is authenticated by a converter that converts an input signal into a frequency domain signal, a subtractor that obtains a difference signal between the frequency domain signal output from the converter and a reference signal, and a signature means. And a quantizer that quantizes the difference signal obtained by the subtractor according to a quantization index in which a child is embedded and outputs a quantization index of the difference signal. Item 1. The electronic permeability device according to Item 1.
[3] 署名手段は、符号化手段の変換器から出力された周波数領域の信号を量子化し、 その周波数領域の信号の量子化インデックスを出力する量子化器と、上記量子化器 より出力された量子化インデックス力 認証子を演算する認証子演算回路と、上記認 証子演算回路により演算された認証子に応じて上記量子化器から出力された量子 ィ匕インデックスの一部を変調する変調器とから構成されていることを特徴とする請求 項 2記載の電子透かし装置。  [3] The signature means quantizes the frequency domain signal output from the converter of the encoding means, outputs a quantization index of the frequency domain signal, and is output from the quantizer. Quantization index power An authenticator operation circuit for calculating an authenticator, and a modulator for modulating a part of the quantum index output from the quantizer according to the authenticator calculated by the authenticator operation circuit. The digital watermarking device according to claim 2, comprising:
[4] 署名手段は、量子化器から出力された量子化インデックスを補正し、補正後の量子 ィ匕インデックスを認証子演算回路及び変調器に出力する補正回路を備えていること を特徴とする請求項 3記載の電子透かし装置。  [4] The signature means includes a correction circuit that corrects the quantization index output from the quantizer and outputs the corrected quantum index to the authenticator operation circuit and the modulator. The electronic watermarking device according to claim 3.
[5] 署名手段の量子化器は、符号化手段の量子化器の量子化特性に依存して量子化 特性が設定されていることを特徴とする請求項 3記載の電子透力 装置。  5. The electronic permeability device according to claim 3, wherein the quantizer of the signature unit has a quantization characteristic set depending on the quantization characteristic of the quantizer of the encoding unit.
[6] 変調器は、量子化器力も出力された量子化インデックスのうち、変調に伴う影響が 少ない部分を変調することを特徴とする請求項 3記載の電子透力 装置。  6. The electronic permeability device according to claim 3, wherein the modulator modulates a portion of the quantization index from which the quantizer force is also output, which is less affected by the modulation.
[7] 符号化手段は、入力信号を周波数領域の信号に変換する変換器と、上記変換器 力 出力された周波数領域の信号と参照信号の差分信号を求める減算器と、上記減 算器により求められた差分信号を量子化し、その差分信号の量子化インデックスを出 力する量子化器と、署名手段により認証子が埋め込まれた量子化インデックスに応じ て上記量子化器カゝら出力された量子化インデックスを修正する修正回路とから構成 されていることを特徴とする請求項 1記載の電子透力 装置。 [7] The encoding means includes a converter that converts an input signal into a frequency domain signal, a subtractor that obtains a difference signal between the frequency domain signal output from the converter and a reference signal, and the subtractor. A quantizer that quantizes the obtained difference signal and outputs a quantization index of the difference signal, and a quantization index in which an authenticator is embedded by a signature means. 2. The electronic permeability device according to claim 1, further comprising a correction circuit that corrects the quantization index output from the quantizer.
[8] 署名手段は、符号化手段の量子化器から出力された量子化インデックスを復号し て差分信号を出力する逆量子化器と、上記逆量子化器から出力された差分信号と 参照信号を加算する加算器と、上記加算器力 出力された加算信号を量子化し、そ の加算信号の量子化インデックスを出力する量子化器と、上記量子化器から出力さ れた量子化インデックスから認証子を演算する認証子演算回路と、上記認証子演算 回路により演算された認証子に応じて上記量子化器カゝら出力された量子化インデッ タスの一部を変調する変調器とから構成されていることを特徴とする請求項 7記載の 電子透かし装置。 [8] The signature unit includes an inverse quantizer that decodes the quantization index output from the quantizer of the encoding unit and outputs a difference signal, a difference signal output from the inverse quantizer, and a reference signal An adder that adds the power of the adder, a quantizer that quantizes the added signal output from the adder and outputs a quantization index of the added signal, and an authentication from the quantization index output from the quantizer An authenticator arithmetic circuit for calculating a child, and a modulator for modulating a part of the quantization index output from the quantizer according to the authenticator calculated by the authenticator arithmetic circuit. The digital watermarking device according to claim 7, wherein:
[9] 署名手段は、量子化器から出力された量子化インデックスを補正し、補正後の量子 ィ匕インデックスを認証子演算回路及び変調器に出力する補正回路を備えていること を特徴とする請求項 8記載の電子透かし装置。  [9] The signature means includes a correction circuit that corrects the quantization index output from the quantizer and outputs the corrected quantum index to the authenticator operation circuit and the modulator. The electronic watermarking device according to claim 8.
[10] 署名手段の量子化器は、符号化手段の量子化器の量子化特性に依存して量子化 特性が設定されていることを特徴とする請求項 8記載の電子透力 装置。  10. The electronic permeability device according to claim 8, wherein the quantizer of the signature unit has a quantization characteristic set depending on the quantization characteristic of the quantizer of the encoding unit.
[11] 変調器は、量子化器力も出力された量子化インデックスのうち、変調に伴う影響が 少ない部分を変調することを特徴とする請求項 8記載の電子透力 装置。  [11] The electronic permeability device according to [8], wherein the modulator modulates a portion of the quantization index from which the quantizer force is also output that is less affected by the modulation.
[12] 電子透力 装置により認証子が埋め込まれた信号を受けると、その信号の変換係 数を取得し、その変換係数を量子化して量子化インデックスを出力する量子化手段 と、上記量子化手段より出力された量子化インデックスから認証子を演算する認証子 演算手段と、上記量子化手段から出力された量子化インデックスに埋め込まれてい る認証子を検出する認証子検出手段と、上記認証子検出手段により検出された認証 子と上記認証子演算手段により演算された認証子を比較する比較手段とを備えた認 証処理装置。  [12] When receiving a signal in which the authenticator is embedded by the electronic permeability device, the conversion unit of the signal is acquired, the conversion coefficient is quantized, and a quantization index is output. An authenticator calculating means for calculating an authenticator from the quantized index output from the means, an authenticator detecting means for detecting an authenticator embedded in the quantized index output from the quantizing means, and the authenticator An authentication processing apparatus comprising: an authenticator detected by the detecting means; and a comparing means for comparing the authenticator calculated by the authenticator calculating means.
[13] 電子透力 装置により認証子が埋め込まれた信号を受けると、その信号を復号する 復号手段と、その信号の変換係数を取得し、その変換係数を量子化する量子化手 段と、上記量子化手段により量子化された変換係数に応じて上記復号手段の復号 結果を補正する補正手段とを備えた復号処理装置。 [14] 電子透力 装置により認証子が埋め込まれた信号を受けると、その信号の変換係 数を取得する変換係数取得手段と、上記変換係数取得手段により取得された変換 係数を量子化する第 1の量子化手段と、上記第 1の量子化手段の量子化結果に応じ て上記変換係数取得手段により取得された変換係数を量子化する第 2の量子化手 段とを備えた再量子化装置。 [13] Upon receiving a signal in which the authenticator is embedded by the electronic permeability device, a decoding means for decoding the signal, a quantization means for obtaining the conversion coefficient of the signal, and quantizing the conversion coefficient; A decoding processing apparatus comprising: a correcting unit that corrects a decoding result of the decoding unit according to the transform coefficient quantized by the quantizing unit. [14] Upon receiving a signal in which the authenticator is embedded by the electronic permeability device, the conversion coefficient acquisition means for acquiring the conversion coefficient of the signal, and the conversion coefficient acquired by the conversion coefficient acquisition means are quantized. Requantization comprising: 1 quantization means; and a second quantization means for quantizing the transform coefficient acquired by the transform coefficient acquisition means according to the quantization result of the first quantization means apparatus.
PCT/JP2004/012947 2004-09-06 2004-09-06 Electronic watermark device, authentication processing device, decoding processing device, and re-quantization device WO2006027823A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006534936A JP4624359B2 (en) 2004-09-06 2004-09-06 Digital watermarking device
PCT/JP2004/012947 WO2006027823A1 (en) 2004-09-06 2004-09-06 Electronic watermark device, authentication processing device, decoding processing device, and re-quantization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/012947 WO2006027823A1 (en) 2004-09-06 2004-09-06 Electronic watermark device, authentication processing device, decoding processing device, and re-quantization device

Publications (1)

Publication Number Publication Date
WO2006027823A1 true WO2006027823A1 (en) 2006-03-16

Family

ID=36036120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012947 WO2006027823A1 (en) 2004-09-06 2004-09-06 Electronic watermark device, authentication processing device, decoding processing device, and re-quantization device

Country Status (2)

Country Link
JP (1) JP4624359B2 (en)
WO (1) WO2006027823A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288885A (en) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp Watermark embedding apparatus, watermark detector, watermark embedding program and watermark detecting program
JP2017123669A (en) * 2011-11-07 2017-07-13 ドルビー・インターナショナル・アーベー Computer mounting method, decoder, and computer readable medium
US11943485B2 (en) 2011-11-07 2024-03-26 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032406A (en) * 1998-07-10 2000-01-28 Nec Corp Electronic watermark insertion system to digital signal
JP2000138818A (en) * 1998-06-24 2000-05-16 Nec Corp Method for inserting robust digital electronic watermark signal to data and method for detecting electronic watermarks
JP2001203878A (en) * 2000-01-21 2001-07-27 Internatl Business Mach Corp <Ibm> Device and method for processing image
JP2004135265A (en) * 2002-08-09 2004-04-30 Matsushita Electric Ind Co Ltd Information-embedding device, encoder, device and method for detecting alteration, and recording medium with program for executing the method recorded thereon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138818A (en) * 1998-06-24 2000-05-16 Nec Corp Method for inserting robust digital electronic watermark signal to data and method for detecting electronic watermarks
JP2000032406A (en) * 1998-07-10 2000-01-28 Nec Corp Electronic watermark insertion system to digital signal
JP2001203878A (en) * 2000-01-21 2001-07-27 Internatl Business Mach Corp <Ibm> Device and method for processing image
JP2004135265A (en) * 2002-08-09 2004-04-30 Matsushita Electric Ind Co Ltd Information-embedding device, encoder, device and method for detecting alteration, and recording medium with program for executing the method recorded thereon

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DITTMANN J ET AL: "Content-based digital signature for motion pictures authentication and content-fragile watermarking.", IEEE INT CONF ON MULTIMEDIA COMPUTING AND SYSTEMS 1999., June 1999 (1999-06-01), XP002996428 *
DU R AND FRIDRICH J.: "Lossless authentication of MPEG-2 video.", PROCEEDINGS OF IEEE INT CONF ON IMAGE PROCESSING., September 2002 (2002-09-01), pages 894, XP002996425 *
ITO H ET AL: "MPEG Gazo no Shinsensei o Shomei suru Denshi Sukashi no Hoho.", 20 August 2004 (2004-08-20), pages 215 - 218, XP002996424 *
ITO H, UMAKAI K, SUZUKI M.: "JPEG Gazo no Shinseisei o Shomei suru Denshi Sukashi no Hoho.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS., March 2003 (2003-03-01) *
PARK J Y ET AL: "Invertible semi-fragile watermarking algorithm distinguishing MPEG-2 compression from malicious manipulation.", INT CONF ON CONSUMER ELECTRONICS (ICCE) 2002., June 2002 (2002-06-01), pages 18 - 19, XP002996426 *
TAKEUCHI K ET AL: "Denshi Sukashi o Mochiita Koyu Joho Umekomi ni yoru Dogazo no Saihenshu Kenshutsu Hoshiki.", SECURITY SYMPOSIUM., January 1999 (1999-01-01), XP002996430 *
TAKEUCHI K ET AL: "Gamon no Gainen o Kakucho. Oyo sita Saihenshu Kenchi no Tameno Denshi Sukashiho.", SECURITY SYMPOSIUM., January 2000 (2000-01-01), XP002996429 *
YIN P AND YU H H.: "Semi-fragile watermarking system for MPEG video authentication.", IEEE INTERNATIONAL CONFERENCE ON ACOUSTIC, SPEECH, AND SIGNAL PROCESSING., vol. 4, May 2002 (2002-05-01), pages 3461 - 3464, XP002996427 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288885A (en) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp Watermark embedding apparatus, watermark detector, watermark embedding program and watermark detecting program
JP2017123669A (en) * 2011-11-07 2017-07-13 ドルビー・インターナショナル・アーベー Computer mounting method, decoder, and computer readable medium
US11277630B2 (en) 2011-11-07 2022-03-15 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US11889098B2 (en) 2011-11-07 2024-01-30 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto
US11943485B2 (en) 2011-11-07 2024-03-26 Dolby International Ab Method of coding and decoding images, coding and decoding device and computer programs corresponding thereto

Also Published As

Publication number Publication date
JPWO2006027823A1 (en) 2008-05-08
JP4624359B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US5809139A (en) Watermarking method and apparatus for compressed digital video
AU711488B2 (en) Hybrid waveform and model-based encoding and decoding of image signals
EP1788820A2 (en) Image encoding method and apparatus and image decoding method and apparatus using characteristics of the human visual system
KR100853336B1 (en) Image encoding apparatus and image decoding apparatus
US20090238264A1 (en) System and method for real-time transcoding of digital video for fine granular scalability
CA2419521A1 (en) System and method for using pattern vectors for video and image coding and decoding
Lee et al. Fast quantization method with simplified rate–distortion optimized quantization for an HEVC encoder
JP2010148097A (en) Method for insertion of data, and method for reading of inserted data
US7580166B2 (en) Converting image data in an input color space to an output color space in a transform domain
TWI533670B (en) Method for decoding picture in form of bit-stream
JP5139995B2 (en) Method and apparatus for watermarking a stream
CN101151637A (en) Method of quantization-watermarking
JP4624359B2 (en) Digital watermarking device
JP2000032406A (en) Electronic watermark insertion system to digital signal
US9628791B2 (en) Method and device for optimizing the compression of a video stream
Seki et al. Quantization-based image steganography without data hiding position memorization
JP4227425B2 (en) Information processing method and apparatus, computer program, and computer-readable storage medium
US5859931A (en) Image compression and decompression using predictive coding and error diffusion
US20100177888A1 (en) Warermarking and encryption of entropy-coded data using additive huffman table
KR100612830B1 (en) Watermarking and watermark extracting apparatus having high reliability and method therefor
JP4323519B2 (en) Coded data decoding program, method and apparatus
US7580167B2 (en) Determining whether to convert image data in an input color space to an output color space in a transform domain or real domain
JPH0786955A (en) Encoder
US6266448B1 (en) Method of and apparatus for compressing and encoding digitized moving picture signals
JP4019961B2 (en) Digital watermark embedding method, digital watermark embedding program, digital watermark embedding device, image encoding method, and image encoding device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006534936

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04787651

Country of ref document: EP

Kind code of ref document: A1