WO2005114151A1 - Measuring system - Google Patents

Measuring system Download PDF

Info

Publication number
WO2005114151A1
WO2005114151A1 PCT/JP2005/009263 JP2005009263W WO2005114151A1 WO 2005114151 A1 WO2005114151 A1 WO 2005114151A1 JP 2005009263 W JP2005009263 W JP 2005009263W WO 2005114151 A1 WO2005114151 A1 WO 2005114151A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
lens
unit
measurement
optical
Prior art date
Application number
PCT/JP2005/009263
Other languages
French (fr)
Japanese (ja)
Inventor
Shin Ishii
Tadao Sugiura
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Publication of WO2005114151A1 publication Critical patent/WO2005114151A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy

Definitions

  • the present invention relates to a measurement system for measuring a response generated in a cell or the like when, for example, a cell or a biomolecule is given a stimulus by a force or a stimulus by a chemical substance. .
  • a chemical substance for stimulating the cell is sprayed near the cell with a micropipette or the like to determine how the cell responds to the chemical substance. A response is observed.
  • confocal microscopes and optical tweezers described below are widely used as devices for measuring physical properties of minute measurement objects such as cells.
  • a confocal microscope is a device for observing the three-dimensional shape and the spatial distribution of molecules inside a microsample of a micrometer size such as a polymer, glass, or a cell.
  • a confocal microscope is characterized by the use of confocal and the use of a point light source such as a laser light source.
  • confocal refers to a state in which the light source and the photodetector are in an optically conjugated positional relationship with respect to the objective lens, that is, a state in which light emitted from one point of the light source converges on one point of the detector.
  • the confocal microscope focuses laser light, irradiates the object to be measured, excites fluorescence near the focus point, collects light through an optical system, and optically converges with the focus point.
  • the light is detected through a pinhole at a conjugate position.
  • the energy density of the excitation laser light is low, so that the probability of excitation of fluorescence is reduced, and furthermore, the light passes through the pinhole. Since the probability of passing is low, so-called tomographic images can be obtained by optically cutting (optically cutting) an object having a three-dimensional structure. Furthermore, by moving the objective lens and moving the focal point forward and backward, optical cut images are acquired, and by stacking them, the three-dimensional structure of the object can be observed.
  • Optical tweezers have a high energy density! By condensing laser light with an objective lens and irradiating the fine particles, the radiation pressure of light is applied to the fine particles, and the fine particles are placed near the laser light spot.
  • This device uses a phenomenon that can be caught (laser trapping).
  • This optical tweezer can be operated by capturing particles under a microscope (Non-Patent Document 1; A. Ashkin, JMDziedic, JEBjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles, "Optics Letters, Vol.11, No.5, pp.288-290 (1986)), and micromanipulation.
  • the particles are caught by the optical tweezers, the particles are caught in the spot of the laser beam in a state of being hung on a panel.
  • the particle is minutely displaced.
  • the force acting on the particles can be measured.
  • Non-Patent Document 2 "Surface-force measurement with a laser-trapped microprobe in solution” , APPLIED PHYSICS LETTERS, Vol.80 No.18, May 6 2002
  • Non-Patent Document 3 “Single molecule nanomanipulation of biomolecules, TRENDb in Biotechnology Vol.19 No. .6, pp 211-216, June 2001)
  • the three-dimensional image acquisition method described in Patent Document 1 only traps a small sample to be measured using optical tweezers and observes the small sample with a confocal microscope.
  • the three-dimensional image acquisition method of Patent Document 1 considers how to apply a stimulus to a small sample fixed by optical tweezers. Therefore, the same problem as the above-described method of dispersing a chemical substance near cells using a micropipette or the like also occurs in the three-dimensional image acquisition method described in Patent Document 1.
  • the present invention has been made in view of the above-mentioned conventional problems, and appropriately evaluates a response of a measurement target to a stimulus given to a part of the measurement target such as a cell at a predetermined timing. It is an object of the present invention to provide a measurement system that can perform measurement.
  • the measurement system of the present invention includes a holding means for holding the fine particles, a moving means for moving the fine particles toward the object to be measured, and a moving means from the fine particles to the object to be measured. It is characterized by comprising measuring means for measuring the amount of stimulus that acts, and observing means capable of enlarging and viewing the measurement object.
  • the “amount of stimulus” also includes the amount of a response from the object to be measured that is determined only by the amount of stimulus acting on the object to be measured.
  • Stimulus” and “response” include force, chemical stimulation, and thermal action.
  • the fine particles held by the holding means can be moved by the moving means and pressed against the measurement object. Further, if a chemical substance is fixed to the fine particles, stimulation by the chemical substance can be given to the measurement object. Therefore, if the microparticles are held at a position where the microparticles are to come into contact with the measurement target by the holding means, and the microparticles are moved to the measurement target at a predetermined timing using the moving means, a part of the measurement target can be obtained. Stimulation can be given only at a desired timing.
  • the amount of stimulus for example, the magnitude of a force generated on the measurement target object when the fine particles are pressed against the measurement target object by the moving means can be measured by using the measurement means. Thereby, the stimulus given to the measurement object can be evaluated.
  • a change in shape of the measurement object, a change in the internal structure of the measurement object, or a spatial distribution of molecules constituting the measurement object, which is caused by the fine particles being pressed against the measurement object is as follows. It can be grasped by enlarging and observing the measurement object using observation means. Therefore, the fine particle force can also be evaluated as to whether an appropriate stimulus has been given to the measurement object.
  • the holding means is preferably an optical tweezer. According to this configuration, since the fine particles are held by the optical tweezers, the fine particles can be held without bringing the fine particles into contact with the holding means. Therefore, when moving the fine particles using the moving means, it is possible to prevent the holding means from applying a physical external force to the fine particles, and to prevent physical change of the fine particles such that the shape of the fine particles is deformed. Can be prevented.
  • the optical tweezers hold a plurality of fine particles by a plurality of laser beams. According to this configuration, a plurality of fine particles can be held by the optical tweezers, so that the plurality of fine particles can be pressed against the measurement target.
  • the measurement system of the present invention can correspond to more various measurement methods.
  • the optical tweezers use a second lens different from the first lens used by the observation means for enlarging the object to be measured, and apply laser light to the fine particles so that the fine particles are fine. It is preferable to hold the.
  • the optical system of the optical tweezers and the optical system of the observation unit are configured independently, the holding of the fine particles by the optical tweezers and the enlargement of the measurement target by the observation unit are It can be adjusted independently. As a result, the convenience of the measurement system can be improved.
  • the measuring means may detect that the laser light emitted from the optical tweezers unit emits the laser light.
  • the amount of displacement of the fine particles is calculated based on the intensity of light reflected by the particles, and the above-described measurement is performed from the fine particles based on the amount of positional displacement and a panel constant indicating a holding force on the fine particles by the optical tweezers. It is preferable to measure the magnitude of the force as the amount of the stimulus acting on the object.
  • the holding force on the fine particles is proportional to the positional displacement amount of the fine particles. Therefore, if this proportionality coefficient is calculated in advance as a panel coefficient, the holding force can be calculated from the positional displacement amount of the fine particles and the panel coefficient.
  • the position displacement amount of the fine particles is obtained using the laser light of the optical tweezers unit. That is, since the position displacement amount of the fine particles can be obtained by using the optical system of the optical tweezer unit, the configuration for calculating the position displacement amount can be simplified. Thereby, the configuration of the entire measurement system can be simplified.
  • the observation means is preferably a confocal microscope. That is, according to the confocal microscope, a tomographic image obtained by optically cutting the object to be measured can be obtained. Therefore, it is possible to observe changes occurring in the measurement target due to the pressing of the fine particles in more detail based on the tomographic image of the measurement target obtained using the confocal microscope.
  • the confocal microscope has a pinhole disk having a plurality of pinholes formed on the surface thereof, and a plurality of third lenses that emit light in each of the plurality of pinholes! It is preferable that a microlens disk, a rotation unit for rotating the pinhole disk and the microlens disk, and an adjustment unit capable of adjusting a rotation speed of the disk by the rotation unit be provided.
  • the object to be measured is scanned by using the laser light passing through the third lens and the pinhole. It becomes possible.
  • the rotational speed of the disk by the rotating means is set to a high speed by using the adjusting means, the object to be measured can be scanned at a high speed. This makes it possible to obtain cross-sectional images of the measurement object at short time intervals. Therefore, it is possible to observe changes occurring in the measurement object due to the pressing of the fine particles in more detail.
  • the observation means is for observing a change in the measurement object in a time series.
  • the change of the measurement object can be viewed in chronological order by the observation means.
  • the measurement target is a cell and the microparticles have a fixed ligand that stimulates the cell
  • the response of the cell to the ligand can be viewed in time series.
  • the holding means, the measurement means, and the observation means may be arranged on the same side with respect to a mounting table on which the measurement target is placed.
  • the holding unit, the measuring unit, and the observation unit are arranged on the same side with respect to the mounting table.
  • the space on the side can be used effectively.
  • the holding means is an optical tweezer
  • the spot of the laser light of the optical tweezer is determined based on an amount of movement of the first lens used by the observation means to enlarge the object to be measured. It is preferable that a spot position changing means for changing the position is provided.
  • the spot position of the laser light of the optical tweezers is changed, and the fine particles held at the spot position also move.
  • the fine particles move in this way, the fine particles cannot be appropriately pressed against the object to be measured, which may be undesirable in measuring the response of the object to be measured.
  • the above configuration includes a spot position changing unit that changes the spot position of the laser light of the optical tweezers based on the amount of movement of the first lens. That is, the amount of movement of the first lens and the spot position of the laser light of the optical tweezers show a predetermined relationship. This relationship If the spot position is changed using the spot position changing means based on the above, the fine particles can be held at a fixed position, and the positional relationship between the measurement object and the fine particles can be kept constant. Thereby, the fine particles can be stably pressed against the object to be measured, and the response of the object to be measured can be appropriately measured.
  • the measurement system of the present invention includes a cutting means capable of cutting the object to be measured.
  • the cutting means irradiates the measurement target with the pulsed laser light in a focused state, and cuts the measurement target.
  • FIG. 1 is a diagram showing a configuration of a microscope system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a positional relationship between microparticles and cells in the microscope system of FIG. 1, together with an optical tweezer cutout and laser light from a microscope unit.
  • FIG. 3 (a) is a view showing a state in which fine particles are brought close to a cell membrane.
  • FIG. 3 (b) is a view showing a state in which fine particles are brought close to a cell membrane.
  • FIG. 4 is a diagram showing a configuration of an analog arithmetic circuit provided in the quadrant photodetector in FIG. 1.
  • FIG. 5 is a tomographic image of cells obtained using the confocal microscope of FIG. 1.
  • FIG. 6 (a) is a view showing a state in which a ligand molecule is immobilized on fine particles.
  • FIG. 6 (b) is a view showing a state in which a ligand molecule is immobilized on fine particles.
  • FIG. 7 is a diagram showing a configuration in which a cell surgery unit is provided in the microscope system of FIG. 1.
  • FIG. 8 is a diagram showing a configuration of a microscope system when a confocal microscope and an optical tweezer unit are arranged on the same side of a sample cell.
  • FIG. 9 is a diagram illustrating a configuration when a focus unit is used.
  • FIG. 10 is a diagram showing a configuration in which a double beam lower optical tweezer unit is used instead of the optical tweezer unit in the microscope system of FIG. 1.
  • FIG. 11 is a diagram showing a state in which two microparticles are held by the microscope system in FIG. 10, and DNA elongation and interaction with DNA proteins are measured.
  • FIG. 1 shows a configuration of a microscope system according to an embodiment of the present invention.
  • a microscope system (measurement system) 1 according to the present embodiment includes an optical tweezer unit (holding unit) 2, a confocal unit (observation unit, confocal microscope) 3, and a microscope unit (observation microscope). Method, confocal microscope) 4.
  • the confocal unit 3 and the microscope unit 4 constitute a confocal microscope.
  • the optical tweezer unit 2 includes a lens 5, a beam splitter 6, lenses 7.8, a dichroic mirror 9, a lens (second lens, moving means) 10, a filter 11, a lens 12, a CCD camera 13, a lens 14, a four-segment photodetector (measuring means) 15, and an actuator (moving means) 16.
  • the optical tweezer unit 2 collimates the light of the laser light source 18 for optical tweezers guided by the optical fiber 117 by the lens 5, and then condenses the light by the lens 7. Further, the optical tweezer unit 2 reflects the light condensed by the lens 7 again using the lens 8 and then reflects the light by the dichroic mirror 9.
  • the optical tweezer unit 2 captures the fine particles 20 in the sample cell (mounting table) 19 by condensing the light reflected by the dichroic mirror 9 with the lens 10. Further, the optical tweezer unit 2 condenses the scattered light returning from the fine particles 20 using the lens 10, reflects the power with the dichroic mirror 9, passes through the lenses 7.8 and 8 The light is reflected using the plitter 6. Thereafter, the optical tweezer unit 2 condenses the light reflected by the beam splitter 6 by a lens 14 and forms an image on a four-division photodetector 15. The four-divided light detector 15 functions to detect the position of the scattered light from the fine particles, and the detailed configuration will be described later.
  • the confocal unit 3 includes a lens 21, a relay lens 22, Ganolevano mirrors 23 and 24, a lens 25, a two-color '14 mirror 26a, a finoletter 26b, a lens 27, and a pinhorn lens 28. I have it.
  • the microscope unit 4 includes a lens 29, a finoletter 30, a lens (first lens) 31, and an actuator 32.
  • the confocal unit 3 collimates the light of the laser light source 34 guided by the optical fiber 33 using the lens 21. After that, the confocal unit 3 passes the light collimated by the lens 21 through the relay lens 22 composed of the two lenses 22a and 22b, and then reflects the light by the two galvanometer mirrors 23 and 24. The light is focused by the lens 25.
  • the lens 10 of the optical tweezer unit 2 is held by an actuator 16. By operating the actuator 16, the position of the laser spot can be moved in the optical axis direction.
  • the microscope unit 4 collimates the light condensed by the lens 25 with the lens 29, condenses the light with the lens 31, and irradiates the measurement object 35 with the fluorescent staining.
  • the light reflected by the measurement object 35 is collected by the lens 31 and then passes through the filter 30 so that the wavelength of the light incident from the optical tweezer unit 2 is cut off. Is reflected at
  • the light reflected by the galvanomirrors 23 and 24 is reflected by the dichroic mirror 26a and passes through the filter 26b.
  • the light that has passed through the filter 26b is collected by a lens 27 and then applied to a pinhole 28.
  • the light passing through the pinhole 28 is detected by a photodetector 36.
  • the light from the laser light source 34 is hardly reflected by the dichroic mirror 26a, and even if it is slightly reflected, the reflected light is cut by the filter 26b. Only the fluorescence emitted from the measurement object 35 passes through 28.
  • the confocal unit 3 has the pinhole 28, it has confocality, and the position where the laser light is focused can be limited to one point three-dimensionally and measured. .
  • the confocality refers to the ability to observe the object in the focal plane independently of the upper and lower structures, and the tomographic image of the object can be observed with a confocal microscope. Is also a force that has Therefore, the two-dimensional image obtained by the confocal microscope becomes a tomographic image of the measurement object.
  • the lens 31 of the microscope unit 4 is held by an actuator 32. Therefore, by operating the actuator 32, the lens 31 can be moved in the optical axis direction of the laser light. Further, in synchronization with the scanning of the galvanometer mirrors 23 and 24 to obtain a tomographic image, the actuator 32 is operated to move the lens 31 in the optical axis direction, so that a plurality of tomographic images of the measurement object 35 are obtained. An image can be obtained. Thereby, the three-dimensional substance distribution inside the measurement target 35 can be measured.
  • the optical tweezer unit 2 is provided with a CCD camera 13. Through the CCD camera 13, an enlarged image of the measurement object 35 can be observed in time series. Further, the optical positional relationship between the optical tweezer unit 2, the confocal unit 3, and the microscope unit 4 can be adjusted using the CCD camera 13.
  • the optical tweezer unit 2 is arranged above the sample cell 19, the confocal unit 3 and the microscope unit 4 are arranged below the sample cell 19, and The unit 2, the confocal unit 3 and the microscope unit 4 are in an optically independent relationship. Therefore, it is necessary to determine the position of the optical system of each unit at the beginning of the experiment. For that purpose, the confocal laser light from the microscope unit 4 is checked using the CCD camera 13, and the optical system may be adjusted using the laser light as a mark.
  • the optical tweezer unit 2 above the sample cell 19, when the microparticles 20 captured by the optical tweezers are brought into contact with the cells as the measurement target 35, the microparticles 20 and the cells are dissociated.
  • the focal position on the observation side can be changed without changing the positional relationship.
  • the optical positional relationship of each component in the optical tweezer unit 2 is not affected at all. Therefore, since the position of the fine particles 20 captured by the optical tweezers does not change, a three-dimensional image of the cell can be obtained by changing the focal plane.
  • FIG. 2 shows a state in which the microparticles 20 are brought close to the cells as the measurement object 35 and the cells are observed.
  • the laser light from the optical tweezer unit 2 is incident on the sample cell 19.
  • the fine particles 20 are captured by the laser light.
  • cells stimulated by the microparticles 20 exhibit a response (such as generation of calcium waves) to the cells or undergo elastic deformation.
  • a response such as generation of calcium waves
  • the response of the cells to the stimulus, the elastic deformation, and the like are observed with the confocal microscope described above.
  • the position of the fine particles 20 is displaced by a force that also applies a cellular force to the fine particles 20.
  • the state of capturing fine particles with optical tweezers is similar to the state of hanging fine particles on a panel, so it is important to understand that when an external force acts on the fine particles, the length of the panel changes. Can be. If the panel constant of the optical tweezers is obtained in advance, the force acting on the particles can be obtained by measuring the amount of displacement of the particles. The procedure for obtaining the force acting on the fine particles will be described later.
  • FIGS. 3 (a) and 3 (b) show a state where the microparticles 20 are brought close to the cell membrane.
  • the microparticles 20 captured by the optical tweezers are brought close to the cell membrane, a mutual interaction between the cell membrane and the microparticles 20 is generated.
  • a substance serving as a ligand is fixed on the surface of the fine particles 20, the receptor molecules on the cell membrane and the fine particles 20 interact with each other.
  • the interaction forces generated at this time are electrostatic force, dipole interaction, and van der Waals force.
  • the quadrant photodetector 15 has its detection area equally divided into four fan-shaped areas A, B, C, and D. In these four sector areas A, B, C, and D, Is formed and the light intensity is detected. Then, the light intensity is subjected to arithmetic processing by an analog arithmetic circuit (measuring means) 37, and then output to a computer.
  • the analog arithmetic circuit 37 is composed of three subtractors 38... And two calo calculators 39.
  • the analog operation circuit 37 has three output terminals. Let the levels of the signals output from each of these three output terminals be I, I, and I, and let the levels of the signals detected in each of the areas A, B, c, and D of the quadrant detector be I, ⁇ , ⁇ , ⁇ , I, I
  • the displacement of the fine particles can be calculated as follows using these signal levels I 1, I 2, and I 3.
  • displacements in the X direction and the y direction which are directions perpendicular to the optical axis of the laser light of the optical tweezers, will be described. That is, the displacement of the particles at the equilibrium position force is sufficiently smaller than the spot diameter of the laser beam! /
  • the “equilibrium position” is a position of the fine particles when the fine particles are stably trapped by the optical tweezers.
  • the measured force of I and I can be used to determine the actual position displacement.
  • the coefficients p and q must be determined by experiments. To determine the coefficients p and q, repeat the measurement of the panel constant k by changing the laser light intensity of the optical tweezers, and take advantage of the fact that the panel constant changes in proportion to the light intensity. P and q can be determined by the least-squares method to satisfy. In this case, the intensity of the scattered light from the fine particles is proportional to the intensity of one light beam of the laser.
  • the fine particles are stably caught on the downstream side of the laser beam from the spot. Since the intensity of scattered light I from the particle is maximum when the center of the particle coincides with the focal point in the spot, the particle Being downstream from the pot means that I is slightly higher than the maximum, vj. This stable state force I increases when the particles move toward the light source, and decreases when the particles move downstream of the laser beam.
  • Uncertainty in the direction of movement of the particles near the maximum z is not particularly a problem in measuring the force exerted on the cells by the particles! /.
  • the fine particles are irradiated with a laser beam (for example, a guide light) different from the laser for optical tweezers to scatter the fine particles. It can also be realized by detecting light in a similar manner.
  • a laser beam for example, a guide light
  • a He—Ne laser (wavelength 632.8 nm) is incident on fine particles coaxially with an Nd: YAG laser (wavelength 1064 nm) for optical tweezers, and the light of the He Ne laser scattered by the fine particles. It was confirmed that the position displacement of the fine particles could be detected by detecting the particles with the four-segment photodetector 15.
  • the sensitivity of the four-segment photodetector 15 can be easily adjusted. Whether the laser for optical tweezers or the other laser is detected by the quadrant photodetector 15 should be determined depending on the object to be observed and the observation method.
  • the position sensitive detector is a device that outputs the spot position on the entire surface of the detector as a voltage with each value of the X coordinate and the y coordinate.
  • a contact experiment with cells was performed using the microscope system of the present embodiment, and the results will be described below.
  • an Nd: YAG laser having a wavelength of 1064 nm was used as a laser for optical tweezers, and fine particles having a diameter of 1 ⁇ m were used. And fine particles The particles were caught by optical tweezers, and the microparticles were brought into contact with the cells by gradually moving the lens 10 (see Fig. 1) in the optical axis direction.
  • FIG. 5 shows a tomographic image of cells obtained by using a confocal microscope.
  • the cells are human vascular endothelial cells and are fixed in a state of being spread on the cover glass.
  • the actin fibers in the cells were stained using Alexa488-Faroidine (Molecular Probes Inc.) and observed with a confocal microscope. As shown in FIG. 5, actin fibers can be observed inside the cells. Particles caught by optical tweezers cannot be observed in the tomographic image in Fig. 5.
  • a method for immobilizing a molecule (ligand) as a stimulator on the surface of microparticles in order to stimulate a cell with a chemical substance and stimulating a receptor that interacts with the molecule is described below.
  • a method using a crosslinker molecule for example, a method using a crosslinker molecule, a method in which a biotin molecule attached to the ligand is bound to streptavidin molecules immobilized on the surface of the microparticles, a CyBr method, a silane coating method, or the like. You can use it!
  • FIG. 6 shows the state of interaction between the microparticles and the receptor in each of these methods.
  • one crosslinker molecule 40 is fixed on the surface of the fine particles 20, and a ligand molecule 41 is further fixed on one crosslinker molecule 40.
  • the ligand molecule 41 is brought close to the lipid bilayer (measurement target) 42 of the cell membrane, the ligand molecule 41 can bind to the receptor molecule (measurement target) 43 existing therein.
  • the crosslinker molecule 40 was used as DSP (Pierce, Double-AgentTM
  • DSP molecules are: As shown in the chemical formula, it is a molecule having terminals at both ends that are reactive with a thiol group and an amino group. With the above configuration, the DSP molecule can react with the thiol group fixed on the surface of the fine particle 20 and the amino group contained in the ligand molecule 41 to fix the ligand molecule 41 on the surface of the fine particle 20.
  • a fixing method using biotin will be described.
  • a biotin molecule 44 is immobilized on the surface of the microparticle 20, and a streptavidin molecule 45 is bound thereto. Since the streptavidin molecule 45 has four binding sites, the ligand molecule 41 is immobilized on the opposite binding site.
  • the stimulation by the ligand molecules 41 is performed only in the area having a smaller sectional area force than the microparticles 20. Is given. For example, if the cell surface is stimulated by immobilizing the ligand molecule 41 on the surface of a microparticle 20 having a diameter of: L m, if the cell surface is recessed by 0.1 ⁇ m due to contact of the microparticle, then Is 2.8 ⁇ m 2 .
  • the microscope system 1 having the above-described configuration can add a cell operation unit (cutting means) 50.
  • This cell surgery unit 50 irradiates a cell with a femtosecond pulsed laser such as a titanium sapphire laser into the microscope optical system and focuses the laser to cut the cell membrane and organelles. Is what you do.
  • a cell operation unit 50 irradiates a cell with a femtosecond pulsed laser such as a titanium sapphire laser into the microscope optical system and focuses the laser to cut the cell membrane and organelles. Is what you do.
  • the configuration of the cell surgery unit 50 will be described.
  • Members having the same functions as those of the microscope system 1 shown in FIG. 1 are denoted by the same reference numerals in FIG. 7, and detailed description thereof will be omitted.
  • the cell operation unit 50 includes a laser light source 51, a galvanomirror unit 52, a shirt 53, a lens 54, and an actuator 55.
  • the galvanomirror unit 52 is used to move the spot of the laser light emitted from the laser light source 51, and is used to join two galvanomirrors (not shown) at a right angle. Be composed. Furthermore, the galvanomirror unit 52 includes a shutter 53 for turning on / off the laser emitted from the laser light source 51.
  • the laser light emitted from the laser light source 51 for cell cutting is reflected by the galvanomirror unit 52 and then collected by the lens 54.
  • the lens 54 is provided with an actuator 55. By operating the actuator 55, the lens 54 can be moved and the height of the laser spot in the sample cell 19 can be changed.
  • the laser light condensed by the lens 54 is collimated by the lens 56 in the microscope unit 4 and then reflected by the dichroic mirror 57 before being incident on the lens 31.
  • the laser light emitted from the laser light source 51 can be focused on the cells in the sample cell 19.
  • the laser light of the laser light source 51 reflected by the cells is guided to the confocal unit 3 after being absorbed by the filter 58.
  • a lateral force is applied to the cells by pressing the microparticles 20 trapped by the optical tweezers against the cells as the measurement object 35 or by trapping the microparticles 20 fixed to the cells by the optical tweezers.
  • the cell membrane near the place where the force is applied to the cell is cut using the cell surgery unit 50, and the movement of the fine particles 20 at that time is measured, and the morphological change of the cell is measured. Observe with a confocal microscope. As a result, the physical strength of the cell membrane and the cell structure such as the skeleton inside the cell can be known.
  • a titanium sapphire laser (tunable at a wavelength of 760 to 900 nm, pulse width of 80 fs, and maximum output of 800 mW) can be used.
  • the present inventors have confirmed that a cell membrane can be cut when laser light is incident at a wavelength of 800 nm.
  • the present inventors considered that the fine particles 20 fixed to the cell membrane surface at this time Then, it was confirmed that when a force was applied in the lateral direction of the cell membrane using the optical tweezer unit 2, the microparticles 20 were displaced when the cell membrane was cut.
  • a confocal microscope for the lower side of the sample cell 19, that is, the sample cell 19, is used instead of the optical tweezer unit 2 (see FIG. 1). It is possible to provide another optical tweezer unit (hereinafter simply referred to as lower optical tweezer unit 60) on the same side as the side on which it is arranged.
  • lower optical tweezer unit 60 another optical tweezer unit
  • the configuration of the lower optical tweezer unit (holding means) 60 will be described. Note that members having the same functions as those of the microscope system 1 shown in FIGS. 1 and 7 are denoted by the same reference numerals in FIG. 8, and detailed description thereof will be omitted.
  • the lower optical tweezer unit 60 includes a laser light source 61, a mirror 62, a galvano mirror unit 63, a lens (moving means, spot position changing means) 64, and an actuator. (Moving means, spot position changing means) 65, a beam splitter 66, a lens 67, and a four-divided photodetector 15.
  • the light emitted from the laser light source 61 passes through the beam splitter 66, is reflected by the galvano mirror unit 63, and is condensed by the lens 64.
  • the laser light condensed by the lens 64 in this way is collimated by the lens 68 in the microscope unit 4 and reflected by the two dichroic mirrors 57 and 69 before being incident on the lens 31.
  • the laser light of the laser light source 61 incident on the lens 31 in this manner is scattered by the fine particles 20. Then, after the scattered light is collected by the lens 31, it is reflected by the dichroic mirrors 57 and 69, and then passes through the two lenses 64 and 68. Further, the light that has passed through the two lenses 64 and 68 is reflected by the galvanomirror unit 63 and the beam splitter 66 and then collected by the lens 67. The light condensed by the lens 67 as described above is detected by the four-divided photodetector 15.
  • the lower optical tweezer unit 60 includes an actuator 65 for changing a distance between the lens 64 and the lens 68.
  • the actuator 65 is provided on the lens 64.
  • the actuator 65 When the actuator 65 is operated, the lens 64 moves.
  • the distance between the lens 64 and the lens 68 is changed in this way, the laser
  • the height of the microparticle 20 can be moved in the optical axis direction, and the height of the fine particles 20 trapped by the optical tweezers can be changed.
  • the lens 31 is moved in the optical axis direction.
  • the actuator 65 By operating the actuator 65 in synchronization with the movement of the lens 31 as described later, the height of the laser spot emitted from the laser light source 61 can be moved in synchronization with the movement of the lens 31. it can. This makes it possible to keep the positional relationship between the measurement object 35 and the fine particles 20 constant.
  • the lens 31 moves by the distance P in the optical axis direction
  • the distance by which the fine particles 20 move in the optical axis direction in the sample cell 19 is h
  • the refraction of the measurement object in the sample cell 19 is h.
  • the refractive index of the matching liquid matching oil, water or air
  • the wavefront of the light incident on the lens 31 may be curved. Therefore, even if a deformable mirror that bends the reflecting surface slightly to bend the wavefront of the reflected light or a phase shift device that can locally change the phase of the diffracted light is used, the measurement target 35 is not affected. Measured with a confocal microscope without changing the positional relationship with the fine particles 20 3D tomographic images of elephants can be obtained.
  • the dichroic mirror 69 reflects the light of the laser light source 61 provided in the lower optical tweezers unit 60, while transmitting the light of the laser light source 51 provided in the cell operation unit 50.
  • the dichroic mirror 57 reflects the laser emitted from the laser light source 51 and the laser light source 61, and emits the sample power with the laser emitted from the laser light source 34 of the confocal microscope. It transmits fluorescent light.
  • the laser light source 61 of the lower optical tweezer unit 60 is a Nd: YAG laser light source having a wavelength of 1064 nm
  • the laser light source 51 of the cell surgery unit 50 is a titanium sapphire laser light source having a wavelength of 760 to 900 nm, and confocal.
  • an argon laser light source with a wavelength of 488 nm is used as the laser light source 34 of the microscope and the wavelength range of the fluorescence excited by the argon laser is 500 to 650 nm
  • the wavelength characteristics of the dichroic mirrors 57 and 69 are as follows. Set it to.
  • the dichroic mirror 69 may be a mirror that reflects a wavelength longer than 950 nm and transmits a wavelength shorter than 950 nm. Further, the dichroic mirror of the dichroic mirror 57 may be a mirror that reflects a wavelength longer than 700 nm and transmits a wavelength shorter than 700 nm.
  • the filter 58 may be a filter that absorbs a wavelength longer than 700 nm and transmits a shorter wavelength.
  • the configuration using the units using the Ganolevano mirrors 23 and 24 as the confocal unit 3 has been described (see FIG. 1), but the configuration of the confocal unit 3 is not limited to this. .
  • a multi-pinhole confocal unit (observation means, confocal microscope) 70 can be used.
  • the multi-pinhole confocal unit 70 for example, a unit commercially available from Yokogawa Electric Corporation can be used.
  • the configuration of the multi-pinhole confocal unit 70 will be described. Note that members having the same functions as those of the microscope system 1 described above are the same in FIG. The detailed description is omitted by giving the same reference numeral.
  • the multi-pinhole confocal unit 70 includes lenses 21 and 27, a micro lens disk 71, a pinhole disk 72, and a motor for rotating these disks 71 and 72. (Rotating means) 73, a dichroic mirror 74, and adjusting means (not shown) for adjusting the rotation speed of the motor 73.
  • the microlens disc 71 includes a plurality of lenses (third lens, not shown) for condensing and irradiating light to each of the pinholes formed on the surface of the pinhole disc 72. Is what it is.
  • the pinhole disk 72 has a large number of pinholes (not shown) formed on the surface thereof.
  • the multi-pinhole confocal unit 70 reflects the laser beam returning from the sample cell 19 and passing through the pinhole disk 72 by the dichroic mirror 74.
  • the laser light reflected by the dichroic mirror 74 is condensed by the lens 27 and detected by the CCD camera (observing means) 75.
  • a tomographic image of the object to be measured can be obtained using the CCD camera 75 without scanning by a galvanomirror.
  • approximately 1000 points in the object to be measured can be excited simultaneously to detect light emission, making it suitable for high-speed image capture!
  • the multi-pinhole confocal unit 70 When the multi-pinhole confocal unit 70 is used, more than 500 tomographic images of the object to be measured can be captured per second, and when the lens 31 is moved in synchronization with the capturing of the image, 30 tons per second can be obtained. 3D images can be captured faster than the set. Therefore, when observing the measurement object in time series, a tomographic image of the measurement object can be obtained at shorter time intervals, and the time resolution of the measurement result can be significantly improved.
  • the double beam lower optical tweezer unit 80 is a two-beam laser for optical tweezers. A laser can enter and hold two particles at the same time. More specifically, as shown in FIG. 10, the double beam lower optical tweezer unit 80 includes a laser light source 81, a polarizing beam splitter 82a '82b, a ganole mirror unit 83a' 83b, and a lens 84 (movable Means, spot position changing means), actuator (moving means, spot position changing means) 85, half-wave plates 86a, 86b, 89, and four-segment photodetector (measuring means) 90a-90b. ing.
  • the laser from the laser light source 81 for optical tweezers is divided into two by the polarizing beam splitter-82a.
  • One of the lasers is reflected by the galvanomirror unit 83a, and the other laser is reflected by the galvanomirror unit 83b.
  • the laser beams reflected by the galvanomirror units 83a '83b are superimposed again by the polarizing beam splitter 82b. Thereafter, the superimposed laser beam passes through the lens 84 and the lens 68 and enters the sample cell 19. The fine particles 20 can be held by the laser beam thus incident.
  • the scattered light returning from each fine particle 20 returns to the double beam lower optical tweezer unit 80 as in the configuration of FIG.
  • the light reflected by the beam splitter 88a is condensed by a lens 89a and detected by a quadrant photodetector 90a.
  • the light reflected by the beam splitter 88b is condensed by the lens 89b, and then detected by the quadrant photodetector 9 Ob. Is done.
  • the use of the polarization beam splitters 82a and 82b can control the intensity ratio of the beams passing through the two paths at the rotation angle of the half-wave plate 87, and can also control the particle power by the polarization of the reflected light. This is because the reflected light can be separated.
  • the half-wave plates 86a and 86b are used to rotate the polarization plane, and the optical power reflected by the polarization beam splitter 82a is transmitted through the polarization beam splitter 82b. Is to adjust.
  • I is the light intensity before the polarizing beam splitter 82b. Also, the rotation angle ⁇ o
  • I is a value obtained by setting the angle at which the transmittance becomes maximum to 0 °.
  • the distance between the lens 84 and the lens 64 can be changed in synchronization with the movement of the lens 31 in the same manner as the distance between the lens 64 and the lens 68 described above.
  • the positional relationship between the object 35 and the fine particles can be kept constant.
  • the fine particles 20a and the fine particles 20b attached to both ends of the DNA 91 are separated by the two lasers from the optical tweezer unit. Can be trapped separately. As a result, it is possible to extend the DNA 91 and attach the protein (measurement target) 92-93-94 to the DNA 91 to measure the change in the DNA 91. Note that, when the DNA 91 is expanded, a force acts on each of the fine particles 20a and the fine particles 20b in the directions indicated by arrows A and B in FIG.
  • Protein 92 is a molecule that functions to bend DNA91, and the length of DNA91 changes when such a molecule is attached. The change in the length can be measured by detecting the position of the scattered light from each fine particle 20a'2 Ob.
  • the protein 93 is a molecule that is attached and fixed in the vicinity of the protein 92
  • the protein 94 is a molecule that binds to and slides on the DNA91.
  • the positions of such proteins 92, 93, and 94 can be measured by irradiating a laser from a confocal microscope and detecting the fluorescence emitted by the fluorescent probe attached to each protein. This makes it possible to observe the relationship between the binding state of the protein 92 and the positional change between the microparticles 20a and 20b, and to observe the slide state of the protein 94 in time series. It will work. In this way, according to the microscope system of FIG. 10, the extension of DNA and the interaction with DNA protein can be measured.
  • the microscope system 1 of the present embodiment includes the optical tweezer unit 2 for holding the fine particles 20, the lens 10 and the actuator 16 for moving the fine particles 20 toward the measurement object, Equipped with a four-segment photodetector 15 that measures the force acting on the object 35 from 20, a confocal unit 3 that allows the object 35 to be magnified and a microscope unit 4! / What is it.
  • the fine particles 20 held by the optical tweezer unit 2 can be moved by the lens 10 and the actuator 16 and pressed against the measurement target 35. If a chemical substance is immobilized on the fine particles 20, a stimulus by the chemical substance can be given to the measurement object 35. Therefore, the fine particles 20 are held at a position where the fine particles 20 are to be brought into contact with the measurement target 35 by the optical tweezer unit 2, and the fine particles 20 are moved to the measurement target 35 at a predetermined timing using the lens 10 and the actuator 116. By doing so, it is possible to apply a stimulus at a desired timing limited to only a part of the measurement object 35.
  • the force generated on the measurement object 35 by the fine particles 20 being pressed against the measurement object 35 by the lens 10 and the actuator 16 can be measured by using the four-divided photodetector 15. it can. Thereby, the magnitude of the force applied to the measurement target 35 can be evaluated.
  • a change in the shape of the measurement object 35, a change in the internal structure of the measurement object 35, or a change in the molecules constituting the measurement object 35, which is generated when the fine particles 20 are pressed against the measurement object 35, is generated.
  • the spatial distribution can be grasped by enlarging and viewing the object 35 to be measured using the confocal unit 3 and the microscope unit 4. Therefore, it is possible to evaluate whether an appropriate stimulus has been given to the measurement target 35 from the fine particles 20.
  • the microparticles 20 can be held without bringing the microparticles 20 into contact with the optical tweezers unit 2. Therefore, when moving the fine particles using the lens 10 and the actuator 16, the physical external force is prevented from being applied to the fine particles 20, and the physical characteristics of the fine particles 20 such that the shape of the fine particles 20 is deformed are prevented. Change can be prevented.
  • a double beam lower optical tweezer unit 80 holding a plurality of fine particles by a plurality of laser beams may be used as an optical tweezer unit. According to this configuration, a plurality of fine particles can be held by the double beam lower optical tweezer unit 80, so that a plurality of fine particles can be pressed against the measurement target.
  • the microparticles 20a 'and 20b are fixed to both ends of the DNA, and the microparticles 20a' and 20b are fixed by optical tweezers. If immobilized, the relationship between that protein 92, 93, 94 and DNA can be observed. Therefore, the microscope system 1 can be adapted to various measurement methods.
  • the optical tweezer unit 2 uses the lens 10 that is used for the confocal unit 3 and the microscope unit 4 to enlarge the measurement object 35, and the laser beam is incident on the microparticles 20. To retain the fine particles.
  • the optical system of the optical tweezer unit 2 and the optical systems of the confocal unit 3 and the microscope unit 4 are configured independently, the holding of the fine particles 20 by the optical tweezer unit 2, The enlargement of the measurement object 35 by the confocal unit 3 and the microscope unit 4 can be adjusted independently. Thereby, the convenience of the microscope system 1 can be improved.
  • the four-split photodetector 15 calculates the position displacement amount of the fine particles 20 based on the intensity of the light reflected by the fine particles 20 from the laser light emitted from the optical tweezer unit 2, and calculates the position displacement amount
  • the force acting on the measurement target 35 from the fine particles 20 is measured based on the panel constant indicated by the holding force on the fine particles 20 by the optical tweezer unit 2.
  • the holding force on the fine particles 20 is proportional to the amount of displacement of the fine particles 20. Therefore, if the proportional coefficient is calculated in advance as a panel coefficient, the above-mentioned holding force can be calculated from the positional displacement amount of the fine particles 20 and the panel coefficient.
  • the position displacement amount of the fine particles 20 is obtained using the laser light of the optical tweezer unit 2. That is, since the position displacement amount of the fine particles 20 can be obtained by using the optical system of the optical tweezer unit 2, the configuration for calculating the position displacement amount is simplified. Can. Thus, the configuration of the entire microscope system 1 can be simplified.
  • a tomographic image obtained by optically cutting the measurement object 35 can be obtained. Therefore, it is possible to observe in more detail the change that occurs in the measurement target 35 due to the pressing of the fine particles 20 based on the tomographic image of the measurement target 35 obtained using the confocal microscope.
  • a confocal microscope has a pinhole disk 72 having a plurality of pinholes formed on the surface thereof, and a plurality of lenses each of which emits light.
  • a multi-pinhole having a lens disc 71, a pinhole disc 72 and a motor 73 for rotating the microlens disc 71, and an adjusting means capable of adjusting the rotation speed of the two discs 71 and 72 by the motor 73. It is preferable to use the focus unit 70!
  • the object 35 to be measured can be scanned using the laser light passing through the lens and the pinhole. Becomes possible.
  • the rotational speed of the disk by the motor 73 is set to a high speed by using the adjusting means, the object 35 to be measured can be scanned at a high speed.
  • a tomographic image of the measurement target 35 can be obtained at short time intervals. Therefore, it is possible to observe changes occurring in the measurement object 35 due to the pressing of the fine particles 20 in more detail.
  • the confocal microscope be one that observes changes in the measurement object 35 in time series, for example, one that uses a CCD camera 75!
  • the change of the measurement object 35 can be viewed in a time series by the CCD camera 75. It can.
  • the measurement object 35 is a cell and the microparticle 20 is a fixed ligand that stimulates the cell, the response of the cell to the ligand can be viewed in chronological order.
  • the measurement target 35 caused by the pressing of the fine particles 20 becomes possible.
  • the lower optical tweezer unit 60, the quadrant photodetector 15, the lens 64, and the actuator 65 are arranged on the same side of the sample cell 19 on which the measurement object 35 is placed. It may be.
  • the sample cell 19 has a lower optical tweezer unit 60, a quadrant photodetector 15, and a space opposite to the side on which the lens 64 and the actuator 65 are arranged. Resources can be used effectively.
  • a lens that changes the spot position of the laser beam of the lower optical tweezers unit 60 based on the amount of movement of the lens 31 used by the confocal unit 3 and the microscope unit 4 to enlarge the object 35 to be measured With 64 and Actuator 65! /, Preferably! / ⁇
  • the laser light of the lower optical tweezer unit 60 Enters the fine particles via the lens 31.
  • the above configuration includes the lens 64 and the actuator 65 for changing the laser light spot position of the lower optical tweezers unit 60 based on the amount of movement of the lens 31. That is, the movement amount of the lens 31 and the spot position indicate a predetermined relationship. If the spot position is changed by using the lens 64 and the actuator 65 based on this relationship, the fine particles 20 are held at a fixed position, and the positional relationship between the measurement target 35 and the fine particles 20 is kept constant. be able to. Thereby, the fine particles 20 can be stably pressed against the measurement target 35, and the response of the measurement target 35 can be appropriately measured.
  • the microscope system 1 preferably includes a cell surgery unit 50 capable of cutting the measurement object 35.
  • the internal structure of the measurement target 35 can be observed in more detail with a confocal microscope. Therefore, the change generated inside the measurement object 35 due to the pressing of the fine particles 20 Can be observed more closely.
  • the positional displacement of the fine particles in the X, y, and z directions, the time-series change of the stimulus to the measurement target, and the force acting on the measurement target include: It can measure 5-dimensional physical quantities. From this point, the microscope system 1 of the present embodiment can be called a “five-dimensional microscope”.
  • a micromanipulator may be used other than the optical tweezers, or a device for fixing the fine particles using a magnetic field may be used.
  • observation means other than a confocal microscope, a device that uses stereoscopic microscopy, a CT microscope, or a device that removes blurred images using a deconvolution method and performs three-dimensional observation (Non-patent Document 4; Biological spectroscopy, seeing invisible objects beyond spectroscopy ”, spectroscopy Society of Japan, Measurement Methods Series 21”, published by the Society of Research Publishing, June 30, 1991).
  • the fine particles held by the holding means can be moved by the moving means and pressed against the measurement object.
  • a chemical substance is immobilized on the fine particles, stimulation by the chemical substance can be applied to the object to be measured. Therefore, by holding the fine particles at a position where the fine particles are to be brought into contact with the measurement object by the holding means, and further moving the fine particles to the measurement object at a predetermined timing using the moving means, the measurement object can be obtained.
  • the amount of stimulus generated in the measurement target object when the fine particles are pressed against the measurement target object by the moving means can be measured by using the measurement means. Accordingly, an effect is obtained that the magnitude of the force applied to the measurement target can be evaluated.
  • the shape change of the measurement object, the change in the internal structure of the measurement object, or the spatial distribution of molecules constituting the measurement object caused by the pressing of the fine particles against the measurement object are as follows. It can be grasped by enlarging and observing the measurement object using observation means. Therefore, it is possible to evaluate whether an appropriate stimulus has been given to the object to be measured by the fine particle force! [0177] It should be noted that the specific embodiments or examples made in the section of the best mode for carrying out the invention merely clarify the technical contents of the present invention, and such specific Various modifications can be made within the spirit of the present invention, which should not be construed in a narrow sense by limiting only to the examples, and the claims described below. Industrial potential
  • the state of a disease such as diabetes can be evaluated by measuring the hardness of red blood cells using the microscope system configured as described above.
  • red blood cells are fixed on a glass substrate, and fine particles for applying a force to the red blood cells are dispersed in a buffer solution. Then, the microparticles are captured using the optical tweezers of the microscope system 1 and pressed against the red blood cell surface. At this time, the deformation of red blood cells is measured three-dimensionally with a confocal microscope while measuring the amount of displacement of the fine particles.
  • the force applied to the surface of the red blood cell can be obtained as the displacement amount force of the fine particles, and the local stress distribution can be estimated from the deformation of the red blood cell at that time. From this estimation result, the mechanical properties of red blood cells can be quantitatively evaluated.
  • the response of cells to a stimulus using a microscope system by examining the response of cells to a stimulus using a microscope system, one can also examine changes in cells due to lesions.
  • the stimulus given to the cell include a stimulus by a chemical substance, a physical stimulus such as pressing a cell, and a stimulus by a local temperature change.
  • the chemical substance When stimulating a cell with a chemical substance, the chemical substance is immobilized on the surface of the particle. The chemical substance is contained inside the particle, and the particle is caught by optical tweezers and applied to the cell as a sample. The stimulus is given by contact with the skin. The response to the stimulus at this time is observed through a microscope optical system.
  • Physical stimulation can be achieved by capturing fine particles for applying a stimulus with optical tweezers, pressing the fine particles against cells, or applying a lateral force. It is.
  • applying a stimulus due to a local temperature change can be achieved by irradiating light of a specific wavelength with fine particles containing a substance that causes a temperature rise. This can be achieved by contacting the microparticles with cells and irradiating the microparticles with light of a specific wavelength.
  • results of examining the response of cells to stimuli in this way can be used to examine cellular responses to environmental hormones, to investigate cellular responses to drugs in the field of drug discovery, to screen for pharmacological substances, and to extract for medical diagnostic purposes. Can be applied to the cytology of isolated cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Manipulator (AREA)

Abstract

A measuring system capable of appropriately evaluating response of a measuring object to a stimulus applied at a specified timing to only a part of the measuring object, e.g. a cell. An inspection system comprises an optical tweezer unit (2) for holding a fine particle (20), a lens (10) and an actuator (16) for moving the fine particle (20) toward the measuring object, a photodetector (15) divided into four and measuring a force acting from the fine particle (20) to the measuring object (35), and a confocal unit (3) and a microscope unit (4) with which the measuring object (35) can be viewed in an enlarged size.

Description

測定システム  Measurement system
技術分野  Technical field
[0001] 本発明は、たとえば細胞や生体分子に対して、力による刺激や化学物質による刺 激が与えられた場合に、細胞等に生じる応答を計測するための測定システムに関す るものである。  The present invention relates to a measurement system for measuring a response generated in a cell or the like when, for example, a cell or a biomolecule is given a stimulus by a force or a stimulus by a chemical substance. .
背景技術  Background art
[0002] 細胞生物学等の研究分野、医療分野、および製薬分野にお!、ては、力や化学物 質による刺激が細胞に対して与えられた場合に、その細胞に生じる応答を計測する ことへの必要性が高 、。たとえば糖尿病罹患時に起こる赤血球の弾性特性を調べた り、癌細胞のシグナル伝達経路の変化を調べたりすることにより、医療診断や創薬の 発展に寄与することができる。  [0002] In the field of research such as cell biology, the medical field, and the pharmaceutical field, when a stimulus by a force or a chemical substance is given to a cell, a response generated in the cell is measured. The need for that is high. For example, examining the elastic properties of erythrocytes that occur when a person suffers from diabetes or examining changes in signaling pathways of cancer cells can contribute to the development of medical diagnosis and drug discovery.
[0003] そのような細胞の応答を観察するためには、通常、細胞に刺激を与えるための化学 物質をマイクロピペットなどで細胞の近傍に撒くことにより、細胞が化学物質に対して どのように応答するかが観察される。  [0003] In order to observe the response of such a cell, usually, a chemical substance for stimulating the cell is sprayed near the cell with a micropipette or the like to determine how the cell responds to the chemical substance. A response is observed.
[0004] また、細胞等の微小な測定対象物の物性を測定するためのデバイスとして、以下に 説明する共焦点顕微鏡や、光ピンセットが広く用いられている。  [0004] In addition, confocal microscopes and optical tweezers described below are widely used as devices for measuring physical properties of minute measurement objects such as cells.
[0005] 共焦点顕微鏡は、高分子、ガラス、細胞等のマイクロメートル単位の大きさを微小試 料内部の 3次元形状や分子の空間分布を観察するデバイスである。共焦点顕微鏡 の特徴は、その名に示されているとおり、共焦点を利用すること、およびレーザー光 源等の点光源を使用することにある。なお、共焦点とは、光源と光検出器とが対物レ ンズに対して光学的に共役の位置関係にあること、すなわち光源の一点から出た光 が検出器の一点に集まる状態をいう。  [0005] A confocal microscope is a device for observing the three-dimensional shape and the spatial distribution of molecules inside a microsample of a micrometer size such as a polymer, glass, or a cell. As the name implies, a confocal microscope is characterized by the use of confocal and the use of a point light source such as a laser light source. Note that confocal refers to a state in which the light source and the photodetector are in an optically conjugated positional relationship with respect to the objective lens, that is, a state in which light emitted from one point of the light source converges on one point of the detector.
[0006] つまり、共焦点顕微鏡は、レーザー光を集光して測定対象物に照射して集光点付 近で蛍光を励起し、光学系を通して光を集めて、集光点と光学的に共役な位置にあ るピンホールを通してその光を検出する。ここで、集光点の前後では励起レーザー光 のエネルギー密度が低いので蛍光の励起確率が低くなり、さらにピンホールを光が 通過する確率が低くなるので、 3次元的な構造をもつ対象物を光学的に切断 (光学 切断)したいわゆる断層像を得ることができる。さらに対物レンズを動かすなどして、 集光点の前後位置を移動させて光学切断像を取得し、それらを積み重ねることで対 象物の 3次元構造を観察することができる。 [0006] In other words, the confocal microscope focuses laser light, irradiates the object to be measured, excites fluorescence near the focus point, collects light through an optical system, and optically converges with the focus point. The light is detected through a pinhole at a conjugate position. Here, before and after the focal point, the energy density of the excitation laser light is low, so that the probability of excitation of fluorescence is reduced, and furthermore, the light passes through the pinhole. Since the probability of passing is low, so-called tomographic images can be obtained by optically cutting (optically cutting) an object having a three-dimensional structure. Furthermore, by moving the objective lens and moving the focal point forward and backward, optical cut images are acquired, and by stacking them, the three-dimensional structure of the object can be observed.
[0007] また、光ピンセットは、エネルギー密度の高!、レーザー光を対物レンズで集光して 微粒子に照射することにより、微粒子に光の放射圧を働かせて、微粒子をレーザー 光のスポット付近に捕まえることができる現象(レーザートラッピング)を用いるデバイ スである。この光ピンセットは、顕微鏡下の粒子を捕まえて操作することができるので( 非特許文献 1 ;A. Ashkin, J.M.Dziedic, J.E.Bjorkholm and S.Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters, Vol.11, No.5, pp.288- 290(1986)参照)、マイクロマニピュレーションなどに用いられて いる。 [0007] Optical tweezers have a high energy density! By condensing laser light with an objective lens and irradiating the fine particles, the radiation pressure of light is applied to the fine particles, and the fine particles are placed near the laser light spot. This device uses a phenomenon that can be caught (laser trapping). This optical tweezer can be operated by capturing particles under a microscope (Non-Patent Document 1; A. Ashkin, JMDziedic, JEBjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles, "Optics Letters, Vol.11, No.5, pp.288-290 (1986)), and micromanipulation.
[0008] 光ピンセットで粒子を捕まえると、粒子はパネに吊るされたような状態でレーザー光 のスポット中に捕まえられる。ここで、その粒子に外力が働くと、粒子は微小変位する 。この粒子の変位量を計測することで、粒子に働いている力を計測することができる。  [0008] When the particles are caught by the optical tweezers, the particles are caught in the spot of the laser beam in a state of being hung on a panel. Here, when an external force acts on the particle, the particle is minutely displaced. By measuring the amount of displacement of the particles, the force acting on the particles can be measured.
[0009] その変異量を計測するために、粒子にエバネッセント状態の光を照射して散乱光を 検出したり、集光したビームを照射して散乱光の位置を検出したりすることが行われ ている。その代表的な例として、粒子と基板との間に働く力をフェムト-ユートンォー ダ一の最小力感度で計測した例(非特許文献 2 ; "Surface-force measurement with a laser-trapped microprobe in solution", APPLIED PHYSICS LETTERS, Vol.80 No.18, May 6 2002参照)や、ァクチン ミオシン間に働く力を計測した例(非特許文 献 3 ; "Single molecule nanomanipulation of biomolecules ,TRENDb in Biotechnology Vol.19 No.6, pp211〜216, June 2001参照)、 DNAと RNAポリメラーゼとの間に働く力 を計測した例がある。  In order to measure the amount of mutation, scattered light is detected by irradiating particles with evanescent light, and the position of scattered light is detected by irradiating a focused beam. ing. As a typical example, an example in which the force acting between a particle and a substrate is measured with a minimum force sensitivity of the femto-Euton order (Non-Patent Document 2; "Surface-force measurement with a laser-trapped microprobe in solution" , APPLIED PHYSICS LETTERS, Vol.80 No.18, May 6 2002) and examples of measurement of the force acting between actin and myosin (Non-Patent Document 3; "Single molecule nanomanipulation of biomolecules, TRENDb in Biotechnology Vol.19 No. .6, pp 211-216, June 2001), and there are examples of measuring the force acting between DNA and RNA polymerase.
[0010] また、このような共焦点顕微鏡および光ピンセットを用いる技術として、たとえば特許 文献 1 ;特開 2001— 147374号公報(2001年 5月 29日公開)に記載された 3次元ィ メージ取得方法を挙げることができる。  [0010] Further, as a technique using such a confocal microscope and optical tweezers, for example, a three-dimensional image acquisition method described in Patent Document 1; Japanese Patent Application Laid-Open No. 2001-147374 (published May 29, 2001) Can be mentioned.
[0011] し力しながら、細胞に刺激を与えるための化学物質をマイクロピペットなどで細胞の 近傍に撒く方法では、 (1)細胞にどのタイミングでィ匕学物質による刺激を与えられた のか特定することが困難である、(2)細胞の一部分だけに限定して刺激を与えるのが 困難であるという問題点があった。また、化学物質などを用いて細胞に刺激を与えた 場合に、(3)刺激が適切に与えられたの力 (4)与えた刺激の大きさはどの程度力、 ということを評価するのが困難であった。 [0011] While applying force, a chemical substance for stimulating the cells is applied to the cells with a micropipette or the like. In the method of dissemination in the vicinity, (1) it is difficult to specify when the cells were stimulated by the stimulating substance, and (2) it is difficult to apply stimulation only to a part of the cells. There was a problem that. In addition, when stimulating cells using chemical substances, etc., it is important to evaluate (3) the power of the stimulus appropriately applied and (4) the magnitude of the applied stimulus. It was difficult.
[0012] また、特許文献 1に記載されて 、る 3次元イメージ取得方法は、光ピンセットを用い て測定対象の微小試料をトラップし、その微小試料を共焦点顕微鏡により観察する だけである。つまり、特許文献 1の 3次元イメージ取得方法では、光ピンセットにより固 定された微小試料に対してどのように刺激を与えるかと 、うことは考慮されて 、な 、。 したがって、化学物質をマイクロピペットなどにより細胞の近傍に撒く上述の方法と同 様の問題点が、特許文献 1に記載の 3次元イメージ取得方法でも生じる。 [0012] Further, the three-dimensional image acquisition method described in Patent Document 1 only traps a small sample to be measured using optical tweezers and observes the small sample with a confocal microscope. In other words, the three-dimensional image acquisition method of Patent Document 1 considers how to apply a stimulus to a small sample fixed by optical tweezers. Therefore, the same problem as the above-described method of dispersing a chemical substance near cells using a micropipette or the like also occurs in the three-dimensional image acquisition method described in Patent Document 1.
発明の開示  Disclosure of the invention
[0013] 本発明は、上記従来の問題点に鑑みなされたものであって、細胞等の測定対象物 の一部分だけに所定のタイミングで与えられた刺激に対する、測定対象物の応答を 適切に評価し得る測定システムを提供することを目的とする。  The present invention has been made in view of the above-mentioned conventional problems, and appropriately evaluates a response of a measurement target to a stimulus given to a part of the measurement target such as a cell at a predetermined timing. It is an object of the present invention to provide a measurement system that can perform measurement.
[0014] 本発明の測定システムは、上記課題を解決するために、微粒子を保持する保持手 段と、上記微粒子を測定対象物の方へ移動させる移動手段と、上記微粒子から上記 測定対象物に作用する刺激の量を計測する計測手段と、上記測定対象物を拡大し て見ることが可能な観察手段とを備えていることを特徴としている。ここで、「刺激の量 」には、上記測定対象物に作用する刺激の量のみではぐ上記測定対象物からの応 答の量も含まれる。また、「刺激」や「応答」としては、力、化学的な刺激、熱的な作用 が含まれる。  [0014] In order to solve the above problems, the measurement system of the present invention includes a holding means for holding the fine particles, a moving means for moving the fine particles toward the object to be measured, and a moving means from the fine particles to the object to be measured. It is characterized by comprising measuring means for measuring the amount of stimulus that acts, and observing means capable of enlarging and viewing the measurement object. Here, the “amount of stimulus” also includes the amount of a response from the object to be measured that is determined only by the amount of stimulus acting on the object to be measured. “Stimulus” and “response” include force, chemical stimulation, and thermal action.
[0015] 上記構成によれば、保持手段により保持された微粒子を、移動手段により移動させ て測定対象物に押し当てることができる。また、微粒子に化学物質を固定しておけば 、化学物質による刺激を測定対象物に与えることもできる。したがって、保持手段によ り測定対象物と接触されるべき位置に微粒子を保持しておき、さらに移動手段を用い て所定のタイミングで微粒子を測定対象物に移動させれば、測定対象物の一部分だ けに限定して、所望のタイミングで刺激を与えることができる。 [0016] さらに、移動手段により微粒子が測定対象物に押し当てられることにより測定対象 物に生じる刺激の量、たとえば力の大きさは、計測手段を用いることにより計測するこ とができる。これにより、測定対象物に与えられた刺激を評価することができる。 [0015] According to the above configuration, the fine particles held by the holding means can be moved by the moving means and pressed against the measurement object. Further, if a chemical substance is fixed to the fine particles, stimulation by the chemical substance can be given to the measurement object. Therefore, if the microparticles are held at a position where the microparticles are to come into contact with the measurement target by the holding means, and the microparticles are moved to the measurement target at a predetermined timing using the moving means, a part of the measurement target can be obtained. Stimulation can be given only at a desired timing. [0016] Further, the amount of stimulus, for example, the magnitude of a force generated on the measurement target object when the fine particles are pressed against the measurement target object by the moving means can be measured by using the measurement means. Thereby, the stimulus given to the measurement object can be evaluated.
[0017] また、微粒子が測定対象物に押し当てられることにより発生する、測定対象物の形 状変化、測定対象物の内部構造の変化、または測定対象物を構成する分子の空間 的な分布は、観察手段を用いて測定対象物を拡大して見ることにより把握することが できる。したがって、微粒子力も測定対象物に適切な刺激が与えられたのかを評価 することができる。  [0017] In addition, a change in shape of the measurement object, a change in the internal structure of the measurement object, or a spatial distribution of molecules constituting the measurement object, which is caused by the fine particles being pressed against the measurement object, is as follows. It can be grasped by enlarging and observing the measurement object using observation means. Therefore, the fine particle force can also be evaluated as to whether an appropriate stimulus has been given to the measurement object.
[0018] さらに、上記保持手段は、光ピンセットであることが好ましい。この構成によれば、光 ピンセットにより微粒子を保持するので、保持手段に微粒子を接触させることなく微粒 子を保持することができる。よって、移動手段を用いて微粒子を移動させる際に、保 持手段が微粒子に物理的な外力を与えることを防止し、微粒子の形状が変形してし まうというような微粒子の物理的な変化を防止できる。  Further, the holding means is preferably an optical tweezer. According to this configuration, since the fine particles are held by the optical tweezers, the fine particles can be held without bringing the fine particles into contact with the holding means. Therefore, when moving the fine particles using the moving means, it is possible to prevent the holding means from applying a physical external force to the fine particles, and to prevent physical change of the fine particles such that the shape of the fine particles is deformed. Can be prevented.
[0019] さらに、上記光ピンセットは、複数のレーザー光により複数の微粒子を保持するもの であることが好ましい。この構成によれば、光ピンセットにより複数の微粒子を保持す ることができるので、測定対象物に複数の微粒子を押し当てることが可能となる。  Further, it is preferable that the optical tweezers hold a plurality of fine particles by a plurality of laser beams. According to this configuration, a plurality of fine particles can be held by the optical tweezers, so that the plurality of fine particles can be pressed against the measurement target.
[0020] たとえば、 DNAに結合されたタンパク質分子を測定対象物とした場合に、その DN Aの両端に微粒子を固定するとともにその微粒子を光ピンセットにより固定すれば、 そのタンパク質と DNAとの関係を観察することができる。それゆえ、より多様な測定 手法に本発明の測定システムを対応させることができる。  [0020] For example, when a protein molecule bound to DNA is used as an object to be measured, if the fine particles are fixed to both ends of the DNA and the fine particles are fixed using optical tweezers, the relationship between the protein and DNA can be determined. Can be observed. Therefore, the measurement system of the present invention can correspond to more various measurement methods.
[0021] さらに、上記光ピンセットは、上記観察手段が上記測定対象物を拡大するために用 いる第 1レンズとは別の第 2レンズを用いて、レーザー光を微粒子に入射してその微 粒子を保持するものであることが好まし 、。  [0021] Furthermore, the optical tweezers use a second lens different from the first lens used by the observation means for enlarging the object to be measured, and apply laser light to the fine particles so that the fine particles are fine. It is preferable to hold the.
[0022] 上記構成によれば、光ピンセットの光学系と、観察手段との光学系が独立して構成 されるので、光ピンセットによる微粒子の保持と、観察手段による測定対象物の拡大 とを、独立して調整することが可能となる。これにより、測定システムの利便性を向上 させることがでさる。  According to the above configuration, since the optical system of the optical tweezers and the optical system of the observation unit are configured independently, the holding of the fine particles by the optical tweezers and the enlargement of the measurement target by the observation unit are It can be adjusted independently. As a result, the convenience of the measurement system can be improved.
[0023] さらに、上記計測手段は、光ピンセットユニットから発せられるレーザー光が上記微 粒子で反射した光の強度に基づき、上記微粒子の位置変位量を算出し、この位置変 位量と、上記光ピンセットによる上記微粒子に対する保持力が示すパネ定数とに基 づき、上記微粒子から上記測定対象物に作用する刺激の量としての力の大きさを計 測するものであることが好まし 、。 [0023] Further, the measuring means may detect that the laser light emitted from the optical tweezers unit emits the laser light. The amount of displacement of the fine particles is calculated based on the intensity of light reflected by the particles, and the above-described measurement is performed from the fine particles based on the amount of positional displacement and a panel constant indicating a holding force on the fine particles by the optical tweezers. It is preferable to measure the magnitude of the force as the amount of the stimulus acting on the object.
[0024] つまり、光ピンセットにより微粒子を保持する際、その微粒子に対する保持力は、微 粒子の位置変位量に比例する。したがって、この比例係数をパネ係数として予め算 出しておけば、微粒子の位置変位量とパネ係数とから、上記保持力を算出することが できる。 That is, when the fine particles are held by the optical tweezers, the holding force on the fine particles is proportional to the positional displacement amount of the fine particles. Therefore, if this proportionality coefficient is calculated in advance as a panel coefficient, the holding force can be calculated from the positional displacement amount of the fine particles and the panel coefficient.
[0025] そこで上記構成では、光ピンセットユニットのレーザー光を用いて微粒子の位置変 位量を求める。つまり、光ピンセットユニットの光学系を流用して微粒子の位置変位量 を求めることができるので、位置変位量を算出するための構成を簡略ィ匕することがで きる。これにより、測定システム全体の構成も簡略ィ匕することができる。  Therefore, in the above configuration, the position displacement amount of the fine particles is obtained using the laser light of the optical tweezers unit. That is, since the position displacement amount of the fine particles can be obtained by using the optical system of the optical tweezer unit, the configuration for calculating the position displacement amount can be simplified. Thereby, the configuration of the entire measurement system can be simplified.
[0026] さらに、上記観察手段は、共焦点顕微鏡であることが好ましい。すなわち、共焦点 顕微鏡によれば、測定対象物を光学的に切断した断層像を得ることができる。よって 、微粒子が押し当てられることにより測定対象物に生じる変化を、共焦点顕微鏡を用 いて得られる測定対象物の断層像に基づき、より詳細に観察することが可能となる。  [0026] Further, the observation means is preferably a confocal microscope. That is, according to the confocal microscope, a tomographic image obtained by optically cutting the object to be measured can be obtained. Therefore, it is possible to observe changes occurring in the measurement target due to the pressing of the fine particles in more detail based on the tomographic image of the measurement target obtained using the confocal microscope.
[0027] さらに、上記共焦点顕微鏡は、複数のピンホールが表面に形成されたピンホール ディスクと、その複数のピンホールのそれぞれに光^^光する第 3レンズを複数有し て!、るマイクロレンズディスクと、上記ピンホールディスクおよび上記マイクロレンズデ イスクを回転させる回転手段と、上記回転手段によるディスクの回転速度を調整可能 な調整手段とを備えて 、ることが好ま 、。  [0027] Furthermore, the confocal microscope has a pinhole disk having a plurality of pinholes formed on the surface thereof, and a plurality of third lenses that emit light in each of the plurality of pinholes! It is preferable that a microlens disk, a rotation unit for rotating the pinhole disk and the microlens disk, and an adjustment unit capable of adjusting a rotation speed of the disk by the rotation unit be provided.
[0028] 上記構成によれば、回転手段を用いてピンホールディスクおよびマイクロレンズディ スクを回転させることにより、第 3レンズおよびピンホールを通過したレーザー光を用 V、て測定対象物をスキャンすることが可能となる。  According to the above configuration, by rotating the pinhole disk and the microlens disk using the rotating means, the object to be measured is scanned by using the laser light passing through the third lens and the pinhole. It becomes possible.
[0029] そして、調整手段を用いて回転手段によるディスクの回転速度を高速に設定すれ ば、測定対象物を高速でスキャンすることが可能となる。これにより、測定対象物の断 層像を短い時間間隔で得ることができる。よって、微粒子が押し当てられることにより 測定対象物に生じる変化をより詳細に観察することができる。 [0030] さらに、上記観察手段は、上記測定対象物の変化を時系列で見るものであることが 好ましい。 [0029] If the rotational speed of the disk by the rotating means is set to a high speed by using the adjusting means, the object to be measured can be scanned at a high speed. This makes it possible to obtain cross-sectional images of the measurement object at short time intervals. Therefore, it is possible to observe changes occurring in the measurement object due to the pressing of the fine particles in more detail. [0030] Further, it is preferable that the observation means is for observing a change in the measurement object in a time series.
[0031] 上記構成によれば、微粒子が押し当てられることにより測定対象物が経時的に変化 するような場合、その測定対象物の変化を観察手段により時系列で見ることができる 。たとえば測定対象物が細胞であり、微粒子がその細胞に対して刺激を与えるリガン ドが固定されたものである場合、リガンドに対する細胞の応答を時系列で見ることが できる。  [0031] According to the above configuration, when the measurement object changes over time due to the pressing of the fine particles, the change of the measurement object can be viewed in chronological order by the observation means. For example, when the measurement target is a cell and the microparticles have a fixed ligand that stimulates the cell, the response of the cell to the ligand can be viewed in time series.
[0032] このように、上記構成によれば、微粒子が押し当てられることにより生じる測定対象 物のさらに詳細な観察が可能となる。  [0032] As described above, according to the above configuration, it is possible to observe the object to be measured which is generated by the pressing of the fine particles in more detail.
[0033] また、上記測定対象物を載せておく載置台に対して、上記保持手段、上記計測手 段、および上記観察手段が同じ側に配置されていてもよい。 [0033] Further, the holding means, the measurement means, and the observation means may be arranged on the same side with respect to a mounting table on which the measurement target is placed.
[0034] 上記構成によれば、載置台に対して、保持手段、計測手段、および観察手段が同 じ側に配置されているので、載置台に対してこれらの手段が配された側と反対側のス ペースを有効利用することができる。 [0034] According to the above configuration, the holding unit, the measuring unit, and the observation unit are arranged on the same side with respect to the mounting table. The space on the side can be used effectively.
[0035] さらに、上記構成において、上記保持手段は光ピンセットであり、上記観察手段が 上記測定対象物を拡大するために用いる第 1レンズの移動量に基づき、上記光ピン セットのレーザー光のスポット位置を変更するスポット位置変更手段を備えていること が好ましい。 [0035] Further, in the above configuration, the holding means is an optical tweezer, and the spot of the laser light of the optical tweezer is determined based on an amount of movement of the first lens used by the observation means to enlarge the object to be measured. It is preferable that a spot position changing means for changing the position is provided.
[0036] つまり、保持手段としての光ピンセットと、観察手段とが載置台に対して同じ側に配 置されている場合、光ピンセットのレーザー光は第 1レンズを介して微粒子に入射す る。  [0036] That is, when the optical tweezers as the holding unit and the observation unit are arranged on the same side with respect to the mounting table, the laser light of the optical tweezers enters the fine particles via the first lens.
[0037] したがって、第 1レンズが移動すると、光ピンセットのレーザー光のスポット位置が変 更され、そのスポット位置において保持されている微粒子も移動する。このように微粒 子が移動すると、微粒子を測定対象物へ適切に押し当てることができず、測定対象 物の応答を計測する上で好ましくな!/ヽ場合がある。  Therefore, when the first lens moves, the spot position of the laser light of the optical tweezers is changed, and the fine particles held at the spot position also move. When the fine particles move in this way, the fine particles cannot be appropriately pressed against the object to be measured, which may be undesirable in measuring the response of the object to be measured.
[0038] そこで上記構成では、第 1レンズの移動量に基づき、光ピンセットのレーザー光のス ポット位置を変更するスポット位置変更手段を備えている。すなわち、第 1レンズの移 動量と、光ピンセットのレーザー光のスポット位置とは、所定の関係を示す。この関係 に基づきスポット位置変更手段を用いてそのスポット位置を変更すれば、微粒子を一 定の位置において保持し、測定対象物と微粒子との位置関係を一定に維持すること ができる。これにより、微粒子を測定対象物に安定して押し当てることができ、測定対 象物の応答を適切に計測することができる。 Therefore, the above configuration includes a spot position changing unit that changes the spot position of the laser light of the optical tweezers based on the amount of movement of the first lens. That is, the amount of movement of the first lens and the spot position of the laser light of the optical tweezers show a predetermined relationship. This relationship If the spot position is changed using the spot position changing means based on the above, the fine particles can be held at a fixed position, and the positional relationship between the measurement object and the fine particles can be kept constant. Thereby, the fine particles can be stably pressed against the object to be measured, and the response of the object to be measured can be appropriately measured.
[0039] さらに、本発明の測定システムは、上記測定対象物を切断することが可能な切断手 段を備えて 、ることが好ま 、。  [0039] Further, it is preferable that the measurement system of the present invention includes a cutting means capable of cutting the object to be measured.
[0040] 上記構成によれば、切断手段を用いて測定対象物を切断することにより、測定対象 物の内部構造をより詳細に観察手段で観察することができる。したがって、微粒子が 押し当てられることにより測定対象物の内部に生じる変化を、さらに仔細に観察する ことが可能となる。 [0040] According to the above configuration, by cutting the object to be measured using the cutting means, the internal structure of the object to be measured can be observed in more detail by the observation means. Therefore, it is possible to observe changes occurring inside the measurement object due to the pressing of the fine particles more minutely.
[0041] さらに、上記切断手段は、パルスレーザー光を集光した状態で上記測定対象物に 照射して、測定対象物を切断するものであることが好ま ヽ。  [0041] Further, it is preferable that the cutting means irradiates the measurement target with the pulsed laser light in a focused state, and cuts the measurement target.
[0042] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わかるであろう。 [0042] Still other objects, features, and advantages of the present invention will be sufficiently understood from the following description.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]本発明の一実施形態に係る顕微鏡システムの構成を示す図である。 FIG. 1 is a diagram showing a configuration of a microscope system according to an embodiment of the present invention.
[図 2]図 1の顕微鏡システムにおける微粒子と細胞との位置関係を、光ピンセットュ- ットおよび顕微鏡ユニットからのレーザー光とともに示す図である。  FIG. 2 is a diagram showing a positional relationship between microparticles and cells in the microscope system of FIG. 1, together with an optical tweezer cutout and laser light from a microscope unit.
[図 3(a)]細胞膜に微粒子を近づけた状態を示す図である。  FIG. 3 (a) is a view showing a state in which fine particles are brought close to a cell membrane.
[図 3(b)]細胞膜に微粒子を近づけた状態を示す図である。  FIG. 3 (b) is a view showing a state in which fine particles are brought close to a cell membrane.
[図 4]図 1の 4分割光検出器に設けられるアナログ演算回路の構成を示す図である。  FIG. 4 is a diagram showing a configuration of an analog arithmetic circuit provided in the quadrant photodetector in FIG. 1.
[図 5]図 1の共焦点顕微鏡を用いて得られた細胞の断層像である。  FIG. 5 is a tomographic image of cells obtained using the confocal microscope of FIG. 1.
[図 6(a)]微粒子にリガンド分子を固定する状態を示す図である。  FIG. 6 (a) is a view showing a state in which a ligand molecule is immobilized on fine particles.
[図 6(b)]微粒子にリガンド分子を固定する状態を示す図である。  FIG. 6 (b) is a view showing a state in which a ligand molecule is immobilized on fine particles.
[図 7]図 1の顕微鏡システムに細胞手術ユニットを設けた構成を示す図である。  FIG. 7 is a diagram showing a configuration in which a cell surgery unit is provided in the microscope system of FIG. 1.
[図 8]試料セルに対して共焦点顕微鏡および光ピンセットユニットを同じ側に配置した 場合の顕微鏡システムの構成を示す図である。  FIG. 8 is a diagram showing a configuration of a microscope system when a confocal microscope and an optical tweezer unit are arranged on the same side of a sample cell.
[図 9]図 1の顕微鏡システムにおける共焦点ユニットの代わりに、マルチピンホール共 焦点ユニットを用いた場合の構成を示す図である。 [FIG. 9] Instead of the confocal unit in the microscope system of FIG. FIG. 3 is a diagram illustrating a configuration when a focus unit is used.
[図 10]図 1の顕微鏡システムにおける光ピンセットユニットの代わりに、ダブルビーム 下側光ピンセットユニットを用いた場合の構成を示す図である。  FIG. 10 is a diagram showing a configuration in which a double beam lower optical tweezer unit is used instead of the optical tweezer unit in the microscope system of FIG. 1.
[図 11]図 10の顕微鏡システムにより 2つの微粒子を保持し、 DNAの伸張と、 DNAタ ンパク質との相互作用を計測する状態を示す図である。  FIG. 11 is a diagram showing a state in which two microparticles are held by the microscope system in FIG. 10, and DNA elongation and interaction with DNA proteins are measured.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 〔1.顕微鏡システムの構成〕  [1. Configuration of Microscope System]
図 1に本発明の一実施形態に係る顕微鏡システムの構成を示す。本実施形態に係 る顕微鏡システム(測定システム) 1は、図 1に示すように、光ピンセットユニット (保持 手段) 2と、共焦点ユニット (観察手段、共焦点顕微鏡) 3と、顕微鏡ユニット (観察手 段、共焦点顕微鏡) 4とから構成される。これら共焦点ユニット 3および顕微鏡ユニット 4により、共焦点顕微鏡が構成される。  FIG. 1 shows a configuration of a microscope system according to an embodiment of the present invention. As shown in FIG. 1, a microscope system (measurement system) 1 according to the present embodiment includes an optical tweezer unit (holding unit) 2, a confocal unit (observation unit, confocal microscope) 3, and a microscope unit (observation microscope). Method, confocal microscope) 4. The confocal unit 3 and the microscope unit 4 constitute a confocal microscope.
[0045] 光ピンセットユニット 2は、レンズ 5と、ビームスプリツター 6と、レンズ 7· 8と、 2色性ミラ 一 9と、レンズ(第 2レンズ、移動手段) 10と、フィルター 11と、レンズ 12と、 CCDカメラ 13と、レンズ 14と、 4分割光検出器 (計測手段) 15と、ァクチユエ一ター (移動手段) 1 6とを備えている。  The optical tweezer unit 2 includes a lens 5, a beam splitter 6, lenses 7.8, a dichroic mirror 9, a lens (second lens, moving means) 10, a filter 11, a lens 12, a CCD camera 13, a lens 14, a four-segment photodetector (measuring means) 15, and an actuator (moving means) 16.
[0046] 上記構成により、光ピンセットユニット 2は、光ファイバ一 17により導かれた光ピンセ ット用レーザー光源 18の光をレンズ 5によりコリメートした後、レンズ 7によりー且集光 する。さらに、光ピンセットユニット 2は、レンズ 7により集光された光を、レンズ 8を用い て再びコリメートした後、 2色性ミラー 9により反射する。  With the above configuration, the optical tweezer unit 2 collimates the light of the laser light source 18 for optical tweezers guided by the optical fiber 117 by the lens 5, and then condenses the light by the lens 7. Further, the optical tweezer unit 2 reflects the light condensed by the lens 7 again using the lens 8 and then reflects the light by the dichroic mirror 9.
[0047] そして、光ピンセットユニット 2は、 2色性ミラー 9が反射した光をレンズ 10により集光 することにより、試料セル (載置台) 19中において微粒子 20を捕まえる。さらに、光ピ ンセットユニット 2は、微粒子 20から戻ってくる散乱光を、レンズ 10を用いて集光して 力も 2色性ミラー 9で反射し、レンズ 7· 8を通過させた後、ビームスプリツター 6を用い て反射する。その後、光ピンセットユニット 2は、ビームスプリツター 6により反射された 光を、レンズ 14により集光して、 4分割光検出器 15の上に結像する。なお、 4分割光 検出器 15は、微粒子からの散乱光の位置を検出する働きをするものであり、詳細な 構成は後述する。 [0048] また、共焦点ユニット 3は、レンズ 21と、リレーレンズ 22と、ガノレバノミラー 23 · 24と、 レンズ 25と、 2色' 14ミラー 26aと、フイノレター 26bと、レンズ 27と、ピンホーノレ 28とを備 えている。そして、顕微鏡ユニット 4は、レンズ 29と、フイノレター 30と、レンズ(第 1レン ズ) 31と、ァクチユエ一ター 32とを備えている。 Then, the optical tweezer unit 2 captures the fine particles 20 in the sample cell (mounting table) 19 by condensing the light reflected by the dichroic mirror 9 with the lens 10. Further, the optical tweezer unit 2 condenses the scattered light returning from the fine particles 20 using the lens 10, reflects the power with the dichroic mirror 9, passes through the lenses 7.8 and 8 The light is reflected using the plitter 6. Thereafter, the optical tweezer unit 2 condenses the light reflected by the beam splitter 6 by a lens 14 and forms an image on a four-division photodetector 15. The four-divided light detector 15 functions to detect the position of the scattered light from the fine particles, and the detailed configuration will be described later. The confocal unit 3 includes a lens 21, a relay lens 22, Ganolevano mirrors 23 and 24, a lens 25, a two-color '14 mirror 26a, a finoletter 26b, a lens 27, and a pinhorn lens 28. I have it. The microscope unit 4 includes a lens 29, a finoletter 30, a lens (first lens) 31, and an actuator 32.
[0049] 上記構成により、共焦点ユニット 3は、光ファイバ一 33により導かれたレーザー光源 34の光を、レンズ 21を用いてコリメートする。その後、共焦点ユニット 3は、レンズ 21 によりコリメートされた光を、 2枚のレンズ 22a ' 22bからなるリレーレンズ 22内を通過さ せた後、 2枚のガルバノミラー 23 · 24で反射してから、レンズ 25で集光する。  With the above configuration, the confocal unit 3 collimates the light of the laser light source 34 guided by the optical fiber 33 using the lens 21. After that, the confocal unit 3 passes the light collimated by the lens 21 through the relay lens 22 composed of the two lenses 22a and 22b, and then reflects the light by the two galvanometer mirrors 23 and 24. The light is focused by the lens 25.
[0050] また、光ピンセットユニット 2におけるレンズ 10は、ァクチユエ一ター 16に保持されて いる。このァクチユエ一ター 16を動作させることにより、光軸方向にレーザースポット の位置を動かすことができる。  The lens 10 of the optical tweezer unit 2 is held by an actuator 16. By operating the actuator 16, the position of the laser spot can be moved in the optical axis direction.
[0051] そして、顕微鏡ユニット 4は、レンズ 25により集光された光をレンズ 29によりコリメート してからレンズ 31で集光し、蛍光染色した測定対象物 35に照射する。この測定対象 物 35により反射される光は、レンズ 31により集められた後、フィルター 30を通過する ことにより光ピンセットユニット 2から入射する光の波長がカットされてから、再びガル ノ ノミラー 23 · 24にて反射される。  Then, the microscope unit 4 collimates the light condensed by the lens 25 with the lens 29, condenses the light with the lens 31, and irradiates the measurement object 35 with the fluorescent staining. The light reflected by the measurement object 35 is collected by the lens 31 and then passes through the filter 30 so that the wavelength of the light incident from the optical tweezer unit 2 is cut off. Is reflected at
[0052] このようにガルバノミラー 23 · 24により反射された光は、 2色性ミラー 26aにより反射 されてフィルター 26bを通過する。フィルター 26bを通過した光は、レンズ 27により集 光された後、ピンホール 28に照射される。このピンホール 28を通過した光は、光検出 器 36により検出される。  [0052] The light reflected by the galvanomirrors 23 and 24 is reflected by the dichroic mirror 26a and passes through the filter 26b. The light that has passed through the filter 26b is collected by a lens 27 and then applied to a pinhole 28. The light passing through the pinhole 28 is detected by a photodetector 36.
[0053] また、共焦点ユニット 3においては、レーザー光源 34からの光は 2色性ミラー 26aで ほとんど反射せず、若干反射したとしても、その反射光はフィルター 26bでカットされ るので、ピンホール 28には測定対象物 35から発せられた蛍光のみが通過する。  In the confocal unit 3, the light from the laser light source 34 is hardly reflected by the dichroic mirror 26a, and even if it is slightly reflected, the reflected light is cut by the filter 26b. Only the fluorescence emitted from the measurement object 35 passes through 28.
[0054] また、ガルバノミラー 23 · 24の角度を変えると、測定対象物 35におけるレーザー光 が照射される位置を変更することができる。したがって、その変更された位置力も戻つ てくる光がピンホール 28を通過するようになる。それゆえ、 2枚のガルバノミラー 23 · 2 4の角度を同調して走査することで、測定対象物 35の 2次元的な画像を得ることがで きる。 [0055] また、共焦点ユニット 3は、ピンホール 28を有することから、コンフォカリティを持ち、 レーザー光が集光される位置を、 3次元的に 1点に限定して計測することができる。な お、コンフォカリティとは、焦平面の対象物を上下の構造とは独立に観察できる能力 のことを表し、共焦点顕微鏡で物体の断層像が観察できるのは、共焦点顕微鏡がコ ンフォカリティを有している力もである。したがって、共焦点顕微鏡で得られる 2次元 的な画像は、測定対象物の断層像となる。 When the angles of the galvanomirrors 23 and 24 are changed, the position of the measurement target 35 where the laser light is irradiated can be changed. Therefore, the light that also returns the changed position force passes through the pinhole 28. Therefore, a two-dimensional image of the measurement target 35 can be obtained by scanning the two galvanometer mirrors 23 and 24 in synchronization with each other. [0055] Further, since the confocal unit 3 has the pinhole 28, it has confocality, and the position where the laser light is focused can be limited to one point three-dimensionally and measured. . The confocality refers to the ability to observe the object in the focal plane independently of the upper and lower structures, and the tomographic image of the object can be observed with a confocal microscope. Is also a force that has Therefore, the two-dimensional image obtained by the confocal microscope becomes a tomographic image of the measurement object.
[0056] また、顕微鏡ユニット 4におけるレンズ 31は、ァクチユエ一ター 32に保持されている 。したがって、ァクチユエ一ター 32を動作させることにより、レンズ 31をレーザー光の 光軸方向に移動させることができる。さらに、ガルバノミラー 23 · 24を走査して断層像 を得るのと同期して、ァクチユエ一ター 32を動作させてレンズ 31を光軸方向に移動さ せることで、測定対象物 35の複数の断層像を得ることができる。これにより、測定対 象物 35の内部の 3次元的な物質分布を計測することができる。  The lens 31 of the microscope unit 4 is held by an actuator 32. Therefore, by operating the actuator 32, the lens 31 can be moved in the optical axis direction of the laser light. Further, in synchronization with the scanning of the galvanometer mirrors 23 and 24 to obtain a tomographic image, the actuator 32 is operated to move the lens 31 in the optical axis direction, so that a plurality of tomographic images of the measurement object 35 are obtained. An image can be obtained. Thereby, the three-dimensional substance distribution inside the measurement target 35 can be measured.
[0057] また、光ピンセットユニット 2には、 CCDカメラ 13が設置されている。この CCDカメラ 13を通して、測定対象物 35の拡大像を時系列で観察することができる。さらに、 CC Dカメラ 13を用いて、光ピンセットユニット 2、共焦点ユニット 3、および顕微鏡ユニット 4の光学的な位置関係を調整することができる。  The optical tweezer unit 2 is provided with a CCD camera 13. Through the CCD camera 13, an enlarged image of the measurement object 35 can be observed in time series. Further, the optical positional relationship between the optical tweezer unit 2, the confocal unit 3, and the microscope unit 4 can be adjusted using the CCD camera 13.
[0058] つまり、光ピンセットユニット 2は試料セル 19に対して上側に配置されている一方、 共焦点ユニット 3および顕微鏡ユニット 4は試料セル 19に対して下側に配置されてお り、光ピンセットユニット 2と、共焦点ユニット 3および顕微鏡ユニット 4とは、光学的に 独立な関係にある。したがって、実験のはじめの段階で、各ユニットの光学系の位置 を決定する必要がある。そのためには、 CCDカメラ 13を用いて、顕微鏡ユニット 4か らの共焦点レーザー光を確認し、そのレーザー光を目印に光学系の調整を行えばよ い。  That is, while the optical tweezer unit 2 is arranged above the sample cell 19, the confocal unit 3 and the microscope unit 4 are arranged below the sample cell 19, and The unit 2, the confocal unit 3 and the microscope unit 4 are in an optically independent relationship. Therefore, it is necessary to determine the position of the optical system of each unit at the beginning of the experiment. For that purpose, the confocal laser light from the microscope unit 4 is checked using the CCD camera 13, and the optical system may be adjusted using the laser light as a mark.
[0059] また、試料セル 19の上側に光ピンセットユニット 2を設置することで、光ピンセットで 捕捉した微粒子 20を、測定対象物 35としての細胞へ接触させた場合に、微粒子 20 と細胞との位置関係を変えずに、観察側の焦点位置を変化させることができる。つま り、共焦点顕微鏡で細胞の 3次元画像を撮る場合には、観察側のレンズ 31を光軸方 向に移動させて焦平面を変えて 2次元画像を順次得ていくことになる力 このようにレ ンズ 31を移動させても、光ピンセットユニット 2における各構成要素の光学的な位置 関係は何ら影響を受けることはない。したがって、光ピンセットにより捕捉されている 微粒子 20の位置が変わることもないので、上記焦平面を変化させ、細胞の 3次元画 像を得ることができる。 [0059] Further, by installing the optical tweezer unit 2 above the sample cell 19, when the microparticles 20 captured by the optical tweezers are brought into contact with the cells as the measurement target 35, the microparticles 20 and the cells are dissociated. The focal position on the observation side can be changed without changing the positional relationship. In other words, when taking a three-dimensional image of cells with a confocal microscope, the force that moves the lens 31 on the observation side in the direction of the optical axis to change the focal plane and obtain two-dimensional images sequentially. Like Even if the lens 31 is moved, the optical positional relationship of each component in the optical tweezer unit 2 is not affected at all. Therefore, since the position of the fine particles 20 captured by the optical tweezers does not change, a three-dimensional image of the cell can be obtained by changing the focal plane.
[0060] 図 2に、測定対象物 35としての細胞へ、微粒子 20を近づけて、細胞を観察してい る様子を示す。図 2に示すように、試料セル 19には、光ピンセットユニット 2からのレー ザ一光が入射している。微粒子 20は、このレーザー光により捕捉されている。  FIG. 2 shows a state in which the microparticles 20 are brought close to the cells as the measurement object 35 and the cells are observed. As shown in FIG. 2, the laser light from the optical tweezer unit 2 is incident on the sample cell 19. The fine particles 20 are captured by the laser light.
[0061] ここで、微粒子 20を細胞へ近づけていくと、細胞に対しては刺激や力が付与され、 微粒子 20に対しては、細胞表面の分子との相互作用で発生した力や細胞膜で押し 返される力などが働く。  [0061] Here, when the microparticles 20 are brought closer to the cells, stimulation or force is applied to the cells, and the microparticles 20 are subjected to the force generated by the interaction with molecules on the cell surface or the cell membrane. The force that is pushed back works.
[0062] また、微粒子 20から刺激を与えられた細胞は、それに対する反応 (カルシウム波の 発生等)を示したり、弾性変形したりする。この刺激に対する細胞の反応や弾性変形 等を、本実施形態では上述した共焦点顕微鏡で観察する。  [0062] In addition, cells stimulated by the microparticles 20 exhibit a response (such as generation of calcium waves) to the cells or undergo elastic deformation. In this embodiment, the response of the cells to the stimulus, the elastic deformation, and the like are observed with the confocal microscope described above.
[0063] また、微粒子 20に対して細胞力も与えられる力によって微粒子 20の位置は変位す る。ここで、光ピンセットで微粒子を捕まえている状態は、パネに微粒子をぶら下げる 状態に似ていることから、微粒子に対して外力が働いた場合、そのパネの長さが変化 するものと把握することができる。そして、光ピンセットのパネ定数を予め求めておけ ば、微粒子の位置変位量を計測することで微粒子に対して働く力を求めることができ る。微粒子に対して働く力を求める手順に関しては後述する。  [0063] Further, the position of the fine particles 20 is displaced by a force that also applies a cellular force to the fine particles 20. Here, the state of capturing fine particles with optical tweezers is similar to the state of hanging fine particles on a panel, so it is important to understand that when an external force acts on the fine particles, the length of the panel changes. Can be. If the panel constant of the optical tweezers is obtained in advance, the force acting on the particles can be obtained by measuring the amount of displacement of the particles. The procedure for obtaining the force acting on the fine particles will be described later.
[0064] 図 3 (a)および図 3 (b)は、細胞膜に微粒子 20を近づけた状態を示して 、る。光ピン セットにより捕まえられた微粒子 20を細胞膜に近づけると、細胞膜と微粒子 20との間 で相互に作用するカ湘互作用力)が発生する。また、微粒子 20の表面にリガンドと なる物質が固定されていると、細胞膜上の受容体分子と微粒子 20とが相互に作用す ることになる。このときに発生する相互作用力は、静電力、双極子相互作用、 van der Waals力である。  FIGS. 3 (a) and 3 (b) show a state where the microparticles 20 are brought close to the cell membrane. When the microparticles 20 captured by the optical tweezers are brought close to the cell membrane, a mutual interaction between the cell membrane and the microparticles 20 is generated. Further, when a substance serving as a ligand is fixed on the surface of the fine particles 20, the receptor molecules on the cell membrane and the fine particles 20 interact with each other. The interaction forces generated at this time are electrostatic force, dipole interaction, and van der Waals force.
[0065] 〔2.相互作用力を算出する手順〕  [2. Procedure for calculating interaction force]
4分割光検出器 15は、図 4に示すように、その検出領域が 4つの扇形領域 A, B, C , Dに等分割されている。これら 4つの扇形領域 A, B, C, Dにおいては、微粒子から の散乱光のスポットが形成されるとともにその光強度が検出される。そして、その光強 度がアナログ演算回路 (計測手段 ) 37で演算処理された後、コンピューターに出力さ れる。 As shown in FIG. 4, the quadrant photodetector 15 has its detection area equally divided into four fan-shaped areas A, B, C, and D. In these four sector areas A, B, C, and D, Is formed and the light intensity is detected. Then, the light intensity is subjected to arithmetic processing by an analog arithmetic circuit (measuring means) 37, and then output to a computer.
[0066] アナログ演算回路 37は、 3つの減算器 38· ··と、 2つのカロ算器 39· ··と力らなる。また 、アナログ演算回路 37には、出力端子が 3つ設けられている。これら 3つの出力端子 のそれぞれから出力される信号のレベルを I , I , Iとし、 4分割検出器の領域 A, B, c, Dのそれぞれにおいて検出される信号のレベルを I , Ι , Ι , Ιとした場合、 I , I  The analog arithmetic circuit 37 is composed of three subtractors 38... And two calo calculators 39. The analog operation circuit 37 has three output terminals. Let the levels of the signals output from each of these three output terminals be I, I, and I, and let the levels of the signals detected in each of the areas A, B, c, and D of the quadrant detector be I, Ι, Ι , Ι, I, I
A B C D  A B C D
, Iは以下のように設定される。  , I are set as follows:
z  z
[0067] I = (1 +1 ) - (1 +1 )  [0067] I = (1 +1)-(1 +1)
A B C D  A B C D
I = (I +I ) - (I +1 )  I = (I + I)-(I +1)
A c B D  A c B D
I =1 +1 +1 +1  I = 1 +1 +1 +1
z A B C D  z A B C D
[0068] そして、本実施形態の顕微鏡システムにおいては、これらの信号レベル I , I , Iを 用いて、微粒子の変位を以下のように算出することができる。  Then, in the microscope system of the present embodiment, the displacement of the fine particles can be calculated as follows using these signal levels I 1, I 2, and I 3.
[0069] まず、光ピンセットのレーザー光の光軸に垂直な方向である、 X方向および y方向の 変位について説明する。すなわち、平衡位置力 の微粒子の変位がレーザー光のス ポット径に比べて十分小さ!/、場合、 Xおよび y方向のそれぞれへの微粒子の変位量を d , dとすると、これらの変位量と信号レベル I , Iとの間には、 a, b, cを比例定数とし て、 d =al , d =biの関係が成り立つ。この関係を用いて、微粒子に働く力を求め る。なお、「平衡位置」とは、微粒子が光ピンセットにより安定してトラップされている際 の微粒子の位置である。  First, displacements in the X direction and the y direction, which are directions perpendicular to the optical axis of the laser light of the optical tweezers, will be described. That is, the displacement of the particles at the equilibrium position force is sufficiently smaller than the spot diameter of the laser beam! / In this case, if the displacements of the particles in the X and y directions are d and d, respectively, The relations d = al and d = bi hold between the signal levels I and I, where a, b and c are proportional constants. Using this relationship, the force acting on the fine particles is determined. The “equilibrium position” is a position of the fine particles when the fine particles are stably trapped by the optical tweezers.
[0070] 先ず、 X, y方向のそれぞれに働くトラップ力のパネ定数を k , kとした場合、微粒子 がブラウン運動する性質を考慮すると、これらのパネ定数は d , dを用いて以下のよ うに表現することができる。すなわち、所定時間だけ I , Iを計測した場合におけるこ れらの値の平均値に対して、各時刻における I , Iの値がずれている量を時間平均し た値を〈I〉, 〈I〉とする。また、微粒子の変位量の時間平均をく d〉, 〈d〉とすると、〈d > =a <I > , 〈d〉=b〈I〉と求めることができる。さらに、〈d〉, 〈d〉と、 k , kとの間には First, assuming that the panel constants of the trapping forces acting in the X and y directions are k and k, considering the property of the particles moving in Brownian motion, these panel constants are calculated using d and d as follows. Can be expressed as follows. That is, the values obtained by time-averaging the amount of deviation of the values of I and I at each time with respect to the average value of these values when I and I are measured for a predetermined time are <I> and < I>. Further, if the time average of the displacement amount of the fine particles is d>, <d>, then <d> = a <I>, <d> = b <I> can be obtained. Furthermore, between <d>, <d> and k, k
、以下の関係が成り立つ。 , The following relationship holds.
[0071] 1/2KT= l/2k〈d〉2= l/2k〈d Ϋ なお、 Kはボルツマン定数、 Τは絶対温 度である。 [0071] 1 / 2KT = l / 2k <d> 2 = l / 2k <d Ϋ where K is Boltzmann's constant and Τ is absolute temperature Degrees.
[0072] 上式に基づけば、以下の式を導くことができる。  Based on the above equation, the following equation can be derived.
[0073] k =KT/(a2〈I〉2) [0073] k = KT / (a 2 <I> 2 )
k =KT/(b2<I>2) k = KT / (b 2 <I> 2 )
[0074] そして、微粒子に働く力 Fは、 F =kdとして表され、ポテンシャル Uは、 U =Fdと して表されるので(iは X, y, zのいずれかである)、  [0074] Then, the force F acting on the fine particles is expressed as F = kd, and the potential U is expressed as U = Fd (i is any of X, y, z).
[0075] F ={KT/(a2<I>2)}-aI = {KT/(a<I >2) }1 F = {KT / (a 2 <I> 2 )}-aI = {KT / (a <I> 2 )} 1
U =FaI ={KT/(<I>2)ll2 U = FaI = {KT / (<I> 2 ) ll 2
F ={KT/(b2<I>2)}-bI ={KT/(b<I>2)}l F = {KT / (b 2 <I> 2 )}-bI = {KT / (b <I> 2 )} l
u ={FbI =KT/(<I >2)}I 2 u = {FbI = KT / (<I> 2 )} I 2
[0076] これらの式から、力 F , Fを求める場合には、比例係数 a, bを求める必要があるが When obtaining the forces F 1 and F 2 from these equations, it is necessary to obtain the proportional coefficients a and b.
、ポテンシャルはこれらの比例係数が未知でも求められることがわかる。 It can be seen that the potential can be obtained even if these proportional coefficients are unknown.
[0077] また、比例係数 a, bを求めるには、試料ステージを等速度 Vで移動させて、そのとき の移動距離力 パネ定数 kを求めて、これを先にブラウン運動力 求めたパネ定数 k , kと比較する。つまり、微粒子の半径 ¾:、周りの媒質の粘性を r?として、微粒子をト ラップした状態で試料ステージを X方向に等速度 Vで移動させたときの微粒子の横ず れを d =alとすると、スト一タスの法則により微粒子に働く力 Fは、  [0077] In order to obtain the proportional coefficients a and b, the sample stage is moved at a constant velocity V, and the moving distance force Panel constant k at that time is calculated. k and k. In other words, the radius of the particle ¾: The viscosity of the surrounding medium is r ?, and the displacement of the particle when the sample stage is moved in the X direction at a constant velocity V with the particle trapped is d = al. Then, the force F acting on the fine particles by the law of Stotas is
F =k d =k al =D π η rv  F = k d = k al = D π η rv
と表される。  It is expressed.
[0078] すると、 k =6π 7?rv/(al )となる。このように求められた kを、ブラウン運動から 求めた kと比較すると、  Then, k = 6π 7? Rv / (al). When k obtained in this way is compared with k obtained from Brownian motion,
k =KT/(a2<I〉2)=6π ηνν /(al ) k = KT / (a 2 <I> 2 ) = 6π ηνν / (al)
となるので、 aは  So a is
a=KTI Ζ(6π rjrv〈I〉2) a = KTI Ζ (6π rjrv <I> 2 )
ι 様に、  Like ι,
b=KTI /(6π rjrv <I〉2)と求めることができる。 b = KTI / (6π rjrv <I> 2 ).
[0079] これらの比例係数を用いて I , Iの計測値力 実際の位置変位を求めることができる [0079] Using these proportional coefficients, the measured force of I and I can be used to determine the actual position displacement.
。また微粒子に働く力を求めることができる。 [0080] 次に、光軸方向の変位について説明する。微粒子が z方向に移動すると、微粒子 の移動量 dと、微粒子からの散乱光強度 Iとの関係は、微粒子の位置変位が小さけ れば近似的に 2次関数で示される。そして、散乱光強度 Iと位置変位 dとの関係を 2 次関数で近似すると、
Figure imgf000016_0001
. Further, the force acting on the fine particles can be obtained. Next, the displacement in the optical axis direction will be described. When a particle moves in the z direction, the relationship between the amount of movement d of the particle and the intensity of scattered light I from the particle is approximately represented by a quadratic function if the position displacement of the particle is small. Then, when the relationship between the scattered light intensity I and the position displacement d is approximated by a quadratic function,
Figure imgf000016_0001
と表され、 I力 dを求めることができる。  And I force d can be obtained.
[0081] この式から  [0081] From this equation
d =(lp2-qp2)1/2 = p(l -q)1/2 d = (lp 2 -qp 2 ) 1/2 = p (l -q) 1/2
と表される。  It is expressed.
[0082] したがって、  [0082] Therefore,
〈d〉2 = p2〈(I q)1/22となり、 <D> 2 = p 2 < (I q) 1/2> 2 , and the
k =KT/(p2<(l -q)1/2>2) k = KT / (p 2 <(l -q) 1/2 > 2 )
として、 Z方向のパネ定数 kが与えられる。  Is given as a panel constant k in the Z direction.
[0083] よって、  [0083] Therefore,
F ={KT/(p2<(l -q)1/2>2)}p(l -q)1/2 F = {KT / (p 2 <(l -q) 1/2 > 2 )} p (l -q) 1/2
= {KT/(p<(l -q)1/2>2)}(l -q)1/2 = {KT / (p <(l -q) 1/2 > 2 )} (l -q) 1/2
z z  z z
U z ={KTZ(P〈(I z -q)1/2>2)}(l z -q)1/2p(l z U z = {KTZ (P <(I z -q) 1/2 > 2 )} (lz -q) 1/2 p (lz
= {KT/(<(l -q)1/2>2)}(l -q) = {KT / (<(l -q) 1/2 > 2 )} (l -q)
z z  z z
となる。  It becomes.
[0084] なお、係数 pと qは実験により決定しなければならない。係数 pと qを決定するには、 光ピンセットのレーザー光強度を変化させてパネ定数 kを計測することを繰り返し、 パネ定数が光強度に比例して変化することを利用して、その関係を満たすように P, q を最小二乗法で決定することができる。この場合、微粒子からの散乱光強度がレーザ 一光強度に比例するので、最小二乗法で解析するときに散乱光強度も考慮する必 要がある。  [0084] The coefficients p and q must be determined by experiments. To determine the coefficients p and q, repeat the measurement of the panel constant k by changing the laser light intensity of the optical tweezers, and take advantage of the fact that the panel constant changes in proportion to the light intensity. P and q can be determined by the least-squares method to satisfy. In this case, the intensity of the scattered light from the fine particles is proportional to the intensity of one light beam of the laser.
[0085] また、微粒子の z方向の移動に関しては、一般に、光ピンセットでは、スポットよりレ 一ザ一光の下流側で微粒子は安定に捕まえられる。微粒子からの散乱光強度 Iは 微粒子の中心が、スポット中の集光点と一致した場合に最大になるので、微粒子がス ポットよりも下流側にあるということは、 Iが最大値より幾分力 vj、さい値になっていること を意味する。この安定に捕まえられている状態力 微粒子が光源側に移動すると Iは 増加し、微粒子がレーザー光の下流側に移動すると Iは減少する。 [0085] Regarding the movement of the fine particles in the z direction, generally, with optical tweezers, the fine particles are stably caught on the downstream side of the laser beam from the spot. Since the intensity of scattered light I from the particle is maximum when the center of the particle coincides with the focal point in the spot, the particle Being downstream from the pot means that I is slightly higher than the maximum, vj. This stable state force I increases when the particles move toward the light source, and decreases when the particles move downstream of the laser beam.
[0086] また、顕微鏡システム 1で計測する微粒子の変位量は、微粒子の中心とスポット中 の集光点との距離に比べて小さいと仮定することができる。したがって、 I  [0086] Further, it can be assumed that the displacement amount of the fine particles measured by the microscope system 1 is smaller than the distance between the center of the fine particles and the focal point in the spot. Therefore, I
zが最大とな る付近で微粒子の移動方向が不定になることは、微粒子が細胞に与える力を計測す る上で特に問題にならな!/、。  Uncertainty in the direction of movement of the particles near the maximum z is not particularly a problem in measuring the force exerted on the cells by the particles! /.
[0087] なお、本実施形態の 4分割光検出器 15による微粒子位置の計測系では、光ピンセ ット用のレーザーとは別のレーザービーム (たとえばガイド光)を微粒子に照射して、 その散乱光を同様な方法で検出することによつても実現できる。  In the measurement system of the position of the fine particles by the four-divided photodetector 15 of the present embodiment, the fine particles are irradiated with a laser beam (for example, a guide light) different from the laser for optical tweezers to scatter the fine particles. It can also be realized by detecting light in a similar manner.
[0088] 具体的には、光ピンセット用の Nd:YAGレーザー(波長 1064nm)と同軸に He— Neレーザー(波長 632. 8nm)を微粒子に入射して、微粒子によって散乱された He Neレーザーの光を 4分割光検出器 15で検出することにより、微粒子の位置変位を 検出できることを確認した。  [0088] Specifically, a He—Ne laser (wavelength 632.8 nm) is incident on fine particles coaxially with an Nd: YAG laser (wavelength 1064 nm) for optical tweezers, and the light of the He Ne laser scattered by the fine particles. It was confirmed that the position displacement of the fine particles could be detected by detecting the particles with the four-segment photodetector 15.
[0089] このように、光ピンセット用のレーザーとは別のレーザーを用いて、微粒子の位置変 位を計測することにより、 4分割光検出器 15の感度調整が容易になる。光ピンセット 用のレーザーおよびそれ以外のレーザーのいずれを 4分割光検出器 15で検出する かは、観察する対象と観察方法に依存して決定すればょ ヽ。  As described above, by using a laser different from the laser for optical tweezers to measure the displacement of the fine particles, the sensitivity of the four-segment photodetector 15 can be easily adjusted. Whether the laser for optical tweezers or the other laser is detected by the quadrant photodetector 15 should be determined depending on the object to be observed and the observation method.
[0090] また微粒子からの散乱光を検出するデバイスとして、ポジション 'センシティブ'ディ テクター(PSD)を用いても同様に粒子の位置ずれを検出することができる。ポジショ ン ·センシティブ ·ディテクタ一は、ディテクタ一面上のスポット位置を X座標と y座標の それぞれの値を電圧として出力するデバイスである。このディテクターをレンズ 14 (図 1参照)の後段の 4分割光検出器 15の代わりに配置することにより、微粒子力もの散 乱光をディテクタ一面上に投影して粒子位置の検出を行うことができる。  [0090] Further, even if a position "sensitive" detector (PSD) is used as a device for detecting scattered light from the fine particles, the positional deviation of the particles can be similarly detected. The position sensitive detector is a device that outputs the spot position on the entire surface of the detector as a voltage with each value of the X coordinate and the y coordinate. By disposing this detector in place of the four-segment photodetector 15 after the lens 14 (see Fig. 1), it is possible to detect the position of the particles by projecting the scattered light of even fine particles onto the entire detector. .
[0091] 〔3.細胞への接触実験〕  [3. Contact Experiment with Cell]
本実施形態の顕微鏡システムを用いて細胞への接触実験を行ったので、その結果 を以下に説明する。なお、光ピンセット用のレーザーとして、波長 1064nmの Nd:Y AGレーザーを用いるとともに、微粒子として直径 1 μ mのものを用いた。そして、微粒 子を光ピンセットで捕まえるとともに、レンズ 10 (図 1参照)を徐々に光軸方向に移動 させること〖こより、微粒子を細胞へ接触させた。 A contact experiment with cells was performed using the microscope system of the present embodiment, and the results will be described below. In addition, an Nd: YAG laser having a wavelength of 1064 nm was used as a laser for optical tweezers, and fine particles having a diameter of 1 μm were used. And fine particles The particles were caught by optical tweezers, and the microparticles were brought into contact with the cells by gradually moving the lens 10 (see Fig. 1) in the optical axis direction.
[0092] すると、微粒子を細胞へ接触させたときに、微粒子力 散乱されるレーザー光のパ ターンが変化して、微粒子が位置ずれすることを確認できた。また細胞に対して接触 した状態で微粒子を横に移動させると、微粒子が横ずれすることで散乱光の中心が 横ずれすることを確認した。これらのパターン変化や散乱光の中心の横ずれを、 4分 割光検出器 15で検出した。  [0092] Then, it was confirmed that when the microparticles were brought into contact with the cells, the pattern of the laser light that was scattered by the microparticles was changed, and the microparticles were displaced. It was also confirmed that when the microparticles were moved sideways while in contact with the cells, the microparticles shifted laterally, causing the center of the scattered light to shift laterally. These pattern changes and lateral displacement of the center of the scattered light were detected by the four-divided photodetector 15.
[0093] そして、共焦点顕微鏡を用いることにより得られた細胞の断層像を図 5に示す。なお 、細胞はヒト血管内皮細胞でカバーガラス上に広がった状態で固着している。また、 Alexa488-ファロィジン(Molecular Probes Inc.製)を用いてこの細胞内のァクチン繊 維を染色し、共焦点顕微鏡で観察した。図 5に示すように、細胞内部にァクチン繊維 を観察することができる。また、光ピンセットで捕まえた粒子は、図 5の断層像内に観 察することはできない。  [0093] FIG. 5 shows a tomographic image of cells obtained by using a confocal microscope. The cells are human vascular endothelial cells and are fixed in a state of being spread on the cover glass. The actin fibers in the cells were stained using Alexa488-Faroidine (Molecular Probes Inc.) and observed with a confocal microscope. As shown in FIG. 5, actin fibers can be observed inside the cells. Particles caught by optical tweezers cannot be observed in the tomographic image in Fig. 5.
[0094] 〔4.化学物質による刺激付与実験〕  [4. Experiment on Stimulation with Chemical Substances]
また、細胞に対して化学物質による刺激を与えるために、微粒子表面に刺激物質と なる分子 (リガンド)を固定しておき、その分子と相互作用する受容体へ刺激を与える 方法について以下に説明する。なお、微粒子表面へリガンドを固定するには、たとえ ばクロスリンカ一分子を用いる方法や、リガンドへつけたピオチン分子を微粒子表面 に固定したストレプトアビジン分子に結合させる方法、 CyBr法ゃシランコート法等を 用!/、ることができる。  In addition, a method for immobilizing a molecule (ligand) as a stimulator on the surface of microparticles in order to stimulate a cell with a chemical substance and stimulating a receptor that interacts with the molecule is described below. . In order to immobilize the ligand on the surface of the microparticles, for example, a method using a crosslinker molecule, a method in which a biotin molecule attached to the ligand is bound to streptavidin molecules immobilized on the surface of the microparticles, a CyBr method, a silane coating method, or the like. You can use it!
[0095] 図 6に、これらの方法のそれぞれについて、微粒子と受容体との相互作用の様子を 示す。まず、クロスリンカ一分子を用いる方法では、図 6 (a)に示すように、微粒子 20 の表面にクロスリンカ一分子 40を固定し、さらにクロスリンカ一分子 40にリガンド分子 41を固定する。この状態で、リガンド分子 41を細胞膜の脂質二重膜 (測定対象物) 4 2に近づけると、その中に存在する受容体分子 (測定対象物) 43にリガンド分子 41を 結合できる。  FIG. 6 shows the state of interaction between the microparticles and the receptor in each of these methods. First, in the method using one crosslinker molecule, as shown in FIG. 6 (a), one crosslinker molecule 40 is fixed on the surface of the fine particles 20, and a ligand molecule 41 is further fixed on one crosslinker molecule 40. In this state, when the ligand molecule 41 is brought close to the lipid bilayer (measurement target) 42 of the cell membrane, the ligand molecule 41 can bind to the receptor molecule (measurement target) 43 existing therein.
[0096] なお、クロスリンカ一分子 40として、 DSP (ピアス社製、 Double- AgentTM  [0096] The crosslinker molecule 40 was used as DSP (Pierce, Double-AgentTM
Cross-linker Number: 22585)分子などを用いることができる。 DSP分子は、以下の 化学式に示すように、チオール基およびアミノ基に反応性のある末端を両端に持つ 分子である。上記構成により、 DSP分子は、微粒子 20の表面に固定したチオール基 と、リガンド分子 41に含まれるアミノ基とに反応して、リガンド分子 41を微粒子 20の表 面に固定することができる。 Cross-linker Number: 22585) A molecule or the like can be used. DSP molecules are: As shown in the chemical formula, it is a molecule having terminals at both ends that are reactive with a thiol group and an amino group. With the above configuration, the DSP molecule can react with the thiol group fixed on the surface of the fine particle 20 and the amino group contained in the ligand molecule 41 to fix the ligand molecule 41 on the surface of the fine particle 20.
[0097] [化 1] [0097] [Formula 1]
DSP分子の化学式 Chemical formula of DSP molecule
Figure imgf000019_0001
Figure imgf000019_0001
[0098] 次にピオチンによる固定法について説明する。図 6 (b)に示すように、微粒子 20の 表面にピオチン分子 44を固定しておき、そこにストレプトアビジン分子 45を結合させ る。ストレプトアビジン分子 45には結合サイトが 4つあるので、反対側の結合サイトにリ ガンド分子 41を固定する。 [0098] Next, a fixing method using biotin will be described. As shown in FIG. 6 (b), a biotin molecule 44 is immobilized on the surface of the microparticle 20, and a streptavidin molecule 45 is bound thereto. Since the streptavidin molecule 45 has four binding sites, the ligand molecule 41 is immobilized on the opposite binding site.
[0099] このように表面にリガンド分子 41を固定した微粒子 20を細胞表面に近づけて刺激 を与えると、微粒子 20の断面積力、それより小さい面積を有する範囲にのみ、リガン ド分子 41による刺激を与えられる。たとえば、直径が: L mの微粒子 20の表面にリガ ンド分子 41を固定して細胞表面に刺激を与えた場合、微粒子の接触により細胞表面 が 0. 1 μ m凹んだのであれば、そのときの接触面積は 2. 8 μ m2となる。 [0099] When the microparticles 20 having the ligand molecules 41 immobilized on the surface in this manner are brought close to the cell surface and stimulated, the stimulation by the ligand molecules 41 is performed only in the area having a smaller sectional area force than the microparticles 20. Is given. For example, if the cell surface is stimulated by immobilizing the ligand molecule 41 on the surface of a microparticle 20 having a diameter of: L m, if the cell surface is recessed by 0.1 μm due to contact of the microparticle, then Is 2.8 μm 2 .
[0100] 〔5.細胞手術ユニットへの応用〕  [5. Application to Cell Surgery Unit]
上述した構成の顕微鏡システム 1は、図 7に示すように、細胞手術ユニット (切断手 段) 50を付加することが可能である。この細胞手術ユニット 50は、チタンサファイアレ 一ザ一などのフェムト秒パルスレーザーを顕微鏡光学系内に入射し、そのレーザー を集光した状態で細胞に照射して、細胞膜や細胞内小器官を切断するものである。 以下、細胞手術ユニット 50の構成について説明する。なお、図 1に示した顕微鏡シス テム 1と同一の機能を有する部材については、図 7において同一の参照番号を付す ことにより、その詳細な説明を省略する。 [0101] 細胞手術ユニット 50は、レーザー光源 51と、ガルバノミラーユニット 52と、シャツタ 一 53と、レンズ 54と、ァクチユエ一ター 55とを備えている。 As shown in FIG. 7, the microscope system 1 having the above-described configuration can add a cell operation unit (cutting means) 50. This cell surgery unit 50 irradiates a cell with a femtosecond pulsed laser such as a titanium sapphire laser into the microscope optical system and focuses the laser to cut the cell membrane and organelles. Is what you do. Hereinafter, the configuration of the cell surgery unit 50 will be described. Members having the same functions as those of the microscope system 1 shown in FIG. 1 are denoted by the same reference numerals in FIG. 7, and detailed description thereof will be omitted. [0101] The cell operation unit 50 includes a laser light source 51, a galvanomirror unit 52, a shirt 53, a lens 54, and an actuator 55.
[0102] ガルバノミラーユニット 52は、レーザー光源 51から出射されたレーザー光のスポット を移動させるために用いられるものであり、 2つのガルバノミラー(図示せず)を直角に 糸且み合わせること〖こより構成される。さら〖こ、ガルバノミラーユニット 52は、レーザー光 源 51から出射されたレーザーをオン/オフするためのシャッター 53を備えている。  [0102] The galvanomirror unit 52 is used to move the spot of the laser light emitted from the laser light source 51, and is used to join two galvanomirrors (not shown) at a right angle. Be composed. Furthermore, the galvanomirror unit 52 includes a shutter 53 for turning on / off the laser emitted from the laser light source 51.
[0103] また、細胞切断用のレーザー光源 51から出射されたレーザー光は、ガルバノミラー ユニット 52で反射された後、レンズ 54で集光される。このレンズ 54には、ァクチユエ 一ター 55が設けられている。このァクチユエ一ター 55を動作させることにより、レンズ 54を移動させて、試料セル 19内におけるレーザースポットの高さを変更することがで きる。  [0103] The laser light emitted from the laser light source 51 for cell cutting is reflected by the galvanomirror unit 52 and then collected by the lens 54. The lens 54 is provided with an actuator 55. By operating the actuator 55, the lens 54 can be moved and the height of the laser spot in the sample cell 19 can be changed.
[0104] さらに、レンズ 54で集光されたレーザー光は、顕微鏡ユニット 4内においてレンズ 5 6でコリメートされた後、 2色性ミラー 57で反射されてからレンズ 31に入射する。このよ うにして、レーザー光源 51から出射されたレーザー光を、試料セル 19内の細胞へ集 光することができる。なお、細胞にて反射されたレーザー光源 51のレーザー光は、フ ィルター 58で吸収された後に共焦点ユニット 3に導かれる。  Further, the laser light condensed by the lens 54 is collimated by the lens 56 in the microscope unit 4 and then reflected by the dichroic mirror 57 before being incident on the lens 31. In this manner, the laser light emitted from the laser light source 51 can be focused on the cells in the sample cell 19. The laser light of the laser light source 51 reflected by the cells is guided to the confocal unit 3 after being absorbed by the filter 58.
[0105] 上記構成の細胞手術ユニット 50を用いて細胞膜を切断すると、次のような計測が実 現できる。まず、光ピンセットによりトラップされた微粒子 20を測定対象物 35としての 細胞に押し付ける力、または細胞に固定された微粒子 20を光ピンセットによりトラップ することで、細胞に横方向の力を付与する。  When the cell membrane is cut using the cell surgery unit 50 having the above configuration, the following measurement can be realized. First, a lateral force is applied to the cells by pressing the microparticles 20 trapped by the optical tweezers against the cells as the measurement object 35 or by trapping the microparticles 20 fixed to the cells by the optical tweezers.
[0106] 次に、細胞において力が付与されている場所の近傍の細胞膜を、細胞手術ュニッ ト 50を用いて切断するとともに、そのときの微粒子 20の移動を計測し、細胞の形態変 化を共焦点顕微鏡で観察する。これにより、細胞膜の物理的な強度や、細胞内部の 骨格などの細胞構造を知ることができる。  [0106] Next, the cell membrane near the place where the force is applied to the cell is cut using the cell surgery unit 50, and the movement of the fine particles 20 at that time is measured, and the morphological change of the cell is measured. Observe with a confocal microscope. As a result, the physical strength of the cell membrane and the cell structure such as the skeleton inside the cell can be known.
[0107] なお、細胞手術ユニット 50のレーザーとしては、チタンサファイアレーザー(波長 76 0〜900nmで可変、パルス幅 80fs、最大出力 800mW)を用いることが可能である。 本発明者らは、波長 800nmでレーザー光を入射したときに細胞膜を切断できること を確認した。また、本発明者らは、このときに細胞膜表面に固着した微粒子 20に対し て、光ピンセットユニット 2を用いて細胞膜の横方向に力を掛けておくと、細胞膜の切 断時に微粒子 20が変位することを確認した。 [0107] As the laser of the cell surgery unit 50, a titanium sapphire laser (tunable at a wavelength of 760 to 900 nm, pulse width of 80 fs, and maximum output of 800 mW) can be used. The present inventors have confirmed that a cell membrane can be cut when laser light is incident at a wavelength of 800 nm. In addition, the present inventors considered that the fine particles 20 fixed to the cell membrane surface at this time Then, it was confirmed that when a force was applied in the lateral direction of the cell membrane using the optical tweezer unit 2, the microparticles 20 were displaced when the cell membrane was cut.
[0108] [6.光ピンセットの他の配置例〕  [6. Other Examples of Arrangement of Optical Tweezers]
また、本実施形態の顕微鏡システム 1においては、図 8に示すように、光ピンセット ユニット 2 (図 1参照)に代えて、試料セル 19の下側、すなわち試料セル 19に対して 共焦点顕微鏡が配置されている側と同じ側に、別の光ピンセットユニット (以下、単に 下側光ピンセットユニット 60と記載する)を設けることが可能である。以下、下側光ピ ンセットユニット (保持手段) 60の構成について説明する。なお、図 1および図 7に示 した顕微鏡システム 1と同一の機能を有する部材については、図 8において同一の参 照番号を付すことにより、その詳細な説明を省略する。  Further, in the microscope system 1 of the present embodiment, as shown in FIG. 8, a confocal microscope for the lower side of the sample cell 19, that is, the sample cell 19, is used instead of the optical tweezer unit 2 (see FIG. 1). It is possible to provide another optical tweezer unit (hereinafter simply referred to as lower optical tweezer unit 60) on the same side as the side on which it is arranged. Hereinafter, the configuration of the lower optical tweezer unit (holding means) 60 will be described. Note that members having the same functions as those of the microscope system 1 shown in FIGS. 1 and 7 are denoted by the same reference numerals in FIG. 8, and detailed description thereof will be omitted.
[0109] 下側光ピンセットユニット 60は、図 8に示すように、レーザー光源 61と、ミラー 62と、 ガルバノミラーユニット 63と、レンズ (移動手段、スポット位置変更手段) 64と、ァクチ ユエ一ター(移動手段、スポット位置変更手段) 65と、ビームスプリツター 66と、レンズ 67と、 4分割光検出器 15とを備えている。  As shown in FIG. 8, the lower optical tweezer unit 60 includes a laser light source 61, a mirror 62, a galvano mirror unit 63, a lens (moving means, spot position changing means) 64, and an actuator. (Moving means, spot position changing means) 65, a beam splitter 66, a lens 67, and a four-divided photodetector 15.
[0110] レーザー光源 61から出射された光は、ビームスプリツター 66を通過した後、ガルバ ノミラーユニット 63にて反射されてレンズ 64によりー且集光される。このようにレンズ 6 4により集光されたレーザー光は、顕微鏡ユニット 4内のレンズ 68でコリメートされ、 2 枚の 2色性ミラー 57 · 69で反射された後にレンズ 31に入射される。  [0110] The light emitted from the laser light source 61 passes through the beam splitter 66, is reflected by the galvano mirror unit 63, and is condensed by the lens 64. The laser light condensed by the lens 64 in this way is collimated by the lens 68 in the microscope unit 4 and reflected by the two dichroic mirrors 57 and 69 before being incident on the lens 31.
[0111] このようにしてレンズ 31に入射されたレーザー光源 61のレーザー光は、微粒子 20 により散乱される。そして、その散乱光が、レンズ 31により集められた後に、 2色性ミラ 一 57 · 69で反射されてから、 2枚のレンズ 64· 68を通過する。さらに、 2枚のレンズ 64 • 68を通過した光は、ガルバノミラーユニット 63およびビームスプリツター 66で反射さ れた後に、レンズ 67で集光される。このようにレンズ 67で集光された光を、 4分割光 検出器 15により検出する。  The laser light of the laser light source 61 incident on the lens 31 in this manner is scattered by the fine particles 20. Then, after the scattered light is collected by the lens 31, it is reflected by the dichroic mirrors 57 and 69, and then passes through the two lenses 64 and 68. Further, the light that has passed through the two lenses 64 and 68 is reflected by the galvanomirror unit 63 and the beam splitter 66 and then collected by the lens 67. The light condensed by the lens 67 as described above is detected by the four-divided photodetector 15.
[0112] また、下側光ピンセットユニット 60は、レンズ 64とレンズ 68との距離を変更するため のァクチユエ一ター 65を備えている。このァクチユエ一ター 65は、レンズ 64に設けら れるものであり、ァクチユエ一ター 65を動作させるとレンズ 64が移動する。このように してレンズ 64とレンズ 68との距離を変更すると、レンズ 31で集光したレーザーのスポ ットの高さを光軸方向に移動させることができ、光ピンセットによりトラップされている微 粒子 20の高さを変えることができる。 The lower optical tweezer unit 60 includes an actuator 65 for changing a distance between the lens 64 and the lens 68. The actuator 65 is provided on the lens 64. When the actuator 65 is operated, the lens 64 moves. When the distance between the lens 64 and the lens 68 is changed in this way, the laser The height of the microparticle 20 can be moved in the optical axis direction, and the height of the fine particles 20 trapped by the optical tweezers can be changed.
[0113] 上記した微粒子 20の高さを変更するための機構を利用すると、測定対象物 35と微 粒子 20との位置関係を変えずに、共焦点顕微鏡で測定対象物の 3次元断層像を得 ることがでさる。 [0113] By using the mechanism for changing the height of the fine particles 20 described above, a three-dimensional tomographic image of the measurement object can be obtained with a confocal microscope without changing the positional relationship between the measurement object 35 and the fine particles 20. You can get it.
[0114] つまり、共焦点顕微鏡を用いて、測定対象物の種々の高さにおける断層像を撮影 する場合には、レンズ 31を光軸方向に移動させることになる。このレンズ 31の移動に 同調させて後述するようにァクチユエ一ター 65を動作させれば、レンズ 31の移動に 同調させて、レーザー光源 61から出射されるレーザーのスポット高さを移動させるこ とができる。これにより、測定対象物 35と微粒子 20との位置関係を一定に保つことが 可能となる。  [0114] That is, when tomographic images at various heights of the measurement object are captured using the confocal microscope, the lens 31 is moved in the optical axis direction. By operating the actuator 65 in synchronization with the movement of the lens 31 as described later, the height of the laser spot emitted from the laser light source 61 can be moved in synchronization with the movement of the lens 31. it can. This makes it possible to keep the positional relationship between the measurement object 35 and the fine particles 20 constant.
[0115] レンズ 31の移動に同調して、レンズ 64とレンズ 68との距離を変える方法について 説明する。先ず、レンズ 64とレンズ 68との距離を dだけ変更した場合に、微粒子 20が 光軸方向に移動する距離を gとすると、 g= Adの関係が成り立つ。なお、 Aは、レンズ 68とレンズ 31とで構成される光学系の縦倍率である。  [0115] A method of changing the distance between the lens 64 and the lens 68 in synchronization with the movement of the lens 31 will be described. First, when the distance between the lens 64 and the lens 68 is changed by d, and the distance that the fine particles 20 move in the optical axis direction is g, the relationship g = Ad holds. A is the longitudinal magnification of the optical system composed of the lens 68 and the lens 31.
[0116] 一方、レンズ 31が光軸方向に距離 Pだけ移動した場合に、試料セル 19内で微粒 子 20が光軸方向に移動する距離を hとし、試料セル 19内の測定対象物の屈折率を nとし、レンズ 31と測定対象物との間のインデックス 'マッチング液 (マッチングオイル か水か空気)の屈折率を nとすると、 h=P (n Zn )として表される。  On the other hand, when the lens 31 moves by the distance P in the optical axis direction, the distance by which the fine particles 20 move in the optical axis direction in the sample cell 19 is h, and the refraction of the measurement object in the sample cell 19 is h. Assuming that the index is n and the index between the lens 31 and the object to be measured is n, the refractive index of the matching liquid (matching oil, water or air) is represented as h = P (n Zn).
0 0 1  0 0 1
[0117] 上記式における gおよび hは、微粒子 20をトラップするための光ピンセットのレーザ 一のスポット位置として共通するものである。よって、測定対象物 35と微粒子 20との 位置関係を変えないためには、 Ad=P (n Zn )の関係が満たされるように、距離 dを  [0117] g and h in the above equation are common as the spot position of one laser of the optical tweezers for trapping the fine particles 20. Therefore, in order not to change the positional relationship between the measurement target 35 and the fine particles 20, the distance d is set so that the relationship of Ad = P (n Zn) is satisfied.
0 1  0 1
変化させればよい。  You only need to change it.
[0118] また、本実施形態でレンズ 31の移動に同調して、下側光ピンセットユニット 60のス ポット高さを移動させるには、レンズ 31に入射する光の波面を湾曲させればよい。し たがって、反射面を微小に湾曲させて反射光の波面を湾曲させるデフォーマブルミ ラーや、回折光の位相を局所的に変化させることができる位相シフトデバイスを用い ても、測定対象物 35と微粒子 20との位置関係を変えずに、共焦点顕微鏡で測定対 象物の 3次元断層像を得ることができる。 In order to move the spot height of the lower optical tweezers unit 60 in synchronization with the movement of the lens 31 in the present embodiment, the wavefront of the light incident on the lens 31 may be curved. Therefore, even if a deformable mirror that bends the reflecting surface slightly to bend the wavefront of the reflected light or a phase shift device that can locally change the phase of the diffracted light is used, the measurement target 35 is not affected. Measured with a confocal microscope without changing the positional relationship with the fine particles 20 3D tomographic images of elephants can be obtained.
[0119] また、図 8で示す構成の顕微鏡システム 1で用いる 2色性ミラー 57· 69およびフィル ター 58の特性について述べる。 2色性ミラー 69は、下側光ピンセットユニット 60に設 けられたレーザー光源 61の光を反射する一方で、細胞手術ユニット 50に設けられた レーザー光源 51の光を透過するものである。  The characteristics of the dichroic mirrors 57 and 69 and the filter 58 used in the microscope system 1 having the configuration shown in FIG. 8 will be described. The dichroic mirror 69 reflects the light of the laser light source 61 provided in the lower optical tweezers unit 60, while transmitting the light of the laser light source 51 provided in the cell operation unit 50.
[0120] また、 2色性ミラー 57は、レーザー光源 51およびレーザー光源 61から出射されるレ 一ザ一を反射して、かつ共焦点顕微鏡のレーザー光源 34から発せられるレーザーと 、試料力 発せられる蛍光とを透過するものである。  [0120] The dichroic mirror 57 reflects the laser emitted from the laser light source 51 and the laser light source 61, and emits the sample power with the laser emitted from the laser light source 34 of the confocal microscope. It transmits fluorescent light.
[0121] 具体的には、下側光ピンセットユニット 60のレーザー光源 61として、波長 1064nm の Nd:YAGレーザー光源、細胞手術ユニット 50のレーザー光源 51として波長 760 〜900nmのチタンサファイアレーザー光源、共焦点顕微鏡のレーザー光源 34として 波長 488nmのアルゴンレーザー光源を用い、そのアルゴンレーザーにより励起され る蛍光の波長域を 500〜650nmとした場合、それぞれの 2色性ミラー 57· 69の波長 特性を以下のように設定するとよ 、。  [0121] Specifically, the laser light source 61 of the lower optical tweezer unit 60 is a Nd: YAG laser light source having a wavelength of 1064 nm, the laser light source 51 of the cell surgery unit 50 is a titanium sapphire laser light source having a wavelength of 760 to 900 nm, and confocal. When an argon laser light source with a wavelength of 488 nm is used as the laser light source 34 of the microscope and the wavelength range of the fluorescence excited by the argon laser is 500 to 650 nm, the wavelength characteristics of the dichroic mirrors 57 and 69 are as follows. Set it to.
[0122] 先ず、 2色性ミラー 69は、 950nmより長い波長を反射し、 950nmよりも短い波長を 透過するミラーであればよい。また、 2色性ミラー 57の 2色性ミラーは、 700nmより長 い波長を反射し、 700nmよりも短い波長を透過するミラーであればよい。そして、フィ ルター 58は、 700nmより長い波長を吸収して、それより短い波長を透過するフィルタ 一であればよい。  First, the dichroic mirror 69 may be a mirror that reflects a wavelength longer than 950 nm and transmits a wavelength shorter than 950 nm. Further, the dichroic mirror of the dichroic mirror 57 may be a mirror that reflects a wavelength longer than 700 nm and transmits a wavelength shorter than 700 nm. The filter 58 may be a filter that absorbs a wavelength longer than 700 nm and transmits a shorter wavelength.
[0123] [7.共焦点顕微鏡の他の構成例〕  [7. Other Configuration Examples of Confocal Microscope]
また、上述の顕微鏡システム 1においては、ガノレバノミラー 23 · 24を用いるユニット を共焦点ユニット 3として用いる構成について説明したが(図 1参照)、共焦点ユニット 3の構成はこれに限定されるものではない。  In the microscope system 1 described above, the configuration using the units using the Ganolevano mirrors 23 and 24 as the confocal unit 3 has been described (see FIG. 1), but the configuration of the confocal unit 3 is not limited to this. .
[0124] たとえば、図 9に示すように、共焦点ユニット 3の代わりに、マルチピンホール共焦点 ユニット (観察手段、共焦点顕微鏡) 70を用いることができる。このマルチピンホール 共焦点ユニット 70は、たとえば横河電機株式会社から市販されているものを用いるこ とができる。以下、マルチピンホール共焦点ユニット 70の構成について説明する。な お、上述の顕微鏡システム 1と同一の機能を有する部材については、図 9において同 一の参照番号を付すことにより、その詳細な説明を省略する。 For example, as shown in FIG. 9, instead of the confocal unit 3, a multi-pinhole confocal unit (observation means, confocal microscope) 70 can be used. As the multi-pinhole confocal unit 70, for example, a unit commercially available from Yokogawa Electric Corporation can be used. Hereinafter, the configuration of the multi-pinhole confocal unit 70 will be described. Note that members having the same functions as those of the microscope system 1 described above are the same in FIG. The detailed description is omitted by giving the same reference numeral.
[0125] マルチピンホール共焦点ユニット 70は、図 9に示すように、レンズ 21 · 27と、マイクロ レンズディスク 71と、ピンホールディスク 72と、これらのディスク 71 · 72を回転させるた めのモーター(回転手段) 73と、 2色性ミラー 74と、モーター 73の回転速度を調整す るための調整手段(図示せず)とを備えている。  As shown in FIG. 9, the multi-pinhole confocal unit 70 includes lenses 21 and 27, a micro lens disk 71, a pinhole disk 72, and a motor for rotating these disks 71 and 72. (Rotating means) 73, a dichroic mirror 74, and adjusting means (not shown) for adjusting the rotation speed of the motor 73.
[0126] また、マイクロレンズディスク 71は、ピンホールディスク 72の表面に形成されたピン ホールのそれぞれに光を集光して照射するためのレンズ (第 3レンズ、図示せず)を、 複数備えているものである。また、ピンホールディスク 72は、その表面に多くのピンホ ール(図示せず)が形成されているものである。  [0126] The microlens disc 71 includes a plurality of lenses (third lens, not shown) for condensing and irradiating light to each of the pinholes formed on the surface of the pinhole disc 72. Is what it is. The pinhole disk 72 has a large number of pinholes (not shown) formed on the surface thereof.
[0127] 上記構成により、マルチピンホール共焦点ユニット 70は、試料セル 19から戻ってき てピンホールディスク 72を通過したレーザー光を、 2色性ミラー 74にて反射する。こ のように 2色性ミラー 74で反射されたレーザー光は、レンズ 27で集光されて CCDカメ ラ (観察手段) 75で検出される。  With the above configuration, the multi-pinhole confocal unit 70 reflects the laser beam returning from the sample cell 19 and passing through the pinhole disk 72 by the dichroic mirror 74. The laser light reflected by the dichroic mirror 74 is condensed by the lens 27 and detected by the CCD camera (observing means) 75.
[0128] このマルチピンホール共焦点ユニット 70を使った場合、ガルバノミラーによるスキヤ ユングなしに CCDカメラ 75を用いて測定対象物の断層像を得ることができる。また、 測定対象物における 1000点程度を同時に励起して発光を検出できるので、高速度 での画像取り込みに向!、て!/、る。  When the multi-pinhole confocal unit 70 is used, a tomographic image of the object to be measured can be obtained using the CCD camera 75 without scanning by a galvanomirror. In addition, approximately 1000 points in the object to be measured can be excited simultaneously to detect light emission, making it suitable for high-speed image capture!
[0129] また、マルチピンホール共焦点ユニット 70を用いた場合、測定対象物の断層像を 1 秒あたり 500枚以上取り込め、レンズ 31を画像の取り込みに同期して移動させると、 1秒あたり 30セット以上の速さで 3次元画像を取り込むことができる。したがって、測定 対象物の時系列で観察する場合に、より短い時間間隔で測定対象物の断層像を得 ることができ、測定結果の時間分解能を飛躍的に向上させることができる。  When the multi-pinhole confocal unit 70 is used, more than 500 tomographic images of the object to be measured can be captured per second, and when the lens 31 is moved in synchronization with the capturing of the image, 30 tons per second can be obtained. 3D images can be captured faster than the set. Therefore, when observing the measurement object in time series, a tomographic image of the measurement object can be obtained at shorter time intervals, and the time resolution of the measurement result can be significantly improved.
[0130] 〔8.光ピンセットの他の構成例〕  [8. Other Configuration Examples of Optical Tweezers]
また、上記の説明では、微粒子 20をトラップするための構成として、光ピンセットュ ニット 2 (図 1等参照)や下側光ピンセットュ ノト 60 (図 8参照)を採用する場合につ いて説明したが、以下に図 10を用いて説明するダブルビーム下側光ピンセットュ-ッ ト (保持手段) 80を採用することも可能である。  In the above description, the case where the optical tweezer unit 2 (see FIG. 1 and the like) and the lower optical tweezer unit 60 (see FIG. 8) are employed as the configuration for trapping the fine particles 20 has been described. It is also possible to employ a double beam lower optical tweezers cut (holding means) 80 described below with reference to FIG.
[0131] ダブルビーム下側光ピンセットユニット 80は、光ピンセット用のレーザーとして 2本の レーザーを入射して、 2つの粒子を同時に保持することができるものである。より具体 的には、ダブルビーム下側光ピンセットユニット 80は、図 10に示すように、レーザー 光源 81と、偏光ビームスプリツター 82a ' 82bと、ガノレノ ノミラーユニット 83a ' 83bと、 レンズ 84 (移動手段、スポット位置変更手段)と、ァクチユエ一ター (移動手段、スポッ ト位置変更手段) 85と、半波長板 86a,86b,89と、 4分割光検出器 (計測手段) 90a- 90bとを備えている。 [0131] The double beam lower optical tweezer unit 80 is a two-beam laser for optical tweezers. A laser can enter and hold two particles at the same time. More specifically, as shown in FIG. 10, the double beam lower optical tweezer unit 80 includes a laser light source 81, a polarizing beam splitter 82a '82b, a ganole mirror unit 83a' 83b, and a lens 84 (movable Means, spot position changing means), actuator (moving means, spot position changing means) 85, half-wave plates 86a, 86b, 89, and four-segment photodetector (measuring means) 90a-90b. ing.
[0132] 上記構成において、光ピンセット用のレーザー光源 81からのレーザーは、偏光ビ 一ムスプリッタ一 82aで 2つに分けられる。その一方のレーザーは、ガルバノミラーュ ニット 83aで反射され、他方のレーザーは、ガルバノミラーユニット 83bで反射される。 このようにガルバノミラーユニット 83a' 83bのそれぞれで反射されたレーザーは、偏 光ビームスプリッタ— 82bで再び重ね合わせられる。その後、重ね合わせられたレー ザ一は、レンズ 84およびレンズ 68を通過した後に試料セル 19に入射される。このよう に入射されたレーザーにより、微粒子 20を保持することができる。  In the above configuration, the laser from the laser light source 81 for optical tweezers is divided into two by the polarizing beam splitter-82a. One of the lasers is reflected by the galvanomirror unit 83a, and the other laser is reflected by the galvanomirror unit 83b. The laser beams reflected by the galvanomirror units 83a '83b are superimposed again by the polarizing beam splitter 82b. Thereafter, the superimposed laser beam passes through the lens 84 and the lens 68 and enters the sample cell 19. The fine particles 20 can be held by the laser beam thus incident.
[0133] また、ガルバノミラーユニット 83a ' 83bで反射されたレーザーは、それぞれ独立な 場所に集光されるので、それぞれのレーザーで保持される微粒子 20は、独立して xy 面内を移動させることができる。  [0133] Also, since the lasers reflected by the galvanometer mirror units 83a and 83b are condensed at independent locations, the fine particles 20 held by each laser must move independently in the xy plane. Can be.
[0134] また、それぞれの微粒子 20から戻ってくる散乱光は、図 9の構成と同様に、ダブル ビーム下側光ピンセットユニット 80へ戻ってくる。このように戻ってきた散乱光のうち、 ビームスプリツター 88aで反射されたものはレンズ 89aで集光されて、 4分割光検出器 90aで検出される。  Further, the scattered light returning from each fine particle 20 returns to the double beam lower optical tweezer unit 80 as in the configuration of FIG. Of the scattered light that has returned in this way, the light reflected by the beam splitter 88a is condensed by a lens 89a and detected by a quadrant photodetector 90a.
[0135] 一方、ダブルビーム下側光ピンセットユニット 80へ戻ってきた散乱光のうち、ビーム スプリツター 88bで反射されたものは、レンズ 89bで集光された後、 4分割光検出器 9 Obで検出される。  [0135] On the other hand, of the scattered light returning to the double beam lower optical tweezer unit 80, the light reflected by the beam splitter 88b is condensed by the lens 89b, and then detected by the quadrant photodetector 9 Ob. Is done.
[0136] また、偏光ビームスプリツター 82a ' 82bを用いるのは、半波長板 87の回転角で 2つ のパスを通過するビームの強度比を制御でき、また反射光の偏光でそれぞれの粒子 力 の反射光を分離できるからである。  [0136] Further, the use of the polarization beam splitters 82a and 82b can control the intensity ratio of the beams passing through the two paths at the rotation angle of the half-wave plate 87, and can also control the particle power by the polarization of the reflected light. This is because the reflected light can be separated.
[0137] また、半波長板 86a ' 86bは、偏光面を回転させるためのものであり、偏光ビームス プリツター 82aで反射した光力 偏光ビームスプリツター 82bを透過するように偏光面 を調整するためのものである。 [0137] The half-wave plates 86a and 86b are used to rotate the polarization plane, and the optical power reflected by the polarization beam splitter 82a is transmitted through the polarization beam splitter 82b. Is to adjust.
[0138] なお、マリユースの定理によって、偏光面の回転角 Θと偏光ビームスプリツター 82b を通過した後のビーム強度 Γについては、次の関係が成り立つ。  [0138] According to the Mariuse's theorem, the following relationship holds between the rotation angle の of the polarization plane and the beam intensity 通過 after passing through the polarization beam splitter 82b.
[0139] I' =I (cos2 θ + D /2  [0139] I '= I (cos2 θ + D / 2
ο  ο
[0140] ここで、 I は偏光ビームスプリツター 82bの手前での光強度である。また、回転角 Θ o  [0140] Here, I is the light intensity before the polarizing beam splitter 82b. Also, the rotation angle Θ o
は、透過率が最大になる角を 0° に設定して図った値である。  Is a value obtained by setting the angle at which the transmittance becomes maximum to 0 °.
[0141] また、直線偏光状態で粒子に光を入射した場合、粒子力 の反射光は大部分が元 の偏光状態を保ったものとなっている。この性質を利用すると、偏光方向によって狙 つた散乱光を選別して検出することができる。  [0141] Further, when light is incident on particles in a linearly polarized state, most of the reflected light of the particle force retains the original polarization state. By utilizing this property, it is possible to selectively detect scattered light according to the polarization direction.
[0142] また、レンズ 84とレンズ 64との距離は、上述したレンズ 64とレンズ 68との距離と同 様に、レンズ 31の移動に同調して変更することが可能である、これにより、測定対象 物 35と微粒子との位置関係を一定に保つことができる。  Further, the distance between the lens 84 and the lens 64 can be changed in synchronization with the movement of the lens 31 in the same manner as the distance between the lens 64 and the lens 68 described above. The positional relationship between the object 35 and the fine particles can be kept constant.
[0143] 上記構成のダブルビーム下側光ピンセットユニット 80によれば、図 11に示すように 、 DNA91の両端にそれぞれ付着された微粒子 20aと微粒子 20bとを、光ピンセット ユニットからの 2つのレーザーにより別個にトラップすることができる。これにより、 DN A91を伸張させておくとともに、 DNA91にタンパク質 (測定対象物) 92- 93 - 94を付 着させ、 DNA91の変化を計測することが可能である。なお、 DNA91を伸張させると 、微粒子 20aおよび微粒子 20bのそれぞれには、図 11中矢印 Aおよび Bで示す方向 に力が作用する。  According to the double beam lower optical tweezer unit 80 having the above configuration, as shown in FIG. 11, the fine particles 20a and the fine particles 20b attached to both ends of the DNA 91 are separated by the two lasers from the optical tweezer unit. Can be trapped separately. As a result, it is possible to extend the DNA 91 and attach the protein (measurement target) 92-93-94 to the DNA 91 to measure the change in the DNA 91. Note that, when the DNA 91 is expanded, a force acts on each of the fine particles 20a and the fine particles 20b in the directions indicated by arrows A and B in FIG.
[0144] タンパク質 92は、 DNA91を湾曲させる働きのある分子で、このような分子が付着 することで DNA91は長さが変化する。その長さの変化を、それぞれの微粒子 20a' 2 Obからの散乱光の位置を検出することで計測することができる。  [0144] Protein 92 is a molecule that functions to bend DNA91, and the length of DNA91 changes when such a molecule is attached. The change in the length can be measured by detecting the position of the scattered light from each fine particle 20a'2 Ob.
[0145] またタンパク質 93は、タンパク質 92の近傍に付着して固定される分子であり、タン パク質 94は、 DNA91上に結合して DNA91上をスライドする分子である。このような タンパク質 92· 93 · 94のそれぞれの位置は、共焦点顕微鏡からのレーザーを入射し て、それぞれのタンパク質に付加した蛍光プローブ力もの蛍光発光を検出することで 計測することができる。これにより、タンパク質 92の結合状態と微粒子 20a ' 20bとの 位置変化との関係や、タンパク質 94のスライド状態を時系列で観察することなどが可 能になる。このようにして、図 10の顕微鏡システムによれば、 DNAの伸張と、 DNAタ ンパク質との相互作用を計測することができる。 [0145] The protein 93 is a molecule that is attached and fixed in the vicinity of the protein 92, and the protein 94 is a molecule that binds to and slides on the DNA91. The positions of such proteins 92, 93, and 94 can be measured by irradiating a laser from a confocal microscope and detecting the fluorescence emitted by the fluorescent probe attached to each protein. This makes it possible to observe the relationship between the binding state of the protein 92 and the positional change between the microparticles 20a and 20b, and to observe the slide state of the protein 94 in time series. It will work. In this way, according to the microscope system of FIG. 10, the extension of DNA and the interaction with DNA protein can be measured.
[0146] 以上のように、本実施形態の顕微鏡システム 1は、微粒子 20を保持する光ピンセッ トユニット 2と、微粒子 20を測定対象物の方へ移動させるレンズ 10およびァクチユエ 一ター 16と、微粒子 20から測定対象物 35に作用する力を計測する 4分割光検出器 15と、測定対象物 35を拡大して見ることが可能な共焦点ユニット 3および顕微鏡ュニ ット 4とを備えて!/、るものである。  As described above, the microscope system 1 of the present embodiment includes the optical tweezer unit 2 for holding the fine particles 20, the lens 10 and the actuator 16 for moving the fine particles 20 toward the measurement object, Equipped with a four-segment photodetector 15 that measures the force acting on the object 35 from 20, a confocal unit 3 that allows the object 35 to be magnified and a microscope unit 4! / What is it.
[0147] 上記構成によれば、光ピンセットユニット 2により保持された微粒子 20を、レンズ 10 およびァクチユエ一ター 16により移動させて測定対象物 35に押し当てることができる 。また、微粒子 20に化学物質を固定しておけば、化学物質による刺激を測定対象物 35に与えることもできる。したがって、光ピンセットユニット 2により測定対象物 35と接 触されるべき位置に微粒子 20を保持しておき、さらにレンズ 10およびァクチユエータ 一 16を用いて所定のタイミングで微粒子 20を測定対象物 35に移動させれば、測定 対象物 35の一部分だけに限定して、所望のタイミングで刺激を与えることができる。  According to the above configuration, the fine particles 20 held by the optical tweezer unit 2 can be moved by the lens 10 and the actuator 16 and pressed against the measurement target 35. If a chemical substance is immobilized on the fine particles 20, a stimulus by the chemical substance can be given to the measurement object 35. Therefore, the fine particles 20 are held at a position where the fine particles 20 are to be brought into contact with the measurement target 35 by the optical tweezer unit 2, and the fine particles 20 are moved to the measurement target 35 at a predetermined timing using the lens 10 and the actuator 116. By doing so, it is possible to apply a stimulus at a desired timing limited to only a part of the measurement object 35.
[0148] さらに、レンズ 10およびァクチユエ一ター 16により微粒子 20が測定対象物 35に押 し当てられることにより測定対象物 35に生じる力は、 4分割光検出器 15を用いること により計測することができる。これにより、測定対象物 35に与えられた力の大きさを評 価することができる。  [0148] Further, the force generated on the measurement object 35 by the fine particles 20 being pressed against the measurement object 35 by the lens 10 and the actuator 16 can be measured by using the four-divided photodetector 15. it can. Thereby, the magnitude of the force applied to the measurement target 35 can be evaluated.
[0149] また、微粒子 20が測定対象物 35に押し当てられることにより発生する、測定対象物 35の形状変化、測定対象物 35の内部構造の変化、または測定対象物 35を構成す る分子の空間的な分布は、共焦点ユニット 3および顕微鏡ユニット 4を用いて測定対 象物 35を拡大して見ることにより把握することができる。したがって、微粒子 20から測 定対象物 35に適切な刺激が与えられたのかを評価することができる。  [0149] Further, a change in the shape of the measurement object 35, a change in the internal structure of the measurement object 35, or a change in the molecules constituting the measurement object 35, which is generated when the fine particles 20 are pressed against the measurement object 35, is generated. The spatial distribution can be grasped by enlarging and viewing the object 35 to be measured using the confocal unit 3 and the microscope unit 4. Therefore, it is possible to evaluate whether an appropriate stimulus has been given to the measurement target 35 from the fine particles 20.
[0150] さらに、光ピンセットユニット 2により微粒子 20を保持することにより、光ピンセットュ ニット 2に微粒子 20を接触させることなく微粒子 20を保持することができる。よって、 レンズ 10およびァクチユエ一ター 16を用いて微粒子を移動させる際に、微粒子 20に 物理的な外力が与えられることを防止し、微粒子 20の形状が変形してしまうというよう な微粒子 20の物理的な変化を防止できる。 [0151] さらに、光ピンセットユニットとして、複数のレーザー光により複数の微粒子を保持す るダブルビーム下側光ピンセットユニット 80を用いてもよい。この構成によれば、ダブ ルビーム下側光ピンセットユニット 80により複数の微粒子を保持することができるので 、測定対象物に複数の微粒子を押し当てることが可能となる。 Further, by holding the microparticles 20 by the optical tweezer unit 2, the microparticles 20 can be held without bringing the microparticles 20 into contact with the optical tweezers unit 2. Therefore, when moving the fine particles using the lens 10 and the actuator 16, the physical external force is prevented from being applied to the fine particles 20, and the physical characteristics of the fine particles 20 such that the shape of the fine particles 20 is deformed are prevented. Change can be prevented. [0151] Further, as an optical tweezer unit, a double beam lower optical tweezer unit 80 holding a plurality of fine particles by a plurality of laser beams may be used. According to this configuration, a plurality of fine particles can be held by the double beam lower optical tweezer unit 80, so that a plurality of fine particles can be pressed against the measurement target.
[0152] たとえば、 DNAに結合されたタンパク質 92· 93 · 94を測定対象物とした場合に、そ の DNAの両端に微粒子 20a ' 20bを固定するとともに、その微粒子 20a ' 20bを光ピ ンセットにより固定すれば、そのタンパク質 92 · 93 · 94と DNAとの関係を観察するこ とができる。それゆえ、より多様な測定手法に顕微鏡システム 1を対応させることがで きる。  [0152] For example, when proteins 92, 93, and 94 bound to DNA are used as an object to be measured, the microparticles 20a 'and 20b are fixed to both ends of the DNA, and the microparticles 20a' and 20b are fixed by optical tweezers. If immobilized, the relationship between that protein 92, 93, 94 and DNA can be observed. Therefore, the microscope system 1 can be adapted to various measurement methods.
[0153] さらに、光ピンセットユニット 2は、共焦点ユニット 3および顕微鏡ユニット 4が上記測 定対象物 35を拡大するために用いるレンズ 31とはレンズ 10を用いて、レーザー光を 微粒子 20に入射してその微粒子を保持する。  [0153] Further, the optical tweezer unit 2 uses the lens 10 that is used for the confocal unit 3 and the microscope unit 4 to enlarge the measurement object 35, and the laser beam is incident on the microparticles 20. To retain the fine particles.
[0154] 上記構成によれば、光ピンセットユニット 2の光学系と、共焦点ユニット 3および顕微 鏡ユニット 4の光学系が独立して構成されるので、光ピンセットユニット 2による微粒子 20の保持と、共焦点ユニット 3および顕微鏡ユニット 4による測定対象物 35の拡大と を、独立して調整することが可能となる。これにより、顕微鏡システム 1の利便性を向 上させることができる。  According to the above configuration, since the optical system of the optical tweezer unit 2 and the optical systems of the confocal unit 3 and the microscope unit 4 are configured independently, the holding of the fine particles 20 by the optical tweezer unit 2, The enlargement of the measurement object 35 by the confocal unit 3 and the microscope unit 4 can be adjusted independently. Thereby, the convenience of the microscope system 1 can be improved.
[0155] さらに、 4分割光検出器 15は、光ピンセットユニット 2から発せられるレーザー光が 微粒子 20で反射した光の強度に基づき、微粒子 20の位置変位量を算出し、この位 置変位量と、光ピンセットユニット 2による微粒子 20に対する保持力が示すパネ定数 とに基づき、微粒子 20から測定対象物 35に作用する力を計測するものである。  Further, the four-split photodetector 15 calculates the position displacement amount of the fine particles 20 based on the intensity of the light reflected by the fine particles 20 from the laser light emitted from the optical tweezer unit 2, and calculates the position displacement amount The force acting on the measurement target 35 from the fine particles 20 is measured based on the panel constant indicated by the holding force on the fine particles 20 by the optical tweezer unit 2.
[0156] つまり、光ピンセットユニット 2により微粒子 20を保持する際、その微粒子 20に対す る保持力は、微粒子 20の位置変位量に比例する。したがって、この比例係数をパネ 係数として予め算出しておけば、微粒子 20の位置変位量とパネ係数とから、上記保 持力を算出することができる。  That is, when the fine particles 20 are held by the optical tweezers unit 2, the holding force on the fine particles 20 is proportional to the amount of displacement of the fine particles 20. Therefore, if the proportional coefficient is calculated in advance as a panel coefficient, the above-mentioned holding force can be calculated from the positional displacement amount of the fine particles 20 and the panel coefficient.
[0157] そこで上記構成では、光ピンセットユニット 2のレーザー光を用いて微粒子 20の位 置変位量を求める。つまり、光ピンセットユニット 2の光学系を流用して微粒子 20の位 置変位量を求めることができるので、位置変位量を算出するための構成を簡略ィ匕す ることができる。これにより、顕微鏡システム 1全体の構成も簡略ィ匕することができる。 Therefore, in the above configuration, the position displacement amount of the fine particles 20 is obtained using the laser light of the optical tweezer unit 2. That is, since the position displacement amount of the fine particles 20 can be obtained by using the optical system of the optical tweezer unit 2, the configuration for calculating the position displacement amount is simplified. Can. Thus, the configuration of the entire microscope system 1 can be simplified.
[0158] さらに、測定対象物 35を共焦点顕微鏡を用いて観察することにより、測定対象物 3 5を光学的に切断した断層像を得ることができる。よって、微粒子 20が押し当てられ ることにより測定対象物 35に生じる変化を、共焦点顕微鏡を用いて得られる測定対 象物 35の断層像に基づき、より詳細に観察することが可能となる。 Further, by observing the measurement object 35 using a confocal microscope, a tomographic image obtained by optically cutting the measurement object 35 can be obtained. Therefore, it is possible to observe in more detail the change that occurs in the measurement target 35 due to the pressing of the fine particles 20 based on the tomographic image of the measurement target 35 obtained using the confocal microscope.
[0159] さらに、共焦点顕微鏡としては、複数のピンホールが表面に形成されたピンホール ディスク 72と、その複数のピンホールのそれぞれに光^^光するレンズを複数有して V、るマイクロレンズディスク 71と、ピンホールディスク 72およびマイクロレンズディスク 7 1を回転させるモーター 73と、モーター 73によるこれら 2つのディスク 71 · 72の回転 速度を調整可能な調整手段とを備えているマルチピンホール共焦点ユニット 70を用 、ることが好まし!/、。 [0159] Further, a confocal microscope has a pinhole disk 72 having a plurality of pinholes formed on the surface thereof, and a plurality of lenses each of which emits light. A multi-pinhole having a lens disc 71, a pinhole disc 72 and a motor 73 for rotating the microlens disc 71, and an adjusting means capable of adjusting the rotation speed of the two discs 71 and 72 by the motor 73. It is preferable to use the focus unit 70!
[0160] 上記構成によれば、モーター 73を用いてピンホールディスク 72およびマイクロレン ズディスク 71を回転させることにより、レンズおよびピンホールを通過したレーザー光 を用いて測定対象物 35をスキャンすることが可能となる。  According to the above configuration, by rotating the pinhole disk 72 and the microlens disk 71 using the motor 73, the object 35 to be measured can be scanned using the laser light passing through the lens and the pinhole. Becomes possible.
[0161] そして、調整手段を用いてモーター 73によるディスクの回転速度を高速に設定す れば、測定対象物 35を高速でスキャンすることが可能となる。これにより、測定対象 物 35の断層像を短い時間間隔で得ることができる。よって、微粒子 20が押し当てら れることにより測定対象物 35に生じる変化をより詳細に観察することができる。  If the rotational speed of the disk by the motor 73 is set to a high speed by using the adjusting means, the object 35 to be measured can be scanned at a high speed. Thus, a tomographic image of the measurement target 35 can be obtained at short time intervals. Therefore, it is possible to observe changes occurring in the measurement object 35 due to the pressing of the fine particles 20 in more detail.
[0162] さらに、共焦点顕微鏡は、測定対象物 35の変化を時系列で見るもの、たとえば CC Dカメラ 75を用いるものであることが好まし!/、。  [0162] Furthermore, it is preferable that the confocal microscope be one that observes changes in the measurement object 35 in time series, for example, one that uses a CCD camera 75!
[0163] 上記構成によれば、微粒子 20が押し当てられることにより測定対象物 35が経時的 に変化するような場合、その測定対象物 35の変化を CCDカメラ 75により時系列で見 ることができる。たとえば測定対象物 35が細胞であり、微粒子 20がその細胞に対して 刺激を与えるリガンドが固定されたものである場合、リガンドに対する細胞の応答を時 系列で見ることができる。このように、上記構成によれば、微粒子 20が押し当てられる ことにより生じる測定対象物 35のさらに詳細な観察が可能となる。  According to the above configuration, when the measurement object 35 changes over time due to the pressing of the fine particles 20, the change of the measurement object 35 can be viewed in a time series by the CCD camera 75. it can. For example, when the measurement object 35 is a cell and the microparticle 20 is a fixed ligand that stimulates the cell, the response of the cell to the ligand can be viewed in chronological order. As described above, according to the above configuration, more detailed observation of the measurement target 35 caused by the pressing of the fine particles 20 becomes possible.
[0164] また、測定対象物 35を載せておく試料セル 19に対して、下側光ピンセットユニット 6 0、 4分割光検出器 15、およびレンズ 64およびァクチユエ一ター 65が同じ側に配置 されていてもよい。 [0164] Further, the lower optical tweezer unit 60, the quadrant photodetector 15, the lens 64, and the actuator 65 are arranged on the same side of the sample cell 19 on which the measurement object 35 is placed. It may be.
[0165] 上記構成によれば、試料セル 19に対して、下側光ピンセットユニット 60、 4分割光 検出器 15、およびレンズ 64およびァクチユエ一ター 65が配された側と反対側のスぺ ースを有効利用することができる。  According to the above-described configuration, the sample cell 19 has a lower optical tweezer unit 60, a quadrant photodetector 15, and a space opposite to the side on which the lens 64 and the actuator 65 are arranged. Resources can be used effectively.
[0166] さらに、共焦点ユニット 3および顕微鏡ユニット 4が測定対象物 35を拡大するために 用いるレンズ 31の移動量に基づき、下側光ピンセットユニット 60のレーザー光のスポ ット位置を変更するレンズ 64およびァクチユエ一ター 65を備えて!/、ることが好まし!/ヽ  Further, a lens that changes the spot position of the laser beam of the lower optical tweezers unit 60 based on the amount of movement of the lens 31 used by the confocal unit 3 and the microscope unit 4 to enlarge the object 35 to be measured. With 64 and Actuator 65! /, Preferably! / ヽ
[0167] つまり、下側光ピンセットユニット 60と、共焦点ユニット 3および顕微鏡ユニット 4とが 試料セル 19に対して同じ側に配置されている場合、下側光ピンセットユニット 60のレ 一ザ一光は、レンズ 31を介して微粒子に入射する。 That is, when the lower optical tweezer unit 60 and the confocal unit 3 and the microscope unit 4 are arranged on the same side with respect to the sample cell 19, the laser light of the lower optical tweezer unit 60 Enters the fine particles via the lens 31.
[0168] したがって、レンズ 31が移動すると、下側光ピンセットユニット 60のレーザー光のス ポット位置が変更され、そのスポット位置にぉ ヽて保持されて!ヽる微粒子 20も移動す る。このように微粒子 20が移動すると、微粒子 20を測定対象物 35へ適切に押し当て ることができず、測定対象物 35の応答を計測する上で好ましくない場合がある。  [0168] Therefore, when the lens 31 moves, the spot position of the laser beam of the lower optical tweezer unit 60 is changed, and the fine particles 20 held and held at the spot position also move. When the fine particles 20 move in this manner, the fine particles 20 cannot be appropriately pressed against the measurement target 35, which may be undesirable in measuring the response of the measurement target 35.
[0169] そこで上記構成では、レンズ 31の移動量に基づき、下側光ピンセットユニット 60の レーザー光のスポット位置を変更するレンズ 64およびァクチユエ一ター 65を備えて いる。すなわち、レンズ 31の移動量と、上記スポット位置とは、所定の関係を示す。こ の関係に基づきレンズ 64およびァクチユエ一ター 65を用いてそのスポット位置を変 更すれば、微粒子 20を一定の位置において保持し、測定対象物 35と微粒子 20との 位置関係を一定に維持することができる。これにより、微粒子 20を測定対象物 35に 安定して押し当てることができ、測定対象物 35の応答を適切に計測することができる  Therefore, the above configuration includes the lens 64 and the actuator 65 for changing the laser light spot position of the lower optical tweezers unit 60 based on the amount of movement of the lens 31. That is, the movement amount of the lens 31 and the spot position indicate a predetermined relationship. If the spot position is changed by using the lens 64 and the actuator 65 based on this relationship, the fine particles 20 are held at a fixed position, and the positional relationship between the measurement target 35 and the fine particles 20 is kept constant. be able to. Thereby, the fine particles 20 can be stably pressed against the measurement target 35, and the response of the measurement target 35 can be appropriately measured.
[0170] さらに、顕微鏡システム 1は、測定対象物 35を切断することが可能な細胞手術ュニ ット 50を備えて 、ることが好まし 、。 [0170] Further, the microscope system 1 preferably includes a cell surgery unit 50 capable of cutting the measurement object 35.
[0171] 上記構成によれば、細胞手術ユニット 50を用いて測定対象物 35を切断すること〖こ より、測定対象物 35の内部構造をより詳細に共焦点顕微鏡で観察することができる。 したがって、微粒子 20が押し当てられることにより測定対象物 35の内部に生じる変 化を、さらに仔細に観察することが可能となる。 According to the above configuration, by cutting the measurement target 35 using the cell surgery unit 50, the internal structure of the measurement target 35 can be observed in more detail with a confocal microscope. Therefore, the change generated inside the measurement object 35 due to the pressing of the fine particles 20 Can be observed more closely.
[0172] このように、顕微鏡システム 1によれば、微粒子の X, y,および z方向の位置変位、 測定対象物への刺激の時系列的な変化、および測定対象物に作用する力として、 5 次元の物理量を測定することができる。この点からすれば、本実施形態の顕微鏡シス テム 1は「5次元顕微鏡」と呼ぶことも可能である。  [0172] As described above, according to the microscope system 1, the positional displacement of the fine particles in the X, y, and z directions, the time-series change of the stimulus to the measurement target, and the force acting on the measurement target include: It can measure 5-dimensional physical quantities. From this point, the microscope system 1 of the present embodiment can be called a “five-dimensional microscope”.
[0173] なお、本発明は上述した実施形態に限定されるものではなぐ請求の範囲に示した 範囲で種々の変更が可能である。たとえば、保持手段としては、光ピンセット以外に、 マイクロマニピュレータを用いてもょ 、し、磁場を用いて微粒子を固定するデバイスを 用いてもよい。また、観察手段としては、共焦点顕微鏡以外に、立体顕微鏡写真法を 用いるデバイス、 CT顕微鏡、またはデコンボ一リューシヨン法を用いて画像のボケを 取り除き 3次元観察するデバイス (非特許文献 4 ;「限界を超える生物顕微鏡一見えな いものを見る 日本分光学会測定法シリーズ 21」、学会出版センター、 1991年 6月 3 0日発行参照)を用いてもよい。  [0173] The present invention is not limited to the above-described embodiment, and various changes can be made within the scope shown in the claims. For example, as the holding means, a micromanipulator may be used other than the optical tweezers, or a device for fixing the fine particles using a magnetic field may be used. As observation means, other than a confocal microscope, a device that uses stereoscopic microscopy, a CT microscope, or a device that removes blurred images using a deconvolution method and performs three-dimensional observation (Non-patent Document 4; Biological spectroscopy, seeing invisible objects beyond spectroscopy ”, spectroscopy Society of Japan, Measurement Methods Series 21”, published by the Society of Research Publishing, June 30, 1991).
[0174] 本発明の測定システムによれば、保持手段により保持された微粒子を、移動手段 により移動させて測定対象物に押し当てることができる。また、微粒子に化学物質を 固定しておけば、化学物質による刺激を測定対象物に与えることもできる。したがつ て、保持手段により測定対象物と接触されるべき位置に微粒子を保持しておき、さら に移動手段を用いて所定のタイミングで微粒子を測定対象物に移動させれば、測定 対象物の一部分だけに限定して、所望のタイミングで刺激を与えることができるという 効果を奏する。 According to the measurement system of the present invention, the fine particles held by the holding means can be moved by the moving means and pressed against the measurement object. In addition, if a chemical substance is immobilized on the fine particles, stimulation by the chemical substance can be applied to the object to be measured. Therefore, by holding the fine particles at a position where the fine particles are to be brought into contact with the measurement object by the holding means, and further moving the fine particles to the measurement object at a predetermined timing using the moving means, the measurement object can be obtained. Thus, it is possible to provide a stimulus at a desired timing by limiting the stimulus to only a part of the stimulus.
[0175] さらに、移動手段により微粒子が測定対象物に押し当てられることにより測定対象 物に生じる刺激の量は、計測手段を用いることにより計測することができる。これによ り、測定対象物に与えられた力の大きさを評価することができるという効果を奏する。  [0175] Further, the amount of stimulus generated in the measurement target object when the fine particles are pressed against the measurement target object by the moving means can be measured by using the measurement means. Accordingly, an effect is obtained that the magnitude of the force applied to the measurement target can be evaluated.
[0176] また、微粒子が測定対象物に押し当てられることにより発生する、測定対象物の形 状変化、測定対象物の内部構造の変化、または測定対象物を構成する分子の空間 的な分布は、観察手段を用いて測定対象物を拡大して見ることにより把握することが できる。したがって、微粒子力も測定対象物に適切な刺激が与えられたのかを評価 することができると!/、う効果を奏する。 [0177] 尚、発明を実施するための最良の形態の項においてなした具体的な実施態様また は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような 具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に記 載する特許請求の範囲内で、いろいろと変更して実施することができるものである。 産業上の利用の可能性 [0176] Further, the shape change of the measurement object, the change in the internal structure of the measurement object, or the spatial distribution of molecules constituting the measurement object caused by the pressing of the fine particles against the measurement object are as follows. It can be grasped by enlarging and observing the measurement object using observation means. Therefore, it is possible to evaluate whether an appropriate stimulus has been given to the object to be measured by the fine particle force! [0177] It should be noted that the specific embodiments or examples made in the section of the best mode for carrying out the invention merely clarify the technical contents of the present invention, and such specific Various modifications can be made within the spirit of the present invention, which should not be construed in a narrow sense by limiting only to the examples, and the claims described below. Industrial potential
[0178] 上記構成の顕微鏡システムの利用分野の例について、以下に説明する。まず、上 記構成の顕微鏡システムを用いて赤血球の硬さを計測することで、糖尿病などの疾 病の状態を評価することができる。 An example of a field of use of the microscope system having the above configuration will be described below. First, the state of a disease such as diabetes can be evaluated by measuring the hardness of red blood cells using the microscope system configured as described above.
[0179] 赤血球の硬さを計測するには、赤血球をガラス基板上に固定するとともに、赤血球 に力を印加するための微粒子をバッファー液中に分散しておく。そして、顕微鏡シス テム 1の光ピンセットを用いて微粒子を捕まえ、それを赤血球表面に押し付ける。この ときの微粒子の変位量を計測しながら、赤血球の変形を共焦点顕微鏡で 3次元計測 する。 [0179] To measure the hardness of red blood cells, the red blood cells are fixed on a glass substrate, and fine particles for applying a force to the red blood cells are dispersed in a buffer solution. Then, the microparticles are captured using the optical tweezers of the microscope system 1 and pressed against the red blood cell surface. At this time, the deformation of red blood cells is measured three-dimensionally with a confocal microscope while measuring the amount of displacement of the fine particles.
[0180] これにより、微粒子の変位量力も赤血球表面に印加した力を求めることができ、さら にそのときの赤血球の変形から、局所的な応力の分布を推定することができる。この 推定結果から赤血球の力学的特性を定量評価できる。  [0180] As a result, the force applied to the surface of the red blood cell can be obtained as the displacement amount force of the fine particles, and the local stress distribution can be estimated from the deformation of the red blood cell at that time. From this estimation result, the mechanical properties of red blood cells can be quantitatively evaluated.
[0181] 同様に、顕微鏡システムを用いて刺激に対する細胞の応答を調べることで、病変に よる細胞の変化について調べることもできる。なお、細胞に与える刺激としては、化学 物質による刺激、細胞を押すといった物理的な刺激、局所的な温度変化による刺激 、などが挙げられる。  [0181] Similarly, by examining the response of cells to a stimulus using a microscope system, one can also examine changes in cells due to lesions. Examples of the stimulus given to the cell include a stimulus by a chemical substance, a physical stimulus such as pressing a cell, and a stimulus by a local temperature change.
[0182] 化学物質により細胞に刺激を与える場合、粒子の表面に化学物質を固定しておく 力 粒子の内部に化学物質を含ませておき、この粒子を光ピンセットで捕まえて試料 である細胞に対して接触させて刺激を与える。このときの刺激に対する応答は顕微 鏡光学系を通して観察する。  [0182] When stimulating a cell with a chemical substance, the chemical substance is immobilized on the surface of the particle. The chemical substance is contained inside the particle, and the particle is caught by optical tweezers and applied to the cell as a sample. The stimulus is given by contact with the skin. The response to the stimulus at this time is observed through a microscope optical system.
[0183] 物理的な刺激を与えることは、刺激を与えるための微粒子を光ピンセットで捕まえて おき、その微粒子を細胞に対して押し当てたり、横方向の力を加えたりすることで実 現可能である。また、局所的な温度変化による刺激を与えることは、特定の波長の光 を照射することによって温度上昇を起こす物質を内部に含ませた微粒子を光ピンセッ トで捕まえておき、その微粒子を細胞に接触させるとともに、その特定波長の光を微 粒子に照射することで実現可能である。 [0183] Physical stimulation can be achieved by capturing fine particles for applying a stimulus with optical tweezers, pressing the fine particles against cells, or applying a lateral force. It is. In addition, applying a stimulus due to a local temperature change can be achieved by irradiating light of a specific wavelength with fine particles containing a substance that causes a temperature rise. This can be achieved by contacting the microparticles with cells and irradiating the microparticles with light of a specific wavelength.
このようにして刺激に対する細胞の応答を調べた結果は、環境ホルモンに対する細 胞応答の検査、創薬分野での薬剤に対する細胞応答の調査や、薬理物質のスクリ 一二ング、医療診断目的で摘出した細胞の細胞診などに応用することが可能である  The results of examining the response of cells to stimuli in this way can be used to examine cellular responses to environmental hormones, to investigate cellular responses to drugs in the field of drug discovery, to screen for pharmacological substances, and to extract for medical diagnostic purposes. Can be applied to the cytology of isolated cells

Claims

請求の範囲 The scope of the claims
[1] 微粒子を保持する保持手段と、  [1] holding means for holding fine particles,
上記微粒子を測定対象物の方へ移動させる移動手段と、  Moving means for moving the fine particles toward the measurement object,
上記微粒子から上記測定対象物に作用する刺激の量を計測する計測手段と、 上記測定対象物を拡大して見ることが可能な観察手段とを備えていることを特徴と する測定システム。  A measurement system comprising: a measurement unit configured to measure an amount of a stimulus acting on the measurement target from the fine particles; and an observation unit configured to enlarge and view the measurement target.
[2] 上記保持手段は、光ピンセットであることを特徴とする請求の範囲 1に記載の測定 システム。  [2] The measurement system according to claim 1, wherein the holding means is an optical tweezer.
[3] 上記光ピンセットは、複数のレーザー光により複数の微粒子を保持するものである ことを特徴とする請求の範囲 2に記載の測定システム。  [3] The measurement system according to claim 2, wherein the optical tweezers hold a plurality of fine particles by a plurality of laser beams.
[4] 上記光ピンセットは、上記観察手段が上記測定対象物を拡大するために用いる第 1レンズとは別の第 2レンズを用いて、レーザー光を微粒子に入射してその微粒子を 保持するものであることを特徴とする請求の範囲 2または 3に記載の測定システム。 [4] The optical tweezers use a second lens different from the first lens used by the observation means to enlarge the object to be measured, and apply laser light to fine particles to hold the fine particles. The measurement system according to claim 2 or 3, wherein:
[5] 上記計測手段は、 [5] The measuring means is
光ピンセットユニットから発せられるレーザー光が上記微粒子で反射した光の強度 に基づき、上記微粒子の位置変位量を算出し、  Based on the intensity of the laser light emitted from the optical tweezer unit reflected by the fine particles, the amount of positional displacement of the fine particles is calculated,
この位置変位量と、上記光ピンセットによる上記微粒子に対する保持力が示すパネ 定数とに基づき、上記刺激の量としての力の大きさを計測するものであることを特徴と する請求の範囲 1ないし 4のいずれ力 1項に記載の測定システム。  5. The method according to claim 1, wherein the magnitude of the force as the amount of the stimulus is measured based on the positional displacement amount and a panel constant indicated by the holding force of the optical tweezers on the fine particles. The measuring system according to paragraph 1.
[6] 上記観察手段は、共焦点顕微鏡であることを特徴とする請求の範囲 1ないし 5のい ずれ力 1項に記載の測定システム。 [6] The measuring system according to any one of claims 1 to 5, wherein the observation means is a confocal microscope.
[7] 上記共焦点顕微鏡は、 [7] The confocal microscope is
複数のピンホールが表面に形成されたピンホールディスクと、  A pinhole disk having a plurality of pinholes formed on its surface,
その複数のピンホールのそれぞれに光^^光する第 3レンズを複数有しているマイ クロレンズディスクと、  A microlens disc having a plurality of third lenses that emit light in each of the plurality of pinholes,
上記ピンホールディスクおよび上記マイクロレンズディスクを回転させる回転手段と 上記回転手段によるディスクの回転速度を調整可能な調整手段とを備えていること を特徴とする請求の範囲 6に記載の測定システム。 Rotating means for rotating the pinhole disk and the microlens disk; and adjusting means capable of adjusting the rotational speed of the disk by the rotating means. 7. The measuring system according to claim 6, wherein:
[8] 上記観察手段は、上記測定対象物の変化を時系列で見るものであることを特徴と する請求の範囲 1ないし 7のいずれ力 1項に記載の測定システム。 [8] The measurement system according to any one of claims 1 to 7, wherein the observation means is for observing a change of the measurement object in a time series.
[9] 上記測定対象物を載せておく載置台に対して、上記保持手段、上記計測手段、お よび上記観察手段が同じ側に配置されていることを特徴とする請求の範囲 1に記載 の測定システム。 [9] The apparatus according to claim 1, wherein the holding means, the measuring means, and the observation means are arranged on the same side with respect to a mounting table on which the object to be measured is mounted. Measurement system.
[10] 上記保持手段は光ピンセットであり、 [10] The holding means is an optical tweezer,
上記観察手段が上記測定対象物を拡大するために用いる第 1レンズの移動量に基 づき、上記光ピンセットのレーザー光のスポット位置を変更するスポット位置変更手段 を備えていることを特徴とする請求の範囲 9に記載の測定システム。  The observing means includes a spot position changing means for changing a spot position of the laser beam of the optical tweezers based on a movement amount of a first lens used for enlarging the measurement object. Measurement system according to range 9.
[11] 上記測定対象物を切断することが可能な切断手段を備えていることを特徴とする請 求の範囲 1な!、し 10の!、ずれ力 1項に記載の測定システム。 [11] The measurement system according to claim 1, further comprising a cutting means capable of cutting the object to be measured.
[12] 上記切断手段は、パルスレーザー光を集光した状態で上記測定対象物に照射し て、測定対象物を切断するものであることを特徴とする請求の範囲 11に記載の測定 システム。 12. The measurement system according to claim 11, wherein the cutting means cuts the measurement object by irradiating the measurement object in a state where the pulse laser light is focused.
PCT/JP2005/009263 2004-05-24 2005-05-20 Measuring system WO2005114151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004153028A JP2005337730A (en) 2004-05-24 2004-05-24 Measurement system
JP2004-153028 2004-05-24

Publications (1)

Publication Number Publication Date
WO2005114151A1 true WO2005114151A1 (en) 2005-12-01

Family

ID=35428480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009263 WO2005114151A1 (en) 2004-05-24 2005-05-20 Measuring system

Country Status (2)

Country Link
JP (1) JP2005337730A (en)
WO (1) WO2005114151A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092107A1 (en) * 2007-01-26 2008-07-31 New York University Holographic microscope system and method for optical trapping and inspection of materials
US7847238B2 (en) 2006-11-07 2010-12-07 New York University Holographic microfabrication and characterization system for soft matter and biological systems
US8174742B2 (en) 2008-03-14 2012-05-08 New York University System for applying optical forces from phase gradients
EP3004848A1 (en) * 2013-06-03 2016-04-13 Stichting VU-VUmc Method and system for imaging a molecular strand
CN108020505A (en) * 2017-11-30 2018-05-11 哈尔滨工业大学 The burnt optical tweezer microscopic imaging device of zoom copolymerization and method
WO2020021154A1 (en) * 2018-07-27 2020-01-30 Universidad Autónoma de Madrid Method for detection of marked structures
CN112730334A (en) * 2020-12-23 2021-04-30 之江实验室 Nanoparticle identification device and method based on electric dipole rotation scattering light detection
WO2022090761A1 (en) * 2020-10-29 2022-05-05 Sorbonne Université Device for determining the position of trapped objects in optical tweezers
US11385157B2 (en) 2016-02-08 2022-07-12 New York University Holographic characterization of protein aggregates
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11892390B2 (en) 2009-01-16 2024-02-06 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay
US11977015B2 (en) 2014-11-12 2024-05-07 New York University Colloidal fingerprints for soft materials using total holographic characterization

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020385A (en) * 2006-07-14 2008-01-31 Tokyo Univ Of Agriculture & Technology Method for estimating temporal change of stress tensor of polymer, method for constructing three-dimensional structure of polymer, program, information storage medium, and system
WO2009011107A1 (en) 2007-07-17 2009-01-22 Nikon Corporation Light stimulus apparatus and observation apparatus
JP5221614B2 (en) * 2010-09-17 2013-06-26 独立行政法人科学技術振興機構 Three-dimensional confocal observation device and observation focal plane displacement / correction unit
CN102162908B (en) * 2011-05-13 2013-08-07 厦门大学 Novel holographic optical tweezers system based on Talbot effect
DE102012211735B4 (en) * 2012-07-05 2015-04-09 Universität Leipzig Apparatus and method for characterizing cells and their use
DE102014005880A1 (en) * 2014-04-17 2015-11-05 Carl Zeiss Ag Scanning microscope with simplified optics, in particular with variable pupil position
CN107861230B (en) * 2017-11-30 2020-04-28 哈尔滨工业大学 Confocal microscopic imaging device and method of zoom optical tweezers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164331A (en) * 1995-12-18 1997-06-24 Sigma Koki Kk Two-beam trapping method and device therefor
JPH11507514A (en) * 1995-06-05 1999-07-06 セック,リミテッド Chemical, biochemical and biological processing of thin films
JP2001147374A (en) * 1999-11-18 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for acquiring three-dimensional image
JP2001208982A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Fine object operating method
JP2003189852A (en) * 2001-12-26 2003-07-08 Olympus Optical Co Ltd Base sequence-determining apparatus and base sequence- determining method
JP2003270538A (en) * 2002-01-10 2003-09-25 Olympus Optical Co Ltd Microscope system
JP2004093721A (en) * 2002-08-30 2004-03-25 Yokogawa Electric Corp Confocal scanner microscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507514A (en) * 1995-06-05 1999-07-06 セック,リミテッド Chemical, biochemical and biological processing of thin films
JPH09164331A (en) * 1995-12-18 1997-06-24 Sigma Koki Kk Two-beam trapping method and device therefor
JP2001147374A (en) * 1999-11-18 2001-05-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for acquiring three-dimensional image
JP2001208982A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Fine object operating method
JP2003189852A (en) * 2001-12-26 2003-07-08 Olympus Optical Co Ltd Base sequence-determining apparatus and base sequence- determining method
JP2003270538A (en) * 2002-01-10 2003-09-25 Olympus Optical Co Ltd Microscope system
JP2004093721A (en) * 2002-08-30 2004-03-25 Yokogawa Electric Corp Confocal scanner microscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTA T. ET AL: "Laser Trap Ryushi ni yoru Hyomen Soshoku shita Glass Kiban no Hyomen Chikara Sensing.", vol. 28, 2002, pages 26 - 31, XP002994458 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847238B2 (en) 2006-11-07 2010-12-07 New York University Holographic microfabrication and characterization system for soft matter and biological systems
US8431884B2 (en) 2006-11-07 2013-04-30 New York University Holographic microfabrication and characterization system for soft matter and biological systems
EP2492921A1 (en) * 2007-01-26 2012-08-29 New York University Holographic microscopy of holographically trapped three-dimensional structures
WO2008092107A1 (en) * 2007-01-26 2008-07-31 New York University Holographic microscope system and method for optical trapping and inspection of materials
US8174742B2 (en) 2008-03-14 2012-05-08 New York University System for applying optical forces from phase gradients
US11892390B2 (en) 2009-01-16 2024-02-06 New York University Automated real-time particle characterization and three-dimensional velocimetry with holographic video microscopy
EP3004848A1 (en) * 2013-06-03 2016-04-13 Stichting VU-VUmc Method and system for imaging a molecular strand
EP3004848B1 (en) * 2013-06-03 2021-10-27 LUMICKS DSM Holding B.V. Method and system for imaging a molecular strand
EP3957983A1 (en) * 2013-06-03 2022-02-23 LUMICKS DSM Holding B.V. Method and system for imaging a molecular strand
US11977015B2 (en) 2014-11-12 2024-05-07 New York University Colloidal fingerprints for soft materials using total holographic characterization
US11747258B2 (en) 2016-02-08 2023-09-05 New York University Holographic characterization of protein aggregates
US11385157B2 (en) 2016-02-08 2022-07-12 New York University Holographic characterization of protein aggregates
CN108020505A (en) * 2017-11-30 2018-05-11 哈尔滨工业大学 The burnt optical tweezer microscopic imaging device of zoom copolymerization and method
WO2020021154A1 (en) * 2018-07-27 2020-01-30 Universidad Autónoma de Madrid Method for detection of marked structures
US11543338B2 (en) 2019-10-25 2023-01-03 New York University Holographic characterization of irregular particles
US11921023B2 (en) 2019-10-25 2024-03-05 New York University Holographic characterization of irregular particles
US11948302B2 (en) 2020-03-09 2024-04-02 New York University Automated holographic video microscopy assay
WO2022090761A1 (en) * 2020-10-29 2022-05-05 Sorbonne Université Device for determining the position of trapped objects in optical tweezers
CN112730334B (en) * 2020-12-23 2024-03-22 之江实验室 Nanoparticle identification device and method based on electric dipole rotation scattered light detection
CN112730334A (en) * 2020-12-23 2021-04-30 之江实验室 Nanoparticle identification device and method based on electric dipole rotation scattering light detection

Also Published As

Publication number Publication date
JP2005337730A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2005114151A1 (en) Measuring system
US9546952B2 (en) Distribution of refractive index measurement by synthetic aperture tomography
van den Broek et al. Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy
McCain et al. Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol− gel films
JP2008541096A (en) Apparatus, system, and method capable of performing spectral domain optical coherence reflectometry for sensitive detection of chemical and biological samples
NL2020862B1 (en) Probing mechanical properties of biological matter
CN109269980A (en) One kind being based on monochromatic light tweezer medium microsphere high-resolution optical detection method
Loerke et al. Super-resolution measurements with evanescent-wave fluorescence-excitation using variable beam incidence
US7982194B2 (en) Single nanoparticle tracking spectroscopic microscope
KR100924574B1 (en) Polariscopic phase microscopy
Ortiz-Orruño et al. Precise nanosizing with high dynamic range holography
JP6796379B2 (en) Laser microdissection and laser microdissection method
CN112041660A (en) System, apparatus and method for three-dimensional imaging of moving particles
Samolis et al. Time-Resolved Mid-Infrared Photothermal Microscopy for Imaging Water-Embedded Axon Bundles
JP2011191199A (en) Microscope system
US11920930B2 (en) Light-sheet photonic-force optical coherence elastography
Wachsmann-Hogiu et al. Laser applications in biology and biotechnology
CN113984771A (en) Depth learning dark field confocal microscopic measurement device and method based on vector polarized light
WO2019093895A1 (en) Label-free microscopy
JP2000356611A (en) Method and system for analyzing micro amount with thermal lens microscope
CN110132923B (en) Structured light illumination controllable tracing super-resolution microscopic imaging method
Trueb Enabling and understanding nanoparticle surface binding assays with interferometric imaging
Nylk Advanced light-sheet and structured illumination microscopy techniques for neuroscience and disease diagnosis
Schnauß et al. Contact-free mechanical manipulation of biological materials
JP6765192B2 (en) Laser microdissection and laser microdissection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase