WO2006018916A1 - Dynamic pressure fluid bearing - Google Patents

Dynamic pressure fluid bearing Download PDF

Info

Publication number
WO2006018916A1
WO2006018916A1 PCT/JP2005/003314 JP2005003314W WO2006018916A1 WO 2006018916 A1 WO2006018916 A1 WO 2006018916A1 JP 2005003314 W JP2005003314 W JP 2005003314W WO 2006018916 A1 WO2006018916 A1 WO 2006018916A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
spring
foil
slit
spring oil
Prior art date
Application number
PCT/JP2005/003314
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Wada
Hideo Kaido
Tooru Nishida
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Publication of WO2006018916A1 publication Critical patent/WO2006018916A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement
    • F16C2300/22High-speed rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant

Definitions

  • the present invention relates to a hydrodynamic bearing for a high-speed rotating shaft, and more particularly to a hydrodynamic foil bearing.
  • hydrodynamic bearings There are two types of hydrodynamic bearings: static pressure type and dynamic pressure type.
  • the dynamic pressure type bearing that generates pressure by rotating the shaft using ambient air is less expensive than the static pressure type that is externally pressurized by a compressor or the like. It is advantageous in terms of weight reduction, maintenance, etc., and is oil-free
  • a foil type hydrodynamic bearing is composed of a top oil that forms a gas film with a shaft, a spring oil that elastically supports the oil, and a housing that holds them.
  • spring bearings for oil bearings such as bump type and leaf type.
  • FIG. 30 is a side sectional view showing an example of a bump oil air bearing.
  • a bump oil air bearing that uses a bump type spring oil, as disclosed in Patent Document 1, etc. is a bump oil in which a thin metal plate is formed in a corrugated plate shape between a housing in which a rotating shaft is inserted and the rotating shaft. And a flat metal thin plate with a top lubricant coated with a solid lubricant inside, and the rotating shaft is hydrodynamically supported by a thin fluid film formed between the rotating shaft and the top oil, The top oil is supported by the inertia through the bump oil!
  • Bump fill air bearings are equipped with a self-adjusting mechanism for the rotating shaft by means of the bump fill panel function, so the requirements for the work accuracy of the bearing are not strict, but the bump foil needs to be molded into a complex shape, so press High precision molding process is required, and the process is complicated and difficult to manufacture and assemble.
  • FIG. 31 is a side sectional view showing an example of a leaf oil air bearing.
  • Leaf-foil bearings that use leaf-type spring-foil oil are placed one on top of the other so that multiple leaf-foils can slide together on the inner periphery of the bearing housing, and there is a gap to draw air inside.
  • the rotating shaft is supported at a distance, and the leaf oil is deformed to fit the rotating shaft in accordance with the axial load action of the rotating shaft to form an appropriate air layer. Yes.
  • the leaf oil also needs to be molded into a certain shape, which requires time and effort for molding, and also requires time and effort for the bearing.
  • Patent Document 2 discloses an air bearing in which an assembly process is omitted by forming a spring oil from a single plate cover.
  • the disclosed spring bearing oil has a rectangular elastic plate cut into one side at an appropriate interval along the long axis to form a multiple support plate, one end of which is provided in the notch inside the housing. It is fixed along the inside of the housing and fixed to the fixed mechanism, and the support plate is in contact with the top oil surrounding the rotating shaft and is supported by the spring action.
  • the spring oil used in the disclosed hydrodynamic foil bearing also needs to be molded to maintain the posture of the raised support plate.
  • a spring foil is accommodated in a three-layer structure in a bearing housing so that the innermost layer has a substantially quadrangular shape, the intermediate layer has a heptagonal shape, and the outermost layer has a substantially hexagonal shape.
  • An oil journal bearing is disclosed.
  • the triple-winding spring oil is formed with a groove across the width of the flat spring oil, and the portion of the groove bent between the grooves is used as an elastic beam.
  • the top oil is screwed at one end to the inner cylindrical surface of the housing together with the bump oil or the spring oil.
  • the other end is a free end that can be moved in the circumferential direction.
  • the rotating shaft rotates in the direction from the free end direction to the fixed end direction so that air is wound between the rotating shaft and the bump fluid to form an air layer.
  • the top oil wraps around the rotating shaft! Because the air layer cannot be formed, the rotation direction is limited to one direction.
  • the conventional top oil fixing method requires a special work for fixing to the inner surface of the housing, and has the problem of limiting the rotation direction of the rotating shaft to one side.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-0661645
  • Patent Document 2 JP 2002-364643 A
  • Patent Document 3 Japanese Utility Model Publication No. 6-76716
  • the problem to be solved by the present invention is to provide a foil type hydrodynamic bearing having excellent bearing performance using a spring foil that is easier to manufacture and excellent in mass productivity.
  • a second problem to be solved by the present invention is to provide a peristaltic fluid bearing having no restriction in the rotational direction by using a top oil fixing structure that is easy to mount.
  • the hydrodynamic bearing of the present invention is mounted with a spring oil formed of a thin flat plate having a plurality of slits on the inner wall of the bearing housing, and the top is placed inside the spring fill.
  • This is a foil type bearing in which the oil is arranged and the rotating shaft is arranged inside the top oil, and the spring oil is bent at a position with small rigidity and has many elastic beams that are in contact with the inner side of the inner wall. A rectangular cross section is formed, and the rotating shaft is elastically supported by this elastic beam.
  • a slit is provided in the spring oil formed of a thin flat plate to give a strength difference in bending rigidity depending on the location.
  • this spring oil is attached to the inner wall of the bearing housing, it is bent at a slit position with a small rigidity.
  • a large number of elastic beams are formed between adjacent slits in contact with the inner wall, forming a polygonal cross section. This elastic beam can support the top foil in inertia.
  • the rotating shaft is wrapped in top oil, and a gas such as air is inserted between the rotating shaft and the top oil as it rotates to form a gas layer, and the rotating shaft is supported hydrodynamically. In particular, high-speed rotation can be performed smoothly. As the rotation speed of the rotating shaft increases, the thickness of the gas layer increases and the top oil is pressed against the inner wall of the bearing housing to increase the elastic force of the spring oil. It starts to rotate.
  • the slit can be provided in a direction substantially parallel to the rotation axis when the spring oil is inserted into the bearing housing, and the flange can be bent to form a node at the slit position.
  • the difference in bending stiffness between elastic beams is caused by the difference in the length of the oil part sandwiched between the slits.
  • the length of the elastic beam can be changed by setting the slits at unequal pitches.
  • the bending rigidity is weak at the long elastic beam, the inner diameter of the bearing is reduced because the distance between the inner wall of the housing and the top foil is increased.
  • the bending rigidity increases at the short beam section, and the inner diameter of the bearing increases because the top oil approaches the inner wall of the housing. Therefore, when the load is small or the vibration is small, the spring with the small inner diameter supports the shaft, and when the load is large or the vibration is large, the shaft is supported even at the large inner diameter. It will have a support structure with a unique panel characteristic.
  • Slits having different lengths may be alternately arranged.
  • the part with the long slit is broken, and the part with the short slit is hard to break. Therefore, the long slit is initially refracted and contacts the wall of the housing, and the short slit does not break. Therefore, the rotation of the rotating shaft with the small inner diameter of the cylinder made by the top oil is small.
  • the spring oil is refracted even at the short slit position, and the top oil force S approaches the inner wall of the housing, the inner diameter increases, the length of the elastic beam decreases, and the rigidity of the spring oil increases. . In this way, it is possible to obtain a bearing that exhibits characteristics such that when the load is small, the rigidity of the spring foil is low and the rigidity becomes high when the load at which the top oil is easily opened increases.
  • the length of the beam formed between the slits of the spring oil is made equal, and the width of the slit is reduced. It may be changed. Since the slit portion does not generate support rigidity for elastically supporting the rotating shaft, the rigidity distribution can be designed relatively easily in order to provide an appropriate difference in support rigidity for each location in the circumferential direction of the housing. By providing a difference in the circumferential direction of the rigidity of the foil bearing, elliptical motion can be generated on the rotating shaft, and vibration can be suppressed.
  • the slits parallel to the rotation axis may be arranged at equal intervals so that the rigidity of the elastic beams is almost equal to each other!
  • the slit may be formed by force from the side end of the oil toward the center line. If the slit is opened at the side end, the rigidity is reduced at the side of the oil, and it is possible to prevent the rotation shaft from hitting one side.
  • the slit can have a shape in which the flat plate force is separated from the remaining sides excluding the bottom, such as two sides of the triangle and three sides of the rectangle.
  • this spring oil is installed along the top oil, the tongue that extends tangentially at the position of each slit reaches the inner wall of the bearing housing to become a panel, and supports the top oil.
  • the rigidity may be changed by making the slit into a thick cut shape so that the distance to the ridgeline of the adjacent slit varies depending on the distance of the edge of the flat plate.
  • the cut-off shape is a shape in which a triangle or semicircular shape protrudes into the slit, the effective width of the beam is small and the rigidity is weak while the protruding portion becomes a fulcrum, but the rotation speed increases and the top oil is transferred to the housing. Stiffness increases as it approaches.
  • the slit shape is semicircular, the length of the elastic beam is initially large and the short beam acts as the top oil spreads. It exhibits the characteristics that the rigidity is strengthened.
  • a part of the slits may be provided in parallel to the side end line of the flat plate of the spring oil.
  • Spring oil can be formed from one end of one thin plate, and solid lubricant can be applied to the other end which is left to the extent that it surrounds the rotating shaft.
  • the top oil is also a force that is always placed inside the spring oil.
  • the slit portion of the spring oil can be provided with multiple slits at high density. Although the slit portion is refracted and comes into contact with the inner wall of the housing, if a plurality of slits are provided at high density, a large number of ridge lines along the inner wall share the pressing force, so that the contact surface pressure can be reduced.
  • the spring oil may be wound around the top oil in multiple layers.
  • the inner spring-foil slit should be aligned with the center of the outer spring-foil beam.
  • the rigidity increases as the top oil spreads, so that the low-speed rotational force can be supported with an appropriate rigidity up to the high-speed rotation.
  • the slit of the spring oil is rounded at the end so as to relieve the stress generated at the end.
  • the slit can be manufactured by etching.
  • etching method it is possible to accurately and easily form slits with extremely fine dimensions as in the case of a printed circuit board.
  • the bearing housing may be formed such that the cross section of the inner hole is polygonal, and the spring foil slit is positioned at the apex of the polygon. When such apex exists, it becomes easier to fix the spring oil. In addition, if the apex angle of the inner hole section polygon of the bearing housing is positioned in the middle of the beam formed between the slits of the spring oil, the sectional area of the space formed by the housing wall and the spring oil is set. As the flow rate increases, a large amount of cooling fluid circulates and the range of high-speed rotation in which the bearing can be used is expanded.
  • a stop wall rising from the inner wall surface is formed at each of the two locations on the inner wall of the housing where both ends of the top oil come into contact, and the two top oils formed by the elastic flat plate cover are stopped. It is preferably inserted and fixed so as to stretch between the walls.
  • stop The angle of the wall surface is preferably in the range of 60 ° force and 90 ° with respect to the inner wall surface.
  • a clasp is attached to the side surface of the stop wall to prevent it more reliably. It can be set or fixed on the side of the housing with an ear at the end of the top oil.
  • both ends of the top oil are fixed to the housing, and air can be introduced between the top oil and the rotating shaft from any fixed portion, so the rotating shaft can be rotated in either direction. Also, the performance as a fluid bearing can be exhibited.
  • the inlet (leading) side of the bearing in the rotational direction can be deeper than the outlet (trading) side to facilitate air introduction.
  • the flying performance and the load capacity can be adjusted.
  • the top oil at unequal pitches bearing dynamic characteristics with high vibration stability can be obtained.
  • the present invention provides a spring oil having a thin flat plate force provided with a plurality of slits used in a foil type hydrodynamic bearing.
  • a stop wall having an angle of approximately 60 ° force 90 ° with respect to the inner wall surface is formed at the position of the inner wall of the housing where both ends of the top oil come into contact, and a digging having a triangular cross section is formed on the front surface of the stop wall.
  • a top foil mechanism that can be used for hydrodynamic bearings that use various foils that are fixed by extending and inserting the top oil between the surfaces of the stop wall. Provide a stop mechanism.
  • the hydrodynamic foil bearing of the present invention it is possible to manufacture a spring-foil oil more easily and accurately than before and easily incorporate it into the bearing. However, the adjustment fee according to the demand is increased, and the stability at high speed is also improved.
  • the rotating shaft can rotate in any direction.
  • FIG. 1 is a cross-sectional view of a dynamic pressure gas bearing according to a first embodiment of the present invention.
  • FIG. 2 is a slit layout diagram of spring oil used in the dynamic pressure gas bearing of the first embodiment.
  • FIG. 3 is a drawing for explaining end processing of a slit of spring oil.
  • FIG. 4 is a plan view schematically showing the state of a slit of spring oil constituting the feature of the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a dynamic pressure gas bearing according to a second embodiment.
  • FIG. 6 is a plan view schematically showing the state of a slit of spring oil constituting the feature of the third embodiment of the present invention.
  • FIG. 7 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a fourth embodiment of the present invention.
  • FIG. 8 is a drawing for explaining a state in which spring oil is incorporated in a dynamic pressure gas bearing of a fourth embodiment.
  • FIG. 9 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a fifth embodiment of the present invention.
  • FIG. 10 is a drawing for explaining the state of incorporation of spring oil in the dynamic pressure gas bearing of the fifth embodiment.
  • FIG. 11 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a sixth embodiment of the present invention.
  • FIG. 12 is a drawing for explaining the state of incorporation of spring oil in the dynamic pressure gas bearing of the sixth embodiment.
  • FIG. 13 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a seventh embodiment of the present invention.
  • FIG. 14 is a plan view of a spring oil used in a dynamic pressure gas bearing according to an eighth embodiment of the present invention.
  • FIG. 16 is a plan view of a spring oil used in the dynamic pressure gas bearing of the ninth embodiment. [17] FIG. 17 is a perspective view illustrating a spring oil locking mechanism.
  • FIG. 18 is a perspective view illustrating a spring oil locking mechanism with a drop-off prevention mechanism added thereto.
  • FIG. 19 is a perspective view for explaining another mechanism in which a spring oil locking mechanism is added with another drop-off prevention mechanism.
  • FIG. 20 A sectional view showing a state in which the locking mechanism of the ninth embodiment is applied to a bump foil bearing device.
  • FIG. 22 is a cross-sectional view of a dynamic pressure gas bearing according to a tenth embodiment of the present invention.
  • FIG. 23 is a plan view of a spring oil used in the dynamic pressure gas bearing of the tenth embodiment.
  • FIG. 24 is a drawing showing another shape example of the tongue formed on the spring oil.
  • FIG. 25 is a drawing showing still another example of the shape of the tongue formed on the spring oil.
  • FIG. 26 is a plan view of a spring oil used in a dynamic pressure gas bearing according to an eleventh embodiment of the present invention.
  • FIG. 30 is a cross-sectional view showing an example of a conventional dynamic pressure gas bearing.
  • FIG. 31 is a cross-sectional view showing another example of a conventional dynamic pressure gas bearing.
  • FIG. 1 is a cross-sectional view of a dynamic pressure gas bearing according to one embodiment of the present invention
  • FIG. 2 is a slit layout diagram of a spring oil used therefor.
  • the spring oil 12 is arranged so as to contact the inner wall of the cylindrical housing 11, and the top oil 13 is fixed to the inner wall of the nose housing with the top oil 13 fixed to the inner wall.
  • the rotating shaft 14 is accommodated through an air layer 15 in a cylindrical shape that is formed so as to make one round along the inner wall.
  • the spring oil 12 is a thin elastic metal plate having a thickness of several hundreds of meters, and as shown in FIG. 2, slits 16 having the same shape are arranged in parallel to the winding direction of the oil. Slit 16 force S Since the metal part is small at a certain position and its rigidity is weak, when it is loaded into the dynamic pressure gas bearing 1, it is bent at the slit position as shown in Fig. 1, and the spring oil 12 is partially vacant. It becomes a cylinder with a polygonal cross section.
  • the spring oil 12 having a polygonal cross section is usually formed by bending at the position of the slit 16, contacting the inner wall of the wing, and the portion sandwiched by the slit 16 is an elastic beam.
  • the top top oil 13 in the inside is supported by inertia.
  • the rigidity of the long elastic beam A formed between them becomes small, and the rigidity of the short elastic beam B existing at a short distance becomes large.
  • the rigidity of the spring oil 12 can be adjusted by the position of the slit, so that the desired elasticity along the circumference of the bearing can be provided with the desired elasticity.
  • the top oil 13 is a thin 100 ⁇ m-thick elastic metal plate treated with a solid lubricant to reduce the coefficient of friction with the rotating shaft 14, and one end is fixed to the inner wall of the housing 11. The other end is a free end.
  • the rotary shaft 14 is rotated in the direction of the free end of the top oil 13 as shown by the arrow in FIG.
  • air is drawn between the rotating shaft 14 and the top oil 13
  • An air layer 15 is formed.
  • the air layer 15 significantly reduces the rotational friction of the rotating shaft 14 and enables smooth rotation.
  • the bearing is supported with relatively weak rigidity at the start of rotation, and is supported with strong rigidity that resists strong stress at high speed rotation, and the bearing has stepwise rigidity suitable for the rotation speed. A device can be obtained.
  • the support rigidity and the rigidity distribution in the circumferential direction of the housing can be easily adjusted.
  • the end of the slit 16 is rounded to reduce the stress.
  • the hydrodynamic gas bearing of this embodiment is manufactured and manufactured without the need for molding calorie using a press machine or the like by simply opening a slit in the spring oil as compared to a conventional oil-type gas bearing or leaf-type gas bearing. Easy to assemble.
  • the spring oil can be processed by using an etching technique used for manufacturing printed circuit boards, etc. If the etching technique is used, the accuracy is high and mass production is easy.
  • FIG. 4 and FIG. 5 are drawings for explaining another embodiment of the present invention
  • FIG. 4 is a plan view schematically showing the state of the slit of the spring oil constituting the feature of this embodiment. is there.
  • Fig. 5 is a cross-sectional view of the dynamic pressure gas bearing of the present embodiment, where (a) is the state at the beginning of rotation, (b) is the state in the middle of high speed, and (c) is the state during high speed rotation. Indicates.
  • slits having different lengths are alternately arranged. It has been.
  • the part where the slit 22 is long has a small remaining flat plate width, so the rigidity is weak and the foil is easily broken.
  • the part with the short slit 23 is harder to break.
  • a dynamic pressure gas bearing incorporating spring oil in which slits of different lengths are alternately arranged has a small load! /
  • the rigidity of the spring oil is low and the top oil opens. It is possible to obtain a bearing that exhibits favorable characteristics that rigidity increases with an easy load.
  • Fig. 6 is a plan view of a spring oil with a slit cut from the side end and a central portion remaining.
  • the dynamic pressure gas bearing of the present embodiment incorporates a spring foil 31 in which a plurality of slits 32 are formed so as to leave a central band with a constant width at the center of the foil by cutting the end force on the oil side. Is. Since the spring oil is separated at the side of the bearing in this way, the elastic beams move relative to each other, so that the rigidity at the side is weak compared to the internal rigidity, and when the rotating shaft tilts, It is possible to avoid contact with one piece.
  • FIG. 7 is a plan view of the spring oil used in the dynamic pressure gas bearing of the fourth embodiment
  • FIG. 8 is a drawing for explaining the state of incorporation of the spring oil of FIG.
  • the spring oil used in this example is a single elastic material.
  • This is a flat plate 33 in which a spring oil 34 part and a top oil 35 part are formed together.
  • the spring oil 34 part has slits in place, and the top oil 35 part has a solid lubricant on the surface.
  • the spring oil 34 is formed with 4 slits and incorporated into the bearing, the spring oil partial force square is formed. However, more slits may be formed, That's not good.
  • the dynamic pressure gas bearing 3 of the present embodiment shown in FIG. 8 is obtained by rounding a portion 35 of the elastic flat plate 33 to which a solid lubricant is applied to form a top oil and further forming a portion 34 having slits at each slit position. It is refracted into a polygonal spring oil and inserted into the inner wall 36 of the nosing.
  • the foil 37 may be prevented from shifting by the rotation of the rotating shaft by extending and fixing the end 37 of the spring oil to the inner wall 36 of the nosing.
  • the dynamic pressure gas bearing of this embodiment integrates the spring oil and the top oil, the number of parts constituting the bearing can be reduced, and the production can be rationalized.
  • FIG. 9 is a plan view of the spring oil used in the dynamic pressure gas bearing of the fifth embodiment
  • FIG. 10 is a view for explaining the state of incorporation of the spring oil of FIG.
  • the spring oil 41 used in this embodiment is provided with a plurality of slits 43 adjacent to and parallel to a slit portion 42 formed with an elastic beam in between.
  • the spring oil 41 is loaded into the housing inner wall 44, as shown in FIG. This reduces the pressure and reduces the wear on the inner wall 44 of the housing.
  • FIG. 11 is a plan view of the spring oil used in the dynamic pressure gas bearing of the sixth embodiment
  • FIG. 12 is a drawing for explaining the state of incorporation of the spring oil of FIG.
  • the spring oil 47 used in this embodiment is placed in a portion that becomes an elastic beam by being sandwiched between vertical slits 48 formed in the width direction of the spring foil 47.
  • a plurality of lateral slits 49 are formed in parallel to the side edges.
  • the spring oil 47 When the spring oil 47 is charged into the inner wall 46 of the housing, it is refracted while contacting the inner wall 46 at the position of the vertical slit 48 to form a tubular spring oil having a polygonal cross section. As shown in FIG. 12, the spring oil 47 is brought into surface contact with the surface of the top oil 50 at the positions of the plurality of lateral slits 49 to reduce the contact pressure.
  • FIG. 13 is a drawing of a spring oil used in the dynamic pressure gas bearing of the seventh embodiment.
  • the spring oil 51 used in this embodiment forms slits 52, 53, 54 of the same length at appropriate intervals, and the length of the elastic beam formed between adjacent slits is selected. In addition to adjusting the rigidity of the beam, the width of the slit is selected to adjust the distribution of the elastic beam.
  • the elastic beam is formed between the slit end lines, there is no panel that elastically supports the rotating shaft in the wide slits 53 and 54, so the spring can be selected by selecting the slit width appropriately.
  • the elastic distribution of the oil 51 can be adjusted.
  • FIG. 14 is a plan view of the spring oil used in the dynamic pressure gas bearing of the eighth embodiment.
  • the spring oil 56 used in this embodiment is formed in the width direction of the spring oil 56.
  • a plurality of horizontal slits 58 are formed parallel to the side edges of the spring oil 56 at the portion sandwiched between the vertical slits 57 to be divided into appropriate widths and assembled into the housing
  • the support rigidity is changed in the axial direction of the rotary shaft. For example, side If a lateral slit 58 parallel to the end is formed near the side end to increase the rigidity at the center of the bearing and decrease the rigidity at the ends of both sides, it is possible to prevent the rotation shaft from hitting one side.
  • FIG. 15 is a cross-sectional view schematically showing the dynamic pressure gas bearing of the ninth embodiment
  • FIG. 16 is a plan view of the spring oil used in this embodiment
  • FIG. 17 shows the locking mechanism of the spring oil. It is a perspective view to explain.
  • the dynamic pressure gas bearing 6 of the present embodiment is a gas bearing incorporating spring oil 62 in which slits of the same shape are arranged at equal intervals.
  • the spring oil 62 and the top oil 63 are fitted inside the bearing housing 61, and the rotating shaft 64 is inserted into a cylinder formed by the top oil 63.
  • the spring oil 62 When the spring oil 62 is rolled into a cylindrical shape having a diameter smaller than that of the housing 61, and is loosened after being placed in the cylinder of the housing, the spring oil 62 spreads by the panel force of the oil and adheres closely to the inner wall. At this time, the position of the slit 67 formed in the spring oil 62 becomes a polygonal cylindrical shape in contact with the inner wall as a ridgeline, and an elastic beam is formed between adjacent ridgelines.
  • top oil 63 When the top oil 63 is also rolled into a cylindrical shape having a diameter smaller than that of the housing 61 and inserted into the spring oil 62 to be loosened, the spring oil 62 is pressed and spread from the inside by its own panel force.
  • the length of the top oil 63 is such that it almost reaches the end face of the locking mechanism 66 after making one round inside the housing 61. Both ends of the top oil 63 are fixed to the inner wall of the housing 61 by a locking mechanism 66 as shown in FIG.
  • the spring oil 62 is formed of a thin, elastic metal flat plate having a thickness of several hundred ⁇ m.
  • the spring oil 62 is formed in a rectangular shape and has a longitudinal direction and a lateral direction.
  • the short direction of the spring oil 62 is a direction that is substantially parallel to the axis of the rotary shaft when mounted in the housing 61.
  • a plurality of slits 67 having the same shape are arranged at equal intervals in the longitudinal direction of the spring oil 62, and the slit 67 has a length in the longitudinal direction (slit length) of the slit in the short direction of the spring oil 62,
  • the spring foil 62 has a slit width (slit width) in the longitudinal direction.
  • the slit 67 When the spring oil 62 is bent, the slit 67 receives the bending deformation. It is distributed between the bending deformation and the bending deformation received by the elastic beam formed between the slit 67 and the adjacent slit 67.
  • the smaller the slit length of the slit 67 with respect to the length of the spring oil 62 in the short direction the more the elastic beam has a planar shape. The bending deformation of Nguf oil 62 tends to be handled by both the slit 67 and the elastic beam.
  • the size of the gap between the inner wall of the top oil 63 and the outer wall of the cylindrical shaft 14 is an important factor governing the performance of the foil type hydrodynamic bearing. Therefore, it is important to manage the accuracy of the gap to a value higher than a predetermined value when manufacturing a foil type hydrodynamic fluid bearing.
  • the spring oil 62 and top oil 63 are unavoidable for the plate material used! /, And there is a plate thickness error, etc., so manufacturing error is expected in the production of foil type hydrodynamic fluid bearings. In the above, it is required to manage the accuracy of the gap to a value greater than a predetermined value. This allows foil type hydrodynamic bearings to function as designed within an acceptable range.
  • the spring-type hydraulic fluid bearing 62 must be made of a slit 67 in order to function as designed within an allowable range. It is preferable that most of the bending deformation of the spring oil 62 is handled by the slit 67 so that the elastic beam is bent in a V shape in a straight line in a cross-sectional view and the elastic beam is planar. It has been found.
  • the elastic beam of the bending deformation of the spring oil 62 is preferably 15% or less. If the bending ratio of the elastic beam is greater than 15%, the variation of the bending deformation of the elastic beam due to the plate thickness error, etc. increases, and the inner wall of the top oil 63 inscribed in the elastic beam that has been bent and deformed by the spring oil 62 And the size of the gap between the outer wall of the cylindrical shaft 14 fluctuates. Oil type hydrodynamic bearings will not function as designed.
  • the slit length ratio is 60%, the bending ratio of the elastic beam is 27%, and the slit length ratio is When it is 70%, the bending ratio of the elastic beam is 21%, when the slit length ratio is 80%, the bending ratio of the elastic beam is 18%, and when the slit length ratio is 80%, the bending ratio of the elastic beam is When the slit length ratio is 90%, the elastic beam bending ratio is 8%, and when the slit length ratio is 95%, the elastic beam bending ratio is 1% or less. It was. It was also found that when the slit length ratio exceeds 90%, the slit 67 is too long and the strength of the spring oil 62 cannot be secured.
  • the slit length ratio is 80% or more and 90% or less, and it is further desirable that the slit length ratio is 80% or more and 85% or less. Is done.
  • the elastic beam has an arc shape in cross-sectional view and the elastic beam has a cylindrical surface shape.Therefore, the gap between the inner wall of the top wall 63 and the outer wall of the cylindrical shaft 14 is reduced. The size of the gap will deviate from the expected tolerance.
  • the slit length ratio is greater than 90%, the strength of the spring oil 62 cannot be secured, and when the slit length ratio is less than 85%, the strength of the spring oil 62 is securely secured. be able to.
  • the groove width (slit width) of the slit 67 is 1.0 or more times the thickness of the elastic metal plate forming the spring oil 62, or 1.0 times the thickness of the elastic metal plate. It is preferably not smaller.
  • the upper limit of the groove width of the slit 67 is determined so that the bending ratio of the elastic beam is 15% or less in consideration of the size of the gap between the slits 67 and the like. If the groove width of the slit 67 is smaller than 1.0 times the thickness of the elastic metal plate, the spring oil 62 will not bend into a V shape at the slit 67 when the spring oil 62 is bent and deformed. Therefore, the elastic beam is less likely to be straight when viewed in cross section, and the bending ratio of the elastic beam is greater than 15%.
  • the locking mechanism 66 is formed by forming a pair of triangular grooves 69 on the inner wall of the housing 61 back to back. It is. A ridge 70 left uncut between a pair of triangular grooves 69 is formed, and both sides of the ridge 70 become almost vertical stop walls 68! /.
  • the end portion of the top oil 63 falls into the triangular groove 69 and is pressed against the inner wall of the housing 61 by the bunker that tries to loosen the oil itself. In order to prevent it from coming off more reliably, it is preferable that both edges of the top oil 63 hit against the stop wall 68 and stop. /.
  • the top surface of the ridge 70 is the same as the inner surface of the top oil 63 when viewed from the viewpoint of the function of the force that is the same height as the inner surface of the housing 61 due to the convenience of the manufacturing process formed by digging the inner wall of the housing 61. You may protrude to the same Cf standing. The higher the peak 70 is, the more difficult it is for the top oil 63 to come off.
  • the bottom surface of the triangular groove 69 is formed as a surface in contact with the cross-sectional circle of the inner wall of the housing 61, and an end portion extending in a tangential direction from the cylindrical shape formed by the top oil 63 extends along the bottom surface. It is preferable that the edge hits the stop wall 68 and stops. By making the cylindrical force smoothly transition to the flat surface when the top foil 63 fits in the triangular groove 69, it can be prevented from bulging in the transition region. If there is a bulging portion, the top oil 63 comes into contact with the rotating shaft 64, which causes rotation failure, frictional heat generation, wear, etc., which is not preferable.
  • top oil 63 is not free end because both ends are constrained by friction with the inner wall of housing 61. Since the air introduction opening is provided between the puff oil 63 and the rotating shaft 64, unlike the bearing of the first embodiment, the air layer 65 is generated even if the rotating shaft 64 rotates in either the left or right direction. Is possible.
  • the air layer 65 develops and the top oil 63 is pressed against the inner wall of the housing 61. Therefore, the elastic beam of the spring oil 62 is deformed during high-speed rotation, and the rotating shaft 64 is supported by strong rigidity. Will come to be.
  • the triangular groove 69 is made to have an appropriate depth so that the supply of air is facilitated so that the air layer 65 is generated and generated smoothly.
  • the locking mechanism 66 has a very simple structure as compared with the conventional method in which one end of the top oil is fixed to the inner wall of the housing by screws or welding, and has a special structure for locking to the top oil 63.
  • the assembly force can also be saved without the need for machining.
  • it is easy to disassemble the bearing device, and it is easy to modify it in accordance with maintenance and change of conditions.
  • the spring oil 62 can be sufficiently supported by being covered with the top oil 63 and pressed, but it is supported in the same way as the top oil 63 using the locking mechanism 66, and the top oil 63 is supported from above. Then, when assembling the bearing device, spring oil 6
  • top oil 63 can be inserted after 2 is fixed.
  • FIGS. 18 and 19 are perspective views showing a state in which a mechanism for reliably preventing the top oil 63 from falling off is added. In both cases, the top oil 63 is prevented from moving off the inner wall of the bearing housing 61 in the axial direction.
  • the stopper 71 is screwed to the side end of the peak 70 of the locking mechanism to restrict the movement of the top oil 63 in the width direction.
  • the upper edge of the stopper 71 is lowered from the upper surface of the peak 70 so that the movement of the rotating shaft is not hindered.
  • FIG. 19 shows an example in which a flange 72 that holds the edge of the housing 61 is provided at the end of the top oil 63. Even if the top oil 63 moves in the axial direction due to some force action, the heel 72 is blocked by the edge and cannot move. In either case, the top oil 63 can be reliably prevented from falling off by attaching a simple mechanism.
  • FIG. 20 is a cross-sectional view showing a state in which the locking mechanism 66 of the present embodiment is applied to the dynamic pressure gas bearing 7 using the bump oil 73.
  • the locking mechanism 66 of the present embodiment is not limited to the case where the spring oil of the present invention is used, and as shown in FIG. Needless to say, it can also be used in a bearing device using fufu oil.
  • locking mechanism 66 needs to be arranged in the bearing housing 61, and a plurality of locking mechanisms are installed at equal intervals, and the support rigidity is adjusted. As shown, locking mechanisms may be placed at appropriate intervals to cause unequal support rigidity, for example, to suppress vibrations, or to respond to changes in starting load and rotating load. .
  • FIG. 22 is a cross-sectional view schematically showing a dynamic pressure gas bearing of the tenth embodiment
  • FIG. 23 is a plan view of a spring oil used in this embodiment.
  • the dynamic pressure gas bearing 8 of this embodiment uses a spring oil 82 as shown in FIG.
  • the spring oil 82 is formed by arranging the tongs 86 formed with slits on three sides of the rectangle on the entire surface.In the figure, three rows of tongs 86 of the same shape are arranged in the width direction. Of course, there are 15 rows! /, But it is not limited to these arrangements.
  • the spring oil 82 is inserted inside the bearing housing 81, and the top oil 83 having a cylindrical shape is fixed to the inner wall by the locking mechanism 84, and the rotary shaft 85 is inserted into the top oil 83, and the bearing 8 Is configured.
  • the tongue 86 extends tangentially from the curved surface of the spring oil 82 and hits the inner wall of the housing 81 to act as a panel. Then, a support rigidity is given to the rotary shaft 85 through the top oil 83.
  • the tongue 86 not only exhibits a panel action, but also slides on the inner wall surface of the housing 81 when pressed, and thus has the ability to suppress vibration by friction damping during high-speed rotation.
  • the tongue 86 is simply formed by cutting the spring oil 82, and unlike the leaf oil, it does not need to be plastically deformed. The incision can be made easily and with high precision by etching in the same manner as the slit of the spring oil used in Example 1 or the like.
  • FIG. 24 and FIG. 25 are drawings showing an example in which the shape of the tongue formed on the spring oil 82 is changed.
  • the spring oil 82 in FIG. 24 is an example in which the width of the rectangular tongue is changed in the axial direction.
  • the central tongue 87 is formed wider, and the width of the tongues 88 at both ends is smaller than the central one.
  • the spring oil 82 in FIG. 25 has a triangular tongue formed by slitting two sides of the triangle, and the central tongue 89 has a larger triangle than the tongue 90 at both ends.
  • the triangular tongs 89 and 90 support the more the high-speed rotation, as the effective support position of the tongs widens toward the base side of the tongue as the distance between the flange 82 and the housing 81 becomes shorter. It has a characteristic that the rigidity increases rapidly.
  • the tongue 90 since the tongue 90 is short in the portion close to the end of the bearing and cannot be strongly pressed against the housing 81, it has a function of preventing the one piece contact where the supporting rigidity is weak.
  • FIG. 26 is a plan view of the spring oil used in the dynamic pressure gas bearing of the eleventh embodiment.
  • the spring oil used in this embodiment has a slit portion with a wide cut-off shape, and is adjacent to the spring oil.
  • the distance force to the ridgeline of the slit to be changed varies depending on the distance of the end force of the oil flat plate, so that the rigidity is changed.
  • the protruding shape in the slit gradually contacts the inner wall of the housing step by step, finally increasing the support rigidity and finally rotating at high speed. Since the elastic beam is pressed against the wall, it becomes extremely strong and rigid, and the change in rigidity accompanying rotation is large.
  • the slit shape is a wide slit 93 such as a semicircular shape, a bow shape or a trapezoidal shape
  • the end of the wide slit 93 is the inner wall of the housing while the top oil does not spread.
  • a force with which a long span beam is formed as a fulcrum in contact with the surface and a relatively weak rigidity is given. Since the elastic beam does not act at the center, there is a stiffness distribution in the axial direction.
  • the center position of the slit comes into contact with the inner wall of the housing, and the short span beam becomes effective and the rigidity increases, and the rigidity changes with rotation.
  • the rigidity distribution and the change state vary depending on the shape of the slit.
  • FIG. 27 is a cross-sectional view schematically showing a dynamic pressure gas bearing of a twelfth embodiment.
  • the dynamic pressure gas bearing 9 of this embodiment uses a double spring oil.
  • a polygonal spring oil 96 is inserted into the housing 95, a polygonal spring oil 97 having the same number of angles is inserted inside, and a top oil 98 is further inserted.
  • the angular force of the inner spring oil 97 is preferably arranged so that it hits the central portion of the elastic spring 96 of the outer spring oil 96.
  • the inner and outer spring foils are built on one elastic metal plate and rolled into a double and set in the housing. You may do it. Further, one end of the spring oil may be fixed to the inner wall of the knowing. Needless to say, the spring oil is not limited to double, but may have a multiple structure with an appropriate number of spring foil layers.
  • the bearing is manufactured so that it can be supported with moderate rigidity up to high speed rotation. can do.
  • FIG. 28 is a cross-sectional view showing a dynamic pressure gas bearing in which a plurality of spring oils are arranged so as to overlap each other and the vibrations of the oils are rubbed together to attenuate the vibration of the bearings. It is.
  • spring oils 100 are arranged so that one end is fixed to the inner wall 99 of the nosing at equal intervals, and overlap each other half, and the top oil 101 is inserted therein.
  • the top oil 101 acts on the spring oil 100 and slides to each other, so that a frictional resistance is generated and the vibration can be attenuated.
  • FIG. 29 is a cross-sectional view schematically showing a dynamic pressure gas bearing of the fourteenth embodiment.
  • the dynamic pressure gas bearing of the present embodiment was assembled so that the inner hole cross section of the bearing housing 102 was formed into a polygon, and the slit of the spring oil 103 was positioned at the ridgeline 105 formed at the apex of the polygon. Is.
  • the number of ridge lines in the polygonal cylinder formed by the inner bore of the Uzing 102 is twice the number of ridge lines of the polygon cylinder formed by the spring oil 103, and the elastic beam formed by the spring oil 103 makes the ridge line of the housing 1 It is preferable to place them one by one.
  • each of the above embodiments a gas bearing that can be used in the air is taken up.
  • each of the above structures can be used in oil or water as it is. Since fluid bearings using oil or water are used at a relatively low temperature, a thin flat plate can be formed of a polymer material such as tetrafluoroethylene instead of metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

A foil type dynamic pressure gas bearing capable of providing excellent bearing performance by using a spring foil easily manufacturable and having excellent productivity and a dynamic pressure gas bearing capable of eliminating a restriction in a rotating direction by using an easily installable top foil fixing structure. The spring foil (12) formed of an elastic thin flat plate having a plurality of slits (16) is fitted to the inside wall of a bearing housing (11), a top foil (13) is disposed on the inside of the spring foil, and a rotating shaft (14) is disposed on the inside of the top foil. The spring foil (12) is bent at the positions of the slits (16) to form a large number of elastic beams in contact with the inside of the inside wall, and the rotating shaft (14) is elastically supported by the elastic beams.

Description

明 細 書  Specification
動圧流体軸受  Hydrodynamic bearing
技術分野  Technical field
[0001] 本発明は、高速回転軸用の動圧流体軸受に関し、特に流体力学的フォイル軸受に 関する。  [0001] The present invention relates to a hydrodynamic bearing for a high-speed rotating shaft, and more particularly to a hydrodynamic foil bearing.
背景技術  Background art
[0002] 流体軸受には静圧型と動圧型があるが、周囲の空気を使用し軸の回転により圧力 を生じさせる動圧型軸受は、コンプレッサなどにより外部から与圧する静圧型と比較 して、コスト、軽量化、メンテナンスなどの面で有利であり、さらにオイルフリーであると [0002] There are two types of hydrodynamic bearings: static pressure type and dynamic pressure type. The dynamic pressure type bearing that generates pressure by rotating the shaft using ambient air is less expensive than the static pressure type that is externally pressurized by a compressor or the like. It is advantageous in terms of weight reduction, maintenance, etc., and is oil-free
V、う利点もあるので、特にフオイル式の動圧型流体軸受が航空機用空調装置ある 、 はエアサイクルマシンなど高速回転で使用される小型機械類に多用されている。フォ ィル式動圧型流体軸受は、軸との間に気体膜を形成するトップフオイルと、それを弾 性的に支えるスプリングフオイルと、これらを保持するハウジングで構成されている。フ オイル軸受のスプリングフオイルにはバンプ型やリーフ型など様々なものがある。 V, there is also an advantage, especially oil-type hydrodynamic bearings are used in aircraft air conditioners, and are often used in small machinery used at high speeds such as air cycle machines. A foil type hydrodynamic bearing is composed of a top oil that forms a gas film with a shaft, a spring oil that elastically supports the oil, and a housing that holds them. There are various types of spring bearings for oil bearings such as bump type and leaf type.
[0003] 図 30は、バンプフオイル空気軸受の例を示す側面断面図である。バンプ型スプリン ダフオイルを使用するバンプフオイル空気軸受は、特許文献 1などに開示されて 、る ように、回転軸が挿入されたハウジングと回転軸との間に金属薄板を波板状に形成し たバンプフオイルを設け、その内側に平らな金属薄板に固体潤滑剤を施したトップフ オイルを設けて、回転軸とトップフオイルの間に形成される薄い流体膜によって回転 軸を流体力学的に支持すると共に、トップフオイルがバンプフオイルを介してハウジン グに対して弹性的に支持されるようになって!/、る。  FIG. 30 is a side sectional view showing an example of a bump oil air bearing. A bump oil air bearing that uses a bump type spring oil, as disclosed in Patent Document 1, etc., is a bump oil in which a thin metal plate is formed in a corrugated plate shape between a housing in which a rotating shaft is inserted and the rotating shaft. And a flat metal thin plate with a top lubricant coated with a solid lubricant inside, and the rotating shaft is hydrodynamically supported by a thin fluid film formed between the rotating shaft and the top oil, The top oil is supported by the inertia through the bump oil!
[0004] バンプフオイル空気軸受は、バンプフオイルのパネ機能により回転軸の自己調整機 構を備えるため軸受の工作精度に対する要求は厳しくないが、バンプフォイルは複 雑な形状に成型する必要があるためプレスを使った精度の高い成型加工が要求され 加工工程が複雑で製作や組立てが難 U、ので、量産に向かな!/、。  [0004] Bump fill air bearings are equipped with a self-adjusting mechanism for the rotating shaft by means of the bump fill panel function, so the requirements for the work accuracy of the bearing are not strict, but the bump foil needs to be molded into a complex shape, so press High precision molding process is required, and the process is complicated and difficult to manufacture and assemble.
バンプフオイルは、剛性が高く寸法余裕が小さい。また、剛性を下げると使用により 塑性変形して性能を発揮しに《なる。 [0005] 図 31は、リーフフオイル空気軸受の例を示す側面断面図である。リーフ型スプリン ダフオイルを使用するリーフフォイル軸受は、軸受ハウジングの内周に複数のリーフ フオイルが互 ヽに摺動できるように一部を重ね合わせて配置し、その内側に空気を引 き込む隙間を隔てて回転軸を支持するようにしたもので、回転軸の軸荷重の作用に 伴ってリーフフオイルが回転軸にフィットするように変形して、適切な空気層を形成す るようになっている。 Bump oil has high rigidity and small dimensional margin. In addition, if the rigidity is lowered, plastic deformation will occur due to use and the performance will be exhibited. FIG. 31 is a side sectional view showing an example of a leaf oil air bearing. Leaf-foil bearings that use leaf-type spring-foil oil are placed one on top of the other so that multiple leaf-foils can slide together on the inner periphery of the bearing housing, and there is a gap to draw air inside. The rotating shaft is supported at a distance, and the leaf oil is deformed to fit the rotating shaft in accordance with the axial load action of the rotating shaft to form an appropriate air layer. Yes.
リーフフオイルも一定の形状に成型する必要があるため成型加工の手間が必要とな り、また軸受を み立てる手間が掛カる。  The leaf oil also needs to be molded into a certain shape, which requires time and effort for molding, and also requires time and effort for the bearing.
[0006] また、特許文献 2には、スプリングフオイルを 1枚板カゝら形成して組み立て工程を省 略した空気軸受が開示されている。開示された空気軸受のスプリングフオイルは、長 方形の弾性板を長軸に沿って適宜間隔で一方に切り起こして多連の支持板としたも ので、その一端をハウジングの内側の切り込みに設けた固定機構に固定してハウジ ングの内側に沿って配置し、支持板が回転軸を囲むトップフオイルに接してばね作用 で支持するようにしたものである。 [0006] Further, Patent Document 2 discloses an air bearing in which an assembly process is omitted by forming a spring oil from a single plate cover. The disclosed spring bearing oil has a rectangular elastic plate cut into one side at an appropriate interval along the long axis to form a multiple support plate, one end of which is provided in the notch inside the housing. It is fixed along the inside of the housing and fixed to the fixed mechanism, and the support plate is in contact with the top oil surrounding the rotating shaft and is supported by the spring action.
開示された流体力学的箔軸受に使用するスプリングフオイルも、切り起こし支持板 の姿勢を維持するため成型加工を行う必要がある。  The spring oil used in the disclosed hydrodynamic foil bearing also needs to be molded to maintain the posture of the raised support plate.
[0007] さらに、特許文献 3には、軸受ハウジングの内部にスプリングフォイルを最内層でほ ぼ 4角形、中間層で 7角形、最外層でほぼ 6角形になるように三層卷きにして収納し たフオイルジャーナル軸受が開示されている。三重巻きスプリングフオイルは、平板の スプリングフオイルの幅を横切るように溝を形成して、この溝のところでフオイルを折り 曲げて溝に挟まれた部分を弾性梁とする。 [0007] Further, in Patent Document 3, a spring foil is accommodated in a three-layer structure in a bearing housing so that the innermost layer has a substantially quadrangular shape, the intermediate layer has a heptagonal shape, and the outermost layer has a substantially hexagonal shape. An oil journal bearing is disclosed. The triple-winding spring oil is formed with a groove across the width of the flat spring oil, and the portion of the groove bent between the grooves is used as an elastic beam.
特許文献 3に開示された軸受は、梁部の持つ弾性と屈曲部の接触による摩擦減衰 が得られて、ジャーナルの高速回転で発生する自励振動を抑制することができる。 し力し、厚さ数 100 μ m以下という極めて薄いスプリングフオイルの薄板平板に一定 の厚みを残して溝を形成することは難しい上、溝部の板厚が極めて薄くなるため一部 に亀裂が発生したときにも幅方向に進展しやすぐ強度上問題である。  In the bearing disclosed in Patent Document 3, the elasticity of the beam portion and the frictional damping due to the contact of the bent portion are obtained, and the self-excited vibration generated by the high-speed rotation of the journal can be suppressed. However, it is difficult to leave a certain thickness on a thin plate of spring oil with a thickness of several hundred μm or less, and it is difficult to form a groove. Even when it occurs, it develops in the width direction and is a problem in strength.
[0008] また、従来、トップフオイルは、特許文献 1や特許文献 2にも記載されて 、るように、 バンプフオイルあるいはスプリングフオイルと一緒に一端をハウジング内筒面にねじ や溶接で固着され、他端が周方向に移動可能な自由端とされていた。このような構 造では、回転軸は自由端方向から固定端方向に向力つて回転することにより空気を 回転軸とバンプフオイルの間に巻き込んで空気層を形成するようになっていて、回転 軸をトップフオイル固定端側から回転させると、トップフオイルが回転軸に巻き付!/、て 空気層を形成することができな ヽため、回転方向は 1方向に限られて ヽた。 [0008] Conventionally, as described in Patent Document 1 and Patent Document 2, the top oil is screwed at one end to the inner cylindrical surface of the housing together with the bump oil or the spring oil. The other end is a free end that can be moved in the circumferential direction. In such a structure, the rotating shaft rotates in the direction from the free end direction to the fixed end direction so that air is wound between the rotating shaft and the bump fluid to form an air layer. When rotating from the top oil fixed end, the top oil wraps around the rotating shaft! Because the air layer cannot be formed, the rotation direction is limited to one direction.
このように、従来のトップフオイル固定方法はハウジング内面に固定するための特別 な工作が必要になる上、回転軸の回転方向を一方に限定する問題があった。  As described above, the conventional top oil fixing method requires a special work for fixing to the inner surface of the housing, and has the problem of limiting the rotation direction of the rotating shaft to one side.
特許文献 1:特開 2002— 061645号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-0661645
特許文献 2:特開 2002-364643号公報  Patent Document 2: JP 2002-364643 A
特許文献 3:実開平 6— 76716号公報  Patent Document 3: Japanese Utility Model Publication No. 6-76716
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明が解決しょうとする課題は、製作がより容易で量産性に優れたスプリングフォ ィルを用いて軸受性能の優れたフォイル式動圧流体軸受を提供することである。また 、本発明が解決しょうとする第 2の課題は、さらに、取付が容易なトップフオイル固定 構造を用いて回転方向に制約がな ヽ動圧流体軸受を提供することである。 [0009] The problem to be solved by the present invention is to provide a foil type hydrodynamic bearing having excellent bearing performance using a spring foil that is easier to manufacture and excellent in mass productivity. In addition, a second problem to be solved by the present invention is to provide a peristaltic fluid bearing having no restriction in the rotational direction by using a top oil fixing structure that is easy to mount.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するため本発明の動圧流体軸受は、軸受ハウジングの内壁に複 数のスリットを設けた薄板平板で形成したスプリングフオイルを装着し、スプリングフォ ィルの内側にトップフオイルを配置し、トップフオイルの内側に回転軸を配置したフォ ィル式軸受であって、スプリングフオイルが剛性の小さな位置で折り曲がって内壁内 側に接する多数の弾性梁を有する多角形断面を形成し、この弾性梁によって回転軸 を弾性的に支持するようにしたことを特徴とする。 [0010] In order to solve the above problems, the hydrodynamic bearing of the present invention is mounted with a spring oil formed of a thin flat plate having a plurality of slits on the inner wall of the bearing housing, and the top is placed inside the spring fill. This is a foil type bearing in which the oil is arranged and the rotating shaft is arranged inside the top oil, and the spring oil is bent at a position with small rigidity and has many elastic beams that are in contact with the inner side of the inner wall. A rectangular cross section is formed, and the rotating shaft is elastically supported by this elastic beam.
薄板平板で形成したスプリングフオイルにスリットを設けることにより場所によって曲 げ剛性に強弱差を与えて、このスプリングフオイルを軸受ハウジングの内壁に装着す ると、剛性の小さなスリット位置で折り曲がって内壁内側に接し、隣接するスリットの間 に多数の弾性梁が生成して多角形断面を形成する。この弾性梁によってトップフォイ ルを弹性的に支持することができる。 [0011] 回転軸はトップフオイルに包まれ、回転につれて回転軸とトップフオイルの間に空気 などの気体が弓 Iき込まれて気体層を形成し、回転軸を流体力学的に支持することに より高速回転を円滑に行うようになる。なお、回転軸の回転が高速になるにつれて気 体層の厚みが増加しトップフオイルを軸受ハウジングの内壁に押し付けてスプリング フオイルの弾性力を増加させるので、回転軸は高速回転状態でより安定に回転する ようになる。 A slit is provided in the spring oil formed of a thin flat plate to give a strength difference in bending rigidity depending on the location. When this spring oil is attached to the inner wall of the bearing housing, it is bent at a slit position with a small rigidity. A large number of elastic beams are formed between adjacent slits in contact with the inner wall, forming a polygonal cross section. This elastic beam can support the top foil in inertia. [0011] The rotating shaft is wrapped in top oil, and a gas such as air is inserted between the rotating shaft and the top oil as it rotates to form a gas layer, and the rotating shaft is supported hydrodynamically. In particular, high-speed rotation can be performed smoothly. As the rotation speed of the rotating shaft increases, the thickness of the gas layer increases and the top oil is pressed against the inner wall of the bearing housing to increase the elastic force of the spring oil. It starts to rotate.
スリットは、スプリングフオイルを軸受ハウジングに挿入したときに回転軸にほぼ平行 になる方向に設けて、スリット位置でフオイルを折り曲げて節となるようにすることがで きる。弾性梁における曲げ剛性の強弱差はスリットに挟まれたフオイル部の長さの差 によりもたらされる。  The slit can be provided in a direction substantially parallel to the rotation axis when the spring oil is inserted into the bearing housing, and the flange can be bent to form a node at the slit position. The difference in bending stiffness between elastic beams is caused by the difference in the length of the oil part sandwiched between the slits.
[0012] スリットの間隔を不等ピッチとすることで、弾性梁の長さに変化を与えることができる 。長い弾性梁の部分では曲げ剛性が弱くなるが、また、ハウジング内壁とトップフォイ ルとの距離が大きくなるので軸受の内径が小さくなる。短い梁の部分では曲げ剛性 が大きくなり、また、トップフオイルがハウジング内壁に近づくので軸受の内径が大きく なる。したがって、荷重が小さいときあるいは振動が小さいときは内径の小さな部分の スプリングが軸を支持し、荷重が大きいときあるいは振動が大きいときは内径が大きな 部分でも軸を支持するようになるので、段階的なパネ特性を持った支持構造を有す ることになる。  [0012] The length of the elastic beam can be changed by setting the slits at unequal pitches. Although the bending rigidity is weak at the long elastic beam, the inner diameter of the bearing is reduced because the distance between the inner wall of the housing and the top foil is increased. The bending rigidity increases at the short beam section, and the inner diameter of the bearing increases because the top oil approaches the inner wall of the housing. Therefore, when the load is small or the vibration is small, the spring with the small inner diameter supports the shaft, and when the load is large or the vibration is large, the shaft is supported even at the large inner diameter. It will have a support structure with a unique panel characteristic.
[0013] 長さの異なるスリットを交互に配置するようにしても良い。長いスリットがある部分はフ オイルが折れやすぐ短いスリットがある部分はそれより折れにくい。したがって、始め は長いスリットの部分が屈折してハウジングの壁に接触し短いスリットの部分は折れな いので、トップフオイルが作る筒体の内径が小さぐ回転軸のぶれが小さい。回転軸 が回転し始めると短いスリットの位置でもスプリングフオイルが屈折してトップフオイル 力 Sハウジング内壁に近づき、内径が拡大すると共に、弾性梁の長さが短くなりスプリン ダフオイルの剛性が増大する。このようにして、荷重が小さいときにはスプリングフォイ ルの剛性が低くトップフオイルが開き易ぐ荷重が大きくなると剛性が高くなるという、 好ま 、特性を発現する軸受を得ることができる。  [0013] Slits having different lengths may be alternately arranged. The part with the long slit is broken, and the part with the short slit is hard to break. Therefore, the long slit is initially refracted and contacts the wall of the housing, and the short slit does not break. Therefore, the rotation of the rotating shaft with the small inner diameter of the cylinder made by the top oil is small. When the rotating shaft begins to rotate, the spring oil is refracted even at the short slit position, and the top oil force S approaches the inner wall of the housing, the inner diameter increases, the length of the elastic beam decreases, and the rigidity of the spring oil increases. . In this way, it is possible to obtain a bearing that exhibits characteristics such that when the load is small, the rigidity of the spring foil is low and the rigidity becomes high when the load at which the top oil is easily opened increases.
[0014] スプリングフオイルのスリットの間に形成される梁の長さを等しくして、スリットの幅を 変化させるようにしてもよい。スリットの部分は回転軸を弾性的に支持する支持剛性を 発生しないので、ハウジングの周方向の場所毎に適当な支持剛性差を与えるために 剛性分布を比較的簡単に設計することができる。フォイル軸受の剛性に周方向の差 を持たせることにより回転軸に楕円運動を生起して、振動を抑制することができる。 回転軸に平行なスリットは、等長のものを等間隔に配置することにより、弾性梁の剛 性が互!ヽにほぼ等しくなるようにしても良!、。 [0014] The length of the beam formed between the slits of the spring oil is made equal, and the width of the slit is reduced. It may be changed. Since the slit portion does not generate support rigidity for elastically supporting the rotating shaft, the rigidity distribution can be designed relatively easily in order to provide an appropriate difference in support rigidity for each location in the circumferential direction of the housing. By providing a difference in the circumferential direction of the rigidity of the foil bearing, elliptical motion can be generated on the rotating shaft, and vibration can be suppressed. The slits parallel to the rotation axis may be arranged at equal intervals so that the rigidity of the elastic beams is almost equal to each other!
スリットは、フオイルの側端から中央線に向力つて形成されるようにしてもよい。側端 でスリットが開放されて 、ると、フオイルの側部で剛性が減少して回転軸の片当たりを 防止することができる。  The slit may be formed by force from the side end of the oil toward the center line. If the slit is opened at the side end, the rigidity is reduced at the side of the oil, and it is possible to prevent the rotation shaft from hitting one side.
[0015] スリットは、三角形の 2辺、長方形の 3辺、など、底辺を除いた残りの辺を平板力も切 り離した形状にすることができる。このスプリングフオイルは、トップフオイルに沿わせ て装着することにより、各スリットの位置で接線方向に延びたトング部分が軸受ハウジ ングの内壁に達してパネとなり、トップフオイルを支持する。  [0015] The slit can have a shape in which the flat plate force is separated from the remaining sides excluding the bottom, such as two sides of the triangle and three sides of the rectangle. When this spring oil is installed along the top oil, the tongue that extends tangentially at the position of each slit reaches the inner wall of the bearing housing to become a panel, and supports the top oil.
スリットを太い切り落とし形状にして、隣接するスリットの稜線までの距離が平板の端 力もの距離により異なるようにすることにより、剛性を変化させるようにしても良い。たと えば、切り落とし形状をスリット内に三角形や半円形が突出した形状にすると、突出し た部分が支点になる間は梁の実効幅が小さく剛性が弱いが、回転が高速になりトツ プフオイルがハウジングに近づくにつれて剛性が強くなる。また、スリット形状が半円 形になっている場合では、初めは弾性梁の長さが大きくトップフオイルが広がるにつ れて短い梁が作用を及ぼすようになるので、高速回転になるにつれて急激に剛性が 強化するような特性を呈することになる。  The rigidity may be changed by making the slit into a thick cut shape so that the distance to the ridgeline of the adjacent slit varies depending on the distance of the edge of the flat plate. For example, if the cut-off shape is a shape in which a triangle or semicircular shape protrudes into the slit, the effective width of the beam is small and the rigidity is weak while the protruding portion becomes a fulcrum, but the rotation speed increases and the top oil is transferred to the housing. Stiffness increases as it approaches. In addition, when the slit shape is semicircular, the length of the elastic beam is initially large and the short beam acts as the top oil spreads. It exhibits the characteristics that the rigidity is strengthened.
このように、スリット形状を選択することによって希望の剛性特性を得ることができる。  Thus, desired rigidity characteristics can be obtained by selecting the slit shape.
[0016] また、一部のスリットをスプリングフオイルの平板の側端線に平行に設けても良い。 [0016] Further, a part of the slits may be provided in parallel to the side end line of the flat plate of the spring oil.
回転軸方向に幾つかのゾーンに分けることにより、回転軸方向に剛性の異なるスプリ ングを配置すると同じ効果を得ることができる。  By dividing the zone into several zones in the direction of the rotation axis, the same effect can be obtained if springs having different rigidity are arranged in the direction of the rotation axis.
1枚の薄板の一端からスプリングフオイルを形成し、回転軸を囲う程度に余らせた他 端側に固体潤滑剤を施してトップフオイルとして利用することができる。トップフオイル は常時スプリングフオイルの内側に配置される力もである。 スプリングフオイルのスリット部は複数のスリットが高 、密度で併設されて 、ても良 ヽ 。スリット部が屈折してハウジング内壁に接触するが、複数のスリットを高密度で併設 すれば、内壁に沿う多数の稜線部分が押圧力を分担するので、接触面圧を低減する ことができる。 Spring oil can be formed from one end of one thin plate, and solid lubricant can be applied to the other end which is left to the extent that it surrounds the rotating shaft. The top oil is also a force that is always placed inside the spring oil. The slit portion of the spring oil can be provided with multiple slits at high density. Although the slit portion is refracted and comes into contact with the inner wall of the housing, if a plurality of slits are provided at high density, a large number of ridge lines along the inner wall share the pressing force, so that the contact surface pressure can be reduced.
[0017] また、スリットとスリットの間の梁となる部分の中央にスプリングフオイルの平板の側端 線に平行なスリットを設けても良 ヽ。梁の中央部はトップフオイルに接触してトップフォ ィルに剛性を与える力 梁の中央部に設けたスリットはスプリングフオイルとトップフォ ィルの接触面積を増大させて接触面圧を減少させる効果を有する。  [0017] It is also possible to provide a slit parallel to the side edge of the flat plate of the spring oil at the center of the portion that becomes the beam between the slits. The center of the beam is in contact with the top oil and gives rigidity to the top foil. The slit in the center of the beam increases the contact area between the spring oil and the top foil, reducing the contact pressure. Has the effect of
スプリングフオイルはトップフオイルの周囲に多重に巻き付かせるようにしてもよい。 特に、外側のスプリングフオイルの梁の中央位置に内側のスプリングフオイルのスリツ トが対応するようにして重ねるとよ 、。  The spring oil may be wound around the top oil in multiple layers. In particular, the inner spring-foil slit should be aligned with the center of the outer spring-foil beam.
[0018] 多重構造にすると、トップフオイルが広がるにつれて剛性が高まるので、低速回転 力も高速回転まで適度な剛性で支持することができる。  [0018] When the multi-layer structure is used, the rigidity increases as the top oil spreads, so that the low-speed rotational force can be supported with an appropriate rigidity up to the high-speed rotation.
スプリングフオイルを複数、相互に重なる部分を有するように配置すると、フオイル同 士の摩擦を利用して軸受の振動を減衰させる効果を得ることができる。  If a plurality of spring oils are arranged so as to overlap each other, it is possible to obtain an effect of attenuating the vibration of the bearing by using the friction of the oils.
[0019] スプリングフオイルのスリットは、端部に丸みを持たせて、端部に生ずる応力を緩和 させるようにすることが好ま U、。  [0019] It is preferable that the slit of the spring oil is rounded at the end so as to relieve the stress generated at the end.
スリットはエッチングで製作することができる。エッチング法を用いれば、プリント基板 と同様に極めて細かい寸法のスリットも正確にかつ容易に形成することができる。  The slit can be manufactured by etching. By using the etching method, it is possible to accurately and easily form slits with extremely fine dimensions as in the case of a printed circuit board.
[0020] 軸受ハウジングの内孔断面を多角形に形成して、多角形の頂点にスプリングフォイ ルのスリットが位置するように組み立てるようにしても良 、。このような頂点が存在する と、スプリングフオイルの固定が楽になる。また、スプリングフオイルのスリットの間に形 成される梁の中間に軸受ハウジングの内孔断面多角形の頂角が位置するようにする と、ハウジングの壁とスプリングフオイルで作る空間の断面積が大きくなつて多量の冷 却流体が流通するようになり、軸受の使用可能な高速回転範囲が広がる。  [0020] The bearing housing may be formed such that the cross section of the inner hole is polygonal, and the spring foil slit is positioned at the apex of the polygon. When such apex exists, it becomes easier to fix the spring oil. In addition, if the apex angle of the inner hole section polygon of the bearing housing is positioned in the middle of the beam formed between the slits of the spring oil, the sectional area of the space formed by the housing wall and the spring oil is set. As the flow rate increases, a large amount of cooling fluid circulates and the range of high-speed rotation in which the bearing can be used is expanded.
[0021] また、トップフオイルの両端が当るハウジング内壁の 2力所の位置に内壁面から立ち 上がった止め壁をそれぞれ形成して、弾性平板カゝら形成されるトップフオイルをふた つの止め壁の間に突っ張らせるようにして挿入して固定することが好ましい。なお、止 め壁表面の角度は内壁面に対して 60° 力 90° の範囲であることが好ましい。 また、止め壁の前面には断面が三角形状をした掘り込みを形成して、トップフオイル が自然に曲線を描 、て係止されるようにすることが好ま 、。 [0021] In addition, a stop wall rising from the inner wall surface is formed at each of the two locations on the inner wall of the housing where both ends of the top oil come into contact, and the two top oils formed by the elastic flat plate cover are stopped. It is preferably inserted and fixed so as to stretch between the walls. In addition, stop The angle of the wall surface is preferably in the range of 60 ° force and 90 ° with respect to the inner wall surface. In addition, it is preferable to form a digging with a triangular cross section on the front surface of the stop wall so that the top oil naturally draws a curve and is locked.
[0022] この係止機構を用いると、トップフオイルがハウジングから外れるためには、トップフ オイルがハウジングの幅方向に移動する力、トップフオイルの筒体の軸芯位置がずれ て端縁が止め壁を越える力、トップフオイルの周長が止め壁の先端位置を結ぶ円周 長より短くなるまで縮まなければならない。しかし、トップフオイルの幅方向移動を抑 止すれば、このような条件を満たす変化は殆ど起こらないので、従来のように、トップ フオイルの一端をハウジング内壁にねじや溶接などで固定する方法と比較すると、こ の係止機構は構造や使用方法が極めて簡単でありながら確実な固定をすることがで きる優れた方法である。 [0022] When this locking mechanism is used, in order for the top oil to be detached from the housing, the force of the top oil moving in the width direction of the housing, the axial center position of the top oil cylinder shifts, and the edge becomes The force over the stop wall and the top oil circumference must be shortened until it is shorter than the circumference connecting the end of the stop wall. However, if the movement of the top oil in the width direction is suppressed, there will be almost no change that satisfies this condition.Therefore, as in the conventional method, one end of the top oil is fixed to the inner wall of the housing by screws or welding. In comparison, this locking mechanism is an excellent method that can be securely fixed while its structure and method of use are extremely simple.
また、トップフオイルの取り外し、装置の分解も容易である。  It is also easy to remove the top oil and disassemble the device.
[0023] トップフオイルの幅方向移動は、通常の装着状態でもハウジングとトップフオイルの 摩擦により簡単に抑制することができるが、さらに確実に阻止するために止め壁の側 面に留め金をセットしたり、トップフオイルの端部に耳を設けてハウジング側面に固定 したりすることちでさる。 [0023] Although the movement of the top oil in the width direction can be easily suppressed by friction between the housing and the top oil even in a normal mounting state, a clasp is attached to the side surface of the stop wall to prevent it more reliably. It can be set or fixed on the side of the housing with an ear at the end of the top oil.
この方法では、トップフオイルの両端共にハウジングに固定され、いずれの固定部 分からもトップフオイルと回転軸の間に空気を導入することができるので、回転軸をい ずれの方向に回転させても流体軸受としての性能を発揮させることができる。  In this method, both ends of the top oil are fixed to the housing, and air can be introduced between the top oil and the rotating shaft from any fixed portion, so the rotating shaft can be rotated in either direction. Also, the performance as a fluid bearing can be exhibited.
また、固定部分における空間からの空気導入を促進して冷却能力を高めるため、 垂直な止め壁の前面に形成する三角形状の掘り込みを大きくすることが好ましい。ま た、堀り込みは軸受の回転方向入口(リーディング)側を出口(トレーディング)側より 深くして、空気を導入しやすくすることもできる。  In order to enhance the cooling capacity by promoting the introduction of air from the space in the fixed part, it is preferable to increase the triangular excavation formed on the front surface of the vertical stop wall. In addition, in the drilling, the inlet (leading) side of the bearing in the rotational direction can be deeper than the outlet (trading) side to facilitate air introduction.
[0024] トップフオイルをスプリングフオイルと共に周方向に複数に分割して設けることにより 、浮上性能、負荷容量を調節することができる。特に、トップフオイルを不等ピッチで 設けることにより、振動安定性の高い軸受動特性を得ることができる。 [0024] By providing the top oil together with the spring oil in the circumferential direction, the flying performance and the load capacity can be adjusted. In particular, by providing the top oil at unequal pitches, bearing dynamic characteristics with high vibration stability can be obtained.
この係止機構では、トップフオイルと一緒にスプリングフオイルあるいはバンプフォイ ルなどを固定することも可能である。 [0025] また、本発明は、上記課題を解決するため、フォイル式動圧流体軸受に使用する 複数のスリットを設けた薄板平板力もなるスプリングフオイルを提供するものである。 さらに、トップフオイルの両端が当るハウジング内壁の位置に内壁面に対してほぼ 6 0° 力 90° の角度を有する止め壁とその止め壁の前面に断面が三角形状をした 掘り込みを形成して構成した係止機構であって、トップフオイルを止め壁の面間に展 張して挿入することにより固定するようにした各種フォイルを使用する動圧流体軸受 に用いることができるトップフォイル係止機構を提供する。 With this locking mechanism, it is also possible to fix spring oil or bump foil together with top oil. [0025] Further, in order to solve the above-mentioned problems, the present invention provides a spring oil having a thin flat plate force provided with a plurality of slits used in a foil type hydrodynamic bearing. In addition, a stop wall having an angle of approximately 60 ° force 90 ° with respect to the inner wall surface is formed at the position of the inner wall of the housing where both ends of the top oil come into contact, and a digging having a triangular cross section is formed on the front surface of the stop wall. A top foil mechanism that can be used for hydrodynamic bearings that use various foils that are fixed by extending and inserting the top oil between the surfaces of the stop wall. Provide a stop mechanism.
[0026] 本発明の流体力学的フォイル軸受によれば、従来より簡単にかつ精度良くスプリン ダフオイルを製作して簡単に軸受に組み込むことができて量産性に優れるば力りでな ぐ軸受の性能も要求に応じた調整代が拡大し、また高速回転時における安定性も 向上する。また、本発明のフォイル軸受では回転軸はいずれの方向にも回転できる。 図面の簡単な説明  [0026] According to the hydrodynamic foil bearing of the present invention, it is possible to manufacture a spring-foil oil more easily and accurately than before and easily incorporate it into the bearing. However, the adjustment fee according to the demand is increased, and the stability at high speed is also improved. In the foil bearing of the present invention, the rotating shaft can rotate in any direction. Brief Description of Drawings
[0027] [図 1]本発明の第 1実施例に係る動圧気体軸受の断面図である。 FIG. 1 is a cross-sectional view of a dynamic pressure gas bearing according to a first embodiment of the present invention.
[図 2]第 1実施例の動圧気体軸受に用いるスプリングフオイルのスリット配置図である。  FIG. 2 is a slit layout diagram of spring oil used in the dynamic pressure gas bearing of the first embodiment.
[図 3]スプリングフオイルのスリットの端部処理を説明する図面である。  FIG. 3 is a drawing for explaining end processing of a slit of spring oil.
[図 4]本発明の第 2実施例の特徴を構成するスプリングフオイルのスリットの状態を模 式的に表す平面図である。  FIG. 4 is a plan view schematically showing the state of a slit of spring oil constituting the feature of the second embodiment of the present invention.
[図 5]第 2実施例に係る動圧気体軸受の断面図である。  FIG. 5 is a cross-sectional view of a dynamic pressure gas bearing according to a second embodiment.
[図 6]本発明の第 3実施例の特徴を構成するスプリングフオイルのスリットの状態を模 式的に表す平面図である。  FIG. 6 is a plan view schematically showing the state of a slit of spring oil constituting the feature of the third embodiment of the present invention.
[図 7]本発明の第 4実施例の動圧気体軸受に使用するスプリングフオイルの平面図で ある。  FIG. 7 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a fourth embodiment of the present invention.
[図 8]第 4実施例の動圧気体軸受におけるスプリングフオイルの組み込み状態を説明 する図面である。  FIG. 8 is a drawing for explaining a state in which spring oil is incorporated in a dynamic pressure gas bearing of a fourth embodiment.
[図 9]本発明の第 5実施例の動圧気体軸受に使用するスプリングフオイルの平面図で ある。  FIG. 9 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a fifth embodiment of the present invention.
[図 10]第 5実施例の動圧気体軸受におけるスプリングフオイルの組み込み状態を説 明する図面である。 [図 11]本発明の第 6実施例の動圧気体軸受に使用するスプリングフオイルの平面図 である。 FIG. 10 is a drawing for explaining the state of incorporation of spring oil in the dynamic pressure gas bearing of the fifth embodiment. FIG. 11 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a sixth embodiment of the present invention.
[図 12]第 6実施例の動圧気体軸受におけるスプリングフオイルの組み込み状態を説 明する図面である。  FIG. 12 is a drawing for explaining the state of incorporation of spring oil in the dynamic pressure gas bearing of the sixth embodiment.
[図 13]本発明の第 7実施例の動圧気体軸受に使用するスプリングフオイルの平面図 である。  FIG. 13 is a plan view of a spring oil used in a dynamic pressure gas bearing according to a seventh embodiment of the present invention.
[図 14]本発明の第 8実施例の動圧気体軸受に使用するスプリングフオイルの平面図 である。  FIG. 14 is a plan view of a spring oil used in a dynamic pressure gas bearing according to an eighth embodiment of the present invention.
圆 15]本発明の第 9実施例に係る動圧気体軸受の断面図である。 15] A sectional view of a dynamic pressure gas bearing according to a ninth embodiment of the present invention.
[図 16]第 9実施例の動圧気体軸受に用いるスプリングフオイルの平面図である。 圆 17]スプリングフオイルの係止機構を説明する斜視図である。  FIG. 16 is a plan view of a spring oil used in the dynamic pressure gas bearing of the ninth embodiment. [17] FIG. 17 is a perspective view illustrating a spring oil locking mechanism.
圆 18]スプリングフオイルの係止機構に脱落防止機構を付加したものを説明する斜 視図である。 [18] FIG. 18 is a perspective view illustrating a spring oil locking mechanism with a drop-off prevention mechanism added thereto.
圆 19]スプリングフオイルの係止機構に別の脱落防止機構を付加したものを説明する 斜視図である。 [19] FIG. 19 is a perspective view for explaining another mechanism in which a spring oil locking mechanism is added with another drop-off prevention mechanism.
圆 20]第 9実施例の係止機構をバンプフォイル軸受装置に適用した状態を示す断面 図である。 FIG. 20] A sectional view showing a state in which the locking mechanism of the ninth embodiment is applied to a bump foil bearing device.
圆 21]第 9実施例の動圧気体軸受において複数の係止機構を用いた場合を説明す る断面図である。 21] A sectional view illustrating a case where a plurality of locking mechanisms are used in the dynamic pressure gas bearing of the ninth embodiment.
圆 22]本発明の第 10実施例に係る動圧気体軸受の断面図である。 FIG. 22 is a cross-sectional view of a dynamic pressure gas bearing according to a tenth embodiment of the present invention.
[図 23]第 10実施例の動圧気体軸受に使用するスプリングフオイルの平面図である。  FIG. 23 is a plan view of a spring oil used in the dynamic pressure gas bearing of the tenth embodiment.
[図 24]スプリングフオイルに形成するトングの別の形状例を示す図面である。  FIG. 24 is a drawing showing another shape example of the tongue formed on the spring oil.
[図 25]スプリングフオイルに形成するトングのさらに別の形状例を示す図面である。  FIG. 25 is a drawing showing still another example of the shape of the tongue formed on the spring oil.
[図 26]本発明の第 11実施例の動圧気体軸受に使用するスプリングフオイルの平面 図である。  FIG. 26 is a plan view of a spring oil used in a dynamic pressure gas bearing according to an eleventh embodiment of the present invention.
圆 27]本発明の第 12実施例に係る動圧気体軸受の断面図である。 27] A sectional view of a dynamic pressure gas bearing according to a twelfth embodiment of the present invention.
圆 28]本発明の第 13実施例に係る動圧気体軸受の断面図である。 28] A sectional view of a dynamic pressure gas bearing according to a thirteenth embodiment of the present invention.
圆 29]本発明の第 14実施例に係る動圧気体軸受の断面図である。 [図 30]従来技術の動圧気体軸受の例を示す断面図である。 29] A sectional view of a dynamic pressure gas bearing according to a fourteenth embodiment of the present invention. FIG. 30 is a cross-sectional view showing an example of a conventional dynamic pressure gas bearing.
[図 31]従来技術の動圧気体軸受の別の例を示す断面図である。  FIG. 31 is a cross-sectional view showing another example of a conventional dynamic pressure gas bearing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明の動圧流体軸受の最良の形態を詳細に説明する。 Hereinafter, the best mode of the hydrodynamic bearing of the present invention will be described in detail.
実施例 1  Example 1
[0029] 図 1は本発明の 1実施例に係る動圧気体軸受の断面図、図 2はこれに用いるスプリ ングフオイルのスリット配置図である。  FIG. 1 is a cross-sectional view of a dynamic pressure gas bearing according to one embodiment of the present invention, and FIG. 2 is a slit layout diagram of a spring oil used therefor.
本実施例の動圧気体軸受 1は、筒形のハウジング 11の内壁に接触するようにスプリ ングフオイル 12が配置され、その内側にトップフオイル 13がー端をノヽウジング内壁に 固定しノ、ウジング内壁に沿ってほぼ 1周するように取付けられ、トップフオイル 13が形 成する筒形の中に空気層 15を介して回転軸 14が収納されて 、る。  In the dynamic pressure gas bearing 1 of this embodiment, the spring oil 12 is arranged so as to contact the inner wall of the cylindrical housing 11, and the top oil 13 is fixed to the inner wall of the nose housing with the top oil 13 fixed to the inner wall. The rotating shaft 14 is accommodated through an air layer 15 in a cylindrical shape that is formed so as to make one round along the inner wall.
[0030] スプリングフオイル 12は厚さ数 100 mの薄い弾性金属平板で、図 2に示すように 、フオイルの巻き方向に平行に同じ形状のスリット 16が並設されている。スリット 16力 S ある位置では金属部分が小さいため剛性が弱くなるので、動圧気体軸受 1に仕込ま れたときには、図 1に示すようにスリット位置で折れ曲がって、スプリングフオイル 12は 一部が空いた多角形断面を持つ筒形になる。  The spring oil 12 is a thin elastic metal plate having a thickness of several hundreds of meters, and as shown in FIG. 2, slits 16 having the same shape are arranged in parallel to the winding direction of the oil. Slit 16 force S Since the metal part is small at a certain position and its rigidity is weak, when it is loaded into the dynamic pressure gas bearing 1, it is bent at the slit position as shown in Fig. 1, and the spring oil 12 is partially vacant. It becomes a cylinder with a polygonal cross section.
[0031] 断面多角形筒形のスプリングフオイル 12は、普通はスリット 16の位置で折れ曲がつ て形成される稜線カ 、ウジング内壁に接触し、スリット 16に挟まれた部分が弾性梁と なって内部のトップフオイル 13を弹性的に支持する。  [0031] The spring oil 12 having a polygonal cross section is usually formed by bending at the position of the slit 16, contacting the inner wall of the wing, and the portion sandwiched by the slit 16 is an elastic beam. The top top oil 13 in the inside is supported by inertia.
スプリングフオイル 12のスリットの間隔が長いとその間に形成される長い弾性梁 Aの 剛性は小さくなり、間隔が短いところに存在する短い弾性梁 Bの剛性が大きくなる。こ のように、スプリングフオイル 12の剛性はスリットの位置により調整ができるので、軸受 の周に沿った望みの位置に望みの弾性を持たせるようにすることができる。  When the gap between the slits of the spring oil 12 is long, the rigidity of the long elastic beam A formed between them becomes small, and the rigidity of the short elastic beam B existing at a short distance becomes large. Thus, the rigidity of the spring oil 12 can be adjusted by the position of the slit, so that the desired elasticity along the circumference of the bearing can be provided with the desired elasticity.
[0032] トップフオイル 13は、厚さ数 100 μ mの薄 、弾性金属平板に固体潤滑剤を処理し て回転軸 14との摩擦係数を小さくしたもので、一端がハウジング 11の内壁に固定さ れ、他端が自由端となっている。  [0032] The top oil 13 is a thin 100 μm-thick elastic metal plate treated with a solid lubricant to reduce the coefficient of friction with the rotating shaft 14, and one end is fixed to the inner wall of the housing 11. The other end is a free end.
回転軸 14は、図 1に矢印で示したように、トップフオイル 13の自由端の方向に回転 させる。回転が開始されると空気が回転軸 14とトップフオイル 13の間に引き込まれて 空気層 15が形成される。空気層 15は回転軸 14の回転摩擦を著しく低減させて円滑 な回転を可能とする。 The rotary shaft 14 is rotated in the direction of the free end of the top oil 13 as shown by the arrow in FIG. When rotation starts, air is drawn between the rotating shaft 14 and the top oil 13 An air layer 15 is formed. The air layer 15 significantly reduces the rotational friction of the rotating shaft 14 and enables smooth rotation.
ただし、本実施例の動圧気体軸受では、回転軸 14が反対に固定端の方から回転 すると、トップフオイル 13が回転軸 14の表面に巻き付いて空気を取り込むことができ ず、空気層の形成に失敗することになる。  However, in the dynamic pressure gas bearing of this embodiment, when the rotary shaft 14 rotates in the opposite direction from the fixed end, the top oil 13 cannot wind up around the surface of the rotary shaft 14 so that air can be taken in. It will fail to form.
[0033] 回転軸 14の回転が高速になると、空気層 15が発達してトップフオイル 13をノ、ウジ ング 11の内壁の方に押し付けると梁 Aが変形して弾性値が徐々に上昇するが、さら にトップフオイル 13が短 、弾性梁 Bに接するようになると強 、剛性を持つ梁 Bが作用 して、回転軸 14はさらに強い剛性で支持されるようなる。 [0033] When the rotation of the rotary shaft 14 becomes high speed, the air layer 15 develops, and when the top oil 13 is pressed against the inner wall of the wing 11, the beam A is deformed and the elastic value gradually increases. However, when the top oil 13 is short and comes into contact with the elastic beam B, the strong and rigid beam B acts, and the rotating shaft 14 is supported with even stronger stiffness.
したがって、本実施例の構成によって、回転開始時には比較的弱い剛性で支持し 、高速回転になると強い応力に逆らえる強い剛性で支持するようになり、回転速度に 相応しい段階的な剛性を持った軸受装置を得ることができる。  Therefore, with the configuration of this embodiment, the bearing is supported with relatively weak rigidity at the start of rotation, and is supported with strong rigidity that resists strong stress at high speed rotation, and the bearing has stepwise rigidity suitable for the rotation speed. A device can be obtained.
また、弾性金属平板の厚みや材質を選択したり、スリットの数や間隔を適当に選択 することにより、支持剛性やハウジングの周方向の剛性分布を容易に調整することが できる。  In addition, by selecting the thickness and material of the elastic metal flat plate and appropriately selecting the number and interval of the slits, the support rigidity and the rigidity distribution in the circumferential direction of the housing can be easily adjusted.
[0034] なお、図 3に模式的に示すように、スリット 16の端部は丸み Rを付けて応力を緩和さ せることが好ましい。  [0034] As schematically shown in FIG. 3, it is preferable that the end of the slit 16 is rounded to reduce the stress.
本実施例の動圧気体軸受は、従来のフオイル形気体軸受ゃリーフ形気体軸受と比 較すると、スプリングフオイルにスリットを開けるだけでプレス機などを用いた成型カロェ をする必要がなぐ製造および組立が容易である。また、スプリングフオイルの加工は 、プリント基板製造などに利用されているエッチング技術を用いることができ、エッチ ング技術を用いれば精度が高く大量生産も容易である。  The hydrodynamic gas bearing of this embodiment is manufactured and manufactured without the need for molding calorie using a press machine or the like by simply opening a slit in the spring oil as compared to a conventional oil-type gas bearing or leaf-type gas bearing. Easy to assemble. In addition, the spring oil can be processed by using an etching technique used for manufacturing printed circuit boards, etc. If the etching technique is used, the accuracy is high and mass production is easy.
実施例 2  Example 2
[0035] 図 4と図 5は、本発明の別の実施例を説明する図面で、図 4は本実施例の特徴を構 成するスプリングフオイルのスリットの状態を模式的に表す平面図である。また、図 5 は本実施例の動圧気体軸受の断面図で、(a)は回転始期の状態、(b)は高速ィ匕途 中の段階における状態、(c)は高速回転中の状態を示す。  FIG. 4 and FIG. 5 are drawings for explaining another embodiment of the present invention, and FIG. 4 is a plan view schematically showing the state of the slit of the spring oil constituting the feature of this embodiment. is there. Fig. 5 is a cross-sectional view of the dynamic pressure gas bearing of the present embodiment, where (a) is the state at the beginning of rotation, (b) is the state in the middle of high speed, and (c) is the state during high speed rotation. Indicates.
[0036] 本実施例に使用するスプリングフオイル 21には、長さの異なるスリットが交互に配置 されて 、る。長 、スリット 22がある部分は残りの平板幅が小さ 、ため剛性が弱くフォイ ルが折れやすい。一方、短いスリット 23がある部分はそれより折れにくい。 [0036] In the spring oil 21 used in the present embodiment, slits having different lengths are alternately arranged. It has been. The part where the slit 22 is long has a small remaining flat plate width, so the rigidity is weak and the foil is easily broken. On the other hand, the part with the short slit 23 is harder to break.
したがって、停止時は、図 5 (a)に示すように、長いスリット 22の部分が屈折してハウ ジングの壁 24に接触し、短いスリット 23の部分は折れにくいので、トップフオイル 25 が作る筒体の内径は小さぐトップフオイル 25に支持される回転軸 26のぶれが小さ!/、  Therefore, at the time of stopping, as shown in Fig. 5 (a), the long slit 22 part is refracted and comes into contact with the housing wall 24, and the short slit 23 part is hard to break. The inner diameter of the cylinder is small. Shake of the rotary shaft 26 supported by the top oil 25 is small! /,
[0037] 回転軸 26が回転し始めて大きな荷重が掛かると、図 5 (b)に示すように、回転軸 26 とトップフオイル 25の間に空気層 27が発生してトップフオイル 25がハウジング内壁 24 に近づき、短 、スリット 23の位置でもスプリングフオイル 21が屈折して弾性梁の長さ が短くなりスプリングフオイル 21の剛性が増大する。 [0037] When the rotating shaft 26 starts to rotate and a large load is applied, an air layer 27 is generated between the rotating shaft 26 and the top oil 25 as shown in FIG. The spring oil 21 is refracted even at the position of the slit 23 near the inner wall 24, and the length of the elastic beam is shortened and the rigidity of the spring oil 21 is increased.
さらに、回転軸が通常の回転をするときには、図 5 (c)に示すように、空気層 27が発 達してトップフオイル 25がハウジング内壁 24とほぼ同心状に十分に開き、高い剛性 を持った短 ヽ弾性梁で支持される。  Furthermore, when the rotating shaft rotates normally, as shown in Fig. 5 (c), the air layer 27 is generated and the top oil 25 opens sufficiently concentrically with the inner wall 24 of the housing, so that it has high rigidity. It is supported by a short elastic beam.
[0038] このようにして、長さの異なるスリットを交互に配置したスプリングフオイルを組み込 んだ動圧気体軸受は、荷重が小さ!/、ときにはスプリングフオイルの剛性が低くトップフ オイルが開き易ぐ荷重が大きくなると剛性が高くなるという、好ましい特性を発現する 軸受を得ることができる。  [0038] In this way, a dynamic pressure gas bearing incorporating spring oil in which slits of different lengths are alternately arranged has a small load! / Sometimes the rigidity of the spring oil is low and the top oil opens. It is possible to obtain a bearing that exhibits favorable characteristics that rigidity increases with an easy load.
実施例 3  Example 3
[0039] 図 6は、側端からスリットを切り中央部を残したスプリングフオイルの平面図である。  [0039] Fig. 6 is a plan view of a spring oil with a slit cut from the side end and a central portion remaining.
本実施例の動圧気体軸受は、図 6に示すように、フオイル側端力 切り込んでフォイ ル中央に一定幅の中央帯を残すようにしたスリット 32を複数形成したスプリングフォイ ル 31を組み込んだものである。このように軸受の側部でスプリングフオイルが分離し ているため弾性梁が互いに移動するので側部における剛性が内部の剛性と比較し て弱くなり、回転軸が傾き運動するときに回転軸の片当たりを避けることができる。 実施例 4  As shown in FIG. 6, the dynamic pressure gas bearing of the present embodiment incorporates a spring foil 31 in which a plurality of slits 32 are formed so as to leave a central band with a constant width at the center of the foil by cutting the end force on the oil side. Is. Since the spring oil is separated at the side of the bearing in this way, the elastic beams move relative to each other, so that the rigidity at the side is weak compared to the internal rigidity, and when the rotating shaft tilts, It is possible to avoid contact with one piece. Example 4
[0040] 図 7は、第 4実施例の動圧気体軸受に使用するスプリングフオイルの平面図、図 8は 図 7のスプリングフオイルの組み込み状態を説明する図面である。  FIG. 7 is a plan view of the spring oil used in the dynamic pressure gas bearing of the fourth embodiment, and FIG. 8 is a drawing for explaining the state of incorporation of the spring oil of FIG.
本実施例に使用するスプリングフオイルは、図 7に示したように、 1枚の弾性材料か らなる平板 33にスプリングフオイル 34の部分とトップフオイル 35の部分を一緒に形成 したものである。スプリングフオイル 34の部分には適所にスリットを形成してあり、トツ プフオイル 35の部分には表面に固体潤滑剤を施してある。図ではスプリングフオイル 34に 4個のスリットを形成して軸受に組み込んだときにスプリングフオイル部分力 角 形を形成するようになって 、るが、もっと多数のスリットを形成しても良 、ことは 、うま でもない。 As shown in Fig. 7, the spring oil used in this example is a single elastic material. This is a flat plate 33 in which a spring oil 34 part and a top oil 35 part are formed together. The spring oil 34 part has slits in place, and the top oil 35 part has a solid lubricant on the surface. In the figure, when the spring oil 34 is formed with 4 slits and incorporated into the bearing, the spring oil partial force square is formed. However, more slits may be formed, That's not good.
[0041] 図 8に示す本実施例の動圧気体軸受 3は、弾性平板 33の固体潤滑剤を施した部 分 35を丸めてトップフオイルとし、さらにスリットを形成した部分 34をスリット位置毎に 屈折させて多角形のスプリングフオイルとして、これをノヽウジングの内壁 36内に挿入 したものである。  [0041] The dynamic pressure gas bearing 3 of the present embodiment shown in FIG. 8 is obtained by rounding a portion 35 of the elastic flat plate 33 to which a solid lubricant is applied to form a top oil and further forming a portion 34 having slits at each slit position. It is refracted into a polygonal spring oil and inserted into the inner wall 36 of the nosing.
なお、図中点線で示すように、スプリングフオイルの端部 37をノヽウジング内壁 36ま で延して固定することにより、回転軸の回転によりフォイルがずれないようにしても良 い。  As indicated by the dotted line in the figure, the foil 37 may be prevented from shifting by the rotation of the rotating shaft by extending and fixing the end 37 of the spring oil to the inner wall 36 of the nosing.
本実施例の動圧気体軸受は、スプリングフオイルとトップフオイルを一体ィ匕するため 、軸受を構成する部品の点数が減少して、製造の合理ィ匕を図ることができる。  Since the dynamic pressure gas bearing of this embodiment integrates the spring oil and the top oil, the number of parts constituting the bearing can be reduced, and the production can be rationalized.
実施例 5  Example 5
[0042] 図 9は、第 5実施例の動圧気体軸受に使用するスプリングフオイルの平面図、図 10 は図 9のスプリングフオイルの組み込み状態を説明する図面である。  FIG. 9 is a plan view of the spring oil used in the dynamic pressure gas bearing of the fifth embodiment, and FIG. 10 is a view for explaining the state of incorporation of the spring oil of FIG.
本実施例に使用するスプリングフオイル 41は、図 9に示したように、弾性梁を挟んで 形成されるスリット部 42に複数のスリット 43を平行に隣接して設けたものである。 スプリングフオイル 41をハウジング内壁 44内に仕込むときは、図 10に示すように、 スリット部 42の位置で屈折して多数のスリット 43がハウジング内壁 44に接触して荷重 を支持するため、接触面圧を低減してハウジング内壁 44の摩耗を減少させる効果を もたらす。  As shown in FIG. 9, the spring oil 41 used in this embodiment is provided with a plurality of slits 43 adjacent to and parallel to a slit portion 42 formed with an elastic beam in between. When the spring oil 41 is loaded into the housing inner wall 44, as shown in FIG. This reduces the pressure and reduces the wear on the inner wall 44 of the housing.
スプリングフオイル 41と接触する位置のハウジング内壁 44が極度に摩耗すると、弹 性梁 45の弾性値が低下したりして所期の性能を発揮しなくなる虞があり、これを防止 することは再調整の手間を減少させる効果がある。  If the housing inner wall 44 in contact with the spring oil 41 is extremely worn, there is a risk that the elastic value of the elastic beam 45 may decrease and the desired performance may not be achieved. This has the effect of reducing the labor of adjustment.
実施例 6 [0043] 図 11は、第 6実施例の動圧気体軸受に使用するスプリングフオイルの平面図、図 1 2は図 11のスプリングフオイルの組み込み状態を説明する図面である。 Example 6 FIG. 11 is a plan view of the spring oil used in the dynamic pressure gas bearing of the sixth embodiment, and FIG. 12 is a drawing for explaining the state of incorporation of the spring oil of FIG.
本実施例に使用するスプリングフオイル 47は、図 11に示したように、スプリングフォ ィル 47の幅方向に形成された縦スリット 48に挟まれて弾性梁になる部分に、スプリン ダフオイル 47の側端に平行に複数の横スリット 49を形成したものである。  As shown in FIG. 11, the spring oil 47 used in this embodiment is placed in a portion that becomes an elastic beam by being sandwiched between vertical slits 48 formed in the width direction of the spring foil 47. A plurality of lateral slits 49 are formed in parallel to the side edges.
スプリングフオイル 47をハウジング内壁 46内に仕込むときは、縦スリット 48の位置で ハウジング内壁 46に接触しながら屈折して、断面多角形の筒形のスプリングフオイル となるが、複数の横スリット 49の位置で剛性が弱くなるので、図 12に示すように、スプ リングフオイル 47は複数の横スリット 49の位置でトップフオイル 50の表面に沿って面 接触し接触圧を軽減させる。  When the spring oil 47 is charged into the inner wall 46 of the housing, it is refracted while contacting the inner wall 46 at the position of the vertical slit 48 to form a tubular spring oil having a polygonal cross section. As shown in FIG. 12, the spring oil 47 is brought into surface contact with the surface of the top oil 50 at the positions of the plurality of lateral slits 49 to reduce the contact pressure.
実施例 7  Example 7
[0044] 図 13は、第 7実施例の動圧気体軸受に使用するスプリングフオイルの図面である。  FIG. 13 is a drawing of a spring oil used in the dynamic pressure gas bearing of the seventh embodiment.
本実施例に使用するスプリングフオイル 51は、同じ長さのスリット 52, 53, 54を適当 な間隔で形成するもので、隣りのスリットとの間に形成する弾性梁の長さを選択するこ とにより梁の剛性を調整すると共に、スリットの幅を選択して弾性梁の分布を調整する ものである。  The spring oil 51 used in this embodiment forms slits 52, 53, 54 of the same length at appropriate intervals, and the length of the elastic beam formed between adjacent slits is selected. In addition to adjusting the rigidity of the beam, the width of the slit is selected to adjust the distribution of the elastic beam.
弾性梁はスリットの端線の間に形成されるので、幅の広いスリット 53, 54の部分に は回転軸を弾性支持するパネが存在しないため、スリットの幅を適当に選択すること により、スプリングフオイル 51の弾性分布を調整することができる。軸受の周方向に剛 性差を持たせることにより、高速回転に伴う振動を抑制する振動安定ィヒ性能が向上 する。  Since the elastic beam is formed between the slit end lines, there is no panel that elastically supports the rotating shaft in the wide slits 53 and 54, so the spring can be selected by selecting the slit width appropriately. The elastic distribution of the oil 51 can be adjusted. By providing a difference in rigidity in the circumferential direction of the bearing, vibration stability performance that suppresses vibrations associated with high-speed rotation is improved.
実施例 8  Example 8
[0045] 図 14は、第 8実施例の動圧気体軸受に使用するスプリングフオイルの平面図である 本実施例に使用するスプリングフオイル 56は、スプリングフオイル 56の幅方向に形 成される縦スリット 57に挟まれて弾性梁になる部分に、スプリングフオイル 56の側端 に平行に複数の横スリット 58を形成して弾性梁を適当な幅で分割し、ハウジング内に 組み込んだときに回転軸の軸方向に支持剛性を変化させるものである。たとえば、側 端に平行な横スリット 58を側端の近くに形成して、軸受の中央部で剛性を高くし両側 端部で剛性を低くすると、回転軸の片当たりを防止することができる。 FIG. 14 is a plan view of the spring oil used in the dynamic pressure gas bearing of the eighth embodiment. The spring oil 56 used in this embodiment is formed in the width direction of the spring oil 56. When a plurality of horizontal slits 58 are formed parallel to the side edges of the spring oil 56 at the portion sandwiched between the vertical slits 57 to be divided into appropriate widths and assembled into the housing The support rigidity is changed in the axial direction of the rotary shaft. For example, side If a lateral slit 58 parallel to the end is formed near the side end to increase the rigidity at the center of the bearing and decrease the rigidity at the ends of both sides, it is possible to prevent the rotation shaft from hitting one side.
実施例 9  Example 9
[0046] 図 15は第 9実施例の動圧気体軸受を模式的に示す断面図、図 16は本実施例に 使用するスプリングフオイルの平面図、図 17はスプリングフオイルの係止機構を説明 する斜視図である。  FIG. 15 is a cross-sectional view schematically showing the dynamic pressure gas bearing of the ninth embodiment, FIG. 16 is a plan view of the spring oil used in this embodiment, and FIG. 17 shows the locking mechanism of the spring oil. It is a perspective view to explain.
本実施例の動圧気体軸受 6は、同じ形状のスリットを等間隔に配置したスプリングフ オイル 62を組み込んだ気体軸受である。  The dynamic pressure gas bearing 6 of the present embodiment is a gas bearing incorporating spring oil 62 in which slits of the same shape are arranged at equal intervals.
軸受ハウジング 61の内側にそれぞれハウジング内周とほぼ等しい長さのスプリング フオイル 62とトップフオイル 63を嵌入して、トップフオイル 63が形成する筒の中に回 転軸 64を挿入する。  The spring oil 62 and the top oil 63, each having a length approximately equal to the inner circumference of the housing, are fitted inside the bearing housing 61, and the rotating shaft 64 is inserted into a cylinder formed by the top oil 63.
[0047] スプリングフオイル 62はハウジング 61より径の小さい筒形に丸めて、ハウジングの 筒内に入れた上で緩めると、フオイルのパネ力で広がって内壁に密着する。このとき 、スプリングフオイル 62に形成されたスリット 67の位置が稜線として内壁に接する断 面多角形の筒形となって、隣り合う稜線の間に弾性梁が形成される。  [0047] When the spring oil 62 is rolled into a cylindrical shape having a diameter smaller than that of the housing 61, and is loosened after being placed in the cylinder of the housing, the spring oil 62 spreads by the panel force of the oil and adheres closely to the inner wall. At this time, the position of the slit 67 formed in the spring oil 62 becomes a polygonal cylindrical shape in contact with the inner wall as a ridgeline, and an elastic beam is formed between adjacent ridgelines.
トップフオイル 63も、ハウジング 61より径の小さい筒形に丸めて、スプリングフオイル 62の内側に挿入して緩めると、自身のパネ力によりスプリングフオイル 62を内側から 押圧して広がる。トップフオイル 63の長さは、ハウジング 61の内側をほぼ 1周して係 止機構 66の端面に届く程度にしてある。トップフオイル 63の両端部は、図 17に示す ような係止機構 66によりハウジング 61の内壁に固定される。  When the top oil 63 is also rolled into a cylindrical shape having a diameter smaller than that of the housing 61 and inserted into the spring oil 62 to be loosened, the spring oil 62 is pressed and spread from the inside by its own panel force. The length of the top oil 63 is such that it almost reaches the end face of the locking mechanism 66 after making one round inside the housing 61. Both ends of the top oil 63 are fixed to the inner wall of the housing 61 by a locking mechanism 66 as shown in FIG.
[0048] スプリングフオイル 62は厚さが数 100 μ mの薄 、弾性金属平板で形成されて 、る。  [0048] The spring oil 62 is formed of a thin, elastic metal flat plate having a thickness of several hundred μm.
図 16に示すように、スプリングフオイル 62は長方形形状に形成されており、長手方向 と短手方向を有する。スプリングフオイル 62の短手方向はハウジング 61内に装着さ れたときに回転軸の軸にほぼ平行になる方向である。同じ形状の複数のスリット 67が スプリングフオイル 62の長手方向に等間隔に配列されており、スリット 67はスプリング フオイル 62の短手方向にスリットの長手方向の長さ(スリット長)を有し、スプリングフォ ィル 62の長手方向にスリットの溝幅 (スリット幅)を有する。  As shown in FIG. 16, the spring oil 62 is formed in a rectangular shape and has a longitudinal direction and a lateral direction. The short direction of the spring oil 62 is a direction that is substantially parallel to the axis of the rotary shaft when mounted in the housing 61. A plurality of slits 67 having the same shape are arranged at equal intervals in the longitudinal direction of the spring oil 62, and the slit 67 has a length in the longitudinal direction (slit length) of the slit in the short direction of the spring oil 62, The spring foil 62 has a slit width (slit width) in the longitudinal direction.
スプリングフオイル 62が曲げ変形する場合に、その曲げ変形はスリット 67が受ける 曲げ変形と、スリット 67と隣接するスリット 67との間に形成される弾性梁が受ける曲げ 変形とに分配される。 When the spring oil 62 is bent, the slit 67 receives the bending deformation. It is distributed between the bending deformation and the bending deformation received by the elastic beam formed between the slit 67 and the adjacent slit 67.
スプリングフオイル 62の短手方向の長さに対するスリット 67のスリット長が大きいほ ど、スプリングフオイル 62はスリット 67において V字状に折れ曲がり、弾性梁は断面 視において直線状になり弾性梁は平面形状になり、スプリングフオイル 62の曲げ変 形の大部分がスリット 67によって受け持たれることになる。また、スプリングフオイル 62 の短手方向の長さに対するスリット 67のスリット長が小さいほど、弾性梁は平面形状 力 ずれ弾性梁は断面視において円弧状になり弾性梁は円筒面形状になり、スプリ ングフオイル 62の曲げ変形はスリット 67と弾性梁の両者によって受け持たれる傾向 が強くなる。  The longer the slit length of the slit 67 with respect to the length of the spring oil 62 in the short direction, the more the spring oil 62 bends in a V-shape at the slit 67, and the elastic beam becomes a straight line in cross section, and the elastic beam is flat. It will be shaped, and most of the bending deformation of the spring oil 62 will be handled by the slit 67. In addition, the smaller the slit length of the slit 67 with respect to the length of the spring oil 62 in the short direction, the more the elastic beam has a planar shape. The bending deformation of Nguf oil 62 tends to be handled by both the slit 67 and the elastic beam.
[0049] 一方、トップフオイル 63の内壁と円筒軸 14の外壁との間の隙間の大きさは、フォイ ル式動圧流体軸受の性能を支配する重要な要因である。従って、フォイル式動圧流 体軸受の製造にぉ 、て、この隙間の精度を所定以上の値に管理することは重要であ る。スプリングフオイル 62やトップフオイル 63には使用する板材の避けられな!/、板厚 誤差等を伴うので、フォイル式動圧流体軸受の製造にぉ 、て避けられな 、製造誤差 を見込んだ上で上記の隙間の精度を所定以上の値に管理することが求められる。こ れによって、フォイル式動圧流体軸受は許容範囲で設計通りに機能することになる。  On the other hand, the size of the gap between the inner wall of the top oil 63 and the outer wall of the cylindrical shaft 14 is an important factor governing the performance of the foil type hydrodynamic bearing. Therefore, it is important to manage the accuracy of the gap to a value higher than a predetermined value when manufacturing a foil type hydrodynamic fluid bearing. The spring oil 62 and top oil 63 are unavoidable for the plate material used! /, And there is a plate thickness error, etc., so manufacturing error is expected in the production of foil type hydrodynamic fluid bearings. In the above, it is required to manage the accuracy of the gap to a value greater than a predetermined value. This allows foil type hydrodynamic bearings to function as designed within an acceptable range.
[0050] このように上記の隙間の精度を厳しく管理する必要のある状況下で、フォイル式動 圧流体軸受は許容範囲で設計通りに機能するためには、スプリングフオイル 62はスリ ット 67において V字状に折れ曲がり弾性梁は断面視において直線状になり弾性梁は 平面形状になるように、スプリングフオイル 62の曲げ変形の大部分がスリット 67によつ て受け持たれることが好ま 、ことが判明した。スプリングフオイルの曲げ変形解析及 び軸受性能実験によれば、スプリングフオイル 62の曲げ変形をスリット 67と弾性梁と で受け持つとした場合に、スプリングフオイル 62の曲げ変形のうちの弾性梁が受け持 つ曲げ変形の割合 (弾性梁の曲げ比率と 、う)が 15%以下であることが好ま 、こと が判明した。弾性梁の曲げ比率が 15%より大きい場合には、板厚誤差等に伴う弾性 梁の曲げ変形の変動が大きくなり、スプリングフオイル 62の曲げ変形した弾性梁に内 接するトップフオイル 63の内壁と円筒軸 14の外壁との間の隙間の大きさが変動し、フ オイル式動圧流体軸受が設計通りに機能しなくなる。 [0050] In such a situation where it is necessary to strictly control the accuracy of the gap, the spring-type hydraulic fluid bearing 62 must be made of a slit 67 in order to function as designed within an allowable range. It is preferable that most of the bending deformation of the spring oil 62 is handled by the slit 67 so that the elastic beam is bent in a V shape in a straight line in a cross-sectional view and the elastic beam is planar. It has been found. According to the bending deformation analysis of the spring oil and the bearing performance experiment, when the bending deformation of the spring oil 62 is handled by the slit 67 and the elastic beam, the elastic beam of the bending deformation of the spring oil 62 is It was found that the bending deformation ratio (the bending ratio of the elastic beam) is preferably 15% or less. If the bending ratio of the elastic beam is greater than 15%, the variation of the bending deformation of the elastic beam due to the plate thickness error, etc. increases, and the inner wall of the top oil 63 inscribed in the elastic beam that has been bent and deformed by the spring oil 62 And the size of the gap between the outer wall of the cylindrical shaft 14 fluctuates. Oil type hydrodynamic bearings will not function as designed.
[0051] そこで、スプリングフオイル 62の短手方向の長さに対するスリット 67のスリット長の比  [0051] Therefore, the ratio of the slit length of the slit 67 to the length in the short direction of the spring oil 62
( (スリット 67のスリット長) / (スプリングフオイル 62の短手方向の長さ) ) (以下にスリツ ト長率という)に着目し、スリット長率と上記の弾性梁の曲げ比率との関係を解析によ り調べた。この解析によれば、スリット長率が 0%のときは弾性梁の曲げ比率は 29% であり、スリット長率が 60%のときは弾性梁の曲げ比率は 27%であり、スリット長率が 70%のときは弾性梁の曲げ比率は 21%であり、スリット長率が 80%のときは弾性梁 の曲げ比率は 18%であり、スリット長率が 80%のときは弾性梁の曲げ比率は 14%で あり、スリット長率が 90%のときは弾性梁の曲げ比率は 8%であり、スリット長率が 95 %のときは弾性梁の曲げ比率は 1%以下であるという結果が得られた。また、スリット 長率が 90%を超える場合には、スリット 67が長すぎスプリングフオイル 62の強度を確 保できないことが判明した。また、、軸受性能実験の結果によれば、スリット長率は 80 %以上 90%以下であることが望ましぐさらには、スリット長率は 80%以上 85%以下 であることがさらに望ましいと判断される。スリット長率が 80%より小さい場合には、弹 性梁は断面視において円弧状になり弾性梁は円筒面形状になるために、トップフォ ィル 63の内壁と円筒軸 14の外壁との間の隙間の大きさが予定の許容範囲からはず れてしまう。また、スリット長率が 90%より大きい場合には、スプリングフオイル 62の強 度が確保できず、スリット長率が 85%より以下の場合にはスプリングフオイル 62の強 度を確実に確保することができる。  ((Slit length of slit 67) / (Length in the short direction of spring oil 62)) (Relationship between slit length ratio and bending ratio of the elastic beam above) This was investigated by analysis. According to this analysis, when the slit length ratio is 0%, the bending ratio of the elastic beam is 29%. When the slit length ratio is 60%, the bending ratio of the elastic beam is 27%, and the slit length ratio is When it is 70%, the bending ratio of the elastic beam is 21%, when the slit length ratio is 80%, the bending ratio of the elastic beam is 18%, and when the slit length ratio is 80%, the bending ratio of the elastic beam is When the slit length ratio is 90%, the elastic beam bending ratio is 8%, and when the slit length ratio is 95%, the elastic beam bending ratio is 1% or less. It was. It was also found that when the slit length ratio exceeds 90%, the slit 67 is too long and the strength of the spring oil 62 cannot be secured. Also, according to the results of bearing performance experiments, it is desirable that the slit length ratio is 80% or more and 90% or less, and it is further desirable that the slit length ratio is 80% or more and 85% or less. Is done. When the slit length ratio is less than 80%, the elastic beam has an arc shape in cross-sectional view and the elastic beam has a cylindrical surface shape.Therefore, the gap between the inner wall of the top wall 63 and the outer wall of the cylindrical shaft 14 is reduced. The size of the gap will deviate from the expected tolerance. Also, when the slit length ratio is greater than 90%, the strength of the spring oil 62 cannot be secured, and when the slit length ratio is less than 85%, the strength of the spring oil 62 is securely secured. be able to.
また、スリット 67の溝幅 (スリット幅)は、スプリングフオイル 62を形成する弾性金属平 板の厚さの 1. 0倍以上であること、あるいは、弾性金属平板の厚さの 1. 0倍より小さく ないことが好ましい。スリット 67の溝幅の上限値は、スリット 67間の間隔の大きさ等を 考慮し、弾性梁の曲げ比率が 15%以下になるように定められる。スリット 67の溝幅が 弾性金属平板の厚さの 1. 0倍より小さい場合には、スプリングフオイル 62が曲げ変 形する場合に、スプリングフオイル 62はスリット 67において V字状に折れ曲がりにくく なり、従って、弾性梁は断面視において直線状になりにくくなり、弾性梁の曲げ比率 が 15%より大きくなる。  In addition, the groove width (slit width) of the slit 67 is 1.0 or more times the thickness of the elastic metal plate forming the spring oil 62, or 1.0 times the thickness of the elastic metal plate. It is preferably not smaller. The upper limit of the groove width of the slit 67 is determined so that the bending ratio of the elastic beam is 15% or less in consideration of the size of the gap between the slits 67 and the like. If the groove width of the slit 67 is smaller than 1.0 times the thickness of the elastic metal plate, the spring oil 62 will not bend into a V shape at the slit 67 when the spring oil 62 is bent and deformed. Therefore, the elastic beam is less likely to be straight when viewed in cross section, and the bending ratio of the elastic beam is greater than 15%.
[0052] 係止機構 66は、ハウジング 61の内壁に背中合せに 1対の三角溝 69を形成したも のである。 1対の三角溝 69に挟まれて掘り残された峰 70が形成され、峰 70の両側は ほぼ垂直の止め壁 68となって!/、る。 [0052] The locking mechanism 66 is formed by forming a pair of triangular grooves 69 on the inner wall of the housing 61 back to back. It is. A ridge 70 left uncut between a pair of triangular grooves 69 is formed, and both sides of the ridge 70 become almost vertical stop walls 68! /.
トップフオイル 63の端部は三角溝 69に落ち込んで、フオイル自身の緩もうとするバ ネカによってハウジング 61の内壁に押し付けられるので、容易に外れない。さらに確 実に外れないためには、トップフオイル 63の両端縁が止め壁 68に突き当たり突っ張 つて止まるようにすることが好まし!/、。  The end portion of the top oil 63 falls into the triangular groove 69 and is pressed against the inner wall of the housing 61 by the bunker that tries to loosen the oil itself. In order to prevent it from coming off more reliably, it is preferable that both edges of the top oil 63 hit against the stop wall 68 and stop. /.
峰 70の頂面は、ハウジング 61の内壁を掘り込んで形成する製造工程の都合カもハ ウジング 61の内面と同じ高さにしてある力 機能面から見ればトップフオイル 63の内 周面と同 Cf立置まで突出していても良い。峰 70の高さが高いほどトップフオイル 63は 外れにくい。  The top surface of the ridge 70 is the same as the inner surface of the top oil 63 when viewed from the viewpoint of the function of the force that is the same height as the inner surface of the housing 61 due to the convenience of the manufacturing process formed by digging the inner wall of the housing 61. You may protrude to the same Cf standing. The higher the peak 70 is, the more difficult it is for the top oil 63 to come off.
[0053] この係止機構 66を用いると、トップフオイル 63がハウジング 61の幅方向に移動する 力 トップフオイル 63の筒体の軸芯位置がずれたり径が減少して端縁が峰 70を越え る力、トップフオイル 63の周長が止め壁 68から反対側の止め壁 68までを結ぶ円周長 より極端に短くなるまで縮むなどしなければ、トップフオイルがハウジング力 外れるこ とはない。通常、トップフオイル 63はパネ力でスプリングフオイル 62を介してハウジン グ 61の内壁に押し付けられているので、摩擦力が強くて幅方向には移動しにくい。ま た、トップフオイル 63が縮んで筒体の径が小さくなる場合には、端縁が止め壁 68に 食!、込んで外れに《なる方向に力が掛カることになる。  [0053] When this locking mechanism 66 is used, the force of the top oil 63 moving in the width direction of the housing 61 is shifted. If the top oil 63 is not shrunk until the circumference of the top oil 63 becomes extremely shorter than the circumference connecting the stop wall 68 to the stop wall 68 on the opposite side, the top oil will be released from the housing force. There is no. Normally, the top oil 63 is pressed against the inner wall of the housing 61 by the panel force through the spring oil 62, so the friction force is strong and it is difficult to move in the width direction. In addition, when the top oil 63 is contracted and the diameter of the cylinder is reduced, the end edge bites into the stopper wall 68, and a force is applied in the direction of «>.
[0054] 三角溝 69の底面はハウジング 61の内壁の断面円に接する面として形成され、トツ プフオイル 63が形成する筒形から接線方向に延伸する端部がこの底面に沿って延 びて、端縁が止め壁 68に突き当たって止まるようにすることが好ましい。トップフォイ ル 63が三角溝 69に納まるところで筒形力も平面に円滑に遷移するようにすれば、遷 移領域で膨出しないようにすることができる。膨出部分があるとトップフオイル 63が回 転軸 64に接触して、回転障害や、摩擦熱の発生、摩耗などを生起するので好ましく ない。  [0054] The bottom surface of the triangular groove 69 is formed as a surface in contact with the cross-sectional circle of the inner wall of the housing 61, and an end portion extending in a tangential direction from the cylindrical shape formed by the top oil 63 extends along the bottom surface. It is preferable that the edge hits the stop wall 68 and stops. By making the cylindrical force smoothly transition to the flat surface when the top foil 63 fits in the triangular groove 69, it can be prevented from bulging in the transition region. If there is a bulging portion, the top oil 63 comes into contact with the rotating shaft 64, which causes rotation failure, frictional heat generation, wear, etc., which is not preferable.
[0055] 回転軸 64が回転すると、係止機構 66の部分にできている隙間からトップフオイル 6 3と回転軸 64の間に空気が吸い込まれて、空気層 65ができる。トップフオイル 63は 両端がハウジング 61の内壁との摩擦により拘束され自由端になっていない上に、トツ プフオイル 63と回転軸 64の間に空気導入の開口を有しているので、第 1実施例の軸 受と異なり、回転軸 64が左右いずれの方向に回転しても空気層 65を生成することが できる。 When the rotating shaft 64 rotates, air is sucked between the top oil 63 and the rotating shaft 64 through a gap formed in the locking mechanism 66, and an air layer 65 is formed. Top oil 63 is not free end because both ends are constrained by friction with the inner wall of housing 61. Since the air introduction opening is provided between the puff oil 63 and the rotating shaft 64, unlike the bearing of the first embodiment, the air layer 65 is generated even if the rotating shaft 64 rotates in either the left or right direction. Is possible.
回転軸 64の回転につれて、空気層 65が発達しトップフオイル 63がハウジング 61の 内壁に押し付けられるので、高速回転時にはスプリングフオイル 62の弾性梁が変形 して強 ヽ剛性により回転軸 64が支持されるようになる。  As the rotating shaft 64 rotates, the air layer 65 develops and the top oil 63 is pressed against the inner wall of the housing 61. Therefore, the elastic beam of the spring oil 62 is deformed during high-speed rotation, and the rotating shaft 64 is supported by strong rigidity. Will come to be.
[0056] なお、三角溝 69を適度な深さにして、空気の供給を促進して空気層 65の生成と発 達を円滑にするようにすることが好ましい。 [0056] It is preferable that the triangular groove 69 is made to have an appropriate depth so that the supply of air is facilitated so that the air layer 65 is generated and generated smoothly.
軸受の回転方向が決まっているときは、回転方向入口(リーディング)側の三角溝 6 9を出口(トレーディング)側よりも深くして、トップフオイルと字句との間に空気を導入 しゃすくしてちよい。  When the rotation direction of the bearing is fixed, the triangular groove 69 on the rotation direction inlet (leading) side is deeper than the outlet (trading) side, and air is introduced between the top oil and the wording. It ’s good.
[0057] 係止機構 66は、トップフオイルの一端をねじや溶接でハウジング内壁に固定する従 来方法と比較すると、極めて簡単な構造を持ち、トップフオイル 63に係止するための 特別な加工を施す必要がなぐし力も組立の手数が省略できる。また、軸受装置の分 解も簡単で、保守や条件変更に伴う改造も容易である。  [0057] The locking mechanism 66 has a very simple structure as compared with the conventional method in which one end of the top oil is fixed to the inner wall of the housing by screws or welding, and has a special structure for locking to the top oil 63. The assembly force can also be saved without the need for machining. In addition, it is easy to disassemble the bearing device, and it is easy to modify it in accordance with maintenance and change of conditions.
スプリングフオイル 62はトップフオイル 63で覆って押し付けることにより十分に支持 できるが、係止機構 66を使ってトップフオイル 63と同様に支持して、その上からトップ フオイル 63を支持するようにすると、軸受装置を組み立てるときにスプリングフオイル 6 The spring oil 62 can be sufficiently supported by being covered with the top oil 63 and pressed, but it is supported in the same way as the top oil 63 using the locking mechanism 66, and the top oil 63 is supported from above. Then, when assembling the bearing device, spring oil 6
2を固定した後でトップフオイル 63を^ aみ込むことができるので、便利である。 It is convenient because the top oil 63 can be inserted after 2 is fixed.
[0058] 図 18と図 19は、トップフオイル 63の脱落を確実に防止するための機構を付加した 状態を示す斜視図である。いずれも、トップフオイル 63が軸受ハウジング 61の内壁を 軸方向に移動して外れることを防止する。  FIGS. 18 and 19 are perspective views showing a state in which a mechanism for reliably preventing the top oil 63 from falling off is added. In both cases, the top oil 63 is prevented from moving off the inner wall of the bearing housing 61 in the axial direction.
図 18に示したものは、係止機構の峰 70の側端にストッパー 71をねじ止めしてトップ フオイル 63の幅方向の移動を制約するものである。ストッパー 71の上縁は峰 70の上 面より下げて、回転軸の運動を妨げな 、ようにして 、る。  In FIG. 18, the stopper 71 is screwed to the side end of the peak 70 of the locking mechanism to restrict the movement of the top oil 63 in the width direction. The upper edge of the stopper 71 is lowered from the upper surface of the peak 70 so that the movement of the rotating shaft is not hindered.
[0059] 図 19に示したものは、トップフオイル 63の端部にハウジング 61の端縁を抱えるよう な鍔 72を設けたものである。トップフオイル 63が何らかの力作用により軸方向に動こ うとしても鍔 72が端縁に妨げられて動くことができない。 いずれも、簡単な機構を付帯させることにより、確実にトップフオイル 63の脱落を防 ぐことができる。 FIG. 19 shows an example in which a flange 72 that holds the edge of the housing 61 is provided at the end of the top oil 63. Even if the top oil 63 moves in the axial direction due to some force action, the heel 72 is blocked by the edge and cannot move. In either case, the top oil 63 can be reliably prevented from falling off by attaching a simple mechanism.
[0060] 図 20は、バンプフオイル 73を使った動圧気体軸受 7に対して本実施例の係止機構 66を適用した状態を示す断面図である。  FIG. 20 is a cross-sectional view showing a state in which the locking mechanism 66 of the present embodiment is applied to the dynamic pressure gas bearing 7 using the bump oil 73.
本実施例の係止機構 66は、本発明のスプリングフオイルを使用する場合に限らず 、図 17にも図示したように、端部が薄い板材になるものであれば、バンプフォイルゃリ 一フフオイルを使った軸受装置においても同様に利用することができることは言うまで もない。  The locking mechanism 66 of the present embodiment is not limited to the case where the spring oil of the present invention is used, and as shown in FIG. Needless to say, it can also be used in a bearing device using fufu oil.
[0061] さらに、係止機構 66は、軸受ハウジング 61内に 1個だけ配置しなければならないわ けではなぐ等間隔に複数の係止機構を設置して支持剛性を調整したり、図 21に示 すように、適当な間隔で係止機構を配置して支持剛性の不等化を生起して、たとえ ば振動抑制をしたり、起動時負荷と回転時負荷の変化に対応させてもよい。  [0061] Further, only one locking mechanism 66 needs to be arranged in the bearing housing 61, and a plurality of locking mechanisms are installed at equal intervals, and the support rigidity is adjusted. As shown, locking mechanisms may be placed at appropriate intervals to cause unequal support rigidity, for example, to suppress vibrations, or to respond to changes in starting load and rotating load. .
実施例 10  Example 10
[0062] 図 22は第 10実施例の動圧気体軸受を模式的に示す断面図、図 23は本実施例に 使用するスプリングフオイルの平面図である。  FIG. 22 is a cross-sectional view schematically showing a dynamic pressure gas bearing of the tenth embodiment, and FIG. 23 is a plan view of a spring oil used in this embodiment.
本実施例の動圧気体軸受 8は、図 23に示したようなスプリングフオイル 82を使用し たものである。スプリングフオイル 82は、スリットを長方形の 3辺に配して形成したトン グ 86を全面に配置したもので、図では同じ形状のトング 86を 3個ずつ幅方向に並べ た列が長さ方向に 15列並んで!/、るが、これらの配置に限られるものではな 、ことは言 うまでもない。  The dynamic pressure gas bearing 8 of this embodiment uses a spring oil 82 as shown in FIG. The spring oil 82 is formed by arranging the tongs 86 formed with slits on three sides of the rectangle on the entire surface.In the figure, three rows of tongs 86 of the same shape are arranged in the width direction. Of course, there are 15 rows! /, But it is not limited to these arrangements.
このスプリングフオイル 82は軸受ハウジング 81の内側に挿入され、さらに筒形にな つたトップフオイル 83が係止機構 84により内壁に固定され、その中に回転軸 85が挿 入されて、軸受 8が構成される。  The spring oil 82 is inserted inside the bearing housing 81, and the top oil 83 having a cylindrical shape is fixed to the inner wall by the locking mechanism 84, and the rotary shaft 85 is inserted into the top oil 83, and the bearing 8 Is configured.
[0063] スプリングフオイル 82はトップフオイル 83に沿って配置されるので、トング 86がスプ リングフオイル 82の表面曲面から接線方向に延出してハウジング 81の内壁に当って 橈んでパネとして作用し、トップフオイル 83を介して回転軸 85に支持剛性を与える。 トング 86は単にパネ作用を呈するばかりでなく、押されるとハウジング 81の内壁表面 を摺動するので、高速回転時に摩擦減衰により振動を抑制する能力を有する。 トング 86は、単にスプリングフオイル 82に切り込みを入れて形成するもので、リーフ フオイルと異なり、塑性変形する必要がない。切り込みは実施例 1などに使用されるス プリングフオイルのスリットと同じくエッチングにより簡単かつ高精度に作成することが できる。 [0063] Since the spring oil 82 is arranged along the top oil 83, the tongue 86 extends tangentially from the curved surface of the spring oil 82 and hits the inner wall of the housing 81 to act as a panel. Then, a support rigidity is given to the rotary shaft 85 through the top oil 83. The tongue 86 not only exhibits a panel action, but also slides on the inner wall surface of the housing 81 when pressed, and thus has the ability to suppress vibration by friction damping during high-speed rotation. The tongue 86 is simply formed by cutting the spring oil 82, and unlike the leaf oil, it does not need to be plastically deformed. The incision can be made easily and with high precision by etching in the same manner as the slit of the spring oil used in Example 1 or the like.
[0064] 図 24と図 25は、スプリングフオイル 82に形成するトングの形状を変化させた例を示 す図面である。  FIG. 24 and FIG. 25 are drawings showing an example in which the shape of the tongue formed on the spring oil 82 is changed.
図 24のスプリングフオイル 82は、軸方向に長方形のトングの幅を変化させた例であ る。中央のトング 87を幅広に形成し、両端のトング 88の幅を中央のものより小さくして ある。このようなスプリングフオイル 82を組み込むことにより、軸受の軸方向中心部分 で強く端部で弱い支持剛性を与えて、回転軸の片当たりを防止することができる。  The spring oil 82 in FIG. 24 is an example in which the width of the rectangular tongue is changed in the axial direction. The central tongue 87 is formed wider, and the width of the tongues 88 at both ends is smaller than the central one. By incorporating such a spring oil 82, it is possible to provide a strong support strength at the end portion in the axial direction of the bearing and a weak support rigidity at the end portion, thereby preventing the rotation shaft from hitting one side.
[0065] 図 25のスプリングフオイル 82は、三角形の 2辺にスリットを入れて三角形のトングを 形成したもので、中央のトング 89は両端のトング 90より大きな三角形になっている。 三角形のトング 89, 90は、フオイル 82とハウジング 81の距離が短くなるにつれてト ングの実効的な支持位置がトングの根本側の幅が広!、方に変化するので、高速回 転するほど支持剛性が急激に増大するような特性を持つようになる。なお、軸受の端 部に近い部分ではトング 90が短くハウジング 81に強く押し付けられないため支持剛 性が弱ぐ片当たりを防ぐ機能を有する。 The spring oil 82 in FIG. 25 has a triangular tongue formed by slitting two sides of the triangle, and the central tongue 89 has a larger triangle than the tongue 90 at both ends. The triangular tongs 89 and 90 support the more the high-speed rotation, as the effective support position of the tongs widens toward the base side of the tongue as the distance between the flange 82 and the housing 81 becomes shorter. It has a characteristic that the rigidity increases rapidly. In addition, since the tongue 90 is short in the portion close to the end of the bearing and cannot be strongly pressed against the housing 81, it has a function of preventing the one piece contact where the supporting rigidity is weak.
実施例 11  Example 11
[0066] 図 26は第 11実施例の動圧気体軸受に使用するスプリングフオイルの平面図である 本実施例に用いるスプリングフオイルは、スリット部を幅のある切り落とし形状にした もので、隣接するスリットの稜線までの距離力フオイル平板の端力もの距離により異な るようにすることにより、剛性を変化させるようにしたものである。  FIG. 26 is a plan view of the spring oil used in the dynamic pressure gas bearing of the eleventh embodiment. The spring oil used in this embodiment has a slit portion with a wide cut-off shape, and is adjacent to the spring oil. The distance force to the ridgeline of the slit to be changed varies depending on the distance of the end force of the oil flat plate, so that the rigidity is changed.
[0067] たとえば、図 26 (a)のように、切り落とし形状をスリットの 1辺から三角形あるいは円 形などが突出した形状の幅広スリット 92を並置したスプリングフオイル 91を使用する と、トップフオイルが広がらないうちはスリット中央の突出部分がハウジングの内壁に 接触して一方の支点となるため、中央部に比較的長い梁が形成され、側部には有効 な梁が存在しない状態となり、回転軸は比較的弱い剛性で中央部で支持されること になる。このように、軸受の軸方向に剛性が大きく変化するように構成することができ る。 [0067] For example, as shown in FIG. 26 (a), when spring oil 91 in which a wide slit 92 having a shape in which a triangle or a circle protrudes from one side of the slit is juxtaposed as shown in FIG. As the projection of the center of the slit comes into contact with the inner wall of the housing and becomes one of the fulcrums before it spreads, a relatively long beam is formed at the center, and there is no effective beam on the side, causing rotation. The shaft should be supported at the center with relatively weak rigidity become. In this way, it can be configured such that the rigidity changes greatly in the axial direction of the bearing.
さらに、回転軸が回転してトップフオイルが広がると、スリット内の突出形状は段々根 本の方までハウジング内壁に接触するようになって支持剛性が増大し、高速回転す るようになるとついには弾性梁が壁に押し付けられて極めて強 、剛性を呈するように なり、回転に伴う剛性の変化も大きい。  In addition, when the rotating shaft rotates and the top oil spreads, the protruding shape in the slit gradually contacts the inner wall of the housing step by step, finally increasing the support rigidity and finally rotating at high speed. Since the elastic beam is pressed against the wall, it becomes extremely strong and rigid, and the change in rigidity accompanying rotation is large.
[0068] また、図 26 (b)のように、スリット形状が半円形ないし弓形あるいは台形などの幅広 スリット 93にすると、トップフオイルが広がらない間は幅広スリット 93の端部がハウジン グの内壁に接触して支点となり長いスパンの梁が形成されて比較的弱い剛性が与え られる力 中央部では弾性梁が作用しないので、軸方向における剛性分布が存在す る。さら〖こ、トップフオイルが広がるにつれてスリット中央位置がハウジング内壁に接触 して短いスパンの梁が有効になって剛性が大きくなり、回転に伴う剛性変化も大きい 。この剛性分布と変化の状況はスリットの形状により異なる。  [0068] Further, as shown in FIG. 26 (b), when the slit shape is a wide slit 93 such as a semicircular shape, a bow shape or a trapezoidal shape, the end of the wide slit 93 is the inner wall of the housing while the top oil does not spread. A force with which a long span beam is formed as a fulcrum in contact with the surface and a relatively weak rigidity is given. Since the elastic beam does not act at the center, there is a stiffness distribution in the axial direction. Furthermore, as the top oil spreads, the center position of the slit comes into contact with the inner wall of the housing, and the short span beam becomes effective and the rigidity increases, and the rigidity changes with rotation. The rigidity distribution and the change state vary depending on the shape of the slit.
したがって、図 26 (c)など必要に応じて適当な形状の幅広スリット 94を選択して、支 持剛性の設計をすることができる。  Therefore, it is possible to design the supporting rigidity by selecting the wide slit 94 having an appropriate shape as required as shown in FIG. 26 (c).
実施例 12  Example 12
[0069] 図 27は第 12実施例の動圧気体軸受を模式的に示す断面図である。  FIG. 27 is a cross-sectional view schematically showing a dynamic pressure gas bearing of a twelfth embodiment.
本実施例の動圧気体軸受 9は、スプリングフオイルを 2重に使用したものである。ハ ウジング 95に多角形のスプリングフオイル 96を挿入し、その内側にさらに同じ角数を 持った多角形のスプリングフオイル 97を挿入して、さらにトップフオイル 98を挿入した ものである。  The dynamic pressure gas bearing 9 of this embodiment uses a double spring oil. A polygonal spring oil 96 is inserted into the housing 95, a polygonal spring oil 97 having the same number of angles is inserted inside, and a top oil 98 is further inserted.
内側のスプリングフオイル 97の角力 外側のスプリングフオイル 96の弾性梁の中央 部分に当るように配置することが好ましい。  The angular force of the inner spring oil 97 is preferably arranged so that it hits the central portion of the elastic spring 96 of the outer spring oil 96.
[0070] 内側と外側のスプリングフオイルの両方を同じ周位置で開切して、先に説明した係 止機構を用いて両者を一緒に固定するようにすれば、配置関係を確実に規定するこ とがでさる。 [0070] If both the inner and outer spring oils are opened at the same circumferential position and fixed together using the locking mechanism described above, the positional relationship can be defined reliably. This comes out.
また、スプリングフオイルの配置を確実にするために、内側と外側のスプリングフォイ ルを 1枚の弾性金属平板に作り込んで、 2重に丸めてハウジング内にセットするように しても良い。また、スプリングフオイルの一端をノヽウジング内壁に固定しても良い。 また、スプリングフオイルは 2重に限らず、適当数のスプリングフォイル層を持った多 重構造にしても良 、ことは言うまでもな 、。 In addition, in order to ensure the arrangement of the spring oil, the inner and outer spring foils are built on one elastic metal plate and rolled into a double and set in the housing. You may do it. Further, one end of the spring oil may be fixed to the inner wall of the knowing. Needless to say, the spring oil is not limited to double, but may have a multiple structure with an appropriate number of spring foil layers.
[0071] 多重構造にすると、トップフオイルが広がって外側のスプリングフオイルの作用が顕 在化するにつれて剛性が高まるので、低速回転力 高速回転まで適度な剛性で支 持するように軸受を製作することができる。 [0071] When the multi-layer structure is used, the rigidity increases as the top oil spreads and the action of the outer spring oil becomes apparent. Therefore, the bearing is manufactured so that it can be supported with moderate rigidity up to high speed rotation. can do.
また、スプリングフオイル同士が接触するところで摩擦運動をするので、軸受の振動 を減衰させることができる。  In addition, since the frictional motion occurs where the spring oil comes into contact with each other, the vibration of the bearing can be attenuated.
実施例 13  Example 13
[0072] 図 28は、スプリングフオイルを複数、相互に重なる部分を有するように配置して、フ オイル同士を摩擦させて軸受の振動を減衰させるようにした動圧気体軸受を示す断 面図である。  [0072] FIG. 28 is a cross-sectional view showing a dynamic pressure gas bearing in which a plurality of spring oils are arranged so as to overlap each other and the vibrations of the oils are rubbed together to attenuate the vibration of the bearings. It is.
4枚のスプリングフオイル 100がそれぞれノヽウジング内壁 99に一端を等間隔に固定 して、相互に半分ずつ重なり合うように配置され、なかにトップフオイル 101が挿入さ れている。  Four spring oils 100 are arranged so that one end is fixed to the inner wall 99 of the nosing at equal intervals, and overlap each other half, and the top oil 101 is inserted therein.
回転軸が振動すると、トップフオイル 101がスプリングフオイル 100に作用して相互 に摺動させるので、摩擦抵抗を生じて振動を減衰させることができる。  When the rotating shaft vibrates, the top oil 101 acts on the spring oil 100 and slides to each other, so that a frictional resistance is generated and the vibration can be attenuated.
実施例 14  Example 14
[0073] 図 29は、第 14実施例の動圧気体軸受を模式的に示す断面図である。  FIG. 29 is a cross-sectional view schematically showing a dynamic pressure gas bearing of the fourteenth embodiment.
本実施例の動圧気体軸受は、軸受ハウジング 102の内孔断面を多角形に形成し て、多角形の頂点にできる稜線 105のところにスプリングフオイル 103のスリットが位 置するように組み立てたものである。  The dynamic pressure gas bearing of the present embodiment was assembled so that the inner hole cross section of the bearing housing 102 was formed into a polygon, and the slit of the spring oil 103 was positioned at the ridgeline 105 formed at the apex of the polygon. Is.
ノ、ウジング 102の内孔が形成する多角柱シリンダにおける稜線の数は、スプリング フオイル 103の作る多角形シリンダの稜線の数の 2倍として、スプリングフオイル 103 が作る弾性梁がハウジングの稜線を 1個ずつ挟んで配置されるようにすることが好ま しい。  The number of ridge lines in the polygonal cylinder formed by the inner bore of the Uzing 102 is twice the number of ridge lines of the polygon cylinder formed by the spring oil 103, and the elastic beam formed by the spring oil 103 makes the ridge line of the housing 1 It is preferable to place them one by one.
[0074] このような配置を採用すると、弾性梁の後ろにできる隙間が大きくなり冷却空気の流 通が十分確保できて軸受の使用可能な高速回転範囲が広がる。また、スプリングフォ ィル 103はスリット位置をノヽウジングの稜線 105に合致させることで確実に固定されて 、不要なずれが生じない。さらに、弾性梁の後背が大きいのでトップフオイル 104の広 力 Sりに対して固有の弾性を有する範囲が拡大する。 [0074] When such an arrangement is adopted, a gap formed behind the elastic beam is increased, and a sufficient flow of cooling air can be secured, so that a usable high-speed rotation range is expanded. Also, spring fo The seal 103 is securely fixed by aligning the slit position with the ridge line 105 of the nosing so that unnecessary displacement does not occur. Further, since the back of the elastic beam is large, the range having the inherent elasticity with respect to the wide force S of the top oil 104 is expanded.
上記各実施例では空気中で使用できる気体軸受を取り上げたが、上記各構造はそ のまま油や水の中で使用することができる。なお、油や水などを使う流体軸受では、 比較的低温で使用するため、薄板平板を金属の代りに四フッ化工チレンなどの高分 子材料で形成することもできる。  In each of the above embodiments, a gas bearing that can be used in the air is taken up. However, each of the above structures can be used in oil or water as it is. Since fluid bearings using oil or water are used at a relatively low temperature, a thin flat plate can be formed of a polymer material such as tetrafluoroethylene instead of metal.

Claims

請求の範囲 The scope of the claims
[1] 軸受ハウジングの内壁に複数のスリットを設けた薄板平板で形成したスプリングフォ ィルを装着し、該スプリングフオイルの内側にトップフオイルを配置し、該トップフォイ ルの内側に回転軸を配置して、前記スプリングフオイルが剛性の小さな位置で折り曲 力 Sつて内壁内側に接する多数の弾性梁を有する多角形断面を形成し、該弾性梁に より前記トップフオイルを介して前記回転軸を弹性的に支持するようにしたことを特徴 とするフォイル式動圧流体軸受。  [1] A spring foil made of a thin flat plate with a plurality of slits is mounted on the inner wall of the bearing housing, a top oil is arranged inside the spring oil, and a rotating shaft is inside the top foil. To form a polygonal cross section having a large number of elastic beams in contact with the inside of the inner wall by bending force S at a position where the rigidity of the spring oil is small, and the elastic beams are used to form the polygonal cross section through the top oil. A foil-type hydrodynamic bearing characterized by inertially supporting the rotating shaft.
[2] 前記スプリングフオイルは、前記軸受ハウジング内に装着したときに回転軸の軸に ほぼ平行になる方向にスリットを形成し、隣接するスリット間に生成される弾性梁の強 度をスリット長とスリット間隔に基づいて調整することを特徴とする請求項 1記載のフォ ィル式動圧流体軸受。  [2] The spring oil forms a slit in a direction substantially parallel to the axis of the rotating shaft when mounted in the bearing housing, and the strength of the elastic beam generated between adjacent slits is determined by the slit length. 2. The fill type hydrodynamic bearing according to claim 1, wherein the adjustment is made based on the slit interval.
[3] 前記スプリングフオイルは、前記軸受ハウジング内に装着したときに回転軸の軸に ほぼ平行になる方向にスリットを形成し、該スリットそれぞれの幅を適宜に決定するこ とにより前記回転軸の周方向の支持剛性を調整することを特徴とする請求項 1記載 のフォイル式動圧流体軸受。  [3] The spring oil is formed with slits in a direction substantially parallel to the axis of the rotary shaft when mounted in the bearing housing, and the width of each of the slits is appropriately determined to determine the width of the rotary shaft. The foil type hydrodynamic bearing according to claim 1, wherein the support rigidity in the circumferential direction of the is adjusted.
[4] 前記スプリングフオイルは、前記スリットにより発生する剛性を少なくとも 2段に選択し て回転軸の回転初期には弱い剛性が掛カり常用回転状態では強い剛性が掛カるよ うにすることを特徴とする請求項 2または 3記載のフォイル式動圧流体軸受。  [4] The spring oil should have at least two stages of rigidity generated by the slit so that weak rigidity is applied at the initial stage of rotation of the rotary shaft and strong rigidity is applied at the normal rotation state. The foil type hydrodynamic bearing according to claim 2 or 3.
[5] 前記スプリングフオイルは、前記スリットを太い切り落とし形状にして、隣接するスリツ トの稜線までの距離が平板の端からの距離により異なるようにすることにより、剛性を 変化させることを特徴とする請求項 2または 3記載のフォイル式動圧流体軸受。  [5] The spring oil is characterized in that the rigidity is changed by making the slit into a thick cut shape so that the distance to the ridgeline of the adjacent slit differs depending on the distance from the end of the flat plate. The foil type hydrodynamic bearing according to claim 2 or 3.
[6] 前記スリットは、平行に密着して形成されるスリットからなり、前記軸受ハウジングの 内壁に接する複数の稜線部分が押圧力を分担することを特徴とする請求項 2または 3記載のフォイル式動圧流体軸受。  [6] The foil type according to claim 2 or 3, wherein the slit comprises a slit formed in close contact in parallel, and a plurality of ridge line portions in contact with the inner wall of the bearing housing share the pressing force. Hydrodynamic bearing.
[7] 前記スプリングフオイルは、前記回転軸の軸に平行なスリットにカ卩えて、該スプリング フオイルの側端線に平行なスリットを形成して、前記弾性梁を回転軸方向に複数のゾ ーンに分けることを特徴とする請求項 2または 3記載のフォイル式動圧流体軸受。  [7] The spring oil covers a slit parallel to the axis of the rotation shaft, and forms a slit parallel to a side end line of the spring oil, thereby allowing the elastic beam to move in the direction of the rotation axis. The foil type hydrodynamic bearing according to claim 2 or 3, wherein the hydrodynamic bearing is divided into two parts.
[8] 前記スプリングフオイルは、前記回転軸の軸に平行なスリットに加えて、前記弾性梁 の中央部に該スプリングフオイルの側端線に平行なスリットを複数形成して、該スプリ ングフオイルが前記トップフオイルの局面に沿って変形し面接触するようにすることを 特徴とする請求項 2または 3記載のフォイル式動圧流体軸受。 [8] In addition to the slit parallel to the axis of the rotating shaft, the spring oil is added to the elastic beam. A plurality of slits parallel to the side end line of the spring oil are formed at the center of the spring oil so that the spring oil deforms along the aspect of the top oil and comes into surface contact. 2 or 3 foil type hydrodynamic bearing.
[9] 前記スプリングフオイルは、同じ形状のスリットを等間隔に並べて形成することを特 徴とする請求項 2記載のフォイル式動圧流体軸受。 9. The foil-type hydrodynamic bearing according to claim 2, wherein the spring oil is formed by arranging slits having the same shape at equal intervals.
[10] 前記スプリングフオイルは、複数のスリットをフオイルの側端から中央線に向力つて 形成することを特徴とする請求項 2記載のフォイル式動圧流体軸受。 10. The foil type hydrodynamic bearing according to claim 2, wherein the spring oil is formed by forming a plurality of slits from a side end of the oil toward a center line.
[11] 前記軸受ハウジングの内孔断面を多角形に形成して、該多角形の頂点に前記スプ リングフオイルのスリットが位置するように組み立てることを特徴とする請求項 1、 2、 3、11. The bearing housing is assembled such that a cross section of the inner hole of the bearing housing is formed in a polygon and the slit of the spring oil is positioned at the apex of the polygon.
9、 10のいずれかに記載のフォイル式動圧流体軸受。 The foil-type hydrodynamic bearing according to any one of 9 and 10.
[12] 前記スプリングフオイルは前記トップフオイルの周囲に多重に巻き付力せることを特 徴とする請求項 1、 2、 3、 9のいずれかに記載のフォイル式動圧流体軸受。 12. The foil type hydrodynamic bearing according to any one of claims 1, 2, 3, and 9, characterized in that the spring oil is wound around the top oil in a multiple manner.
[13] スリットにより底辺を除いた残りの辺を平板力 切り離した形状を持つトングを複数 形成した薄板平板カゝらなるスプリングフオイルをトップフオイルの外側に沿わせて軸受 ノ、ウジングの内壁に装着し、該トップフオイルの内側に回転軸を配置して、前記スプリ ングフォイルカ 接線方向に突出する前記トングが前記内壁に接して多数の弾性梁 を形成し、該弾性梁により前記トップフオイルを介して前記回転軸を弾性的に支持す るようにしたことを特徴とするフォイル式動圧流体軸受。 [13] The flat plate force is applied to the remaining side except for the bottom side by the slit. The tongs projecting in the tangential direction of the spring foil foil form a plurality of elastic beams in contact with the inner wall, and the top oil is formed by the elastic beams. A foil-type hydrodynamic bearing, characterized in that the rotating shaft is elastically supported via a shaft.
[14] 前記トングは底辺力 離れるにつれて幅が狭くなる形状であることを特徴とする請 求項 13記載のフォイル式動圧流体軸受。 [14] The foil-type hydrodynamic bearing according to claim 13, wherein the tongue has a shape that becomes narrower as the bottom force is separated.
[15] 前記トップフオイルの両端が当る前記ハウジング内壁の位置に内壁面から立ち上が つた止め壁をそれぞれ形成し、該止め壁の前面には断面が三角形状をした掘り込み を形成して構成した係止機構を備えて、前記トップフオイルを前記ふたつの止め壁の 間に展張して挿入し固定するようにしたことを特徴とする請求項 1、 2、 3、 9、 10、 13[15] A stop wall standing up from an inner wall surface is formed at the position of the inner wall of the housing where both ends of the top oil come into contact, and a dug having a triangular cross section is formed on the front surface of the stop wall. 14. A structured locking mechanism, wherein the top oil is stretched between the two retaining walls to be inserted and fixed.
、 14のうちの!/、ずれかに記載のフォイル式動圧流体軸受。 The foil type hydrodynamic bearing according to any one of!
[16] 前記堀り込みは該軸受の回転方向入口側が出口側より深くなつていることを特徴と する請求項 15記載のフォイル式動圧流体軸受。 16. The foil-type hydrodynamic bearing according to claim 15, wherein the digging is deeper on the inlet side in the rotational direction of the bearing than on the outlet side.
[17] 前記係止機構を複数対備えて、前記トップフォイルを周方向に該係止機構の対数 と同じ数に分割して係止することを特徴とする請求項 15または 16記載のフオイル式 動圧流体軸受。 [17] A plurality of pairs of the locking mechanisms are provided, and the top foil is logarithmized in the circumferential direction. 17. The oil-type hydrodynamic bearing according to claim 15 or 16, wherein the oil-type hydrodynamic bearing is divided into the same number as that of the hydraulic fluid.
[18] 前記係止機構には前記止め壁の側面に前記トップフォイルを幅方向に移動しな 、 ように押えるストッパーを設けることを特徴とする請求項 15、 16に記載のフオイル式 動圧流体軸受。  18. The oil-type hydrodynamic fluid according to claim 15 or 16, wherein the locking mechanism is provided with a stopper that prevents the top foil from moving in the width direction on a side surface of the stopper wall. bearing.
[19] トップフオイルの両端が当るハウジング内壁の位置に内壁面から立ち上がった止め 壁をそれぞれ形成し、該止め壁の前面に断面が三角形状をした掘り込みを形成して 構成した係止機構であって、前記トップフオイルを前記止め壁の面間に展張して挿 入し固定するようにしたことを特徴とするフォイル式動圧流体軸受用のトップフオイル 係止機構。  [19] A locking mechanism formed by forming a stop wall rising from the inner wall surface at the position of the inner wall of the housing where both ends of the top oil come into contact, and forming a dug with a triangular cross section on the front surface of the stop wall A top oil locking mechanism for a foil-type hydrodynamic bearing, wherein the top oil is stretched between the surfaces of the stop wall and is inserted and fixed.
[20] 複数のスリットを設けた薄板平板力もなるスプリングフオイルであって、前記スリットが 該スプリングフオイルを軸受ハウジング内に装着したときに回転軸の軸に平行になる 方向に形成されたもので、該スプリングフオイルを該軸受ハウジングに装着されたとき に該スリットの位置で折り曲がってスリット間に弾性梁を形成し、多角形断面を有する 筒形を形成することを特徴とするフォイル式動圧流体軸受用のスプリングフオイル。  [20] A spring oil having a thin flat plate force provided with a plurality of slits, the slit being formed in a direction parallel to the axis of the rotating shaft when the spring oil is mounted in the bearing housing When the spring oil is attached to the bearing housing, the foil is bent at the position of the slit to form an elastic beam between the slits to form a cylindrical shape having a polygonal cross section. Spring oil for hydrodynamic bearings.
[21] 前記スプリングフオイルは、同じ形状のスリットを等間隔に並べて形成することを特 徴とする請求項 20記載のフォイル式動圧流体軸受用のスプリングフオイル。  21. The spring oil for a foil-type hydrodynamic bearing according to claim 20, wherein the spring oil is formed by arranging slits having the same shape at equal intervals.
[22] スリットにより底辺を除いた残りの辺を平板力 切り離した形状を持つトングを複数 形成した薄板平板力 なるスプリングフオイルであって、トップフオイルの外側に沿わ せて軸受ハウジングの内壁に装着したときに、前記トングが該スプリングフオイルから 接線方向に突出することを特徴とするフォイル式動圧流体軸受用のスプリングフォイ ル。  [22] A spring plate oil that has a flat plate force with a plurality of tongs with a shape that separates the remaining sides excluding the bottom by slits, and is formed on the inner wall of the bearing housing along the outside of the top oil. A spring foil for a foil-type hydrodynamic bearing, wherein when mounted, the tongue protrudes tangentially from the spring oil.
[23] 前記スプリングフオイルの短手方向の長さに対する前記スリットのスリット長の比であ るスリット長率が 80%以上 90%以下であることを特徴とする請求項 9記載のフオイル 式動圧流体軸受。  [23] The oil motion according to claim 9, wherein a slit length ratio, which is a ratio of a slit length of the slit to a length in a short direction of the spring oil, is 80% or more and 90% or less. Pressure fluid bearing.
[24] 前記スリット長率が 80%以上 85%以下であることを特徴とする請求項 23記載のフ オイル式動圧流体軸受。  24. The oil-type hydrodynamic bearing according to claim 23, wherein the slit length ratio is 80% or more and 85% or less.
[25] 前記スプリングフオイルが受ける曲げ変形の度合いを前記スリットと、前記スリットとこ れに隣接する前記スリットとの間に形成される弾性梁とによって分配されるとした場合 に、前記スプリングフオイルの曲げ変形のうちの前記弾性梁が受け持つ曲げ変形の 割合が 15%以下であることを特徴とする請求項 9記載のフォイル式動圧流体軸受。 [25] The degree of bending deformation that the spring oil receives is determined by the slit and the slit. If the elastic beam formed between the slits adjacent to the elastic beam is distributed, the ratio of the bending deformation of the elastic beam out of the bending deformation of the spring oil is 15% or less. The foil type hydrodynamic bearing according to claim 9.
[26] 前記スリットの溝幅は、前記スプリングフオイルを形成する薄板平板の厚さの 1. 0倍 以上であることを特徴とする請求項 9記載のフォイル式動圧流体軸受。  26. The foil-type hydrodynamic bearing according to claim 9, wherein a groove width of the slit is 1.0 times or more a thickness of a thin flat plate forming the spring oil.
[27] 軸受ハウジングの内壁に複数のスリットをフオイルの巻方向に平行に並設した薄板 平板で形成したスプリングフオイルを装着し、該スプリングフオイルの内側にトップフォ ィルを配置し、該トップフオイルの内側に回転軸を配置して、前記スプリングフオイル が剛性の小さな位置で折り曲がって内壁内側に接する多数の弹性梁を有する多角 形断面を形成し、該弾性梁により前記トップフオイルを介して前記回転軸を弹性的に 支持するようにしたことを特徴とするフォイル式動圧流体軸受。  [27] Mount a spring oil made of a thin plate with a plurality of slits arranged in parallel on the inner wall of the bearing housing in parallel to the winding direction of the oil, and place a top foil inside the spring oil. A rotating shaft is disposed inside the top oil, and the spring oil is bent at a position with small rigidity to form a polygonal cross section having a number of inertial beams in contact with the inside of the inner wall. A foil type hydrodynamic bearing, wherein the rotary shaft is supported by inertia through oil.
[28] 前記スプリングフオイルは、前記軸受ハウジング内に装着したときに回転軸の軸に ほぼ平行になる方向にスリットを形成し、該スリットそれぞれの幅を適宜に決定するこ とにより前記回転軸の支持剛性を周方向に調整することを特徴とする請求項 27記載 のフォイル式動圧流体軸受。  [28] The spring oil is formed with slits in a direction substantially parallel to the axis of the rotary shaft when mounted in the bearing housing, and the width of each of the slits is appropriately determined to thereby determine the rotary shaft. 28. The foil-type hydrodynamic bearing according to claim 27, wherein the support rigidity of the foil is adjusted in the circumferential direction.
[29] 前記トップフオイルの両端が当るハウジング内壁の位置に内壁面力 立ち上がった 止め壁をそれぞれ形成し、該止め壁の前面に断面が三角形状をした掘り込みを形成 して構成した係止機構を有し、前記トップフオイルを前記止め壁の面間に展張して挿 入し固定するようにしたことを特徴とする請求項 27記載のフォイル式動圧流体軸 受。  [29] A locking wall formed by forming a stop wall with an inner wall force rising at the position of the inner wall of the housing where both ends of the top oil come into contact, and forming a dug with a triangular cross section on the front surface of the stop wall 28. A foil-type hydrodynamic bearing according to claim 27, further comprising a mechanism, wherein the top oil is inserted between the surfaces of the stop wall so as to be inserted and fixed.
[30] 複数のスリットを設けた薄板平板からなるスプリングフオイルであって、前記スリット が該スプリングフオイルを軸受ハウジング内に装着したときに回転軸の軸に平行にな る方向に並べて形成されたもので、該スプリングフオイルを該軸受ハウジングに装着 されたときに該スリットの位置で折り曲がってスリット間に弾性梁を形成し、多角形断 面を有する筒形を形成することを特徴とするフォイル式動圧流体軸受用のスプリング フオイル。  [30] A spring oil composed of a thin flat plate provided with a plurality of slits, wherein the slits are arranged side by side in a direction parallel to the axis of the rotary shaft when the spring oil is mounted in the bearing housing. When the spring oil is attached to the bearing housing, it is bent at the position of the slit to form an elastic beam between the slits to form a cylindrical shape having a polygonal cross section. Spring oil for foil type hydrodynamic bearings.
[31] 前記スプリングフオイルは、同じ形状のスリットを等間隔に並べて形成することを特 徴とする請求項 30記載のフォイル式動圧流体軸受用のスプリングフオイル。 訂正き た用紙 ( , 前記スプリングフオイルは、さらに前記スプリングフオイルの側端線に平行なスリット を複数形成して、該スプリングフオイルが該軸受ハウジングに装着されたときに該スリ ットの位置で曲面に沿って変形し面接触するようにすることを特徴とする請求項 30ま たは 31のいずれかに記載のフォイル式動圧流体軸受用のスプリングフオイル。 31. The spring oil for a foil-type hydrodynamic bearing according to claim 30, wherein the spring oil is formed by arranging slits having the same shape at equal intervals. Corrected paper (, The spring oil further has a plurality of slits parallel to the side end line of the spring oil, and when the spring oil is attached to the bearing housing, it follows the curved surface at the position of the slit. 32. The spring oil for a foil-type hydrodynamic bearing according to claim 30, wherein the spring oil is deformed and brought into surface contact.
PCT/JP2005/003314 2004-08-17 2005-02-28 Dynamic pressure fluid bearing WO2006018916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-237380 2004-08-17
JP2004237380A JP3636328B1 (en) 2004-08-17 2004-08-17 Hydrodynamic bearing

Publications (1)

Publication Number Publication Date
WO2006018916A1 true WO2006018916A1 (en) 2006-02-23

Family

ID=34464083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003314 WO2006018916A1 (en) 2004-08-17 2005-02-28 Dynamic pressure fluid bearing

Country Status (4)

Country Link
JP (1) JP3636328B1 (en)
KR (1) KR100807889B1 (en)
CN (1) CN100510443C (en)
WO (1) WO2006018916A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172378A1 (en) * 2018-03-07 2019-09-12 株式会社Ihi Radial foil bearing
EP3597945A4 (en) * 2017-03-15 2021-01-13 IHI Corporation Radial foil bearing
EP3763955A4 (en) * 2018-03-07 2021-12-15 Ihi Corporation Radial foil bearing

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874720B2 (en) * 2006-06-21 2012-02-15 Hoya株式会社 Holding mechanism
RU2364772C2 (en) * 2007-06-22 2009-08-20 Юрий Иванович Ермилов Bow spring
JP5321332B2 (en) * 2009-08-05 2013-10-23 株式会社島津製作所 Dynamic pressure gas bearing
JP5751062B2 (en) 2011-07-22 2015-07-22 株式会社Ihi Radial foil bearing
JP5626474B2 (en) 2011-08-01 2014-11-19 株式会社Ihi Radial foil bearing
JP5765122B2 (en) 2011-08-01 2015-08-19 株式会社Ihi Radial foil bearing
JP5862186B2 (en) 2011-10-13 2016-02-16 株式会社Ihi Radial foil bearing
JP5817449B2 (en) 2011-11-09 2015-11-18 株式会社Ihi Radial foil bearing
JP5861550B2 (en) 2012-04-06 2016-02-16 株式会社Ihi Radial foil bearing
JP6136135B2 (en) 2012-07-18 2017-05-31 株式会社Ihi Radial foil bearing
JP5929626B2 (en) 2012-08-14 2016-06-08 株式会社Ihi Radial foil bearing
KR101666092B1 (en) 2012-10-16 2016-10-13 가부시키가이샤 아이에이치아이 Thrust bearing
EP3428466B1 (en) * 2012-12-19 2022-06-01 NTN Corporation Radial foil bearing
CN103016514A (en) * 2012-12-25 2013-04-03 浙江大学 Sliding bearing with non-circular shaft neck
JP6221244B2 (en) 2013-01-28 2017-11-01 株式会社Ihi Thrust bearing
JP6372062B2 (en) 2013-09-19 2018-08-15 株式会社Ihi Thrust bearing
JP6268847B2 (en) 2013-09-19 2018-01-31 株式会社Ihi Thrust bearing
KR101895143B1 (en) 2014-01-30 2018-09-04 가부시키가이샤 아이에이치아이 Thrust bearing
CN106460935B (en) * 2014-06-06 2021-05-04 圣戈班性能塑料万科有限公司 Tolerance ring
CN105202018B (en) * 2015-05-19 2018-06-12 罗立峰 A kind of hybrid kinetic pressure gas journal bearing
US9926973B2 (en) * 2016-06-13 2018-03-27 Hamilton Sundstrand Corporation Air bearing-corrugated thrust bearing disc
JP6828802B2 (en) 2017-03-15 2021-02-10 株式会社Ihi Radial foil bearing
TWI635225B (en) * 2017-04-07 2018-09-11 東培工業股份有限公司 Hydrodynamic fluid bearing structure and the manufacture method of the same
WO2019004278A1 (en) 2017-06-27 2019-01-03 株式会社Ihi Radial foil bearing
JP6891665B2 (en) 2017-06-27 2021-06-18 株式会社Ihi Radial foil bearing
JP7013951B2 (en) 2018-03-07 2022-02-15 株式会社Ihi Radial foil bearing
JP7192320B2 (en) 2018-09-04 2022-12-20 株式会社Ihi thrust foil bearing
JP7085441B2 (en) * 2018-09-12 2022-06-16 川崎重工業株式会社 Damper bearings and dampers
CN113227591A (en) 2018-12-20 2021-08-06 株式会社Ihi Thrust foil bearing
EP3904714B1 (en) 2018-12-25 2024-02-07 IHI Corporation Thrust foil bearing and method for manufacturing base plate of thrust foil bearing
WO2020149137A1 (en) 2019-01-17 2020-07-23 株式会社Ihi Thrust foil bearing
JPWO2020149421A1 (en) 2019-01-18 2021-11-11 株式会社Ihi Thrust foil bearing
CA3126903A1 (en) 2019-01-18 2020-07-23 Ihi Corporation Thrust foil bearing
CN113396286B (en) * 2019-02-07 2023-12-12 谷轮有限合伙公司 foil bearing assembly
WO2020171021A1 (en) 2019-02-22 2020-08-27 株式会社Ihi Thrust foil bearing, and method for manufacturing base plate of thrust foil bearing
CN113710908B (en) 2019-04-04 2023-07-21 株式会社Ihi Radial foil bearing
CN111486171B (en) * 2019-12-13 2023-01-10 宙斯能源动力科技(大连)有限公司 High-bearing radial foil bearing with corrugated foil pretightening force
JPWO2022065375A1 (en) 2020-09-24 2022-03-31
CN114810892B (en) * 2021-01-28 2024-04-05 中国航发商用航空发动机有限责任公司 Extrusion oil film damper and aeroengine
JP2023055283A (en) 2021-10-06 2023-04-18 株式会社豊田自動織機 Turbo type fluid machine
KR20230072190A (en) * 2021-11-17 2023-05-24 삼성전자주식회사 Air foil journal bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676716U (en) * 1993-04-05 1994-10-28 石川島播磨重工業株式会社 Foil journal bearing
JPH10331846A (en) * 1997-03-28 1998-12-15 Mohawk Innov Technol Inc Hydrodynamic fluid film bearing
JPH11247844A (en) * 1998-01-05 1999-09-14 Capstone Turbine Corp Compliant foil fluid film radial bearing
JP2004011839A (en) * 2002-06-10 2004-01-15 Mitsubishi Heavy Ind Ltd Foil gas bearing
JP2004190761A (en) * 2002-12-10 2004-07-08 Koyo Seiko Co Ltd Foil for radial foil bearing, and radial foil bearing using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676716U (en) * 1993-04-05 1994-10-28 石川島播磨重工業株式会社 Foil journal bearing
JPH10331846A (en) * 1997-03-28 1998-12-15 Mohawk Innov Technol Inc Hydrodynamic fluid film bearing
JPH11247844A (en) * 1998-01-05 1999-09-14 Capstone Turbine Corp Compliant foil fluid film radial bearing
JP2004011839A (en) * 2002-06-10 2004-01-15 Mitsubishi Heavy Ind Ltd Foil gas bearing
JP2004190761A (en) * 2002-12-10 2004-07-08 Koyo Seiko Co Ltd Foil for radial foil bearing, and radial foil bearing using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597945A4 (en) * 2017-03-15 2021-01-13 IHI Corporation Radial foil bearing
WO2019172378A1 (en) * 2018-03-07 2019-09-12 株式会社Ihi Radial foil bearing
CN111788399A (en) * 2018-03-07 2020-10-16 株式会社Ihi Radial foil bearing
EP3763955A4 (en) * 2018-03-07 2021-12-15 Ihi Corporation Radial foil bearing
EP3763956A4 (en) * 2018-03-07 2021-12-15 Ihi Corporation Radial foil bearing
US11306772B2 (en) 2018-03-07 2022-04-19 Ihi Corporation Radial foil bearing

Also Published As

Publication number Publication date
CN100510443C (en) 2009-07-08
JP3636328B1 (en) 2005-04-06
CN1898476A (en) 2007-01-17
KR20060037254A (en) 2006-05-03
JP2006057652A (en) 2006-03-02
KR100807889B1 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
WO2006018916A1 (en) Dynamic pressure fluid bearing
JP2006057828A (en) Top foil locking mechanism
EP1566556B1 (en) Hydrodynamic fluid film bearing having a key-less foil
JP4973590B2 (en) Dynamic pressure gas bearing
JP5664789B2 (en) Radial foil bearing
EP0317621B1 (en) Hydro dynamic bearing and methods of making same
US20050163407A1 (en) Hydrodynamic journal foil bearing system
WO2006018915A1 (en) Vibration damping mechanism for bearing
US6224263B1 (en) Foil thrust bearing with varying circumferential and radial stiffness
JP2008241015A (en) Multirobe foil fluid bearing and its manufacturing method
EP1208308A1 (en) Foil thrust bearing
KR20100039844A (en) Foil bearing apparatus
KR101187892B1 (en) Air foil bearing
US7530742B2 (en) Foil bearing
CA3093220C (en) Radial foil bearing
JP2002364643A (en) Hydrodynamic foil bearing
WO2017169842A1 (en) File bearing
JPH0342255Y2 (en)
JP2017180672A (en) Foil bearing
EP4012207A1 (en) Air foil journal bearing
JP2017180685A (en) Foil bearing
US20100278464A1 (en) Blade Gasodynamic Bearing
JP2003269449A (en) Foil bearing
KR20020035283A (en) Air foil bearing
KR102283021B1 (en) Thrust bearing for turbo-compressor having it

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001381.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057022041

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057022041

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase