WO2005087988A1 - Extremely fine polylactic acid fiber, fibrous structure and process for producing these - Google Patents

Extremely fine polylactic acid fiber, fibrous structure and process for producing these Download PDF

Info

Publication number
WO2005087988A1
WO2005087988A1 PCT/JP2005/004165 JP2005004165W WO2005087988A1 WO 2005087988 A1 WO2005087988 A1 WO 2005087988A1 JP 2005004165 W JP2005004165 W JP 2005004165W WO 2005087988 A1 WO2005087988 A1 WO 2005087988A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
lactic acid
solution
condensate
solvent
Prior art date
Application number
PCT/JP2005/004165
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Miyoshi
Kiyotsuna Toyohara
Hiroyoshi Minematsu
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to US10/592,760 priority Critical patent/US20070172651A1/en
Priority to JP2006510973A priority patent/JP4243292B2/en
Priority to EP05720436A priority patent/EP1731633A4/en
Priority to CA002560363A priority patent/CA2560363A1/en
Publication of WO2005087988A1 publication Critical patent/WO2005087988A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Definitions

  • Ultrafine polylactic acid-based fibers fiber structures, and methods for producing them
  • the present invention relates to a fiber containing polylactic acid having a biological separation angle of 10 minutes as a component, and more particularly to an ultrafine polylactic acid-based fiber, a fibrous structure, and a method for producing them.
  • Ultra-fine fibers are converted into woven or knitted or artificial leather from their soft texture and used for clothing and interior purposes. It is also used in the form of paper and non-woven fabric for filters, insulating paper, wipers, packaging materials, sanitary agents, etc.
  • ultrafine fibers that decompose in soil and compost are required.
  • ultrafine fibers made of a biodegradable thermoplastic aliphatic polyester having a single fiber fineness of 0.5 decitex or less have been proposed (see, for example, Patent Document 1).
  • the ultrafine fibers obtained by the above proposal have poor heat resistance, and their uses are limited.
  • As a method for improving the heat resistance of polylactic acid formation of a stereo complex of poly (L-lactic acid) and poly (D-lactic acid) has recently attracted attention (for example, see Patent Document 3).
  • the polylactic acid stereocomplex fibers obtained so far contain both poly (L-lactic acid) single crystals and poly (D-lactic acid) single crystals, and the heat resistance is still insufficient.
  • these fibers have a large fiber diameter, and a fiber structure formed from the fibers has insufficient flexibility (for example, see Patent Documents 3 and 4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-192932
  • Patent Document 2 International Publication No. 02/16680 Pamphlet
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-30523
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-138437 Disclosure of the Invention
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fiber having an extremely small fiber diameter, excellent heat resistance and biodegradability.
  • Another object of the present invention is to provide a fibrous structure containing the fiber.
  • FIG. 1 is a diagram schematically showing one embodiment of an apparatus configuration for producing the fiber structure of the present invention.
  • FIG. 2 is a diagram schematically showing one embodiment of an apparatus configuration for producing the fibrous structure of the present invention.
  • FIG. 3 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Example 1 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 4 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Example 1 with a scanning electron microscope ( ⁇ 800).
  • FIG. 5 is a photographic view ′ obtained by photographing the surface of the fiber structure obtained in Example 2 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 6 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Example 2 with a scanning electron microscope (magnification: 800,000).
  • FIG. 7 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Comparative Example 1 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 8 is a photographic diagram obtained by photographing (800 ⁇ magnification) the surface of the fiber structure obtained in Comparative Example 1 with a scanning electron microscope.
  • FIG. 9 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Comparative Example 2 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 10 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Comparative Example 2 with a scanning electron microscope ( ⁇ 800).
  • FIG. 11 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Comparative Example 3 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 12 is a photographic diagram obtained by photographing (800 ⁇ magnification) the surface of the fiber structure obtained in Comparative Example 3 with a scanning electron microscope.
  • FIG. 13 is a scanning electron microscope showing the surface of the fibrous structure obtained in Example 3. It is a photograph figure obtained by taking a picture with a mirror (20000 times).
  • FIG. 14 is a photograph obtained by photographing the surface of the fibrous structure obtained in Example 3 with a scanning electron microscope ( ⁇ 800).
  • FIG. 15 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Example 4 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 16 is a photographic diagram obtained by photographing (800 ⁇ magnification) the surface of the fiber structure obtained in Example 4 with a scanning electron microscope.
  • FIG. 17 is a photograph obtained by photographing the surface of the fibrous structure obtained in Comparative Example 4 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 18 is a photograph obtained by photographing (800 ⁇ magnification) the surface of the fiber structure obtained in Comparative Example 4 with a scanning electron microscope.
  • FIG. 19 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Comparative Example 5 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 20 is a photographic diagram obtained by photographing (800 ⁇ magnification) the surface of the fiber structure obtained in Comparative Example 5 with a scanning electron microscope.
  • FIG. 21 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Comparative Example 6 with a scanning electron microscope (200 ⁇ magnification).
  • FIG. 22 is a photographic diagram obtained by photographing (800 ⁇ magnification) the surface of the fiber structure obtained in Comparative Example 6 with a scanning electron microscope.
  • the fiber of the present invention needs to have an average fiber diameter of 10 ⁇ or less. When the average fiber diameter of the fibers exceeds 10, the flexibility of the resulting fiber structure becomes poor, which is not preferable.
  • the average fiber diameter of the fibers is 0. 0 is in the range of 1 to 5 ⁇ m.
  • the fiber of the present invention needs to have a fiber length of 20 ⁇ or more. If the fiber length is less than 20 ⁇ , the mechanical strength of the resulting fibrous structure will be insufficient.
  • the fiber length is preferably at least 40 ⁇ , more preferably at least 1 mm.
  • Fibers of the present invention it is necessary to the polylactic acid component Ru 1 90 ° have a C or higher melting point 1 "as the main component, the melting point is substantive free of components of less than 1 0 Q C Is preferred.
  • the term “substantially free of components having a melting point of less than 190 ° C.” means that the obtained fiber has a melting endothermic curve (DSC curve) of 190 when subjected to differential scanning calorimetry. It means not showing an endothermic peak below ° C.
  • the fiber of the present invention is mainly composed of a polylactic acid component having a melting point of 190 ° C. or more.
  • the fiber of the present invention has a depression having a diameter of 0.01 to 1 / ⁇ m on its surface, and the depression occupies 10 to 95 ° of the fiber surface.
  • the surface area of the fiber structure formed from the fiber is increased, and the decomposition rate in soil or in a composite is improved.
  • the diameter of the recess is more preferably 0.02 to 0.5 ⁇ , and the ratio of the recess occupying the fiber surface is 40 to 95 ° /. Is more preferred.
  • the polylactic acid component is a polymer composed of a condensate of lactic acid in which 80% by mole or more based on all repeating units is used, and other components are used together within a range that does not impair the features of the present invention. It may be polymerized.
  • the term “main constituent” refers to all constituents of the fiber of the present invention. As 75% by weight or more, preferably 80% by weight. / 0 or more, more preferably 90% by weight or more, especially 95% by weight or more.
  • the polylactic acid component is preferably a condensate of L-lactic acid with 80 mol% or more based on all repeating units and a condensate of D-lactic acid with 80 mol% or more based on all repeating units.
  • a condensate of L-lactic acid in which 80 mol% or more based on all repeating units is 80 to 100 mol% of L-lactic acid and D-lactic acid or D-lactic acid.
  • a copolymer component other than lactic acid It is composed of 0 to 20 mol% of a copolymer component other than lactic acid.
  • a condensate of D-lactic acid in which 80 mol% or more based on all repeating units is 80 to 100 mol% of D-lactic acid and L-lactic acid or a copolymer component other than L-lactic acid 0 ⁇ 20 mol%.
  • the copolymerization component examples include oxyacid, ratatone, dicarboxylic acid, and polyhydric alcohol. Further, various polyesters, polyethers, polycarbonates, and the like, which are composed of these components and have a functional group capable of forming an ester bond, may also be mentioned.
  • the polylactic acid component is composed of a condensate of L-lactic acid with 80 mol% or more based on all repeating units and a condensate of D-lactic acid with 80 mol% or more based on all repeating units. More preferably, the mixture has a weight ratio of (6: 4) to (4: 6).
  • At least 80 mol% of the condensate of L-lactic acid and at least 80 mol% of the condensate of D-lactic acid based on all repeating units are substantially (5 : 5) It is more preferable to mix them.
  • the weight average molecular weight of the polylactic acid component is 100,000 or more
  • the mechanical strength of the obtained fiber structure is improved, which is more preferable.
  • the fibrous structure of the present invention contains at least the above-mentioned ultrafine polylactic acid-based fibers.
  • the term “fibrous structure” refers to a fiber formed by subjecting fibers to operations such as weaving, knitting, and lamination.
  • the non-woven fabric is a preferred example.
  • the content of the ultrafine polylactic acid-based fiber is not particularly limited. However, when the content is 50% by weight or more, the characteristics of the ultrafine polylactic acid-based fiber can be utilized, which is preferable.
  • the content is more preferably 80% by weight or more, and a fiber structure substantially composed of only the polylactic acid-based fiber is further preferable.
  • the fibers forming the fibrous structure have an average diameter of 10 Im or less, and further contain substantially no fiber having a fiber length of 20 ⁇ m or less.
  • any method can be employed as long as the above-mentioned fibers can be obtained.
  • 80 mol% or more of L- A condensate of lactic acid and a condensate of D-lactic acid, of which at least 80 mol%, based on all repeating units, are mixed in a weight ratio of (6: 4) to (4: 6), and then the solvent is added.
  • a step of preparing a solution by dissolving a condensate of L-l-lactic acid in a solvent in which at least 80 mol% based on all repeating units is used and a step in which at least 80 mol% of D-lactic acid is based on all repeating units.
  • Dissolving the condensate in a solvent to prepare a solution, and the weight ratio of the two solutions is (6: 4) to (4: 6).
  • a solution in which a fiber-forming compound is dissolved is discharged into an electrostatic field formed between the electrodes, the solution is drawn toward the electrodes, and the formed fibrous substance is removed.
  • a melt-kneading and melt spinning force or a condensate of L-lactic acid and poly D-lactic acid is used. Dry spinning is performed from a solution in which the condensate is dissolved, but in any case, it is impossible to completely eliminate the melting point of 190 ° C or lower.
  • the fiber obtained by the electrospinning method has substantially no melting point of 190 ° C. or less.
  • the above-mentioned electrode can be used as long as it shows conductivity of any metal, inorganic substance or organic substance, and has a thin film of conductive metal, inorganic substance or organic substance on an insulator. May be.
  • the electrostatic field is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes.
  • a high voltage may be applied to any of the electrodes. This includes, for example, the use of two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and three electrodes connected to earth, or more than three electrodes. Number of electrodes It includes the case of using.
  • the concentration of the polylactic acid component in the solution is preferably 1 to 30% by weight. If the concentration is less than 1% by weight, it is difficult to form a fiber structure because the concentration is too low, which is not preferable. On the other hand, if it is larger than 30% by weight, the average diameter of the obtained fiber is undesirably large. A more preferred concentration is 2 to 25% by weight.
  • the solvent for dissolving the polylactic acid component is not particularly limited as long as it can dissolve the polylactic acid component and evaporate at the stage of spinning by the electrostatic spinning method to form a fiber. .
  • the use of a volatile solvent as the solvent facilitates the formation of the dents on the fiber surface described above, which is preferable.
  • the volatile solvent in the present invention is a substance having a boiling point of 200 ° C. or less under atmospheric pressure and being liquid at room temperature (for example, 27 ° C.).
  • Specific volatile solvents include, for example, methylene chloride, chlorophonorem, dichloroethane, tetrachloroethane, and trichloroethane.
  • These solvents may be used alone or as a mixed solvent obtained by combining a plurality of solvents.
  • any method can be used to discharge the solution into the electrostatic field.
  • the solution is placed at an appropriate position in the electrostatic field, and the solution is discharged from the nozzle. What is necessary is just to string by an electric field and to make it a fiber.
  • An appropriate means for example, a needle-like solution jet nozzle (3 in FIG. 1), to which a voltage is applied by means of a high-voltage generator (6 in FIG. 1), is applied to the tip of the cylindrical solution holding tank (3 in FIG. 1) of the syringe.
  • the tip of the solution ejection nozzle (1 in FIG. 1) is arranged at an appropriate distance from the grounded fibrous substance collecting electrode (5 in FIG. 1), and the solution (2 in FIG. 1) is discharged from the solution ejection nozzle.
  • a fibrous substance can be formed between the tip of the nozzle (1 in FIG. 1) and the fibrous substance collecting electrode (5 in FIG. 1).
  • fine droplets (not shown) of the solution can be introduced into an electrostatic field, and the only requirement in that case is the solution (FIG. 2). 2) is to be placed in an electrostatic field and held away from the fibrous substance collecting electrode (5 in FIG. 2) at such a distance that fibrillation can occur.
  • the electrode (2 in FIG. 2) in the solution holding tank (3 in FIG. 2) having the solution ejection nozzle (1 in FIG. 2) directly opposes the fibrous substance collecting electrode (2 in FIG. 2). 4) in the figure can also be inserted.
  • the distance between the electrodes depends on the amount of charge, nozzle size, amount of solution ejected from the nozzle, solution concentration, etc. However, when the voltage was about 10 kV, a distance of 5 to 20 cm was appropriate.
  • the applied electrostatic potential is generally 3 to 100 kV, preferably 5 to 50 kV, and more preferably 5 to 30 kV.
  • the desired potential may be created by any suitable method known in the art.
  • the electrodes also serve as the collecting substrate, but by installing a potential collecting substrate between the electrodes, a collecting substrate is provided separately from the electrodes, and the fiber laminate is collected there. You can do it. In this case, for example, continuous production is possible by placing a belt-like substance between the electrodes and using this as a collecting substrate.
  • the solvent evaporates according to the conditions to form a fibrous substance.
  • the solvent evaporates completely before being collected on the collecting substrate.
  • spinning may be performed under reduced pressure.
  • the spinning temperature may be adjusted according to the evaporation behavior of the solvent and the viscosity of the spinning solution, which is usually in the range of 0 to 10 ° C.
  • the relative humidity is between 20 and 80% RH. If the relative humidity is out of the above range, it becomes difficult to perform stable spinning for a long time. A more preferred relative humidity is 30 to 70% RH.
  • the fibrous structure obtained by the production method of the present invention may be used alone, or may be used in combination with other members according to handleability and other requirements.
  • a non-woven fabric that can serve as a support By forming a fiber laminate on a cloth, a woven fabric, a film, or the like, a member combining the support base material and the fiber laminate can be produced.
  • the obtained fiber structure may be subjected to a heat treatment or a chemical treatment. Further, at any stage before the spinning, the above-mentioned polylactic acid is mixed with an emulsion, an organic or inorganic powder, a filler or the like. You may.
  • the surface of the obtained fiber structure was photographed with a scanning electron microscope (S-240, manufactured by Hitachi, Ltd.) (magnification: 200,000), and a photograph obtained was observed. It was checked whether fibers of less than m existed. Depression of fiber surface structure A scanning electron micrograph (magnification: 8000 times) of the surface of the obtained fiber structure was taken.
  • the measurement was performed by averaging the area ratios obtained from electron micrographs at arbitrary 10 locations of the fiber structure.
  • the weight-average molecular weight was measured by GPC-11 (manufactured by Showa Denko KK) (column SH ODEX LF-804, solvent port form, detector RI, styrene conversion). Melting point:
  • the DSC curve of the obtained fiber structure was measured by differential scanning calorimetry (DSC-2920, manufactured by Texas Instruments), and the melting point was determined from the endothermic peak.
  • Example 1 500 ppm of tin octylate is mixed with D-lactide, and polymerized in a reaction vessel equipped with a stirrer at 200 ° C for 60 minutes under a nitrogen atmosphere to obtain a poly (D-lactic acid) having a weight average molecular weight of 120,000. A homopolymer was obtained.
  • the inner diameter of the ejection nozzle (1 in Fig. 2) is 0.8 mm, the voltage is 12 kV, and the distance from the ejection nozzle (1 in Fig. 2) to the fibrous material collecting electrode (5 in Fig. 2) is 1
  • the relative humidity was 2 cm and the relative humidity was 35% RH.
  • the average fiber diameter was 3 m, and fibers with a fiber length of 20 / zm or less were present. Did not.
  • the average diameter of the depressions on the fiber surface was 0.2 ⁇ m, and the ratio of the area of the depressions to the fiber surface was 23%. Scanning electron micrographs of the fiber structure are shown in Figs.
  • the average fiber diameter of the obtained fiber structure is 4 ⁇ m, and the fiber length is 20 ⁇ m or less.
  • the lower fiber was not present.
  • the average diameter of the depressions on the fiber surface was 0.2 ⁇ m, and the area of the depressions on the fiber surface was 22%.
  • Figs. 5 and 6 show scanning electron micrographs of the fiber structure.
  • Example 1 was repeated except that 7 parts by weight of a solution in which 1 part by weight of poly D-lactic acid was dissolved in 9 parts by weight of methylene chloride and 3 parts by weight of a solution in which 1 part by weight of poly L-monolactic acid was dissolved in 9 parts by weight of methylene chloride.
  • a fiber structure was obtained in the same manner as in 2.
  • the average fiber diameter of the obtained fiber structure was 3 m, and there was no fiber having a fiber length of 20 ⁇ m or less.
  • the average diameter of the concave portion on the fiber surface was 0.2 ⁇ , and the ratio of the area of the concave portion to the fiber surface was 31%. Scanning electron micrographs of the fiber structure are shown in FIGS. 7 and 8.
  • a fiber structure was obtained in the same manner as in Example 2, except that only a solution in which 1 part by weight of poly D-lactic acid was dissolved in 9 parts by weight of methylene chloride was used.
  • the average fiber diameter of the obtained fiber structure was 2 ⁇ m, and there was no fiber having a fiber length of 20 ⁇ m or less.
  • the average diameter of the concave portion on the fiber surface was 0.2 m, and the ratio of the area of the concave portion to the fiber surface was 21%. Scanning electron micrographs of the fiber structure are shown in FIGS. 9 and 10.
  • a fiber structure was obtained in the same manner as in Example 2, except that only a solution obtained by dissolving 0.7 part by weight of poly L-monolactic acid in 9.3 parts by weight of methylene chloride was used.
  • the average fiber diameter of the obtained fiber structure was 3 ⁇ m, and there was no fiber having a fiber length of 20 m or less.
  • the average diameter of the depressions on the fiber surface was 0.2 Aim, and the ratio of the area of the depressions to the fiber surface was 27%. Scanning electron micrographs of the fibrous structure are shown in FIGS. 11 and 12.
  • a fibrous structure was obtained in the same manner as in Example 2, except that a mixed solvent of methylene chloride and ZDMF (8/2; weight ratio) was used instead of methylene chloride.
  • the average fiber diameter of the obtained fiber structure was 2 ⁇ m, and there was no fiber having a fiber length of 20 ⁇ m or less. No dents were observed on the fiber surface. Scanning electron micrographs of the fiber structure are shown in FIGS. 13 and 14.
  • a fibrous structure was obtained in the same manner as in Example 2 except that only a solution in which 1 part by weight of poly D-lactic acid was dissolved in 9 parts by weight of a mixed solvent of methylene chloride and ZDMF (8 to 2; weight ratio) was used.
  • the average fiber diameter of the obtained fiber structure was 1 ⁇ m, and there was no fiber having a fiber length of 20 m or less. No dents were observed on the fiber surface. Scanning electron micrographs of the fiber structure are shown in FIGS. 19 and 20. As a result of DSC measurement of the obtained fiber structure, the melting point was 172 ° C. Comparative Example 6
  • a fibrous structure was obtained in the same manner as in Example 2, except that only a solution in which 1 part by weight of poly L-monolactic acid was dissolved in 9 parts by weight of a mixed solvent of methylene chloride / DMF (8Z2; weight ratio) was used.
  • a solution in which 1 part by weight of poly L-monolactic acid was dissolved in 9 parts by weight of a mixed solvent of methylene chloride / DMF (8Z2; weight ratio) was used.
  • the average fiber diameter of the obtained fiber structure was 3 ⁇ m, and there was no fiber having a fiber length of 20 ⁇ m or less. Some wrinkles were observed on the fiber surface, but no dents were observed. Scanning electron micrographs of the fiber structure are shown in FIGS. 21 and 22.
  • the melting point was 170 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

A fibrous structure obtained by spinning a solution of L-lactic acid condensation product and D-lactic acid condensation product in accordance with an electrostatic spinning technique. There can be provided a fibrous structure containing fibers that have an extremely small fiber diameter, exhibiting excellent heat resistance and biodegradability.

Description

明 細 書  Specification
極細ポリ乳酸系繊維、 繊維構造体およぴそれらの製造方法 技術分野  Ultrafine polylactic acid-based fibers, fiber structures, and methods for producing them
本発明は生物分角 十生を有するポリ乳酸をその構成成分とする繊維に関 し、 更に詳しくは、 極細ポリ乳酸系繊維、 繊維構造体おょぴそれらの製 造方法に関する。 背景技術  TECHNICAL FIELD The present invention relates to a fiber containing polylactic acid having a biological separation angle of 10 minutes as a component, and more particularly to an ultrafine polylactic acid-based fiber, a fibrous structure, and a method for producing them. Background art
極細繊維は、 その柔らかい風合いから織編み物や人工皮革にして衣料 用途やインテリア用途に用いられている。 また、 紙ゃ不織布の形態にし て、 フィルター、 絶縁紙、 ワイパー、 包装材、 衛剤等の用途にも用いら れている。  Ultra-fine fibers are converted into woven or knitted or artificial leather from their soft texture and used for clothing and interior purposes. It is also used in the form of paper and non-woven fabric for filters, insulating paper, wipers, packaging materials, sanitary agents, etc.
近年、 地球環境保全の見地から環境に対する負荷低減が求められてい る。 しかしながら従来の極細繊維に用いられている 6ナイロンゃポリエ チレンテレフタレート、 ポリプロピレン等は土中やコンポス ト中で分解 しないために、 使用後、 焼却処分か埋め立て処分しなければならず、 大 気汚染や埋め立て後放置による環境負荷は大きいものであった。  In recent years, from the viewpoint of global environmental protection, reduction of environmental burden has been required. However, conventional nylon 6 nylon-polyethylene terephthalate, polypropylene, etc. used in microfibers do not decompose in soil or compost, so they must be incinerated or landfilled after use. The environmental load caused by leaving the landfill was large.
そこで、 土中やコンポスト中で分解する極細繊維が求められている。 例えば、 単繊維繊度が 0 . 5デシテックス以下の生分解性熱可塑性脂肪 族ポリエステルからなる極細繊維が提案されている (例えば、 特許文献 Therefore, ultrafine fibers that decompose in soil and compost are required. For example, ultrafine fibers made of a biodegradable thermoplastic aliphatic polyester having a single fiber fineness of 0.5 decitex or less have been proposed (see, for example, Patent Document 1).
1参照。 ) 。 また、 繊維径が 1 0 0 n m〜4 mのポリ L一乳酸からな る繊維についても提案されている (例えば、 特許文献 2参照。 ) 。 See 1. ). Further, a fiber made of poly-L-lactic acid having a fiber diameter of 100 nm to 4 m has been proposed (for example, see Patent Document 2).
しかしながら、 上記の提案によって得られる極細繊維は耐熱性が乏し いため、 用途が限定されるものであった。 ポリ乳酸の耐熱性を向上させる方法として、 ポリ L—乳酸とポリ D— 乳酸とのステレオコンプレックス形成が近年注目されている (例えば、 特許文献 3参照。 ) 。 However, the ultrafine fibers obtained by the above proposal have poor heat resistance, and their uses are limited. As a method for improving the heat resistance of polylactic acid, formation of a stereo complex of poly (L-lactic acid) and poly (D-lactic acid) has recently attracted attention (for example, see Patent Document 3).
ポリ 一乳酸とポリ D—乳酸を等量プレンドすることで通常のポリ乳 酸よりも融点が高いラセミ結晶を形成できることが知られている。  It is known that blending poly-lactic acid and poly-D-lactic acid in equal amounts can form a racemic crystal having a higher melting point than ordinary polylactic acid.
しかしながら、 これまで得られているポリ乳酸ステレオコンプレック ス繊維は、 ポリ L一乳酸単独結晶やポリ D—乳酸単独結晶も混在してお り、 いまだ耐熱性は不十分なものであった。 また、 これらの繊維は繊雑 径が大きく、 この繊維より形成される繊維構造体は柔軟性が不十分であ つた (例えば、 特許文献 3、 4参照。 ) 。  However, the polylactic acid stereocomplex fibers obtained so far contain both poly (L-lactic acid) single crystals and poly (D-lactic acid) single crystals, and the heat resistance is still insufficient. In addition, these fibers have a large fiber diameter, and a fiber structure formed from the fibers has insufficient flexibility (for example, see Patent Documents 3 and 4).
【特許文献 1】 特開 2001— 192932号公報  [Patent Document 1] Japanese Patent Application Laid-Open No. 2001-192932
【特許文献 2】 国際公開第 02/16680号パンフレツト 【特許文献 3】 特開 2002— 30523号公報  [Patent Document 2] International Publication No. 02/16680 Pamphlet [Patent Document 3] Japanese Patent Application Laid-Open No. 2002-30523
【特許文献 4】 特開 2003— 138437号公報 発明の開示  [Patent Document 4] Japanese Patent Application Laid-Open No. 2003-138437 Disclosure of the Invention
本発明の目的は、 上記従来技術が有していた問題点を解消し、 極めて 小さな繊維径を有し、 優れた耐熱性を有し且つ生分解性を有する繊維を 提供することにある。  An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fiber having an extremely small fiber diameter, excellent heat resistance and biodegradability.
また、 本発明の他の目的は、 上記繊維を含む繊維構造体を提供するこ とにある。  Another object of the present invention is to provide a fibrous structure containing the fiber.
更に本発明の他の目的は、 極めて簡便な方法で上記繊維構造体を製造 する方法を提供することにある。 図面の簡単な説明 第 1図は、 本発明の繊維構造体を製造するための装置構成の一態様を 模式的に示した図である。 Still another object of the present invention is to provide a method for producing the above fiber structure by a very simple method. Brief Description of Drawings FIG. 1 is a diagram schematically showing one embodiment of an apparatus configuration for producing the fiber structure of the present invention.
第 2図は、 本発明の繊維構造体を製造するための装置構成の一態様を 模式的に示した図である。  FIG. 2 is a diagram schematically showing one embodiment of an apparatus configuration for producing the fibrous structure of the present invention.
第 3図は、 実施例 1で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 3 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Example 1 with a scanning electron microscope (200 × magnification).
第 4図は、 実施例 1で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 4 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Example 1 with a scanning electron microscope (× 800).
第 5図は、 実施例 2で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (2 0 0 0倍) して得られた写真図'である。  FIG. 5 is a photographic view ′ obtained by photographing the surface of the fiber structure obtained in Example 2 with a scanning electron microscope (200 × magnification).
第 6図は、 実施例 2で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 6 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Example 2 with a scanning electron microscope (magnification: 800,000).
第 7図は、 比較例 1で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 7 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Comparative Example 1 with a scanning electron microscope (200 × magnification).
第 8図は、 比較例 1で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 8 is a photographic diagram obtained by photographing (800 × magnification) the surface of the fiber structure obtained in Comparative Example 1 with a scanning electron microscope.
第 9図は、 比較例 2で得られた繊維構造体の表面を走査型電子顕微鏡 で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 9 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Comparative Example 2 with a scanning electron microscope (200 × magnification).
第 1 0図は、 比較例 2で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 10 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Comparative Example 2 with a scanning electron microscope (× 800).
第 1 1図は、 比較例 3で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 11 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Comparative Example 3 with a scanning electron microscope (200 × magnification).
第 1 2図は、 比較例 3で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 12 is a photographic diagram obtained by photographing (800 × magnification) the surface of the fiber structure obtained in Comparative Example 3 with a scanning electron microscope.
第 1 3図は、 実施例 3で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (2 0 0 0倍) して得られた写真図である。 FIG. 13 is a scanning electron microscope showing the surface of the fibrous structure obtained in Example 3. It is a photograph figure obtained by taking a picture with a mirror (20000 times).
第 1 4図は、 実施例 3で得られた繊維構造体の表面を走查型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 14 is a photograph obtained by photographing the surface of the fibrous structure obtained in Example 3 with a scanning electron microscope (× 800).
第 1 5図は、 実施例 4で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 15 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Example 4 with a scanning electron microscope (200 × magnification).
第 1 6図は、 実施例 4で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 16 is a photographic diagram obtained by photographing (800 × magnification) the surface of the fiber structure obtained in Example 4 with a scanning electron microscope.
第 1 7図は、 比較例 4で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 17 is a photograph obtained by photographing the surface of the fibrous structure obtained in Comparative Example 4 with a scanning electron microscope (200 × magnification).
第 1 8図は、 比較例 4で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 18 is a photograph obtained by photographing (800 × magnification) the surface of the fiber structure obtained in Comparative Example 4 with a scanning electron microscope.
第 1 9図は、 比較例 5で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 19 is a photographic diagram obtained by photographing the surface of the fibrous structure obtained in Comparative Example 5 with a scanning electron microscope (200 × magnification).
第 2 0図は、 比較例 5で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。  FIG. 20 is a photographic diagram obtained by photographing (800 × magnification) the surface of the fiber structure obtained in Comparative Example 5 with a scanning electron microscope.
第 2 1図は、 比較例 6で得られた繊維構造体の表面を走査型電子顕微 鏡で撮影 (2 0 0 0倍) して得られた写真図である。  FIG. 21 is a photographic diagram obtained by photographing the surface of the fiber structure obtained in Comparative Example 6 with a scanning electron microscope (200 × magnification).
第 2 2図は、 比較例 6で得られた繊維構造体の表面を走查型電子顕微 鏡で撮影 (8 0 0 0倍) して得られた写真図である。 発明を実施するための最良の形態  FIG. 22 is a photographic diagram obtained by photographing (800 × magnification) the surface of the fiber structure obtained in Comparative Example 6 with a scanning electron microscope. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳述する。  Hereinafter, the present invention will be described in detail.
本発明の繊維は平均繊維径が 1 0 μ πι以下であることが必要である。 繊維の平均繊維径が 1 0 を超えると、 それによつて得られる繊維構 造体の柔軟性が乏しくなり、 好ましくない。 該繊維の平均繊維径は 0 . 0 1〜5 μ mの範囲にあることである。 The fiber of the present invention needs to have an average fiber diameter of 10 μπι or less. When the average fiber diameter of the fibers exceeds 10, the flexibility of the resulting fiber structure becomes poor, which is not preferable. The average fiber diameter of the fibers is 0. 0 is in the range of 1 to 5 μm.
本発明の繊維は、 繊維長が 20 μπι以上で ることが必要である。 繊 維長が 20 μπι未満であると、 それによつて得られる繊維構造体の力学 強度が不十分なものとなる。 繊維長は、 好ましくは、 40 μπι以上であ り、 更に好ましくは 1 mm以上である。  The fiber of the present invention needs to have a fiber length of 20 μπι or more. If the fiber length is less than 20 μπι, the mechanical strength of the resulting fibrous structure will be insufficient. The fiber length is preferably at least 40 μπι, more preferably at least 1 mm.
本発明の繊維は、 1 90°C以上の融点を有 1 "るポリ乳酸成分を主たる 構成成分とすることが必要であり、 融点が 1 0QC未満の構成成分を実 質的に有しないことが好ましい。 Fibers of the present invention, it is necessary to the polylactic acid component Ru 1 90 ° have a C or higher melting point 1 "as the main component, the melting point is substantive free of components of less than 1 0 Q C Is preferred.
ここで、 融点 1 9 0°C未満の構成成分を実質的に有しないとは、 得ら れた繊維の示差走査熱分析を行った際の融解吸熱曲線 (D S C曲線) に おいて、 1 90°C未満に吸熱ピークを示さないことを意味する。  Here, the term “substantially free of components having a melting point of less than 190 ° C.” means that the obtained fiber has a melting endothermic curve (DSC curve) of 190 when subjected to differential scanning calorimetry. It means not showing an endothermic peak below ° C.
融点が 1 9 0°C未満の構成成分を有すると、 耐熱性が乏しく好ましく ない。 繊維構成成分のより好ましい融点は 1 9 5°C〜2 50°Cである。 また、 本発明の繊維は前述の通り、 1 90°C以上の融点を有するポリ 乳酸成分を主たる構成成分とする。  It is not preferable to have a component having a melting point of less than 190 ° C. because of poor heat resistance. The more preferable melting point of the fiber component is from 195 ° C to 250 ° C. Further, as described above, the fiber of the present invention is mainly composed of a polylactic acid component having a melting point of 190 ° C. or more.
本発明の繊維は、 その表面に 0. 0 1〜1 /^ mの直径を有する凹み部 を有し、 その凹み部が繊維表面の 1 0〜95° を占有することがより好 ましい。 このような表面構造を有することで、 該繊維より形成される繊 維構造体の表面積が増大し、 土中やコンポス卜中での分解速度が向上す る。 凹み部の直径は、 より好ましくは 0. 02〜0. 5 μπιであり、 凹 み部が繊維表面を占有する割合は 40〜95°/。がより好ましい。  More preferably, the fiber of the present invention has a depression having a diameter of 0.01 to 1 / ^ m on its surface, and the depression occupies 10 to 95 ° of the fiber surface. By having such a surface structure, the surface area of the fiber structure formed from the fiber is increased, and the decomposition rate in soil or in a composite is improved. The diameter of the recess is more preferably 0.02 to 0.5 μπι, and the ratio of the recess occupying the fiber surface is 40 to 95 ° /. Is more preferred.
本発明において、 ポリ乳酸成分とは、 全繰り返し単位を基準として 8 0モル%以上が乳酸の縮合体からなる高分子 Όことであり、 本発明の特 徴を損なわない範囲で他の成分が共重合されても良い。  In the present invention, the polylactic acid component is a polymer composed of a condensate of lactic acid in which 80% by mole or more based on all repeating units is used, and other components are used together within a range that does not impair the features of the present invention. It may be polymerized.
また 「主たる構成成分」 とは、 本発明の繊維を構成する全成分を基準 として、 7 5重量%以上、 好ましくは 8 0重量。 /0以上、 更に好ましくは 9 0重量%以上、 特に 9 5重量%以上を、 該成分が占めることをいう。 本発明においては、 前記ポリ乳酸成分が、 全繰り返し単位を基準とし て 8 0モル%以上が L一乳酸の縮合体と、 全繰り返し単位を基準として 8 0モル%以上が D—乳酸の縮合体との混合物よりなることが好ましい ここで、 全繰り返し単位を基準として 8 0モル%以上が L一乳酸の縮 合体とは、 L一乳酸 8 0〜1 0 0モル%と D—乳酸または D—乳酸以外 の共重合成分 0〜2 0モル%とから構成されるものである。 一方、 全繰 り返し単位を基準として 8 0モル%以上が D—乳酸の縮合体とは、 D— 乳酸 8 0〜1 0 0モル%と L一乳酸または L一乳酸以外の共重合成分 0 〜2 0モル%とから構成されているものを言う。 The term “main constituent” refers to all constituents of the fiber of the present invention. As 75% by weight or more, preferably 80% by weight. / 0 or more, more preferably 90% by weight or more, especially 95% by weight or more. In the present invention, the polylactic acid component is preferably a condensate of L-lactic acid with 80 mol% or more based on all repeating units and a condensate of D-lactic acid with 80 mol% or more based on all repeating units. Here, a condensate of L-lactic acid in which 80 mol% or more based on all repeating units is 80 to 100 mol% of L-lactic acid and D-lactic acid or D-lactic acid. It is composed of 0 to 20 mol% of a copolymer component other than lactic acid. On the other hand, a condensate of D-lactic acid in which 80 mol% or more based on all repeating units is 80 to 100 mol% of D-lactic acid and L-lactic acid or a copolymer component other than L-lactic acid 0 ~ 20 mol%.
上記の D—乳酸、 L—乳酸以外で共重合成分としては、 ォキシ酸、 ラ タ トン、 ジカルボン酸、 多価アルコール等を挙げることが出来る。 また 、 これら成分から構成され、 且つエステル結合形成性の官能基を有する 各種ポリエステル、 ポリエーテル、 ポリカーボネート等も挙げられる。 本発明において、 ポリ乳酸成分は、 全繰り返し単位を基準として 8 0 モル%以上が L一乳酸の縮合体と、 全繰り返し単位を基準として 8 0モ ル%以上が D—乳酸の縮合体との重量比が (6 : 4 ) 〜 (4 : 6 ) であ る混合物であることがより好ましい。  Other than the above-mentioned D-lactic acid and L-lactic acid, examples of the copolymerization component include oxyacid, ratatone, dicarboxylic acid, and polyhydric alcohol. Further, various polyesters, polyethers, polycarbonates, and the like, which are composed of these components and have a functional group capable of forming an ester bond, may also be mentioned. In the present invention, the polylactic acid component is composed of a condensate of L-lactic acid with 80 mol% or more based on all repeating units and a condensate of D-lactic acid with 80 mol% or more based on all repeating units. More preferably, the mixture has a weight ratio of (6: 4) to (4: 6).
より好ましくは、 全繰り返し単位を基準として 8 0モル%以上が L— 乳酸の縮合体と、 全繰り返し単位を基準として 8 0モル%以上が D—乳 酸の縮合体とが実質的に (5 : 5 ) となるように混合されることがより 好ましい。  More preferably, at least 80 mol% of the condensate of L-lactic acid and at least 80 mol% of the condensate of D-lactic acid based on all repeating units are substantially (5 : 5) It is more preferable to mix them.
本発明において、 ポリ乳酸成分の重量平均分子量が 1 0万以上である と、 得られる繊維構造体の力学強度が向上し、 より好ましい。 In the present invention, the weight average molecular weight of the polylactic acid component is 100,000 or more The mechanical strength of the obtained fiber structure is improved, which is more preferable.
本発明の繊維構造体は、 上記極細ポリ乳酸系繊維を少なくとも含むが 、 ここで、 本発明において 「繊維構造体」 とは、 繊維が、 織り、 編み、 積層などの操作を受けることによって、 形成された三次元の構造体をい い、 好ましい例として不織布を挙げることができる。  The fibrous structure of the present invention contains at least the above-mentioned ultrafine polylactic acid-based fibers. In the present invention, the term “fibrous structure” refers to a fiber formed by subjecting fibers to operations such as weaving, knitting, and lamination. The non-woven fabric is a preferred example.
本発明の繊維構造体において、 該極細ポリ乳酸系繊維の含有量は特に 限定されないが、 5 0重量%以上含まれると該極細ポリ乳酸系繊維の特 徴を活かすことができ、 好ましい。 より好ましくは 8 0重量%以上であ り、 実質的に該ポリ乳酸系繊維のみで構成された繊維構造体が更に好ま しい。  In the fibrous structure of the present invention, the content of the ultrafine polylactic acid-based fiber is not particularly limited. However, when the content is 50% by weight or more, the characteristics of the ultrafine polylactic acid-based fiber can be utilized, which is preferable. The content is more preferably 80% by weight or more, and a fiber structure substantially composed of only the polylactic acid-based fiber is further preferable.
特に、 該繊維構造体を形成する繊維の平均径が 1 0 I m以下であり、 更に繊維長 2 0 μ m以下の繊維を実質的に含まないようにすることが好 ましい。  In particular, it is preferable that the fibers forming the fibrous structure have an average diameter of 10 Im or less, and further contain substantially no fiber having a fiber length of 20 µm or less.
本発明の繊維構造体を製造するには、 前述の繊維が得られる手法であ ればいずれも採用することができるが、 前述の全繰り返し単位を基準と して 8 0モル%以上が L—乳酸の縮合体と、 全繰り返し単位を基準とし て 8 0モル%以上が D—乳酸の縮合体とを重量比が (6 : 4 ) 〜 (4 : 6 ) となるように混合し、 次いで溶媒に溶解して溶液を製造する段階と 、 該溶液を静電紡糸法にて紡糸する段階と、 前記紡糸によって捕集基板 に累積される段階を含むことが、 製造方法の好ましい一態様として挙げ ることができる。  In order to produce the fiber structure of the present invention, any method can be employed as long as the above-mentioned fibers can be obtained. However, 80 mol% or more of L- A condensate of lactic acid and a condensate of D-lactic acid, of which at least 80 mol%, based on all repeating units, are mixed in a weight ratio of (6: 4) to (4: 6), and then the solvent is added. A step of producing a solution by dissolving the solution in an aqueous solution, a step of spinning the solution by an electrostatic spinning method, and a step of accumulating the solution on a collecting substrate by the spinning. be able to.
また、 全繰り返し単位を基準として 8 0モル%以上が L一乳酸の縮合 体を溶媒に溶解して溶液を製造する段階と、 全繰り返し単位を基準とし て 8 0モル%以上が D—乳酸の縮合体を溶媒に溶解して溶液を製造する 段階と、 前記 2種類の溶液をその重量比が (6 : 4 ) 〜 (4 : 6 ) とな るように混合する段階と、 該混合溶液を静電紡糸法にて紡糸する段階と 、 前記紡糸によって捕集基板に累積される段階を含むことも、 製造方法 の好ましい一態様として挙げることができる。 Further, a step of preparing a solution by dissolving a condensate of L-l-lactic acid in a solvent in which at least 80 mol% based on all repeating units is used, and a step in which at least 80 mol% of D-lactic acid is based on all repeating units. Dissolving the condensate in a solvent to prepare a solution, and the weight ratio of the two solutions is (6: 4) to (4: 6). Mixing, a step of spinning the mixed solution by an electrostatic spinning method, and a step of accumulating the mixed solution on a collecting substrate by the spinning. .
ここで、 静電紡糸法とは繊維形成性の化合物を溶解させた溶液を電極 間で形成された静電場中に吐出し、 溶液を電極に向けて曳糸し、 形成さ れる繊維状物質を捕集基板上に累積することによつて繊維構造体を得る 方法であって、 繊維状物質とは、 繊維形成性化合物を溶解させた溶媒が 留去している状態のみならず、 該溶媒が繊維状物質に含まれている状態 も示している。  Here, in the electrostatic spinning method, a solution in which a fiber-forming compound is dissolved is discharged into an electrostatic field formed between the electrodes, the solution is drawn toward the electrodes, and the formed fibrous substance is removed. A method for obtaining a fibrous structure by accumulating on a collecting substrate, wherein the fibrous substance includes not only a state in which a solvent in which a fiber-forming compound is dissolved is distilled off, but also a state in which the solvent is dissolved. The state contained in fibrous substances is also shown.
通常、 ポリ L—乳酸とポリ D—乳酸とからなるステレオコンプレック スの繊維を製造するには、 溶融混練した後に溶融紡糸を行う力、 あるい は L一乳酸の縮合体とポリ D—乳酸の縮合体を溶解した溶液から乾式紡 糸を行うが、 いずれの場合も 1 9 0 °C以下の融点を完全に無くすことは 不可能であった。 しかしながら、 驚くべきことに静電紡糸法によって得 られた繊維は 1 9 0 °C以下の融点を実質的に有しないものであることを 見出した。  Usually, to produce a stereocomplex fiber composed of poly L-lactic acid and poly D-lactic acid, a melt-kneading and melt spinning force or a condensate of L-lactic acid and poly D-lactic acid is used. Dry spinning is performed from a solution in which the condensate is dissolved, but in any case, it is impossible to completely eliminate the melting point of 190 ° C or lower. However, it has surprisingly been found that the fiber obtained by the electrospinning method has substantially no melting point of 190 ° C. or less.
次いで、 本発明の製造方法において、 静電紡糸法で用いる装置につい て説明する。  Next, an apparatus used in the electrostatic spinning method in the production method of the present invention will be described.
前述の電極は、 金属、 無機物、 または有機物のいかなるものでも導電 性を示しさえすれば用いることができ、 また、 絶縁物上に導電性を示す 金属、 無機物、 または有機物の薄膜を持つものであっても良い。  The above-mentioned electrode can be used as long as it shows conductivity of any metal, inorganic substance or organic substance, and has a thin film of conductive metal, inorganic substance or organic substance on an insulator. May be.
また、 静電場は一対又は複数の電極間で形成されており、 いずれの電 極に高電圧を印加しても良い。 これは、 例えば電圧値が異なる高電圧の 電極が 2つ (例えば 1 5 k Vと 1 0 k V) と、 アースにつながった電極 の合計 3つの電極を用いる場合も含み、 または 3つを越える数の電極を 使う場合も含むものとする。 Further, the electrostatic field is formed between a pair or a plurality of electrodes, and a high voltage may be applied to any of the electrodes. This includes, for example, the use of two high-voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and three electrodes connected to earth, or more than three electrodes. Number of electrodes It includes the case of using.
次に静電紡糸法による本発明の繊維構造体を構成する繊維の製造手法 について順を追って説明する。  Next, a method for producing the fibers constituting the fiber structure of the present invention by the electrospinning method will be described step by step.
まず前述のポリ乳酸成分が溶媒に溶解した溶液を製造するが、 ここで 、 溶液中のポリ乳酸成分の濃度は 1〜 3 0重量%であることが好ましい 。 該濃度が 1重量%より小さいと、 濃度が低すぎるため繊維構造体を形 成することが困難となり好ましくない。 また、 3 0重量%より大きいと 、 得られる繊維の平均径が大きくなり好ましくない。 より好ましい濃度 は 2〜 2 5重量%である。  First, a solution in which the above-mentioned polylactic acid component is dissolved in a solvent is produced. Here, the concentration of the polylactic acid component in the solution is preferably 1 to 30% by weight. If the concentration is less than 1% by weight, it is difficult to form a fiber structure because the concentration is too low, which is not preferable. On the other hand, if it is larger than 30% by weight, the average diameter of the obtained fiber is undesirably large. A more preferred concentration is 2 to 25% by weight.
また、 前記のポリ乳酸成分を溶解させるための溶媒としては、 該ポリ 乳酸成分を溶解し、 且つ静電紡糸法にて紡糸する段階で蒸発し、 繊維を 形成可能なものであれば特に限定されない。  The solvent for dissolving the polylactic acid component is not particularly limited as long as it can dissolve the polylactic acid component and evaporate at the stage of spinning by the electrostatic spinning method to form a fiber. .
該溶媒として、 揮発性溶媒を用いると、 上記で述べた繊維表面の凹み 部形成が容易となり、 好ましい。 本発明における揮発性溶媒とは、 大気 圧下での沸点が 2 0 0 °C以下であり、 室温 (例えば 2 7 °C) で液体であ る物質である。 具体的な揮発性溶媒としては、 例えば塩化メチレン、 ク ロロホノレム、 ジクロロェタン、 テトラクロ口エタン、 トリクロ口エタン The use of a volatile solvent as the solvent facilitates the formation of the dents on the fiber surface described above, which is preferable. The volatile solvent in the present invention is a substance having a boiling point of 200 ° C. or less under atmospheric pressure and being liquid at room temperature (for example, 27 ° C.). Specific volatile solvents include, for example, methylene chloride, chlorophonorem, dichloroethane, tetrachloroethane, and trichloroethane.
、 ジブロモメタン、 ブロモホノレム、 テトラヒ ドロフラン、 1 , 4一ジォ キサン、 1, 1 , 1 , 3, 3, 3 —へキサフルォロイソプロパノール、 トルエン、 キシレン、 ジメチルフオルムアミドなどが挙げられるが、 特 に塩ィヒメチレン、 クロロホノレム、 ジクロロェタン、 テトラクロロェタン 、 トリクロロェタン、 ジブロモメタン、 プロモホノレム、 テトラヒ ドロフ ラン、 1, 4一ジォキサンが好ましく、 塩化メチレンが最も好ましい。 これらの溶媒は単独で用いても良く、 複数の溶媒を組み合わせた混合 溶媒として用いても良い。 次に前記溶液を静電紡糸法にて紡糸する段階について説明する。 該溶 液を静電場中に吐出するには、 任意の方法を用いることが出来、 例えば 、 溶液をノズルに供給することによって、 溶液を静電場中の適切な位置 に置き、 そのノズルから溶液を電界によって曳糸して繊維化させればよ い。 , Dibromomethane, bromohonolem, tetrahydrofuran, 1,4-dioxane, 1,1,1,3,3,3-hexafluoroisopropanol, toluene, xylene, dimethylformamide, etc. Preferred are dimethylene chloride, chlorophonorem, dichloroethane, tetrachloroethane, trichloroethane, dibromomethane, bromophonolem, tetrahydrofuran and 1,4-dioxane, and most preferred is methylene chloride. These solvents may be used alone or as a mixed solvent obtained by combining a plurality of solvents. Next, the step of spinning the solution by the electrostatic spinning method will be described. Any method can be used to discharge the solution into the electrostatic field. For example, by supplying the solution to a nozzle, the solution is placed at an appropriate position in the electrostatic field, and the solution is discharged from the nozzle. What is necessary is just to string by an electric field and to make it a fiber.
以下、 第 1図を用いて本発明の繊維構造体を製造するための好ましい 態様について更に具体的に説明する。  Hereinafter, a preferred embodiment for producing the fibrous structure of the present invention will be described more specifically with reference to FIG.
注射器の筒状の溶液保持槽 (第 1図中 3 ) の先端部に適宜の手段、 例 えば高電圧発生器 (第 1図中 6 ) にて電圧をかけた注射針状の溶液噴出 ノズル (第 1図中 1 ) を設置して、 溶液 (第 1図中 2 ) を溶液噴出ノズ ル先端部まで導く。 接地した繊維状物質捕集電極 (第 1図中 5 ) から適 切な距離で該溶液噴出ノズル (第 1図中 1 ) の先端を配置し、 溶液 (第 1図中 2 ) が該溶液噴出ノズル (第 1図中 1 ) の先端部から噴出させ、 このノズル先端部分と繊維状物質捕集電極 (第 1図中 5 ) との間で繊維 状物質を形成させることができる。  An appropriate means, for example, a needle-like solution jet nozzle (3 in FIG. 1), to which a voltage is applied by means of a high-voltage generator (6 in FIG. 1), is applied to the tip of the cylindrical solution holding tank (3 in FIG. 1) of the syringe. Install 1) in Fig. 1 and guide the solution (2 in Fig. 1) to the tip of the nozzle that ejects the solution. The tip of the solution ejection nozzle (1 in FIG. 1) is arranged at an appropriate distance from the grounded fibrous substance collecting electrode (5 in FIG. 1), and the solution (2 in FIG. 1) is discharged from the solution ejection nozzle. A fibrous substance can be formed between the tip of the nozzle (1 in FIG. 1) and the fibrous substance collecting electrode (5 in FIG. 1).
また他の態様として、 第 2図を以つて説明すると、 該溶液の微細滴 ( 図示せず。 ) を静電場中に導入することもでき、 その際の唯一の要件は 溶液 (第 2図中 2 ) を静電場中に置いて、 繊維化が起こりうるような距 離に繊維状物質捕集電極 (第 2図中 5 ) から離して保持することである 。 例えば、 溶液噴出ノズル (第 2図中 1 ) を有する溶液保持槽 (第 2図 中 3 ) 中の溶液 (第 2図中 2 ) に直接、 繊維状物質捕集電極に対抗する 電極 (第 2図中 4 ) を挿入することもできる。  As another embodiment, referring to FIG. 2, fine droplets (not shown) of the solution can be introduced into an electrostatic field, and the only requirement in that case is the solution (FIG. 2). 2) is to be placed in an electrostatic field and held away from the fibrous substance collecting electrode (5 in FIG. 2) at such a distance that fibrillation can occur. For example, the electrode (2 in FIG. 2) in the solution holding tank (3 in FIG. 2) having the solution ejection nozzle (1 in FIG. 2) directly opposes the fibrous substance collecting electrode (2 in FIG. 2). 4) in the figure can also be inserted.
該溶液をノズルから静電場中に供給する場合、 数個のノズルを並列的 に用いて繊維状物質の生産速度を上げることもできる。 また、 電極間の 距離は、 帯電量、 ノズル寸法、 溶液のノズルからの噴出量、 溶液濃度等 に依存するが、 1 0 k V程度のときには 5〜 2 0 c mの距離が適当であ つた。 また、 印加される静電気電位は、 一般に 3〜1 0 0 k V、 好まし くは 5〜5 0 k V、 一層好ましくは 5〜3 0 k Vである。 所望の電位は 従来公知の任意の適切な方法で作れば良い。 When the solution is supplied from a nozzle into an electrostatic field, several nozzles can be used in parallel to increase the production rate of the fibrous substance. The distance between the electrodes depends on the amount of charge, nozzle size, amount of solution ejected from the nozzle, solution concentration, etc. However, when the voltage was about 10 kV, a distance of 5 to 20 cm was appropriate. The applied electrostatic potential is generally 3 to 100 kV, preferably 5 to 50 kV, and more preferably 5 to 30 kV. The desired potential may be created by any suitable method known in the art.
上記二つの態様は、 電極が捕集基板を兼ねる場合であるが、 電極間に 捕集基板となりうる物を設置することで、 電極と別に捕集基板を設け、 そこに繊維積層体を捕集することも出来る。 この場合、 例えばベルト状 物質を電極間に設置して、 これを捕集基板とすることで、 連続的な生産 も可能となる。  In the above two embodiments, the electrodes also serve as the collecting substrate, but by installing a potential collecting substrate between the electrodes, a collecting substrate is provided separately from the electrodes, and the fiber laminate is collected there. You can do it. In this case, for example, continuous production is possible by placing a belt-like substance between the electrodes and using this as a collecting substrate.
次に捕集基板に累積される繊維構造体を得る段階について説明する。 本発明においては、 該溶液を捕集基板に向けて曳糸する間に、 条件に応 じて溶媒が蒸発して繊維状物質が形成される。 通常の室温であれば捕集 基板上に捕集されるまでの間に溶媒は完全に蒸発するが、 もし溶媒蒸発 が不十分な場合は減圧条件下で曳糸しても良い。 この捕集基板上に捕集 された時点では少なくとも前記繊維平均径と繊維長とを満足する繊維構 造体が形成されている。 また、 曳糸する温度は溶媒の蒸発挙動や紡糸液 の粘度にあわせて調整すれば良く、 通常は、 0〜1 0 o °cの範囲である 繊維状物質が形成されるノズルと捕集基板の間の相対湿度は 2 0〜 8 0 % R Hとすることが、 好ましい。 相対湿度が上記範囲外だと長時間安 定した紡糸を行うのが困難となる。 より好ましい相対湿度は、 3 0〜7 0 %R Hである。  Next, a step of obtaining a fiber structure accumulated on the collecting substrate will be described. In the present invention, during the spinning of the solution toward the collecting substrate, the solvent evaporates according to the conditions to form a fibrous substance. At normal room temperature, the solvent evaporates completely before being collected on the collecting substrate. However, if the solvent evaporation is insufficient, spinning may be performed under reduced pressure. At the time of collection on the collection substrate, a fiber structure satisfying at least the fiber average diameter and the fiber length is formed. The spinning temperature may be adjusted according to the evaporation behavior of the solvent and the viscosity of the spinning solution, which is usually in the range of 0 to 10 ° C. Preferably, the relative humidity is between 20 and 80% RH. If the relative humidity is out of the above range, it becomes difficult to perform stable spinning for a long time. A more preferred relative humidity is 30 to 70% RH.
本発明の製造方法によって得られる繊維構造体は、 単独で用いても良 いが、 取り扱い性やその他の要求事項に合わせて、 他の部材と組み合わ せて使用しても良い。 例えば、 捕集基板として支持基材となりうる不織 布や織布、 フィルム等を用い、 その上に繊維積層体を形成することで、 支持基材と該繊維積層体を組み合わせた部材を作成することも出来る。 The fibrous structure obtained by the production method of the present invention may be used alone, or may be used in combination with other members according to handleability and other requirements. For example, a non-woven fabric that can serve as a support By forming a fiber laminate on a cloth, a woven fabric, a film, or the like, a member combining the support base material and the fiber laminate can be produced.
また、 得られた繊維構造体に対して熱処理や化学処理を施しても良く 、 更に、 紡糸以前の任意の段階で、 前述のポリ乳酸に、 ェマルジヨン、 有機物もしくは無機物の粉末、 フイラ一等を混合しても良い。  The obtained fiber structure may be subjected to a heat treatment or a chemical treatment. Further, at any stage before the spinning, the above-mentioned polylactic acid is mixed with an emulsion, an organic or inorganic powder, a filler or the like. You may.
例えば本発明の繊維構造体に各種触媒を担持させることにより、 触媒 担持基材として用いることもできる。 実施例  For example, by supporting various catalysts on the fiber structure of the present invention, it can be used as a catalyst-carrying substrate. Example
以下本発明を実施例により説明するが、 本発明は、 これらの実施例に 限定されるものではない。 また以下の各実施例、 比較例における評価項 目は以下のとおりの手法にて実施した。 繊維の平均径:  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The evaluation items in each of the following examples and comparative examples were implemented by the following methods. Average fiber diameter:
得られた繊維構造体の表面を走查型電子顕微鏡 (株式会社日立製作所 製 S— 2 4 0 0 ) により撮影 (倍率 2 0 0 0倍) して得た写真から無作 為に 2 0箇所を選んで繊維の径を測定し、 すべての繊維径 (η = 2 0 ) の平均値を求めて、 繊維の平均径とした。 繊維長 2 0 μ m以下の繊維の存在確認:  The surface of the obtained fibrous structure was photographed with a scanning electron microscope (S-240, manufactured by Hitachi, Ltd.) (magnification: 20000 times). Was selected, the diameter of the fiber was measured, and the average value of all the fiber diameters (η = 20) was determined to be the average diameter of the fiber. Confirmation of the presence of fibers with a fiber length of 20 μm or less:
得られた繊維構造体の表面を走査型電子顕微鏡 (株式会社日立製作所 製 S— 2 4 0 0 ) により撮影 (倍率 2 0 0 0倍) して得た写真を観察し 、 繊維長 2 0 μ m以下の繊維が存在するかどう力確認した。 繊維表面構造の凹み部 得られた繊維構造体の表面の走査型電子顕微鏡写真 (倍率 8000倍 ) を撮影した。 汎用画像処理ソフト (ナノシステム株式会社製、 N a n oHu n t e r NS 2K~P r o/L t Ve r 5. 2) を用い、 そ の写真中の最も鮮明に撮影された繊維一本を選択し、 選択した繊維の中 心軸を通る仮想線 Aと選択した繊維の両外縁部分に沿った仮想線 Bおよ ぴ B' とを設定し、 次いで仮想線 Aと仮想線 B、 B' との中心を通る、 二本の仮想線 C及び C' を設定する。 The surface of the obtained fiber structure was photographed with a scanning electron microscope (S-240, manufactured by Hitachi, Ltd.) (magnification: 200,000), and a photograph obtained was observed. It was checked whether fibers of less than m existed. Depression of fiber surface structure A scanning electron micrograph (magnification: 8000 times) of the surface of the obtained fiber structure was taken. Using general-purpose image processing software (NanoHunter NS 2K ~ Pro / LtVer 5.2, manufactured by Nanosystems Co., Ltd.), select one of the sharpest fibers in the photograph, An imaginary line A passing through the central axis of the selected fiber and imaginary lines B and B 'along both outer edges of the selected fiber are set, and then the center of the imaginary line A and the imaginary lines B and B' is set. Set two virtual lines C and C 'that pass through.
上記で設定した仮想線 C、 C および写真の両縁部で囲まれた部分ろ 画像処理ソフトにより抽出し、 その範囲において凹み部の面積の割合を 求めた。  The imaginary lines C and C set above and the part surrounded by both edges of the photograph were extracted using image processing software, and the proportion of the area of the dent in that range was calculated.
なお、 測定は、 繊維構造体の任意の 10箇所の電子顕微鏡写真から各 々求めた面積割合を平均して求めた。  The measurement was performed by averaging the area ratios obtained from electron micrographs at arbitrary 10 locations of the fiber structure.
重量平均分子量: Weight average molecular weight:
重量平均分子量は、 昭和電工株式会社製 G PC— 1 1 (カラム SH ODEX LF— 804、 溶媒クロ口ホルム、 検出器 R I、 スチレン 換算) で測定した。 融点:  The weight-average molecular weight was measured by GPC-11 (manufactured by Showa Denko KK) (column SH ODEX LF-804, solvent port form, detector RI, styrene conversion). Melting point:
得られた繊維構造体について示差走查熱分析 (テキサスインストルメ ンタル社製 DSC TA— 2920) にて D S C曲線を測定し、 吸熱 ピークより融点を求めた。 実施例 1 D—ラクチドに対し、 ォクチル酸錫を 5 0 0 p p m混合し、 撹拌装置 つきの反応容器中、 窒素雰囲気下 2 0 0°Cで 6 0分間重合し、 重量平均 分子量 1 2万のポリ D—乳酸ホモポリマーを得た。 The DSC curve of the obtained fiber structure was measured by differential scanning calorimetry (DSC-2920, manufactured by Texas Instruments), and the melting point was determined from the endothermic peak. Example 1 500 ppm of tin octylate is mixed with D-lactide, and polymerized in a reaction vessel equipped with a stirrer at 200 ° C for 60 minutes under a nitrogen atmosphere to obtain a poly (D-lactic acid) having a weight average molecular weight of 120,000. A homopolymer was obtained.
得られたポリ D—乳酸 1重量部を塩化メチレン 9重量部に溶かした溶 液と、 ポリ L一乳酸 (株式会社島津製作所製:商品名 「L a c t y 9 0 3 1」 、 重量平均分子量 1 6 8, 0 0 0) 1重量部を塩化メチレン 9 重量部に溶かした溶液を作成し、 両液を 5重量部ずつ混合した。  A solution obtained by dissolving 1 part by weight of the obtained poly D-lactic acid in 9 parts by weight of methylene chloride, and poly L-lactic acid (manufactured by Shimadzu Corporation: trade name “L acty 93 1”, weight average molecular weight 16) 8,000) A solution was prepared by dissolving 1 part by weight in 9 parts by weight of methylene chloride, and both parts were mixed by 5 parts by weight.
次いで、 第 2図にしめす装置を用いて、 該溶液を繊維状物質捕集電極 5に 5分間吐出した。 噴出ノズル (第 2図中 1) の内径は 0. 8mm、 電圧は 1 2 kV、 噴出ノズル (第 2図中 1) から繊維状物質捕集電極 ( 第 2図中 5) までの距離は 1 2 c m、 相対湿度 3 5%RHであった。 得 られた繊維構造体を走査型電子顕微鏡 (株式会社日立製作所製 S— 2 4 0 0) で測定したところ、 平均繊維径は 3 mであり、 繊維長 2 0 /z m 以下の繊維は存在しなかった。 繊維表面の凹み部の平均直径は 0. 2 β m、 凹み部の面積が繊維表面に占める割合は 2 3 %であった。 繊維構造 体の走查型電子顕微鏡写真を第 3図、 第 4図に示す。  Next, the solution was discharged to the fibrous substance collecting electrode 5 for 5 minutes using the apparatus shown in FIG. The inner diameter of the ejection nozzle (1 in Fig. 2) is 0.8 mm, the voltage is 12 kV, and the distance from the ejection nozzle (1 in Fig. 2) to the fibrous material collecting electrode (5 in Fig. 2) is 1 The relative humidity was 2 cm and the relative humidity was 35% RH. When the obtained fiber structure was measured with a scanning electron microscope (S-240, manufactured by Hitachi, Ltd.), the average fiber diameter was 3 m, and fibers with a fiber length of 20 / zm or less were present. Did not. The average diameter of the depressions on the fiber surface was 0.2 βm, and the ratio of the area of the depressions to the fiber surface was 23%. Scanning electron micrographs of the fiber structure are shown in Figs.
得られた繊維構造体の D S C測定の結果、 融点は 2 1 6°Cであり、 1 9 0°C未満には吸熱ピークは観察されなかった。 実施例 2  As a result of DSC measurement of the obtained fiber structure, the melting point was 2 16 ° C, and no endothermic peak was observed below 190 ° C. Example 2
ポリ D—乳酸 1重量部を塩化メチレン 9重量部に溶かした溶液 6重量 部と、 ポリ L一乳酸 1重量部を塩化メチレン 9重量部に溶かした溶液 4 重量部を混合し、 噴出ノズルから繊維状物質捕集電極までの距離を 1 0 c mとした以外は、 実施例 1と同様にして繊維構造体を得た。  6 parts by weight of a solution in which 1 part by weight of poly D-lactic acid is dissolved in 9 parts by weight of methylene chloride and 4 parts by weight of a solution in which 1 part by weight of poly L-l-lactic acid is dissolved in 9 parts by weight of methylene chloride are mixed. A fibrous structure was obtained in the same manner as in Example 1, except that the distance to the particulate matter collecting electrode was 10 cm.
得られた繊維構造体の平均繊維径は 4 μ mであり、 繊維長 2 0 μ m以 下の繊維は存在しなかった。 繊維表面の凹み部の平均直径は 0. 2 μ m 、 凹み部の面積が繊維表面に占める割合は 22%であった。 繊維構造体 の走査型電子顕微鏡写真を第 5図、 第 6図に示す。 The average fiber diameter of the obtained fiber structure is 4 μm, and the fiber length is 20 μm or less. The lower fiber was not present. The average diameter of the depressions on the fiber surface was 0.2 μm, and the area of the depressions on the fiber surface was 22%. Figs. 5 and 6 show scanning electron micrographs of the fiber structure.
得られた繊維構造体の DSC測定の結果、 融点は 2 18°Cであり、 1 90°C未満には吸熱ピークは観察されなかった。 比較例 1  As a result of DSC measurement of the obtained fiber structure, the melting point was 218 ° C, and no endothermic peak was observed below 190 ° C. Comparative Example 1
ポリ D—乳酸 1重量部を塩化メチレン 9重量部に溶かした溶液 7重量 部と、 ポリ L一乳酸 1重量部を塩化メチレン 9重量部に溶かした溶液 3 重量部を混合した以外は、 実施例 2と同様にして繊維構造体を得た。  Example 1 was repeated except that 7 parts by weight of a solution in which 1 part by weight of poly D-lactic acid was dissolved in 9 parts by weight of methylene chloride and 3 parts by weight of a solution in which 1 part by weight of poly L-monolactic acid was dissolved in 9 parts by weight of methylene chloride. A fiber structure was obtained in the same manner as in 2.
得られた繊維構造体の平均繊維径は 3 mであり、 繊維長 20 μ m以 下の繊維は存在しなかった。 繊維表面の凹み部の平均直径は 0. 2 μπι 、 凹み部の面積が繊維表面に占める割合は 3 1%であった。 繊維構造体 の走査型電子顕微鏡写真を第 7図、 第 8図に示す。  The average fiber diameter of the obtained fiber structure was 3 m, and there was no fiber having a fiber length of 20 μm or less. The average diameter of the concave portion on the fiber surface was 0.2 μπι, and the ratio of the area of the concave portion to the fiber surface was 31%. Scanning electron micrographs of the fiber structure are shown in FIGS. 7 and 8.
得られた繊維構造体の DSC測定の結果、 主な融点は 21 9°Cであり 、 165°Cに小さな吸熱ピークが観察された。 比較例 2  As a result of DSC measurement of the obtained fiber structure, the main melting point was 219 ° C, and a small endothermic peak was observed at 165 ° C. Comparative Example 2
ポリ D—乳酸 1重量部を塩化メチレン 9重量部に溶かした溶液のみを 用いた以外は、 実施例 2と同様にして繊維構造体を得た。  A fiber structure was obtained in the same manner as in Example 2, except that only a solution in which 1 part by weight of poly D-lactic acid was dissolved in 9 parts by weight of methylene chloride was used.
得られた繊維構造体の平均繊維径は 2 μ mであり、 繊維長 20 μ m以 下の繊維は存在しなかった。 繊維表面の凹み部の平均直径は 0. 2 m 、 凹み部の面積が繊維表面に占める割合は 21%であった。 繊維構造体 の走査型電子顕微鏡写真を第 9図、 第 10図に示す。  The average fiber diameter of the obtained fiber structure was 2 μm, and there was no fiber having a fiber length of 20 μm or less. The average diameter of the concave portion on the fiber surface was 0.2 m, and the ratio of the area of the concave portion to the fiber surface was 21%. Scanning electron micrographs of the fiber structure are shown in FIGS. 9 and 10.
得られた繊維構造体の D S C測定の結果、 融点は 1 Ί 4°Cであった。 比較例 3 As a result of DSC measurement of the obtained fiber structure, the melting point was 1.4 ° C. Comparative Example 3
ポリ L一乳酸 0. 7重量部を塩化メチレン 9. 3重量部に溶かした溶 液のみを用いた以外は、 実施例 2と同様にして繊維構造体を得た。  A fiber structure was obtained in the same manner as in Example 2, except that only a solution obtained by dissolving 0.7 part by weight of poly L-monolactic acid in 9.3 parts by weight of methylene chloride was used.
得られた繊維構造体の平均繊維径は 3 μ mであり、 繊維長 2 0 m以 下の繊維は存在しなかった。 繊維表面の凹み部の平均直径は 0. 2 Ai m 、 凹み部の面積が繊維表面に占める割合は 2 7 %であった。 繊維構造体 の走查型電子顕微鏡写真を第 1 1図、 第 1 2図に示す。  The average fiber diameter of the obtained fiber structure was 3 μm, and there was no fiber having a fiber length of 20 m or less. The average diameter of the depressions on the fiber surface was 0.2 Aim, and the ratio of the area of the depressions to the fiber surface was 27%. Scanning electron micrographs of the fibrous structure are shown in FIGS. 11 and 12.
得られた繊維構造体の D S C測定の結果、 融点は 1 7 2°Cであった。 実施例 3  As a result of DSC measurement of the obtained fiber structure, the melting point was 1722 ° C. Example 3
塩ィ匕メチレンの代わりに、 塩化メチレン ZDMF混合溶媒 (8/2 ; 重量比) を用いた以外は実施例 2と同様にして繊維構造体を得た。 得ら れた繊維構造体の平均繊維径は 2 μ mであり、 繊維長 2 0 μ m以下の繊 維は存在しなかった。 繊維表面に凹み部は観察されなかった。 繊維構造 体の走査型電子顕微鏡写真を第 1 3図、 第 1 4図に示す。  A fibrous structure was obtained in the same manner as in Example 2, except that a mixed solvent of methylene chloride and ZDMF (8/2; weight ratio) was used instead of methylene chloride. The average fiber diameter of the obtained fiber structure was 2 μm, and there was no fiber having a fiber length of 20 μm or less. No dents were observed on the fiber surface. Scanning electron micrographs of the fiber structure are shown in FIGS. 13 and 14.
得られた繊維構造体の D S C測定の結果、 融点は 2 2 0°Cであり、 1 9 0°C未満には吸熱ピークは観察されなかった。' 実施例 4  As a result of DSC measurement of the obtained fiber structure, the melting point was 220 ° C., and no endothermic peak was observed below 190 ° C. '' Example 4
ポリ D—乳酸 1重量部を塩化メチレン ZDMF混合溶媒 (8/2 ;重 量比) 9重量部に溶かした溶液 4重量部と、 ポリ L一乳酸 1重量部を塩 化メチレン ZDMF混合溶媒 (8Z2 ;重量比) 9重量部に溶かした溶 液 6重量部を混合した以外は、 実施例 2と同様にして繊維構造体を得た 得られた繊維構造体の平均繊維径は 2 mであり、 繊維長 2 0 μ m以 下の繊維は存在しなかった。 繊維表面に凹み部は観察されなかった。 繊 維構造体の走査型電子顕微鏡写真を第 1 5図、 第 1 6図に示す。 4 parts by weight of a solution prepared by dissolving 1 part by weight of poly D-lactic acid in 9 parts by weight of a mixed solvent of methylene chloride and ZDMF (8/2; weight ratio) and 1 part by weight of poly L-lactic acid in a mixed solvent of 8 parts of A fiber structure was obtained in the same manner as in Example 2 except that 6 parts by weight of the solution dissolved in 9 parts by weight was mixed. The average fiber diameter of the obtained fiber structure was 2 m, and there was no fiber having a fiber length of 20 μm or less. No dents were observed on the fiber surface. Scanning electron micrographs of the fiber structure are shown in FIGS. 15 and 16.
得られた繊維構造体の D S C測定の結果、 融点は 2 2 1 °Cであり、 1 9 0 °C未満には吸熱ピークは観察されなかった。 比較例 4  As a result of DSC measurement of the obtained fiber structure, the melting point was 222 ° C., and no endothermic peak was observed below 190 ° C. Comparative Example 4
ポリ D—乳酸 1重量部を塩化メチレン/ DMF混合溶媒 (8ノ 2 ;重 量比) 9重量部に溶かした溶液 3重量部と、 ポリ L—乳酸 1重量部を塩 化メチレン ZDMF混合溶媒 (8 / 2 ;重量比) 9重量部に溶かした溶 液 7重量部を混合した以外は、 実施例 2と同様にして繊維構造体を得た 得られた繊維構造体の平均繊維径は 2 // mであり、 繊維長 2 0 μ πι以 下の繊維は存在しなかった。 繊維表面に凹み部は観察されなかった。 繊 維構造体の走查型電子顕微鏡写真を第 1 7図、 第 1 8図に示す。  3 parts by weight of a solution prepared by dissolving 1 part by weight of poly D-lactic acid in 9 parts by weight of a mixed solvent of methylene chloride / DMF (8 to 2; weight ratio) and 1 part by weight of poly L-lactic acid in a mixed solvent of methylene chloride and ZDMF ( A fiber structure was obtained in the same manner as in Example 2 except that 7 parts by weight of the solution dissolved in 9 parts by weight was mixed. The average fiber diameter of the obtained fiber structure was 2/2. / m, and no fiber with a fiber length of 20 μππ or less was present. No dents were observed on the fiber surface. Scanning electron micrographs of the fiber structure are shown in Fig. 17 and Fig. 18.
得られた繊維構造体の D S C測定の結果、 主な融点は 2 2 1 °Cであり 、 1 5 6 °Cに小さな吸熱ピークが観察された。 比較例 5  As a result of DSC measurement of the obtained fiber structure, the main melting point was 21 ° C and a small endothermic peak was observed at 156 ° C. Comparative Example 5
ポリ D—乳酸 1重量部を塩化メチレン ZDM F混合溶媒 (8ノ2 ;重 量比) 9重量部に溶かした溶液のみを用いた以外は、 実施例 2と同様に して繊維構造体を得た。  A fibrous structure was obtained in the same manner as in Example 2 except that only a solution in which 1 part by weight of poly D-lactic acid was dissolved in 9 parts by weight of a mixed solvent of methylene chloride and ZDMF (8 to 2; weight ratio) was used. Was.
得られた繊維構造体の平均繊維径は 1 μ mであり、 繊維長 2 0 m以 下の繊維は存在しなかった。 繊維表面に凹み部は観察されなかった。 繊 維構造体の走查型電子顕微鏡写真を第 1 9図、 第 2 0図に示す。 得られた繊維構造体の DSC測定の結果、 融点は 172°Cであった。 比較例 6 The average fiber diameter of the obtained fiber structure was 1 μm, and there was no fiber having a fiber length of 20 m or less. No dents were observed on the fiber surface. Scanning electron micrographs of the fiber structure are shown in FIGS. 19 and 20. As a result of DSC measurement of the obtained fiber structure, the melting point was 172 ° C. Comparative Example 6
ポリ L一乳酸 1重量部を塩ィ匕メチレン/ DMF混合溶媒 (8Z2 ;重 量比) 9重量部に溶かした溶液のみを用いた以外は、 実施例 2と同様に して繊維構造体を得た。  A fibrous structure was obtained in the same manner as in Example 2, except that only a solution in which 1 part by weight of poly L-monolactic acid was dissolved in 9 parts by weight of a mixed solvent of methylene chloride / DMF (8Z2; weight ratio) was used. Was.
得られた繊維構造体の平均繊維径は 3 μ mであり、 繊維長 20 μ m以 下の繊維は存在しなかった。 繊維表面に一部皺は観察されたが、 凹み部 は観察されなかった。 繊維構造体の走查型電子顕微鏡写真を第 21図、 第 22図に示す。  The average fiber diameter of the obtained fiber structure was 3 μm, and there was no fiber having a fiber length of 20 μm or less. Some wrinkles were observed on the fiber surface, but no dents were observed. Scanning electron micrographs of the fiber structure are shown in FIGS. 21 and 22.
得られた繊維構造体の DSC測定の結果、 融点は 170°Cであった。  As a result of DSC measurement of the obtained fiber structure, the melting point was 170 ° C.

Claims

1. 1 9 0°C以上の融点を有するポリ乳酸成分を主たる構成成分とし 、 平均繊維径が 1 0 μ m以下、 繊維長が 2 0 μ m以上である、 極細ポリ 乳酸系繊維。 1. An ultrafine polylactic acid-based fiber having a polylactic acid component having a melting point of 190 ° C. or more as a main constituent and having an average fiber diameter of 10 μm or less and a fiber length of 20 μm or more.
2. 融点が 1 9 0°C未満請の構成成分を実質的に有しない、 請求の範囲 第 1項に記載の繊維。  2. The fiber according to claim 1, wherein the fiber has substantially no component having a melting point of less than 190 ° C.
3. 繊維表面に 0. 0 1〜1 μ πの Sιの直径を有する凹み部を有し、 その 凹み部が繊維表面の 1 0〜9 5%を占有する、 請求の範囲第 1項に記載 の繊維。 囲  3. The fiber surface according to claim 1, wherein the surface of the fiber has a depression having a diameter of 0.01 to 1 μπ having an Sι diameter, and the depression occupies 10 to 95% of the fiber surface. Fiber. Enclosure
4. ポリ乳酸成分が、 全繰り返し単位を基準として 8 0モル%以上が L一乳酸の縮合体と、 全繰り返し単位を基準として 8 0モル%以上が D 一乳酸の縮合体との混合物である、 請求の範囲第 1項に記載の繊維。 4. The polylactic acid component is a mixture of a condensate of L-lactic acid with 80 mol% or more based on all repeating units and a condensate of D-lactic acid with 80 mol% or more based on all repeating units. The fiber according to claim 1.
5. L—乳酸の縮合体と D—乳酸の縮合体との重量比が (6 : 4) 〜 (4 : 6) である、 請求の範囲第 4項に記載の繊維。 5. The fiber according to claim 4, wherein the weight ratio of the condensate of L-lactic acid to the condensate of D-lactic acid is (6: 4) to (4: 6).
6. 請求の範囲第 1項記載の極細ポリ乳酸系繊維を少なくとも含む繊 維構造体。  6. A fiber structure comprising at least the ultrafine polylactic acid-based fiber according to claim 1.
7. 繊維構造体を形成する繊維の平均径が 1 0 μ m以下であり、 更に 繊維長 2 0 m以下の繊維を実質的に含まない、 請求の範囲第 6項記載 の繊維構造体。  7. The fiber structure according to claim 6, wherein the fibers forming the fiber structure have an average diameter of 10 µm or less, and further substantially do not include fibers having a fiber length of 20 m or less.
8. 全繰り返し単位を基準として 8 0モル%以上が L一乳酸の縮合体 と全繰り返し単位を基準として 8 0モル%以上が D—乳酸の縮合体とを 、 その重量比が (6 : 4) 〜 (4 : 6) となるように混合し、 次いで溶 媒に溶解して溶液を製造する段階と、 該溶液を静電紡糸法にて紡糸する 段階と、 前記紡糸によって捕集基板に累積される繊維構造体を得る段階 を含む、 繊維構造体の製造方法。 8. At least 80 mol% of the condensate of L-lactic acid and at least 80 mol% of the condensate of D-lactic acid based on the total repeating units, based on the total repeating units, have a weight ratio of (6: 4 ) To (4: 6), and then dissolving in a solvent to produce a solution; spinning the solution by an electrostatic spinning method; To obtain a fibrous structure to be used A method for producing a fibrous structure, comprising:
9. 溶媒が揮発性溶媒である、 請求の範囲第 8項記載の製造方法。 9. The production method according to claim 8, wherein the solvent is a volatile solvent.
1 0. 静電紡糸法で紡糸する段階において繊維状物質が形成されるノ ズルと捕集基板の間の相対湿度を 20〜80%RHの範囲とする、 請求 の範囲第 8項記載の製造方法。 10. The production according to claim 8, wherein the relative humidity between the nozzle on which the fibrous material is formed and the collecting substrate is in the range of 20 to 80% RH in the step of spinning by the electrostatic spinning method. Method.
1 1. 全繰り返し単位を基準として 80モル%以上が L一乳酸の縮合 体を溶媒に溶解して溶液を製造する段階と、 全繰り返し単位を基準とし て 80モル%以上が D—乳酸の縮合体を溶媒に溶解して溶液を製造する 段階と、 前記 2種類の溶液をその重量比が (6 : 4) 〜 (4 : 6) とな るように混合する段階と、 該混合溶液を静電紡糸法にて紡糸する段階と 、 前記紡糸によって捕集基板に累積される繊維構造体を得る段階を含む 、 繊維構造体の製造方法。  1 1. At least 80 mol% of L-lactic acid condensate is dissolved in a solvent to prepare a solution, based on all repeating units, and at least 80 mol% of D-lactic acid is condensed based on all repeating units. Dissolving the body in a solvent to produce a solution; mixing the two solutions so that the weight ratio thereof is (6: 4) to (4: 6); A method for producing a fiber structure, comprising: spinning by an electrospinning method; and obtaining a fiber structure accumulated on a collecting substrate by the spinning.
1 2. 溶媒が揮発性溶媒である、 請求の範囲第 1 1項記載の製造方法 1 2. The production method according to claim 11, wherein the solvent is a volatile solvent.
1 3. 揮発性溶媒が、 塩化メチレン、 クロ口ホルム、 ジクロロェタン 、 テトラクロロェタン、 トリクロ口ェタン、 ジブロモメタン、 ブロモホ ルム、 テトラヒドロフラン、 1, 4一ジォキサンよりなる群から選ばれ た少なくとも 1種である、 請求の範囲第 12項記載の製造方法。 1 3. The volatile solvent is at least one selected from the group consisting of methylene chloride, chloroform, dichloroethane, tetrachloroethane, trichloromethane, dibromomethane, bromoform, tetrahydrofuran, and 1,4-dioxane. 13. The production method according to claim 12, wherein:
14. 静電紡糸法で紡糸する段階において繊維状物質が形成されるノ ズルと捕集基板の間の相対湿度を 20〜80%RHの範囲とする、 請求 の範囲第 1 1項記載の製造方法。 14. The method according to claim 11, wherein the relative humidity between the nozzle on which the fibrous substance is formed and the collecting substrate in the step of spinning by the electrostatic spinning method is in the range of 20 to 80% RH. Method.
PCT/JP2005/004165 2004-03-16 2005-03-03 Extremely fine polylactic acid fiber, fibrous structure and process for producing these WO2005087988A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/592,760 US20070172651A1 (en) 2004-03-16 2005-03-03 Ultrafine polyactic acid fibers and fiber structure, and process for their production
JP2006510973A JP4243292B2 (en) 2004-03-16 2005-03-03 Ultra-fine polylactic acid fiber, fiber structure, and production method thereof
EP05720436A EP1731633A4 (en) 2004-03-16 2005-03-03 Extremely fine polylactic acid fiber, fibrous structure and process for producing these
CA002560363A CA2560363A1 (en) 2004-03-16 2005-03-03 Ultrafine polylactic acid fibers and fiber structure, and process for their production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-074011 2004-03-16
JP2004074011 2004-03-16

Publications (1)

Publication Number Publication Date
WO2005087988A1 true WO2005087988A1 (en) 2005-09-22

Family

ID=34975614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004165 WO2005087988A1 (en) 2004-03-16 2005-03-03 Extremely fine polylactic acid fiber, fibrous structure and process for producing these

Country Status (7)

Country Link
US (1) US20070172651A1 (en)
EP (1) EP1731633A4 (en)
JP (1) JP4243292B2 (en)
KR (1) KR20060130732A (en)
CN (1) CN1985032A (en)
CA (1) CA2560363A1 (en)
WO (1) WO2005087988A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231480A (en) * 2006-03-03 2007-09-13 Institute Of Physical & Chemical Research Polylactic acid fiber having stereo complex structure and method for producing the same
JP2008036985A (en) * 2006-08-08 2008-02-21 Kurashiki Seni Kako Kk Laminated sheet excellent in windproof and moisture-permeable waterproof properties, cloth using same, and their production methods
JP2008038271A (en) * 2006-08-03 2008-02-21 Taiyo Kagaku Co Ltd Nanofiber aggregate
JP2008196061A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Method for producing nano-fiber and apparatus for producing nano-fiber
JP2009006135A (en) * 2007-05-31 2009-01-15 Teijin Ltd Favorite beverage extract filter and favorite beverage extract bag formed using it
JP2010533798A (en) * 2007-07-18 2010-10-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing nanofibers and mesofibers by electrospinning a colloidal dispersion having at least one substantially water-insoluble polymer
WO2013172472A1 (en) 2012-05-14 2013-11-21 帝人株式会社 Sheet molding and hemostatic material
JP2016223055A (en) * 2015-05-28 2016-12-28 国立大学法人豊橋技術科学大学 Plastic nanofiber and optical fiber, and method for making plastic nanofiber
CN115467084A (en) * 2022-09-05 2022-12-13 南通大学 Hydrophilic PLA oil-water separation membrane and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045881A1 (en) * 2007-09-28 2009-04-09 Nature Works Llc Method for making polyactic acid ( pla) stereocomplexes
EP2201162B1 (en) * 2007-09-28 2011-11-02 NatureWorks LLC Polylactide stereocomplex conjugate fibers
US8182725B2 (en) * 2007-09-28 2012-05-22 Natureworks Llc Methods for making polylactic acid stereocomplex fibers
EP2135887B1 (en) 2008-06-18 2010-12-22 Instytut Biopolimeròw I Wlókien Chemicznych Process for producing a polylactic acid stereocomplex powder
US8242073B2 (en) * 2008-07-10 2012-08-14 The Hong Kong Polytechnic University Biodegradable and bioabsorbable biomaterials and keratin fibrous articles for medical applications
CN101831762A (en) * 2010-04-08 2010-09-15 苏州大学 Composite fiber porous membrane composited by ornithoctonus huwena threads and polylactic acid and method for producing same
CN104018294B (en) * 2014-04-10 2016-06-22 中国科学院宁波材料技术与工程研究所 A kind of polylactic acid nano fiber film and preparation method thereof
CN104029443B (en) * 2014-05-28 2016-04-13 中原工学院 A kind of preparation method of PM2.5 protective mask PLA multi-layer fiber film
CN105274728B (en) * 2014-05-28 2018-10-16 福建赛特新材股份有限公司 A kind of biosoluble fibres felt and preparation method thereof and vacuum heat-insulating plate using the felt
CN106457811A (en) * 2014-06-18 2017-02-22 东丽株式会社 Laminate and production method therefor
KR101747825B1 (en) 2015-12-22 2017-06-15 경희대학교 산학협력단 Piezoelectric material comprising Poly(D-lactic acid)/Poly(L-lactic acid) stereocomplex crystals
CN108754832B (en) * 2018-04-10 2021-08-10 何炽斌 Biodegradable disposable mopping cloth and production method thereof
US11361893B2 (en) * 2018-11-27 2022-06-14 City University Of Hong Kong Soft body robotic device
CN116791233A (en) * 2023-03-17 2023-09-22 东华大学 Porous polylactic acid antibacterial nanofiber and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181207A (en) * 1985-10-04 1987-04-15 Ethicon Inc Electrostatically produced tubular structures
JPS63264913A (en) * 1987-04-21 1988-11-01 Bio Material Yunibaasu:Kk Polylactic acid fiber
JPH03220305A (en) * 1989-11-21 1991-09-27 I C I Japan Kk Production of antistatic spun yarn
US5338822A (en) * 1992-10-02 1994-08-16 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
FR2709500A1 (en) * 1993-08-02 1995-03-10 Fiberweb Sodoca Sarl Nonwoven based on polymers derived from lactic acid, method of manufacture and use of such a nonwoven.
JPH07305228A (en) * 1994-05-06 1995-11-21 Kanebo Ltd Method for producing high molecular weight polylactic acid molded product
JP2002030523A (en) * 2000-07-14 2002-01-31 Toray Ind Inc Polylactic acid fiber
JP2004162215A (en) * 2002-11-14 2004-06-10 Teijin Ltd Fiber structure of polyglycolic acid and method for producing the same
JP2004256974A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2004290133A (en) * 2003-03-28 2004-10-21 Teijin Ltd Cell culture substrate and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063020A (en) * 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs
US6713011B2 (en) * 2001-05-16 2004-03-30 The Research Foundation At State University Of New York Apparatus and methods for electrospinning polymeric fibers and membranes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181207A (en) * 1985-10-04 1987-04-15 Ethicon Inc Electrostatically produced tubular structures
JPS63264913A (en) * 1987-04-21 1988-11-01 Bio Material Yunibaasu:Kk Polylactic acid fiber
JPH03220305A (en) * 1989-11-21 1991-09-27 I C I Japan Kk Production of antistatic spun yarn
US5338822A (en) * 1992-10-02 1994-08-16 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
FR2709500A1 (en) * 1993-08-02 1995-03-10 Fiberweb Sodoca Sarl Nonwoven based on polymers derived from lactic acid, method of manufacture and use of such a nonwoven.
JPH07305228A (en) * 1994-05-06 1995-11-21 Kanebo Ltd Method for producing high molecular weight polylactic acid molded product
JP2002030523A (en) * 2000-07-14 2002-01-31 Toray Ind Inc Polylactic acid fiber
JP2004162215A (en) * 2002-11-14 2004-06-10 Teijin Ltd Fiber structure of polyglycolic acid and method for producing the same
JP2004256974A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2004290133A (en) * 2003-03-28 2004-10-21 Teijin Ltd Cell culture substrate and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231480A (en) * 2006-03-03 2007-09-13 Institute Of Physical & Chemical Research Polylactic acid fiber having stereo complex structure and method for producing the same
JP2008038271A (en) * 2006-08-03 2008-02-21 Taiyo Kagaku Co Ltd Nanofiber aggregate
JP2008036985A (en) * 2006-08-08 2008-02-21 Kurashiki Seni Kako Kk Laminated sheet excellent in windproof and moisture-permeable waterproof properties, cloth using same, and their production methods
JP2008196061A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Method for producing nano-fiber and apparatus for producing nano-fiber
JP2009006135A (en) * 2007-05-31 2009-01-15 Teijin Ltd Favorite beverage extract filter and favorite beverage extract bag formed using it
JP2010533798A (en) * 2007-07-18 2010-10-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing nanofibers and mesofibers by electrospinning a colloidal dispersion having at least one substantially water-insoluble polymer
WO2013172472A1 (en) 2012-05-14 2013-11-21 帝人株式会社 Sheet molding and hemostatic material
JP2016223055A (en) * 2015-05-28 2016-12-28 国立大学法人豊橋技術科学大学 Plastic nanofiber and optical fiber, and method for making plastic nanofiber
CN115467084A (en) * 2022-09-05 2022-12-13 南通大学 Hydrophilic PLA oil-water separation membrane and preparation method thereof
CN115467084B (en) * 2022-09-05 2023-08-08 南通大学 Hydrophilic PLA oil-water separation film and preparation method thereof

Also Published As

Publication number Publication date
EP1731633A1 (en) 2006-12-13
JPWO2005087988A1 (en) 2008-01-31
CN1985032A (en) 2007-06-20
CA2560363A1 (en) 2005-09-22
EP1731633A4 (en) 2007-12-19
KR20060130732A (en) 2006-12-19
JP4243292B2 (en) 2009-03-25
US20070172651A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4243292B2 (en) Ultra-fine polylactic acid fiber, fiber structure, and production method thereof
Shalumon et al. Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture
Han et al. Preparation of poly (ε-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning
WO2004088024A1 (en) Nonwoven fabric and process for producing the same
JP4664790B2 (en) Manufacturing method and manufacturing apparatus for fiber structure
US9713521B2 (en) Electrostatic-assisted fiber spinning method and production of highly aligned and packed hollow fiber assembly and membrane
US20100143435A1 (en) Scaffold with increased pore size
JP5207265B2 (en) Method for producing blended polymer fiber and method for producing nonwoven fabric thereof
WO2006123879A1 (en) Filament bundle type nano fiber and manufacturing method thereof
JP2007100249A (en) Artificial leather and method for producing the same
JP4361529B2 (en) Porous fiber, porous fiber structure and method for producing the same
Ahmadi Bonakdar et al. Electrospinning: Processes, Structures, and Materials
JP2008095226A (en) Sheetlike material and method for producing the same
Blanes et al. Influence of glyoxal in the physical characterization of PVA nanofibers
Ribeiro et al. Fabrication of poly (lactic acid)-poly (ethylene oxide) electrospun membranes with controlled micro to nanofiber sizes
JP2004290133A (en) Cell culture substrate and method for producing the same
JP4354831B2 (en) Para-type aromatic polyamide fiber, fiber structure and production method thereof
Bose et al. Hierarchical Design Strategies to Produce Internally Structured Nanofibers
JP2001192932A (en) Microfiber
JP2007284834A (en) Sheet-shaped material and method for producing the same
WO2020013199A1 (en) Nonwoven fabric, method for manufacturing same, and composition for electrospinning
JP2006291397A (en) Tubular material and method for producing tubular material
TWI837148B (en) Nonwoven fabric, method for manufacturing nonwoven fabric, and composition for electrospinning
JP2006037276A (en) Synthetic paper and method for producing the same
Caparros et al. 3. Fabrication of poly (lactic acid)‐poly (ethylene oxide) electrospun membranes with controlled micro to nanofiber sizes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006510973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007172651

Country of ref document: US

Ref document number: 10592760

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2560363

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067021160

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580015686.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005720436

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021160

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10592760

Country of ref document: US