WO2006011367A1 - Audio signal encoder and decoder - Google Patents

Audio signal encoder and decoder Download PDF

Info

Publication number
WO2006011367A1
WO2006011367A1 PCT/JP2005/012941 JP2005012941W WO2006011367A1 WO 2006011367 A1 WO2006011367 A1 WO 2006011367A1 JP 2005012941 W JP2005012941 W JP 2005012941W WO 2006011367 A1 WO2006011367 A1 WO 2006011367A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
channel
ratio
audio signal
decoding
Prior art date
Application number
PCT/JP2005/012941
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Iida
Mineo Tsushima
Yoshiaki Takagi
Naoya Tanaka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006011367A1 publication Critical patent/WO2006011367A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic

Definitions

  • the present invention relates to an audio signal encoding apparatus and decoding apparatus.
  • Conventional audio signal encoding methods and decoding methods include ISO / IEC international standard methods, commonly known MPEG methods, and the like as well-known methods.
  • ISO / IEC 13818-7 commonly known as MPEG2 AAC (Advanced Audio Coding)
  • MPEG2 AAC Advanced Audio Coding
  • Non-Patent Document 1 ISO / IEC 14496-3: 2001 AMD2 "Parametric Coding for High Quality Audio
  • Patent Document 1 US Published Patent US2003 / 0035553 "Backwards- compatible Perceptual Coding of Spatial Cues
  • Patent Document 2 US Published Patent US2003 / 0219130 "Coherence-based Audio Coding and Synthesis"
  • an audio signal encoding device is an audio signal encoding device that encodes a multi-channel audio signal, and is a listener of the multi-channel audio signal.
  • Energy sum calculation means for calculating the sum of the energy of the channel signals existing on the front side and the sum of the energy of the channel signals existing on the back side of the listener, the energy sum on the front side, and the energy on the back side It is characterized by comprising energy ratio calculating means for calculating the ratio to the sum, and energy ratio sign means for signing the calculated ratio of the energy sum.
  • the energy ratio sign means may quantize the sign of the energy sum according to a discrimination characteristic related to a sense of wrapping.
  • the discrimination feature indicates that the discrimination performance is the highest when the difference between the energy sum on the front side and the energy sum on the back side is within a predetermined range.
  • the ratio sign means that the difference between the energy sums on the front side and the back side is the smallest! / ⁇ is quantized so that the quantization accuracy is highest, and the number of bits decreases as the energy sum difference increases. Quantization may be performed.
  • the audio signal decoding apparatus of the present invention decodes a code sequence representing a multi-channel audio signal to output a multi-channel audio signal having an auditory wrapping feeling.
  • Audio signal decoding means for generating a multi-channel audio signal by decoding a code string, the signal decoding device By decoding the code string, the ratio between the energy sum of the channel signal existing on the front side of the listener and the energy sum of the channel signal existing on the back side of the listener is decoded.
  • Energy ratio decoding means, and energy distribution means for distributing energy to the front side channel and the back side channel according to the ratio of the decoded energy sum.
  • a down-mix signal that does not read and process the auxiliary information at the time of decoding. If only the part is decoded, even a speaker or headphone having a 2-channel signal playback system can be played back with a low computational complexity and high sound quality.
  • FIG. 1 is a diagram showing a processing flow of an encoding device and a decoding device according to the present embodiment.
  • FIG. 2 is a diagram showing a relationship between a listener and a sound source indicated by channel information.
  • FIG. 3 is a diagram showing a coding method that changes the quantization accuracy of the front and rear energy ratios based on human auditory characteristics.
  • FIG. 4 is a block diagram showing a configuration of an encoding device and a decoding device each including the energy ratio encoding unit and the energy distribution unit shown in FIG.
  • FIG. 1 is a diagram schematically showing a processing flow of audio signal encoding apparatus 100 and decoding apparatus 110 of the present embodiment.
  • this embodiment it does not matter what encoding method is used to encode and decode the audio signal of each channel! It will be described later as an example.
  • This encoding device 100 is an encoding device that encodes the energy ratio between the front and rear of the multi-channel signal in order to restore the wrapping feeling due to the multi-channel signal in the decoding device 110.
  • the energy ratio sign 400 is provided.
  • Energy ratio The signal key unit 400 also includes a front channel energy calculation unit 101, a rear channel energy calculation unit 102, a front rear energy ratio calculation unit 103, and an energy quantization code unit 104.
  • the code key sequence 109 is a signal encoded by the code key device 100.
  • the decoding device 110 calculates the energy ratio between the front and rear of the multi-channel signal from the code string 109 output by the coding device 100, and outputs each decoded channel.
  • This is a decoding device that distributes energy so that the original signal is wrapped by the signal, and includes an energy distribution unit 410.
  • the energy distribution unit 410 includes an energy decoding / inverse quantization unit 105, a front / rear energy calculation unit 106, a front channel energy distribution unit 107, and a rear channel energy distribution unit 108.
  • Figure 2 shows the relationship between the listener and sound source indicated by the channel information.
  • L front L channel
  • R front R channel
  • C center channel
  • BR back R channel
  • LF E Low Frequency Effect
  • the front channel signals (L, R, C) are input to the front channel energy calculation unit 101.
  • the front channel energy calculation unit 101 calculates the energy of each of the front channel signals (L, R, C) and calculates the total energy of the front channel signal.
  • the rear channel signals (BL, BR) are input to the rear channel energy calculation unit 102.
  • the rear channel energy calculation unit 102 calculates the energy of each of the rear channel signals (BL, BR) and outputs the rear channel signal. Calculate the total energy. Since the processes of the front channel energy calculation unit 101 and the rear channel energy calculation unit 102 are a part of the audio encoding method, the processes are generally performed at specified time intervals. In other words, energy is calculated at each time interval.
  • the front channel energy and the rear channel energy are input to the front-rear energy ratio calculation unit 103.
  • the front-rear energy ratio calculation unit 103 calculates the energy ratio between the front channel energy and the rear channel energy.
  • the output of the front-rear energy ratio calculation unit 103 includes the absolute amount of energy obtained only by the energy ratio (the front energy itself or the rear energy itself, or the sum of the forward energy and the rear energy. ) Is also output.
  • the energy quantization code unit 104 quantizes the code sequence 109 using the energy ratio and the absolute amount of energy, which are the outputs of the front-rear energy ratio calculation unit 103, as inputs.
  • the quantization method and the sign key method are not particularly specified.
  • FIG. 4 is a block diagram showing the overall configuration of encoding apparatus 100 and decoding apparatus 110 including energy ratio encoding section 400 and energy distribution section 410 shown in FIG.
  • Encoding apparatus 100 includes an energy ratio encoding unit 400, a downmixing unit 401, a frequency converting unit 402, a quantizing unit 403, an encoding unit 404, and a multiplexing unit 405.
  • Decoding apparatus 110 includes demultiplexing section 406, decoding section 407, inverse quantization section 408, inverse frequency conversion section 409, energy distribution section 410, and signal separation section 411.
  • the encoding device 100 will be described. In parallel with the fact that the energy ratio of the front and rear channels and the absolute amount of energy are quantized and signed in the energy ratio sign section 400, the downmix section 401, the frequency conversion section 402, the quantization section 403 Each channel signal is encoded by the encoding unit 404.
  • the front channel signal (L, R, C) and the rear channel signal (BL, BR) force are input to the down-mit- ter unit 401.
  • the downmix unit 401 generates a left downmix signal represented by (L + BL) Z2 from the front left channel signal L and the rear left channel signal BL. Further, a right downmix signal represented by (R + BR) / 2 is generated from the front right channel signal R and the rear right channel signal BR.
  • the center channel signal C remains unchanged.
  • the present invention is not limited to any downmitas method used here.
  • the signal from the downmix unit 401 is input to the frequency conversion unit 402.
  • the frequency converter 402 converts the signal for each channel into a frequency spectrum on the frequency axis, for example, by a predetermined number of samples.
  • the quantization unit 403 quantizes the frequency-converted signal of each channel.
  • the sign key unit 404 encodes the quantized transform coefficient.
  • Multiplexing section 405 multiplexes the encoded transform coefficients of each channel and the energy ratio encoded by energy ratio encoding section 400 and outputs code string 109.
  • the decoding apparatus 110 reproduces the energy of the signal of the front channel and the energy of the signal of the rear channel, with the code sequence 109 encoded by the encoding apparatus 100 as an input.
  • the energy decoding / dequantizing unit 105 of the energy distributing unit 410 reads the code sequence separated from the code sequence 109 by the demultiplexing unit 406 shown in FIG. Decodes the channel energy ratio and the absolute amount of energy (front energy itself or rear energy itself, or the sum of forward energy and backward energy).
  • the front / rear energy calculation unit 106 receives the energy ratio of the front channel and the rear channel and the absolute amount of energy, and outputs the energy sum of the front channel and the energy sum of the rear channel.
  • the energy sum of the front channel is input to the front channel energy distribution unit 107, and the energy sum of the rear channel is input to the rear channel energy distribution unit 108.
  • the demultiplexing unit 406 demultiplexes the code string representing the spectrum of the left channel, the right channel, and the center channel from the code string 109.
  • the decoding key unit 407 decodes a code string corresponding to each channel.
  • Inverse quantization section 408 performs inverse quantization on the decoded spectrum of each channel.
  • the inverse frequency converting unit 409 converts the left channel, right channel, and center channel signals represented by the frequency spectrum into signals represented by a function of time.
  • the signal separator 411 is a downmix converted to a function of time. Separate the signal into the original multi-channel signal.
  • the front left channel signal L and the rear left channel signal BL are separated from the left channel signal
  • the front right channel signal R and the rear right channel signal BR are separated from the right channel signal.
  • the front channel energy distribution unit 107 derives the energy of each of the L, R, and C channels according to the energy ratio between the front channels
  • the rear channel energy distribution unit 108 calculates the energy ratio between the rear channels. To derive the energy of each channel of BL and BR. By generating each channel signal according to the energy derived in this way, the wrapping feeling of the original signal by the multi-channel signal is restored.
  • the encoding apparatus 100 also includes a front channel energy calculation unit 101, a rear channel energy calculation unit 102, a front / back energy ratio calculation unit 103, and an energy quantization code unit 104.
  • the code key sequence 109 is a signal encoded by the code key device 100.
  • the decoding device 110 includes an energy decoding / inverse quantization unit 105, a front / back energy calculation unit 106, a front channel energy distribution unit 107, and a back channel energy distribution unit 108.
  • the encoding device 100 and the decoding device 110 focus on characteristics related to the feeling of wrapping, which is one of the spatial impressions of listeners when listening to multi-channel audio. , The role of reflections from behind the listener in spatial ⁇ mpression ", Masayu i orimoto, Kazuniro Iida, et.al, Applied Acoustics 2001, pp.1 09-124, etc.
  • the ratio between the sound source level of the sound source and the sound source level of the rear channel in other words, the ratio between the sound source level of the front channel and the energy level of the rear channel (in this embodiment, , Which is called FBR (Front Back Energy Ratio)) means that there is a possibility that a listener can be provided with a sufficient feeling of wrapping.
  • FBR Front Back Energy Ratio
  • the channels are L, R, C, and the rear channels are BL, BR.
  • a multi-channel system may have a larger number of channels or a smaller number of channels.
  • the front channel is the front channel
  • the rear channel is the rear channel. It can be handled in the same manner as this embodiment.
  • the front channel signals (L, R, C) are input to the front channel energy calculation unit 101, and the front channel energy calculation unit 101 calculates the total energy of the front channel signal.
  • the rear channel signals (BL, BR) are input to the rear channel energy calculation unit 102, and the rear channel energy calculation unit 102 calculates the total energy of the rear channel signals. Since the processes of the front channel energy calculation unit 101 and the rear channel energy calculation unit 102 are a part of the audio encoding method, the processes are generally performed at specified time intervals. In other words, energy is calculated for each time interval.
  • the energy of the front channel is Ef
  • the energy of the rear channel is Eb.
  • the energies of the front channel signals (L, R, C) are LE, RE, and CE
  • the front-rear energy ratio calculation unit 103 calculates the energy ratio FBR (see equation (1)) between the front channel energy and the rear channel energy.
  • FBR 10 1og (Ef / Eb) (1)
  • the output of the front-rear energy ratio calculation unit 103 includes the absolute amount of energy obtained by the above-mentioned energy ratio alone (the front energy Ef itself, or the rear energy Eb itself, or the front energy and the rear energy.
  • the added value Ef + Eb) is also output.
  • the energy quantization code unit 104 receives the energy ratio (FBR), which is the output of the front-rear energy ratio calculation unit 103, and the absolute amount of energy, and inputs the quantity.
  • the code string 109 is generated by the child.
  • the energy ratio (FBR) is a value that is strongly related to the listener's audibility characteristics related to the “wrapping feeling”, during quantization, in the range that is sensitively perceived by human auditory characteristics.
  • FIG. 3 is a diagram showing a coding method that changes the quantization accuracy of the front and rear energy ratios based on human auditory characteristics.
  • the horizontal axis represents the front-to-back energy ratio (Ef / Eb), and the internal vertical line represents the density of the quantization accuracy.
  • Ef / Eb front-to-back energy ratio
  • the internal vertical line represents the density of the quantization accuracy.
  • Ef I Eb 1
  • the difference between the energy values before and after is most easily perceived.
  • the energy values of the front and back are different from each other originally, even if the original energy is slightly deviated, it is not perceived by the human ear. Therefore, when the front / rear energy ratio (Ef / Eb) is close to “1”, fine quantization is performed for the energy ratio, and coarser quantization is performed as the distance from “1” is increased.
  • the decoding apparatus 110 reproduces the energy of the signal of the front channel and the energy of the signal of the rear channel, with the code sequence 109 encoded by the encoding apparatus 100 as an input.
  • the code sequence 109 is read by the energy decoding / inverse quantization unit 105, and the energy ratio (FBR) of the front channel and the back channel and the absolute amount of energy ( The forward energy itself Ef, or the backward energy itself Eb, or the sum of the forward energy and the backward energy Ef + Eb) is decoded.
  • the front-rear energy calculation unit 106 receives the energy ratio (FBR) of the front channel and the rear channel and the absolute amount of energy, and calculates the energy sum Ef of the front channel and the rear channel. Output the energy sum Eb.
  • the energy sum Ef of the front channel is input to the front channel energy distribution unit 107, and the energy sum Eb of the rear channel is input to the rear channel energy distribution unit 108.
  • the front channel energy distribution unit 107 derives the energy of each of the channels L, R, and C according to the energy ratio between the front channels, and the rear channel energy distribution unit 108 determines the BL according to the energy ratio between the rear channels.
  • the energy of each channel is derived.
  • the method for decoding the energy ratio between the front channels and the energy ratio between the rear channels is not particularly defined in the present application. In general, decryption is performed based on separately available information.
  • the audio signal encoding device 100 and the decoding device 110 configured in this way are used, it is easy to maintain the characteristic of "envelopment" when listening to the multi-channel of the listener, and there are few It is possible to provide a comfortable sound field even when multi-channel playback is performed by forming a code sequence with information.
  • the encoding method and decoding method for each channel signal described in the above embodiment are merely examples, and are used in the audio signal encoding device and the decoding device of the present invention.
  • the encoding method and decoding method for each channel signal are not limited to this.
  • a 5-channel multi-channel signal was downmixed into 3 channels, the left channel, the right channel, and the center channel, but the left channel, the right channel, and the center channel were encoded.
  • the signal may be downmixed to a monaural signal to be encoded and decoded.
  • the audio signal decoding method and encoding method of the present invention can be applied to all applications to which the audio encoding method and decoding method have been applied.
  • Code stream which is a bit stream encoded with audio code, is currently used for transmission of broadcast contents, applications that are recorded and played back on storage media such as DVDs and SD cards, and communication devices represented by mobile phones. This is used when transmitting AV content to the Internet. In addition, when transmitting audio signals as electronic data exchanged over the Internet. It is useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Multichannel signals are easily separated and extracted from a code sequence in which a coded audio signals are mixed without giving the listener a feeling of auditory oddness. When the listener listens to the sound of multichannel signals, the characteristic, a surrounded feeling, is important. Therefore, encoding matching the discrimination characteristic is performed without impairing the characteristic. The surrounded feeling is represented by the ratio Ef/Eb of the sum Ef of the energies of the signals of the channels (L, C, R) in front of the ears of the listener to the sum Eb of the energies of the signals of the channels (BL, BR) behind the ears. In an audio signal encoder of the invention, the energy ratio Ef/Eb of the front and rear energies representing the surrounded feeling is multiplexed in a code sequence in which coded multichannel signals are mixed. As a result, multichannel audio signals giving a feeling of presence can be decoded.

Description

明 細 書  Specification
オーディオ信号符号化装置および復号化装置  Audio signal encoding apparatus and decoding apparatus
技術分野  Technical field
[0001] 本発明は、オーディオ信号の符号ィ匕装置および復号ィ匕装置に関するものである。  The present invention relates to an audio signal encoding apparatus and decoding apparatus.
背景技術  Background art
[0002] 従来のオーディオ信号符号化方法、および、復号化方法としては、公知なものとし て ISO/IECの国際標準方式、通称 MPEG方式などが挙げられる。現在、幅広い応用 を持ち、低ビットレート時でも高音質な符号ィ匕方式として、 ISO/IEC 13818— 7、通 称 MPEG2 AAC (Advanced Audio Coding)などがあげられる。本方式の拡張規格も 複数規格化が現在なされている。その一つとして、空間音響情報 (Spatial Cue Inform ation)もしくは、聴覚的音響情報 (Binaural Cue)と呼ばれる情報を利用する技術がある 。このような技術の例としては、 ISO国際標準規格である MPEG- 4 Audio (ISO/IEC 14 496- 3)において定められたパラメトリックステレオ (Parametric Stereo)方式がある(例え ば、非特許文献 1参照)。また、別の方式も提案されている (例えば、特許文献 1、特 許文献 2参照)。  [0002] Conventional audio signal encoding methods and decoding methods include ISO / IEC international standard methods, commonly known MPEG methods, and the like as well-known methods. Currently, ISO / IEC 13818-7, commonly known as MPEG2 AAC (Advanced Audio Coding), is a coding scheme that has a wide range of applications and high sound quality even at low bit rates. Multiple standards for this system are currently being standardized. One of them is a technology that uses information called spatial acoustic information or auditory acoustic information (Binaural Cue). As an example of such a technology, there is a parametric stereo system defined in MPEG-4 Audio (ISO / IEC 14 496- 3), an ISO international standard (for example, see Non-Patent Document 1). ). Another method has also been proposed (see, for example, Patent Document 1 and Patent Document 2).
非特許文献 1 : ISO/IEC 14496-3:2001 AMD2 "Parametric Coding for High Quality Audio  Non-Patent Document 1: ISO / IEC 14496-3: 2001 AMD2 "Parametric Coding for High Quality Audio
特許文献 1 :米国公開特許 US2003/0035553 "Backwards- compatible Perceptual Cod ing of Spatial Cues  Patent Document 1: US Published Patent US2003 / 0035553 "Backwards- compatible Perceptual Coding of Spatial Cues
特許文献 2 :米国公開特許 US2003/0219130 "Coherence- based Audio Coding and S ynthesis"  Patent Document 2: US Published Patent US2003 / 0219130 "Coherence-based Audio Coding and Synthesis"
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、従来のオーディオ信号符号化方法、および、復号化方法では、例え ば背景技術に記載の AACなどでは、マルチチャネルの信号を符号ィ匕する際に、チ ヤンネル間の相関を十分に生力しきれていないため、低ビットレートイ匕することが困難 であった。チャンネル間の相関を用いて符号ィ匕を実施する場合においても、人間の 音源の包まれ感などに関する知覚特性をもちいることで得られる符号ィ匕効率の向上 などの効果を、十分に量子化と符号化に活かしきれて 、な 、と 、う課題があった。 [0003] However, in the conventional audio signal encoding method and decoding method, for example, in the AAC described in the background art, when a multi-channel signal is encoded, the correlation between channels is sufficient. However, it was difficult to achieve a low bit rate due to lack of energy. Even when code sign is implemented using correlation between channels, There was a problem that the effects such as the improvement of the coding efficiency obtained by using the perceptual characteristics related to the feeling of envelopment of the sound source could be fully utilized for quantization and coding.
[0004] また従来の方法では、マルチチャネルの信号を符号ィ匕したものを復号ィ匕する際に、 2つのスピーカやヘッドホンなどで再生する場合において、一度、すべてのチャンネ ルを復号化し、その後、ダウンミクスなどの方法を用いて、 2つのスピーカやヘッドホン で再生すべきオーディオ信号を加算により生成しなければならな力つた。このことは 2 つのスピーカやヘッドホンで再生する場合に、多くの計算量や計算用のバッファを要 し、それを実装する DSPなどの計算手段の消費電力やコストを高める原因となった。 課題を解決するための手段  [0004] Further, in the conventional method, when decoding a multi-channel signal that has been encoded, when playing back with two speakers, headphones, etc., all the channels are once decoded, and thereafter Using a method such as downmixing, it was necessary to generate an audio signal to be reproduced by two speakers and headphones. This required a large amount of calculation and a buffer for calculation when played back with two speakers and headphones, and this caused the power consumption and cost of calculation means such as DSP to be implemented. Means for solving the problem
[0005] 上記課題を解決するため、本発明のオーディオ信号符号化装置は、マルチチヤネ ルのオーディオ信号を符号ィ匕するオーディオ信号符号ィ匕装置であって、マルチチヤ ネルのオーディオ信号のうち、リスナーのフロント側に存在するチャンネルの信号の エネルギー和、および、リスナーのバック側に存在するチャンネルの信号のエネルギ 一和を算出するエネルギー和算出手段と、フロント側の前記エネルギー和と、バック 側の前記エネルギー和との比を算出するエネルギー比算出手段と、算出された前記 エネルギー和の比を符号ィ匕するエネルギー比符号ィ匕手段とを備えることを特徴とす る。 [0005] In order to solve the above problems, an audio signal encoding device according to the present invention is an audio signal encoding device that encodes a multi-channel audio signal, and is a listener of the multi-channel audio signal. Energy sum calculation means for calculating the sum of the energy of the channel signals existing on the front side and the sum of the energy of the channel signals existing on the back side of the listener, the energy sum on the front side, and the energy on the back side It is characterized by comprising energy ratio calculating means for calculating the ratio to the sum, and energy ratio sign means for signing the calculated ratio of the energy sum.
[0006] また、前記エネルギー比符号ィ匕手段は、前記エネルギー和の比を、聴覚上の包ま れ感に関する弁別特性に応じて量子化し、符号ィ匕するとしてもよい。  [0006] The energy ratio sign means may quantize the sign of the energy sum according to a discrimination characteristic related to a sense of wrapping.
[0007] さらに、前記弁別特¾は、フロント側の前記エネルギー和と、バック側の前記エネノレ ギー和との差が所定範囲内である場合に、弁別性能が最も高いことを示し、前記ェ ネルギー比符号ィ匕手段は、フロント側とバック側とのエネルギー和の差が最も小さ!/ヽ とき最も量子化精度が高くなるよう量子化し、前記エネルギー和の差が大きくなるほど ビット数が少なくなるよう量子化を行なうとしてもよい。  [0007] Further, the discrimination feature indicates that the discrimination performance is the highest when the difference between the energy sum on the front side and the energy sum on the back side is within a predetermined range. The ratio sign means that the difference between the energy sums on the front side and the back side is the smallest! / ヽ is quantized so that the quantization accuracy is highest, and the number of bits decreases as the energy sum difference increases. Quantization may be performed.
[0008] 本発明のオーディオ信号復号化装置は、マルチチャネルのオーディオ信号を表す 符号ィ匕列を復号ィ匕することによって、聴覚上の包まれ感を有するマルチチャネルォ 一ディォ信号を出力するオーディオ信号復号化装置であって、符号列を復号化する ことによって、マルチチャネルオーディオ信号を生成するオーディオ信号復号ィ匕手段 と、前記符号列を復号ィ匕することによって、リスナーのフロント側に存在するチャンネ ルの信号のエネルギー和と、リスナーのバック側に存在するチャンネルの信号のエネ ルギー和との比を復号ィ匕するエネルギー比復号ィ匕手段と、復号化された前記エネル ギー和の比に従って、前記フロント側チャンネルと前記バック側チャンネルとにエネ ルギーを分配するエネルギー分配手段とを備えることを特徴とする。 [0008] The audio signal decoding apparatus of the present invention decodes a code sequence representing a multi-channel audio signal to output a multi-channel audio signal having an auditory wrapping feeling. Audio signal decoding means for generating a multi-channel audio signal by decoding a code string, the signal decoding device By decoding the code string, the ratio between the energy sum of the channel signal existing on the front side of the listener and the energy sum of the channel signal existing on the back side of the listener is decoded. Energy ratio decoding means, and energy distribution means for distributing energy to the front side channel and the back side channel according to the ratio of the decoded energy sum.
発明の効果  The invention's effect
[0009] 以上説明したように、本発明のオーディオ信号符号化方法、および、復号化方法で は、混入された複数の信号列から、複数の信号列に分離する場合において、人間の 音源の包まれ感などに関する知覚特性をもちいて、非常に小さな補助情報を生成す ることで、聴感上、違和感がない程度に信号の分離を達成することが可能となる。  [0009] As described above, in the audio signal encoding method and the decoding method of the present invention, when a plurality of mixed signal sequences are separated into a plurality of signal sequences, a human sound source package is included. It is possible to achieve signal separation to the extent that there is no sense of incongruity in the sense of hearing by generating very small auxiliary information by using the perceptual characteristics related to rare feeling.
[0010] また、あら力じめ混入された信号力 マルチチャンネル信号のダウンミクス信号であ るように構成しておけば、復号時においては、補助情報を読み取って信号処理する ことなぐダウンミクス信号部だけを復号すれば、 2チャンネル信号の再生系を有する スピーカやヘッドホンにおいても、低演算量で高音質な再生が可能となる。  [0010] Further, if it is configured to be a signal-mixed multi-channel signal down-mix signal, a down-mix signal that does not read and process the auxiliary information at the time of decoding. If only the part is decoded, even a speaker or headphone having a 2-channel signal playback system can be played back with a low computational complexity and high sound quality.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]図 1は、本実施の形態の符号化装置および復号化装置の処理の流れを示す図 である。  FIG. 1 is a diagram showing a processing flow of an encoding device and a decoding device according to the present embodiment.
[図 2]図 2は、チャンネル情報が示すリスナーと音源の関係を表す図である。  FIG. 2 is a diagram showing a relationship between a listener and a sound source indicated by channel information.
[図 3]図 3は、人間の聴覚特性に基づいて、前後のエネルギー比の量子化精度を変 える符号ィ匕方法を示す図である。  [FIG. 3] FIG. 3 is a diagram showing a coding method that changes the quantization accuracy of the front and rear energy ratios based on human auditory characteristics.
[図 4]図 4は、図 1に示したエネルギー比符号ィ匕部とエネルギー分配部とを備えた符 号化装置および復号化装置の構成を示すブロック図である。  FIG. 4 is a block diagram showing a configuration of an encoding device and a decoding device each including the energy ratio encoding unit and the energy distribution unit shown in FIG.
符号の説明  Explanation of symbols
[0012] 100 符号化装置 [0012] 100 encoding apparatus
101 前方チャンネルエネルギー算出部  101 Forward channel energy calculator
102 後方チャンネルエネルギー算出部  102 Rear channel energy calculator
103 前方後方エネルギー比算出部  103 Front-rear energy ratio calculator
104 エネルギー量子化符号ィ匕部 105 エネルギー復号化逆量子化部 104 Energy quantization code 105 Energy decoding inverse quantization section
106 前方後方エネルギー算出部  106 Front-rear energy calculator
107 前方チャンネルエネルギー分配部  107 Forward channel energy distributor
108 後方チャンネルエネルギー分配部  108 Rear channel energy distributor
109 符号化列  109 coded sequence
110 復号化装置  110 Decryption device
400 エネルギー比符号ィ匕部  400 Energy ratio sign
401 ダウンミクス部  401 Downmix
402 周波数変換部  402 Frequency converter
403 量子化部  403 Quantizer
404 符号化部  404 encoder
405 多重化部  405 Multiplexer
406 逆多重化部  406 Demultiplexer
407 復号化部  407 Decryption unit
408 逆量子化部  408 Inverse quantization unit
409 逆周波数変換部  409 Inverse frequency converter
410 エネルギー分配部  410 Energy distribution department
411 信号分離部  411 Signal separator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態を、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014] (実施の形態)  [0014] (Embodiment)
図 1は、本実施の形態のオーディオ信号符号化装置 100、および、復号化装置 11 0の処理の流れを模式的に示した図である。なお、本実施の形態では各チャンネル のオーディオ信号がどのような符号ィ匕方式によって符号ィ匕および復号ィ匕されるかは 問題ではな!、ので、後に一例にっ 、て説明する。  FIG. 1 is a diagram schematically showing a processing flow of audio signal encoding apparatus 100 and decoding apparatus 110 of the present embodiment. In this embodiment, it does not matter what encoding method is used to encode and decode the audio signal of each channel! It will be described later as an example.
[0015] この符号ィ匕装置 100は、復号ィ匕装置 110においてマルチチャネル信号による包ま れ感を復元するために、マルチチャネル信号の前方と後方とのエネルギー比を符号 化する符号ィ匕装置であって、エネルギー比符号ィ匕部 400を備える。エネルギー比符 号ィ匕部 400は、前方チャンネルエネルギー算出部 101、後方チャンネルエネルギー 算出部 102、前方後方エネルギー比算出部 103、エネルギー量子化符号ィ匕部 104 力もなる。符号ィ匕列 109は符号ィ匕装置 100で符号化された信号である。 [0015] This encoding device 100 is an encoding device that encodes the energy ratio between the front and rear of the multi-channel signal in order to restore the wrapping feeling due to the multi-channel signal in the decoding device 110. In addition, the energy ratio sign 400 is provided. Energy ratio The signal key unit 400 also includes a front channel energy calculation unit 101, a rear channel energy calculation unit 102, a front rear energy ratio calculation unit 103, and an energy quantization code unit 104. The code key sequence 109 is a signal encoded by the code key device 100.
[0016] また、この復号ィ匕装置 110は、符号ィ匕装置 100によって出力された符号列 109から 、マルチチャネル信号の前方と後方とのエネルギー比を算出し、復号化された各チヤ ンネルの信号により、原信号の包まれ感が復元されるよう、エネルギーを分配する復 号化装置であって、エネルギー分配部 410を備える。エネルギー分配部 410は、ェ ネルギー復号ィ匕逆量子化部 105、前方後方エネルギー算出部 106、前方チャンネ ルエネルギー分配部 107、後方チャンネルエネルギー分配部 108からなる。  [0016] Also, the decoding device 110 calculates the energy ratio between the front and rear of the multi-channel signal from the code string 109 output by the coding device 100, and outputs each decoded channel. This is a decoding device that distributes energy so that the original signal is wrapped by the signal, and includes an energy distribution unit 410. The energy distribution unit 410 includes an energy decoding / inverse quantization unit 105, a front / rear energy calculation unit 106, a front channel energy distribution unit 107, and a rear channel energy distribution unit 108.
[0017] まず簡単に符号ィ匕装置 100から説明する。図 2は、チャンネル情報が示すリスナー と音源の関係を表す図である。マルチチャンネルのオーディオ信号の受聴システム において、例えば図 2に示すような 5チャンネル信号を扱うものを想定した場合、リス ナ一が正面を向 、て着座してリスナーの正面方向に対して、耳より前方にあるフロン ト Lチャンネル(L)、フロント Rチャンネル (R)、センターチャンネル(C)と、耳より後方 にあるバック Lチャンネル(BL)、バック Rチャンネル(BR)とに大別して以降の処理を 実施する。耳より前方にあるチャンネルを前方チャンネル、耳より後方にあるチャンネ ルを後方チャンネルと呼ぶことにする。簡単のために 5チャンネルのシステムにつ!/ヽ て説明をする力 リスナーの耳より前方と後方のチャンネルに大別して処理をすると いう意味において、他のチャンネル数のシステムでもよい。一般に低域信号を扱う LF E (Low Frequency Effect)チャンネルは、リスナーの前方(または後方)においても、 人間の聴覚特性において、その方向性は知覚されるものではないので、前方 (また は後方)チャンネルと区別しな 、。  First, the encoding device 100 will be briefly described. Figure 2 shows the relationship between the listener and sound source indicated by the channel information. When assuming a multi-channel audio signal listening system that handles, for example, a 5-channel signal as shown in Fig. 2, the listener is seated facing forward and in front of the listener in front of the listener. The front L channel (L), front R channel (R), center channel (C), and back L channel (BL) and back R channel (BR) located behind the ear are roughly divided into the following processes. To do. The channel ahead of the ear is called the front channel, and the channel behind the ear is called the back channel. For simplicity, the power to explain a system with 5 channels! / A system with other number of channels is possible in the sense that the processing is roughly divided into the front and rear channels from the listener's ear. In general, the LF E (Low Frequency Effect) channel, which handles low frequency signals, is not perceived in the human auditory characteristics even in front of (or behind) the listener. Do not distinguish from channels.
[0018] 再び図 1に戻って、前方チャンネル信号(L、 R、 C)は、前方チャンネルエネルギー 算出部 101に入力される。前方チャンネルエネルギー算出部 101は、前方チャンネ ル信号(L、 R、 C)それぞれのエネルギーを算出した上、前方チャンネル信号のエネ ルギー総和を算出する。また、後方チャンネル信号 (BL, BR)は、後方チャンネルェ ネルギー算出部 102に入力される。後方チャンネルエネルギー算出部 102は、後方 チャンネル信号(BL, BR)それぞれのエネルギーを算出し、後方チャンネル信号の エネルギー総和を算出する。これら前方チャンネルエネルギー算出部 101、および 後方チャンネルエネルギー算出部 102の処理はオーディオ符号ィ匕方法の一部であ るので、一般的に規定の時間間隔で処理を実施する。つまり、時間間隔ごとのエネ ルギー算出となる。 Returning to FIG. 1 again, the front channel signals (L, R, C) are input to the front channel energy calculation unit 101. The front channel energy calculation unit 101 calculates the energy of each of the front channel signals (L, R, C) and calculates the total energy of the front channel signal. The rear channel signals (BL, BR) are input to the rear channel energy calculation unit 102. The rear channel energy calculation unit 102 calculates the energy of each of the rear channel signals (BL, BR) and outputs the rear channel signal. Calculate the total energy. Since the processes of the front channel energy calculation unit 101 and the rear channel energy calculation unit 102 are a part of the audio encoding method, the processes are generally performed at specified time intervals. In other words, energy is calculated at each time interval.
[0019] 次に前方チャンネルエネルギー、および、後方チャンネルエネルギーは、前方後方 エネルギー比算出部 103に入力される。前方後方エネルギー比算出部 103では、前 方チャンネルエネルギーと後方チャンネルエネルギーのエネルギー比を算出する。 あわせて、前方後方エネルギー比算出部 103の出力としては、前記のエネルギー比 だけでなぐエネルギーの絶対量 (前方エネルギーそのもの、もしくは、後方エネルギ 一そのもの、もくしは、前方エネルギーと後方エネルギーの加算値)も出力する。エネ ルギー量子化符号ィ匕部 104では、前方後方エネルギー比算出部 103の出力である 、前記のエネルギー比とエネルギーの絶対量とを入力として、量子化し符号列 109を 生成する。ここでは量子化方法および符号ィ匕方法にっ 、ては特に規定しな 、。  Next, the front channel energy and the rear channel energy are input to the front-rear energy ratio calculation unit 103. The front-rear energy ratio calculation unit 103 calculates the energy ratio between the front channel energy and the rear channel energy. At the same time, the output of the front-rear energy ratio calculation unit 103 includes the absolute amount of energy obtained only by the energy ratio (the front energy itself or the rear energy itself, or the sum of the forward energy and the rear energy. ) Is also output. The energy quantization code unit 104 quantizes the code sequence 109 using the energy ratio and the absolute amount of energy, which are the outputs of the front-rear energy ratio calculation unit 103, as inputs. Here, the quantization method and the sign key method are not particularly specified.
[0020] 図 4は、図 1に示したエネルギー比符号ィ匕部 400とエネルギー分配部 410とを備え た符号ィ匕装置 100および復号ィ匕装置 110の全体の構成を示すブロック図である。符 号化装置 100は、エネルギー比符号ィ匕部 400、ダウンミクス部 401、周波数変換部 4 02、量子化部 403、符号化部 404および多重化部 405を備える。復号化装置 110 は、逆多重化部 406、復号化部 407、逆量子化部 408、逆周波数変換部 409、エネ ルギ一分配部 410および信号分離部 411を備える。  FIG. 4 is a block diagram showing the overall configuration of encoding apparatus 100 and decoding apparatus 110 including energy ratio encoding section 400 and energy distribution section 410 shown in FIG. Encoding apparatus 100 includes an energy ratio encoding unit 400, a downmixing unit 401, a frequency converting unit 402, a quantizing unit 403, an encoding unit 404, and a multiplexing unit 405. Decoding apparatus 110 includes demultiplexing section 406, decoding section 407, inverse quantization section 408, inverse frequency conversion section 409, energy distribution section 410, and signal separation section 411.
[0021] まず、符号ィ匕装置 100について説明する。エネルギー比符号ィ匕部 400で前後のチ ヤンネルのエネルギー比、およびエネルギーの絶対量が量子化および符号ィ匕される のと並行して、ダウンミクス部 401、周波数変換部 402、量子化部 403、符号化部 40 4で各チャンネル信号が符号ィ匕される。  First, the encoding device 100 will be described. In parallel with the fact that the energy ratio of the front and rear channels and the absolute amount of energy are quantized and signed in the energy ratio sign section 400, the downmix section 401, the frequency conversion section 402, the quantization section 403 Each channel signal is encoded by the encoding unit 404.
[0022] 前方チャンネル信号 (L、 R、 C)および後方チャンネル信号(BL, BR)力 ダウンミ タス部 401に入力される。ダウンミクス部 401は、前方左チャンネルの信号 Lと後方左 チャンネルの信号 BLとから、 (L + BL) Z2で表される左ダウンミクス信号を生成する 。また、前方右チャンネル信号 Rと後方右チャンネルの信号 BRとから、 (R + BR) /2 で表される右ダウンミクス信号を生成する。センターチャンネル信号 Cはそのままで、 3チャンネルの信号を出力する。なお、ここでは(L + BL)Z2および (R + BR)Z2と いうダウンミクスについて説明する力 ダウンミタスの方法については複数提案されて おり、いずれの方法を用いてもよい。また、ここではいずれのダウンミタスの方法を用 いたとしても、本発明を限定するものではない。ダウンミクス部 401からの信号は、周 波数変換部 402に入力される。周波数変換部 402は、チャンネルごとの信号を、例え ば、所定のサンプル数ずつ、周波数軸上の周波数スペクトルに変換する。量子化部 403は、周波数変換された各チャンネルの信号を量子化する。符号ィ匕部 404は、量 子化された変換係数を符号化する。多重化部 405は、符号化されたそれぞれのチヤ ンネルの変換係数およびエネルギー比符号ィ匕部 400で符号ィ匕されたエネルギー比 などを多重化して、符号列 109を出力する。 [0022] The front channel signal (L, R, C) and the rear channel signal (BL, BR) force are input to the down-mit- ter unit 401. The downmix unit 401 generates a left downmix signal represented by (L + BL) Z2 from the front left channel signal L and the rear left channel signal BL. Further, a right downmix signal represented by (R + BR) / 2 is generated from the front right channel signal R and the rear right channel signal BR. The center channel signal C remains unchanged. Outputs 3 channel signals. Here, there are a number of proposed methods of down-mittas for explaining the downmixing of (L + BL) Z2 and (R + BR) Z2, and either method may be used. In addition, the present invention is not limited to any downmitas method used here. The signal from the downmix unit 401 is input to the frequency conversion unit 402. The frequency converter 402 converts the signal for each channel into a frequency spectrum on the frequency axis, for example, by a predetermined number of samples. The quantization unit 403 quantizes the frequency-converted signal of each channel. The sign key unit 404 encodes the quantized transform coefficient. Multiplexing section 405 multiplexes the encoded transform coefficients of each channel and the energy ratio encoded by energy ratio encoding section 400 and outputs code string 109.
[0023] 次に復号ィ匕装置 110を説明する。前記の符号ィ匕装置 100で符号化された符号ィ匕 列 109を入力として、復号化装置 110では、前方チャンネルの信号のエネルギーと、 後方チャンネルの信号のエネルギーを再生する。  Next, the decoding device 110 will be described. The decoding apparatus 110 reproduces the energy of the signal of the front channel and the energy of the signal of the rear channel, with the code sequence 109 encoded by the encoding apparatus 100 as an input.
[0024] まず、エネルギー分配部 410のエネルギー復号化逆量子化部 105は、図 4に示し た逆多重化部 406によって符号ィ匕列 109から分離された符号列を読み取って、前方 チャンネルと後方チャンネルのエネルギー比とエネルギーの絶対量(前方エネルギ 一そのもの、もしくは、後方エネルギーそのもの、もくしは、前方エネルギーと後方ェ ネルギ一の加算値)を復号する。前方後方エネルギー算出部 106では、前記前方チ ヤンネルと後方チャンネルのエネルギー比とエネルギーの絶対量を受けて、前方チヤ ンネルのエネルギー和と、後方チャンネルのエネルギー和を出力する。前方チャンネ ルのエネルギー和は、前方チャンネルエネルギー分配部 107へ、後方チャンネルの エネルギー和は、後方チャンネルエネルギー分配部 108へそれぞれ入力される。  First, the energy decoding / dequantizing unit 105 of the energy distributing unit 410 reads the code sequence separated from the code sequence 109 by the demultiplexing unit 406 shown in FIG. Decodes the channel energy ratio and the absolute amount of energy (front energy itself or rear energy itself, or the sum of forward energy and backward energy). The front / rear energy calculation unit 106 receives the energy ratio of the front channel and the rear channel and the absolute amount of energy, and outputs the energy sum of the front channel and the energy sum of the rear channel. The energy sum of the front channel is input to the front channel energy distribution unit 107, and the energy sum of the rear channel is input to the rear channel energy distribution unit 108.
[0025] 一方、逆多重化部 406は、符号列 109から、左チャンネル、右チャンネルおよびセ ンターチヤンネルのスペクトルを表す符号列を逆多重化する。復号ィ匕部 407は、各チ ヤンネルに対応する符号列を復号化する。逆量子化部 408は、復号化された各チヤ ネルのスペクトルを逆量子化する。逆周波数変換部 409は、周波数スペクトルで表さ れた左チャンネル、右チャンネルおよびセンターチャンネルの信号を、時間の関数で 表される信号に変換する。信号分離部 411は、時間の関数に変換されたダウンミクス 信号を、元のマルチチャネル信号に分離する。すなわち、左チャンネル信号から前 方左チャンネル信号 Lおよび後方左チャンネル信号 BLを分離し、右チャンネル信号 カゝら前方右チャンネル信号 Rおよび後方右チャンネル信号 BRを分離する。このとき、 前方チャンネルエネルギー分配部 107では、前方チャンネル間でのエネルギー比率 に従って、 L, R, Cそれぞれのチャンネルのエネルギーを導出し、後方チャンネルェ ネルギー分配部 108では、後方チャンネル間でのエネルギー比率に従って、 BL、 B Rそれぞれのチャンネルのエネルギーを導出する。このように導出されたエネルギー に従って、各チャンネル信号が生成されることにより、原信号のマルチチャネル信号 による包まれ感が復元される。 On the other hand, the demultiplexing unit 406 demultiplexes the code string representing the spectrum of the left channel, the right channel, and the center channel from the code string 109. The decoding key unit 407 decodes a code string corresponding to each channel. Inverse quantization section 408 performs inverse quantization on the decoded spectrum of each channel. The inverse frequency converting unit 409 converts the left channel, right channel, and center channel signals represented by the frequency spectrum into signals represented by a function of time. The signal separator 411 is a downmix converted to a function of time. Separate the signal into the original multi-channel signal. That is, the front left channel signal L and the rear left channel signal BL are separated from the left channel signal, and the front right channel signal R and the rear right channel signal BR are separated from the right channel signal. At this time, the front channel energy distribution unit 107 derives the energy of each of the L, R, and C channels according to the energy ratio between the front channels, and the rear channel energy distribution unit 108 calculates the energy ratio between the rear channels. To derive the energy of each channel of BL and BR. By generating each channel signal according to the energy derived in this way, the wrapping feeling of the original signal by the multi-channel signal is restored.
[0026] 本発明の具体的な符号ィ匕方法について図 1を用いてさらに詳細に説明する。符号 化装置 100は、前方チャンネルエネルギー算出部 101、後方チャンネルエネルギー 算出部 102、前方後方エネルギー比算出部 103、エネルギー量子化符号ィ匕部 104 力もなる。符号ィ匕列 109は符号ィ匕装置 100で符号化された信号である。  [0026] A specific code method according to the present invention will be described in more detail with reference to FIG. The encoding apparatus 100 also includes a front channel energy calculation unit 101, a rear channel energy calculation unit 102, a front / back energy ratio calculation unit 103, and an energy quantization code unit 104. The code key sequence 109 is a signal encoded by the code key device 100.
[0027] また、この復号ィ匕装置 110は、エネルギー復号ィ匕逆量子化部 105、前方後方エネ ルギー算出部 106、前方チャンネルエネルギー分配部 107、後方チャンネルェネル ギー分配部 108からなる。  In addition, the decoding device 110 includes an energy decoding / inverse quantization unit 105, a front / back energy calculation unit 106, a front channel energy distribution unit 107, and a back channel energy distribution unit 108.
[0028] 符号ィ匕装置 100および復号ィ匕装置 110は、マルチチャンネルオーディオ受聴時の リスナーの空間的な印象のひとつである包まれ感に関する特性に着眼したものであり 、包まれ感に関して ίま、 The role of reflections from behind the listener in spatial ι mpression", Masayu i orimoto, Kazuniro Iida, et.al, Applied Acoustics 2001, pp.1 09-124などに記載があり、リスナーの受聴状況において、前方チャンネルの音源の レベルと、後方チャンネルの音源のレベルの比の保持が重要であることがのべられて いる。言い換えれば、前方チャンネルの音源と後方チャンネルのエネルギーレベル の比(本実施の开態では、 FBR (Front Back Energy Ratio)と称する。 )を保つことで 、リスナーに十分な包まれ感を提供できる可能性があることを意味する。  [0028] The encoding device 100 and the decoding device 110 focus on characteristics related to the feeling of wrapping, which is one of the spatial impressions of listeners when listening to multi-channel audio. , The role of reflections from behind the listener in spatial ι mpression ", Masayu i orimoto, Kazuniro Iida, et.al, Applied Acoustics 2001, pp.1 09-124, etc. It is important to maintain the ratio between the sound source level of the sound source and the sound source level of the rear channel, in other words, the ratio between the sound source level of the front channel and the energy level of the rear channel (in this embodiment, , Which is called FBR (Front Back Energy Ratio)) means that there is a possibility that a listener can be provided with a sufficient feeling of wrapping.
[0029] 簡単のために、取り扱うマルチチャンネルのオーディオ信号として、フロント左チヤ ンネル(L)、フロント右チャンネル(R)、フロントセンターチャンネル(C)、バック左チヤ ンネル(BL)、バック右チャンネル(BR)の 5チャンネルの場合を想定し、前方チャン ネルとして、 L, R, C、後方チャンネルとして、 BL、 BRとする。マルチチャンネルのシ ステムとして、さらに多いチャンネル数のものや、少ないチャンネル数のものも考えら れるが、リスナーに対して、前方に存在するチャンネルを前方チャンネル、後方に存 在するチャンネルを後方チャンネルとして、本実施の形態と同様に扱うことが可能で ある。 [0029] For simplicity, the front left channel (L), front right channel (R), front center channel (C), back left channel (BL), back right channel ( Assuming 5 channels of (BR), The channels are L, R, C, and the rear channels are BL, BR. A multi-channel system may have a larger number of channels or a smaller number of channels. For the listener, the front channel is the front channel, and the rear channel is the rear channel. It can be handled in the same manner as this embodiment.
[0030] まず、前方チャンネル信号 (L、 R、 C)は、前方チャンネルエネルギー算出部 101に 入力され、前方チャンネルエネルギー算出部 101は、前方チャンネル信号のエネル ギー総和を算出する。また、後方チャンネル信号 (BL, BR)は、後方チャンネルエネ ルギー算出部 102に入力され、後方チャンネルエネルギー算出部 102は、後方チヤ ンネル信号のエネルギー総和を算出する。これら前方チャンネルエネルギー算出部 101、および後方チャンネルエネルギー算出部 102の処理はオーディオ符号ィ匕方法 の一部であるので、一般的に規定の時間間隔で処理を実施する。つまり、時間間隔 ごとのエネルギー算出となる。前方チャンネルのエネルギーを Ef、後方チャンネルの エネルギーを Ebとする。例えば、前方チャンネル信号(L、 R、 C)のそれぞれのエネ ルギーを LE、 RE、 CEとすると、前方チャンネル信号のエネルギー総和 Efは、 Ef= LE+RE + CEと表される。同様に、後方チャンネル信号(BL, BR)の各エネルギー を、 BLE、 BREとすると、後方チャンネル信号のエネルギー総和 Ebは、 Eb = BLE + BREと表される。  First, the front channel signals (L, R, C) are input to the front channel energy calculation unit 101, and the front channel energy calculation unit 101 calculates the total energy of the front channel signal. The rear channel signals (BL, BR) are input to the rear channel energy calculation unit 102, and the rear channel energy calculation unit 102 calculates the total energy of the rear channel signals. Since the processes of the front channel energy calculation unit 101 and the rear channel energy calculation unit 102 are a part of the audio encoding method, the processes are generally performed at specified time intervals. In other words, energy is calculated for each time interval. The energy of the front channel is Ef, and the energy of the rear channel is Eb. For example, if the energies of the front channel signals (L, R, C) are LE, RE, and CE, the total energy Ef of the front channel signals is expressed as Ef = LE + RE + CE. Similarly, if each energy of the rear channel signal (BL, BR) is BLE and BRE, the total energy Eb of the rear channel signal is expressed as Eb = BLE + BRE.
[0031] 次に前方チャンネルエネルギー Ef、および、後方チャンネルエネルギー Ebは、前 方後方エネルギー比算出部 103に入力される。前方後方エネルギー比算出部 103 では、前方チャンネルエネルギーと後方チャンネルエネルギーのエネルギー比 FBR ( (1)式参照)を算出する。  Next, the front channel energy Ef and the rear channel energy Eb are input to the front / rear energy ratio calculation unit 103. The front-rear energy ratio calculation unit 103 calculates the energy ratio FBR (see equation (1)) between the front channel energy and the rear channel energy.
[0032] FBR = 10 1og( Ef / Eb ) (1)  [0032] FBR = 10 1og (Ef / Eb) (1)
あわせて、前方後方エネルギー比算出部 103の出力としては、前記のエネルギー 比だけでなぐエネルギーの絶対量 (前方エネルギー Efそのもの、もしくは、後方エネ ルギー Ebそのもの、もくしは、前方エネルギーと後方エネルギーの加算値 Ef + Eb)も 出力する。エネルギー量子化符号ィ匕部 104では、前方後方エネルギー比算出部 10 3の出力である、前記のエネルギー比 (FBR)とエネルギーの絶対量を入力として、量 子化し符号列 109を生成する。前述したように、エネルギー比 (FBR)はリスナーの「 包まれ感」に関する聴感特性に強く関連する値であるので、量子化の際には、人間 の聴覚特性上、鋭敏に感知される範囲ではエネルギー比 (FBR)を緻密に量子化し、 すなわち、小さい値の量子化ステップで量子化し、あまり感知されない範囲では粗く 量子化するようにすれば、符号ィ匕効率を高めることが出来る。図 3は、人間の聴覚特 性に基づ 、て、前後のエネルギー比の量子化精度を変える符号ィ匕方法を示す図で ある。同図において、横軸は前後のエネルギー比(Ef / Eb)を表しており、内部の縦 線は量子化精度の粗密を表している。同図に示すように、人間の聴覚特性からいうと 、前方向から聞こえる音のエネルギーと、後方向から聞こえる音のエネルギーとの差 は、前後のエネルギー値が同程度である場合に最も知覚されやすい。すなわち、 Ef I Eb= lのときに、前後のエネルギー値のずれが最も知覚されやすい。逆に、元々、 前後のエネルギー値がかけ離れて 、る場合には、本来の前後のエネルギーが少しぐ らいずれていても人間の耳には感知されない。従って、前後のエネルギー比(Ef / E b)が「1」に近いところでは、そのエネルギー比に対して緻密な量子化を行い、「1」か ら離れるに従って粗く量子化を行なう。 At the same time, the output of the front-rear energy ratio calculation unit 103 includes the absolute amount of energy obtained by the above-mentioned energy ratio alone (the front energy Ef itself, or the rear energy Eb itself, or the front energy and the rear energy. The added value Ef + Eb) is also output. The energy quantization code unit 104 receives the energy ratio (FBR), which is the output of the front-rear energy ratio calculation unit 103, and the absolute amount of energy, and inputs the quantity. The code string 109 is generated by the child. As mentioned above, since the energy ratio (FBR) is a value that is strongly related to the listener's audibility characteristics related to the “wrapping feeling”, during quantization, in the range that is sensitively perceived by human auditory characteristics. If the energy ratio (FBR) is finely quantized, that is, quantized with a small quantization step, and coarsely quantized within a less sensitive range, the code efficiency can be increased. FIG. 3 is a diagram showing a coding method that changes the quantization accuracy of the front and rear energy ratios based on human auditory characteristics. In the figure, the horizontal axis represents the front-to-back energy ratio (Ef / Eb), and the internal vertical line represents the density of the quantization accuracy. As shown in the figure, from the viewpoint of human auditory characteristics, the difference between the energy of sound heard from the front and the energy of sound heard from the rear is most perceived when the energy values of the front and rear are the same. Cheap. That is, when Ef I Eb = 1, the difference between the energy values before and after is most easily perceived. On the other hand, if the energy values of the front and back are different from each other originally, even if the original energy is slightly deviated, it is not perceived by the human ear. Therefore, when the front / rear energy ratio (Ef / Eb) is close to “1”, fine quantization is performed for the energy ratio, and coarser quantization is performed as the distance from “1” is increased.
[0033] また、前方エネルギー Efそのものの値の保持や、後方エネルギー Ebのそのものの 値の保持以上に、エネルギー比 (FBR)の値の保持を目指した量子化および符号ィ匕 方法が望ま ヽ。ここでは量子化方法および符号化方法につ!ヽては特に規定しな ヽ [0033] Further, it is desirable to use a quantization and sign method that aims to maintain the value of the energy ratio (FBR) more than holding the value of the forward energy Ef itself or holding the value of the backward energy Eb itself. Here are the quantization and coding methods! No special provisions ヽ
[0034] 次に復号ィ匕装置 110を説明する。前記の符号ィ匕装置 100で符号化された符号ィ匕 列 109を入力として、復号化装置 110では、前方チャンネルの信号のエネルギーと、 後方チャンネルの信号のエネルギーを再生する。 Next, the decoding device 110 will be described. The decoding apparatus 110 reproduces the energy of the signal of the front channel and the energy of the signal of the rear channel, with the code sequence 109 encoded by the encoding apparatus 100 as an input.
[0035] まず、符号ィ匕列 109は、エネルギー復号ィ匕逆量子化部 105にて、符号化列を読み 取って、前方チャンネルと後方チャンネルのエネルギー比(FBR)とエネルギーの絶 対量(前方エネルギーそのもの Ef、もしくは、後方エネルギーそのもの Eb、もくしは、 前方エネルギーと後方エネルギーの加算値 Ef+Eb)を復号する。前方後方エネル ギー算出部 106では、前記前方チャンネルと後方チャンネルのエネルギー比(FBR) とエネルギーの絶対量を受けて、前方チャンネルのエネルギー和 Efと、後方チャンネ ルのエネルギー和 Ebを出力する。前方チャンネルのエネルギー和 Efは、前方チャン ネルエネルギー分配部 107へ、後方チャンネルのエネルギー和 Ebは、後方チャンネ ルエネルギー分配部 108へそれぞれ入力される。前方チャンネルエネルギー分配部 107では、前方チャンネル間でのエネルギー比率に従って、 L, R, Cそれぞれのチ ヤンネルのエネルギーを導出し、後方チャンネルエネルギー分配部 108では、後方 チャンネル間でのエネルギー比率に従って、 BL、 BRそれぞれのチャンネルのエネ ルギーを導出する。前方チャンネル間でのエネルギー比率や、後方チャンネル間で のエネルギー比率の復号ィ匕方法については、本願では特に規定しない。別途入手 可能な情報に基づいて復号ィ匕するのが一般である。 [0035] First, the code sequence 109 is read by the energy decoding / inverse quantization unit 105, and the energy ratio (FBR) of the front channel and the back channel and the absolute amount of energy ( The forward energy itself Ef, or the backward energy itself Eb, or the sum of the forward energy and the backward energy Ef + Eb) is decoded. The front-rear energy calculation unit 106 receives the energy ratio (FBR) of the front channel and the rear channel and the absolute amount of energy, and calculates the energy sum Ef of the front channel and the rear channel. Output the energy sum Eb. The energy sum Ef of the front channel is input to the front channel energy distribution unit 107, and the energy sum Eb of the rear channel is input to the rear channel energy distribution unit 108. The front channel energy distribution unit 107 derives the energy of each of the channels L, R, and C according to the energy ratio between the front channels, and the rear channel energy distribution unit 108 determines the BL according to the energy ratio between the rear channels. The energy of each channel is derived. The method for decoding the energy ratio between the front channels and the energy ratio between the rear channels is not particularly defined in the present application. In general, decryption is performed based on separately available information.
[0036] このように構成されたオーディオ信号符号化装置 100および復号化装置 110を用 いれば、リスナーのマルチチャンネル受聴時の、「包まれ感」の特性を保持することが 容易であり、少ない情報で符号ィ匕列を構成し、マルチチャンネルを再生する際にも、 快適な音場を提供することが可能となる。  [0036] If the audio signal encoding device 100 and the decoding device 110 configured in this way are used, it is easy to maintain the characteristic of "envelopment" when listening to the multi-channel of the listener, and there are few It is possible to provide a comfortable sound field even when multi-channel playback is performed by forming a code sequence with information.
[0037] なお、上記実施の形態で説明した各チャンネル信号の符号化方法および復号ィ匕 方法は、単に一例を示したに過ぎず、本発明のオーディオ信号符号化装置および復 号ィ匕装置における各チャンネル信号の符号ィ匕方法および復号ィ匕方法は、これに限 定されない。例えば、上記の例では、 5チャンネルのマルチチャネル信号を、左チヤ ネル、右チャンネルおよびセンターチャンネルの 3チャンネルにダウンミックスして符 号化したが、左チャネル、右チャンネルおよびセンターチャンネルの 3チャンネルを、 さらにモノーラル信号にダウンミックスして、符号ィ匕および復号ィ匕するとしてもよい。 産業上の利用可能性  Note that the encoding method and decoding method for each channel signal described in the above embodiment are merely examples, and are used in the audio signal encoding device and the decoding device of the present invention. The encoding method and decoding method for each channel signal are not limited to this. For example, in the above example, a 5-channel multi-channel signal was downmixed into 3 channels, the left channel, the right channel, and the center channel, but the left channel, the right channel, and the center channel were encoded. Further, the signal may be downmixed to a monaural signal to be encoded and decoded. Industrial applicability
[0038] 本発明のオーディオ信号復号化方法、および、符号化方法は、従来からオーディ ォ符号ィ匕および復号ィ匕方法が適用されていたあらゆるアプリケーションにおいて、適 用可能である。 [0038] The audio signal decoding method and encoding method of the present invention can be applied to all applications to which the audio encoding method and decoding method have been applied.
[0039] オーディオ符号ィ匕されたビットストリームなる符号ィ匕列は、現在、放送コンテンツの 伝送、 DVDや SDカードなどの蓄積媒体に記録され再生される応用、携帯電話に代 表される通信機器に AVコンテンツを伝送する場合などに用いられている。また、イン ターネット上でやりとりされる電子データとして、オーディオ信号を伝送する場合にお いても有用である。 [0039] Code stream, which is a bit stream encoded with audio code, is currently used for transmission of broadcast contents, applications that are recorded and played back on storage media such as DVDs and SD cards, and communication devices represented by mobile phones. This is used when transmitting AV content to the Internet. In addition, when transmitting audio signals as electronic data exchanged over the Internet. It is useful.

Claims

請求の範囲 The scope of the claims
[1] マルチチャネルのオーディオ信号を符号化するオーディオ信号符号化装置であつ て、  [1] An audio signal encoding device for encoding a multi-channel audio signal,
マルチチャネルのオーディオ信号のうち、リスナーのフロント側に存在するチャンネ ルの信号のエネルギー和、および、リスナーのバック側に存在するチャンネルの信号 のエネルギー和を算出するエネルギー和算出手段と、  Energy sum calculating means for calculating the energy sum of the channel signal existing on the front side of the listener and the energy sum of the channel signal existing on the back side of the listener among the multi-channel audio signals;
フロント側の前記エネルギー和と、バック側の前記エネルギー和との比を算出する エネルギー比算出手段と、  Energy ratio calculating means for calculating a ratio between the energy sum on the front side and the energy sum on the back side;
算出された前記エネルギー和の比を符号ィ匕するエネルギー比符号ィ匕手段と を備えることを特徴とするオーディオ信号符号ィ匕装置。  An audio signal encoding unit that includes an energy ratio encoding unit that encodes the calculated ratio of the energy sums.
[2] 前記エネルギー比符号ィ匕手段は、前記エネルギー和の比を、聴覚上の包まれ感に 関する弁別特性に応じて量子化し、符号化する  [2] The energy ratio sign means quantizes and encodes the ratio of the energy sums according to a discrimination characteristic related to a sense of wrapping in the auditory sense.
ことを特徴とする請求項 1記載のオーディオ信号符号ィ匕装置。  2. The audio signal encoding apparatus according to claim 1, wherein
[3] 前記弁別特性は、フロント側の前記エネルギー和と、バック側の前記エネルギー和 との差が所定範囲内である場合に、弁別性能が最も高いことを示し、 [3] The discrimination characteristic indicates that the discrimination performance is highest when the difference between the energy sum on the front side and the energy sum on the back side is within a predetermined range.
前記エネルギー比符号ィ匕手段は、フロント側とバック側とのエネルギー和の差が最 も小さいとき最も量子化精度が高くなるよう量子化し、前記エネルギー和の差が大きく なるほどビット数が少なくなるよう量子化を行なう  The energy ratio sign key means quantizes so that the quantization accuracy is highest when the difference in energy sum between the front side and the back side is the smallest, and the number of bits decreases as the difference in energy sum increases. Quantize
ことを特徴とする請求項 2記載のオーディオ信号符号ィ匕装置。  3. The audio signal encoding apparatus according to claim 2, wherein
[4] マルチチャネルのオーディオ信号を表す符号ィ匕列を復号ィ匕することによって、聴覚 上の包まれ感を有するマルチチャネルオーディオ信号を出力するオーディオ信号復 号化装置であって、 [4] An audio signal decoding apparatus that outputs a multi-channel audio signal having an auditory feeling by decoding a code sequence representing a multi-channel audio signal,
符号列を復号ィヒすることによって、マルチチャネルオーディオ信号を生成するォー ディォ信号復号化手段と、  Audio signal decoding means for generating a multi-channel audio signal by decoding the code string;
前記符号列を復号ィ匕することによって、リスナーのフロント側に存在するチャンネル の信号のエネルギー和と、リスナーのバック側に存在するチャンネルの信号のェネル ギー和との比を復号ィ匕するエネルギー比復号ィ匕手段と、  By decoding the code string, an energy ratio for decoding the ratio between the energy sum of the channel signal existing on the front side of the listener and the energy sum of the channel signal existing on the back side of the listener. Decryption means,
復号化された前記エネルギー和の比に従って、前記フロント側チャンネルと前記バ ック側チャンネルとにエネルギーを分配するエネルギー分配手段と According to the ratio of the decoded energy sum, the front side channel and the bar An energy distribution means for distributing energy to the sound channel;
を備えることを特徴とするオーディオ信号復号ィ匕装置。  An audio signal decoding apparatus comprising:
[5] マルチチャネルのオーディオ信号を符号ィ匕するオーディオ信号符号ィ匕方法であつ て、 [5] An audio signal encoding method for encoding a multi-channel audio signal,
マルチチャネルのオーディオ信号のうち、リスナーのフロント側に存在するチャンネ ルの信号のエネルギー和、および、リスナーのバック側に存在するチャンネルの信号 のエネノレギー和を算出し、  Among the multi-channel audio signals, calculate the energy sum of the channel signal existing on the front side of the listener and the energy sum of the channel signal existing on the back side of the listener.
フロント側の前記エネルギー和と、バック側の前記エネルギー和との比を算出し、 算出された前記エネルギー和の比を符号ィ匕する  Calculate the ratio of the energy sum on the front side and the energy sum on the back side, and sign the ratio of the calculated energy sum
ことを特徴とするオーディオ信号符号ィ匕方法。  An audio signal encoding method characterized by the above.
[6] マルチチャネルのオーディオ信号を表す符号ィ匕列を復号ィ匕することによって、聴覚 上の包まれ感を有するマルチチャネルオーディオ信号を出力するオーディオ信号復 号化方法であって、 [6] An audio signal decoding method for outputting a multi-channel audio signal having an auditory sensation by decoding a code sequence representing a multi-channel audio signal,
符号列を復号ィ匕することによって、マルチチャネルオーディオ信号を生成し、 前記符号列を復号ィ匕することによって、リスナーのフロント側に存在するチャンネル の信号のエネルギー和と、リスナーのバック側に存在するチャンネルの信号のェネル ギー和との比を復号ィ匕し、  By decoding the code string, a multi-channel audio signal is generated, and by decoding the code string, the energy sum of the channel signals existing on the front side of the listener and the back side of the listener exist. Decode the ratio of the signal of the channel to be
復号化された前記エネルギー和の比に従って、前記フロント側チャンネルと前記バ ック側チャンネルとにエネルギーを分配する  Distributes energy to the front channel and the back channel according to the ratio of the decoded energy sum
ことを特徴とするオーディオ信号復号ィ匕方法。  An audio signal decoding method characterized by the above.
[7] オーディオ信号符号化装置のためのプログラムであって、マルチチャネルのオーデ ィォ信号のうち、リスナーのフロント側に存在するチャンネルの信号のエネルギー和、 および、リスナーのバック側に存在するチャンネルの信号のエネルギー和を算出する ステップと、フロント側の前記エネルギー和と、バック側の前記エネルギー和との比を 算出するステップと、算出された前記エネルギー和の比を符号ィ匕するステップとを含 む各ステップをコンピュータに実行させるプログラム。 [7] A program for an audio signal encoding device, which is a multi-channel audio signal, a sum of energy of signals of channels existing on the front side of the listener, and a channel existing on the back side of the listener. A step of calculating an energy sum of the signals, a step of calculating a ratio of the energy sum of the front side and the energy sum of the back side, and a step of signing the ratio of the calculated energy sum A program that causes a computer to execute each step it contains.
[8] オーディオ信号復号ィ匕装置のためのプログラムであって、符号列を復号化すること によって、マルチチャネルオーディオ信号を生成するステップと、前記符号列を復号 化することによって、リスナーのフロント側に存在するチャンネルの信号のエネルギー 和と、リスナーのバック側に存在するチャンネルの信号のエネルギー和との比を復号 化するステップと、復号ィヒされた前記エネルギー和の比に従って、前記フロント側チ ヤンネルと前記バック側チャンネルとにエネルギーを分配するステップとを含む各ステ ップをコンピュータに実行させるプログラム。 [8] A program for an audio signal decoding apparatus, which generates a multi-channel audio signal by decoding a code string, and decodes the code string By decoding, the step of decoding the ratio of the energy sum of the signal of the channel existing on the front side of the listener and the energy sum of the signal of the channel existing on the back side of the listener, and the decoded energy A program that causes a computer to execute each step including a step of distributing energy to the front channel and the back channel according to a ratio of the sum.
[9] マルチチャネルのオーディオ信号のうち、リスナーのフロント側に存在するチャンネ ルの信号のエネルギー和、および、リスナーのバック側に存在するチャンネルの信号 のエネルギー和を算出するステップと、フロント側の前記エネルギー和と、バック側の 前記エネルギー和との比を算出するステップと、算出された前記エネルギー和の比 を符号ィ匕するステップとを含む各ステップをコンピュータに実行させるプログラムが記 録されたコンピュータ読み取り可能な記録媒体。  [9] Among the multi-channel audio signals, a step of calculating an energy sum of channel signals existing on the front side of the listener and an energy sum of channel signals existing on the back side of the listener; A program for causing a computer to execute each step including a step of calculating a ratio between the energy sum and the energy sum on the back side and a step of signing the calculated ratio of the energy sums is recorded. Computer-readable recording medium.
[10] 符号列を復号ィ匕することによって、マルチチャネルオーディオ信号を生成するステ ップと、前記符号列を復号ィ匕することによって、リスナーのフロント側に存在するチヤ ンネルの信号のエネルギー和と、リスナーのバック側に存在するチャンネルの信号の エネルギー和との比を復号ィ匕するステップと、復号ィ匕された前記エネルギー和の比 に従って、前記フロント側チャンネルと前記バック側チャンネルとにエネルギーを分配 するステップとを含む各ステップをコンピュータに実行させるプログラムが記録された コンピュータ読み取り可能な記録媒体。 [10] A step of generating a multi-channel audio signal by decoding the code sequence, and an energy sum of the channel signals existing on the front side of the listener by decoding the code sequence And a step of decoding the ratio of the energy of the signal of the channel existing on the back side of the listener, and the energy of the front side channel and the back side channel according to the ratio of the decoded energy sum A computer-readable recording medium having recorded thereon a program for causing a computer to execute each step including the step of distributing the program.
PCT/JP2005/012941 2004-07-30 2005-07-13 Audio signal encoder and decoder WO2006011367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-223932 2004-07-30
JP2004223932 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006011367A1 true WO2006011367A1 (en) 2006-02-02

Family

ID=35786118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012941 WO2006011367A1 (en) 2004-07-30 2005-07-13 Audio signal encoder and decoder

Country Status (1)

Country Link
WO (1) WO2006011367A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508157A (en) * 2005-09-13 2009-02-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Audio encoding
JP2009527970A (en) * 2006-02-21 2009-07-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Audio encoding and decoding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865169A (en) * 1994-06-13 1996-03-08 Sony Corp Coding method and coder, decoder and recording medium
JPH0946799A (en) * 1995-08-02 1997-02-14 Toshiba Corp Audio system, reproducing method therefor, recording medium therefor and method for recording on the recording medium
JP2000148193A (en) * 1998-11-16 2000-05-26 Victor Co Of Japan Ltd Voice encoding device, optical recording medium, voice decoding device and voice transmitting method
JP2001503942A (en) * 1996-11-07 2001-03-21 エス・アール・エス・ラブス・インコーポレーテッド Multi-channel audio emphasis system for use in recording and playback and method of providing the same
JP2001514808A (en) * 1996-07-19 2001-09-11 レキシコン Multi-channel active matrix sound reproduction by maximum lateral separation method
JP2002162996A (en) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd Method and device for encoding audio signals, and method and system for distributing music
WO2002063925A2 (en) * 2001-02-07 2002-08-15 Dolby Laboratories Licensing Corporation Audio channel translation
JP2004048751A (en) * 2002-07-08 2004-02-12 Samsung Electronics Co Ltd Method of generating multi-channel stereophonic sound

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865169A (en) * 1994-06-13 1996-03-08 Sony Corp Coding method and coder, decoder and recording medium
JPH0946799A (en) * 1995-08-02 1997-02-14 Toshiba Corp Audio system, reproducing method therefor, recording medium therefor and method for recording on the recording medium
JP2001514808A (en) * 1996-07-19 2001-09-11 レキシコン Multi-channel active matrix sound reproduction by maximum lateral separation method
JP2001503942A (en) * 1996-11-07 2001-03-21 エス・アール・エス・ラブス・インコーポレーテッド Multi-channel audio emphasis system for use in recording and playback and method of providing the same
JP2000148193A (en) * 1998-11-16 2000-05-26 Victor Co Of Japan Ltd Voice encoding device, optical recording medium, voice decoding device and voice transmitting method
JP2002162996A (en) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd Method and device for encoding audio signals, and method and system for distributing music
WO2002063925A2 (en) * 2001-02-07 2002-08-15 Dolby Laboratories Licensing Corporation Audio channel translation
JP2004048751A (en) * 2002-07-08 2004-02-12 Samsung Electronics Co Ltd Method of generating multi-channel stereophonic sound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508157A (en) * 2005-09-13 2009-02-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Audio encoding
JP2009527970A (en) * 2006-02-21 2009-07-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Audio encoding and decoding
US9009057B2 (en) 2006-02-21 2015-04-14 Koninklijke Philips N.V. Audio encoding and decoding to generate binaural virtual spatial signals
US9865270B2 (en) 2006-02-21 2018-01-09 Koninklijke Philips N.V. Audio encoding and decoding
US10741187B2 (en) 2006-02-21 2020-08-11 Koninklijke Philips N.V. Encoding of multi-channel audio signal to generate encoded binaural signal, and associated decoding of encoded binaural signal

Similar Documents

Publication Publication Date Title
JP6446407B2 (en) Transcoding method
KR101117336B1 (en) Audio signal encoder and audio signal decoder
JP4685925B2 (en) Adaptive residual audio coding
JP4601669B2 (en) Apparatus and method for generating a multi-channel signal or parameter data set
JP4603037B2 (en) Apparatus and method for displaying a multi-channel audio signal
JP4418493B2 (en) Frequency-based coding of channels in parametric multichannel coding systems.
EP3093843B1 (en) Mpeg-saoc audio signal decoder, mpeg-saoc audio signal encoder, method for providing an upmix signal representation using mpeg-saoc decoding, method for providing a downmix signal representation using mpeg-saoc decoding, and computer program using a time/frequency-dependent common inter-object-correlation parameter value
CA2645912C (en) Methods and apparatuses for encoding and decoding object-based audio signals
RU2618383C2 (en) Encoding and decoding of audio objects
RU2406166C2 (en) Coding and decoding methods and devices based on objects of oriented audio signals
JPH07199993A (en) Perception coding of acoustic signal
JP2010515099A5 (en)
JP2014089467A (en) Encoding/decoding system for multi-channel audio signal, recording medium and method
WO2006004048A1 (en) Audio signal encoding device, audio signal decoding device, method thereof and program
KR20070003545A (en) Clipping restoration for multi-channel audio coding
JPWO2006030754A1 (en) Audio encoding apparatus, decoding apparatus, method, and program
WO2006011367A1 (en) Audio signal encoder and decoder
Torres-Guijarro et al. Inter-channel de-correlation for perceptual audio coding
KR102191260B1 (en) Apparatus and method for encoding/decoding of audio using multi channel audio codec and multi object audio codec

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase