WO2005091036A1 - Optical module and method for manufacturing the same - Google Patents

Optical module and method for manufacturing the same Download PDF

Info

Publication number
WO2005091036A1
WO2005091036A1 PCT/JP2005/005109 JP2005005109W WO2005091036A1 WO 2005091036 A1 WO2005091036 A1 WO 2005091036A1 JP 2005005109 W JP2005005109 W JP 2005005109W WO 2005091036 A1 WO2005091036 A1 WO 2005091036A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
plate
light
optical module
substrate
Prior art date
Application number
PCT/JP2005/005109
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Kikuchi
Junichi Sasaki
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2005091036A1 publication Critical patent/WO2005091036A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to a method of reflecting light emitted from a first optical component between a first optical component having a light emission port and a second optical component having a light entrance, having a reflection surface.
  • the present invention relates to an optical module that is reflected by the body and is incident on a second light component, and a method of manufacturing the same.
  • a single-nore mode optical waveguide is used for optical coupling between an optical element and an optical transmission path, for example, an optical transmission path
  • alignment of the optical axis between the optical element and the optical transmission path A margin of less than 1 / m is required.
  • a collimating optical system is required to convert light emitted from the light emitting portion of the optical element or the light emitting port of the light transmission path with a spread angle into parallel light.
  • an optical system using a concave mirror or an optical system using a convex lens can be used.
  • the light receiving element is usually arranged such that its optical axis is orthogonal to the main surface of the substrate.
  • the surface light emitting type light emitting element is also disposed so that the optical axis is orthogonal to the main surface of the substrate.
  • optical transmission paths such as optical fibers and optical waveguides are arranged such that their optical axes are parallel to the main surface of the substrate. Therefore, if these forces are formed on a single substrate, a 90-degree conversion is required to bend the optical path at a right angle.
  • using an optical system using a concave mirror as a collimating optical system is advantageous in that it can also realize 90-degree conversion of the optical path and achieve cost reduction.
  • a structure having a concave reflection surface is fitted in a mold having a convex portion in the shape of an optical waveguide, and PMMA (poly) is inserted into this mold.
  • PMMA poly
  • FIG. 24 by injecting the methyl metatarylate) resin, taking out the molded body and filling the core polymer in the hollow portion in the shape of the optical waveguide of this molded body.
  • the concave reflecting surface 102 is formed by the structure 121 and the optical waveguide
  • a method of producing a PMMA substrate 105 integrally provided with the light transmission path 106 see, for example, Patent Document 1).
  • the optical transmission line 106 and the structure 121 are covered with the polysilicon 122.
  • the intensity of light reflected by the reflective surface 102 and detected by the photodiode 109 disposed so that the optical axis is orthogonal to the main surface of the PMMA substrate 105 is maximized.
  • the photodiode 109 is pushed into and fixed to the polymer sheet 122.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-54928 (page 4-6, FIG. 1, FIG. 5, FIG. 7)
  • the structure 121 occupies a wide space from the vicinity of the light receiving portion of the photodiode 109 to the substrate 5, and thus the vicinity of the structure 121.
  • restrictions are imposed on
  • the structure 121 having the reflecting surface is inserted into the mold and used as it is for the optical module, the insertion of the structure 121 has an extremely small margin.
  • the position, depth, diameter, etc. of the shape of the reflective surface 102 with respect to the reference plane of the shape of the structure 121 engraved in the mold in the manufacture is high because precision processing that can precisely control the mold is required.
  • the present invention has been made in view of the above problems, and an object thereof is to reduce the interference with the electrode wiring of the optical element by the mirror and increase the accuracy of the position and shape of the reflecting surface.
  • the optical module according to the present invention is characterized in that a first optical component having a light exit, a second optical component having a light entrance, and light from the first optical component are reflected. And a transparent material portion supported by the reflector and in contact with at least one of the light emission port and the light entrance port.
  • a first optical component having a light exit, a second optical component having a light entrance, and light from the first optical component are reflected.
  • the light from the first optical component is incident on the second optical component by rotating each one of the wires whose one end is fixed or one of the wires fixed to one side. And adjusting the angle of the central axis of the reflecting surface formed on the reflector or the connector with respect to the light.
  • the reflector having the reflection surface is embedded in the transparent material portion, the distortion caused by the contraction of the transparent material portion is uniformly distributed stress in each portion of the reflector, and the stress is totally generated.
  • the displacement of the reflecting surface which reduces the displacement of the reflector having the reflecting surface, and to thereby prevent the displacement of the optical path.
  • FIG. 1 is a sectional view of an optical module according to an embodiment of the present invention [(a)] and a perspective view of a mirror [(b)].
  • FIG. 2 is a part of a perspective view of an order of steps for explaining the manufacturing method of the embodiment 1 of the present invention
  • FIG. 3 is a perspective view for explaining the manufacturing method of Embodiment 1 of the present invention in the order of processes in a process following the process in FIG. 2.
  • FIG. 4 is a perspective view for explaining the manufacturing method of the embodiment 1 of the present invention in the order of processes in a step following the step in FIG. 3.
  • FIG. 5 is a cross-sectional view in a step subsequent to the step of FIG. 4 for illustrating the manufacturing method of Example 1 of the present invention.
  • FIG. 8 A sectional view taken along the line A-A in FIG. 2 (b).
  • FIG. 9 is a cross-sectional view taken along the line B-B in FIG. 6 (b).
  • Fig. 10 is a perspective view of a mirror assembly used for manufacturing the optical module in accordance with the second embodiment of the present invention.
  • FIG. 11 A plan view of an optical module according to a third embodiment of the present invention [(a)] and a cross-sectional view taken along the line C-C [b)].
  • FIG. 13 A plan view of an optical module according to a fourth embodiment of the present invention [(a)] and a cross-sectional view taken along the line EE [(b)].
  • FIG. 15 is a view showing a part of a front view of an order of steps, for explaining a method of manufacturing the mirror shown in FIG.
  • FIG. 16 is a perspective view for explaining the method of manufacturing the mirror of FIG. 14 in order of processes in a step subsequent to the step of FIG. 15.
  • Garden 17 is a plan view in a process of manufacturing an optical module according to Embodiment 4 of the present invention.
  • Garden 18] is a cross-sectional view of an optical module according to Embodiment 5 of the present invention.
  • Garden 19 is a cross-sectional view of another optical module according to Embodiment 5 of the present invention.
  • Garden 20 It is sectional drawing of the optical module based on Example 6 of this invention.
  • FIG. 21 A perspective view [(a)] and a side view [(b)] showing another example of the reflector according to the present invention
  • FIG. 22 A top view [(a)] showing still another example of a reflector according to the present invention, a perspective view [b)], and a side view [()].
  • FIG. 23 is a cross-sectional view of an optical module according to an embodiment of the present invention.
  • FIG. 24 is a front view of a conventional optical module.
  • FIG. 1 (a) is a cross-sectional view of an optical module according to an embodiment of the present invention.
  • An outer wall 7 is disposed on the substrate 5, and inside thereof is a transparent material 13 formed using a transparent filler.
  • a plate-like body 1 having a reflective surface is embedded in a part of the main surface, which is a thin plate having a thickness of 100 / im or less.
  • the plate-like body 1 is a thin plate-like metal plate, in particular, a gold plate, a metal plate with a surface plated metal, or an aluminum plate, and the concave mirror A reflective surface 2 is formed.
  • a reflector having a reflective surface is in the form of a plate
  • the shape of the reflector may have a thickness of 100 ⁇ m or less, and the reflective surface 2 may be placed on the substrate at a predetermined angle.
  • the upper bottom is larger in area than the lower bottom (eg, lower bottom).
  • the upper base is a trapezoidal body with a length of 3 tl) and the height (thickness) of tl (100 ⁇ m), and a reflective surface is formed on the upper base It may be shaped.
  • the cross section is a parallelogram (side length is 2 tl);
  • a shape in which a reflection surface is formed on the side surface may be adopted.
  • the foot such that a reflector such as a trapezoid can be easily fixed to the substrate. You may provide a part (here, the side part of square-prism shape has a foot part).
  • This foot may be about 20% of the bottom of the reflector (in this case, a trapezoid).
  • reflectors such as plate-like members are all carried in the transparent material part, and contact with the lower surface of the substrate without contact, etc. It does not have to be inside.
  • the plate-like body 1 has a transparent material portion 13 so that the central axis of the reflective surface 2 forms an angle of approximately 135 degrees [hereinafter, simply referred to as “135 degrees”] counterclockwise from the upper surface of the substrate 5. It is embedded in the inside.
  • the central axis of the reflective surface 2 is at an angle other than that from the upper surface of the substrate 5, for example, the normal of the reflective surface 2 is inclined 60 degrees from the normal to the substrate surface.
  • the material part 13 may be embedded in the mold. The inclination angle can be set arbitrarily depending on the application.
  • a light receiving portion which is a light entrance or a light emitting portion which is a light exit (hereinafter referred to as “light receiving / light emitting portion”) 10 is made to face the reflecting surface 2 of the plate 1.
  • the light element 9 is mounted.
  • an optical transmission path 6 formed of an optical fiber having a core 6A and a clad 6B, which penetrates one side of the outer wall 7 and reaches the inside of the transparent material 13 on the substrate 5, has its optical axis as the substrate 5 It is disposed parallel to the main surface of the The end opening 6C of the core 6A faces the reflecting surface 2.
  • the optical axis of the light transmission path 6, the optical axis of the optical element 9, and the central axis of the reflecting surface 2 are both in one plane perpendicular to the substrate 5.
  • the optical element 9 is, for example, a light receiving element such as a photodiode or a light emitting element such as a surface emitting semiconductor laser.
  • the transparent material portion 13 can be formed by filling a transparent filler, and as the transparent filler, a transparent adhesive, a transparent gel or the like that is transparent to light used in this optical module can be formed. It is desirable to have the same refractive index as the used core 6A.
  • a refractive index matching agent such as silicone grease or silicone oil, a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin such as PMMA, polycarbonate or liquid crystal polymer can be used.
  • the outer wall 7 is also transparent to light used in this optical module at least in the vicinity of the light receiving Z light emitting portion 10 of the optical element 9 and further has the same refractive index as the transparent material 13. .
  • the light transmitted from the outside in the core 6 A of the light transmission path 6 is emitted to the transparent material portion 13 and then reflected almost at right angles by the reflecting surface 2 of the plate 1, ie, the substrate 5. Perpendicular to the main surface of Is bent upward, passes through the outer wall 7, and enters the light receiving / emitting part 10 of the optical element 9, or conversely, light emitted from the light receiving / emitting part 10 of the optical element 9 is reflected.
  • the light is bent parallel to the main surface of the substrate 5 by the surface 2 and is transmitted through the core 6A of the light transmission path 6 and emitted to the outside.
  • the manufacturing method according to the present embodiment is a manufacturing method of the optical module shown in FIG.
  • FIG. 2 to FIG. 5 the same parts as those of FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
  • the direction of length L, width W, and thickness t of the connector 30 is in the direction in which the plate members la are aligned, and in the plane in which the reflecting surface 2 is formed.
  • the width W is lmm or less
  • the thickness t is 0.1 lmm or less.
  • the connector 30 is placed on a heating table heated to 220 ° C., and one metal wire extending in the length direction of the connector 30 at each of the lower ends of the connector 30.
  • 3 Crimp one end of (Diameter: R, Length: d) using ultrasonic thermocompression bonding [Fig. 2 (b)].
  • a gold wire or an aluminum wire having a diameter of 50 ⁇ m or less used for wire bonding is optimum.
  • the length d is suitably 200 mm or less.
  • auxiliary plates 4 are installed at a distance of about 10 mm from both ends of the connector 30, and the open ends of the two metal wires are thermocompression-bonded to the respective auxiliary plates 4 [ Figure 2 (c)].
  • the auxiliary plate 4 is, for example, a plate of a soft magnetic material such as iron or nickel having a dimension of 1 mm in the length direction of the connector 30 and a dimension in the width direction of the connector 30 of about 5 mm. It is appropriate that the part to be heat-bonded be plated with gold.
  • a plurality of optical transmission paths 6 consisting of optical fibers held between a pair of optical fiber grippers (not shown) are formed of the substrate 5a. Parallel to the plane Place.
  • the substrate is mounted on a heating stage for later heating steps.
  • the optical transmission paths 6 are arranged parallel to the plane of the substrate 5a at a pitch equal to the pitch of the plate bodies la, the number of which is equal to the number of plate bodies la of the connector 30.
  • the outer wall portion 7a is placed on the substrate 5a so as to include the whole of the connector 30 and the end region facing the connector 30 of the light transmission path 6 in the inside thereof.
  • a gap through which the metal wire 3 and the light transmission path 6 can pass is formed.
  • a number of adjustment light elements (not shown) equal in number to the number of plate members la of the coupling body 30 are arranged in a plate member at a pitch equal to the pitch of the plate members la.
  • the light receiving / emitting portions are placed opposite to the plate body la so as to be arranged parallel to the direction in which the la is arranged.
  • the adjustment optical element is an optical element for adjusting the optical element to be finally mounted on the optical module so as to be positioned at the optimum position, and an optical fiber or an optical waveguide can be used for it.
  • the holder 8 is rotated about the axis of the metal wire 3 so that the central axis of the reflective surface 2 of the plate body la is the main of the substrate 5 a. Make it about 135 degrees to the surface.
  • light is externally applied to at least one light transmission path 6.
  • the incident light is emitted to the inside of the outer wall 7 from the end opening facing the reflective surface 2 of the light transmission path 6, and then the optical path is bent almost at the reflective surface 2 at right angles to the main surface of the substrate 5a. And enter the light receiving / emitting part of the adjustment light element.
  • a measuring device for measuring the intensity of light incident thereon is connected to the adjustment light element.
  • the connector 30 is rotated using the holder 8 so that the intensity of the light measured by this measuring device is maximized, and the holder 8 is fixed at that position. If necessary, light is made incident on all the optical transmission paths 6, received by all the adjustment light elements, and measured by the measuring device connected to these adjustment light elements. The strength is The position of the optical transmission line 6 and the adjustment optical element may be finely adjusted so as to be maximized.
  • the temperature of the heating table on which the substrate 5a is placed is raised to 220 ° C., and as shown in FIG. 4 (a), the metal wire 3 is formed by the indenter 19 using the ultrasonic thermocompression bonding method. Is pressed against the pre-formed gold plating pattern (not shown) on the substrate 5a and crimped.
  • the indenter 19 is not drawn only on the metal wire 3 on the right side of the outer wall 7a, but the metal wire 3 on the left side of the outer wall 7a also presses the indenter. It is crimped to a gold-plated pattern. After that, as shown in Fig.
  • the metal wire 3 is cut outside the pressure contact 12 where the metal wire 3 is crimped to the metallized pattern.
  • the metal wire 3 connected to the connecting body 30 is used as two pressure contacts.
  • the reflecting surfaces 2 formed on the plurality of plate-like members la are simultaneously aligned with the corresponding optical transmission paths 6 and the optical elements. Therefore, in the manufacturing method according to the present embodiment, the cost for the case where the alignment cost of the reflective surface 2 aligns the reflective surface of each plate with respect to the optical transmission path and the optical element is It has the effect of reducing the cost divided by the number of
  • the adjustment optical element mounted on the outer wall 7 a is replaced with an optical element actually used in the optical module.
  • a transparent adhesive or transparent gel having a refractive index the same as that of the core 6A of the light transmission path 6 is injected into the space covered by the outer wall 7a.
  • the transparent material portion 13a in which the connecting body 30 is embedded is formed.
  • an optical module matrix 50 is produced in which a plurality of optical modules shown in FIG. 1 are connected.
  • refractive index matching agents such as silicone grease and silicone oil, thermosetting resins, ultraviolet curable resins, thermoplastic resins and the like can be used.
  • thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin are thermally cured and ultraviolet cured after injection, respectively.
  • the manufacturing method of the present embodiment is completed by dividing the optical module base body 50 in a state in which the connector 30 is embedded in the transparent material portion 13a in this manner for each plate-like member la. Thereby, the optical module shown in FIG. 1 is obtained.
  • the plate-like body 1 is carried in the transparent material portion 13 and fixed.
  • the transparent material portion 13 is formed by curing a thermosetting resin, an ultraviolet curable resin, a thermoplastic resin or the like, and thereafter, the metal wire 3 is separated from the plate 1 to obtain the plate 1 May be fixed only by the transparent material portion 13.
  • the plate-like body having the reflection surface of the optical module embeds and fixes the connector 30 as shown in FIG. 2 (a) in the transparent material portion to produce the optical module base. Then, it was formed by cutting each plate-like body la.
  • a plurality of plate-like bodies 1 are connected by metal wires 3 'to form a connecting body 31, which is inside the transparent material portion. It may be formed by embedding and fixing it in the substrate to make an optical module base, and then cutting each plate 1 one by one.
  • the connector 31 may be formed as a single piece using the same constituent material.
  • the plate 1 is a glass plate or a resin plate
  • an indenter 19 having a convex surface whose temperature is raised to a temperature at which they can be plastically deformed is pressed against them to form a concave surface
  • a metal film such as aluminum or gold is vapor-deposited on the concave surface to form the reflective surface 2.
  • a silicon plate When a silicon plate is used as the material of the plate-like body, the spread of about 25 zm of gold, aluminum or the like on one side is performed on at least one side of a silicon substrate of about 50 zm in thickness by, for example, a plating method. After forming a thin metal film with high conductivity, a concave indenter having a convex surface is pressed into the thin metal film to form a concave reflective surface 2.
  • a hard silicon substrate prevents the warpage of the plate-like body 1, and by stopping the indenter on the silicon substrate, it is possible to form the dimension S of the reflecting surface 2 with high precision.
  • FIG. 6 (b) is the same as the case of FIG.
  • the connector 30 is rotated by an angle by the metal wire 3 as an axis by its own weight, as compared with the case without gravity. That is, the metal wire 3 is twisted by the rotation angle between the pressure contact 12 to the substrate 5 a and the pressure contact point to the connector 30.
  • the width W, thickness t, and length L of the connector 30 are defined as shown in FIG.
  • the density is p
  • the diameter of the metal wire 3 is R
  • the pressure of the metal wire 3 to the connector 30 is Assuming that the length from the landing point to the pressure contact point 12 is d, and the angle between the connector 30 and the main surface of the substrate 5a is ⁇ , this rotation angle ⁇ (degrees) is well known in elastic mechanics related to the torsion of the shaft. As shown, it can be calculated by the following equation.
  • g is an acceleration of gravity of 9 ⁇ 8 m / sec 2
  • G is a shear modulus of the metal wire 3.
  • the connecting portion lb of the connecting body 30 shown in FIG. 2 can be neglected to be much smaller in size than the plate body la. The following equation is obtained from equation (1).
  • the unit of t is m.
  • the diameter R of the metal wire 3 is 18 x m or more, that is, R> 18 ⁇ 111 (top, d ⁇ 200 x m, t ⁇ 100 x m, W ⁇ l mm, L ⁇ 3.6 mm If it is, the condition of equation (3) is satisfied, conversely, it is in the range of R, d, t, W, L or more. If so, the twist angle ⁇ of the metal wire 3 is not more than 0.5 degrees, and the change in the rotation angle of the connector 30 after filling with the transparent filler is also as small as not more than 0.5 degrees, Between modules, the width of the light path variation is reduced.
  • the condition of the equation (3) is satisfied with d ⁇ 100 mm, t ⁇ l ⁇ m, W ⁇ 5 ⁇ m, L ⁇ 120 zm. That is, a connected body of aluminum plates having a width of 5 ⁇ m and a length of 120 / im connected between two aluminum metal wires 3 each having a diameter of 1 zm and a length of 100 mm fixed at one end to the substrate 5a
  • the 30 rotation angles from the position when there is no gravity can be reduced to less than 0.5 degrees. Therefore, the change in the rotation angle of the group of plate-like bodies having a reflective surface after the filling with the transparent filler is also reduced to less than 0.5 degrees.
  • This can be implemented by integrally forming two metal wires 3 of 100 mm in length formed in an etching pattern on a 1 / m thick aluminum film and the connector 30.
  • FIG. 6 (a) two pieces of which one end is fixed to the outermost plate-like body of a plurality of plate-like bodies 1 made of silicon plates connected by metal wires 3 '.
  • the metal wires 3 and 3 ' are aluminum or gold having the same diameter R, and the total length of the metal wires 3 and 3' is 2d '.
  • each plate 1 connected by the metal wire 3 ′ in the direction in which the plates 1 are arranged is L ′, in the plane where the reflecting surface 2 is formed, in the direction in which the plates 1 are arranged
  • the angle of rotation of the central plate from the position without gravity in the case of ⁇ of 0.5 degree Is as follows.
  • N is the number of plate-like bodies 1 connected by the metal wire 3 '.
  • R> 25 IX m If the condition of equation (4) is satisfied, d ′ ⁇ 100 mm, ⁇ 100 / im, W ⁇ 0.2 mm, L ′ ⁇ 0.2 mm, N ⁇ 26. That is, the position of the group of 26 silicon plates connected by metal wire 3 'between two metal wires 3 fixed at one end to substrate 5a in the absence of gravity. The rotation angle from is suppressed to less than 0.5 degrees. Therefore, the change in the angle of rotation of the plate group after filling with the transparent filler is also reduced to less than 0.5 degrees.
  • the 26 plate groups connected by metal wire 3 'between the total length of 200 mm are fixed on the substrate by two metal wires 3, and a thermosetting or UV curable transparent filler is used.
  • the sheet group is wrapped with the plate, and after the transparent filler is cured, the sheet, the outer wall, the transparent material portion, and the metal wire 3 'are cut for each sheet 1, so that the sheet 1 is made of:! It is possible to manufacture an optical module divided into separate pieces.
  • the plate 1 in addition to a silicon plate, an aluminum plate having a small specific gravity as in the silicon plate, a polymer plate containing a liquid crystal polymer as a main component, or the like can be used.
  • Width and length are ⁇ 005 mm or more and lm m or less, thickness ⁇ 0 001 mm or more (desirably 1 ⁇ ⁇ 100 or more) 100 ⁇ ⁇ or less, metal wire diameter is. 0 001 mm or more desirable.
  • the thin plate-like coupling body is placed on the flat table, and the plurality of plates coupled in the coupling body Since the reflecting surface can be formed by pressing the indenter against the surface of the body, it is possible to simultaneously form the reflecting surfaces on a plurality of plate-like members with high reproducibility and at low cost.
  • a metal wire 3 composed of a bonding wire having a diameter of 50 ⁇ m or less, which is used to obtain an electrical connection of the electrodes of the integrated circuit, is connected 30 Alternatively, a plurality of plate-like members la having a reflecting surface 2 or a plate using a plate as mechanical holding means 31 or high-speed processing by ultrasonic thermocompression bonding as a means of fixing the metal wire 3 to the substrate 5a. Since the body 1 is fixed so that the central axis of its reflecting surface 2 forms an angle of 135 degrees with the substrate 5a, the manufacturing cost of the optical module can be reduced and the production speed can be improved. Have the effect.
  • the metal wire 3 of the connector 30 or 31 is used as an axis by adopting the above configuration. It has an effect that rotation by dead weight can be made small.
  • the connector 30 or 31 is embedded in a transparent filler such as a thermosetting resin or an ultraviolet curing resin in the above state, the strain of the curing shrinkage of the transparent filler is uniformly dispersed on both main surfaces of the plate la or the plate 1, so that the plate la or There is an effect that the displacement of the plate-like body 1 is small. Furthermore, in the method of manufacturing the optical module according to the present embodiment, as described above, since the rotation due to its own weight is small around the metal wire 3 of the connector 30 or 31, the connection by the buoyancy of the transparent filler The angle change of the body 30 or 31 relative to the substrate 5a can be reduced.
  • a transparent filler such as a thermosetting resin or an ultraviolet curing resin in the above state
  • optical transmission path 6 an optical fiber is used as the optical transmission path 6, but the optical transmission path may be an optical waveguide formed in parallel to the surface of the substrate 5a.
  • FIG. 7 is a cross-sectional view of steps in the case where an optical fiber actually mounted on an optical module is used as an optical element at the time of alignment of an optical transmission path, a connector, and an optical element.
  • the light device 9 is connected to a measuring device for measuring the intensity of light incident thereon.
  • the position of the connector 30 and the angle of the central axis of its reflecting surface with respect to the substrate 5a are determined so that the light intensity measured by this measuring device is maximized.
  • the optical device 9 is mounted on the optical module as it is without being replaced by another optical device.
  • the light element 9 may be a light receiving element such as a photodiode which is not an optical fiber.
  • the angle of the connector 30 with respect to the substrate 5a is determined such that the current flowing to the light receiving element is maximized.
  • a light emitting element such as an edge emitting semiconductor laser may be used instead of the optical element 9 composed of the light transmission path 6 or the optical fiber.
  • FIG. 8 (a) is a cross-sectional view taken along the line AA of FIG. 2 (b).
  • the metal wire 3 is crimped to the main surface of the plate body la on which the reflective surface 2 is formed. Force, while as shown in Figure 8 (b), gold
  • the genus wire 3 may be crimped to the main surface of the plate-like body la in which the reflective surface 2 is not formed.
  • metal wire 3 is a wire having rigidity other than metal such as a silicon wire, a ceramic wire, or a wire of carbon fiber as a substitute, and is substituted by a substitute wire having a metal mesh formed on the surface thereof.
  • metal wire 3 is a wire having rigidity other than metal such as a silicon wire, a ceramic wire, or a wire of carbon fiber as a substitute, and is substituted by a substitute wire having a metal mesh formed on the surface thereof.
  • May be A paste of silver nanoparticles or copper nanoparticles with a diameter of about 5 nm is applied to the junctions between these alternative wires and the plate 1 having a reflective surface, or to the junctions with the auxiliary plate 4, and approximately 200 These may be bonded by forming a strong metal bond by heating to ° C.
  • FIG. 9 (a) is a cross-sectional view taken along the line B-B in FIG. 6 (a).
  • the light 11 that has entered the plate-like body 1 from the side of the concave reflecting surface 2 is reflected by the reflecting surface 2.
  • the plate-like body 1 is a high heat resistant resin plate such as a transparent polyimide resin or liquid crystal polymer, a glass plate, or a silicon plate transparent at the used wavelength, as shown in FIG.
  • a metal film such as aluminum or gold is vapor-deposited only on the main surface on the convex side of these plates so as to form a convex surface to form the reflective surface 2, and a plate-like body on the opposite side to the reflective surface 2
  • the light 11 incident from the main surface 1 and transmitted through the inside of the plate 1 may be reflected by the inner surface of the reflecting surface 2.
  • the auxiliary plate 4 is a soft magnetic material and is held by the holder 8 made of an electromagnet, but the means for holding the auxiliary plate 4 is not limited to the electromagnet, and the auxiliary plate is not limited to the electromagnet.
  • the connector 30 can be rotated about the metal wire 3 by holding and fixing 4
  • any may be used.
  • any plate can be used as the auxiliary plate 4 as long as it is a flat surface to which one end of the metal wire 3 can be fixed.
  • the auxiliary plate 4 can be configured as two parallel flat plates sandwiching the metal wire 3 as a part of the holder 8.
  • the auxiliary plate 4 is installed at the open end of each of the two metal wires 3 crimped to both ends of the connecting body 30, but the metal wire between the connecting body 30 and the auxiliary plate 4 is Good even if you install a third auxiliary plate (not shown).
  • the third auxiliary plate is preferably provided with a metal wire in such a way as to face the horizontal plane when the connector 30 is oriented at an appropriate angle. By doing so, it is possible to align the connecting body 30 with the third auxiliary plate as a support.
  • the position between the third auxiliary plate and the auxiliary plate 4 at the tip is The metal wire 3 is crimped to the gold-plated pattern on the substrate 5 a with the indenter 19.
  • the third auxiliary plate is also supported by the pressure contact along with the connector 30.
  • a transparent filler is injected into the space covered by the outer wall 7a.
  • a refractive index matching agent such as silicone grease or silicone oil, or a thermoplastic resin is used to form the transparent material portion 13a. It can be formed.
  • the third auxiliary plate is later rotated to turn and turn the connector 30 connected by the metal wire 3 in the transparent material portion 13a.
  • the coupling body 30 can be rotated by liquefying the transparent filler of the transparent material portion 13a by heating. In this way, it is also possible to produce a structure that allows the connector 30 to be later rotated as required.
  • FIG. 10 is a perspective view of a connector used for manufacturing the optical module according to the second embodiment of the present invention.
  • the connecting body 32 shown in FIG. 10 is different from the connecting body 30 shown in FIG. 2 (a) in that the connecting body 30 shown in FIG. 2 (a) is composed of a plate la and a connecting portion lb.
  • the point is that the wire portion 3a and the auxiliary plate portion 4a are connected. That is, in the connecting body 32 shown in FIG. 10, the connecting body 30, the metal wire 3 and the auxiliary plate 4 shown in FIG. 2C are integrally formed.
  • the connector 32 is a metal plate of gold, silver, copper or aluminum having a thickness of about 50-18 ⁇ m.
  • the width of the metal wire portion 3a is substantially the same as the thickness thereof, and hence the cross section of the metal wire portion 3a is approximately square.
  • the manufacturing process of the optical module in the present embodiment is the same as the manufacturing process in the first embodiment.
  • a connecting body 32 in which a plate body la, a connecting portion lb, a metal wire portion 3a, and an auxiliary plate portion 4a are connected to a body is used.
  • the manufacturing time can be shortened and the manufacturing cost can be reduced.
  • the metal wire portion 3a is a metal wire of a square cross section, the twist ⁇ of the metal wire portion 3a is smaller than in the case of the metal wire of a circular cross section. Have an effect.
  • FIG. 11 (a) is a plan view of an optical module according to Example 3 of the present invention
  • FIG. 11 (b) is a cross-sectional view taken along line C--C in FIG. 11 (a).
  • parts equivalent to those in FIG. are given the same reference numerals, and redundant description will be omitted as appropriate.
  • the optical module shown in FIG. 11 is different from the optical module shown in FIG. 1 in that the optical element 9 is mounted on the recessed area of the substrate 5 rather than being mounted on the outer wall 7;
  • the metal element 3 is crimped to the electrode 14 of the optical element 9 rather than crimped to the substrate 5, and the pressure contact 12 is formed on the electrode 14 of the optical element 9.
  • the electrode 14 is electrically connected to the electrode pad 40 formed on the substrate 5 through the bonding wire 15.
  • the light incident on the light transmission path 6 from the outside is emitted to the transparent material portion 13 and is then reflected downward by the plate-like member 1 and travels substantially perpendicularly to the main surface of the substrate 5. It enters the light emitting unit 10.
  • FIG. 12 (a) is a plan view in one process of manufacturing the optical module shown in FIG. 11, and FIG. 11 (b) is a cross-sectional view taken along line DD of FIG. 11 (a). .
  • the substrate 5 is placed on a heating table (not shown).
  • equivalent parts are given the same reference numerals.
  • an optical element 9 having a light receiving / emitting unit 10 that receives or emits light in the direction perpendicular to the main surface of the substrate 5 is mounted inside the recessed region of the substrate 5 having a recessed region in the center.
  • An electrode pad 40 is formed on the main surface of the substrate 5 on the right side of the drawing in the recessed area.
  • the optical transmission path 6 is disposed on the main surface of the substrate 5 on the left side of the drawing in the drawing in the drawing so that the optical axis thereof is parallel to the main surface.
  • the optical transmission path 6 may be an optical fiber or an optical waveguide.
  • the recessed area of the substrate 5 is formed such that the core 6 A of the light transmission path 6 is higher than the light receiving / emitting part 10 of the optical element 9.
  • the plate-like body 1 and the auxiliary plate 4 are connected by the metal wire 3 using the same steps as the steps shown in the drawings (a) to (c) of the first embodiment.
  • the plate 1 is a single plate.
  • the auxiliary plate 4 is held using a holder similar to the holder 8 shown in FIG.
  • the reflective surface 2 of the plate-like body 1 faces the light receiving Z light emitting portion 10 of the optical element 9, the reflective surface Inside 2
  • the angle of the plate-like body 1 to the main surface of the substrate is The light enters the core 6A of the light transmission path 6 from the outside, is reflected by the light force plate-like body 1 emitted from the end opening 6C and travels substantially perpendicularly to the main surface of the substrate.
  • the optical coupling between 6 and the optical element 9 should be maximized.
  • a portion of the metal wire 3 in the vicinity connected to the plate-like body 1 is placed on the electrode 14 of the optical element 9.
  • the metal wire 3 is ultrasonically thermocompression-bonded to the electrode 14 of the optical element 9, and the metal wire 3 is cut at the pressure contact 12.
  • an outer wall 7 having a gap through which the metal wire 3 and the optical transmission path 6 pass is formed on the substrate 5 so as to surround the plate 1 and the optical element 9.
  • a transparent filler is injected into the region surrounded by the outer wall 7 to support the plate-like body 1 in the transparent filler, and then the transparent filler is cured to form the transparent material portion 13.
  • the manufacturing method of the embodiment is completed to obtain the optical module shown in FIG.
  • a heat-resistant resin such as epoxy resin or PMMA resin is used as the material of the outer wall 7. It has the effect of reducing the manufacturing cost and reducing the manufacturing cost.
  • FIG. 13 (a) is a plan view of an optical module according to Example 4 of the present invention
  • FIG. 13 (b) is a cross-sectional view taken along the line EE of FIG. 13 (a).
  • the same parts as those in FIG. 11 carry the same reference numerals for which duplicate descriptions are to be omitted as appropriate.
  • the optical module shown in FIG. 13 differs from the optical module shown in FIG. 11 in that the pressure contact 12 of the metal wire 3 is not formed on the electrode 14 of the optical element 9 but on the lower plate 17.
  • the lower plate 17 is fixed to the upper surface of the optical element 9.
  • the metal wire 3 is thermocompression-bonded to the plate-like body 1 having the reflective surface 2, and both ends of the metal wire 3 are thermocompression-bonded to one lower plate 17. It is a perspective view of the mirror 20 in which the pressure contact 12 is formed.
  • a method of manufacturing the mirror 20 shown in FIG. 14 will be described with reference to FIGS.
  • a processing table having two regions having different heights and in which the protrusions having a uniform thickness in the depth direction of the paper surface are formed in the low height region.
  • the inclined surface 18 opposed to the high-height area of the projecting portion is formed to form 135 degrees from the main surface of the processing table 16.
  • the two lower plates 17 are arranged so as to be aligned in the depth direction of the drawing with the protruding portions interposed therebetween.
  • the plate-like body 1 is disposed on the main surface of the high area of the processing table 16 such that one side faces the slope 18.
  • the dimension of the projection in the depth direction of the sheet is smaller than the dimension of the plate-like body 1 in the depth direction of the sheet.
  • the difference in height between the two areas of the processing table 16 is such that the upper surface force S of the lower plate 17 disposed in the lower area is approximately the same height as the upper surface of the higher area.
  • the plate 1 is a gold plate or an aluminum plate. At this point, no concave reflective surface is formed on the surface of the plate 1.
  • the lower plate 17 is made of a thin metal plate such as gold, copper, aluminum, nickel, iron or the like, or a silicon substrate, or a thin plate or substrate thereof so that the metal wire 3 made of gold wire can be thermocompression bonded. Use a board or the like.
  • a gold wire or an aluminum wire is aligned on the upper surface of the plate-like body 1 on the processing table 16 along the side facing the slope 18. , Etc., and thermocompression-bonded using an indenter 19.
  • the alignment of the metal wire 3 to the upper surface of the plate 1 is, for example, two auxiliary plates similar to the auxiliary plate 4 shown in FIG. 2 placed on both sides of the plate 1 in the depth direction of the drawing. This can be done by wire bonding both ends of the metal wire 3 and moving this auxiliary plate.
  • this alignment can be made by temporarily fixing the metal wire 3 to the thin holding film and attaching the holding film to the upper surface of the plate 1. In this case, the indenter 19 can break through the holding film to thermally press the metal wire 3 onto the plate 1.
  • the lower end of the convex surface (the type of the reflecting surface formed on the plate-like body 1) above the processing table 16 with reference to the position of the metal wire 3.
  • the lower end of the convex of the indenter 39 is transferred to the plate 1. Press down.
  • the metal wire 3 of the plate 1 is thermocompression-bonded to a surface having a depth of 30 to 30 mm and a diameter of 30.
  • a concave reflective surface 2 of / im to 500 ⁇ is formed.
  • the plate-like body 1 may be a metal such as aluminum or gold on the surface of a liquid crystal polymer having heat resistance of 220 ° C. or more, a thermoplastic resin such as polyamide imide, etc. What deposited the film can be used.
  • the temperature of the lower end of the convex surface of the plate 1 and / or the indenter 39 is set to 300 to 400.degree.
  • the plate 1 is placed such that the region of the plate 1 to which the metal wire 3 is thermocompression bonded is placed on the two lower plates 17.
  • the plate-like body 1 is rotated 135 degrees around the metal wire 3 so as to be along the slope 18, and subsequently, the processing table 16 is heated to 220 ° C. Then, the metal wire 3 is pressed against the lower plate 17 using the indenter 19, and the metal wire 3 is ultrasonically thermocompression-bonded to the lower plate 17 to form the pressure contact 12.
  • the angle between the central axis of the reflective surface 2 and the lower plate 17 is 45 degrees.
  • a mirror 20 shown in FIG. 14 is formed by cutting away the metal wire 3 at the position of the pressure contact 12 to the lower plate 17 of the metal wire 3.
  • a polyimide film or a polyimide film or the like is connected to the upper surface of the two lower plates 17 of the mirror 20, Adhere a resin film such as polyethylene terephthalate (PET) film or a holding tape such as an aluminum thin film tape with an adhesive.
  • PET polyethylene terephthalate
  • a holding tape such as an aluminum thin film tape with an adhesive.
  • those holding tapes have a degree of adhesion that can be released by applying a slight force.
  • a spacer having a height equal to or greater than that of the plate 1 is installed on the holding tape, and the holding tape is wound around a reel. By moving the reel, the mirror 20 can be moved to a desired position.
  • the holding tape of the mirror 20 is attached to the optical element not yet mounted on the substrate to position the mirror 20 on the optical element.
  • use an adhesive or heat The lower plate 17 of the mirror 20 is fixed to the light element 9 by pressure bonding.
  • the other end of the bonding wire 15 whose one end is electrically connected to the electrode pad 40 is ultrasonically thermocompression-bonded.
  • the mirror 20 is held by a holding tape above the optical element 9 mounted on the substrate 5 and electrically connected to the electrode pad 40 by the bonding wire 15.
  • the lower plate 17 of the mirror 20 is fixed to the light element 9 or the substrate 5.
  • Fixing of the mirror 20 may be adhesion with adhesive or thermocompression bonding as described above, or the lower plate 17 may be a soft magnetic material, and the lower plate of the substrate 5 may be an electromagnet. It may be performed by means such as attracting.
  • the outer wall 7 is installed so as to surround the recessed area of the substrate 5, and the transparent filler is injected into the area surrounded by the outer wall 7 to support the plate 1 in the transparent filler. Thereafter, the transparent filler is cured to form a transparent material portion, and the manufacturing process of the optical module according to the present example shown in FIG. 13 is completed.
  • the high temperature process required for the thermocompression bonding of the metal wire 3 is performed by the plate 1, the metal wire 3, Since the mirror 20 consisting of the lower plate 17 is carried out during the process of manufacturing the mirror 20 on the platen 16, the light transmission path 6 and the substrate 5 are not heated by the thermocompression bonding, It has an effect that a material which does not require heat resistance can be used for the light transmission path 6 and the substrate 5, and it is also possible to reduce the deterioration of the optical element 9.
  • the plate-like body 1 is placed along the slope 18 of the protrusion formed on the processing table 16 to form a predetermined angle between the plate-like body 1 and the lower plate 17.
  • this projection is not always necessary.
  • a predetermined angle is formed between the plate 1 and the lower plate 17. May be
  • the lower plate 17 may be mounted on the substrate 5 or the optical element 9 using a thin layer of tin-silver solder having a thickness of about lxm formed on the lower surface of the lower plate 17.
  • a through hole may be formed in the lower plate 17 and solder may be poured into the through hole at the time of mounting. Les.
  • the mirror 20 may be surrounded by an outer wall as shown, and the light element may be mounted on the upper surface of the outer wall.
  • the indenter 39 is pressed against each of the plurality of plate-like members 1 or plate-like members la on the main surface of the processing table 16 with reference to the metal wire 3 or the metal wire portion 3a.
  • the concave reflecting surface 2 with uniform depth and diameter can be formed with high positional accuracy with respect to the metal wire 3.
  • both ends of the metal wire 3 are connected to the lower plate 17 by the pressure contact 12 and the lower plate 17 is fixed to the optical element 9 or the substrate 5, the height of the metal wire 3 is equal to that of the optical element 9 or the substrate 5. It is precisely aligned on the top of the. Therefore, the heights of the plurality of reflecting surfaces 2 formed on the basis of the position of the metal wire 3 on the optical element 9 or the substrate 5 are also uniform, and the optical module can be manufactured with good reproducibility.
  • a metal film is formed only on one of the main surfaces.
  • An indenter having a concave tip end may be pressed against the main surface on which the metal film is formed to form a reflecting surface 2 which is convex outward from the main surface of the plate 1.
  • the light 11 incident from the main surface of the plate 1 opposite to the reflecting surface 2 and transmitted through the inside of the plate 1 is the reflecting surface 2. It is reflected by the inner surface.
  • a transparent high heat resistant resin plate that can be plastically deformed is pasted to one main surface of the plate-like body 1, and a metal film is formed on the high heat resistant resin plate. Can also be used. Also in these cases, it is possible to use the connection shown in FIG. 2, FIG. 6, and FIG. 10 which is not a single plate.
  • FIG. 18 is a cross-sectional view of an optical module according to Embodiment 5 of the present invention.
  • the optical module shown in FIG. 18 differs from the optical module shown in FIG.
  • the light element 9 is disposed on the lower surface of the substrate 5, and the light emitted from the light transmission path 6 to the transparent material portion 13 is transmitted to the plate 1. The light is reflected in the direction of the substrate 5 by the reflecting surface 2 and is incident on the light receiving / emitting part 10 of the optical element 9.
  • the manufacturing process of the optical module shown in FIG. 18 is as follows. First, use a gold-tin solder bump (not shown) at 280 ° C. so that the light emitting element 9 is placed on the copper pattern 41 on the lower surface of the substrate 5 so that the light receiving Z emitter 10 faces the substrate 5. Solder. Thereafter, through the same manufacturing process as in the first embodiment shown in FIG. 2 and FIG. 4 (however, the central axis of the reflective surface is disposed at 45 degrees with respect to the substrate so that the reflective surface faces the substrate). After the transparent material portion 13 is formed inside the outer wall portion 7, it is divided into individual optical modules as in the first embodiment, and the manufacturing process of the present embodiment is completed. In the above steps, the adjustment light element is not used. In the above-described steps, the method of forming a single plate and / or a mirror as described in Example 3 or 4 may be used.
  • the light element 9 is emitted from the light transmission path 6, and the light reflected by them is detected at maximum. It may be mounted on the back side of the board. If a through hole is formed in the portion of the substrate 5 through which the light beam 11 passes, a material which is not transparent to the used wavelength can also be used for the substrate 5. The through holes are filled with a transparent filler and hardened.
  • FIGS. 19 (a)-(c) show another optical module of this embodiment.
  • the optical element 9 is an optical element that receives / emits light on the back surface of the chip, and the electrode 14 of the optical element 9 and the electrode 42 on the substrate 5 with the bonding wire 15 from the front surface Are connected electrically.
  • the optical element 9 is an optical element having a condensing lens, and the light reflected as parallel light by the reflecting surface 2 of the plate-like body 1 is condensed by the condensing lens, It is led to the light emitting unit 10.
  • the optical element 9 is an optical fiber having a core 9A and a clad 9B, and the light receiving / emitting part 10 is an end opening of the core 9A.
  • the optical element 9 and the plate-like body 1 are disposed on the opposite side of the substrate 5, so the optical element 9 embeds the plate-like body 1. It is placed on the outside of the transparent material portion 13 so that the light element 9 can be attached / detached or changed later. This has the effect of improving the degree of freedom of implementation.
  • FIG. 20 is a cross-sectional view of an optical module according to Example 6 of the present invention.
  • the optical module shown in FIG. 20 differs from the optical module shown in FIG. 18 in that the lower surface of the substrate 5 has a structure similar to that formed on the upper surface of the substrate 5.
  • the manufacturing process of the optical module shown in FIG. 20 is as follows. First, using the same manufacturing process as that of the fifth embodiment, the same structure as the structure formed on the upper surface of the substrate 5 of the optical module of FIG. 18 is provided without disposing the optical element on the lower surface of the substrate 5. Is formed on the upper surface of the substrate 5. However, at this time, the transparent material portion is not yet formed. Next, using the same manufacturing process, a structure similar to the structure formed on the upper surface of the substrate 5 is formed on the lower surface of the substrate 5 so that the reflection surfaces of the plate-like members of both structures face each other. ,Form.
  • the optical path is changed at right angles on each of the reflection surfaces 2 of the two plate-like members 1, so one optical path is changed to another optical path parallel to it. Therefore, it is possible to arrange a plurality of optical transmission paths so as not to cross spatially, and it is possible to form a plurality of optical transmission paths in a conventional plane. Light loss at intersections can be avoided.
  • FIG. 20 although the optical axes of the upper and lower light transmission paths 6 of the substrate 5 are parallel, the optical axes of the upper and lower light transmission paths 6 of the substrate 5 are viewed from the direction orthogonal to the main surface of the substrate 5. Even if it is configured to cross ,.
  • the plate-like body used for conversion of the optical path is a thin plate having a thickness of preferably 100 zm or less, if such a thickness is desired. Elemental It is possible to form a reflective surface without disturbing the wiring of the electrodes.
  • the plate-like body before the formation of the reflective surface or a connecting body in which a plurality of plate-like bodies are connected is installed on a flat table. It is possible to easily form a reflecting surface by pressing an indenter against these plate-like bodies, thereby reducing the manufacturing constraints of the optical module and facilitating its manufacture.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

[PROBLEMS] To provide an optical module produced at low cost and used for conversion of an optical path using a reflector having a reflective surface of high position and profile accuracy. [MEANS FOR SOLVING PROBLEMS] A reflective surface (2) is formed accurately by pressing a presser against the surface of each of reflectors (1a) coupled in a coupling body (30) of a thin-plate reflector on a flat base, and one end of each metal wire (3) is crimped to each of the opposite ends at the lower part of the coupling body (30). The coupling body (30) is arranged on a substrate (5), and the metal wire (3) is turned so that the angle between the central axis of the reflective surface (2) and the substrate (5) may be about 45°or 135°,thus maximizing the optical coupling between an optical transmission line (6) and an optical element (9). The other end of each metal wire (3) is crimped to the substrate (5). The coupling body (30) is buried entirely in a transparent filler, which is cured to form a transparent material part (13). Division into individual reflectors (1a) is performed to obtain a plurality of optical modules.

Description

明 細 書  Specification
光モジュールおよびその製造方法  Optical module and method of manufacturing the same
技術分野  Technical field
[0001] 本発明は、光出射口を持つ第 1の光部品と光入射口を持つ第 2の光部品との間で 、第 1の光部品から出射された光を、反射面を有する反射体で反射させて第 2の光部 品に入射させる光モジュールおよびその製造方法に関するものである。  The present invention relates to a method of reflecting light emitted from a first optical component between a first optical component having a light emission port and a second optical component having a light entrance, having a reflection surface. The present invention relates to an optical module that is reflected by the body and is incident on a second light component, and a method of manufacturing the same.
背景技術  Background art
[0002] 光素子と光伝送路との光結合にぉレ、て、例えば、光伝送路にシングノレモード光導 波路を用いた場合には、光素子と光伝送路との光軸の位置合わせのマージンとして 、 1 / m以下が必要とされている。光素子の実装コストを低減するためには、この位置 合わせのマージンを大きくすることが必要である。その 1つの実現方法として、光素子 と光伝送路との間の光路を平行光で形成することが考えられる。そのためには、光素 子の発光部あるいは光伝送路の光出射口から広がり角を持って出射される光を平行 光に変換するコリメート光学系が必要である。このようなコリメート光学系には、凹面鏡 を用いる光学系、または、凸レンズを用いる光学系を使用することができる。  In the case where a single-nore mode optical waveguide is used for optical coupling between an optical element and an optical transmission path, for example, an optical transmission path, alignment of the optical axis between the optical element and the optical transmission path A margin of less than 1 / m is required. In order to reduce the mounting cost of the optical device, it is necessary to increase this alignment margin. As one of the realization methods, it is conceivable to form an optical path between an optical element and an optical transmission path by parallel light. For this purpose, a collimating optical system is required to convert light emitted from the light emitting portion of the optical element or the light emitting port of the light transmission path with a spread angle into parallel light. As such a collimating optical system, an optical system using a concave mirror or an optical system using a convex lens can be used.
[0003] 受光素子は、通常、その光軸が基板主面に直交するように配置される。面発光型 の発光素子も、その光軸が基板主面に直交するように配置される。それに対して、光 ファイバや光導波路などの光伝送路は、その光軸が基板主面に平行になるように配 置される。したがって、これら力 1つの基板上に混在して形成される場合には、光路 を直角に曲げる 90度変換が必要になる。このような場合には、コリメート光学系として 凹面鏡を用いる光学系を使用した方が、光路の 90度変換も実現できて、コストダウン を図ることができるという点で有利である。  The light receiving element is usually arranged such that its optical axis is orthogonal to the main surface of the substrate. The surface light emitting type light emitting element is also disposed so that the optical axis is orthogonal to the main surface of the substrate. On the other hand, optical transmission paths such as optical fibers and optical waveguides are arranged such that their optical axes are parallel to the main surface of the substrate. Therefore, if these forces are formed on a single substrate, a 90-degree conversion is required to bend the optical path at a right angle. In such a case, using an optical system using a concave mirror as a collimating optical system is advantageous in that it can also realize 90-degree conversion of the optical path and achieve cost reduction.
[0004] コリメート光学系として凹面鏡を用いた光モジュールの製造方法として、光導波路 の形状の凸部を有する型に、凹面の反射面が形成された構造体を嵌め込み、この型 内に PMMA (ポリメチルメタタリレート)樹脂を注入した後、成型体を取り出して、この 成型体の光導波路の形状に空所となっている部分にコアポリマを充填することによつ て、図 24に示すような、凹面の反射面 102が形成された構造体 121と光導波路より なる光伝送路 106とを一体に備えた PMMA基板 105を作製する方法が提案されて いる(例えば、特許文献 1参照)。そして、光伝送路 106と構造体 121とが、ポリマシ ート 122で覆われる。光伝送路 106から出射された後、反射面 102で反射されて、光 軸が PMMA基板 105の主面に直交するように配置されたフォトダイオード 109によ つて検出される光の強度が最大になる位置で、フォトダイオード 109が、ポリマシート 122に押し込まれて固定される。 [0004] As a method of manufacturing an optical module using a concave mirror as a collimating optical system, a structure having a concave reflection surface is fitted in a mold having a convex portion in the shape of an optical waveguide, and PMMA (poly) is inserted into this mold. As shown in FIG. 24 by injecting the methyl metatarylate) resin, taking out the molded body and filling the core polymer in the hollow portion in the shape of the optical waveguide of this molded body. , The concave reflecting surface 102 is formed by the structure 121 and the optical waveguide There has been proposed a method of producing a PMMA substrate 105 integrally provided with the light transmission path 106 (see, for example, Patent Document 1). Then, the optical transmission line 106 and the structure 121 are covered with the polysilicon 122. After being emitted from the light transmission path 106, the intensity of light reflected by the reflective surface 102 and detected by the photodiode 109 disposed so that the optical axis is orthogonal to the main surface of the PMMA substrate 105 is maximized. In this position, the photodiode 109 is pushed into and fixed to the polymer sheet 122.
[0005] 特許文献 1 :特開平 10—54928号公報(第 4—6頁、図 1、図 5、図 7) Patent Document 1: Japanese Patent Application Laid-Open No. 10-54928 (page 4-6, FIG. 1, FIG. 5, FIG. 7)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0006] し力、しながら、上述の従来技術の光モジュールでは、構造体 121が、フォトダイォー ド 109の受光部の近傍から基板 5までの間の広い空間を占有するため、構造体 121 の近傍にフォトダイオード 109の電極を形成して、その電極と基板 105とをワイヤボン デイングで電気的に接続することが、構造体 121によって妨げられて困難になるなど 、フォトダイオード 109の電極の位置と配線に制約が課せられるという課題がある。  In the prior art optical module described above, the structure 121 occupies a wide space from the vicinity of the light receiving portion of the photodiode 109 to the substrate 5, and thus the vicinity of the structure 121. For example, it is difficult to form an electrode of the photodiode 109 and electrically connect the electrode to the substrate 105 by wire bonding, because the structure 121 prevents the connection, and so on. There is a problem that restrictions are imposed on
[0007] また、上述の従来技術の製造方法では、反射面が形成された構造体 121を型に嵌 め込んで、そのまま光モジュールに用いるので、この構造体 121の嵌め込みに極端 に小さなマージンが要求される。さらに、構造体 121自体を型を用いて作製する場合 には、その作製において、型に彫り込む構造体 121の形状の基準面に対して、反射 面 102の形状の位置、深さ、直径などを精密に制御できる精密加工が求められるた め、型の製造コストが高価になる。さらに、 1つの型で、上述の構造体 121と光伝送路 106とを一体に備えた PMMA基板 105を複数個作製するために、複数個の構造体 121を連結して作製できる型を得ようとすると、複数個の構造体 121の形状を、その 相対位置も精密に制御して型に彫り込む必要があり、この場合の製造コストは、 1個 の構造体 121を作製する型の製造コストの連結個数倍よりもずっと高価になる。  Further, in the above-described prior art manufacturing method, since the structure 121 having the reflecting surface is inserted into the mold and used as it is for the optical module, the insertion of the structure 121 has an extremely small margin. Required Furthermore, in the case where the structure 121 itself is manufactured using a mold, the position, depth, diameter, etc. of the shape of the reflective surface 102 with respect to the reference plane of the shape of the structure 121 engraved in the mold in the manufacture. The cost of manufacturing molds is high because precision processing that can precisely control the mold is required. Furthermore, in order to produce a plurality of PMMA substrates 105 integrally provided with the above-mentioned structure 121 and the optical transmission path 106 in one mold, it is possible to obtain a mold that can be manufactured by connecting a plurality of structures 121. If so, it is necessary to precisely control the relative positions of the shapes of the plurality of structures 121 and engrave them in the mold, and the manufacturing cost in this case is the manufacturing cost of the mold for manufacturing one structure 121. It will be much more expensive than the connected number of times.
[0008] 本発明は、上記課題に鑑みてなされたものであって、その目的は、鏡による光素子 の電極配線に対する妨害が少なぐかつ、反射面の位置および形状の精度が高ぐ 製造コストの低い光モジュールおよびその製造方法を提供することである。  The present invention has been made in view of the above problems, and an object thereof is to reduce the interference with the electrode wiring of the optical element by the mirror and increase the accuracy of the position and shape of the reflecting surface. An optical module and a method of manufacturing the same.
課題を解決するための手段 [0009] 本発明の光モジュールは、光出射口を持つ第 1の光部品と、光入射口を持つ第 2 の光部品と、前記第 1の光部品からの光を反射して前記第 2の光部品へ入射させる 反射面を有する反射体と、前記反射体が坦め込まれ、前記光出射口と前記光入射 口の少なくとも一方に接する透明材料部と、を有するものである。 Means to solve the problem The optical module according to the present invention is characterized in that a first optical component having a light exit, a second optical component having a light entrance, and light from the first optical component are reflected. And a transparent material portion supported by the reflector and in contact with at least one of the light emission port and the light entrance port.
[0010] 本発明の光モジュールの製造方法は、光出射口を持つ第 1の光部品と、光入射口 を持つ第 2の光部品と、前記第 1の光部品からの光を反射して前記第 2の光部品へ 入射させる反射面を有する反射体と、を有する光モジュールの製造方法にぉレ、て、 前記反射体、または、複数の前記反射体が連結された連結体の 2点に 1端を固定さ れた各 1本の線材、または、 1辺に固定された 1本の線材を回転させることによって、 前記第 1の光部品からの光が前記第 2の光部品へ入射するように、前記反射体また は前記連結体に形成された前記反射面の中心軸の前記光に対する角度を調節する ことを特徴とする。  According to the method of manufacturing an optical module of the present invention, a first optical component having a light exit, a second optical component having a light entrance, and light from the first optical component are reflected. A reflector having a reflection surface to be incident on the second optical component, and a reflector having a reflection method, the reflector, or a combination of a plurality of the reflectors connected to each other. The light from the first optical component is incident on the second optical component by rotating each one of the wires whose one end is fixed or one of the wires fixed to one side. And adjusting the angle of the central axis of the reflecting surface formed on the reflector or the connector with respect to the light.
発明の効果  Effect of the invention
[0011] 本発明の光モジュールは、反射面を有する反射体を透明材料部に埋め込んでいる ので、透明材料部の収縮に伴う歪みは反射体の各部にストレスが均等に分散され全 体でストレスが打ち消し合うことにより、反射面を有する反射体の変位が小さぐ反射 面の位置ずれを小さくし、それによつて、光路のずれを防止することが可能となる。  In the optical module of the present invention, since the reflector having the reflection surface is embedded in the transparent material portion, the distortion caused by the contraction of the transparent material portion is uniformly distributed stress in each portion of the reflector, and the stress is totally generated. By offsetting each other, it is possible to reduce the displacement of the reflecting surface, which reduces the displacement of the reflector having the reflecting surface, and to thereby prevent the displacement of the optical path.
[0012] 本発明の光モジュールの製造方法は、反射体、または、複数の反射体が連結され た連結体の 2点に 1端を固定された各 1本の線材、または、 1辺に固定された 1本の線 材を回転させることによって、前記第 1の光部品からの光が前記第 2の光部品へ入射 するように、前記反射体または前記連結体に形成された前記反射面の中心軸の前 記光に対する角度を調節するものであるから、安価に、かつ、精度良く光モジュール を製造することを可能にする。  According to the method of manufacturing an optical module of the present invention, the reflector or one wire in which one end is fixed to two points of a linked body to which a plurality of reflectors are connected or one fixed to one side Of the reflective surface formed on the reflector or the connecting body such that light from the first optical component is incident on the second optical component by rotating the single wire rod. Since the angle of the central axis with respect to the light is adjusted, the optical module can be manufactured inexpensively and with high accuracy.
図面の簡単な説明  Brief description of the drawings
[0013] [図 1]本発明の実施の形態に係る光モジュールの断面図〔(a)〕と鏡の斜視図〔 (b)〕 である。  FIG. 1 is a sectional view of an optical module according to an embodiment of the present invention [(a)] and a perspective view of a mirror [(b)].
[図 2]本発明の実施例 1の製造方法を説明するための工程順の斜視図の一部である [図 3]本発明の実施例 1の製造方法を説明するための、図 2の工程に続く工程でのェ 程順の斜視図である。 [FIG. 2] is a part of a perspective view of an order of steps for explaining the manufacturing method of the embodiment 1 of the present invention FIG. 3 is a perspective view for explaining the manufacturing method of Embodiment 1 of the present invention in the order of processes in a process following the process in FIG. 2.
[図 4]本発明の実施例 1の製造方法を説明するための、図 3の工程に続く工程でのェ 程順の斜視図である。  FIG. 4 is a perspective view for explaining the manufacturing method of the embodiment 1 of the present invention in the order of processes in a step following the step in FIG. 3.
[図 5]本発明の実施例 1の製造方法を説明するための、図 4の工程に続く工程での断 面図である。  FIG. 5 is a cross-sectional view in a step subsequent to the step of FIG. 4 for illustrating the manufacturing method of Example 1 of the present invention.
園 6]本発明の実施例 1の別の製造方法を説明するための工程順の斜視図である。 園 7]本発明の実施例 1のさらに別の製造方法を説明するための一工程の斜視図で ある。 Garden 6] It is a perspective view of the process order for demonstrating another manufacturing method of Example 1 of this invention. 7) It is a perspective view of one process for explaining the further another manufacturing method of example 1 of the present invention.
[図 8]図 2 (b)の A— A線に沿う断面図である。  [FIG. 8] A sectional view taken along the line A-A in FIG. 2 (b).
[図 9]図 6 (b)の B— B線に沿う断面図である。 FIG. 9 is a cross-sectional view taken along the line B-B in FIG. 6 (b).
園 10]本発明の実施例 2に係る光モジュールの製造に用いる鏡連結体の斜視図で ある。 Garden 10] Fig. 10 is a perspective view of a mirror assembly used for manufacturing the optical module in accordance with the second embodiment of the present invention.
園 11]本発明の実施例 3に係る光モジュールの平面図〔(a)〕と C-C線に沿う断面図 〔 (b)〕である。 11] A plan view of an optical module according to a third embodiment of the present invention [(a)] and a cross-sectional view taken along the line C-C [b)].
園 12]本発明の実施例 3に係る光モジュールの製造の一工程における平面図〔(a)〕 と D-D線に沿う断面図〔 (b)〕である。 12) A plan view [(a)] and a cross-sectional view along a line DD in one process of manufacturing an optical module according to Embodiment 3 of the present invention [(b)].
園 13]本発明の実施例 4に係る光モジュールの平面図〔(a)〕と E-E線に沿う断面図〔 (b)〕である。 13] A plan view of an optical module according to a fourth embodiment of the present invention [(a)] and a cross-sectional view taken along the line EE [(b)].
園 14]図 13の光モジュールに用いる鏡体の斜視図である。 Garden 14] It is a perspective view of a mirror used for the optical module of FIG.
園 15]図 14の鏡体の製造方法を説明するための、工程順の正面図の一部を示す図 である。 Garden 15] FIG. 15 is a view showing a part of a front view of an order of steps, for explaining a method of manufacturing the mirror shown in FIG.
[図 16]図 14の鏡体の製造方法を説明するための、図 15の工程に続く工程での ェ 程順の斜視図である。  FIG. 16 is a perspective view for explaining the method of manufacturing the mirror of FIG. 14 in order of processes in a step subsequent to the step of FIG. 15.
園 17]本発明の実施例 4に係る光モジュールの製造の一工程における平面図である 園 18]本発明の実施例 5に係る光モジュールの断面図である。 Garden 17] is a plan view in a process of manufacturing an optical module according to Embodiment 4 of the present invention. Garden 18] is a cross-sectional view of an optical module according to Embodiment 5 of the present invention.
園 19]本発明の実施例 5に係る別の光モジュールの断面図である。 園 20]本発明の実施例 6に係る光モジュールの断面図である。 Garden 19] is a cross-sectional view of another optical module according to Embodiment 5 of the present invention. Garden 20] It is sectional drawing of the optical module based on Example 6 of this invention.
[図 21]本発明に係わる反射体の他の例を示す斜視図〔(a)〕及び側面図〔 (b)〕である  [FIG. 21] A perspective view [(a)] and a side view [(b)] showing another example of the reflector according to the present invention
[図 22]本発明に係わる反射体の更に他の例を示す上面図〔 (a)〕、斜視図〔 (b)〕、側 面図〔( )〕である。 [FIG. 22] A top view [(a)] showing still another example of a reflector according to the present invention, a perspective view [b)], and a side view [()].
[図 23]本発明の実施の形態に係る光モジュールの断面図である。  FIG. 23 is a cross-sectional view of an optical module according to an embodiment of the present invention.
[図 24]従来の光モジュールの正面図である。 FIG. 24 is a front view of a conventional optical module.
符号の説明 Explanation of sign
1、 la 反射面を有する板状体 1, la plate with reflective surface
lb 連結部 lb connection
2 反射面 2 Reflective surface
3、 3 ' 金属線 3, 3 'metal wire
3a 金属線部 3a Metal wire section
4 補助板 4 Auxiliary board
4a 補助板部 4a Auxiliary plate
5、 5a 基板 5, 5a substrate
6 光伝送路 6 Optical transmission line
6A、 9A コア 6A, 9A core
6B、 9B クラッド 6B, 9B clad
6C 端開口 6C end opening
7、 7a 外壁部 7, 7a outer wall
8 保持具 8 Holders
9 光素子 9 light element
10 受光/発光部 10 Light receiving / emitting part
1 1 光 1 1 Light
12 圧接部 12 pressure contact
13、 13a 透明材料部  13, 13a Transparent material section
14、 42 電極 15 ボンディングワイヤ 14, 42 electrodes 15 bonding wire
16 加工台  16 Processing table
17 下板  17 lower plate
18 斜面  18 slope
19、 39 圧子  19, 39 indenter
20 鏡体  20 mirror
30、 31、 32 連結体  30, 31, 32 connected body
40 電極パッド、  40 electrode pads,
41 銅パターン  41 copper pattern
50 光モジュール母体  50 light module mother
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 次に、本発明の実施の形態について、図面を参照して詳細に説明する。  Next, an embodiment of the present invention will be described in detail with reference to the drawings.
[0016] 図 1 (a)は、本発明の実施の形態に係る光モジュールの断面図である。基板 5の上 に、外壁部 7が配置されており、その内部に、透明充填剤を用いて形成された透明 材料部 13がある。透明材料部 13の内部には、厚さが 100 /i m以下の薄板からなる、 主面の一部に反射面を有する板状体 1が埋め込まれている。板状体 1は、図 1 (b)に 示すように、薄板状の金属板、特に、金板、表面が金めつきされた金属板、あるいは 、アルミニウム板であり、その中央部に、凹面鏡をなす反射面 2が形成されている。な お、ここでは反射面を有する反射体を板状としているが、反射体の形状は、厚さが 10 0 μ m以下であり、反射面 2が基板上に所定の角度で設置することが可能な限り任意 の形状が可能である。例えば反射体としては、図 21 (a)の下底面側から見た斜視図 、図 21 (b)の側面図に示すように、上底面が下底面より面積が大きい(例えば、下底 面の辺の長さを tlとしたとき、上底面の辺の長さは 3tl)、高さ(厚さ)が tl (く 100 μ m)の台形体であって、上底面に反射面を形成した形状であってもよい。また、図 22 ( a)の上面図、図 22 (b)の斜視図、図 22 (c)の側面図に示すように、断面が平行四辺 形(辺の長さが 2tl)である、斜めに傾いた四角柱(高さ t2、斜め方向のずれ長 t2)に 対して、その側面に反射面を形成した形状であってもよい。また図 23の光モジユー ルの断面図に示すように台形体等の反射体が基板に対して固定しやすいように、足 部(ここでは、四角柱状の側面に足部がある)を設けてもよい。この足部は反射体 (こ こでは台形体)の底面の 20%程度あってよい。なお、板状体等の反射体は透明材料 部の中に全て坦め込まれてレ、なくともよぐ基板等の下地面に接してレ、る部分や反射 体の頭部は透明材料部の中に無くてもよい。 FIG. 1 (a) is a cross-sectional view of an optical module according to an embodiment of the present invention. An outer wall 7 is disposed on the substrate 5, and inside thereof is a transparent material 13 formed using a transparent filler. In the inside of the transparent material portion 13, a plate-like body 1 having a reflective surface is embedded in a part of the main surface, which is a thin plate having a thickness of 100 / im or less. As shown in FIG. 1 (b), the plate-like body 1 is a thin plate-like metal plate, in particular, a gold plate, a metal plate with a surface plated metal, or an aluminum plate, and the concave mirror A reflective surface 2 is formed. Here, although a reflector having a reflective surface is in the form of a plate, the shape of the reflector may have a thickness of 100 μm or less, and the reflective surface 2 may be placed on the substrate at a predetermined angle. Any possible shape is possible. For example, as the reflector, as shown in the perspective view from the lower bottom side of FIG. 21 (a) and the side view of FIG. 21 (b), the upper bottom is larger in area than the lower bottom (eg, lower bottom). When the length of the side is tl, the upper base is a trapezoidal body with a length of 3 tl) and the height (thickness) of tl (100 μm), and a reflective surface is formed on the upper base It may be shaped. In addition, as shown in the top view of FIG. 22 (a), the perspective view of FIG. 22 (b), and the side view of FIG. 22 (c), the cross section is a parallelogram (side length is 2 tl); With respect to the quadrangular prism (height t 2, shift length t 2 in the oblique direction) inclined to the above, a shape in which a reflection surface is formed on the side surface may be adopted. Also, as shown in the cross-sectional view of the optical module in FIG. 23, the foot such that a reflector such as a trapezoid can be easily fixed to the substrate. You may provide a part (here, the side part of square-prism shape has a foot part). This foot may be about 20% of the bottom of the reflector (in this case, a trapezoid). In addition, reflectors such as plate-like members are all carried in the transparent material part, and contact with the lower surface of the substrate without contact, etc. It does not have to be inside.
[0017] 板状体 1は、反射面 2の中心軸が、基板 5の上面から反時計回りにほぼ 135度〔以下 、単に「135度」という〕の角度をなすように、透明材料部 13内に坦め込まれている。 ここで反射面を有する板状体 1は反射面 2の中心軸が基板 5の上面からこれ以外の 角度で、例えば反射面 2の法線が基板面の法線から 60度傾けられて、透明材料部 1 3内に埋め込まれてもよレ、。その傾き角度は用途によつて任意に設定できる。  The plate-like body 1 has a transparent material portion 13 so that the central axis of the reflective surface 2 forms an angle of approximately 135 degrees [hereinafter, simply referred to as “135 degrees”] counterclockwise from the upper surface of the substrate 5. It is embedded in the inside. Here, in the plate-like member 1 having a reflective surface, the central axis of the reflective surface 2 is at an angle other than that from the upper surface of the substrate 5, for example, the normal of the reflective surface 2 is inclined 60 degrees from the normal to the substrate surface. The material part 13 may be embedded in the mold. The inclination angle can be set arbitrarily depending on the application.
[0018] 外壁部 7の上面には、光入射口である受光部または光出射口である発光部〔以下、「 受光/発光部」という〕 10を板状体 1の反射面 2に対向させて、光素子 9が搭載され ている。また、基板 5上に、外壁部 7の 1側面を貫通して透明材料部 13の内部に達す る、コア 6Aとクラッド 6Bを持つ光ファイバよりなる光伝送路 6が、その光軸を基板 5の 主面に平行にして配置されている。コア 6Aの端開口 6Cは、反射面 2に対向している 。光伝送路 6の光軸、光素子 9の光軸、反射面 2の中心軸は、ともに、基板 5に垂直な 1平面内にある。  On the upper surface of the outer wall 7, a light receiving portion which is a light entrance or a light emitting portion which is a light exit (hereinafter referred to as “light receiving / light emitting portion”) 10 is made to face the reflecting surface 2 of the plate 1. The light element 9 is mounted. In addition, an optical transmission path 6 formed of an optical fiber having a core 6A and a clad 6B, which penetrates one side of the outer wall 7 and reaches the inside of the transparent material 13 on the substrate 5, has its optical axis as the substrate 5 It is disposed parallel to the main surface of the The end opening 6C of the core 6A faces the reflecting surface 2. The optical axis of the light transmission path 6, the optical axis of the optical element 9, and the central axis of the reflecting surface 2 are both in one plane perpendicular to the substrate 5.
[0019] 光素子 9は、例えばフォトダイオードなどの受光素子、あるいは、面発光型半導体レ 一ザなどの発光素子である。基板 5には、金属、半導体、絶縁体のいずれもが用いら れ得る。また、透明材料部 13は透明充填剤を充填することで形成することができ、こ の透明充填剤としては、この光モジュールにおいて用いられる光に対して透明である 透明接着材あるいは透明ゲルなどが用いられる力 コア 6Aと同じ屈折率を持つこと が望ましレ、。具体的には、シリコーングリースやシリコーンオイルなどの屈折率整合剤 、熱硬化性樹脂、紫外線硬化性樹脂、あるいは PMMAやポリカーボネートや液晶ポ リマーなどの熱可塑性樹脂などを用いることができる。外壁部 7も、少なくとも光素子 9 の受光 Z発光部 10の近傍において、この光モジュールで用いられる光に対して透 明であって、さらに、透明材料部 13と同じ屈折率を持つことが望ましい。  The optical element 9 is, for example, a light receiving element such as a photodiode or a light emitting element such as a surface emitting semiconductor laser. For the substrate 5, any of metal, semiconductor and insulator may be used. In addition, the transparent material portion 13 can be formed by filling a transparent filler, and as the transparent filler, a transparent adhesive, a transparent gel or the like that is transparent to light used in this optical module can be formed. It is desirable to have the same refractive index as the used core 6A. Specifically, a refractive index matching agent such as silicone grease or silicone oil, a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin such as PMMA, polycarbonate or liquid crystal polymer can be used. It is desirable that the outer wall 7 is also transparent to light used in this optical module at least in the vicinity of the light receiving Z light emitting portion 10 of the optical element 9 and further has the same refractive index as the transparent material 13. .
[0020] 外部から、光伝送路 6のコア 6A中を伝送してきた光は、透明材料部 13に出射した 後、板状体 1の反射面 2によってほぼ直角に反射されて、即ち、基板 5の主面に直角 に上方に折り曲げられて、外壁部 7を透過し、光素子 9の受光/発光部 10に入射す る、あるいは、その逆に、光素子 9の受光/発光部 10から出射した光は、反射面 2に よって基板 5の主面に平行に折り曲げられて、光伝送路 6のコア 6A中を伝送して、外 部に出射していく。 The light transmitted from the outside in the core 6 A of the light transmission path 6 is emitted to the transparent material portion 13 and then reflected almost at right angles by the reflecting surface 2 of the plate 1, ie, the substrate 5. Perpendicular to the main surface of Is bent upward, passes through the outer wall 7, and enters the light receiving / emitting part 10 of the optical element 9, or conversely, light emitted from the light receiving / emitting part 10 of the optical element 9 is reflected. The light is bent parallel to the main surface of the substrate 5 by the surface 2 and is transmitted through the core 6A of the light transmission path 6 and emitted to the outside.
実施例 1  Example 1
[0021] 次に、図 2—図 5を用いて、本発明の実施例 1に係る製造方法を説明する。本実施 例に係る製造方法は、図 1に示す光モジュールの製造方法である。図 2—図 5におい て、図 1の部分と同等の部分には同一の参照符号を付し重複する説明を適宜省略す る。  Next, the manufacturing method according to the first embodiment of the present invention will be described with reference to FIGS. The manufacturing method according to the present embodiment is a manufacturing method of the optical module shown in FIG. In FIG. 2 to FIG. 5, the same parts as those of FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
[0022] 先ず、図 1に示す光モジュールの板状体 1と同様の形状を持つ板状体 laの複数個 が連結部 lbによって連結されて一体に形成されている連結体 30を作製する〔図 2 (a )〕。連結体 30の長さ L、幅 W、厚さ tの方向を、図 2 (a)に示すように、それぞれ、板状 体 laが並ぶ方向、反射面 2の形成されている平面内にあって長さ Lの方向に直交す る方向、長さ Lの方向および幅 Wの方向に直交する方向と定義すると、幅 Wは lmm 以下、厚さ tは 0. lmm以下である。連結体 30の材料としては、金板、表面が金めつ きされた金属板、あるいは、アルミニウム板などの薄板状の金属板を用いた。  First, a plurality of plate-like members la having the same shape as the plate-like members 1 of the optical module shown in FIG. Figure 2 (a)]. As shown in FIG. 2A, the direction of length L, width W, and thickness t of the connector 30 is in the direction in which the plate members la are aligned, and in the plane in which the reflecting surface 2 is formed. When defined as a direction orthogonal to the direction of length L, and a direction perpendicular to the direction of length L and the direction of width W, the width W is lmm or less, and the thickness t is 0.1 lmm or less. As the material of the connector 30, a gold plate, a metal plate with a surface plated metal, or a thin plate-like metal plate such as an aluminum plate was used.
[0023] 次に、連結体 30を、 220°Cに昇温した加熱台上に設置し、連結体 30の下部両端 に、それぞれ、連結体 30の長さ方向に延びる各 1本の金属線 3 (直径: R、長さ: d)の 1端を、超音波熱圧着法を用いて圧着する〔図 2 (b)〕。金属線 3の材料としては、ワイ ャボンディングに用いる直径が 50 μ m以下の金線あるいはアルミニウム線などが最 適である。長さ dは、 200mm以下が適当である。  Next, the connector 30 is placed on a heating table heated to 220 ° C., and one metal wire extending in the length direction of the connector 30 at each of the lower ends of the connector 30. 3 Crimp one end of (Diameter: R, Length: d) using ultrasonic thermocompression bonding [Fig. 2 (b)]. As a material of the metal wire 3, a gold wire or an aluminum wire having a diameter of 50 μm or less used for wire bonding is optimum. The length d is suitably 200 mm or less.
[0024] 次いで、連結体 30の両端から 10mm程度の間隔を置いて 2枚の補助板 4を設置し 、 2本の金属線のそれぞれの開放端を、それぞれの補助板 4に熱圧着する〔図 2 (c)〕 。補助板 4としては、例えば、連結体 30の長さ方向の寸法が lmm、連結体 30の幅方 向の寸法が 5mm程度の鉄あるいはニッケルなどの軟磁性体の板であって、金属線 3 が熱圧着される部分に金めつきを施されたものが適当である。  Next, two auxiliary plates 4 are installed at a distance of about 10 mm from both ends of the connector 30, and the open ends of the two metal wires are thermocompression-bonded to the respective auxiliary plates 4 [ Figure 2 (c)]. The auxiliary plate 4 is, for example, a plate of a soft magnetic material such as iron or nickel having a dimension of 1 mm in the length direction of the connector 30 and a dimension in the width direction of the connector 30 of about 5 mm. It is appropriate that the part to be heat-bonded be plated with gold.
[0025] その後、図 3 (a)に示すように、基板 5a上に、一対の光ファイバグリッパ(図示せず) で挟んで保持した光ファイバよりなる複数の光伝送路 6を、基板 5aの面に平行に配 置する。基板は、後の加熱工程のために、加熱台の上に載せられている。光伝送路 6は、その数が連結体 30の板状体 laの数に等しぐ板状体 laのピッチと等しいピッ チで基板 5aの面に平行に並べられる。次に、図 2 (c)に示す、金属線 3で連結体 30 を連結された両方の補助板 4を、電磁石からなる保持具 8に吸引させた後、連結体 3 0および両金属線 3の一部が、基板 5a上に載るように、保持具 8を移動させる。その 際、連結体 30の板状体 laの並ぶ方向を、光伝送路 6の並ぶ方向に一致させる。両 方の補助板 4の間の間隔は、例えば、 200mmである。また、両金属線 3の一部が載 つている領域の基板 5aの主面には、金めつきパターンがあらかじめ形成されている。 なお、図 3 (a)において、連結体 30の連結部 lbは、図の簡単のために、図示されて いない。 Thereafter, as shown in FIG. 3 (a), on the substrate 5a, a plurality of optical transmission paths 6 consisting of optical fibers held between a pair of optical fiber grippers (not shown) are formed of the substrate 5a. Parallel to the plane Place. The substrate is mounted on a heating stage for later heating steps. The optical transmission paths 6 are arranged parallel to the plane of the substrate 5a at a pitch equal to the pitch of the plate bodies la, the number of which is equal to the number of plate bodies la of the connector 30. Next, as shown in FIG. 2 (c), after both auxiliary plates 4 in which the connecting body 30 is connected by the metal wire 3 are attracted by the holder 8 made of an electromagnet, the connecting body 30 and both metal wires 3 The holder 8 is moved so that a part of the lens rests on the substrate 5a. At this time, the direction in which the plate-like members la of the connector 30 are aligned is made to coincide with the direction in which the light transmission paths 6 are arrayed. The distance between the two auxiliary plates 4 is, for example, 200 mm. In addition, a gold plating pattern is formed in advance on the main surface of the substrate 5a in a region where a part of both the metal wires 3 is placed. In FIG. 3 (a), the connecting portion lb of the connecting body 30 is not shown for simplicity of the drawing.
[0026] 次いで、外壁部 7aを、その内部に、連結体 30の全体、光伝送路 6の連結体 30に 対向している端部領域を含むように、基板 5a上に載置する。外壁部 7aには、金属線 3および光伝送路 6が貫通できる隙間が形成されている。さらに、外壁部 7の上に、連 結体 30の板状体 laの数に等しい数の調整用光素子(図示せず)が、板状体 laのピ ツチと等しいピッチで、板状体 laの並ぶ方向に平行に並ぶように、その受光/発光 部を板状体 laに対向させて載置される。調整用光素子は、最終的に光モジュールに 搭載される光素子が最適の位置に位置するように調整するための光素子であって、 光ファイバあるいは光導波路などをそれに充てることができる。  Next, the outer wall portion 7a is placed on the substrate 5a so as to include the whole of the connector 30 and the end region facing the connector 30 of the light transmission path 6 in the inside thereof. In the outer wall 7a, a gap through which the metal wire 3 and the light transmission path 6 can pass is formed. Furthermore, on the outer wall 7, a number of adjustment light elements (not shown) equal in number to the number of plate members la of the coupling body 30 are arranged in a plate member at a pitch equal to the pitch of the plate members la. The light receiving / emitting portions are placed opposite to the plate body la so as to be arranged parallel to the direction in which the la is arranged. The adjustment optical element is an optical element for adjusting the optical element to be finally mounted on the optical module so as to be positioned at the optimum position, and an optical fiber or an optical waveguide can be used for it.
[0027] 続いて、図 3 (b)に示すように、金属線 3の軸を中心にして保持具 8を回転させて、 板状体 laの反射面 2の中心軸が、基板 5aの主面に対して約 135度になるようにする 。次に、少なくとも 1つの光伝送路 6に外部から光を入射させる。その入射光は、光伝 送路 6の反射面 2に対向する端開口から外壁部 7の内部に出射した後、反射面 2で ほぼ直角に光路を曲げられて、基板 5aの主面に直角に進み、調整用光素子の受光 /発光部に入射する。調整用光素子には、それに入射する光の強度を測定する測 定装置が接続されている。この測定装置で測定される光の強度が最大になるように、 連結体 30を、保持具 8を用いて回転させ、その位置で保持具 8を固定する。必要で あれば、全ての光伝送路 6に光を入射させて、全ての調整用光素子で受光して、そ れらの調整用光素子に接続されている測定装置で測定される光の強度が、おのお の、最大になるように、光伝送路 6および調整用光素子の位置を微調整してもよい。 Subsequently, as shown in FIG. 3 (b), the holder 8 is rotated about the axis of the metal wire 3 so that the central axis of the reflective surface 2 of the plate body la is the main of the substrate 5 a. Make it about 135 degrees to the surface. Next, light is externally applied to at least one light transmission path 6. The incident light is emitted to the inside of the outer wall 7 from the end opening facing the reflective surface 2 of the light transmission path 6, and then the optical path is bent almost at the reflective surface 2 at right angles to the main surface of the substrate 5a. And enter the light receiving / emitting part of the adjustment light element. A measuring device for measuring the intensity of light incident thereon is connected to the adjustment light element. The connector 30 is rotated using the holder 8 so that the intensity of the light measured by this measuring device is maximized, and the holder 8 is fixed at that position. If necessary, light is made incident on all the optical transmission paths 6, received by all the adjustment light elements, and measured by the measuring device connected to these adjustment light elements. The strength is The position of the optical transmission line 6 and the adjustment optical element may be finely adjusted so as to be maximized.
[0028] 次いで、基板 5aを載置している加熱台を 220°Cに昇温し、図 4 (a)に示すように、超 音波熱圧着法を用いて、圧子 19で、金属線 3を、基板 5a上の予め形成しておいた金 めっきパターン(図示せず)に押し当てて圧着する。図の簡単のために、外壁部 7aの 右側の金属線 3上にしか圧子 19が描かれていなレ、が、外壁部 7aの左側の金属線 3 も圧子を押し当てられて、基板上の金めつきパターンに圧着される。その後、図 4 (b) に示すように、金属線 3が金めつきパターンに圧着されている圧接点 12の外側で、金 属線 3を切断する。このように、複数の板状体 laが連結した連結体 30を基板 5aに対 して最適の角度になるように位置合わせした後に、連結体 30に連結された金属線 3 を 2つの圧接点 12で基板 5aに圧着することによって、複数の板状体 laに形成されて いる反射面 2が、それぞれの対応する光伝送路 6および光素子に対して、同時に位 置合わせされる。したがって、本実施例による製造方法は、反射面 2の位置合わせコ ストが、個々の板状体の反射面を光伝送路および光素子に対して位置合わせする場 合のコストを板状体 laの個数で割ったコストに低減するという効果を有する。 Next, the temperature of the heating table on which the substrate 5a is placed is raised to 220 ° C., and as shown in FIG. 4 (a), the metal wire 3 is formed by the indenter 19 using the ultrasonic thermocompression bonding method. Is pressed against the pre-formed gold plating pattern (not shown) on the substrate 5a and crimped. In order to simplify the figure, the indenter 19 is not drawn only on the metal wire 3 on the right side of the outer wall 7a, but the metal wire 3 on the left side of the outer wall 7a also presses the indenter. It is crimped to a gold-plated pattern. After that, as shown in Fig. 4 (b), the metal wire 3 is cut outside the pressure contact 12 where the metal wire 3 is crimped to the metallized pattern. As described above, after aligning the connecting body 30 in which a plurality of plate-like bodies la are connected to the substrate 5a at an optimal angle, the metal wire 3 connected to the connecting body 30 is used as two pressure contacts. By pressure-bonding to the substrate 5a at 12, the reflecting surfaces 2 formed on the plurality of plate-like members la are simultaneously aligned with the corresponding optical transmission paths 6 and the optical elements. Therefore, in the manufacturing method according to the present embodiment, the cost for the case where the alignment cost of the reflective surface 2 aligns the reflective surface of each plate with respect to the optical transmission path and the optical element is It has the effect of reducing the cost divided by the number of
[0029] 次に、外壁部 7aに搭載されていた調整用光素子を、光モジュールで実際に用いる 光素子に置き換える。  Next, the adjustment optical element mounted on the outer wall 7 a is replaced with an optical element actually used in the optical module.
[0030] 次いで、図 5に示すように、外壁部 7aで覆われた空間に、光伝送路 6のコア 6Aと同 じ屈折率を有する透明接着材あるいは透明ゲルからなる透明充填剤を注入して、連 結体 30を埋め込む透明材料部 13aを形成する。これによつて、図 1に示す光モジュ ールが複数個連結された光モジュール母体 50が作製される。透明充填剤の材料と しては、具体的には、シリコーングリースやシリコーンオイルなどの屈折率整合剤、熱 硬化性樹脂、紫外線硬化性樹脂、熱可塑性樹脂などを用いることができる。熱硬化 性樹脂や紫外線硬化性樹脂、熱可塑性樹脂を用いた場合には、当然ながら、それら は、注入後、それぞれ、熱硬化、紫外線硬化される。連結体 30を透明材料部 13aに 坦め込まない状態では、例えば、連結体 30を挟む偶力が基板 5aにパルス的に働い た場合を想定すると、その偶力が切れたときに、連結体 30が、金属線 3を軸として回 転し、その回転が金属線 3にねじれを生じさせ、そのねじれの復元運動によって逆回 転が生じ、といった具合に、連結体 30が振動する。このような回転変位や振動は、金 属線 3全体にねじれ応力を与え、また、圧接点 12や、金属線 3の連結体 30への圧着 点に不要な応力を印加することになり、望ましくない。連結体 30を透明材料部 13aに 坦め込むことは、このような回転変位や振動を防止するという効果を持つ。 Then, as shown in FIG. 5, a transparent adhesive or transparent gel having a refractive index the same as that of the core 6A of the light transmission path 6 is injected into the space covered by the outer wall 7a. Thus, the transparent material portion 13a in which the connecting body 30 is embedded is formed. As a result, an optical module matrix 50 is produced in which a plurality of optical modules shown in FIG. 1 are connected. As a material of the transparent filler, specifically, refractive index matching agents such as silicone grease and silicone oil, thermosetting resins, ultraviolet curable resins, thermoplastic resins and the like can be used. In the case of using a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin, of course, they are thermally cured and ultraviolet cured after injection, respectively. In a state where the connector 30 is not carried in the transparent material portion 13a, for example, assuming that a couple sandwiching the connector 30 acts on the substrate 5a in a pulsing manner, the connector is disconnected when the couple is broken. 30 rotates about the metal wire 3 and the rotation causes the metal wire 3 to twist, and the restoring motion of the twist causes reverse rotation, and so on. Such rotational displacement or vibration is gold This would cause torsional stress to be applied to the entire genus wire 3 and to apply unnecessary stress to the pressure contact 12 and the crimping point of the metal wire 3 to the connector 30, which is undesirable. Carrying the connector 30 into the transparent material portion 13a has the effect of preventing such rotational displacement and vibration.
[0031] 次に、このように連結体 30を透明材料部 13aに埋め込んだ状態の光モジュール母 体 50を各板状体 la毎に分割することによって、本実施例の製造方法を完了する。こ れによって、図 1に示す光モジュールが得られる。板状体 1は、透明材料部 13内に坦 め込まれて、固定されている。ここで、透明材料部 13を熱硬化性樹脂、紫外線硬化 性樹脂、熱可塑性樹脂などを硬化することで形成し、その後に、板状体 1から金属線 3を切り離すことで、板状体 1を透明材料部 13のみで固定するようにしてもよい。  Next, the manufacturing method of the present embodiment is completed by dividing the optical module base body 50 in a state in which the connector 30 is embedded in the transparent material portion 13a in this manner for each plate-like member la. Thereby, the optical module shown in FIG. 1 is obtained. The plate-like body 1 is carried in the transparent material portion 13 and fixed. Here, the transparent material portion 13 is formed by curing a thermosetting resin, an ultraviolet curable resin, a thermoplastic resin or the like, and thereafter, the metal wire 3 is separated from the plate 1 to obtain the plate 1 May be fixed only by the transparent material portion 13.
[0032] 上述の説明においては、光モジュールの反射面を有する板状体が、図 2 (a)に示 すような連結体 30を透明材料部内に埋め込んで固定して光モジュール母体を作製 してから、各板状体 la毎に切断することによって形成された。その代替例として、反 射面を有する板状体は、図 6 (a)に示すように、複数の板状体 1を金属線 3 'で連結し て連結体 31とし、これを透明材料部内に埋め込んで固定して光モジュール母体を作 製してから、各板状体 1毎に切断することによって形成されてもよい。この場合には、 板状体 1として、シリコン板、セラミックス板、ガラス板、あるいは、ポリイミド樹脂や液晶 ポリマなどの高耐熱性樹脂板を用いることもできる。また連結体 31としては図 2 (a)に 示すように同一構成材料を用いた一体物で形成してもよい。板状体 1がガラス板ある いは樹脂板である場合には、それらに、それらを塑性変形させ得る温度に昇温した 凸面形状の表面を持つ圧子 19を押し当てて凹面を形成した後、その凹面にアルミ二 ゥムあるいは金などの金属膜を蒸着して反射面 2を形成する。板状体の材料としてシ リコン板を用いる場合には、厚さ 50 z m程度のシリコン基板の少なくとも 1面に、例え ばめつき法などによって、 1面について 25 z m程度の金やアルミニウム等の展性の高 い金属の薄膜を形成した後、この金属薄膜に凸面形状の表面をした圧子を押し込ん で、凹面形状の反射面 2を形成する。硬いシリコン基板が、板状体 1の反りを防ぎ、ま た、圧子をシリコン基板で停止させることによって、反射面 2の寸法を精度よく形成す ること力 Sできる。図 6 (b)は、図 6 (a)に示す、金属線 3 'によって連結された複数の板 状体 1の最も外側の板状体に、さらに、図 2 (c)の場合と同様に、金属線 3を連結した 後、この金属線 3を補助板 4に熱圧着した状態を示している。以後、上述と同様のェ 程を用いて、個々の光モジュールが作製される。光モジュール母体を各板状体 1毎 に切断する際には、隣接し合う 2つの板状体 1を連結している金属線 3'が切断される In the above description, the plate-like body having the reflection surface of the optical module embeds and fixes the connector 30 as shown in FIG. 2 (a) in the transparent material portion to produce the optical module base. Then, it was formed by cutting each plate-like body la. As an alternative example, as shown in FIG. 6 (a), in the plate-like body having a reflection surface, a plurality of plate-like bodies 1 are connected by metal wires 3 'to form a connecting body 31, which is inside the transparent material portion. It may be formed by embedding and fixing it in the substrate to make an optical module base, and then cutting each plate 1 one by one. In this case, a silicon plate, a ceramic plate, a glass plate, or a highly heat-resistant resin plate such as a polyimide resin or a liquid crystal polymer may be used as the plate-like body 1. Further, as shown in FIG. 2 (a), the connector 31 may be formed as a single piece using the same constituent material. When the plate 1 is a glass plate or a resin plate, an indenter 19 having a convex surface whose temperature is raised to a temperature at which they can be plastically deformed is pressed against them to form a concave surface, A metal film such as aluminum or gold is vapor-deposited on the concave surface to form the reflective surface 2. When a silicon plate is used as the material of the plate-like body, the spread of about 25 zm of gold, aluminum or the like on one side is performed on at least one side of a silicon substrate of about 50 zm in thickness by, for example, a plating method. After forming a thin metal film with high conductivity, a concave indenter having a convex surface is pressed into the thin metal film to form a concave reflective surface 2. A hard silicon substrate prevents the warpage of the plate-like body 1, and by stopping the indenter on the silicon substrate, it is possible to form the dimension S of the reflecting surface 2 with high precision. FIG. 6 (b) is the same as the case of FIG. 2 (c) in addition to the outermost plates of the plurality of plates 1 connected by metal wires 3 'shown in FIG. 6 (a). , Connected metal wire 3 Afterward, the state where the metal wire 3 is thermocompression-bonded to the auxiliary plate 4 is shown. Thereafter, individual light modules are manufactured using the same process as described above. When the optical module base is cut for each plate 1, the metal wire 3 ′ connecting the two adjacent plates 1 is cut.
[0033] ここで、図 4 (b)の状態を考える。図 4 (b)の状態では、静止状態において、連結体 3 0が、 自重によって、重力のない場合に比して、金属線 3を軸として、ある角度だけ回 転している。即ち、金属線 3が、基板 5aへの圧接点 12と連結体 30への圧着点との間 で、その回転角度だけねじれている。連結体 30の幅 W、厚さ t、長さ Lを図 1に示す通 りに定義し、その密度を pとし、金属線 3の直径を Rとし、金属線 3の連結体 30への圧 着点から圧接点 12までの長さを dとし、連結体 30と基板 5aの主面とのなす角度を Θ とすると、この回転角度 φ (度)は、軸のねじりに関する弾性力学においてよく知られ ているように、以下の式で計算できる。 Here, consider the state of FIG. 4 (b). In the state of FIG. 4 (b), in the stationary state, the connector 30 is rotated by an angle by the metal wire 3 as an axis by its own weight, as compared with the case without gravity. That is, the metal wire 3 is twisted by the rotation angle between the pressure contact 12 to the substrate 5 a and the pressure contact point to the connector 30. The width W, thickness t, and length L of the connector 30 are defined as shown in FIG. 1, the density is p, the diameter of the metal wire 3 is R, and the pressure of the metal wire 3 to the connector 30 is Assuming that the length from the landing point to the pressure contact point 12 is d, and the angle between the connector 30 and the main surface of the substrate 5a is Θ, this rotation angle φ (degrees) is well known in elastic mechanics related to the torsion of the shaft. As shown, it can be calculated by the following equation.
[0034] = (1440/ π 2) p gdLtW2- cos Θ / (GR4) (1) [0034] = (1440 / π 2) p gdLtW 2 - cos Θ / (GR 4) (1)
ここで、 gは、重力の加速度 9· 8m/sec2であり、 Gは、金属線 3のずれ弾性率であ る。式(1)において、図 2に示す連結体 30の連結部 lbは、板状体 laに比して、その 寸法がはるかに小さぐ無視できるとしている。式(1)から、以下の式が得られる。 Here, g is an acceleration of gravity of 9 · 8 m / sec 2 , and G is a shear modulus of the metal wire 3. In the formula (1), the connecting portion lb of the connecting body 30 shown in FIG. 2 can be neglected to be much smaller in size than the plate body la. The following equation is obtained from equation (1).
[0035] (d/R) (L/R) (W/R) 2= π 2 G/ (1440 p gt- cos Θ ) (2) (D / R) (L / R) (W / R) 2 = π 2 G / (1440 p gt-cos)) (2)
この状態で、外壁部 7aで覆われた空間を透明充填剤で充填すると、透明充填剤が 連結体 30に浮力を与えるために、 φが変化する。この φの変化が大きいと、反射面 2 が最適位置からずれてしまう。したがって、この φの変化には、許容上限がある。  In this state, when the space covered by the outer wall 7a is filled with the transparent filler, φ changes in order for the transparent filler to give the connecting body 30 a buoyancy. If this change in φ is large, the reflecting surface 2 deviates from the optimum position. Therefore, there is an allowable upper limit to this change in φ.
[0036] φの変化を小さくするためには、 φ自体を小さくすればよい。例えば、 φ < 0. 5度と する。連結体 30も、金属線 3も金であれば、
Figure imgf000014_0001
G = 2. 7 X 101 °N/m2である。 Θを 45度とすると、 φぐ 0. 5度の場合には、式(2)から以下の不等 式が得られる。
In order to reduce the change in φ, φ itself may be reduced. For example, let φ <0. 5 degrees. If connected body 30 and metal wire 3 are also gold,
Figure imgf000014_0001
G = 2. 7 x 10 1 ° N / m 2 . When φ is 45 degrees, in the case of φ 0.5 degree, the following inequality can be obtained from equation (2).
[0037] (d/R) (L/R) (W/R) 2< 700/t (3) (D / R) (L / R) (W / R) 2 <700 / t (3)
ここで、 tの単位は、 mである。式(3)から金属線 3の直径 Rが 18 x m以上、即ち、 R > 18〃111でぁる場合(こま、 d< 200 x m, t< 100 x m, W< lmm、 L< 3. 6mmで あれば、式(3)の条件が満たされる。逆に言えば、 R、 d、 t、 W、 L力 以上の範囲に あれば、金属線 3のねじれ角度 φが 0. 5度以下であり、透明充填剤の充填後におけ る連結体 30の回転角度の変化も 0. 5度以下と小さくなり、個別に分割した光モジュ ールの間において、光路変動の幅が小さくなる。 Here, the unit of t is m. From equation (3), when the diameter R of the metal wire 3 is 18 x m or more, that is, R> 18〃 111 (top, d <200 x m, t <100 x m, W <l mm, L <3.6 mm If it is, the condition of equation (3) is satisfied, conversely, it is in the range of R, d, t, W, L or more. If so, the twist angle φ of the metal wire 3 is not more than 0.5 degrees, and the change in the rotation angle of the connector 30 after filling with the transparent filler is also as small as not more than 0.5 degrees, Between modules, the width of the light path variation is reduced.
[0038] 一方、連結体 30がアルミニウム板で、金属線 3がアルミニウム線の場合には、 p =2On the other hand, when the connector 30 is an aluminum plate and the metal wire 3 is an aluminum wire, p = 2
. 7X103kg/m3、 G = 2. 6 X 1010N/m2であり、上述と同じく、 φぐ 0. 5度の場合 には、式(2)から以下の不等式が得られる。 In the case of 7 × 10 3 kg / m 3 , G = 2. 6 × 10 10 N / m 2 , and in the case of φ 0 0.5 degrees as described above, the following inequality can be obtained from equation (2).
[0039] (d/R) (L/R) (W/R) 2<4800/t (3) (D / R) (L / R) (W / R) 2 <4800 / t (3)
R>18 xmである場合には、 d<4001 m, t<1001 m, W< lmm、 L<12mm、 あるレヽは、 d<lmm、 tく 100μπι、 Wく lmm、 L<5. Ommで、式(3)の条件が満 たされる。 If R> 18 is xm is, d <400 1 m, t <100 1 m, W <lmm, L <12mm, there Rere is, d <lmm, t rather 100μπι, W rather lmm, L <5. The condition of equation (3) is satisfied at O mm.
[0040] また、 R>0. 5 xmである場合には、 d<100mm、 t<l〃m、 W<5〃m、 L<120 zmで、式(3)の条件が満たされる。即ち、基板 5aに一端を固定された直径 l zmで 長さ 100mmの 2本のアルミニウムの金属線 3の間に連結された幅 5 μ mで長さが 12 0/imのアルミニウム板の連結体 30の、重力が存在しない場合の位置からの回転角 度が 0. 5度以下に抑えられる。したがって、透明充填剤の充填後における反射面を 有する板状体 1群の回転角度の変化も 0. 5度以下と少なくなる。これは、厚さ 1/ m のアルミ膜上にエッチングパターンで形成した長さ 100mmの金属線 3を 2本と、連結 体 30を一体物で形成して実施することができる。  Further, in the case of R> 0.5 × m, the condition of the equation (3) is satisfied with d <100 mm, t <l〃m, W <5〃m, L <120 zm. That is, a connected body of aluminum plates having a width of 5 μm and a length of 120 / im connected between two aluminum metal wires 3 each having a diameter of 1 zm and a length of 100 mm fixed at one end to the substrate 5a The 30 rotation angles from the position when there is no gravity can be reduced to less than 0.5 degrees. Therefore, the change in the rotation angle of the group of plate-like bodies having a reflective surface after the filling with the transparent filler is also reduced to less than 0.5 degrees. This can be implemented by integrally forming two metal wires 3 of 100 mm in length formed in an etching pattern on a 1 / m thick aluminum film and the connector 30.
[0041] さらに、図 6 (a)に示すような、金属線 3'によって連結されたシリコン板よりなる複数 の板状体 1の最も外側の板状体に 1端を固定された 2本の金属線 3が、上述と同様の 工程によって、他端を基板に固定されている場合を考える。金属線 3と 3'とが、同じ 直径 Rを持つアルミニウムあるいは金で、金属線 3と 3'とを合わせた全長を 2d'とする 。各板状体 1の、金属線 3'によって連結されて板状体 1の並ぶ方向の寸法を L'、反 射面 2の形成されている平面内にあって板状体 1の並ぶ方向に直交する方向の寸法 を W'、それらに直交する方向の寸法を t'とすると、 φぐ 0. 5度の場合には、中央の 板状体の、重力のない場合の位置からの回転角度は、以下のようになる。  Furthermore, as shown in FIG. 6 (a), two pieces of which one end is fixed to the outermost plate-like body of a plurality of plate-like bodies 1 made of silicon plates connected by metal wires 3 '. Consider the case where the metal wire 3 is fixed to the substrate at the other end by the same process as described above. The metal wires 3 and 3 'are aluminum or gold having the same diameter R, and the total length of the metal wires 3 and 3' is 2d '. The dimension of each plate 1 connected by the metal wire 3 ′ in the direction in which the plates 1 are arranged is L ′, in the plane where the reflecting surface 2 is formed, in the direction in which the plates 1 are arranged Assuming that the dimension in the orthogonal direction is W 'and the dimension in the orthogonal direction is t', the angle of rotation of the central plate from the position without gravity in the case of φ of 0.5 degree Is as follows.
[0042] (d'/R) (NL'/R) (W /R) 2く 5400/t (4) (D '/ R) (NL' / R) (W / R) 2 5400 / t (4)
ここで、 Nは、金属線 3'によって連結される板状体 1の個数である。 R>25 IX mであ る場合に ίま、 d' < 100mm、 < 100 /i m、 W 'く 0. 2mm、L' < 0. 2mm、 N< 26 で、式 (4)の条件が満たされる。即ち、基板 5aに 1端を固定された 2本の金属線 3の 間に、金属線 3 'によって連結された 26枚のシリコン板よりなる板状体群の、重力の存 在しない場合の位置からの回転角度が、 0. 5度以下に抑えられる。したがって、透明 充填剤の充填後における板状体群の回転角度の変化も 0. 5度以下と少なくなる。し たがって、全長 200mmの間に金属線 3'によって連結された 26枚の板状体群を 2本 の金属線 3によって基板上に固定して、熱硬化性あるいは紫外線硬化性の透明充填 剤で板状体群を包み、透明充填剤が硬化した後に,基板、外壁部、透明材料部、金 属線 3'を板状体 1毎に切断することによって、板状体 1を:!枚ずつ有する個片に分割 された光モジュールの製造が可能である。板状体 1としては、シリコン板のほかに、シ リコン板と同様に比重の小さいアルミニウム板あるいは液晶ポリマなどを主成分とする 高分子板などを用いることができる。 Here, N is the number of plate-like bodies 1 connected by the metal wire 3 '. R> 25 IX m If the condition of equation (4) is satisfied, d ′ <100 mm, <100 / im, W く 0.2 mm, L ′ <0.2 mm, N <26. That is, the position of the group of 26 silicon plates connected by metal wire 3 'between two metal wires 3 fixed at one end to substrate 5a in the absence of gravity. The rotation angle from is suppressed to less than 0.5 degrees. Therefore, the change in the angle of rotation of the plate group after filling with the transparent filler is also reduced to less than 0.5 degrees. Therefore, the 26 plate groups connected by metal wire 3 'between the total length of 200 mm are fixed on the substrate by two metal wires 3, and a thermosetting or UV curable transparent filler is used. The sheet group is wrapped with the plate, and after the transparent filler is cured, the sheet, the outer wall, the transparent material portion, and the metal wire 3 'are cut for each sheet 1, so that the sheet 1 is made of:! It is possible to manufacture an optical module divided into separate pieces. As the plate 1, in addition to a silicon plate, an aluminum plate having a small specific gravity as in the silicon plate, a polymer plate containing a liquid crystal polymer as a main component, or the like can be used.
[0043] なお、 1個の板状体 1の幅、長さ、および、厚さ、および、金属線の直径などに下限 はないが、扱い易さの点から、 1個の板状体の幅および長さは、 0. 005mm以上 lm m以下、厚さは、 0. 001mm以上(望ましくは 1 μ ΐη以上) 100 μ ΐη以下、金属線の直 径は、 0. 001mm以上であることが望ましい。  Although there is no lower limit to the width, length, thickness, and diameter of the metal wire, etc. of one plate-like body 1, one plate-like body is preferable in terms of ease of handling. Width and length are 以上 005 mm or more and lm m or less, thickness 厚 0 001 mm or more (desirably 1 ΐ ΐ 100 or more) 100 ΐ 以下 or less, metal wire diameter is. 0 001 mm or more desirable.
[0044] 以上説明したように、本実施例に係る光モジュールの製造方法においては、平面 の台上に薄板状の連結体を載置して、その連結体中に連結されている複数の板状 体の表面に圧子を押し当てて反射面を形成できるものであるから、再現性高ぐかつ 、低コストで複数の板状体に同時に反射面を形成することが可能である。  As described above, in the method of manufacturing the optical module according to the present embodiment, the thin plate-like coupling body is placed on the flat table, and the plurality of plates coupled in the coupling body Since the reflecting surface can be formed by pressing the indenter against the surface of the body, it is possible to simultaneously form the reflecting surfaces on a plurality of plate-like members with high reproducibility and at low cost.
[0045] また、本実施例に係る光モジュールの製造方法は、集積回路の電極の電気的接続 を得るために用いられている直径 50 μ m以下のボンディングワイヤからなる金属線 3 を連結体 30あるいは 31の機械的保持手段として用レ、、また、超音波熱圧着による高 速加工を金属線 3の基板 5aへの固定手段として用いて、反射面 2を有する複数の板 状体 laあるいは板状体 1を、その反射面 2の中心軸が基板 5aに対して 135度の角度 をなすように固定するものであるから、光モジュールの製造コストを低減し、また、生 産速度を向上させるという効果を有する。また、本実施例に係る光モジュールの製造 方法は、上の構成をとることによって、連結体 30あるいは 31の金属線 3を軸とする、 自重による回転を小さくできるという効果を有する。 Further, in the method of manufacturing the optical module according to the present embodiment, a metal wire 3 composed of a bonding wire having a diameter of 50 μm or less, which is used to obtain an electrical connection of the electrodes of the integrated circuit, is connected 30 Alternatively, a plurality of plate-like members la having a reflecting surface 2 or a plate using a plate as mechanical holding means 31 or high-speed processing by ultrasonic thermocompression bonding as a means of fixing the metal wire 3 to the substrate 5a. Since the body 1 is fixed so that the central axis of its reflecting surface 2 forms an angle of 135 degrees with the substrate 5a, the manufacturing cost of the optical module can be reduced and the production speed can be improved. Have the effect. In the method of manufacturing an optical module according to the present embodiment, the metal wire 3 of the connector 30 or 31 is used as an axis by adopting the above configuration. It has an effect that rotation by dead weight can be made small.
[0046] さらに、本実施例に係る光モジュールの製造方法は、上の状態で、連結体 30ある いは 31を熱硬化性樹脂あるいは紫外線硬化樹脂などの透明充填剤内に埋め込ん だ後に、これらの透明充填剤を硬化させるものであるから、透明充填剤の硬化収縮 の歪が板状体 laあるいは板状体 1の両主面に均等に分散され、これによつて、板状 体 laあるいは板状体 1の位置ずれが少ないという効果を有する。さらに、本実施例に 係る光モジュールの製造方法は、上述のように、連結体 30あるいは 31の金属線 3を 軸とする、 自重による回転が小さいものであるから、透明充填剤の浮力による連結体 30あるいは 31の基板 5aに対する角度変化を小さくできるという効果を有する。  Furthermore, in the method of manufacturing the optical module according to the present embodiment, after the connector 30 or 31 is embedded in a transparent filler such as a thermosetting resin or an ultraviolet curing resin in the above state, The strain of the curing shrinkage of the transparent filler is uniformly dispersed on both main surfaces of the plate la or the plate 1, so that the plate la or There is an effect that the displacement of the plate-like body 1 is small. Furthermore, in the method of manufacturing the optical module according to the present embodiment, as described above, since the rotation due to its own weight is small around the metal wire 3 of the connector 30 or 31, the connection by the buoyancy of the transparent filler The angle change of the body 30 or 31 relative to the substrate 5a can be reduced.
[0047] 上述の説明においては、光伝送路 6として光ファイバが用いられたが、光伝送路は 、基板 5aの面に平行に形成された光導波路であってもよい。  In the above description, an optical fiber is used as the optical transmission path 6, but the optical transmission path may be an optical waveguide formed in parallel to the surface of the substrate 5a.
[0048] また、光伝送路、連結体、光素子の位置合わせの工程において、光素子として、最 終的に光モジュールに搭載される光素子が最適の位置に位置するように調整するた めの調整用光素子を用いたが、調整用光素子ではなぐ実際に光モジュールに搭載 される光素子を用いてもよい。図 7は、光伝送路、連結体、光素子の位置合わせの際 の光素子として、実際に光モジュールに搭載される光ファイバを用いた場合の工程 の断面図である。図 7において、図 5の部分と同等の部分には同一の参照符号を付 し重複する説明を適宜省略する。光素子 9には、それに入射する光の強度を測定す る測定装置が接続されている。この測定装置で測定される光の強度が最大になるよう に、連結体 30の位置、および、その反射面の中心軸の基板 5aに対する角度が定め られる。その後、光素子 9は、他の光素子に取り換えられることなぐそのまま、光モジ ユールに搭載される。光素子 9は、光ファイバではなぐ例えばフォトダイオードのよう な受光素子であってもよい。その場合には、受光素子に流れる電流が最大になるよう に、連結体 30の基板 5aに対する角度が定められる。また、光伝送路 6あるいは光フ アイバからなる光素子 9に換えて、端面発光型半導体レーザのような発光素子などが 用いられてもよい。  Further, in the process of aligning the optical transmission path, the connector, and the optical element, the optical element to be finally mounted on the optical module is adjusted so as to be positioned at the optimum position as an optical element. Although the adjustment optical element is used, the adjustment optical element may be replaced by an optical element actually mounted on the optical module. FIG. 7 is a cross-sectional view of steps in the case where an optical fiber actually mounted on an optical module is used as an optical element at the time of alignment of an optical transmission path, a connector, and an optical element. In FIG. 7, parts equivalent to those in FIG. 5 are assigned the same reference numerals, and redundant descriptions will be omitted as appropriate. The light device 9 is connected to a measuring device for measuring the intensity of light incident thereon. The position of the connector 30 and the angle of the central axis of its reflecting surface with respect to the substrate 5a are determined so that the light intensity measured by this measuring device is maximized. Thereafter, the optical device 9 is mounted on the optical module as it is without being replaced by another optical device. The light element 9 may be a light receiving element such as a photodiode which is not an optical fiber. In that case, the angle of the connector 30 with respect to the substrate 5a is determined such that the current flowing to the light receiving element is maximized. Also, instead of the optical element 9 composed of the light transmission path 6 or the optical fiber, a light emitting element such as an edge emitting semiconductor laser may be used.
[0049] 図 8 (a)は、図 2 (b)の A— A線に沿う断面図である。金属線 3は、反射面 2の形成さ れている板状体 laの主面に圧着されている。し力、しながら、図 8 (b)に示すように、金 属線 3は、反射面 2の形成されていない板状体 laの主面に圧着されてもよい。 FIG. 8 (a) is a cross-sectional view taken along the line AA of FIG. 2 (b). The metal wire 3 is crimped to the main surface of the plate body la on which the reflective surface 2 is formed. Force, while as shown in Figure 8 (b), gold The genus wire 3 may be crimped to the main surface of the plate-like body la in which the reflective surface 2 is not formed.
[0050] また、金属線 3は、代替物として、シリコン線材、セラミック線材、あるいは炭素繊維 の線材などの金属以外の剛性を有する線材で、その表面に金属メツキを形成した代 替線材で代替してもよい。それらの代替線材と反射面を有する板状体 1との接合部、 あるいは、補助板 4との接合部には、直径 5nm程度の銀ナノ粒子や銅ナノ粒子のぺ 一ストを塗布し約 200°Cに加熱することで強固な金属結合を形成させることでこれら を接合させてもよい。 Further, metal wire 3 is a wire having rigidity other than metal such as a silicon wire, a ceramic wire, or a wire of carbon fiber as a substitute, and is substituted by a substitute wire having a metal mesh formed on the surface thereof. May be A paste of silver nanoparticles or copper nanoparticles with a diameter of about 5 nm is applied to the junctions between these alternative wires and the plate 1 having a reflective surface, or to the junctions with the auxiliary plate 4, and approximately 200 These may be bonded by forming a strong metal bond by heating to ° C.
[0051] 図 9 (a)は、図 6 (a)の B— B線に沿う断面図である。凹面をなす反射面 2側から板状 体 1に入射した光 11が、反射面 2によって反射される構造になっている。板状体 1が 、透明なポリイミド樹脂や液晶ポリマなどの高耐熱性樹脂板、ガラス板、使用波長で 透明なシリコン板である場合には、図 9 (b)に示すように、 1主面が凸面をなすように 形成された、それらの板の凸面側の主面にのみ、アルミニウムあるいは金などの金属 膜を蒸着して反射面 2を形成し、反射面 2と反対側の板状体 1の主面から入射して板 状体 1の内部を透過してきた光 11が、反射面 2の内面によって反射される構造にして あよい。  FIG. 9 (a) is a cross-sectional view taken along the line B-B in FIG. 6 (a). The light 11 that has entered the plate-like body 1 from the side of the concave reflecting surface 2 is reflected by the reflecting surface 2. When the plate-like body 1 is a high heat resistant resin plate such as a transparent polyimide resin or liquid crystal polymer, a glass plate, or a silicon plate transparent at the used wavelength, as shown in FIG. A metal film such as aluminum or gold is vapor-deposited only on the main surface on the convex side of these plates so as to form a convex surface to form the reflective surface 2, and a plate-like body on the opposite side to the reflective surface 2 The light 11 incident from the main surface 1 and transmitted through the inside of the plate 1 may be reflected by the inner surface of the reflecting surface 2.
[0052] また、上述の工程にぉレ、て、補助板 4を軟磁性体として、電磁石よりなる保持具 8で 吸着したが、補助板 4を保持する手段は、電磁石に限らず、補助板 4を保持固定して 、連結体 30を、金属線 3を軸として回転できるものであれば、いずれも用いられ得る。 例えば、真空吸引で補助板 4を保持することも可能である。この場合には、補助板 4 には、金属線 3の 1端を固定できる、表面が平らな板であれば、いずれも用いられ得 る。さらに、補助板 4は、保持具 8の一部として、金属線 3を挟み込む 2枚の平行平板 で構成することもできる。  In the above process, the auxiliary plate 4 is a soft magnetic material and is held by the holder 8 made of an electromagnet, but the means for holding the auxiliary plate 4 is not limited to the electromagnet, and the auxiliary plate is not limited to the electromagnet. As long as the connector 30 can be rotated about the metal wire 3 by holding and fixing 4, any may be used. For example, it is also possible to hold the auxiliary plate 4 by vacuum suction. In this case, any plate can be used as the auxiliary plate 4 as long as it is a flat surface to which one end of the metal wire 3 can be fixed. Furthermore, the auxiliary plate 4 can be configured as two parallel flat plates sandwiching the metal wire 3 as a part of the holder 8.
[0053] また本実施例においては、連結体 30の両端に圧着した 2本の金属線 3それぞれの 開放端に補助板 4を設置したが、連結体 30と補助板 4の間の金属線 3に第 3の補助 板(図示せず)を設置しても良レ、。第 3の補助板は、連結体 30が適切な角度を向いた 際に水平面を向く向きに金属線を設置することが好ましい。そうすることで、第 3の補 助板を支えとして、連結体 30の向きを合わせることができるようになるからである。次 に、連結体 30の向きを合わせた後に、第 3の補助板と先端の補助板 4の間の位置の 金属線 3を圧子 19で基板 5a上の金メッキパターンに圧着する。こうすることで、第 3の 補助板も連結体 30とともに圧接点で支える構造を形成することができる。次に、外壁 部 7aで覆われた空間に透明充填剤を注入するが、この透明充填剤としてシリコーン グリースやシリコーンオイルなどの屈折率整合剤、あるいは熱可塑性樹脂を用いて透 明材料部 13aを形成できる。この場合は、後に、必要に応じて、第 3の補助板を回転 させることで、それに金属線 3で連結している連結体 30を透明材料部 13aの中で回 転させて向きを変えることができる。熱可塑性樹脂の場合は加熱することで透明材料 部 13aの透明充填剤を液化することで連結体 30を回転させることができる。このよう に、連結体 30を後に必要に応じて回転させることができる構造体を製造することも可 能である。 Further, in the present embodiment, the auxiliary plate 4 is installed at the open end of each of the two metal wires 3 crimped to both ends of the connecting body 30, but the metal wire between the connecting body 30 and the auxiliary plate 4 is Good even if you install a third auxiliary plate (not shown). The third auxiliary plate is preferably provided with a metal wire in such a way as to face the horizontal plane when the connector 30 is oriented at an appropriate angle. By doing so, it is possible to align the connecting body 30 with the third auxiliary plate as a support. Next, after the connector 30 is oriented, the position between the third auxiliary plate and the auxiliary plate 4 at the tip is The metal wire 3 is crimped to the gold-plated pattern on the substrate 5 a with the indenter 19. By so doing, it is possible to form a structure in which the third auxiliary plate is also supported by the pressure contact along with the connector 30. Next, a transparent filler is injected into the space covered by the outer wall 7a. As the transparent filler, a refractive index matching agent such as silicone grease or silicone oil, or a thermoplastic resin is used to form the transparent material portion 13a. It can be formed. In this case, if necessary, the third auxiliary plate is later rotated to turn and turn the connector 30 connected by the metal wire 3 in the transparent material portion 13a. Can. In the case of a thermoplastic resin, the coupling body 30 can be rotated by liquefying the transparent filler of the transparent material portion 13a by heating. In this way, it is also possible to produce a structure that allows the connector 30 to be later rotated as required.
実施例 2  Example 2
[0054] 図 10は、本発明の実施例 2に係る光モジュールの製造に用いる連結体の斜視図 である。図 10に示す連結体 32が、図 2 (a)に示す連結体 30と異なる点は、図 2 (a)に 示す板状体 laと連結部 lbとからなる連結体 30に、さらに、金属線部 3aおよび補助 板部 4aが連結されているという点である。即ち、図 10に示す連結体 32においては、 図 2 (c)に示す連結体 30と金属線 3と補助板 4とが一体に形成されている。連結体 32 は、厚さ 50— 18 x m程度の金、銀、銅、あるいは、アルミニムの金属板である。金属 線部 3aの幅は、その厚さとほぼ同寸法であり、したがって、金属線部 3aの断面は、お およそ、正方形に形成されている。本実施例における光モジュールの製造工程は、 実施例 1における製造工程と同様である。  FIG. 10 is a perspective view of a connector used for manufacturing the optical module according to the second embodiment of the present invention. The connecting body 32 shown in FIG. 10 is different from the connecting body 30 shown in FIG. 2 (a) in that the connecting body 30 shown in FIG. 2 (a) is composed of a plate la and a connecting portion lb. The point is that the wire portion 3a and the auxiliary plate portion 4a are connected. That is, in the connecting body 32 shown in FIG. 10, the connecting body 30, the metal wire 3 and the auxiliary plate 4 shown in FIG. 2C are integrally formed. The connector 32 is a metal plate of gold, silver, copper or aluminum having a thickness of about 50-18 × m. The width of the metal wire portion 3a is substantially the same as the thickness thereof, and hence the cross section of the metal wire portion 3a is approximately square. The manufacturing process of the optical module in the present embodiment is the same as the manufacturing process in the first embodiment.
[0055] 本実施例の製造方法は、板状体 la、連結部 lb、金属線部 3a、および、補助板部 4 aがー体に連結された連結体 32を用レ、るものであるから、製造時間を短縮し、製造コ ストを低減できるという効果を有する。また、本実施例の製造方法においては、金属 線部 3aが、正方形断面の金属線であるから、円形断面の金属線の場合に比して、金 属線部 3aのねじれ φが小さくなるという効果を有する。  According to the manufacturing method of the present embodiment, a connecting body 32 in which a plate body la, a connecting portion lb, a metal wire portion 3a, and an auxiliary plate portion 4a are connected to a body is used. Thus, the manufacturing time can be shortened and the manufacturing cost can be reduced. Further, in the manufacturing method of the present embodiment, since the metal wire portion 3a is a metal wire of a square cross section, the twist φ of the metal wire portion 3a is smaller than in the case of the metal wire of a circular cross section. Have an effect.
実施例 3  Example 3
[0056] 図 11 (a)は、本発明の実施例 3に係る光モジュールの平面図であり、図 11 (b)は、 図 11 (a)の C一 C線に沿う断面図である。図 11において、図 1の部分と同等の部分に は同一の参照符号を付し重複する説明を適宜省略する。図 11に示す光モジュール 力 図 1に示す光モジュールと異なる点は、光素子 9が、外壁部 7の上に搭載されて いるのではなぐ基板 5のくぼみ領域に搭載されているという点と、金属線 3が、基板 5 に圧着されているのではなぐ光素子 9の電極 14に圧着されて、圧接点 12が光素子 9の電極 14の上に形成されているという点と、光素子 9の電極 14が、ボンディングワイ ャ 15を介して基板 5上に形成されている電極パッド 40に電気的に接続されていると レ、う点である。外部から光伝送路 6に入射された光は、透明材料部 13に出射した後、 板状体 1によって下方に反射されて、基板 5の主面にほぼ垂直に進み、光素子 9の 受光/発光部 10に入射する。 FIG. 11 (a) is a plan view of an optical module according to Example 3 of the present invention, and FIG. 11 (b) is a cross-sectional view taken along line C--C in FIG. 11 (a). In FIG. 11, parts equivalent to those in FIG. Are given the same reference numerals, and redundant description will be omitted as appropriate. The optical module shown in FIG. 11 is different from the optical module shown in FIG. 1 in that the optical element 9 is mounted on the recessed area of the substrate 5 rather than being mounted on the outer wall 7; The metal element 3 is crimped to the electrode 14 of the optical element 9 rather than crimped to the substrate 5, and the pressure contact 12 is formed on the electrode 14 of the optical element 9. The point is that the electrode 14 is electrically connected to the electrode pad 40 formed on the substrate 5 through the bonding wire 15. The light incident on the light transmission path 6 from the outside is emitted to the transparent material portion 13 and is then reflected downward by the plate-like member 1 and travels substantially perpendicularly to the main surface of the substrate 5. It enters the light emitting unit 10.
[0057] 図 12 (a)は、図 11に示す光モジュールの製造の一工程における平面図であり、図 11 (b)は、図 11 (a)の D— D線に沿う断面図である。基板 5は、図示しない加熱台の 上に載置されている。図 11と図 12とにおいて、同等の部分には同一の参照符号を 付している。 FIG. 12 (a) is a plan view in one process of manufacturing the optical module shown in FIG. 11, and FIG. 11 (b) is a cross-sectional view taken along line DD of FIG. 11 (a). . The substrate 5 is placed on a heating table (not shown). In FIG. 11 and FIG. 12, equivalent parts are given the same reference numerals.
[0058] まず、中央部に凹み領域を有する基板 5の凹み領域の内部に、基板 5の主面に直 交する方向に受光または発光する受光/発光部 10を持つ光素子 9を搭載する。凹 み領域の紙面右側の基板 5の主面上に、電極パッド 40が形成されている。基板 5を 載せている加熱台を 220°Cに昇温した状態で、光素子 9の電極 14に、 1端を電極パ ッド 40に電気的に接続された金線からなるボンディングワイヤ 15の他端を超音波熱 圧着する。これによつて、電極パッド 40を介して、光素子 9を流れる電流を測定する、 あるいは、光素子 9に必要な駆動電圧を供給することが可能になる。次に、凹み領域 の紙面左側の基板 5の主面上に、光伝送路 6を、その光軸が主面と平行になるように 配置する。光伝送路 6は、光ファイバであっても光導波路であってもよい。光伝送路 6 のコア 6Aが、光素子 9の受光/発光部 10よりも高くなるように、基板 5の凹み領域が 形成されている。  First, an optical element 9 having a light receiving / emitting unit 10 that receives or emits light in the direction perpendicular to the main surface of the substrate 5 is mounted inside the recessed region of the substrate 5 having a recessed region in the center. An electrode pad 40 is formed on the main surface of the substrate 5 on the right side of the drawing in the recessed area. With the heating table on which the substrate 5 is mounted heated to 220 ° C., the bonding wire 15 made of a gold wire electrically connected to the electrode 14 of the optical element 9 and to the electrode pad 40 at one end Ultrasonic thermocompression bonding the other end. This makes it possible to measure the current flowing through the light element 9 through the electrode pad 40 or to supply the necessary drive voltage to the light element 9. Next, the optical transmission path 6 is disposed on the main surface of the substrate 5 on the left side of the drawing in the drawing in the drawing so that the optical axis thereof is parallel to the main surface. The optical transmission path 6 may be an optical fiber or an optical waveguide. The recessed area of the substrate 5 is formed such that the core 6 A of the light transmission path 6 is higher than the light receiving / emitting part 10 of the optical element 9.
[0059] 次いで、実施例 1の図(a)—(c)に示す工程と同様の工程を用いて、板状体 1と補 助板 4とを金属線 3で連結する。ただし、本実施例においては、板状体 1は単一の板 状体である。続いて、図 3に示す保持具 8と同様の保持具を用いて補助板 4を保持し 、板状体 1の反射面 2が光素子 9の受光 Z発光部 10に対向しながら、反射面 2の中 心軸が基板の主面からほぼ 45度になるように、金属線 3で連結された板状体 1と補 助板 4とを配置した後、板状体 1の基板の主面に対する角度を調整して、外部から光 伝送路 6のコア 6Aに入射して、その端開口 6Cから出射した光力 板状体 1によって 基板の主面にほぼ垂直に進むように反射されて、光伝送路 6と光素子 9との光結合 が最大になるようにする。この際、金属線 3の、板状体 1に連結されている近傍の部分 は、光素子 9の電極 14上に載るようにする。 Subsequently, the plate-like body 1 and the auxiliary plate 4 are connected by the metal wire 3 using the same steps as the steps shown in the drawings (a) to (c) of the first embodiment. However, in the present embodiment, the plate 1 is a single plate. Subsequently, the auxiliary plate 4 is held using a holder similar to the holder 8 shown in FIG. 3, and while the reflective surface 2 of the plate-like body 1 faces the light receiving Z light emitting portion 10 of the optical element 9, the reflective surface Inside 2 After arranging the plate-like body 1 and the auxiliary plate 4 connected by the metal wire 3 so that the center axis is approximately 45 degrees from the main surface of the substrate, the angle of the plate-like body 1 to the main surface of the substrate is The light enters the core 6A of the light transmission path 6 from the outside, is reflected by the light force plate-like body 1 emitted from the end opening 6C and travels substantially perpendicularly to the main surface of the substrate. The optical coupling between 6 and the optical element 9 should be maximized. At this time, a portion of the metal wire 3 in the vicinity connected to the plate-like body 1 is placed on the electrode 14 of the optical element 9.
[0060] 次に、加熱台を 220°Cに昇温した状態で、金属線 3を光素子 9の電極 14に超音波 熱圧着し、圧接点 12で金属線 3を切断する。次いで、金属線 3および光伝送路 6が 貫通する隙間が形成されている外壁部 7を板状体 1および光素子 9を囲んで基板 5 上に配置する。そして、外壁部 7で囲われた領域に透明充填剤を注入して板状体 1 を透明充填剤に坦め込んだ後、透明充填剤を硬化させて透明材料部 13を形成して 、本実施例の製造方法を完了し、図 11に示す光モジュールが得られる。  Next, in a state where the temperature of the heating table is raised to 220 ° C., the metal wire 3 is ultrasonically thermocompression-bonded to the electrode 14 of the optical element 9, and the metal wire 3 is cut at the pressure contact 12. Then, an outer wall 7 having a gap through which the metal wire 3 and the optical transmission path 6 pass is formed on the substrate 5 so as to surround the plate 1 and the optical element 9. Then, a transparent filler is injected into the region surrounded by the outer wall 7 to support the plate-like body 1 in the transparent filler, and then the transparent filler is cured to form the transparent material portion 13. The manufacturing method of the embodiment is completed to obtain the optical module shown in FIG.
[0061] 本実施例の製造方法は、外壁部 7に光素子 9を実装しないものであるから、外壁部 7の材料に、エポキシ樹脂あるいは PMMA樹脂など耐熱性の低レ、有機樹脂を用い ること力 Sでき、製造コストを低減できるとレ、う効果を有する。  In the manufacturing method of this embodiment, since the optical element 9 is not mounted on the outer wall 7, a heat-resistant resin such as epoxy resin or PMMA resin is used as the material of the outer wall 7. It has the effect of reducing the manufacturing cost and reducing the manufacturing cost.
[0062] なお、上述の説明においては、単一の板状体を用いたが、図 2、図 6、図 10に示す 連結体を用いれば、実施例 1の場合と同様に、製造コストをさらに低減し、また、生産 速度を向上させるとレ、う効果が得られる。  Although a single plate-like body is used in the above description, the manufacturing cost can be reduced as in the case of Example 1 by using the connected body shown in FIG. 2, FIG. 6, and FIG. Further reduction and improvement of the production rate will have the effect.
実施例 4  Example 4
[0063] 図 13 (a)は、本発明の実施例 4に係る光モジュールの平面図であり、図 13 (b)は、 図 13 (a)の E— E線に沿う断面図である。図 13において、図 11の部分と同等の部分 には同一の参照符号を付し重複する説明を適宜省略する。図 13に示す光モジユー ルが、図 11に示す光モジュールと異なる点は、金属線 3の圧接点 12が、光素子 9の 電極 14の上に形成されているのではなぐ下板 17の上に形成されており、下板 17が 光素子 9の上面に固定されているという点である。  FIG. 13 (a) is a plan view of an optical module according to Example 4 of the present invention, and FIG. 13 (b) is a cross-sectional view taken along the line EE of FIG. 13 (a). In FIG. 13, the same parts as those in FIG. 11 carry the same reference numerals for which duplicate descriptions are to be omitted as appropriate. The optical module shown in FIG. 13 differs from the optical module shown in FIG. 11 in that the pressure contact 12 of the metal wire 3 is not formed on the electrode 14 of the optical element 9 but on the lower plate 17. The lower plate 17 is fixed to the upper surface of the optical element 9.
[0064] 図 14は、反射面 2を有する板状体 1に、金属線 3が熱圧着され、金属線 3の両端が 、それぞれ 1枚の下板 17に熱圧着されて、下板 17上に圧接点 12が形成されている 鏡体 20の斜視図である。 [0065] 以下、図 15、 16を用いて、図 14に示す鏡体 20の製造方法を説明する。 In FIG. 14, the metal wire 3 is thermocompression-bonded to the plate-like body 1 having the reflective surface 2, and both ends of the metal wire 3 are thermocompression-bonded to one lower plate 17. It is a perspective view of the mirror 20 in which the pressure contact 12 is formed. Hereinafter, a method of manufacturing the mirror 20 shown in FIG. 14 will be described with reference to FIGS.
[0066] まず、図 15 (a)に示すように、高さの異なる 2つの領域を持ち、高さの低い領域に、 紙面奥行き方向に均一な厚さを持つ突起部が形成された加工台 16を用意する。突 起部の、高さの高い領域に対向する斜面 18は、加工台 16の主面から 135度をなす ように形成されている。突起部を挟んで紙面奥行き方向に並ぶように、 2枚の下板 17 を配置する。加工台 16の高さの高い領域の主面上には、 1辺が斜面 18に対向する ように、板状体 1が配置される。ここで、突起部の紙面奥行き方向の寸法は、板状体 1 の紙面奥行き方向の寸法よりも小さく形成されている。また、加工台 16の 2つの領域 の高さの違いは、高さの低い領域に配置された下板 17の上面力 S、高さの高い領域の 上面とほぼ同じ高さになるようなものである。板状体 1は、金板あるいはアルミニウム 板などである。また、板状体 1の表面には、この時点では、凹面の反射面は形成され ていない。下板 17は、金、銅、アルミニウム、ニッケル、鉄などの金属薄板、あるいは シリコン基板、あるいはそれらの薄板ないし基板に金めつきして、金線からなる金属 線 3を熱圧着できるようにした板などを用いる。  First, as shown in FIG. 15 (a), a processing table having two regions having different heights and in which the protrusions having a uniform thickness in the depth direction of the paper surface are formed in the low height region. Prepare 16 The inclined surface 18 opposed to the high-height area of the projecting portion is formed to form 135 degrees from the main surface of the processing table 16. The two lower plates 17 are arranged so as to be aligned in the depth direction of the drawing with the protruding portions interposed therebetween. The plate-like body 1 is disposed on the main surface of the high area of the processing table 16 such that one side faces the slope 18. Here, the dimension of the projection in the depth direction of the sheet is smaller than the dimension of the plate-like body 1 in the depth direction of the sheet. Also, the difference in height between the two areas of the processing table 16 is such that the upper surface force S of the lower plate 17 disposed in the lower area is approximately the same height as the upper surface of the higher area. It is. The plate 1 is a gold plate or an aluminum plate. At this point, no concave reflective surface is formed on the surface of the plate 1. The lower plate 17 is made of a thin metal plate such as gold, copper, aluminum, nickel, iron or the like, or a silicon substrate, or a thin plate or substrate thereof so that the metal wire 3 made of gold wire can be thermocompression bonded. Use a board or the like.
[0067] 次に、図 15 (b)に示すように、加工台 16上の板状体 1の上面に、斜面 18に対向す る辺に沿うように位置合わせされた、金線あるいはアルミニウム線などの金属線 3を、 圧子 19を用いて熱圧着する。金属線 3の板状体 1の上面への位置合わせは、例え ば、紙面奥行き方向に板状体 1を挟んで置かれた 2枚の、図 2に示す補助板 4と同様 の補助板に金属線 3の両端をワイヤボンディングして、この補助板を移動させることに よってなすことができる。あるいは、この位置合わせは、金属線 3を薄い保持フィルム に仮止めして、保持フィルムを板状体 1の上面に貼りつけることによってなすこともで きる。この場合には、圧子 19が保持フィルムを突き破って金属線 3を板状体 1に熱圧 着させるようにすることカできる。  Next, as shown in FIG. 15 (b), a gold wire or an aluminum wire is aligned on the upper surface of the plate-like body 1 on the processing table 16 along the side facing the slope 18. , Etc., and thermocompression-bonded using an indenter 19. The alignment of the metal wire 3 to the upper surface of the plate 1 is, for example, two auxiliary plates similar to the auxiliary plate 4 shown in FIG. 2 placed on both sides of the plate 1 in the depth direction of the drawing. This can be done by wire bonding both ends of the metal wire 3 and moving this auxiliary plate. Alternatively, this alignment can be made by temporarily fixing the metal wire 3 to the thin holding film and attaching the holding film to the upper surface of the plate 1. In this case, the indenter 19 can break through the holding film to thermally press the metal wire 3 onto the plate 1.
[0068] 次に、図 15 (c)に示すように、加工台 16の上方で、金属線 3の位置を基準にして、 凸面の下端部 (板状体 1に形成する反射面の型)を有する圧子 39の位置合わせを行 つた後、板状体 1および Zまたは圧子 39の凸面の下端部を約 370°Cに加熱して、圧 子 39の凸面の下端部を板状体 1に押し当てる。これによつて、図 16 (a)に示すように 、板状体 1の金属線 3が熱圧着されている面に、深さが から 30 x mで直径が 30 /i mから 500 μ ΐηの凹面の反射面 2が形成される。板状体 1には、金板あるいはアル ミニゥム板などの金属板のほ力に、 220°C以上の耐熱性のある液晶ポリマやポリアミド イミドなどの熱可塑性樹脂の表面にアルミニウムあるいは金などの金属膜を蒸着した ものを用いることができる。液晶ポリマを用いた場合には、板状体 1および/または圧 子 39の凸面の下端部の温度を 300— 400°Cにする。 Next, as shown in FIG. 15 (c), the lower end of the convex surface (the type of the reflecting surface formed on the plate-like body 1) above the processing table 16 with reference to the position of the metal wire 3. After aligning the indenter 39 with the lower end of the convex surface of the plate 1 and Z or the indenter 39 to about 370 ° C., the lower end of the convex of the indenter 39 is transferred to the plate 1. Press down. Thus, as shown in FIG. 16 (a), the metal wire 3 of the plate 1 is thermocompression-bonded to a surface having a depth of 30 to 30 mm and a diameter of 30. A concave reflective surface 2 of / im to 500 μΐ is formed. The plate-like body 1 may be a metal such as aluminum or gold on the surface of a liquid crystal polymer having heat resistance of 220 ° C. or more, a thermoplastic resin such as polyamide imide, etc. What deposited the film can be used. In the case of using a liquid crystal polymer, the temperature of the lower end of the convex surface of the plate 1 and / or the indenter 39 is set to 300 to 400.degree.
[0069] 次に、図 16 (b)に示すように、板状体 1の、金属線 3が熱圧着された領域が、 2枚の 下板 17の上に載るように、板状体 1を移動させる。  Next, as shown in FIG. 16 (b), the plate 1 is placed such that the region of the plate 1 to which the metal wire 3 is thermocompression bonded is placed on the two lower plates 17. Move
[0070] 次いで、図 16 (c)に示すように、板状体 1を,金属線 3を軸として 135度回転させて 、斜面 18に沿うようにし、続いて、加工台 16を 220°Cに昇温した後、圧子 19を用い て金属線 3を下板 17に押し付け、金属線 3を下板 17に超音波熱圧着して圧接点 12 を形成する。反射面 2の中心軸と下板 17との間の角度は、 45度である。板状体 1と斜 面 18との間に金属線 3が挟まるために、板状体 1と斜面 18との間に隙間ができるが、 金属線 3の直径が 50 /i m以下と小さいため、反射面 2の中心軸と下板 17との間の角 度の誤差は無視できる。あるいは、必要であれば、その誤差分をあら力じめ見込んで 、斜面 18の、加工台 16の主面に対する角度を設定すればよい。次に、金属線 3の下 板 17への圧接点 12の位置で金属線 3を切り取ることによって、図 14に示す鏡体 20 が形成される。  Next, as shown in FIG. 16 (c), the plate-like body 1 is rotated 135 degrees around the metal wire 3 so as to be along the slope 18, and subsequently, the processing table 16 is heated to 220 ° C. Then, the metal wire 3 is pressed against the lower plate 17 using the indenter 19, and the metal wire 3 is ultrasonically thermocompression-bonded to the lower plate 17 to form the pressure contact 12. The angle between the central axis of the reflective surface 2 and the lower plate 17 is 45 degrees. There is a gap between the plate 1 and the slope 18 because the metal wire 3 is sandwiched between the plate 1 and the inclined surface 18, but the diameter of the metal wire 3 is as small as 50 / im or less, An error in the angle between the central axis of the reflective surface 2 and the lower plate 17 can be ignored. Alternatively, if necessary, the angle of the slope 18 with respect to the main surface of the processing table 16 may be set in consideration of the error. Next, a mirror 20 shown in FIG. 14 is formed by cutting away the metal wire 3 at the position of the pressure contact 12 to the lower plate 17 of the metal wire 3.
[0071] 微小寸法の鏡体 20の以降の取扱いを容易にするために、鏡体 20の 2枚の下板 17 の上面に、それらの 2枚の下板 17をつなぐように、ポリイミドフィルムあるいはポリェチ レンテレフタレート(PET)フィルムなどの樹脂フィルム、あるいは粘着剤付きのアルム ニゥム薄膜テープなどの保持テープを粘着させる。いずれにおいても、それらの保持 テープは、わずかの力を加えることによってはがれる程度の粘着力しか持っていない 。ここで、保持テープの上方に突出する板状体 1を保護するため、この保持テープに は板状体 1の高さ以上のスぺーサを設置し、この保持テープをリールに巻き付ける。 このリールを移動させることによって、鏡体 20を所望の位置に移動させることができる  [0071] In order to facilitate the subsequent handling of the mirror 20 of minute dimensions, a polyimide film or a polyimide film or the like is connected to the upper surface of the two lower plates 17 of the mirror 20, Adhere a resin film such as polyethylene terephthalate (PET) film or a holding tape such as an aluminum thin film tape with an adhesive. In any case, those holding tapes have a degree of adhesion that can be released by applying a slight force. Here, in order to protect the plate 1 protruding above the holding tape, a spacer having a height equal to or greater than that of the plate 1 is installed on the holding tape, and the holding tape is wound around a reel. By moving the reel, the mirror 20 can be moved to a desired position.
[0072] 次に、まだ基板に実装されていない光素子に鏡体 20の保持テープを粘着させて、 鏡体 20の光素子上の位置決めを行う。この状態で、粘着剤を用いて、あるいは、熱 圧着によて、鏡体 20の下板 17を光素子 9に固定する。この状態で、リールに巻き付 けられた保持テープを保持手段として、図 17に示すように、鏡体 20を固定された光 素子 9を基板 5に実装した後、光素子 9の電極 14に、 1端を電極パッド 40に電気的に 接続されたボンディングワイヤ 15の他端を超音波熱圧着する。 Next, the holding tape of the mirror 20 is attached to the optical element not yet mounted on the substrate to position the mirror 20 on the optical element. In this state, use an adhesive or heat The lower plate 17 of the mirror 20 is fixed to the light element 9 by pressure bonding. In this state, using the holding tape wound around the reel as the holding means, as shown in FIG. 17, after mounting the optical element 9 with the mirror 20 fixed on the substrate 5, the electrode 14 of the optical element 9 is mounted. The other end of the bonding wire 15 whose one end is electrically connected to the electrode pad 40 is ultrasonically thermocompression-bonded.
[0073] あるいは、その代替例として、基板 5上に実装され、ボンディングワイヤ 15によって 電極パッド 40に電気的に接続されている光素子 9の上方に保持テープで鏡体 20を 保持しながら、鏡体 20を光素子 9に位置合わせした後、鏡体 20の下板 17を光素子 9 あるいは基板 5に固定する。鏡体 20の固定は、上述のように粘着剤による粘着あるい は熱圧着であってもよいし、あるいは、下板 17を軟磁性体とし、基板 5の下側から電 磁石で下板 17を引き付ける等の手段で行ってもよい。  Alternatively, as an alternative example, the mirror 20 is held by a holding tape above the optical element 9 mounted on the substrate 5 and electrically connected to the electrode pad 40 by the bonding wire 15. After the body 20 is aligned with the light element 9, the lower plate 17 of the mirror 20 is fixed to the light element 9 or the substrate 5. Fixing of the mirror 20 may be adhesion with adhesive or thermocompression bonding as described above, or the lower plate 17 may be a soft magnetic material, and the lower plate of the substrate 5 may be an electromagnet. It may be performed by means such as attracting.
[0074] 次に、鏡体 20の下板 17から保持テープを取り外す。  Next, the holding tape is removed from the lower plate 17 of the mirror 20.
[0075] 次いで、外壁部 7を、基板 5のくぼみ領域を囲むように設置し、外壁部 7で囲われた 領域に透明充填剤を注入して板状体 1を透明充填剤に坦め込んだ後、透明充填剤 を硬化させて透明材料部を形成して、図 13に示す本実施例に係る光モジュールの 製造工程を完了する。  Then, the outer wall 7 is installed so as to surround the recessed area of the substrate 5, and the transparent filler is injected into the area surrounded by the outer wall 7 to support the plate 1 in the transparent filler. Thereafter, the transparent filler is cured to form a transparent material portion, and the manufacturing process of the optical module according to the present example shown in FIG. 13 is completed.
[0076] 本実施例の製造方法は、板状体 1の基板 5あるいは光素子 9への装着に先立って 、金属線 3の熱圧着に要する高温工程を、板状体 1、金属線 3、下板 17よりなる鏡体 20を力卩ェ台 16上で製造する工程中に行うものであるから、光伝送路 6及び基板 5が 、熱圧着に伴って加熱されるということがないため、光伝送路 6及び基板 5に耐熱性 を要しない材料を用いることができるという効果を有し、また、光素子 9の劣化を少なく することも可能である。  According to the manufacturing method of the present embodiment, prior to the attachment of the plate 1 to the substrate 5 or the optical element 9, the high temperature process required for the thermocompression bonding of the metal wire 3 is performed by the plate 1, the metal wire 3, Since the mirror 20 consisting of the lower plate 17 is carried out during the process of manufacturing the mirror 20 on the platen 16, the light transmission path 6 and the substrate 5 are not heated by the thermocompression bonding, It has an effect that a material which does not require heat resistance can be used for the light transmission path 6 and the substrate 5, and it is also possible to reduce the deterioration of the optical element 9.
[0077] なお、上述の説明においては、加工台 16に形成された突起部の斜面 18に板状体 1を沿わせて、板状体 1と下板 17との間に所定の角度を形成したが、この突起部は必 ずしも必要ではなぐ図 3に示す実施例 1の製造工程と同様の工程を用いて、板状体 1と下板 17との間に所定の角度を形成してもよい。  In the above description, the plate-like body 1 is placed along the slope 18 of the protrusion formed on the processing table 16 to form a predetermined angle between the plate-like body 1 and the lower plate 17. However, this projection is not always necessary. By using the same process as the manufacturing process of Embodiment 1 shown in FIG. 3, a predetermined angle is formed between the plate 1 and the lower plate 17. May be
[0078] さらに、下板 17の基板 5あるいは光素子 9への実装は、下板 17の下面に形成して おいた厚さ l x m程度の錫銀はんだの薄層を用いて行ってもよいし、あるいは、下板 17に貫通孔を形成しておき、実装の際に、貫通孔にはんだを流し込んで行ってもよ レ、。 Furthermore, the lower plate 17 may be mounted on the substrate 5 or the optical element 9 using a thin layer of tin-silver solder having a thickness of about lxm formed on the lower surface of the lower plate 17. Alternatively, a through hole may be formed in the lower plate 17 and solder may be poured into the through hole at the time of mounting. Les.
[0079] さらに、反射面 2が、下板 17に対して 45度斜め上向きになるように、鏡体 20を作製 し、この鏡体 20を基板 5に実装した後、図 1 (a)に示すような外壁部で鏡体 20を囲み 、外壁部の上面に光素子を搭載するようにしてもよい。  Further, after the mirror 20 is manufactured so that the reflecting surface 2 is directed 45 ° obliquely upward to the lower plate 17 and the mirror 20 is mounted on the substrate 5, as shown in FIG. The mirror 20 may be surrounded by an outer wall as shown, and the light element may be mounted on the upper surface of the outer wall.
[0080] さらに、上述の説明においては、単一の板状体を用いたが、図 2、図 6、図 10に示 す連結体を用いることも可能である。この場合には、複数の板状体 1あるいは板状体 laのそれぞれに、加工台 16の主面上で、金属線 3あるいは金属線部 3aを基準に位 置合わせして圧子 39を押し当てることによって、深さおよび直径がそろった凹面の反 射面 2を、金属線 3に対する高い位置精度をもって形成することができる。また、金属 線 3の両端が下板 17に圧接点 12で連結され、その下板 17が光素子 9あるいは基板 5に固定されるため、金属線 3の高さが、光素子 9あるいは基板 5の上面に精度良く位 置合わせされる。そのため、この金属線 3の位置を基準に形成された複数の反射面 2 の、光素子 9あるいは基板 5上の高さも揃い、光モジュールを再現性良く製造すること ができる。  Furthermore, in the above description, a single plate-like body is used, but it is also possible to use the connecting body shown in FIG. 2, FIG. 6, and FIG. In this case, the indenter 39 is pressed against each of the plurality of plate-like members 1 or plate-like members la on the main surface of the processing table 16 with reference to the metal wire 3 or the metal wire portion 3a. Thereby, the concave reflecting surface 2 with uniform depth and diameter can be formed with high positional accuracy with respect to the metal wire 3. Further, since both ends of the metal wire 3 are connected to the lower plate 17 by the pressure contact 12 and the lower plate 17 is fixed to the optical element 9 or the substrate 5, the height of the metal wire 3 is equal to that of the optical element 9 or the substrate 5. It is precisely aligned on the top of the. Therefore, the heights of the plurality of reflecting surfaces 2 formed on the basis of the position of the metal wire 3 on the optical element 9 or the substrate 5 are also uniform, and the optical module can be manufactured with good reproducibility.
[0081] 板状体 1に、透明なポリイミド樹脂や液晶ポリマなどの高耐熱性樹脂板、ガラス板な どを用いた場合には、一方の主面にのみ金属膜を形成しておき、この金属膜を形成 した主面に、先端部が凹面をした圧子を押し当てて、板状体 1の主面から外側に向 力 て凸面をなす反射面 2を形成してもよい。この場合には、完成された光モジユー ルにおいて、反射面 2と反対側の板状体 1の主面から入射して板状体 1の内部を透 過してきた光 11が、反射面 2の内面によって反射される。また、板状体 1として、 1主 面に塑性変形可能な透明な高耐熱性樹脂板が貼り合わされ、この高耐熱性樹脂板 上に金属膜が形成されている、使用波長に透明なシリコン基板を用いることもできる 。これらの場合にも、単一の板状体ではなぐ図 2、図 6、図 10に示す連結体を用いる ことが可能である。  When a highly heat-resistant resin plate such as a transparent polyimide resin or liquid crystal polymer, a glass plate, or the like is used as the plate-like body 1, a metal film is formed only on one of the main surfaces. An indenter having a concave tip end may be pressed against the main surface on which the metal film is formed to form a reflecting surface 2 which is convex outward from the main surface of the plate 1. In this case, in the completed light module, the light 11 incident from the main surface of the plate 1 opposite to the reflecting surface 2 and transmitted through the inside of the plate 1 is the reflecting surface 2. It is reflected by the inner surface. In addition, a transparent high heat resistant resin plate that can be plastically deformed is pasted to one main surface of the plate-like body 1, and a metal film is formed on the high heat resistant resin plate. Can also be used. Also in these cases, it is possible to use the connection shown in FIG. 2, FIG. 6, and FIG. 10 which is not a single plate.
実施例 5  Example 5
[0082] 図 18は、本発明の実施例 5に係る光モジュールの断面図である。図 18において、 図 1 (a)の部分と同等の部分には同一の参照符号を付し重複する説明を適宜省略す る。図 18に示す光モジュール力 図 1 (a)に示す光モジュールと異なる点は、基板 5 力 使用波長に対して透明な材料でできており、その基板 5の下面に光素子 9が配 置されており、光伝送路 6から透明材料部 13に出射した光が、板状体 1の反射面 2に よって基板 5方向に反射されて、光素子 9の受光/発光部 10に入射するという点で ある。 FIG. 18 is a cross-sectional view of an optical module according to Embodiment 5 of the present invention. In FIG. 18, parts equivalent to those in FIG. 1 (a) are given the same reference numerals, and redundant descriptions will be omitted as appropriate. The optical module shown in FIG. 18 differs from the optical module shown in FIG. The light element 9 is disposed on the lower surface of the substrate 5, and the light emitted from the light transmission path 6 to the transparent material portion 13 is transmitted to the plate 1. The light is reflected in the direction of the substrate 5 by the reflecting surface 2 and is incident on the light receiving / emitting part 10 of the optical element 9.
[0083] 図 18に示す光モジュールの製造工程は、以下の通りである。先ず、基板 5の下面 の銅パターン 41に、光素子 9を、その受光 Z発光部 10が基板 5に向くように、金錫は んだのバンプ(図示せず)を用いて 280°Cではんだ付けする。以後、図 2 図 4に示 す第 1の実施例と同様の製造工程を経て(ただし、反射面の中心軸は、反射面が基 板に対向するように、基板に対して 45度に配置される)、外壁部 7の内部に透明材料 部 13を形成した後、実施例 1と同様に各個別の光モジュールに分割して、本実施例 の製造工程を終了する。以上の工程において、調整用光素子は用いられない。なお 、上述の工程において、実施例 3または実施例 4に記述した、単一の板状体毎、およ び/または、鏡体を形成する手法が用いられてもよい。  The manufacturing process of the optical module shown in FIG. 18 is as follows. First, use a gold-tin solder bump (not shown) at 280 ° C. so that the light emitting element 9 is placed on the copper pattern 41 on the lower surface of the substrate 5 so that the light receiving Z emitter 10 faces the substrate 5. Solder. Thereafter, through the same manufacturing process as in the first embodiment shown in FIG. 2 and FIG. 4 (however, the central axis of the reflective surface is disposed at 45 degrees with respect to the substrate so that the reflective surface faces the substrate). After the transparent material portion 13 is formed inside the outer wall portion 7, it is divided into individual optical modules as in the first embodiment, and the manufacturing process of the present embodiment is completed. In the above steps, the adjustment light element is not used. In the above-described steps, the method of forming a single plate and / or a mirror as described in Example 3 or 4 may be used.
[0084] さらに、光素子 9は、連結体、板状体、あるいは、鏡体が基板表面に実装された後 に、光伝送路 6から出射されて、それらによって反射された光が最大に検出される基 板裏面の位置に実装されてもよい。また、基板 5の光束 11が透過する部分に貫通孔 を形成するようにすれば、基板 5には、使用波長に対して透明でない材料も用いるこ とができる。貫通孔には透明充填剤が充填され、硬化される。  Furthermore, after the connector 9, the plate-like body, or the mirror is mounted on the substrate surface, the light element 9 is emitted from the light transmission path 6, and the light reflected by them is detected at maximum. It may be mounted on the back side of the board. If a through hole is formed in the portion of the substrate 5 through which the light beam 11 passes, a material which is not transparent to the used wavelength can also be used for the substrate 5. The through holes are filled with a transparent filler and hardened.
[0085] 図 19 (a)—(c)は、本実施例の別の光モジュールを示している。図 19 (a)では、光 素子 9が、そのチップ裏面で受光/発光する光素子であり、チップの表面からボンデ イングワイヤ 15を介して光素子 9の電極 14と基板 5上の電極 42とが電気的に接続さ れている。図 19 (b)では、光素子 9が、集光レンズを有する光素子であり、板状体 1の 反射面 2によって平行光として反射された光がその集光レンズによって集光されて、 受光/発光部 10に導かれる。図 19 (c)では、光素子 9が、コア 9A、クラッド 9Bを有 する光ファイバであり、受光/発光部 10は、コア 9Aの端開口である。  FIGS. 19 (a)-(c) show another optical module of this embodiment. In FIG. 19 (a), the optical element 9 is an optical element that receives / emits light on the back surface of the chip, and the electrode 14 of the optical element 9 and the electrode 42 on the substrate 5 with the bonding wire 15 from the front surface Are connected electrically. In FIG. 19 (b), the optical element 9 is an optical element having a condensing lens, and the light reflected as parallel light by the reflecting surface 2 of the plate-like body 1 is condensed by the condensing lens, It is led to the light emitting unit 10. In FIG. 19 (c), the optical element 9 is an optical fiber having a core 9A and a clad 9B, and the light receiving / emitting part 10 is an end opening of the core 9A.
[0086] 本実施例の光モジュールは、光素子 9と板状体 1とを、基板 5の互いに反対側に設 置するものであるから、光素子 9が、板状体 1を埋め込んでいる透明材料部 13の外 部に置かれ、それによつて、後に光素子 9を着脱あるいは変更することが可能となり、 実装の自由度が向上するという効果を有する。 In the optical module of the present embodiment, the optical element 9 and the plate-like body 1 are disposed on the opposite side of the substrate 5, so the optical element 9 embeds the plate-like body 1. It is placed on the outside of the transparent material portion 13 so that the light element 9 can be attached / detached or changed later. This has the effect of improving the degree of freedom of implementation.
実施例 6  Example 6
[0087] 図 20は、本発明の実施例 6に係る光モジュールの断面図である。図 20において、 図 18の部分と同等の部分には同一の参照符号を付し重複する説明を適宜省略する 。図 20に示す光モジュール力 図 18に示す光モジュールと異なる点は、基板 5の下 面に、基板 5の上面に形成されている構造と同様の構造が形成されているという点で ある。  FIG. 20 is a cross-sectional view of an optical module according to Example 6 of the present invention. In FIG. 20, parts that are the same as the parts in FIG. 18 are given the same reference numerals, and redundant descriptions will be omitted as appropriate. The optical module shown in FIG. 20 differs from the optical module shown in FIG. 18 in that the lower surface of the substrate 5 has a structure similar to that formed on the upper surface of the substrate 5.
[0088] 図 20に示す光モジュールの製造工程は、以下の通りである。基板 5の下面に光素 子を配置せずに、先ず、図 18の光モジュールの基板 5の上面に形成されている構造 と同様の構造を、実施例 5の場合と同様の製造工程を用いて、基板 5の上面に形成 する。ただし、この時点では、まだ透明材料部は形成されない。次に、同様の製造ェ 程を用いて、基板 5の下面に、基板 5の上面に形成された構造と同様の構造を、両構 造の板状体の反射面同士が対向し合うように、形成する。このとき、両構造の光伝送 路 6同士の光結合が最大になるように、基板 5の下面に配置された連結体、板状体、 あるいは、鏡体の位置、および、基板あるいは下板に対する角度が調整される。両構 造の光伝送路 6同士の光結合が最大になった状態で、基板 5の下面に配置された連 結体、板状体、あるいは、鏡体が基板 5の下面に固定され、続いて、両構造に透明材 料部が形成される。連結体が用いられた場合には、最後に、各光モジュールへの分 割が行われる。  The manufacturing process of the optical module shown in FIG. 20 is as follows. First, using the same manufacturing process as that of the fifth embodiment, the same structure as the structure formed on the upper surface of the substrate 5 of the optical module of FIG. 18 is provided without disposing the optical element on the lower surface of the substrate 5. Is formed on the upper surface of the substrate 5. However, at this time, the transparent material portion is not yet formed. Next, using the same manufacturing process, a structure similar to the structure formed on the upper surface of the substrate 5 is formed on the lower surface of the substrate 5 so that the reflection surfaces of the plate-like members of both structures face each other. ,Form. At this time, in order to maximize the optical coupling between the light transmission paths 6 of both structures, the position of the connector, the plate or the mirror placed on the lower surface of the substrate 5 and the substrate or the lower plate. The angle is adjusted. With the optical coupling between the light transmission paths 6 of both structures being maximized, the coupling body, the plate-like body, or the mirror disposed on the lower surface of the substrate 5 is fixed to the lower surface of the substrate 5. The transparent material part is formed in both structures. If a connector is used, finally, division into each optical module is performed.
[0089] 本実施例の光モジュールは、 2枚の板状体 1の反射面 2で、それぞれ、光路を直角 に変更するものであるから、 1つの光路を、それに平行な別の光路に変更することが でき、それによつて、複数の光伝送路を、空間的に交差しないように配置することが 可能であり、従来の平面内に複数の光伝送路を形成した場合の光伝送路の交差部 における光損失を避けることができる。なお、図 20において、基板 5の上下の光伝送 路 6の光軸が平行であるが、基板 5の上下の光伝送路 6の光軸は、基板 5の主面に 直交する方向から見て交差するように構成されてもょレ、。  In the optical module of this embodiment, the optical path is changed at right angles on each of the reflection surfaces 2 of the two plate-like members 1, so one optical path is changed to another optical path parallel to it. Therefore, it is possible to arrange a plurality of optical transmission paths so as not to cross spatially, and it is possible to form a plurality of optical transmission paths in a conventional plane. Light loss at intersections can be avoided. In FIG. 20, although the optical axes of the upper and lower light transmission paths 6 of the substrate 5 are parallel, the optical axes of the upper and lower light transmission paths 6 of the substrate 5 are viewed from the direction orthogonal to the main surface of the substrate 5. Even if it is configured to cross ,.
[0090] 以上説明した各実施例において、光路の変換のために用いられる板状体は、 100 z m以下の厚さの薄板であることが望ましぐこのような厚さに設定すれば、光素子の 電極の配線を妨げることなく反射面を形成することが可能である。 In each of the embodiments described above, the plate-like body used for conversion of the optical path is a thin plate having a thickness of preferably 100 zm or less, if such a thickness is desired. Elemental It is possible to form a reflective surface without disturbing the wiring of the electrodes.
[0091] 既に説明した、図 24に示す、特許文献 1に記載の構造では、反射面 102の形成さ れるべき斜面の領域に、例えば金属薄膜を形成した構造体 121で凹面の反射面 10 2を圧子で斜面の領域に形成する場合は、光伝送路 106との位置を正確に合わせた 反射面 102を形成するのが困難となる。特に構造体 121の斜面に反射面 102を形成 するには、圧子は基板 105の面に対して垂直に押し当てざるを得ず、そうすると押し 当てられた圧子がその斜面を滑り、形成される反射面 102の位置が不正確になる。ま た押し当てた圧子が斜面の面方向に沿って望ましくない力をカ卩えることにより、形成 される反射面 102の形状が歪むことなる。  In the structure described in Patent Document 1 shown in FIG. 24, which has already been described, for example, a concave reflection surface 102 of a structure 121 in which a metal thin film is formed in the region of the slope where the reflection surface 102 is to be formed. When the indenter is formed in the sloped area, it is difficult to form the reflecting surface 102 in which the position of the light transmission path 106 is accurately aligned. In particular, in order to form the reflecting surface 102 on the slope of the structure 121, the indenter must be pressed perpendicularly to the surface of the substrate 105, and the pressed indenter then slides on the slope and the reflection formed The position of face 102 is incorrect. Also, the shape of the formed reflecting surface 102 is distorted by the fact that the pressed indenter exerts an undesirable force along the direction of the surface of the slope.
[0092] これに対し、反射面を有する薄い板状体を用いることで、反射面の形成以前の板状 体、あるいは複数の板状体が連結された連結体を平面台上に設置して、それらの板 状体に圧子を押し当てることによって容易に反射面を形成することが可能であり、し たがって、光モジュールの製造上の制約が少なくなり、その製造が容易になる。  On the other hand, by using a thin plate-like body having a reflective surface, the plate-like body before the formation of the reflective surface or a connecting body in which a plurality of plate-like bodies are connected is installed on a flat table. It is possible to easily form a reflecting surface by pressing an indenter against these plate-like bodies, thereby reducing the manufacturing constraints of the optical module and facilitating its manufacture.

Claims

請求の範囲 The scope of the claims
[1] 光出射口を持つ第 1の光部品と、 [1] a first light component having a light exit,
光入射口を持つ第 2の光部品と、  A second light component having a light entrance,
前記第 1の光部品からの光を反射して前記第 2の光部品へ入射させる反射面を有す る反射体と、  A reflector having a reflective surface that reflects light from the first optical component and makes the light enter the second optical component;
前記反射体が埋め込まれ、前記光出射口と前記光入射口の少なくとも一方に接する 透明材料部と、  A transparent material portion in which the reflector is embedded and which is in contact with at least one of the light exit and the light entrance;
前記反射体に連結し、前記反射体を支える線材と、  A wire connected to the reflector and supporting the reflector;
を有する光モジュール。  Light module with.
[2] 請求項 1に記載の光モジュールにおいて、前記反射体は主面又は内面に前記反射 面を有する板状体である光モジュール。 [2] The optical module according to claim 1, wherein the reflector is a plate-like body having the reflective surface on a main surface or an inner surface.
[3] 請求項 2に記載の光モジュールにおいて、前記板状体の厚さが 1 μ ΐηから 100 /i m で、幅が 0· 005mmから lmmである光モジユーノレ。 3. The optical module according to claim 2, wherein the thickness of the plate-like body is 1 μ 1 to 100 / im and the width is 0 · 005 mm to 1 mm.
[4] 請求項 1に記載の光モジュールにおいて、基板上に外壁部が設置され、該外壁部内 に、前記光出射口と前記光入射口の少なくとも一方、前記反射体、及び前記透明材 料部が設けられてレ、る光モジュール。 [4] The optical module according to claim 1, wherein an outer wall portion is provided on a substrate, and at least one of the light emitting port and the light incident port, the reflector, and the transparent material portion are provided in the outer wall portion. The light module is equipped with a light.
[5] 請求項 2に記載の光モジュールにおいて、前記板状体の 2点に 1端を固定された各 1 本の前記線材の各 1つの他端、または、前記板状体の 1辺に固定された 1本の前記 線材の両端が、基板に固定されている光モジュール。 [5] In the optical module according to claim 2, one end of each one of the wires fixed at one end to two points of the plate-like body, or one side of the plate-like body An optical module in which both ends of one fixed wire are fixed to a substrate.
[6] 請求項 2に記載の光モジュールにおいて、前記板状体の 2点に 1端を固定された各 1 本の前記線材の各 1つの他端、または、前記板状体の 1辺に固定された 1本の前記 線材の両端を、基板、または、前記第 1または第 2の光部品に固定して、前記板状体 が該第 1または第 2の光部品上に載置されていることを特徴とする光モジュール。  [6] In the optical module according to claim 2, one end of each one of the wires whose one end is fixed to two points of the plate-like body, or one side of the plate-like body The plate-like body is placed on the first or second optical component by fixing both ends of the fixed one of the wires to the substrate or the first or second optical component. An optical module characterized by
[7] 請求項 5に記載の光モジュールにおいて、前記各 1つの他端または前記両端が、そ れぞれ、少なくとも 1枚の板を介して、前記基板、または、前記第 1または第 2の光部 品に固定されている光モジュール。  [7] The optical module according to claim 5, wherein the other end or each end of each one of the plurality of substrates is either via the at least one plate, or the substrate or the first or second one. Light module fixed to light component.
[8] 請求項 6に記載の光モジュールにおいて、前記各 1つの他端または前記両端が、そ れぞれ、少なくとも 1枚の板を介して、前記基板、または、前記第 1または第 2の光部 品に固定されている光モジュール。 [8] The optical module according to claim 6, wherein the other end or each end of each one of the substrates is either via the at least one plate or the substrate or the first or the second Light section Optical module fixed to the product.
請求項 1に記載の光モジュールにおいて、前記第 1の光部品と前記第 2の光部品と 力 基板の互いに逆の主面側に配置されていることを特徴とする光モジュール。 請求項 9に記載の光モジュールにおいて、前記透明材料部に埋め込まれている前記 反射体が、前記基板の両主面上に配置されている光モジュール。 The optical module according to claim 1, wherein the optical module is disposed on mutually opposite principal surface sides of the first optical component, the second optical component, and the force substrate. The optical module according to claim 9, wherein the reflector embedded in the transparent material portion is disposed on both main surfaces of the substrate.
請求項 1に記載の光モジュールにおいて、 In the optical module according to claim 1,
前記第 1の光部品および Zまたは前記第 2の光部品が、光ファイバまたは光導波路 である光モジュール。 An optical module, wherein the first optical component and Z or the second optical component are optical fibers or optical waveguides.
光出射口を持つ第 1の光部品と、光入射口を持つ第 2の光部品と、前記第 1の光部 品からの光を反射して前記第 2の光部品へ入射させる反射面を有する反射体と、を 有する光モジュールの製造方法において、前記反射体、または、複数の前記反射体 が連結された連結体の 2点に 1端を固定された各 1本の線材、または、 1辺に固定さ れた 1本の線材を回転させることによって、前記第 1の光部品からの光が前記第 2の 光部品へ入射するように、前記反射体または前記連結体に形成された前記反射面 の中心軸の前記光に対する角度を調節することを特徴とする光モジュールの製造方 法。 A first optical component having a light exit, a second optical component having a light entrance, and a reflecting surface that reflects light from the first optical component and causes the light to enter the second optical component. In the method of manufacturing an optical module having a reflector, the reflector, or one wire each of which one end is fixed to two points of a connecting body in which a plurality of the reflectors are connected, or The reflector or the coupling body is formed such that the light from the first optical component is incident on the second optical component by rotating one wire fixed to the side. A method of manufacturing an optical module, comprising adjusting an angle of the central axis of the reflective surface to the light.
請求項 12に記載の光モジュールの製造方法において、前記反射体または前記連結 体の複数の反射体が、主面又は内面に前記反射面を有する板状体である光モジュ ールの製造方法。 The method of manufacturing an optical module according to claim 12, wherein a plurality of reflectors of the reflector or the connector is a plate having the reflection surface on the main surface or the inner surface.
請求項 12に記載の光モジュールの製造方法において、前記線材を回転させて、前 記角度を調節した後、基板上に前記線材を固定する工程を有する光モジュールの 製造方法。 The method of manufacturing an optical module according to claim 12, further comprising: fixing the wire on the substrate after rotating the wire to adjust the angle.
請求項 12に記載の光モジュールの製造方法において、基板上に配置された前記第 1または第 2の光部品上で前記線材を回転させて、前記角度を調節した後、前記第 1 または第 2の光部品上または前記基板上に前記線材を固定する工程を有する光モ ジュールの製造方法。 The method of manufacturing an optical module according to claim 12, wherein the wire is rotated on the first or second optical component disposed on a substrate to adjust the angle, and then the first or second optical member is adjusted. A method of manufacturing an optical module, comprising the step of fixing the wire on the optical component of the above or the substrate.
請求項 12に記載の光モジュールの製造方法において、加工台上に 2枚の板を載置 し、前記 2枚の板上で前記線材を回転させることによって、前記中心軸と前記 2枚の 板との間の角度が実質的に前記一定角度になるように調節した後、前記線材を前記The method for manufacturing an optical module according to claim 12, wherein two plates are placed on a processing table, and the wire rod is rotated on the two plates to form the central axis and the two sheets. After adjusting the angle between the plate and the plate to be substantially constant, the wire is
2枚の板に固定する工程と、基板上に配置された前記第 1または第 2の光部品上に、 または、前記基板上に前記 2枚の板を固定する工程と、を有する光モジュールの製 造方法。 An optical module comprising the steps of: fixing to two plates; and fixing the two plates on the first or second optical component disposed on a substrate or on the substrate Production method.
[17] 請求項 12に記載の光モジュールの製造方法において、加工台上に 2枚の板を載置 し、前記 2枚の板上で前記線材を回転させることによって、前記中心軸と前記 2枚の 板との間の角度が実質的に前記一定角度になるように調節した後、前記線材を前記 [17] In the method of manufacturing an optical module according to claim 12, the central axis and the second optical axis are placed by placing two plates on a processing table and rotating the wire on the two plates. After adjusting the angle between the sheet and the plate to be substantially the same, the wire may be
2枚の板に固定する工程と、前記第 1または第 2の光部品上に前記 2枚の板を固定す る工程と、該第 1の光部品または第 2の光部品を前記基板上に固定する工程と、を有 する光モジュールの製造方法。 The process of fixing to two boards, the process of fixing said two boards on said 1st or 2nd optical components, Said 1st optical component or 2nd optical components on said board | substrate And a step of fixing the optical module.
[18] 請求項 16に記載の光モジュールの製造方法において、前記加工台上において、前 記反射体、または、前記連結体に連結されている各反射体に反射面を形成する工程 を有する光モジュールの製造方法。 [18] A method of manufacturing an optical module according to claim 16, further comprising the step of forming a reflecting surface on the reflector or each reflector connected to the connector on the processing table. Module manufacturing method.
[19] 請求項 17に記載の光モジュールの製造方法において、前記加工台上において、前 記反射体、または、前記連結体に連結されている各反射体に反射面を形成する工程 を有する光モジュールの製造方法。 [19] A method of manufacturing an optical module according to claim 17, comprising the step of forming a reflecting surface on the reflector or each reflector connected to the connector on the processing table. Module manufacturing method.
[20] 請求項 12に記載の光モジュールの製造方法において、前記第 1の光部品と前記第[20] In the method of manufacturing an optical module according to claim 12, the first optical component and the first optical component
2の光部品とを、基板の互いに逆の主面側に配置する光モジュールの製造方法。 The manufacturing method of the optical module which arrange | positions 2 optical components on the mutually opposite main surface side of a board | substrate.
[21] 請求項 12に記載の光モジュールの製造方法において、前記角度を調した後に、前 記反射体または前記連結体を透明充填剤に坦め込む光モジュールの製造方法。 21. The method of manufacturing an optical module according to claim 12, wherein after adjusting the angle, the reflector or the connector is carried in a transparent filler.
[22] 請求項 21に記載の光モジュールの製造方法において、前記反射体を坦め込んだ後 に、前記透明充填剤を硬化させる工程と、次に前記線材を前記反射体から切り離す 工程とを有する光モジュールの製造方法。 [22] In the method of manufacturing an optical module according to claim 21, a step of curing the transparent filler after supporting the reflector, and a step of separating the wire from the reflector next. Method of manufacturing an optical module having the same.
[23] 光出射口を持つ第 1の光部品と、 [23] a first light component having a light exit,
光入射口を持つ第 2の光部品と、  A second light component having a light entrance,
前記第 1の光部品からの光を反射して前記第 2の光部品へ入射させる反射面を有す る反射体と、  A reflector having a reflective surface that reflects light from the first optical component and makes the light enter the second optical component;
前記反射体が埋め込まれ、前記光出射口と前記光入射口の少なくとも一方に接する 透明材料部と、 を有する光モジ. The reflector is embedded and is in contact with at least one of the light exit and the light entrance. A transparent material portion;
PCT/JP2005/005109 2004-03-19 2005-03-22 Optical module and method for manufacturing the same WO2005091036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004079612A JP2007256298A (en) 2004-03-19 2004-03-19 Optical module and method for manufacturing the same
JP2004-079612 2004-03-19

Publications (1)

Publication Number Publication Date
WO2005091036A1 true WO2005091036A1 (en) 2005-09-29

Family

ID=34993849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005109 WO2005091036A1 (en) 2004-03-19 2005-03-22 Optical module and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2007256298A (en)
WO (1) WO2005091036A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105157A1 (en) * 2008-02-18 2009-08-27 Eastman Kodak Company A fiber optic imaging apparatus
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
JP2016500840A (en) * 2013-03-27 2016-01-14 オプティシス カンパニー リミテッド Optical connector
US9323020B2 (en) 2008-10-09 2016-04-26 Corning Cable Systems (Shanghai) Co. Ltd Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US9547145B2 (en) 2010-10-19 2017-01-17 Corning Optical Communications LLC Local convergence point for multiple dwelling unit fiber optic distribution network
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
WO2019246594A1 (en) * 2018-06-22 2019-12-26 Masseta Technologies Llc Discrete optical unit on a substrate of an integrated photonics chip
US11158996B2 (en) 2017-09-28 2021-10-26 Apple Inc. Laser architectures using quantum well intermixing techniques
US11156497B2 (en) 2017-09-29 2021-10-26 Apple Inc. Connected epitaxial optical sensing systems comprising a second epitaxial chip with a second light source and a second detector to detect light of a first light source
US11171464B1 (en) 2018-12-14 2021-11-09 Apple Inc. Laser integration techniques
US11226459B2 (en) 2018-02-13 2022-01-18 Apple Inc. Integrated photonics device having integrated edge outcouplers
US11231319B1 (en) 2019-09-09 2022-01-25 Apple Inc. Athermal wavelength stability monitor using a detraction grating
US11320718B1 (en) 2019-09-26 2022-05-03 Apple Inc. Cantilever beam waveguide for silicon photonics device
US11500154B1 (en) 2019-10-18 2022-11-15 Apple Inc. Asymmetric optical power splitting system and method
US11506535B1 (en) 2019-09-09 2022-11-22 Apple Inc. Diffraction grating design
US11525958B1 (en) 2019-09-09 2022-12-13 Apple Inc. Off-cut wafer with a supported outcoupler
US11525967B1 (en) 2018-09-28 2022-12-13 Apple Inc. Photonics integrated circuit architecture
US11561346B2 (en) 2020-09-24 2023-01-24 Apple Inc. Tunable echelle grating
US11579080B2 (en) 2017-09-29 2023-02-14 Apple Inc. Resolve path optical sampling architectures
US11815719B2 (en) 2020-09-25 2023-11-14 Apple Inc. Wavelength agile multiplexing
US11835836B1 (en) 2019-09-09 2023-12-05 Apple Inc. Mach-Zehnder interferometer device for wavelength locking
US11852865B2 (en) 2020-09-24 2023-12-26 Apple Inc. Optical system with phase shifting elements
US11852318B2 (en) 2020-09-09 2023-12-26 Apple Inc. Optical system for noise mitigation
US11881678B1 (en) 2019-09-09 2024-01-23 Apple Inc. Photonics assembly with a photonics die stack
US11906778B2 (en) 2020-09-25 2024-02-20 Apple Inc. Achromatic light splitting device with a high V number and a low V number waveguide
US11960128B2 (en) 2020-10-23 2024-04-16 Apple Inc. Fast-axis collimator with hanging connector

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380903B2 (en) * 2008-05-14 2014-01-08 凸版印刷株式会社 Optical substrate manufacturing method
JP5258414B2 (en) * 2008-06-26 2013-08-07 日本モレックス株式会社 Optical module socket and optical connector
WO2010088631A2 (en) * 2009-01-30 2010-08-05 Kaiam Corp. Micromechanically aligned optical assembly
JP5664910B2 (en) * 2011-02-04 2015-02-04 日立金属株式会社 Optical module
JP5614725B2 (en) * 2011-02-04 2014-10-29 日立金属株式会社 Optical module
WO2023063196A1 (en) * 2021-10-11 2023-04-20 古河電気工業株式会社 Optical apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206667A (en) * 1997-01-24 1998-08-07 Fuji Xerox Co Ltd Manufacture of optical waveguide element
JP2001330743A (en) * 2000-05-19 2001-11-30 Sharp Corp Optical parts, method for manufacturing the same and optical pickup using the same
JP2002182051A (en) * 2000-10-04 2002-06-26 Sumitomo Electric Ind Ltd Optical waveguide module
WO2002073256A1 (en) * 2001-02-28 2002-09-19 Nec Corporation Optical circuit element and production method therefor, array-form optical circuit element, optical circuit device using it
JP2004118081A (en) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206667A (en) * 1997-01-24 1998-08-07 Fuji Xerox Co Ltd Manufacture of optical waveguide element
JP2001330743A (en) * 2000-05-19 2001-11-30 Sharp Corp Optical parts, method for manufacturing the same and optical pickup using the same
JP2002182051A (en) * 2000-10-04 2002-06-26 Sumitomo Electric Ind Ltd Optical waveguide module
WO2002073256A1 (en) * 2001-02-28 2002-09-19 Nec Corporation Optical circuit element and production method therefor, array-form optical circuit element, optical circuit device using it
JP2004118081A (en) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit and its manufacturing method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105157A1 (en) * 2008-02-18 2009-08-27 Eastman Kodak Company A fiber optic imaging apparatus
US9323020B2 (en) 2008-10-09 2016-04-26 Corning Cable Systems (Shanghai) Co. Ltd Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US9720197B2 (en) 2010-10-19 2017-08-01 Corning Optical Communications LLC Transition box for multiple dwelling unit fiber optic distribution network
US9547145B2 (en) 2010-10-19 2017-01-17 Corning Optical Communications LLC Local convergence point for multiple dwelling unit fiber optic distribution network
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US9602209B2 (en) 2011-12-12 2017-03-21 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US9800339B2 (en) 2011-12-12 2017-10-24 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US10110305B2 (en) 2011-12-12 2018-10-23 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
JP2016500840A (en) * 2013-03-27 2016-01-14 オプティシス カンパニー リミテッド Optical connector
US11777279B2 (en) 2017-09-28 2023-10-03 Apple Inc. Laser architectures using quantum well intermixing techniques
US11158996B2 (en) 2017-09-28 2021-10-26 Apple Inc. Laser architectures using quantum well intermixing techniques
US11579080B2 (en) 2017-09-29 2023-02-14 Apple Inc. Resolve path optical sampling architectures
US11156497B2 (en) 2017-09-29 2021-10-26 Apple Inc. Connected epitaxial optical sensing systems comprising a second epitaxial chip with a second light source and a second detector to detect light of a first light source
US11226459B2 (en) 2018-02-13 2022-01-18 Apple Inc. Integrated photonics device having integrated edge outcouplers
WO2019246594A1 (en) * 2018-06-22 2019-12-26 Masseta Technologies Llc Discrete optical unit on a substrate of an integrated photonics chip
US11644618B2 (en) 2018-06-22 2023-05-09 Apple Inc. Discrete optical unit on a substrate of an integrated photonics chip
US11525967B1 (en) 2018-09-28 2022-12-13 Apple Inc. Photonics integrated circuit architecture
US11923654B2 (en) 2018-12-14 2024-03-05 Apple Inc. Laser integration techniques
US11171464B1 (en) 2018-12-14 2021-11-09 Apple Inc. Laser integration techniques
US11506535B1 (en) 2019-09-09 2022-11-22 Apple Inc. Diffraction grating design
US11525958B1 (en) 2019-09-09 2022-12-13 Apple Inc. Off-cut wafer with a supported outcoupler
US11835836B1 (en) 2019-09-09 2023-12-05 Apple Inc. Mach-Zehnder interferometer device for wavelength locking
US11881678B1 (en) 2019-09-09 2024-01-23 Apple Inc. Photonics assembly with a photonics die stack
US11231319B1 (en) 2019-09-09 2022-01-25 Apple Inc. Athermal wavelength stability monitor using a detraction grating
US11320718B1 (en) 2019-09-26 2022-05-03 Apple Inc. Cantilever beam waveguide for silicon photonics device
US11500154B1 (en) 2019-10-18 2022-11-15 Apple Inc. Asymmetric optical power splitting system and method
US11852318B2 (en) 2020-09-09 2023-12-26 Apple Inc. Optical system for noise mitigation
US11561346B2 (en) 2020-09-24 2023-01-24 Apple Inc. Tunable echelle grating
US11852865B2 (en) 2020-09-24 2023-12-26 Apple Inc. Optical system with phase shifting elements
US11815719B2 (en) 2020-09-25 2023-11-14 Apple Inc. Wavelength agile multiplexing
US11906778B2 (en) 2020-09-25 2024-02-20 Apple Inc. Achromatic light splitting device with a high V number and a low V number waveguide
US11960128B2 (en) 2020-10-23 2024-04-16 Apple Inc. Fast-axis collimator with hanging connector

Also Published As

Publication number Publication date
JP2007256298A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2005091036A1 (en) Optical module and method for manufacturing the same
JP3731542B2 (en) Optical module and optical module mounting method
JP4704126B2 (en) Optical module
JP3795877B2 (en) Optical semiconductor module and manufacturing method thereof
JP3566842B2 (en) Semiconductor light receiving device, method of manufacturing semiconductor light receiving device, bidirectional optical semiconductor device, and optical transmission system
JP4624162B2 (en) Opto-electric wiring board
JPH0894888A (en) Optical semiconductor module and its production
JPH0961674A (en) Optical module and its production
TW200944853A (en) Manufacturing method of optical wiring printed board and optical wiring printed circuit board
JPH09138325A (en) Optical fiber packaging structure and its production
US20120267338A1 (en) Method for manufacturing optical coupling element, optical transmission substrate, optical coupling component, coupling method, and optical interconnect system
JPH04152682A (en) Manufacture of sub-substrate for array-like optical element
US6695492B2 (en) Optical module and production method therefor
JP2001007403A (en) Parallel transmission type of optical module, and its manufacture
JP2004012803A (en) Printed board unit for optical transmission, and mounting method
JP2527054B2 (en) Optical module submount and manufacturing method thereof
JP4304717B2 (en) Optical module and manufacturing method thereof
JP2001201670A (en) Optical module
JP2007178950A (en) Optical wiring board and optical wiring module
JP2006058327A (en) Optical waveguide device and optical coupling device
JP3764573B2 (en) Optical module
JP2005338696A (en) Optical component and its manufacturing method
US7223022B2 (en) Alignment of an optic or electronic component
JP2004102216A (en) Light guide substrate provided with optical path conversion part and method for manufacturing light guide substrate
JP4475841B2 (en) Optical module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP