WO2005092179A1 - Biological information measuring instrument - Google Patents

Biological information measuring instrument Download PDF

Info

Publication number
WO2005092179A1
WO2005092179A1 PCT/JP2005/002018 JP2005002018W WO2005092179A1 WO 2005092179 A1 WO2005092179 A1 WO 2005092179A1 JP 2005002018 W JP2005002018 W JP 2005002018W WO 2005092179 A1 WO2005092179 A1 WO 2005092179A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
biological information
unit
living body
cover glass
Prior art date
Application number
PCT/JP2005/002018
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Maegawa
Takashi Nakamura
Koichi Moriya
Shinichiro Miyahara
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Publication of WO2005092179A1 publication Critical patent/WO2005092179A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor

Definitions

  • the present invention relates to a biological information measuring device capable of measuring biological information such as a pulse while being worn on a wrist (arm).
  • the pulse meter (biological information measuring device) described in Patent Document 1 includes two electrodes on the skin contact side. When the two electrodes touch the skin, a minute current flows through the skin, and the voltage between the two electrodes decreases. Therefore, it is determined that the pulse sensor is in contact with the skin. Therefore, the presence or absence of contact with the skin can be detected based on the potential difference between the two electrodes.
  • a pulse measuring device (biological information measuring device) having a pulse measuring system using a light emitting diode (light emitting portion) and a light receiving element (light receiving portion) has also been proposed (for example, see Patent Document 2).
  • the pulse meter described in Patent Document 2 has a light receiving element for measuring light and darkness, and detects the presence or absence of a contact according to the output of the light receiving element.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-70757 (Paragraph No. 0021-0029, FIG. 2, etc.)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 60-246736
  • the biological information measuring device described in Patent Document 1 described above can accurately detect contact with a living body when the electrodes are large to some extent, but erroneous detection often occurs when the electrodes are small. For example, it is difficult to use with small terminals such as wristwatch type Problem.
  • the biological information measurement device described in Patent Document 2 simply determines the brightness from the output from the light receiving element and determines the presence / absence of contact, and thus may erroneously detect depending on the degree of external light. .
  • the present invention has been made in view of the above circumstances, and provides a biological information measuring device that can be miniaturized with a simple configuration and that does not erroneously detect even when external light enters.
  • the porpose is to do.
  • the present invention provides the following means in order to solve the above problems.
  • a biological information measurement device of the present invention includes a main body, and a biological sensor provided on the main body and configured to irradiate light to a living body and generate a biological information signal according to the amount of backscattered light from the living body.
  • a biometric information calculation unit provided on the main body and calculating biometric information based on the biometric information signal; and a force provided on the lower surface side of the main body, wherein the biometric sensor unit contacts the surface of the living body.
  • a light emitting unit for irradiating the living body with light, and the detecting unit is disposed on a lower surface of the main body to transmit and reflect the light emitted by the light emitting unit.
  • the light emitting unit also irradiates light toward the living body.
  • the irradiated light is received by the light receiving unit by reflection on the surface of the cover glass, propagation in the cover glass, backscattering in living organisms, and the like.
  • the determination unit provided in the detection unit determines whether the surface of the living body and the living body sensor unit are based on the light reception signal received by the light receiving unit when the light emitting unit is emitting light and when the light emitting unit is not emitting light. Make contact or not to judge.
  • the determining unit determines that the surface of the living body is in contact with the biological sensor unit, that is, determines that the main body is attached to the wrist (arm, etc.), and irradiates the living body with light toward the living body by the biological sensor unit.
  • a biological information signal corresponding to the amount of backscattered light from the object.
  • the biological information detection unit performs a predetermined operation on the biological information signal to calculate biological information such as a pulse. Also, even if external light enters the light receiving unit, the surface of the living body and the This eliminates the possibility of erroneous detection of the contact of the user.
  • the light receiving section receives the backscattered light of the biological force transmitted through the cover glass and generates a biological information signal according to the amount of backscattered light. I prefer to.
  • the light receiving unit performs both the contact between the surface of the living body and the biological sensor unit based on the received light and the generation of the biological information signal. A small number of points can be obtained, and furthermore, the overall size of the biological information measuring device can be reduced.
  • the biological information measuring device of the present invention may be configured such that the cover glass has a reflecting surface disposed between the light emitting unit and the light receiving unit, and reflecting a part of light propagating in the cover glass. It is preferable to provide
  • the biological information measurement device of the light irradiated by the light irradiation unit, light that has propagated inside the cover glass is reflected toward the living body surface side by the reflection surface. For this reason, when measuring the biological information, it is possible to block the light propagating in the cover glass that does not contain the biological information, so that it is possible to measure the biological information with high accuracy.
  • the biological information measuring device of the present invention preferably includes a bundle of optical fibers, one end of which is disposed in close proximity to the cover glass and the other end thereof is disposed in proximity to the light receiving surface of the light receiving section. .
  • the optical fiber since the optical fiber is provided, light that has passed through a surface portion such as a skin of a living body is reflected on the outer peripheral surface of the optical fiber. Light that has passed only through the surface such as the epidermis of a living body does not contain much biological information, so by blocking this light, it enters the optical fiber, propagates through the optical fiber, and is guided to the light receiving unit. Most of the light is light that has passed deep into the body below the dermis, that is, light that contains a lot of biological information.
  • the biological information measuring device may be arranged such that a surface of the cover glass facing the light receiving unit is provided.
  • a light-collecting unit that collects backscattered light from the living body is provided on a surface of the cover glass that faces the light receiving unit.
  • a biological information signal such as a pulse signal is generated, the area of the light receiving unit can be reduced, so that the overall size of the biological information measuring device can be reduced.
  • the presence or absence of a contact is detected based on the light received by the light receiving unit when the light emitting state of the light emitting unit is changed.
  • contact with a living body can be detected. Therefore, even when external light enters the light receiving unit, the contact with the living body can be accurately recognized, and the calculation of the biological information can be performed with high accuracy.
  • FIG. 1 is a front view (top view) showing an embodiment of a biological information measuring device according to the present invention.
  • FIG. 2 is a rear view (bottom view) of the biological information measuring device shown in FIG. 1.
  • FIG. 3 is a side view showing a state where the biological information measuring device shown in FIG. 1 is mounted on a wrist.
  • FIG. 4 is a side view showing a state in which the biological information measuring device shown in FIG. 1 is mounted on a wrist, viewed from a direction opposite to the direction shown in FIG. 3.
  • FIG. 5 is a sectional view of the biological information measuring device shown in FIG. 1.
  • FIG. 6 is a sectional view taken along the line DD of the biological information measuring device shown in FIG. 1.
  • FIG. 7 is a sectional view showing a biological sensor unit of the biological information measuring device shown in FIG. 1.
  • FIG. 8 is a flowchart showing contact detection performed in a data processing unit of the biological information measuring device shown in FIG. 5.
  • FIG. 9 is a cross-sectional view showing another modified example of the biological sensor unit of the biological information measuring device shown in FIG. 7.
  • FIG. 10 is a cross-sectional view showing another modified example of the biological sensor unit of the biological information measuring device shown in FIG. 7.
  • FIG. 11 is a cross-sectional view showing another modified example of the biological sensor unit of the biological information measuring device shown in FIG. 7. is there.
  • FIG. 12 is a plan view showing another modified example of the biological information measuring device shown in FIG. 1.
  • FIG. 13 is a cross-sectional view showing a positional relationship between an LED and a PD of the biological information measuring device shown in FIG.
  • FIG. 14 is a graph showing a voltage value output by a PD according to a contact state between a living body sensor unit and a living body in an example of the present invention.
  • B body surface (living body), 1, 50 ⁇ ⁇ ⁇ biological information measurement device, 2 ⁇ housing (body), 2a- lower surface of the body, 4 ⁇ LED (light emitting part), 5 ⁇ 'PD (Light receiving part), 7... Data processing part (biological information detecting part), 7a... Determining part, 8... Biological sensor part, 23 ⁇ Cover glass, 23a ⁇ Reflective surface, 40... Optical fin, 40a... One end of optical fiber, 40b... The other end of optical fiber, 41... Concave part (condensing part)
  • a biological information measuring device 1 of the present embodiment is a wristwatch type and calculates a pulse rate, which is biological information, in a state of being worn on a wrist (arm) A. It is.
  • the biological information measuring device 1 includes a housing (main body) 2 containing various electric and electronic components, and a housing 2 with a lower surface 2a of the housing 2 facing the living body surface B side.
  • LED Light Emitting Diode
  • PD Light emitting diode
  • a biometric sensor unit 6 having a sensor 5 and a pulse signal (biological information signal) provided in the housing 2 and corresponding to the amount of light received by the biosensor unit 6 are calculated, and the generated pulse signal is calculated.
  • a data processing unit (biological information calculation unit) 7 for calculating the number.
  • the biological sensor unit 6 also functions as a detection unit that detects whether or not the biological sensor unit 6 (the lower surface 2a side of the housing 2) is in contact with the biological surface B. That is, the living body sensor unit 6 detects whether or not the force is in contact with the living body surface B, and generates light from the living body to generate a pulse signal. It will have LED4 and PD5 which have the function of detecting.
  • the biological information measuring device 1 is disposed on the lower surface 2a side of the housing 2, transmits and reflects light emitted by the LED 4, and also transmits light scattered backward in the living body.
  • a cover glass 23 for transmitting light is provided.
  • the PD 5 receives the light propagating through the cover glass 23 and the backscattered light of the biological force transmitted through the cover glass 23.
  • the data processing unit 7 includes a determination unit 7a that determines whether or not the living body and the living body sensor unit 6 come into contact with each other based on a light reception signal received by the PD 5, and determines whether or not a force is applied.
  • the housing 2 is made of a metal material such as plastic or aluminum and has a predetermined thickness, for example, a substantially rectangular shape when viewed from above.
  • a substantially square glass plate 10 is fitted in the center of the upper surface 2b of the housing 2, and a display unit 11 for displaying the calculated pulse rate and other various information is provided inside the glass plate 10. Are arranged.
  • a main board 12 is provided in the housing 2, and the data processing section 7, the display section 11, and the chargeable section are provided on the main board 12.
  • a rechargeable battery 13, a memory 14 for recording a pulse rate, a sub-board 15, and various other electronic components are electrically connected by mounting or wiring.
  • the data processing unit 7 includes an IC component such as a CPU, amplifies the generated pulse signal by an amplifier or the like, and then performs a predetermined process such as a fast Fourier transform process (FFT process). It has a function of calculating the pulse rate by analyzing the processing result. Further, the data processing section 7 records the calculated pulse rate in the memory 14, and displays the calculated pulse rate on the display section 11 based on an input from each button 20 described later. Further, the data processing section 7 has a function of comprehensively controlling other components.
  • FFT process fast Fourier transform process
  • the display unit 11 is, for example, a liquid crystal display such as an LCD (Liquid Crystal Display), and has a time display function of displaying a time counted by a crystal oscillator (not shown), for example, in addition to the pulse rate described above. And a function for displaying various other information. For example, time, date, day of the week, remaining power of the rechargeable battery 13 and the like can be displayed.
  • LCD Liquid Crystal Display
  • buttons 20 for example, Three buttons 20 are provided on the upper surface 2b of the housing 2 and below the display unit 11 (below in FIG. 1), and one button 20 is provided on a side surface of the housing 2.
  • various operations can be performed. For example, operations such as starting and stopping pulse measurement, switching the display between pulse rate and time, and transmitting pulse rate data recorded in the memory 14 to an external device can be performed.
  • an external connection terminal (charging means) 21 is provided on a side surface of the housing 2 to supply the external power of a charger or the like to the rechargeable battery 13 by supplying electric power to charge the battery.
  • a cover or the like may be attached so as to cover the external connection terminal 21 to protect the external connection terminal 21. By doing so, the external connection terminal 21 can be protected from water droplets, dust, and the like, which is more preferable.
  • not only the external connection terminal 21 but also a transformer and the like for supplying power to the charger and the housing 2 may be provided to charge the rechargeable battery 13 in a non-contact state. .
  • the light receiving signal output from the PD 5 is sent to the data processing unit 7 via the flexible board 24, the sub board 15 and the main board 12. Further, the light propagating in the cover glass 23 and received by the PD 5 is sent to the determination unit 7a.
  • the determining unit 7a receives the light receiving signal output from the PD 5 as a voltage, and constantly compares the voltage value with a preset threshold voltage ⁇ [V]. If the output light receiving signal is equal to or lower than the threshold voltage ⁇ [V] while the LED 4 is in the OFF state, it is determined that the LED 4 and the PD 5 are not in contact with the living body surface ⁇ . On the other hand, if the light receiving signal output from the PD 5 is equal to or higher than the threshold voltage ⁇ [V], the LED 4 is turned on. If the light receiving signal output from the PD 5 is equal to or higher than the threshold voltage ⁇ [V], it is determined that the LED 4 and the PD 5 are not in contact with the surface of the living body.
  • the data processing unit 7 is set to control the operation of the LED 4 so as to emit the LED 4 light based on the detection result.
  • the fixing means 3 has a first band 30 and a second band 31 whose base end is attached to the housing 2 and which can be attached to the wrist A.
  • the first band 30 and the second band 31 are provided in the longitudinal direction of the housing 2 (vertical direction in FIG. 1) so as to face each other with the housing 2 interposed therebetween. Further, both bands 30 and 31 are formed of a stretchable elastic material.
  • the first band 30 has a buckle 30a and a tanda 30b attached to the tips.
  • a plurality of insertion holes 3la into which the tundas 30b are inserted are formed along the longitudinal direction of the second band 31.
  • the lengths of the first band 30 and the second band 31 can be adjusted according to the thickness of the wrist A of the user.
  • the power of the PD 5 is turned on by pressing the button 20 to switch to the pulse measurement mode (step S1).
  • the voltage of the light receiving signal of the light received by the PD 5 is detected while the LED 4 is in the OFF state (step S2).
  • the light received by the PD 5 is output as a voltage to the determination unit 7a of the data processing unit 7.
  • the determination unit 7a constantly compares the detected voltage value with the threshold voltage ⁇ [V] (step S3), and when the detected voltage value is equal to or higher than the threshold voltage a (step S3 “ NO ”), and turns on LED4 (step S4).
  • the determination unit 7a of the data processing unit 7 constantly compares the detected voltage value with the threshold voltages j8 [V] and ⁇ [V] (step S5), and determines whether the detected voltage value is the threshold voltage “
  • the data processing unit 7 controls the (LED4 and) PD5 Make sure that it is in contact with the living body surface B.
  • the data processing unit 7 always compares the detected voltage value with the threshold voltage. For example, the data processing unit 7 compares only before measuring a pulse, or compares before and after measuring a pulse. It doesn't matter if it's something.
  • both bands 30 and 31 are wound so as to wind the wrist A of the user, and the band 30b of the first band 30 is moved to the second depending on the size of the wrist A.
  • the determination unit 7a determines that the housing 2 is attached to the wrist A
  • the data processing unit 7 irradiates light from the LED 4 toward the living body.
  • the irradiated light is absorbed and scattered by tissues and blood such as fat and muscle in the living body, and a part of the irradiated light is detected by the PD5 as backscattered light.
  • the detected light fluctuates as the blood volume changes due to pulsation.
  • the data processing unit 7 When the PD 5 receives the backscattered light, the data processing unit 7 generates a pulse signal (biological information signal) according to the change in the amount of received light. That is, the amount of backscattered light of the light emitted from the LED 4 fluctuates according to the blood flow fluctuation in the arteries and arterioles inside the wrist A (living body). It can receive backscattered light according to the wave. Thus, the PD 5 can generate a pulse signal.
  • a pulse signal biological information signal
  • the data processing unit 7 After amplifying the pulse signal, the data processing unit 7 performs predetermined processing such as FFT processing, and then performs analysis to calculate the pulse rate. Then, the data processing unit 7 records the calculated pulse rate in the memory 14 and displays the calculated pulse rate on the display unit 11 based on the operation of each button 20.
  • predetermined processing such as FFT processing
  • the user can easily display the calculated pulse rate on the display unit 11 and confirm it by pressing each button 20 when necessary, which is convenient for use.
  • the user can operate the buttons 20 to check other information other than the pulse rate, such as the time and the remaining power of the rechargeable battery 13, on the display unit 11. ,.
  • the user tightens the housing 2 with the two bands 30 and 31 with a predetermined force and wears the housing 2 on the wrist A. Therefore, even if the user wears the housing 2 for a long time, the user may feel a feeling of oppression. Because there is no, you do not feel uncomfortable.
  • the LED 4 and the PD 5 are pressed toward the lower surface 2a side of the housing 2 (outside the housing 2) by the elasticity of the flexible substrate 24 and are as close as possible to the living body surface B. It can be calculated with high accuracy.
  • the charging can be performed by connecting a charging cord or the like connected to a charger to the external connection terminal 21, and a normal battery can be charged. Need not be provided separately. Therefore, it is possible to reduce maintenance costs.
  • a sound output means such as a buzzer for outputting sound is provided in the housing 2, and when the charge amount of the rechargeable battery 13 decreases to near "0", sound is output to charge the battery (charging timing). ) May be configured to be notified.
  • the biological information measuring device 1 of the present embodiment based on the light received by the PD 5 when the light emitting state of the LED 4 is changed, the LED 4 and the PD 5 Since contact force is detected, contact with the biological surface B can be detected with a simple configuration. Therefore, even when external light enters the PD 5, it is possible to accurately recognize the contact with the biological surface B, and it is possible to detect biological information with high accuracy.
  • the cover glass 23 may be provided with a reflection surface 23a that is arranged between the LED 4 and the PD 5 and reflects a part of the light propagating in the cover glass 23.
  • the light propagating inside the cover glass 23 is reflected by the reflecting surface 23 a toward the living body surface B. For this reason, when measuring the biological information, it is possible to block light that propagates in the cover glass 23, which becomes noise light, so that it is possible to improve the SN ratio when generating a pulse signal.
  • the PD 5 and the cover glass 23 are disposed apart from each other, and one end 4 Oa is close to the cover glass 23 and the other end 40 b is close to the light receiving surface 5 a of the PD 5.
  • a bundled optical fino O may be provided.
  • a concave portion (light collecting portion) 41 for collecting the backscattered light from the living body may be formed in a portion of the cover glass 23 facing the PD 5.
  • the light power concave portion 41 irradiated by the PD 5 and scattered backward in the living body is efficiently condensed on the light receiving surface 5a of the PD 5. Therefore, when a pulse signal is generated by the PD 5, the light receiving area of the PD 5 can be reduced, so that the overall size of the biological information measuring device can be reduced.
  • the light-collecting portion may have a convex shape because it only needs to collect light on the light-collecting surface 5a of the PD 5.
  • the LED 4 and the PD 5 are used for detecting contact with the body surface B, and are configured to also receive the backscattered light of the body force for generating the pulse signal.
  • a biological information measuring device 50 provided with a detection unit 53 having another pair of LEDs 51 and PD52, and a light shielding plate 54 for shielding the LEDs 4, PD5 and the LEDs 51, PD52.
  • the LED4 and PD5 detect contact with the body surface B, and the LEDs 51 and PD52 receive the backscattered light, which is a biological force for generating a pulse signal.
  • the PD52 receives the backscattered light required to generate it.
  • Figure 13 and Table 1 show examples of the positional relationship between LED4 and PD5 when acrylic with a refractive index of 1.5 is used as the material for the power bar glass.
  • the PD 5 has a structure in which the light receiving surface 5a is one step lower than the upper surface of the package 5b.
  • the LED 4 and the top surface of the package 5b are arranged flush (to be flush with each other).
  • the distance between these and the cover glass 23 is X
  • the thickness of the cover glass 23 is Y.
  • the (shortest) distance Z3 that does not enter depends on X and Y.
  • the pulse rate is described as an example of the biological information.
  • the present invention is not limited to the pulse rate and may be any biological information.
  • a function such as a wireless communication unit capable of wirelessly communicating with another electronic device may be added to the housing.
  • the pulse rate recorded in the memory can be transmitted to an external electronic device by wireless communication such as Bluetooth, and various information can be obtained in the memory.
  • the voltage threshold oc when the LED 4 is in the OFF state is 1.9 [V]
  • 8 and the voltage threshold ⁇ when the LED 4 is in the ON state are 0.4 [V].
  • the PD 5 used here will be described on the assumption that the output voltage value decreases as the incident light intensity increases. In other words, a measured voltage of less than ⁇ is 1.9 [V] or less, and a measured voltage of
  • “wearing: X” indicates a state in which the biological information measuring device 1 is not worn on the wrist ⁇
  • “wearing: ⁇ ” indicates a worn state
  • “LED lighting: X”. Indicates that the LED4 is on and the LED is on (OFF state)
  • “LED ON: ⁇ ” indicates that the LED4 is on and on (ON state).
  • state 1 shows a state in which biological information measuring device 1 is not mounted on wrist A in a dark state without external light. First, when LED4 is OFF, there is no external light or LED4 light, so no light is incident on PD5, so the output voltage (measured value) from PD5 is about 2 [V].
  • state 2 shows a state in which biological information measuring device 1 is worn on wrist A in a dark state without external light.
  • LED4 when LED4 is OFF, there is no external light or LED4 light, so no light is incident on PD5, so the output voltage (measured value) from PD5 is about 2 [V].
  • LED 4 when LED 4 is turned on, there is no external light, but the light radiated by LED 4 and propagated through force bar glass 23 and light scattered back in the living body enter PD 5, so the output voltage from PD 5 (Measured value) is about 1.4 [V].
  • state 3 shows a state in which the intensity of external light is about 600 Lx and the biological information measuring device 1 is not mounted.
  • the output voltage (measured value) from the PD 5 is about 0.12 [V].
  • the LED 4 is turned on, the external light and the light radiated by the LED 4 and propagated in the cover glass 23 enter the PD 5, so that the output voltage (measured value) from the PD 5 is about 0.11 [ V].
  • the measured value of PD5 exceeds 1.9 [V] with LED4 OFF, and if the measured value of PD5 exceeds 1.8 [V] with LED4 turned on, Assuming that the backscattered light from the living body has not entered PD5, it is determined that LED4 and PD5 are not in contact with living body surface B, LED4 is turned on, and the measured value of PD5 is 0.4 [V]. In the case below, the reflected light from the object other than the living body is incident on the PD 5, and it can be determined that the LED 4 and the PD 5 and the living body surface B are in a non-contact state.
  • the thresholds are set to 1.9 [V], 1.8 [V], and 0.4 [V], respectively, but the set value of the threshold is not limited to this.
  • the biological information measuring device of the present invention the presence or absence of contact is detected based on the light received by the light receiving unit when the light emitting state of the light emitting unit is changed.
  • contact with a living body can be detected. Therefore, even when external light enters the light receiving unit, the contact with the living body can be accurately recognized, and the calculation of the biological information can be performed with high accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A biological information measuring instrument comprising a body, a biological sensor section provided in the body, irradiating an organism with light, and generating a biological information signal depending on the quantity of backscattering light from the organism, a section provided in the body and operating biological information based on the biological information signal, and a section arranged on the lower surface side of the body and detecting whether or not the biological sensor section touching the surface of the organism, characterized in that the detecting section comprises a light emitting section for irradiating the organism with light, a cover glass arranged on the lower surface of the organism, transmitting/reflecting the light emitted from the light emitting section, and transmitting backscattering light from the organism, a section for receiving the transmitted light from the cover glass, and a section for judging whether the organism is in contact with the biological sensor section or not based on a light reception signal received by the light receiving section.

Description

明 細 書  Specification
生体情報計測装置  Biological information measurement device
技術分野  Technical field
[0001] 本発明は、手首 (腕)に装着した状態で脈拍等の生体情報を測定することができる 生体情報計測装置に関するものである。  The present invention relates to a biological information measuring device capable of measuring biological information such as a pulse while being worn on a wrist (arm).
本願は、 2004年 3月 26日に出願された日本国特許出願第 2004-091943号に 対し優先権を主張し、その内容をここに援用する。  Priority is claimed on Japanese Patent Application No. 2004-091943 filed on March 26, 2004, the content of which is incorporated herein by reference.
背景技術  Background art
[0002] 近年の健康管理への関心の高まりにより、手首 (腕)等に装着したまま脈拍等の様 々な生体情報を計測することができる生体情報計測装置が各種提供されて 、る (例 えば、特許文献 1参照)。  [0002] In recent years, interest in health management has increased, and various types of biological information measuring devices that can measure various biological information such as a pulse while being worn on a wrist (arm) or the like have been provided. For example, see Patent Document 1).
[0003] この特許文献 1に記載の脈拍計 (生体情報計測装置)は、皮膚接触側に 2つの電 極を備えている。そして、この 2つの電極がともに皮膚に触れると、皮膚を通して微少 電流が流れ、両電極間の電圧が低下するため、脈拍センサが皮膚に接触しているも のと判断する。したがって、この 2つの電極の電位差によって皮膚との接触の有無を 検出することができる。  [0003] The pulse meter (biological information measuring device) described in Patent Document 1 includes two electrodes on the skin contact side. When the two electrodes touch the skin, a minute current flows through the skin, and the voltage between the two electrodes decreases. Therefore, it is determined that the pulse sensor is in contact with the skin. Therefore, the presence or absence of contact with the skin can be detected based on the potential difference between the two electrodes.
[0004] また、発光ダイオード (光発光部)および受光素子 (光受光部)により脈拍測定シス テムを有する脈拍測定器 (生体情報計測装置)も提案されて ヽる (例えば、特許文献 2参照)。この特許文献 2に記載の脈拍測定器は、明暗測定用の受光素子を配置し、 この受光素子の出力に応じて接触の有無を検出するものである。  [0004] A pulse measuring device (biological information measuring device) having a pulse measuring system using a light emitting diode (light emitting portion) and a light receiving element (light receiving portion) has also been proposed (for example, see Patent Document 2). . The pulse meter described in Patent Document 2 has a light receiving element for measuring light and darkness, and detects the presence or absence of a contact according to the output of the light receiving element.
特許文献 1:特開 2003— 70757号公報(段落番号 0021— 0029、図 2等) 特許文献 2:特開昭 60— 246736号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-70757 (Paragraph No. 0021-0029, FIG. 2, etc.) Patent Document 2: Japanese Patent Application Laid-Open No. 60-246736
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、上述した特許文献 1に記載の生体情報計測装置は、電極がある程度 大きい場合は精度良く生体の接触を検出することが可能であるが、電極が小さい場 合は誤検出が多ぐ例えば、腕時計型のような小型の端末で用いることが難しいとい う問題がある。また、特許文献 2に記載の生体情報計測装置は、単に受光素子から の出力から明暗を判断し、接触の有無を判断しているので、外光の程度によっては 誤検出してしまうおそれがある。 [0005] However, the biological information measuring device described in Patent Document 1 described above can accurately detect contact with a living body when the electrodes are large to some extent, but erroneous detection often occurs when the electrodes are small. For example, it is difficult to use with small terminals such as wristwatch type Problem. In addition, the biological information measurement device described in Patent Document 2 simply determines the brightness from the output from the light receiving element and determines the presence / absence of contact, and thus may erroneously detect depending on the degree of external light. .
[0006] 本発明は上述した事情に鑑みてなされたものであって、簡易な構成で小型化を図 るとともに、外光が入ったとしても誤検出することがない生体情報計測装置を提供す ることを目的とする。 [0006] The present invention has been made in view of the above circumstances, and provides a biological information measuring device that can be miniaturized with a simple configuration and that does not erroneously detect even when external light enters. The porpose is to do.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、前記課題を解決するために以下の手段を提供する。 [0007] The present invention provides the following means in order to solve the above problems.
[0008] 本発明の生体情報計測装置は、本体と、該本体に設けられるとともに生体に向けて 光を照射し前記生体からの後方散乱光の光量に応じた生体情報信号を生成する生 体センサ部と、前記本体に設けられるとともに前記生体情報信号に基づいて生体情 報を演算する生体情報演算部と、前記本体の下面側に配され、前記生体センサ部 が前記生体の表面に接触した力否かを検出する検出部とを備え、該検出部が、前記 生体に光を照射する光発光部と、前記本体の下面に配されて、前記光発光部により 照射した光を透過および反射させるとともに、前記生体において後方散乱した光を 透過させるカバーガラスと、前記カバーガラスを透過する光を受光する光受光部と、 該光受光部により受光された受光信号に基づいて前記生体と前記生体センサ部とが 接触しているカゝ否かを判断する判断部とを備えることを特徴とする。 [0008] A biological information measurement device of the present invention includes a main body, and a biological sensor provided on the main body and configured to irradiate light to a living body and generate a biological information signal according to the amount of backscattered light from the living body. A biometric information calculation unit provided on the main body and calculating biometric information based on the biometric information signal; and a force provided on the lower surface side of the main body, wherein the biometric sensor unit contacts the surface of the living body. A light emitting unit for irradiating the living body with light, and the detecting unit is disposed on a lower surface of the main body to transmit and reflect the light emitted by the light emitting unit. A cover glass for transmitting light scattered backward in the living body, a light receiving unit for receiving light transmitted through the cover glass, and a living body and the living body sensor based on a light receiving signal received by the light receiving unit. Characterized in that it comprises a determination section which parts and to determine whether mosquitoes ゝ not in contact.
[0009] 本発明に係る生体情報計測装置においては、光発光部力も生体に向けて光を照 射する。照射された光はカバーガラス表面での反射やカバーガラス内での伝搬、生 体での後方散乱などにより、光受光部により受光される。検出部に備えられた判断部 は、光発光部が発光している状態および発光していない状態で、光受光部により受 光された受光信号に基づ 、て生体表面と生体センサ部とが接触して 、るか否かを判 断する。判断部により生体表面と生体センサ部とが接触していると判断、すなわち、 本体が手首 (腕等)に装着されていると判断し、生体センサ部により、生体に向けて 光を照射し生体からの後方散乱光の光量に応じた生体情報信号を生成する。さらに 、生体情報検出部において、生体情報信号を所定の演算をして脈拍等の生体情報 の算出を行う。また、光受光部に外光が入ったとしても、生体表面と生体センサ部と の接触を誤検出することがなくなる。 In the biological information measuring device according to the present invention, the light emitting unit also irradiates light toward the living body. The irradiated light is received by the light receiving unit by reflection on the surface of the cover glass, propagation in the cover glass, backscattering in living organisms, and the like. The determination unit provided in the detection unit determines whether the surface of the living body and the living body sensor unit are based on the light reception signal received by the light receiving unit when the light emitting unit is emitting light and when the light emitting unit is not emitting light. Make contact or not to judge. The determining unit determines that the surface of the living body is in contact with the biological sensor unit, that is, determines that the main body is attached to the wrist (arm, etc.), and irradiates the living body with light toward the living body by the biological sensor unit. A biological information signal corresponding to the amount of backscattered light from the object. Further, the biological information detection unit performs a predetermined operation on the biological information signal to calculate biological information such as a pulse. Also, even if external light enters the light receiving unit, the surface of the living body and the This eliminates the possibility of erroneous detection of the contact of the user.
[0010] また、本発明の生体情報計測装置は、前記光受光部が、前記カバーガラスを透過 した前記生体力 の後方散乱光を受光するとともに後方散乱光の光量に応じた生体 情報信号を生成することが好まし 、。  [0010] Further, in the biological information measuring device of the present invention, the light receiving section receives the backscattered light of the biological force transmitted through the cover glass and generates a biological information signal according to the amount of backscattered light. I prefer to.
[0011] 本発明に係る生体情報計測装置においては、光受光部において、受光された光に 基づいて生体表面と生体センサ部との接触と、生体情報信号の生成との両方を行う ため、部品点数の少量ィ匕を図ることができ、さらに、生体情報計測装置全体の小型 化を図るができる。 In the biological information measuring device according to the present invention, the light receiving unit performs both the contact between the surface of the living body and the biological sensor unit based on the received light and the generation of the biological information signal. A small number of points can be obtained, and furthermore, the overall size of the biological information measuring device can be reduced.
[0012] また、本発明の生体情報計測装置は、前記カバーガラスに、前記光発光部と前記 光受光部との間に配され前記カバーガラス内を伝搬する光の一部を反射させる反射 面を備えることが好ましい。  [0012] In addition, the biological information measuring device of the present invention may be configured such that the cover glass has a reflecting surface disposed between the light emitting unit and the light receiving unit, and reflecting a part of light propagating in the cover glass. It is preferable to provide
[0013] 本発明に係る生体情報計測装置においては、光照射部により照射された光のうち カバーガラス内部を伝搬した光を、反射面により生体表面側に反射させることになる 。このため、生体情報を測定する際、生体情報を含んでいないカバーガラス内を伝 搬する光を遮断することができるため、精度よく生体情報を測定することが可能にな る。  [0013] In the biological information measurement device according to the present invention, of the light irradiated by the light irradiation unit, light that has propagated inside the cover glass is reflected toward the living body surface side by the reflection surface. For this reason, when measuring the biological information, it is possible to block the light propagating in the cover glass that does not contain the biological information, so that it is possible to measure the biological information with high accuracy.
[0014] また、本発明の生体情報計測装置は、一端が前記カバーガラスに、他端が前記光 受光部の受光面にそれぞれ近接して配設されたバンドル状の光ファイバを備えること が好ましい。  [0014] Further, the biological information measuring device of the present invention preferably includes a bundle of optical fibers, one end of which is disposed in close proximity to the cover glass and the other end thereof is disposed in proximity to the light receiving surface of the light receiving section. .
[0015] 本発明に係る生体情報計測装置においては、光ファイバが配されているため、生 体の表皮などの表面部分を通ってきた光が光ファイバの外周面で反射されることに なる。生体の表皮などの表面部分のみを通ってきた光は生体情報をあまり含んで ヽ ないため、この光を遮断することにより、光ファイバに入射して光ファイバ内を伝搬し 光受光部に導かれる光の大部分は真皮部分以下の生体の深部を通ってきた光、す なわち生体情報を多く含んだ光となる。  [0015] In the biological information measuring device according to the present invention, since the optical fiber is provided, light that has passed through a surface portion such as a skin of a living body is reflected on the outer peripheral surface of the optical fiber. Light that has passed only through the surface such as the epidermis of a living body does not contain much biological information, so by blocking this light, it enters the optical fiber, propagates through the optical fiber, and is guided to the light receiving unit. Most of the light is light that has passed deep into the body below the dermis, that is, light that contains a lot of biological information.
[0016] また、本発明の生体情報計測装置は、前記カバーガラスの前記光受光部の対向面  [0016] Further, the biological information measuring device according to the present invention may be arranged such that a surface of the cover glass facing the light receiving unit is provided.
(前記カバーガラスにおいて前記光受光部に対向する面)に、前記生体からの後方 散乱光を集光させる集光部を備えることが好ま 、。 [0017] 本発明に係る生体情報計測装置においては、光発光部により照射され生体におい て後方散乱した光が、集光部によって光受光部の受光面に効率良く集光されること になる。したがって、脈拍信号等の生体情報信号を生成する際、光受光部の面積を 小さくすることができるため、生体情報計測装置全体の小型化を図ることが可能にな る。 It is preferable that a light-collecting unit that collects backscattered light from the living body is provided on a surface of the cover glass that faces the light receiving unit. In the biological information measuring device according to the present invention, light radiated by the light emitting unit and scattered backward in the living body is efficiently collected on the light receiving surface of the light receiving unit by the light collecting unit. Therefore, when a biological information signal such as a pulse signal is generated, the area of the light receiving unit can be reduced, so that the overall size of the biological information measuring device can be reduced.
発明の効果  The invention's effect
[0018] 本発明に係る生体情報計測装置によれば、光発光部の発光状態を変えた際の光 受光部によって受光された光に基づいて接触の有無を検知しているため、簡易な構 成で生体との接触を検知することができる。したがって、外光が光受光部に入る場合 においても、正確に生体との接触を認識することができるため、高精度に生体情報の 算出を行うことが可能となる。  According to the biological information measuring device of the present invention, the presence or absence of a contact is detected based on the light received by the light receiving unit when the light emitting state of the light emitting unit is changed. Thus, contact with a living body can be detected. Therefore, even when external light enters the light receiving unit, the contact with the living body can be accurately recognized, and the calculation of the biological information can be performed with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明に係る生体情報計測装置の一実施形態を示す正面図 (上面図)である  FIG. 1 is a front view (top view) showing an embodiment of a biological information measuring device according to the present invention.
[図 2]図 1に示す生体情報計測装置の背面図(下面図)である。 FIG. 2 is a rear view (bottom view) of the biological information measuring device shown in FIG. 1.
[図 3]図 1に示す生体情報計測装置を手首に装着した状態を示す側面図である。  FIG. 3 is a side view showing a state where the biological information measuring device shown in FIG. 1 is mounted on a wrist.
[図 4]図 1に示す生体情報計測装置を手首に装着した状態を示す側面図であり、図 3 に示す方向とは逆方向から見た図である。  FIG. 4 is a side view showing a state in which the biological information measuring device shown in FIG. 1 is mounted on a wrist, viewed from a direction opposite to the direction shown in FIG. 3.
[図 5]図 1に示す生体情報計測装置の断面図である。  5 is a sectional view of the biological information measuring device shown in FIG. 1.
[図 6]図 1に示す生体情報計測装置の断面矢視 D - D図である。  6 is a sectional view taken along the line DD of the biological information measuring device shown in FIG. 1.
[図 7]図 1に示す生体情報計測装置の生体センサ部を示す断面図である。  FIG. 7 is a sectional view showing a biological sensor unit of the biological information measuring device shown in FIG. 1.
[図 8]図 5に示す生体情報計測装置のデータ処理部で行われる接触検知を示すフロ 一チャート図である。  8 is a flowchart showing contact detection performed in a data processing unit of the biological information measuring device shown in FIG. 5.
[図 9]図 7に示す生体情報計測装置の生体センサ部の他の変形例を示す断面図で ある。  FIG. 9 is a cross-sectional view showing another modified example of the biological sensor unit of the biological information measuring device shown in FIG. 7.
[図 10]図 7に示す生体情報計測装置の生体センサ部の他の変形例を示す断面図で ある。  FIG. 10 is a cross-sectional view showing another modified example of the biological sensor unit of the biological information measuring device shown in FIG. 7.
[図 11]図 7に示す生体情報計測装置の生体センサ部の他の変形例を示す断面図で ある。 FIG. 11 is a cross-sectional view showing another modified example of the biological sensor unit of the biological information measuring device shown in FIG. 7. is there.
[図 12]図 1に示す生体情報計測装置の他の変形例を示す平面図である。  FIG. 12 is a plan view showing another modified example of the biological information measuring device shown in FIG. 1.
[図 13]図 7に示す生体情報計測装置の LEDと PDとの位置関係を示す断面図である  13 is a cross-sectional view showing a positional relationship between an LED and a PD of the biological information measuring device shown in FIG.
[図 14]本発明における実施例において、生体センサ部と生体との接触状態により PD により出力される電圧値を示すグラフである。 FIG. 14 is a graph showing a voltage value output by a PD according to a contact state between a living body sensor unit and a living body in an example of the present invention.
符号の説明  Explanation of symbols
[0020] B…生体表面(生体)、 1, 50· ··生体情報計測装置、 2…ハウジング (本体)、 2a- 本体の下面、 4· "LED (光発光部)、 5· · 'PD (光受光部)、 7…データ処理部(生体情 報検出部)、 7a…判断部、 8…生体センサ部、 23· ··カバーガラス、 23a…反射面、 40 …光ファイノく、 40a…光ファイバの一端、 40b…光ファイバの他端、 41…凹部 (集光 部)  [0020] B: body surface (living body), 1, 50 · · · biological information measurement device, 2 · housing (body), 2a- lower surface of the body, 4 · LED (light emitting part), 5 · 'PD (Light receiving part), 7… Data processing part (biological information detecting part), 7a… Determining part, 8… Biological sensor part, 23 ··· Cover glass, 23a · Reflective surface, 40… Optical fin, 40a… One end of optical fiber, 40b… The other end of optical fiber, 41… Concave part (condensing part)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明に係る生体情報計測装置の一実施形態を、図 1から図 11を参照して 説明する。 Hereinafter, an embodiment of the biological information measuring device according to the present invention will be described with reference to FIGS. 1 to 11.
[0022] 本実施形態の生体情報計測装置 1は、図 1から図 8に示すように、腕時計型であつ て手首 (腕) Aに装着した状態で、生体情報である脈拍数を算出するものである。  As shown in FIGS. 1 to 8, a biological information measuring device 1 of the present embodiment is a wristwatch type and calculates a pulse rate, which is biological information, in a state of being worn on a wrist (arm) A. It is.
[0023] この生体情報計測装置 1は、各種の電気部品および電子部品を内蔵したノヽゥジン グ (本体) 2と、このハウジング 2の下面 2aを生体表面 B側に向けた状態でノ、ウジング 2を手首 Aに装着する固定手段 3と、ハウジング 2に設けられるとともに生体表面 (生 体) Bに向けて光を照射する LED (Light Emitting Diode) 4と生体からの後方散乱 光を受光する PD (Photo— Diode) 5とを有する生体センサ部 6と、ハウジング 2に設け られるとともに生体センサ部 6により受光した光量に応じた脈拍信号 (生体情報信号) を生成し生成された脈拍信号を演算し脈拍数を算出するデータ処理部 (生体情報演 算部) 7とを備えている。  The biological information measuring device 1 includes a housing (main body) 2 containing various electric and electronic components, and a housing 2 with a lower surface 2a of the housing 2 facing the living body surface B side. (Wheel A), LED (Light Emitting Diode) 4 that is provided on the housing 2 and irradiates light to the living body surface (living body) B, and PD (Light emitting diode) that receives backscattered light from the living body Photo—Diode) A biometric sensor unit 6 having a sensor 5 and a pulse signal (biological information signal) provided in the housing 2 and corresponding to the amount of light received by the biosensor unit 6 are calculated, and the generated pulse signal is calculated. A data processing unit (biological information calculation unit) 7 for calculating the number.
[0024] 生体センサ部 6は、生体センサ部 6 (ハウジング 2の下面 2a側)が生体表面 Bに接触 した力否かを検出する検出部を兼ねている。すなわち、生体センサ部 6が、生体表面 Bに接触した力否かを検出するとともに脈拍信号を生成するための生体からの光の 検出を行う機能を有する LED4と PD5とを備えていることになる。 The biological sensor unit 6 also functions as a detection unit that detects whether or not the biological sensor unit 6 (the lower surface 2a side of the housing 2) is in contact with the biological surface B. That is, the living body sensor unit 6 detects whether or not the force is in contact with the living body surface B, and generates light from the living body to generate a pulse signal. It will have LED4 and PD5 which have the function of detecting.
[0025] また、生体情報計測装置 1は、図 7に示すように、ハウジング 2の下面 2a側に配され て、 LED4により照射した光を透過および反射させるとともに、生体において後方散 乱した光を透過させるカバーガラス 23を備えている。また、 PD5がこのカバーガラス 2 3を伝搬する光およびカバーガラス 23を透過した生体力 の後方散乱光を受光する ようになっている。 [0025] Further, as shown in FIG. 7, the biological information measuring device 1 is disposed on the lower surface 2a side of the housing 2, transmits and reflects light emitted by the LED 4, and also transmits light scattered backward in the living body. A cover glass 23 for transmitting light is provided. Further, the PD 5 receives the light propagating through the cover glass 23 and the backscattered light of the biological force transmitted through the cover glass 23.
[0026] また、データ処理部 7には、 PD5により受光された受光信号に基づいて生体と生体 センサ部 6とが接触して 、る力否かを判断する判断部 7aを備えて 、る。  Further, the data processing unit 7 includes a determination unit 7a that determines whether or not the living body and the living body sensor unit 6 come into contact with each other based on a light reception signal received by the PD 5, and determines whether or not a force is applied.
[0027] 上記ハウジング 2は、プラスチックやアルミニウム等の金属材料力 なり、所定の厚 みをもって、例えば、上面視略長方形状に形成されている。ハウジング 2の上面 2bの 中央部分には、略正方形状のガラス板 10が嵌め込まれており、該ガラス板 10の内側 には演算された上記脈拍数やその他各種の情報を表示する表示部 11が配されてい る。  [0027] The housing 2 is made of a metal material such as plastic or aluminum and has a predetermined thickness, for example, a substantially rectangular shape when viewed from above. A substantially square glass plate 10 is fitted in the center of the upper surface 2b of the housing 2, and a display unit 11 for displaying the calculated pulse rate and other various information is provided inside the glass plate 10. Are arranged.
[0028] また、ノ、ウジング 2内には、図 5および図 6に示すように、メイン基板 12が設けられて おり、該メイン基板 12に上記データ処理部 7、上記表示部 11、充電可能な充電池 13 、脈拍数を記録するメモリ 14、サブ基板 15およびその他各種の電子部品が実装また は配線等により電気的に接続されている。  As shown in FIGS. 5 and 6, a main board 12 is provided in the housing 2, and the data processing section 7, the display section 11, and the chargeable section are provided on the main board 12. A rechargeable battery 13, a memory 14 for recording a pulse rate, a sub-board 15, and various other electronic components are electrically connected by mounting or wiring.
[0029] 上記データ処理部 7は、 CPU等の IC部品を含むものであり、生成された脈拍信号 をー且アンプ等により増幅した後に、高速フーリエ変換処理 (FFT処理)等の所定処 理を行い、その処理結果を解析することにより脈拍数を算出する機能を有している。 また、データ処理部 7は、算出した脈拍数をメモリ 14に記録するとともに、後述する各 ボタン 20からの入力に基づいて表示部 11に表示させるようになつている。さらに、デ ータ処理部 7は、他の構成品を総合的に制御する機能も有している。  [0029] The data processing unit 7 includes an IC component such as a CPU, amplifies the generated pulse signal by an amplifier or the like, and then performs a predetermined process such as a fast Fourier transform process (FFT process). It has a function of calculating the pulse rate by analyzing the processing result. Further, the data processing section 7 records the calculated pulse rate in the memory 14, and displays the calculated pulse rate on the display section 11 based on an input from each button 20 described later. Further, the data processing section 7 has a function of comprehensively controlling other components.
[0030] 上記表示部 11は、例えば、 LCD (Liquid Crystal Display)等の液晶表示器であり、 上述した脈拍数以外に、例えば、図示しない水晶振動子によりカウントされた時刻を 表示する時刻表示機能やその他の各種情報を表示する機能を有して 、る。例えば、 時刻、 日付、曜日や充電池 13の残電力量等を表示できるようになつている。  The display unit 11 is, for example, a liquid crystal display such as an LCD (Liquid Crystal Display), and has a time display function of displaying a time counted by a crystal oscillator (not shown), for example, in addition to the pulse rate described above. And a function for displaying various other information. For example, time, date, day of the week, remaining power of the rechargeable battery 13 and the like can be displayed.
[0031] また、ノ、ウジング 2には、図 1および図 2に示すように、複数のボタン 20、例えば、ハ ウジング 2の上面 2bであって表示部 11の下側(図 1における下方)に配された 3つの ボタン 20およびハウジング 2の側面に配された 1つのボタン 20が設けられている。こ れら各ボタン 20を押下することで、各種操作ができるようになつている。例えば、脈拍 の計測開始、計測停止や、脈拍数と時刻との表示切替や、メモリ 14内に記録されて V、る脈拍数データを外部の機器にデータ送信する等の操作ができるようになって!/ヽ る。 As shown in FIGS. 1 and 2, a plurality of buttons 20, for example, Three buttons 20 are provided on the upper surface 2b of the housing 2 and below the display unit 11 (below in FIG. 1), and one button 20 is provided on a side surface of the housing 2. By pressing each of these buttons 20, various operations can be performed. For example, operations such as starting and stopping pulse measurement, switching the display between pulse rate and time, and transmitting pulse rate data recorded in the memory 14 to an external device can be performed. Te!
[0032] さらに、ハウジング 2の側面には、上記充電池 13に充電器等の外部力も電力を供 給して充電させる外部接続端子 (充電手段) 21が設けられている。なお、外部接続端 子 21を覆うようにカバー等を取り付けて、外部接続端子 21を保護しても構わない。こ うすることで、外部接続端子 21を水滴や埃等から保護することが可能となり、より好適 である。また、外部接続端子 21に限らず、充電器およびハウジング 2内にそれぞれ電 力を供給するためのトランス等を設け、非接触状態で充電池 13の充電を行うように構 成しても構わない。  Further, an external connection terminal (charging means) 21 is provided on a side surface of the housing 2 to supply the external power of a charger or the like to the rechargeable battery 13 by supplying electric power to charge the battery. Note that a cover or the like may be attached so as to cover the external connection terminal 21 to protect the external connection terminal 21. By doing so, the external connection terminal 21 can be protected from water droplets, dust, and the like, which is more preferable. In addition, not only the external connection terminal 21 but also a transformer and the like for supplying power to the charger and the housing 2 may be provided to charge the rechargeable battery 13 in a non-contact state. .
[0033] また、 PD5から出力された受光信号は、フレキシブル基板 24、サブ基板 15および メイン基板 12を介して、上記データ処理部 7に送られるようになつている。また、カバ 一ガラス 23内を伝搬して PD5により受光された光は、判断部 7aに送られるようになつ ている。  The light receiving signal output from the PD 5 is sent to the data processing unit 7 via the flexible board 24, the sub board 15 and the main board 12. Further, the light propagating in the cover glass 23 and received by the PD 5 is sent to the determination unit 7a.
[0034] 判断部 7aは、 PD5から出力された受光信号を電圧として受けて、この電圧値とあら 力じめ設定されている閾値電圧 α [V]とを常に比較している。 LED4が OFF状態に おいて、出力された受光信号が閾値電圧 α [V]以下であれば LED4および PD5が 生体表面 Βと非接触状態であると判断するようになっている。一方、 PD5から出力さ れた受光信号が閾値電圧 α [V]以上であれば、 LED4を ON状態にする。そして、 P D5から出力された受光信号が閾値電圧 β [V]以上であれば LED4および PD5が 生体表面 Βに非接触状態であると判断するようになっている。一方、 PD5から出力さ れた受光信号が閾値電圧 β [V]以下であれば LED4および PD5が生体表面 Βと接 触状態であると判断するようになっている。すなわち、データ処理部 7は、この検出結 果に基づ 、て、 LED4力 光を照射するように LED4の作動を制御するように設定さ れている。なお、この場合だけに限らず、例えば、生体表面 Βに接触していないことが 検出されたときに、 FFT処理を行わな 、ように設定しても構わな!/、。 [0034] The determining unit 7a receives the light receiving signal output from the PD 5 as a voltage, and constantly compares the voltage value with a preset threshold voltage α [V]. If the output light receiving signal is equal to or lower than the threshold voltage α [V] while the LED 4 is in the OFF state, it is determined that the LED 4 and the PD 5 are not in contact with the living body surface Β. On the other hand, if the light receiving signal output from the PD 5 is equal to or higher than the threshold voltage α [V], the LED 4 is turned on. If the light receiving signal output from the PD 5 is equal to or higher than the threshold voltage β [V], it is determined that the LED 4 and the PD 5 are not in contact with the surface of the living body. On the other hand, if the light receiving signal output from the PD 5 is equal to or lower than the threshold voltage β [V], it is determined that the LED 4 and the PD 5 are in contact with the living body surface Β. That is, the data processing unit 7 is set to control the operation of the LED 4 so as to emit the LED 4 light based on the detection result. In addition, not only in this case, for example, You can set to not perform FFT processing when it is detected!
[0035] 上記固定手段 3は、ハウジング 2に基端側が取り付けられて手首 Aに装着可能な第 1のバンド 30および第 2のバンド 31を有している。第 1のバンド 30および第 2のバンド 31は、ハウジング 2の長手方向(図 1の上下方向)に、該ハウジング 2を挟んで対向す るように設けられている。また、両バンド 30、 31は、伸縮自在な弾性材料により形成さ れている。 [0035] The fixing means 3 has a first band 30 and a second band 31 whose base end is attached to the housing 2 and which can be attached to the wrist A. The first band 30 and the second band 31 are provided in the longitudinal direction of the housing 2 (vertical direction in FIG. 1) so as to face each other with the housing 2 interposed therebetween. Further, both bands 30 and 31 are formed of a stretchable elastic material.
[0036] 上記第 1のバンド 30には、先端にバックル 30aおよびタンダ 30bが取り付けられて いる。また、第 2のバンド 31には、上記タンダ 30bが挿入される揷入孔 3 laが該第 2の バンド 31の長手方向に沿って複数形成されている。これにより、使用者の手首 Aの 太さに応じて第 1のバンド 30および第 2のバンド 31の長さを調整することができるよう になっている。  [0036] The first band 30 has a buckle 30a and a tanda 30b attached to the tips. In the second band 31, a plurality of insertion holes 3la into which the tundas 30b are inserted are formed along the longitudinal direction of the second band 31. Thus, the lengths of the first band 30 and the second band 31 can be adjusted according to the thickness of the wrist A of the user.
[0037] このように構成された生体情報計測装置 1により、手首 Aに装着した状態で脈拍数 を算出する場合について説明する。  A case will be described in which the biological information measuring device 1 configured as described above calculates a pulse rate while being worn on the wrist A.
[0038] まず、図 8のフローチャート図に示すように、ボタン 20を押下し、脈拍の計測モード に切り替えることによって、 PD5の電源が ON状態になる (ステップ S l)。ここで、まず 、 LED4を OFF状態のまま、 PD5により受光される光の受光信号の電圧を検出する( ステップ S2)。 PD5により受光された光が電圧としてデータ処理部 7の判断部 7aに出 力される。この場合において、判断部 7aは、検出された電圧値と閾値電圧 α [V]とを 常に比較しており(ステップ S3)、検出された電圧値が閾値電圧 a以上である場合( ステップ S3「NO」)、 LED4を ON状態にする(ステップ S4)。再び、データ処理部 7 の判断部 7aは、検出された電圧値と閾値電圧 j8 [V]および γ [V]とを常に比較して おり (ステップ S5)、検出された電圧値が閾値電圧「 |8以上 γ以下」となった場合 (ス テツプ S5「YES」)、 LED4および PD5が生体表面 Bに接触していると判断する。  First, as shown in the flowchart of FIG. 8, the power of the PD 5 is turned on by pressing the button 20 to switch to the pulse measurement mode (step S1). Here, first, the voltage of the light receiving signal of the light received by the PD 5 is detected while the LED 4 is in the OFF state (step S2). The light received by the PD 5 is output as a voltage to the determination unit 7a of the data processing unit 7. In this case, the determination unit 7a constantly compares the detected voltage value with the threshold voltage α [V] (step S3), and when the detected voltage value is equal to or higher than the threshold voltage a (step S3 “ NO ”), and turns on LED4 (step S4). Again, the determination unit 7a of the data processing unit 7 constantly compares the detected voltage value with the threshold voltages j8 [V] and γ [V] (step S5), and determines whether the detected voltage value is the threshold voltage “ | 8 or more and γ or less ”(Step S5“ YES ”), it is determined that LED4 and PD5 are in contact with body surface B.
[0039] 一方、 LED4が OFF状態において、 PD5から出力された電圧値が閾値電圧 a以 下であれば (ステップ S3「YES」 )、 LED4および PD5が生体表面 Bと非接触であると 判断する。また、 LED4が ON状態において、 PD5から出力された電圧値が閾値電 圧「 j8以上 γ以下」でな 、場合 (ステップ S5「NO」 )、 LED4および PD5が生体表面 Βと非接触であると判断する。すなわち、データ処理部 7は、(LED4および) PD5が 確実に生体表面 Bに接触しているかの検出を行う。 On the other hand, when the voltage output from the PD 5 is less than or equal to the threshold voltage a while the LED 4 is in the OFF state (“YES” in step S3), it is determined that the LED 4 and the PD 5 are not in contact with the biological surface B. . When the voltage output from the PD 5 is not the threshold voltage `` j8 or more and γ or less '' when the LED 4 is in the ON state (Step S5 `` NO ''), it is determined that the LED 4 and the PD 5 are not in contact with the living body surface Β. to decide. That is, the data processing unit 7 controls the (LED4 and) PD5 Make sure that it is in contact with the living body surface B.
[0040] 本実施例では、データ処理部 7は常に検出された電圧値と閾値電圧を比較してい るが、例えば脈拍を計測する前にのみ比較するものや、脈拍を計測する前後に比較 するものであっても構わな 、。  In the present embodiment, the data processing unit 7 always compares the detected voltage value with the threshold voltage. For example, the data processing unit 7 compares only before measuring a pulse, or compares before and after measuring a pulse. It doesn't matter if it's something.
[0041] 図 2および図 3に示すように、使用者の手首 Aを卷回するよう両バンド 30、 31を巻き 、手首 Aの大きさに応じて第 1のバンド 30のタンダ 30bを第 2のバンド 31の揷入孔 31 aに挿入し、判断部 7aによりハウジング 2を手首 Aに装着していると判断すると、デー タ処理部 7は、 LED4から生体に向けて光を照射させる。照射された光は、生体内で 脂肪や筋といった組織や血液により吸収および散乱され、照射された光の一部が後 方散乱光として PD5で検出される。検出される光は、脈動による血液量の変化に伴 い変動する。 PD5がこの後方散乱光を受光すると、データ処理部 7が、受光量の変 化に応じた脈拍信号 (生体情報信号)を生成する。つまり、手首 A (生体)内部の動脈 および細動脈内の血流変動に応じて、 LED4から照射された光の後方散乱光の光 量が変動するので、 PD5は、動脈の脈動、即ち、脈波に応じた後方散乱光の受光が 行える。これにより、 PD5は、脈拍信号の生成が行える。  As shown in FIGS. 2 and 3, both bands 30 and 31 are wound so as to wind the wrist A of the user, and the band 30b of the first band 30 is moved to the second depending on the size of the wrist A. When the determination unit 7a determines that the housing 2 is attached to the wrist A, the data processing unit 7 irradiates light from the LED 4 toward the living body. The irradiated light is absorbed and scattered by tissues and blood such as fat and muscle in the living body, and a part of the irradiated light is detected by the PD5 as backscattered light. The detected light fluctuates as the blood volume changes due to pulsation. When the PD 5 receives the backscattered light, the data processing unit 7 generates a pulse signal (biological information signal) according to the change in the amount of received light. That is, the amount of backscattered light of the light emitted from the LED 4 fluctuates according to the blood flow fluctuation in the arteries and arterioles inside the wrist A (living body). It can receive backscattered light according to the wave. Thus, the PD 5 can generate a pulse signal.
[0042] データ処理部 7は、脈拍信号を増幅した後に、 FFT処理等の所定処理をした後、 解析を行って脈拍数を算出する。そして、データ処理部 7は、算出した脈拍数をメモ リ 14に記録するとともに各ボタン 20操作に基づ 、て表示部 11に表示させる。  [0042] After amplifying the pulse signal, the data processing unit 7 performs predetermined processing such as FFT processing, and then performs analysis to calculate the pulse rate. Then, the data processing unit 7 records the calculated pulse rate in the memory 14 and displays the calculated pulse rate on the display unit 11 based on the operation of each button 20.
[0043] 使用者は、必要時に各ボタン 20を押下することで、容易に算出された脈拍数を表 示部 11に表示させて確認が行えるので、使用に関して簡便である。また、使用者は 、各ボタン 20の操作により、脈拍数以外のその他の情報、例えば、時刻や充電池 13 の残電力等にっ ヽても表示部 11により確認することができるので使 ヽ易 、。  The user can easily display the calculated pulse rate on the display unit 11 and confirm it by pressing each button 20 when necessary, which is convenient for use. In addition, the user can operate the buttons 20 to check other information other than the pulse rate, such as the time and the remaining power of the rechargeable battery 13, on the display unit 11. ,.
[0044] また、上述したように、使用者は、ハウジング 2を両バンド 30、 31により所定の力で 締め付けて手首 Aに装着して ヽるので、長時間装着したとしても圧迫感を感じること がないので、不快に感じることがない。  Further, as described above, the user tightens the housing 2 with the two bands 30 and 31 with a predetermined force and wears the housing 2 on the wrist A. Therefore, even if the user wears the housing 2 for a long time, the user may feel a feeling of oppression. Because there is no, you do not feel uncomfortable.
[0045] LED4および PD5は、フレキシブル基板 24の弾性によって、ハウジング 2の下面 2a 側 (ノヽウジング 2の外側)に向けて押圧されて生体表面 Bにできるだけ近接しているこ とから、脈拍数を高精度に算出することができる。 [0046] また、充電池 13に電力を充電する場合には、例えば、充電器に接続されている充 電コード等を外部接続端子 21に接続することで充電を行うことができ、通常の電池を 別個に用意する必要はない。したがって、維持経費の削減を図ることができる。なお 、ハウジング 2内に音声を出力するブザー等の音声出力手段を設けて、充電池 13の 充電量が" 0"に近くなるまで減少した場合に、音声を出力させて充電時期(充電タイ ミング)を知らせるように構成しても構わな 、。 [0045] The LED 4 and the PD 5 are pressed toward the lower surface 2a side of the housing 2 (outside the housing 2) by the elasticity of the flexible substrate 24 and are as close as possible to the living body surface B. It can be calculated with high accuracy. When charging the rechargeable battery 13 with electric power, for example, the charging can be performed by connecting a charging cord or the like connected to a charger to the external connection terminal 21, and a normal battery can be charged. Need not be provided separately. Therefore, it is possible to reduce maintenance costs. In addition, a sound output means such as a buzzer for outputting sound is provided in the housing 2, and when the charge amount of the rechargeable battery 13 decreases to near "0", sound is output to charge the battery (charging timing). ) May be configured to be notified.
[0047] 以上説明したように、本実施形態の生体情報計測装置 1によれば、 LED4の発光 状態を変えた際の PD5によって受光された光に基づいて、 LED4および PD5が生 体表面 Bに接触している力否かを検知しているため、簡易な構成で生体表面 Bとの 接触を検知することができる。したがって、外光が PD5に入る場合においても、正確 に生体表面 Bとの接触を認識することができるため、高精度に生体情報の検出を行う ことが可能となる。  As described above, according to the biological information measuring device 1 of the present embodiment, based on the light received by the PD 5 when the light emitting state of the LED 4 is changed, the LED 4 and the PD 5 Since contact force is detected, contact with the biological surface B can be detected with a simple configuration. Therefore, even when external light enters the PD 5, it is possible to accurately recognize the contact with the biological surface B, and it is possible to detect biological information with high accuracy.
[0048] なお、本発明の技術範囲は上記実施の形態に限定されるものではなぐ本発明の 趣旨を逸脱しない範囲において種々の変更を加えることが可能である。  [0048] The technical scope of the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
[0049] 例えば、図 9に示すように、カバーガラス 23に、 LED4と PD5との間に配されカバー ガラス 23内を伝搬する光の一部を反射させる反射面 23aを設けても良い。この構成 の場合には、 LED4により照射された光のうちカバーガラス 23内部を伝搬する光を、 反射面 23aにより生体表面 B側に反射させることになる。このため、生体情報を測定 する際、ノイズ光となるカバーガラス 23内を伝搬する光を遮断することができるため、 脈拍信号を生成する際の SN比を向上することが可能になる。  For example, as shown in FIG. 9, the cover glass 23 may be provided with a reflection surface 23a that is arranged between the LED 4 and the PD 5 and reflects a part of the light propagating in the cover glass 23. In this configuration, of the light emitted by the LED 4, the light propagating inside the cover glass 23 is reflected by the reflecting surface 23 a toward the living body surface B. For this reason, when measuring the biological information, it is possible to block light that propagates in the cover glass 23, which becomes noise light, so that it is possible to improve the SN ratio when generating a pulse signal.
[0050] あるいは、図 10に示すように、 PD5とカバーガラス 23とが離間して配設され、一端 4 Oaがカバーガラス 23に、他端 40bが PD5の受光面 5aにそれぞれ近接しては配設さ れたバンドル状の光ファイノ Oを備えていても良い。この構成の場合には、 PD5と力 バーガラス 23との隙間部に光ファイバ 40が配されているため、生体表面 Bの表皮な どの表面部分を通ってきた光が光ファイバ 40の外周面で反射される。生体表面 Bの 表皮などの表面部分のみを通ってきた光は生体情報をあまり含んでいないため、こ の光を遮断することにより、光ファイバ 40に入射して光ファイバ 40内を伝搬し PD5に 導かれる光の大部分は真皮部分以下の生体の深部を通ってきた光、すなわち生体 情報を多く含んだ光となる。 Alternatively, as shown in FIG. 10, the PD 5 and the cover glass 23 are disposed apart from each other, and one end 4 Oa is close to the cover glass 23 and the other end 40 b is close to the light receiving surface 5 a of the PD 5. A bundled optical fino O may be provided. In this configuration, since the optical fiber 40 is disposed in the gap between the PD 5 and the force bar glass 23, light that has passed through a surface portion such as the epidermis of the living body surface B is reflected on the outer peripheral surface of the optical fiber 40. Is reflected. Light that has passed only through the surface of the body surface B, such as the epidermis, does not contain much biological information, so by blocking this light, it enters the optical fiber 40, propagates through the optical fiber 40, and travels to the PD5. Most of the guided light is light that has passed deep into the body below the dermis, It becomes light that contains a lot of information.
[0051] さらに、図 11に示すように、カバーガラス 23の PD5に対向する部分に、生体からの 後方散乱光を集光させる凹部 (集光部) 41が形成されて!ヽても良い。この構成の場 合には、 PD5により照射され生体において後方散乱した光力 凹部 41によって PD5 の受光面 5aに効率良く集光されることになる。したがって、 PD5により脈拍信号を生 成する際、 PD5の受光面積を小さくすることができるため、生体情報計測装置全体 の小型化を図ることが可能になる。なお、集光部としては PD5の集光面 5aに光が集 光すれば良いため、凸形状であっても良い。  Further, as shown in FIG. 11, a concave portion (light collecting portion) 41 for collecting the backscattered light from the living body may be formed in a portion of the cover glass 23 facing the PD 5. In the case of this configuration, the light power concave portion 41 irradiated by the PD 5 and scattered backward in the living body is efficiently condensed on the light receiving surface 5a of the PD 5. Therefore, when a pulse signal is generated by the PD 5, the light receiving area of the PD 5 can be reduced, so that the overall size of the biological information measuring device can be reduced. Note that the light-collecting portion may have a convex shape because it only needs to collect light on the light-collecting surface 5a of the PD 5.
[0052] また、さらに、 LED4と PD5とが生体表面 Bとの接触の検知に用いられるとともに、 脈拍信号を生成するための生体力 の後方散乱光の受光とを兼ねる構成としたが、 これに代えて、図 12に示すように、もう一対の LED51と PD52とを有する検出部 53と 、LED4, PD5と LED51, PD52とを遮蔽する光遮蔽板 54とを設けている生体情報 計測装置 50であっても良い。この構成の場合には、 LED4と PD5とが生体表面 Bと の接触の検知を行い、 LED51と PD52とが脈拍信号を生成するための生体力もの 後方散乱光の受光を行うため、脈拍信号を生成するのに必要な後方散乱光を PD5 2により受光する。  [0052] Further, the LED 4 and the PD 5 are used for detecting contact with the body surface B, and are configured to also receive the backscattered light of the body force for generating the pulse signal. Instead, as shown in FIG. 12, a biological information measuring device 50 provided with a detection unit 53 having another pair of LEDs 51 and PD52, and a light shielding plate 54 for shielding the LEDs 4, PD5 and the LEDs 51, PD52. There may be. In this configuration, the LED4 and PD5 detect contact with the body surface B, and the LEDs 51 and PD52 receive the backscattered light, which is a biological force for generating a pulse signal. The PD52 receives the backscattered light required to generate it.
[0053] また、 LED4と PD5の間隔に制約を設けることで、 LED4より発せられた光がカバー ガラス 23の表面で反射し PD5に入射することがないようにすることが可能である。力 バーガラスの材料として屈折率 1. 5のアクリルを用いたときの LED4と PD5との位置 関係の例を図 13および表 1に示す。  Further, by providing a restriction on the interval between the LED 4 and the PD 5, it is possible to prevent light emitted from the LED 4 from being reflected on the surface of the cover glass 23 and entering the PD 5. Figure 13 and Table 1 show examples of the positional relationship between LED4 and PD5 when acrylic with a refractive index of 1.5 is used as the material for the power bar glass.
[0054] [表 1] [Table 1]
データ X Y Zi Z2 Z3 a 0.1 0.5 0.7 2.21 1033 2.91 1083 b 0.5 0,5 3.5 2.21 1083 5.71 1 083 c 1 0.5 7 2.21 1083 9.21 1 083 d 0.1 1 0.7 4.4221 66 5.1 221 66 e 0.5 1 3.5 4.4221 66 7.922166 f 1 1 7 4.422166 1 1.4221 7 Data XY Zi Z2 Z3 a 0.1 0.5 0.7 2.21 1033 2.91 1083 b 0.5 0,5 3.5 2.21 1083 5.71 1 083 c 1 0.5 7 2.21 1083 9.21 1 083 d 0.1 1 0.7 4.4221 66 5.1 221 66 e 0.5 1 3.5 4.4221 66 7.922166 f 1 1 7 4.422 166 1 1.4221 7
[0055] PD5は受光面 5aがパッケージ 5bの上面よりも一段下がった構造をしている。 LED 4とパッケージ 5bの上面とは面一に(同一面となるように)配されており、ここで、これら とカバーガラス 23との距離を Xとし、カバーガラス 23の厚さを Yとしたとき、 LED4で発 せられた光のうちカバーガラス 23の下面 23bでの反射光が受光面 5aに入射しない ための(最短)距離 Z1およびカバーガラス 23内部で一度反射した光が受光面 5aに 入射しないための(最短)距離 Z3は X、 Yによって異なる。 X, Yが長くなると Zl , Z3も 長くなり、逆に X, Yが短くなると Zl、 Z3は短くなる。このように、どの領域で反射した 光を遮断するかにより、上記表 1に示した設計値に設定することも可能である。 [0055] The PD 5 has a structure in which the light receiving surface 5a is one step lower than the upper surface of the package 5b. The LED 4 and the top surface of the package 5b are arranged flush (to be flush with each other). Here, the distance between these and the cover glass 23 is X, and the thickness of the cover glass 23 is Y. At this time, of the light emitted by the LED 4, the (shortest) distance Z1 at which the reflected light on the lower surface 23 b of the cover glass 23 does not enter the light receiving surface 5 a and the light once reflected inside the cover glass 23 is reflected on the light receiving surface 5 a. The (shortest) distance Z3 that does not enter depends on X and Y. As X and Y become longer, Zl and Z3 become longer. Conversely, as X and Y become shorter, Zl and Z3 become shorter. In this way, the design values shown in Table 1 above can be set according to the region in which the reflected light is blocked.
[0056] また、上記実施形態においては、生体情報として脈拍数を例にして説明したが、脈 拍数に限らず、生体情報であれば構わない。  Further, in the above embodiment, the pulse rate is described as an example of the biological information. However, the present invention is not limited to the pulse rate and may be any biological information.
[0057] また、ハウジングに、他の電子機器との間で無線通信可能な無線通信手段等の機 能を付加しても良い。こうすることで、 Bluetooth等の無線通信により、メモリに記録し た脈拍数を外部の電子機器にデータ送信したり、各種情報をメモリに入手させること ができる。  Further, a function such as a wireless communication unit capable of wirelessly communicating with another electronic device may be added to the housing. By doing so, the pulse rate recorded in the memory can be transmitted to an external electronic device by wireless communication such as Bluetooth, and various information can be obtained in the memory.
実施例  Example
[0058] 上記一実施形態に係る生体情報計測装置 1を用いたときの PD5により検出された 出力結果について説明する。 [0058] Detected by PD5 when using the biological information measuring device 1 according to the embodiment. The output result will be described.
[0059] また、本実施形態においては、 LED4が OFF状態における電圧閾値 ocは 1. 9 [V] であり、 LED4が ON状態における電圧閾値 |8および電圧閾値 γはそれぞれ 0. 4 [ V]、 1. 8 [V]とする。ここで用いる PD5は、入射する光強度が増加するにしたがって 、出力する電圧値が減少するものとして説明する。すなわち、測定電圧が α以下であ るということは 1. 9 [V]以下であり、測定電圧が |8以上 γ以下であるということは 0. 4 [ V]以上 1. 8 [V]以下であることを示す。  In the present embodiment, the voltage threshold oc when the LED 4 is in the OFF state is 1.9 [V], and the voltage threshold | 8 and the voltage threshold γ when the LED 4 is in the ON state are 0.4 [V]. , 1.8 [V]. The PD 5 used here will be described on the assumption that the output voltage value decreases as the incident light intensity increases. In other words, a measured voltage of less than α is 1.9 [V] or less, and a measured voltage of | 8 or more and γ or less is 0.4 [V] or more and 1.8 [V] or less. It is shown that.
[0060] 図 14において、「装着: X」は生体情報計測装置 1が手首 Αに装着されていない状 態、「装着:〇」は装着されて 、る状態を示し、「LED点灯: X」は LED4が点灯して ヽ な 、状態 (OFF状態)、「LED点灯:〇」は LED4が点灯して 、る状態 (ON状態)を 示す。図 14に示すように、状態 1では、外光がない暗い状態で生体情報計測装置 1 が手首 Aに装着されていない状態を示す。まず、 LED4が OFF状態であるときには、 外光および LED4光がないため、 PD5に光が入射しないので PD5からの出力電圧( 測定値)は約 2 [V]となる。次いで、 LED4が ON状態にすると、外光はないが、 LED 4により照射され、カバーガラス 23表面で反射した光および内部を伝搬した光が PD 5に入射するので、 PD5からの出力電圧 (測定値)は 1. 8 [V]を少し超えた値となる。  In FIG. 14, “wearing: X” indicates a state in which the biological information measuring device 1 is not worn on the wrist Α, “wearing: 〇” indicates a worn state, and “LED lighting: X”. Indicates that the LED4 is on and the LED is on (OFF state), and “LED ON: 〇” indicates that the LED4 is on and on (ON state). As shown in FIG. 14, state 1 shows a state in which biological information measuring device 1 is not mounted on wrist A in a dark state without external light. First, when LED4 is OFF, there is no external light or LED4 light, so no light is incident on PD5, so the output voltage (measured value) from PD5 is about 2 [V]. Next, when LED 4 is turned on, there is no external light, but the light illuminated by LED 4 and reflected on the surface of cover glass 23 and the light propagated inside are incident on PD 5, so the output voltage from PD 5 (measurement Value) slightly exceeds 1.8 [V].
[0061] 次に、状態 2では、外光がない暗い状態で生体情報計測装置 1が手首 Aに装着さ れている状態を示す。まず、 LED4が OFF状態であるときには、外光および LED4光 がないため、 PD5に光が入射しないので PD5からの出力電圧(測定値)は約 2 [V]と なる。次いで、 LED4を ON状態にすると、外光はないが、 LED4により照射され、力 バーガラス 23内を伝搬した光および生体内で後方散乱した光が PD5に入射するの で、 PD5からの出力電圧 (測定値)は約 1. 4 [V]となる。  Next, state 2 shows a state in which biological information measuring device 1 is worn on wrist A in a dark state without external light. First, when LED4 is OFF, there is no external light or LED4 light, so no light is incident on PD5, so the output voltage (measured value) from PD5 is about 2 [V]. Next, when LED 4 is turned on, there is no external light, but the light radiated by LED 4 and propagated through force bar glass 23 and light scattered back in the living body enter PD 5, so the output voltage from PD 5 (Measured value) is about 1.4 [V].
[0062] 次に、状態 3では、外光の強度が約 600Lxで生体情報計測装置 1が装着されてい ない状態を示す。  Next, state 3 shows a state in which the intensity of external light is about 600 Lx and the biological information measuring device 1 is not mounted.
[0063] まず、 LED4が OFF状態であるときには、 LED4の光がないが、外光があるため、 P D5からの出力電圧(測定値)は約 0. 12 [V]となる。次いで、 LED4が ON状態にす ると、外光および LED4により照射され、カバーガラス 23内を伝搬した光が PD5に入 射するので、 PD5からの出力電圧 (測定値)は約 0. 11 [V]となる。これらの結果は外 光の強度や生体表面の状態、 LED4と PD5の距離などで若干異なるが、これらの結 果より LED4が OFF状態であるとき、 PD5の測定値が 1. 9 [V]を下回っていれば、 P D5に外光が入射しているものとして LED4および PD5と生体表面 Bとが非接触状態 であると判断できる。また、 LED4が OFF状態で PD5の測定値が 1. 9 [V]を上回つ ている場合で、 LED4を ON状態とし PD5の測定値が 1. 8 [V]を上回っている場合 は、 PD5に生体からの後方散乱光が入射していないものとして LED4および PD5と 生体表面 Bとが非接触状態であると判断し、 LED4を ON状態とし PD5の測定値が 0 . 4 [V]を下回って 、る場合は PD5に生体以外の物体からの反射光が入射して 、る ものとして LED4および PD5と生体表面 Bとが非接触状態であると判断できる。 First, when the LED 4 is in the OFF state, there is no light from the LED 4, but since there is external light, the output voltage (measured value) from the PD 5 is about 0.12 [V]. Next, when the LED 4 is turned on, the external light and the light radiated by the LED 4 and propagated in the cover glass 23 enter the PD 5, so that the output voltage (measured value) from the PD 5 is about 0.11 [ V]. These results are outside Although it differs slightly depending on the light intensity, the state of the living body surface, the distance between LED4 and PD5, etc., from these results, if the measured value of PD5 is below 1.9 [V] when LED4 is OFF, Assuming that external light is incident on PD5, it can be determined that LED4 and PD5 are not in contact with living body surface B. If the measured value of PD5 exceeds 1.9 [V] with LED4 OFF, and if the measured value of PD5 exceeds 1.8 [V] with LED4 turned on, Assuming that the backscattered light from the living body has not entered PD5, it is determined that LED4 and PD5 are not in contact with living body surface B, LED4 is turned on, and the measured value of PD5 is 0.4 [V]. In the case below, the reflected light from the object other than the living body is incident on the PD 5, and it can be determined that the LED 4 and the PD 5 and the living body surface B are in a non-contact state.
[0064] 本実施例では閾値をそれぞれ 1. 9 [V]、 1. 8 [V]、 0. 4 [V]としているが閾値の設 定値はこの限りではない。 In the present embodiment, the thresholds are set to 1.9 [V], 1.8 [V], and 0.4 [V], respectively, but the set value of the threshold is not limited to this.
産業上の利用可能性  Industrial applicability
[0065] 本発明に係る生体情報計測装置によれば、光発光部の発光状態を変えた際の光 受光部によって受光された光に基づいて接触の有無を検知しているため、簡易な構 成で生体との接触を検知することができる。したがって、外光が光受光部に入る場合 においても、正確に生体との接触を認識することができるため、高精度に生体情報の 算出を行うことが可能となる。 [0065] According to the biological information measuring device of the present invention, the presence or absence of contact is detected based on the light received by the light receiving unit when the light emitting state of the light emitting unit is changed. Thus, contact with a living body can be detected. Therefore, even when external light enters the light receiving unit, the contact with the living body can be accurately recognized, and the calculation of the biological information can be performed with high accuracy.

Claims

請求の範囲 The scope of the claims
[1] 本体と、  [1] body and
該本体に設けられるとともに生体に向けて光を照射し前記生体力 の後方散乱光 の光量に応じた生体情報信号を生成する生体センサ部と、  A biological sensor unit provided on the main body and irradiating light toward a living body to generate a biological information signal according to the amount of backscattered light of the biological force;
前記本体に設けられるとともに前記生体情報信号に基づいて生体情報を演算する 生体情報演算部と、  A biological information calculation unit that is provided in the main body and calculates biological information based on the biological information signal;
前記本体の下面側に配され、前記生体センサ部が前記生体の表面に接触したか 否かを検出する検出部とを備え、  A detection unit disposed on the lower surface side of the main body, the detection unit detecting whether the biological sensor unit has contacted the surface of the living body,
該検出部が、前記生体に光を照射する光発光部と、  The light emitting unit that irradiates the living body with light,
前記本体の下面に配されて、前記光発光部により照射した光を透過および反射さ せるとともに、前記生体において後方散乱した光を透過させるカバーガラスと、 前記カバーガラスを透過した光を受光する光受光部と、  A cover glass disposed on the lower surface of the main body for transmitting and reflecting light emitted by the light emitting unit and transmitting light scattered back in the living body; and a light for receiving light transmitted through the cover glass. A light receiving section,
該光受光部により受光された受光信号に基づいて前記生体と前記生体センサ部と が接触しているカゝ否かを判断する判断部とを備えることを特徴とする生体情報計測 装置。  A biological information measuring device, comprising: a determination unit configured to determine whether or not the living body and the biological sensor unit are in contact with each other based on a light reception signal received by the light receiving unit.
[2] 前記光受光部が、前記カバーガラスを透過した前記生体力 の後方散乱光を受光 するとともに後方散乱光の光量に応じた生体情報信号を生成することを特徴とする請 求項 1に記載の生体情報計測装置。  [2] The claim 1 wherein the light receiving unit receives backscattered light of the biological force transmitted through the cover glass and generates a biological information signal according to the amount of backscattered light. The biological information measuring device as described in the above.
[3] 前記カバーガラスに、前記光発光部と前記光受光部との間に配され前記カバーガ ラス内を伝搬する光の一部を反射させる反射面を備えることを特徴とする請求項 2に 記載の生体情報計測装置。 3. The cover glass according to claim 2, further comprising a reflection surface disposed between the light emitting unit and the light receiving unit and reflecting a part of light propagating in the cover glass. The biological information measuring device as described in the above.
[4] 一端が前記カバーガラスに、他端が前記光受光部の受光面にそれぞれ近接して 配設されたバンドル状の光ファイバを備えることを特徴とする請求項 2に記載の生体 情報計測装置。 [4] The biological information measurement according to claim 2, further comprising a bundled optical fiber having one end disposed on the cover glass and the other end disposed close to the light receiving surface of the light receiving unit. apparatus.
[5] 前記カバーガラスの前記光受光部の対向面に、前記生体からの後方散乱光を集 光させる集光部を備えることを特徴とする請求項 1または請求項 2に記載の生体情報 計測装置。  [5] The living body information measurement according to claim 1, further comprising a condensing unit that collects backscattered light from the living body on a surface of the cover glass facing the light receiving unit. apparatus.
PCT/JP2005/002018 2004-03-26 2005-02-10 Biological information measuring instrument WO2005092179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-091943 2004-03-26
JP2004091943A JP4476664B2 (en) 2004-03-26 2004-03-26 Biological information measuring device

Publications (1)

Publication Number Publication Date
WO2005092179A1 true WO2005092179A1 (en) 2005-10-06

Family

ID=35055935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002018 WO2005092179A1 (en) 2004-03-26 2005-02-10 Biological information measuring instrument

Country Status (2)

Country Link
JP (1) JP4476664B2 (en)
WO (1) WO2005092179A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US8251903B2 (en) 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
JP5414173B2 (en) 2007-12-27 2014-02-12 株式会社東芝 Pulse wave measuring device
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP3357419A1 (en) 2009-02-25 2018-08-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
JP5737667B2 (en) * 2010-05-25 2015-06-17 任天堂株式会社 GAME PROGRAM, GAME DEVICE, GAME SYSTEM, AND GAME PROCESSING METHOD
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
JP5766569B2 (en) * 2011-09-27 2015-08-19 株式会社東芝 Pulse wave velocity measuring device
WO2013109389A1 (en) 2012-01-16 2013-07-25 Valencell, Inc. Physiological metric estimation rise and fall limiting
EP2804526A1 (en) 2012-01-16 2014-11-26 Valencell, Inc. Reduction of physiological metric error due to inertial cadence
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
WO2014105521A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
EP3181048A1 (en) 2012-12-31 2017-06-21 Omni MedSci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
US9494567B2 (en) 2012-12-31 2016-11-15 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents
CN105324073B (en) * 2013-07-12 2018-02-13 精工爱普生株式会社 Bioinformation detecting device
US20170049344A1 (en) * 2014-05-02 2017-02-23 Rohm Co., Ltd. Pulse wave sensor and pulse wave measurement module
JP6216303B2 (en) 2014-09-26 2017-10-18 京セラ株式会社 Measuring apparatus and measuring method
JP6762293B2 (en) * 2014-10-02 2020-09-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical vital sign sensor
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
CN108289626A (en) * 2015-11-10 2018-07-17 皇家飞利浦有限公司 Photoplethy sinograph device
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
JP7168020B2 (en) * 2021-03-24 2022-11-09 カシオ計算機株式会社 Detachable device, detachable determination method and program
JP2022149314A (en) 2021-03-25 2022-10-06 カシオ計算機株式会社 Electronic apparatus, control method of electronic apparatus and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235320A (en) * 1998-02-23 1999-08-31 Seiko Epson Corp Biological information measuring device
JP2003169780A (en) * 2001-12-06 2003-06-17 Nippon Seimitsu Sokki Kk Photoelectric pulse wave type pulse measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235320A (en) * 1998-02-23 1999-08-31 Seiko Epson Corp Biological information measuring device
JP2003169780A (en) * 2001-12-06 2003-06-17 Nippon Seimitsu Sokki Kk Photoelectric pulse wave type pulse measuring instrument

Also Published As

Publication number Publication date
JP4476664B2 (en) 2010-06-09
JP2005270544A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
WO2005092179A1 (en) Biological information measuring instrument
JP4515148B2 (en) Biological information measuring apparatus and biological information measuring method
JP4485234B2 (en) Biological information measuring device
US10993661B1 (en) Wireless charging of a wrist-mounted sensor platform
US11330993B2 (en) Sensor and method for continuous health monitoring
EP0729726B1 (en) Pulse rate meter
US10219709B2 (en) Sensor and method for continuous health monitoring
EP2277440B1 (en) Self-luminous sensor device
JP3492086B2 (en) Wrist-mounted pulse wave measuring device and pulse wave information processing device
JP2004351107A (en) Portable medical measuring instrument
US20090115727A1 (en) Input Device with Physiological Measuring Function
KR100591239B1 (en) Apparatus for measuring health conditions of a mobile phone and a method for controlling informations of the same
JP2007167183A (en) Photoelectric pulse wave measuring device, probe for attaching to fingertip, and photoelectric pulse wave measuring method
WO2005092180A1 (en) Biological information measuring device
JPWO2017150708A1 (en) Blood flow sensor and blood flow measurement device
JP2001078972A (en) Biological information measuring apparatus
JP2001276001A (en) Biological information measuring instrument
WO2005092181A1 (en) Biological information measuring instrument
US11419510B2 (en) Biological sensor module and biological information measuring apparatus
JP2001190503A (en) Organismic information measuring device
JP3803351B2 (en) Pulse wave information measuring device
JP2001276000A (en) Bio-information measuring instrument
JP2001078973A (en) Biological information measuring apparatus
JP2013150847A (en) Biological information processing method and biological information processing apparatus
KR102483129B1 (en) Ring type oxygen saturation measuring apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase