WO2005080584A1 - PROCESS FOR, WITH USE OF α-AMINO- ϵ -CAPROLACTAM RACEMASE, PRODUCING MIXTURE OF D- AND L-AMINO ACID AMIDE, PRODUCING D- OR L-AMINO ACID, AND PRODUCING D- OR L-AMINO ACID AMIDE - Google Patents

PROCESS FOR, WITH USE OF α-AMINO- ϵ -CAPROLACTAM RACEMASE, PRODUCING MIXTURE OF D- AND L-AMINO ACID AMIDE, PRODUCING D- OR L-AMINO ACID, AND PRODUCING D- OR L-AMINO ACID AMIDE Download PDF

Info

Publication number
WO2005080584A1
WO2005080584A1 PCT/JP2005/002933 JP2005002933W WO2005080584A1 WO 2005080584 A1 WO2005080584 A1 WO 2005080584A1 JP 2005002933 W JP2005002933 W JP 2005002933W WO 2005080584 A1 WO2005080584 A1 WO 2005080584A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid amide
amide
producing
amino
Prior art date
Application number
PCT/JP2005/002933
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhisa Asano
Original Assignee
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co., Ltd. filed Critical Kansai Technology Licensing Organization Co., Ltd.
Priority to JP2006510295A priority Critical patent/JP4122416B2/en
Publication of WO2005080584A1 publication Critical patent/WO2005080584A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids

Definitions

  • the present invention provides a method for producing a mixture of D-amino acid amide and L-amino acid amide with reduced optical activity by using an enzyme that racemizes an optically active amino acid amide, And a method for producing a D- or L-amino acid amide.
  • D-amino acids or D-amino acid oligomers are useful as synthetic materials for pharmaceuticals, agricultural chemicals, and other chemical substances.
  • a method for producing D-amino acids there is known a method for producing D-amino acids by allowing a D-stereospecific peptide hydrolase to act on mountain D-amino acid amide. At this time, since the L-amino acid amide does not serve as a substrate for the enzyme, it remains in the reaction system.
  • the D-amino acid amide generated by the racemization is converted into a D-amino acid by an enzyme, and the yield of the D-amino acid can be improved (Patent Document 1).
  • an L-stereospecific peptide hydrolase is used in place of the D-stereospecific peptide hydrolase, L-amino acids can be obtained with high yield. Therefore, in the production of D- or L-amino acids, enzymes that racemize D- or L-amino acid amides play an important role.
  • the present invention provides a more optically active enzyme using an enzyme that acts on D_ amino acid amide or Lama amino acid amide to generate amino acid amide or D_ amino acid amide.
  • D_ amino acid amide or Lama amino acid amide For producing a mixture of D-amino acid amide and L-amino acid amide (hereinafter, may be referred to as a D, L-amino acid amide mixture) with reduced D, L-amino acid, and D or L-amino acid It is intended to provide a method for producing an amino acid amide.
  • the inventor of the present invention has developed a known racemase capable of racemizing a cyclic amide compound, a racemase force acting on a D-amino acid amide, and converting the cyclic amide compound into an L-amino acid amide. And found to act on L-amino acid amide to convert it to D-amino acid amide, and to complete a method for producing a D, L-amino acid amide mixture, an optically active amino acid or an optically active amino acid amide. Reached.
  • the present invention provides the following production method.
  • At least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide is used as a raw material, and ⁇ -amino- ⁇ -force prolatatam racemase is allowed to act on the raw material.
  • a method for producing a mixture of D-amino acid amide and L-amino acid amide having reduced optical activity is used as a raw material, and ⁇ -amino- ⁇ -force prolatatam racemase.
  • Item 2 The method for producing a mixture of amino acid amides according to Item 1, wherein the ⁇ _amino- ⁇ -caprolatatam racemase is derived from Achromobacter obae.
  • Item 3 Amino acid amidoca S, alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, prolinamide, asparagineamide, cysteinamide, cystinamide, toreininamide, 2-- Item 3.
  • Item 4 Amino acid amidoca S, araninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, 2-aminobutyric acid amide, nonolevalinamide, norguchi Item 13.
  • Item 5 Selective action on at least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide, and on amino- ⁇ -force prolatatum racemase and D or L-amino acid amide A method for producing D or L-amino acid, wherein an enzyme for converting to D or L-amino acid is acted on.
  • Item 6 The method for producing a D- or L-amino acid according to Item 5, wherein the para-amino- ⁇ -caprolatatam racemase is derived from Achromobacter obae.
  • Item 7 Amino acid amidoca S, alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, tresininamide, 2- Item 7.
  • Amino acid amide power At least one selected from the group consisting of alaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, nolinamide, 2-aminobutyric acid amide, nonolevalinamide, norguchiininamide and threonamide.
  • Item 8. The method for producing a D- or L-amino acid according to any one of Items 5 to 7, which is an amide.
  • Item 9 Enzymes that selectively act on D-amino acid amide and L-amino acid amide compound to ⁇ -amino- ⁇ -force prolatamase racemase and D or amino acid amide to convert to D or L-amino acid A D- or L-amino acid is produced by reacting the compound, and the resulting D- or L-amino acid is amidated to produce a D- or L-amino acid amide.
  • Item 10 The method for producing a D- or L-amino acid amide according to Item 9, wherein the para-amino- ⁇ -caprolatatam racemase is derived from Achromobacter obae.
  • Item 11 Amino acid amidoca S, alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, trenininamide, 2-aminobutyramide Item 11.
  • Amino acid amide power At least one selected from the group consisting of alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, 2-aminobutyric acid amide, nonolevalinamide, norguchiininamide and threonamide.
  • Item 12. The method for producing a D- or L-amino acid amide according to any one of Items 9-11, which is an amide.
  • the production method of the present invention comprises: using at least one kind of amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide as a raw material, and reacting the raw material with amino- ⁇ -caprolactam lacemase; It is characterized by producing a mixture of D-amino acid amide and L-amino acid amide having reduced optical activity from the raw material.
  • ACL racemase is allowed to act on at least one kind of amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide
  • the optics of the amino acid amide present in the reaction system with the passage of time The activity decreases, and finally, a D, L-amino acid amide racemate (a mixture of D-form and L-form at a ratio of 1: 1) is formed.
  • a D, L-amino acid amide racemate a mixture of D-form and L-form at a ratio of 1: 1
  • a mixture of D-amino acid amide and L-amino acid amide having a lower optical activity than the raw material refers to an equivalent compound of D-amino acid amide and L_amino acid amide (racemic amino acid amide)
  • a D-amino acid amide, an L-amino acid amide, or a D, L-amino acid amide mixture whose optical activity is closer to the equivalent mixture than the D, L-amino acid amide mixture, which is a raw material is also included.
  • ACL racemase used in the present invention for example, an enzyme to which EC 5.1.1.15 is assigned in the enzyme classification can be used.
  • ACL racemase is isolated by culturing Achromobacter obae, Pseudomonas sp. (CCM 3443), etc.
  • CCM 3443 Achromobacter obae
  • ACL racemase from any of the bacteria can be used in the present invention.
  • the method for obtaining Achromobacter obae (FERM_P776) ACL racemase is described in “SA
  • Pyrococcus abyssi-derived gene (SEQ ID NO: 55) -expressed protein (SEQ ID NO: 56; Pyndoxal phosphate-dependent aminotransferase) and Thermococcus kodakaraensis-derived gene (SEQ ID NO: 57) expressed protein (SEQ ID NO: 58; aminotransferase, class III) can also be used as an ACL racemase in the production method of the present invention.
  • proteins have deletions of amino acid residues in the amino acid sequence due to polymorphism or mutation of the gene encoding the protein, or due to a modification reaction after protein production.
  • mutations such as addition, substitution, and the like may occur, but nonetheless, there are proteins having the same physiological activity as proteins in which such mutations do not occur.
  • the origin of the protein used as the ACL racemase in the present invention may be a natural protein, a recombinant protein, or a chemically synthesized protein.
  • the target protein can be expressed using a tissue or cultured cell culture as a starting material, and then used for protein precipitation, affinity chromatography, ion-exchange chromatography, or gel filtration.
  • affinity chromatography affinity chromatography
  • the target protein can be purified by using a carrier to which an antibody against the protein of the present invention is bound.
  • a recombinant expression vector obtained by cloning the gene of the present invention encoding the target protein into a suitable expression vector as described above is used as a host (E. coli). , Yeast, etc.) and culturing the transformant under suitable conditions to produce the desired protein.
  • a host E. coli. , Yeast, etc.
  • those skilled in the art can also appropriately produce a protein having a desired amino acid sequence by chemical synthesis.
  • the above-mentioned protein can be appropriately modified pharmaceutically acceptable. That is, the protein having the amino acid sequence represented by SEQ ID NO: 2, 50, 52 or 54 and the protein containing the partial sequence have the ability to have a carboxyl group (-COOH) or a carboxylate (-COO-) at the C-terminal.
  • the C-terminus may be amide (-CONH) or ester (-COOR).
  • Is a C-alkyl such as methyl, ethyl, n-propyl, isopropyl or n-butyl.
  • 1-6 C cycloalkyl groups such as olequinole group, cyclopentyl, cyclohexyl, phenyl,
  • C-aryl groups such as naphthyl, and benzyl, phenethyl, and benzhydryl
  • Cimethyl ester and the like.
  • a salt with a pharmaceutically acceptable base eg, an alkali metal or the like
  • an acid organic acid, inorganic acid
  • a pharmaceutically acceptable acid addition salt is used, and particularly, a pharmaceutically acceptable acid addition salt. Is preferred.
  • Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) And tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid). Therefore, a protein having an amino acid sequence obtained by mutating the amino acid sequence of SEQ ID NO: 2, 50, 52 or 54 by these natural or artificial mutations can also be used in the production method of the present invention as long as it has amino acid amido racemase activity.
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid
  • tartaric acid cit
  • the ACL racemase used in the present invention includes (1) a protein consisting of the amino acid sequence represented by the above SEQ ID NO: 2, 50, 52, 54, 56 or 58; A protein comprising an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence and having an amino acid amido racemase activity, or (3) 70% or more, preferably 85%, of the amino acid sequence.
  • a protein consisting of an amino acid sequence having a homology of at least 90%, more preferably at least 90%, and having an amino acid amidoracemase activity is also included.
  • the ACL racemase used in the present invention can be used without any particular limitation as long as it has the required enzymatic activity.
  • enzymes and microorganism cultures obtained by purifying from microorganism cultures A crude product having the above enzyme activity, an enzyme produced by genetic engineering, and the like can be used.
  • the microorganism culture include a culture solution and cultured cells, with the cultured cells being preferred.
  • ACL racemase can also be obtained by a method of preparing a peptide by chemical synthesis based on the above amino acid sequence, or a method of producing the above DNA sequence by recombinant DNA technology.
  • RNA when ACL racemase is obtained by recombinant DNA technology, RNA can be expressed in vitro by preparing RNA by in vitro transcription from a vector having this sequence or a fragment thereof and performing in vitro translation using this as a type III. . If the translation region is recombined into an appropriate expression vector by a known method, a large amount of ACL racemase encoded by cDNA can be expressed in Escherichia coli, Bacillus subtilis, yeast, animal cells and the like.
  • the cDNA of the present invention is added to an expression vector having an origin, a promoter, a ribosome binding site, a cDNA cloning site, a terminator, and the like, which are replicable in the microorganism.
  • a translation expression region is inserted and ligated to create a recombinant expression vector, host cells are transformed with the expression vector, and the resulting transformant is cultured to obtain the ACL racemase encoded by the cDNA. It can be mass-produced in microorganisms. Alternatively, it is developed as a fusion protein with other proteins. It can also be manifested. By cleaving the obtained fusion protein with an appropriate protease, only the protein portion encoded by the cDNA can be obtained.
  • the raw material includes any one of D-amino acid amide and L-amino acid amide, and is a mixture of D-amino acid amide and L-amino acid amide. May be.
  • the raw material is an equal mixture (racemate) of D-amino acid amide and L-amino acid amide
  • the content of D-amino acid amide and L-amino acid amide changes even when ACL racemase is applied. Since it is not, it is prayed from raw materials.
  • a preferred D, L-amino acid amide mixture has a molar ratio of D-amino acid amide / (moles of D-amino acid amide + moles of L-amino amide) of 0.001 0.499 and 0.501 0.999, and more preferably , 0.001-0.49 and 0.51 0.999, more preferably 0.001-0.48 and 0.52 0.999.
  • Amino acid amides include amides of known amino acids in which an optically active form exists, such as alaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, quinamide, prolinamide, asparaginamide, and cysteine.
  • the content ratio of D-form and L-form in the raw material is not particularly limited.
  • the raw material amino acid amide is usually used at a concentration of about 500 g / liter. use. When used at a low concentration, it can be used in the form of a free base, but when used at a relatively high concentration, for example, it can be used in the form of hydrochloride or tosinoleate, etc. Considering the above, it is preferable.
  • reaction medium water or an aqueous liquid containing acetone, acetonitrile, DMSO, DMF, etc.
  • an aqueous buffer for example, Tris-HCl buffer, potassium phosphate buffer and the like can be used.
  • organic solvents that do not mix with water such as ketones, ethers, hydrocarbons, aromatic olefins, halogenated hydrocarbons, organic acid esters, alcohols, and nitrile, can also be used.
  • methyl butyl ketone, isopropyl ether, petroleum ether, hexane, heptane, cyclohexane, carbon tetrachloride, chloroform, methylene dichloride, trichloroethane, benzene, toluene, xylene, ethyl acetate, butyl acetate, butanol, hexanol , Or Octanol, etc. can be used.
  • a mixture of these organic solvents can be used, and the reaction can be carried out as a two-layer system with a water-saturated organic solvent or an aqueous buffer, or as an emulsion.
  • the amount of ACL racemase to be used with respect to the above-mentioned raw materials is not particularly limited, but is about 0.01 to 100 U / ml, preferably 0.05 to 100 U / ml.
  • one unit of ACL racemase is an amount of an enzyme that catalyzes the production of 1 micromol of amino acid amide per minute.
  • the reaction temperature is usually about 20 to 70 ° C, preferably about 25 to 50 ° C
  • the pH is usually about 411, preferably about pH 6 to 10.
  • the reaction time can be appropriately set according to the type and amount of the amino acid amide as the raw material, the amount of the enzyme, the reaction temperature, the desired D / L mixing ratio in the product, and the like. It is usually about 0.2 hours to 10 days, preferably about 0.5 hours to 12 days. By increasing the reaction time, a D, L-amino acid mixture close to the racemic amino acid amide can be obtained.
  • the mode of production is not particularly limited.
  • the raw material and ACL racemase can be prepared in a batch by charging them in one container, or the ACL racemase can be immobilized on a column, and a solution containing the raw material can be prepared. It can also be produced by passing the solution through the column.
  • the produced amino acid can be optionally purified and collected by a conventional method. For example, after the reaction is completed, the cells are centrifuged after adding the protein denaturant to the immobilized enzyme. If using an enzyme fused with His-Tag, etc., use a Ni column or the like to remove it by selective removal, and remove the amino acids contained in the removed solution with a solvent. It is purified by extraction or ion exchange resin and crystallized.
  • the embodiment of the enzyme to be used includes a cell culture solution, a culture supernatant solution, a processed product of cells isolated from the culture solution, an enzymatic agent obtained therefrom, and further, these enzymes or enzyme-containing substances.
  • Those immobilized by the method and those having enzyme activity can be used. In industrial practice, it is advantageous to use live cells, immobilized cells and the like.
  • the immobilization carrier polyacrylanolamide, photocrosslinkable resin, polyurethane resin, kappa carrageenan, sodium alginate, ion exchange resin, semipermeable membrane, and the like can be used.
  • a method in which a carrier absorbs an enzyme solution a method in which an enzyme solution is mixed with a carrier, and an enzyme is absorbed and fixed
  • a method of entrapping and immobilizing the enzyme a method of crosslinking the enzyme with a crosslinking agent, and the like can be employed.
  • a desired D-mount-amino acid amide mixture can be obtained.
  • the resulting D, L-amino acid amide mixture is lower in optical activity than the starting material amino acid amide.
  • the type of amino acid amide of the D, L-amino acid amide mixture to be produced is the same as the amino acid amide of the above-mentioned raw material.
  • the D, L-amino acid amide mixture to be produced may have a D-form / L-form content ratio of 1: 1.
  • the obtained D, L-amino acid amide mixture can also be used as a raw material for producing D or L-amino acids.
  • the production of D or L-amino acid by a method in which an enzyme that converts D or L-amino acid amide to a D or L-amino acid by acting stereospecifically on the D-amino acid amide mixture is allowed to act. can be.
  • the method for producing a D- or L-amino acid of the present invention comprises the steps of: adding at least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amidoca; An enzyme that selectively acts on L-amino acid amide and converts it into D or L-amino acid (hereinafter sometimes referred to as an enzyme that converts into amino acid).
  • D-amino acid amide When a D-amino acid is obtained by this production method, D-amino acid amide, L-amino acid amide or An enzyme that selectively acts on ⁇ -amino- ⁇ -force prolatatum racemase and D-amino acid amide to convert the D-amino acid amide and L-amino acid amide compound into D-amino acid .
  • the D-amino acid amide in the reaction system is converted to D-amino acid by an enzyme that converts to D-amino acid
  • the L-amino acid amide in the reaction system is converted to D-amino acid amide by ACL racemase.
  • -Amino acid amide is converted to D-amino acid by an enzyme that converts to D-amino acid to produce D-amino acid.
  • D-amino acid amide, L-amino acid amide, or a mixture of D-amino acid amide and L-amino acid amide, ACL racemase and L-amino acid amide are used.
  • Enzymes that selectively act to convert to L-amino acids The L-amino acid amide in the reaction system is converted to an L-amino acid by an enzyme that converts to an L-amino acid, and the D-amino acid amide in the reaction system is converted to an L-amino acid amide by an ACL racemase.
  • Amides are converted to L-amino acids by enzymes that convert L-amino acids to produce L-amino acids.
  • the amount of amino acid amide that serves as a substrate for an enzyme that converts to D or L-amino acid is reduced, but the amino acid amide that is not a substrate for an enzyme that converts to D or L-amino acid is an ACL. It is converted by the action of racemase to produce an amino acid amide that serves as a substrate for the enzyme that converts to D or L-amino acids. Enzyme that converts this amino acid amide into D- or L-amino acid.To convert it into D- or L-amino acid, it converts not only amino acid amide that is a substrate of enzyme that converts into D or L-amino acid, but also D or L-amino acid. Amino acid amides, which do not serve as substrates for the enzyme, can also be effectively used as raw materials.
  • a mixture of D-amino acid amide, L-amino acid amide, D-amino acid amide and amino acid amide (D, L-amino acid amide) is used as a raw material.
  • the embodiment is the same as the above (1) except for the following points.
  • the mixture of D-amino acid amide and L-amino acid amide (D, L-amino acid amide) differs from the case of (1) above in that an equal mixture of D-amino acid amide and L-amino acid amide (racemic)
  • the D, L-amino acid amide mixture also includes an equal mixture (racemic) of D-amino acid amide and L-amino acid amide.
  • Enzymes that selectively act on D or L-amino acid amides to convert to D or L-amino acids include enzymes that selectively act on D_ amino acid amides to generate D-amino acids, and L-amino acid amides. Any enzyme capable of selectively acting to produce an L-amino acid can be used without particular limitation.
  • Enzymes that selectively act on D or L-amino acid amides to convert them into D or L-amino acids are usually given names such as amino acid amidase, aminopeptidase, and protease.
  • enzymes called D-aminopeptidase, alkaline D-peptidase, D-alanine amidase, L-aminopeptidase and the like can be mentioned.
  • an amidase, a peptidase, a protease, a proteinase, a stereospecific amidase, or an enantiomer-specific amidase may be used.
  • enzymes can be used without particular limitation as long as they have the required enzyme activity.
  • enzymes obtained by purifying from a microorganism culture, crudely purified products having the enzymatic activity of the microorganism culture, and genes can be used.
  • Engineered enzymes can be used.
  • the genetic engineering production method is the same as the above-described ACL racemase genetic engineering production method.
  • (S) _stereospecific amidase from Pseudomonas putida ATCC 12633 (Hermes, HFM et al., Appl. Environ. Microbiol., 59 (1993), 4330-4334), (S) _stereospecific from Ochrobactrum anthropi NCIMB 40321 Amidase (van den Tweel et al., Appl. Microbiol. Biotechnol., 39 (1993), 296-300), (S) _stereospecific amino acid amidase from Mycobacterium neoaurum ATCC 25795 (Hermes et al., Appl. Environ.
  • the content ratio of D-form and L-form in the raw material is not particularly limited.
  • the amount of ACL racemase used for the above raw materials is about 0.01-lOOOU / ml, preferably 0.5-lOOU / ml, and the amount of enzyme used to convert amino acids is 0.01-1000U / ml, preferably 0.5-100U / ml. It is.
  • One unit of the enzyme to be converted into an amino acid is the amount of the enzyme that catalyzes the hydrolysis of 1 micromol of the amino acid amide per minute.
  • reaction temperature is usually about 20-70 ° C, preferably about 25-50 ° C
  • pH is usually about 411, preferably about 610. is there.
  • the reaction time can be appropriately set according to the kind and amount of the amino acid amide as the raw material, the amount of the enzyme, the reaction temperature, the desired D and L mixing ratio in the product, and the like. It is usually about 0.2 hours to 10 days, preferably about 0.5 hours to 12 days.
  • the mode of production is not particularly limited.
  • a raw material, an ACL racemase, and an enzyme to be converted into an amino acid can be prepared in a single container by charging them in a single container, or the ACL racemase can be immobilized on a column. It can also be produced by passing a solution containing the raw materials through the column, and then reacting the solution with an enzyme that converts the solution into an amino acid. After the enzymatic reaction, the generated amino acids can be purified in the same manner as in (1).
  • the form of the enzyme used in the reaction is the same as in (1).
  • the D- or L-amino acid thus produced is a known D- or L-amino acid having an optically active substance.
  • Amino acids are included, e.g., alanine, methionine, leucine, serine, phenylalanine, valine, proline, asparagine, cystine, cystine, threonine, isoleucine, tryptophan, glutamine, tyrosine, lysine, arginine, histidine, aspartate.
  • Gnoretamic acid, 2-aminobutyric acid, norparin, norleucine, penicillamine, etc. which can be used alone or in combination of two or more.
  • alanine, methionine, leucine, serine, pheninolealanine, valine, proline, asparagine, cystine, cystine, threonine, 2-aminobutyric acid, norpaline, norleucine, penicillamine more preferably alanine, methionine, Leucine, serine, phenylalanine, valine, 2-aminobutyric acid, norparin, nonoleucine, threonine, penicillamine. More preferably, they are alanine, methionine, leucine, serine, phenylalanine, valine, 2-aminobutyric acid, threonine and penicillamine.
  • the method for producing D- or L-amino acid amide of the present invention selectively acts on a mixture of D-amino acid amide and L-amino acid amide, ⁇ -amino- ⁇ -force prolatatam racemase and D or L-amino acid amide. And then reacting with an enzyme that converts to D or L-amino acid to produce D or L-amino acid, and amidating the generated D or L-amino acid.
  • FIG. 1 is a graph showing racemization of L-2-aminobutyric acid amide by ACL racemase in Example 2.
  • FIG. 2 is a daraf showing racemization of L-alaninamide by ACL racemase in Example 2.
  • FIG. 3 is a graph showing racemization of D-phenylalaninamide in Example 3.
  • FIG. 4 is a graph showing racemization of L-phenylalaninamide in Example 3.
  • FIG. 5 is a daraf showing the synthesis of D-alanine from L-alananamide in Example 4.
  • Cloning vector pUC18 (Takara Shuzo)
  • Culture medium Calo LB medium (lOg / 1 Bacto tryptone) supplemented with ampicillin, 5 g / l Bacto enzyme extract, lOg / 1 NaCl, 80 ⁇ g / ml ampicillin, pH 7.2)
  • Oligonucleotide manufactured by Hokkaido System Science
  • DNA polymerase Takara Ex Taq DNA polymerase (Takara Shuzo)
  • LA L: Brenner method (M. Brenner, HR Rickenbacher, Helv. And him. Acta. 41, (1958) 181-188), D, L-ACL was prepared by optical resolution using (S) _ (-) _ L_pyrrolidonecarboxylic acid.
  • A1 primers and # 46 primers were designed to include the amino acid sequence of the ACL racemase shown in SEQ ID NO: 2. These 46 primers were also referred to as A1 primers and # 46 primers, and their nucleotide sequences are shown in SEQ ID NO: 348.
  • the design method was designed so that each primer was about 50 mer, of which 20 mer overlapped (the 5 'side of each primer was G, C).
  • the A1 primer was provided with a start codon (atg), a stop codon (tag), a ribosome binding site (aggagg), and an EcoRI recognition site (gaattc).
  • the A45 primer was provided with a stop codon (taa), and the A46 primer was provided with a Sphl recognition site (gcatgc).
  • PCR was performed using these primers.
  • Each primer (46 pieces) was adjusted to a concentration of 100 pmol // l, and 1 ⁇ l of each primer solution was mixed to obtain a mix primer.
  • PCR was performed using 5 ⁇ l of 2.5 mM dNTP to make the total amount 50 ⁇ l.
  • the PCR conditions were one set of 30 s at 94 ° C, 30 s at 52 ° C, and 30 s at 72 ° C, and this was repeated 55 times.
  • the total volume of the PCR reaction solution was 1.3 ⁇ l, 0.5 ⁇ l of Ex Taq polymerase, Ex Taq buffer, 5 ⁇ l of 2.5 mM dNTP, 1 ⁇ l of Al primer solution, and 1 ⁇ l of A46 primer solution. ⁇ 1, and PCR was performed.
  • the PCR conditions were one set of 30 s at 94 ° C, 30 s at 52 ° C, and 60 s at 72 ° C, and this was repeated 23 times.
  • PCR was performed using PTC-200 (MJ Research).
  • the DNA amplified by PCR was gel-extracted around 1400 bp, and the fragment obtained by EcoRI-Sphl treatment and alkali treatment was inserted downstream of the lac promoter in the pUC18 vector, and this was inserted into E. coli JM109.
  • the cells were cultured in an LB medium supplemented with ampicillin for 12 hours at 37 ° C. for transformation. A colony showing ACL activity was selected to obtain a transformed E. coli JM109 / pACL60 showing ACL activity.
  • E. coli JM109 / pACL60 was placed in a test tube containing ampicillin-added QLB medium (5 ml), and cultured at 37 ° C for 12 hours.
  • the obtained culture solution (5 ml) was placed in a 2 L flask containing 500 ml of LB medium supplemented with 80 / ig / ml of ampicillin and 0.5 mM of isopropylthio- ⁇ -D_galactoside (IPTG).
  • IPTG isopropylthio- ⁇ -D_galactoside
  • the cells were cultured with shaking for 8 hours. After the culture, cells were collected by centrifugation (4 ° C, 8000 g, 5 minutes), and the cells were washed with 0.85% NaCl.
  • the transformed Escherichia coli was cultured in 2 L flasks (20 tubes) containing 500 ml of LB medium to obtain a total of 10 L of culture solution.
  • Cells were similarly fractionated from 10 L of the culture solution, and a lOOmM ⁇ buffer solution ( ⁇ ⁇ 7.0, containing 0.25M sucrose and 2 ⁇ m of pyridoxal phosphate (hereinafter referred to as PLP).
  • PLP pyridoxal phosphate
  • the “buffer” in this Production Example (excluding the buffer used for measuring enzyme activity) means this buffer.)
  • the suspension was centrifuged (4 ° C, 15000g, 30 minutes) to remove the cells.
  • the solution after removing the cells was heat-treated (60 ° C, 10 minutes), and denatured proteins were removed by centrifugation to obtain a supernatant.
  • the supernatant was applied to a DEAE-Toyopearl 650 M column (3 cm diameter ⁇ 25 cm length) equilibrated with 10 mM buffer, and the column was washed with 10 mM buffer. From 0
  • Elution was carried out with a 10 mM buffer having a concentration gradient of 300 mM NaCl to obtain a fraction.
  • the ACL racemase active fraction was saturated with ammonium sulfide 30%. This solution was adsorbed to a butyl Toyopearl 650M column (1.5 cm diameter ⁇ 13 cm length) equilibrated with a buffer saturated with 30% ammonium sulfide. The column was washed with a buffer saturated with 30% ammonium sulfide, and then eluted with a buffer containing 30% to 0% ammonium sulfide in a concentration gradient. Active fractions were collected and concentrated on Centricon 10. This concentrate was equilibrated with 10 mM buffer containing 150 mM NaCl.
  • D-ACL was racemized and the amount of enzyme that catalyzes the production of 1 ⁇ mol L-ACL per minute was defined as 1 unit.
  • ACL racemase for L-amino acid amide was calculated. The results are shown in Table 1. The activity of ACL racemase for L-ACL was 350 U / mg. From Table 1, it was confirmed that ACL racemase generated L-amino acid amide to D-amino acid amide and racemized.
  • amino acid amide was replaced with the following amino acid D-form or L-form and reacted with ACL racemase to quantify the product, it was confirmed that ACL racemase did not racemize the following amino acid. did.
  • a mixture (2 ml) of 20 ⁇ M PLP, 100 mM KPB (pH 7.0), 40 mM L_2_aminobutyramide and 71.2 ng of ACL racemase obtained in Production Example 1 was reacted at 30 ° C. for 120 minutes, The abundance ratio of the D-form and the L-form of the amino acid amide in the reaction solution was measured from the absorbance at 200 nm. The measurement was carried out in the same manner except that L_2-aminobutyric acid amide was replaced with L-arananamide. The results are shown in FIG. 1 (aminobutyric acid amide) and FIG. 2 (arananamide). It was confirmed that L-2-aminobutyric acid amide and L-alaninamide were racemized over time.
  • E. coli JM109 / pACL60 Transformed E. coli was placed in a test tube containing 50 ml of LB medium containing 80 ⁇ g / ml of ampicillin, and cultured at 37 ° C for 12 hours. The cells obtained from this culture were suspended in 5 ml of a solution consisting of 0.1 M Tris / HCl (pH 8.0) and 10 mM D-phenylalaninamide and reacted at 30 ° C. for 24 hours.
  • the Escherichia coli body contains an enzyme that converts L-phenylalaninamide to L-phenylalanine (L-phenylalanine amidase), and L-phenylalaninamide in the reaction system is converted to L-phenylalanine. Converted to luranin.
  • the reaction was stopped by adding HCIO, and the reaction solution was mounted on a crown pack CR (+) column.
  • the D_alanan was synthesized by allowing the ACL racemase obtained in Production Example 1 and the D_aminopeptidase derived from Ochrobactrum anthropi C 1-38 to act on L-arananamide. Mix 2 ⁇ of PLP, 100 mM KPB (pH 7.0), 45 mM L-alaninamide, ACL racemase (0.22 U) and D-aminopeptidase (2.2 U) (2 ml) and 7 hours at 30 ° C. Reacted.
  • the reaction was stopped by adding HC10, and the reaction solution was mounted on a crown pack CR (+) column.
  • the method for producing a mixture of (1) D-amino acid amide and L-amino acid amide according to the present invention is a simple method of reacting ACL racemase.
  • the amino acid amide serving as a substrate for an enzyme that converts to D- or L-amino acid is a reducing force.
  • amino acid amide is converted by the action of ACL racemase to produce amino acid amide, which is a substrate for the enzyme that converts to D or L-amino acid.
  • the enzyme that converts this amino acid amide to D or L-amino acid converts it to D or L-amino acid, it can be converted to D or L-amino acid without using only the amino acid amide that is the substrate of the enzyme that converts to D or L-amino acid. Since the amino acid amide that does not serve as a substrate for the enzyme to be used can also be effectively used as a raw material, the production method (2) is a simple method with a high yield that does not require optical resolution. Furthermore, the method for producing a D- or L-amino acid amide of (3) of the present invention comprises amidating the optically active amino acid obtained by the method of (2) by a known method. It is a simple and high-yield method that does not require an optical resolution operation as in the case of the production method.
  • SEQ ID Nos: 3-48 show the DNA sequences of A1-A46 primers, respectively.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A process comprising causing α-amino-ϵ-caprolactam racemase to act on at least one amino acid amide selected from the group consisting of D-amino acid amides and L-amino acid amides to thereby obtain a mixture of D-amino acid amide and L-amino acid amide with lowered optical activity. There is further provided a process producing a D- or L-amino acid, comprising causing α-amino-ϵ-caprolactam racemase and an enzyme capable of selectively acting on D- or L-amino acid amide to thereby convert the same to a D- or L-amino acid to act on at least one amino acid amide selected from the group consisting of D-amino acid amides and L-amino acid amides. There is still further provided a process for producing a D- or L-amino acid amide, comprising causing α-amino-ϵ-caprolactam racemase and an enzyme capable of selectively acting on D- or L-amino acid amide to thereby convert the same to a D- or L-amino acid to act on a mixture of D-amino acid amide and L-amino acid amide to thereby form a D- or L-amino acid and amidating the formed D- or L-amino acid.

Description

明 細 書  Specification
α _ァミノ- ε -力プロラタタムラセマーゼを用いた、 D及び L-アミノ酸アミド の混合物の製造方法、 D又は L -アミノ酸の製造方法、 D又は L -アミノ酸アミドの製 造方法  A method for producing a mixture of D and L-amino acid amides, a method for producing D or L-amino acids, and a method for producing D or L-amino acid amides using α_amino-ε-force prolatatum racemase
技術分野  Technical field
[0001] 本発明は、光学活性なアミノ酸アミドをラセミ化する酵素を使用することにより、より 光学活性の低下した D-アミノ酸アミド及び L-アミノ酸アミドの混合物を製造する方法 、 D又は L-アミノ酸の製造方法、並びに D又は L-アミノ酸アミドを製造する方法に関す る。  [0001] The present invention provides a method for producing a mixture of D-amino acid amide and L-amino acid amide with reduced optical activity by using an enzyme that racemizes an optically active amino acid amide, And a method for producing a D- or L-amino acid amide.
背景技術  Background art
[0002] D -アミノ酸又は D -アミノ酸オリゴマーは、医薬品、農薬、その他の化学物質の合成 材料として有用である。 D-アミノ酸を製造する方法としては、 D山-アミノ酸アミドに D- 立体特異的なペプチド加水分解酵素を作用させて D-アミノ酸を製造する方法が知ら れている。この際、 L-アミノ酸アミドは酵素の基質とならないため、反応系に残存する 。ここで、 L-アミノ酸アミドをラセミ化すると、ラセミ化によって生成する D-アミノ酸アミド が酵素によって D-アミノ酸へと変換され、 D-アミノ酸の収率を向上させることができる (特許文献 1)。また、 D-立体特異的なペプチド加水分解酵素に代えて L-立体特異 的なペプチド加水分解酵素を使用すれば、収率よく L-アミノ酸を得ることができる。 従って、 D又は L-アミノ酸の製造において、 D又は L-アミノ酸アミドをラセミ化する酵素 は重要な役割を担っている。し力 ながら、特許文献 1において D又は L-アミノ酸アミ ドをラセミ化する酵素として記載されていた Pseudomonas putida (NCIB 40042)由来の ラセマーゼ及び Rhodococcus sp. (NCIB 12569)由来のラセマーゼを利用した光学活 性な D又は L-アミノ酸の製造は、実質的に実用化されていない。  [0002] D-amino acids or D-amino acid oligomers are useful as synthetic materials for pharmaceuticals, agricultural chemicals, and other chemical substances. As a method for producing D-amino acids, there is known a method for producing D-amino acids by allowing a D-stereospecific peptide hydrolase to act on mountain D-amino acid amide. At this time, since the L-amino acid amide does not serve as a substrate for the enzyme, it remains in the reaction system. Here, when the L-amino acid amide is racemized, the D-amino acid amide generated by the racemization is converted into a D-amino acid by an enzyme, and the yield of the D-amino acid can be improved (Patent Document 1). Further, when an L-stereospecific peptide hydrolase is used in place of the D-stereospecific peptide hydrolase, L-amino acids can be obtained with high yield. Therefore, in the production of D- or L-amino acids, enzymes that racemize D- or L-amino acid amides play an important role. However, the optical activity using a racemase derived from Pseudomonas putida (NCIB 40042) and a racemase derived from Rhodococcus sp. (NCIB 12569) described as an enzyme for racemizing a D or L-amino acid amide in Patent Document 1. The production of soluble D or L-amino acids has not been practically used.
[0003] また、ァミノ酪酸アミド等のアミノ酸アミドの光学異性体は、医薬品原料等として有用 であることが知られている。アミノ酸アミドの光学異性体の製造法としては、アミノ酸ァ ミドのラセミ体を光学分割する方法が知られているが、 目的とする光学異性体の分離 、精製工程が複雑となるため、収率及びコストの点で改善が求められている。 特許文献 1:国際特許公開公報 WO89/01525 [0003] It is known that optical isomers of amino acid amides such as aminobutyric acid amide are useful as pharmaceutical raw materials and the like. As a method for producing an optical isomer of an amino acid amide, a method of optically resolving a racemic form of the amino acid amide is known, but the separation and purification steps of the desired optical isomer are complicated, so that the yield and the yield are low. Improvements are required in terms of cost. Patent Document 1: International Patent Publication WO89 / 01525
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明 ίま、 D_アミノ酸了ミド、又 ίま L_アミノ酸了ミド、に作用してし—アミノ酸了ミド、又 ίま D_ アミノ酸アミドを生成する酵素を用いて、より光学活性の低下した D-アミノ酸アミド及 び L-アミノ酸アミドの混合物(以下、 D,L-アミノ酸アミド混合物と称することがある)を 製造する方法、 D又は L-アミノ酸の製造方法、並びに D又は L-アミノ酸アミドを製造 する方法を提供するものである。  [0004] The present invention provides a more optically active enzyme using an enzyme that acts on D_ amino acid amide or Lama amino acid amide to generate amino acid amide or D_ amino acid amide. For producing a mixture of D-amino acid amide and L-amino acid amide (hereinafter, may be referred to as a D, L-amino acid amide mixture) with reduced D, L-amino acid, and D or L-amino acid It is intended to provide a method for producing an amino acid amide.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者は、環状アミド化合物をラセミ化する公知のひ -ァミノ- ε -カプロラタタム( 以下、 ACLと称することがある)ラセマーゼ力 D-アミノ酸アミドに作用して L -アミノ酸 アミドに変換し、 L-アミノ酸アミドに作用して D-アミノ酸アミドに変換することを見いだ し、 D,L-アミノ酸アミド混合物、光学活性なアミノ酸又は光学活性なアミノ酸アミドを製 造する方法を完成させるに至った。  [0005] The inventor of the present invention has developed a known racemase capable of racemizing a cyclic amide compound, a racemase force acting on a D-amino acid amide, and converting the cyclic amide compound into an L-amino acid amide. And found to act on L-amino acid amide to convert it to D-amino acid amide, and to complete a method for producing a D, L-amino acid amide mixture, an optically active amino acid or an optically active amino acid amide. Reached.
[0006] すなわち、本発明は、下記の製造方法を提供するものである。  That is, the present invention provides the following production method.
項 1. D-アミノ酸アミド及び L-アミノ酸アミドからなる群から選択される少なくとも 1種の アミノ酸アミドを原料とし、該原料に α -ァミノ- ε -力プロラタタムラセマーゼを作用さ せる、該原料より光学活性の低下した D-アミノ酸アミド及び L-アミノ酸アミドの混合物 の製造方法。  Item 1. At least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide is used as a raw material, and α-amino-ε-force prolatatam racemase is allowed to act on the raw material. A method for producing a mixture of D-amino acid amide and L-amino acid amide having reduced optical activity.
項 2· α _ァミノ- ε -カプロラタタムラセマーゼが、 Achromobacter obae由来である項 1 に記載のアミノ酸アミドの混合物の製造方法。  Item 2. The method for producing a mixture of amino acid amides according to Item 1, wherein the α_amino-ε-caprolatatam racemase is derived from Achromobacter obae.
項 3.アミノ酸アミドカ S、ァラニンアミド、、メチォニンアミド、、ロイシンアミド、、セリンアミド、 フエ二ルァラニンアミド、ノ リンアミド、プロリンアミド、ァスパラギンアミド、システィンァ ミド、、シスチンアミド、、卜レ才ニンアミド、、 2 -ァミノ酪酸アミド、ノノレノ リンアミド、、ノノレ口イシ ンアミド及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである項 1又は 2に記載のアミノ酸アミドの混合物の製造方法。  Item 3. Amino acid amidoca S, alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, prolinamide, asparagineamide, cysteinamide, cystinamide, toreininamide, 2-- Item 3. The method for producing a mixture of amino acid amides according to Item 1 or 2, wherein the mixture is at least one amide selected from the group consisting of aminobutyric amide, nonolenolinamide, nonolemic isinamide and threoninamide.
項 4.アミノ酸アミドカ S、ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、 フエ二ルァラニンアミド、ノ リンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノル口イシ ンアミド及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである項 1一 3のいずれかに記載のアミノ酸アミドの混合物の製造方法。 Item 4. Amino acid amidoca S, araninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, 2-aminobutyric acid amide, nonolevalinamide, norguchi Item 13. The method for producing a mixture of amino acid amides according to any one of Items 13 to 13, which is at least one amide selected from the group consisting of amides and threoninamides.
項 5. D-アミノ酸アミド及び L-アミノ酸アミドからなる群から選択される少なくとも 1種の アミノ酸アミドに、 ひ -アミノ- ε -力プロラタタムラセマーゼ及び D又は L-アミノ酸アミド に選択的に作用して D又は L-アミノ酸に変換する酵素を作用させる、 D又は L-ァミノ 酸の製造方法。 Item 5. Selective action on at least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide, and on amino-ε-force prolatatum racemase and D or L-amino acid amide A method for producing D or L-amino acid, wherein an enzyme for converting to D or L-amino acid is acted on.
項 6. ひ -アミノ- ε -カプロラタタムラセマーゼが、 Achromobacter obae由来である項 5 に記載の D又は L-アミノ酸の製造方法。 Item 6. The method for producing a D- or L-amino acid according to Item 5, wherein the para-amino-ε-caprolatatam racemase is derived from Achromobacter obae.
項 7.アミノ酸アミドカ S、ァラニンアミド、、メチォニンアミド、、ロイシンアミド、、セリンアミド、 フエ二ルァラニンアミド、ノ リンアミド、プロリンアミド、ァスパラギンアミド、システィンァ ミド、、シスチンアミド、、卜レ才ニンアミド、、 2 -ァミノ酪酸アミド、ノノレノ リンアミド、、ノノレ口イシ ンアミド及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである項 5又は 6に記載の D又は L-アミノ酸の製造方法。 Item 7. Amino acid amidoca S, alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, tresininamide, 2- Item 7. The method for producing a D- or L-amino acid according to Item 5 or 6, wherein the D- or L-amino acid is at least one amide selected from the group consisting of aminobutyric acid amide, nonolenoline amide, nonoresin amide and threoninamide.
項 8.アミノ酸アミド力 ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、 フエ二ルァラニンアミド、 ノくリンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノル口イシ ンアミド及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである項 5— 7のいずれかに記載の D又は L-アミノ酸の製造方法。 Item 8. Amino acid amide power At least one selected from the group consisting of alaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, nolinamide, 2-aminobutyric acid amide, nonolevalinamide, norguchiininamide and threonamide. Item 8. The method for producing a D- or L-amino acid according to any one of Items 5 to 7, which is an amide.
項 9. D—アミノ酸アミド及び L—アミノ酸アミドの昆合物に、 α—ァミノ—ε—力プロラタタム ラセマーゼ及び D又はし-アミノ酸アミドに選択的に作用して D又は L-アミノ酸に変換 する酵素を作用させて D又は L-アミノ酸を生成させ、生成した D又は L-アミノ酸をアミ ド化して D又は L-アミノ酸アミドを製造する方法。 Item 9. Enzymes that selectively act on D-amino acid amide and L-amino acid amide compound to α-amino-ε-force prolatamase racemase and D or amino acid amide to convert to D or L-amino acid A D- or L-amino acid is produced by reacting the compound, and the resulting D- or L-amino acid is amidated to produce a D- or L-amino acid amide.
項 10. ひ -アミノ- ε -カプロラタタムラセマーゼが、 Achromobacter obae由来である項 9に記載の D又は L-アミノ酸アミドの製造方法。 Item 10. The method for producing a D- or L-amino acid amide according to Item 9, wherein the para-amino-ε-caprolatatam racemase is derived from Achromobacter obae.
項 11.アミノ酸アミドカ S、ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、 フエ二ルァラニンアミド、ノ リンアミド、プロリンアミド、ァスパラギンアミド、システィンァ ミド、、シスチンアミド、、卜レ才ニンアミド、、 2 -ァミノ酪酸アミド、ノノレノ リンアミド、、ノノレ口イシ ンアミド及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである項 9又は 10に記載の D又は L -アミノ酸アミドの製造方法。 項 12·アミノ酸アミド力 ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、 フエ二ルァラニンアミド、ノくリンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノル口イシ ンアミド及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである項 9一 1 1のいずれかに記載の D又は L -アミノ酸アミドの製造方法。 Item 11.Amino acid amidoca S, alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, trenininamide, 2-aminobutyramide Item 11. The method for producing a D- or L-amino acid amide according to Item 9 or 10, which is at least one amide selected from the group consisting of nonolenoline amide, nonolenoisinamide and threoninamide. Item 12. Amino acid amide power At least one selected from the group consisting of alaninamide, methionamide, leucinamide, serinamide, fenylalaninamide, norinamide, 2-aminobutyric acid amide, nonolevalinamide, norguchiininamide and threonamide. Item 12. The method for producing a D- or L-amino acid amide according to any one of Items 9-11, which is an amide.
[0007] ( 1 )原料より光学活性の低下した D -アミノ酸アミド及び L-アミノ酸アミドの混合物の 製造方法 [0007] (1) A method for producing a mixture of D-amino acid amide and L-amino acid amide having lower optical activity than the raw material
本発明の製造方法は、 D -アミノ酸アミド及び L-アミノ酸アミドからなる群から選択さ れる少なくとも 1種のアミノ酸アミドを原料とし、該原料にひ-アミノ- ε -カプロラクタムラ セマーゼを作用させて、該原料より光学活性の低下した D -アミノ酸アミド及び L -ァミノ 酸アミドの混合物を製造することを特徴とする。  The production method of the present invention comprises: using at least one kind of amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide as a raw material, and reacting the raw material with amino-ε-caprolactam lacemase; It is characterized by producing a mixture of D-amino acid amide and L-amino acid amide having reduced optical activity from the raw material.
[0008] D -アミノ酸アミド及び L-アミノ酸アミドからなる群から選択される少なくとも 1種のアミ ノ酸アミドに ACLラセマーゼを作用させると時間の経過に伴って、反応系に存在する アミノ酸アミドの光学活性が低下し、最終的には、 D,L-アミノ酸アミドラセミ体(D体と L 体の比が 1: 1の混合物)が生成する。なお、反応時間等の条件を適宜設定すること により、任意の D体と L体の比を有する D,L-アミノ酸アミド混合物を製造することが可 能である。 [0008] When ACL racemase is allowed to act on at least one kind of amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide, the optics of the amino acid amide present in the reaction system with the passage of time The activity decreases, and finally, a D, L-amino acid amide racemate (a mixture of D-form and L-form at a ratio of 1: 1) is formed. By appropriately setting conditions such as the reaction time, it is possible to produce a D, L-amino acid amide mixture having an arbitrary ratio between the D-form and the L-form.
[0009] 従って、「原料より光学活性の低下した D-アミノ酸アミド及び L-アミノ酸アミドの混合 物」、とは、 D—アミノ酸アミド及び L_アミノ酸アミドの等量昆合物(アミノ酸アミドラセミ体 )或レヽ ίま原料である D—アミノ酸アミド、 L_アミノ酸アミド又 ίま D,L_アミノ酸アミド混合物 より光学活性が該等量混合物に近い D,L-アミノ酸アミド混合物を包含する。  [0009] Therefore, "a mixture of D-amino acid amide and L-amino acid amide having a lower optical activity than the raw material" refers to an equivalent compound of D-amino acid amide and L_amino acid amide (racemic amino acid amide) A D-amino acid amide, an L-amino acid amide, or a D, L-amino acid amide mixture whose optical activity is closer to the equivalent mixture than the D, L-amino acid amide mixture, which is a raw material, is also included.
[0010] 例えば、 D -アミノ酸アミド: L-アミノ酸アミドが 90 : 10の混合物に ACLラセマーゼを作 用させると、その比が 90 : 10から反応時間の経過に伴って 50 : 50にまで変化するが、 途中で反応を止めてその比が 90: 10から 50: 50までの間の任意の比(例えば 80: 20、 70 : 30、 60 : 40など。)の D,L-アミノ酸アミド混合物を得ることも本発明の製造方法に包 含される。  [0010] For example, when ACL racemase is acted on a mixture of D-amino acid amide: L-amino acid amide of 90:10, the ratio changes from 90:10 to 50:50 over the reaction time. However, the reaction is stopped halfway, and the D, L-amino acid amide mixture in any ratio between 90:10 and 50:50 (for example, 80:20, 70:30, 60:40, etc.) is used. Obtaining is also included in the production method of the present invention.
[0011] 本発明において使用される ACLラセマーゼとしては、例えば、酵素分類において EC 5.1.1.15が付与されている酵素を使用することができる。 ACLラセマーゼは、 Achromobacter obae、 Pseudomonas sp. (CCM 3443)等を培養することにより単離され ており、いずれの菌由来の ACLラセマーゼも本発明において使用できる。なお、 Achromobacter obae (FERM_P776)力 ACLラセマーゼを得る方法は、「S. A. As the ACL racemase used in the present invention, for example, an enzyme to which EC 5.1.1.15 is assigned in the enzyme classification can be used. ACL racemase is isolated by culturing Achromobacter obae, Pseudomonas sp. (CCM 3443), etc. Thus, ACL racemase from any of the bacteria can be used in the present invention. The method for obtaining Achromobacter obae (FERM_P776) ACL racemase is described in “SA
Ahmed, et al., Agric. Biol. Chem. , 47 (8), 1887-1893 (1983)」に示されている。  Ahmed, et al., Agric. Biol. Chem., 47 (8), 1887-1893 (1983) ".
[0012] また、 Achromobacter obae由来 ACLラセマーゼの全遺伝子配列が報告されており 、例えば、特開昭 63-129984の第 2図において、全 DNA配列(配列番号 1)及び全ァ ミノ酸配列(配列番号 2)が記載されてレ、る。  [0012] Further, the entire gene sequence of Achromobacter obae-derived ACL racemase has been reported. For example, in FIG. 2 of JP-A-63-129984, the entire DNA sequence (SEQ ID NO: 1) and the entire amino acid sequence (sequence) were reported. Number 2) is written.
[0013] さらに、 Achromobacter obae由来 ACLラセマーゼとアミノ酸配列の一次構造が類似 である、 Sinorhizobium meliloti (Rhizobium meliloti) 1021由来の遺伝子(配列番号 49 )を発現させたタンパク質(配列番号 50)、 Pyrococcus iuriosus DSM 3638由来の遺 伝子(配列番号 51)を発現させたタンパク質(配列番号 52)、 Pyrococcus horikoshii 〇T3由来の遺伝子(配列番号 53)を発現させたタンパク質 (配列番号 54)、  [0013] Furthermore, a protein (SEQ ID NO: 50) expressing a gene (SEQ ID NO: 49) derived from Sinorhizobium meliloti (Rhizobium meliloti) 1021 having a similar primary amino acid sequence to ACL racemase derived from Achromobacter obae, Pyrococcus iuriosus DSM A protein (SEQ ID NO: 52) expressing a 3638-derived gene (SEQ ID NO: 51), a protein (SEQ ID NO: 54) expressing a Pyrococcus horikoshii 〇T3-derived gene (SEQ ID NO: 53),
Pyrococcus abyssi由来の遺伝子(配列番号 55)を発現させたタンパク質(配列番号 5 6; Pyndoxal phosphate-dependent aminotransferase)及び Thermococcus kodakaraensis由来の遺伝子(配列番号 57)を発現させたタンパク質(配列番号 58 ; aminotransferase, class III)も、本発明の製造方法において ACLラセマーゼとして使 用しうる。  Pyrococcus abyssi-derived gene (SEQ ID NO: 55) -expressed protein (SEQ ID NO: 56; Pyndoxal phosphate-dependent aminotransferase) and Thermococcus kodakaraensis-derived gene (SEQ ID NO: 57) expressed protein (SEQ ID NO: 58; aminotransferase, class III) can also be used as an ACL racemase in the production method of the present invention.
[0014] 一般に、天然に存在するタンパク質の中には、それをコードする遺伝子の多形性や 変異のために、あるいはタンパク質生成後の修飾反応などによって、アミノ酸配列中 でアミノ酸残基の欠失、付加、置換などの変異が生じる場合があるが、それにも関わ らずそのような変異が生じないタンパク質と同じ生理学的活性を有するものがある。あ るいはまた、遺伝子組み換え工学の技術を使用して人工的に遺伝子に変異を施す ことも可能であり、この場合にも該タンパク質の生理学的活性に実質的に変化を生じ させることなく変異させることが可能である。  [0014] Generally, some naturally occurring proteins have deletions of amino acid residues in the amino acid sequence due to polymorphism or mutation of the gene encoding the protein, or due to a modification reaction after protein production. In some cases, mutations such as addition, substitution, and the like may occur, but nonetheless, there are proteins having the same physiological activity as proteins in which such mutations do not occur. Alternatively, it is also possible to mutate the gene artificially using genetic engineering techniques, in which case the mutated mutation does not substantially change the physiological activity of the protein. It is possible.
[0015] また、本発明において ACLラセマーゼとして使用されるタンパク質は、天然のタンパ ク質でも組み換えタンパク質でも、あるいは化学合成タンパク質でもよぐその起源は 特に限定されない。天然のタンパク質を得たい場合には、 目的タンパク質を発現して レ、る組織または培養細胞の培養物を出発原料として、塩析、ァフィ二ティークロマトグ ラフィー、イオン交換クロマトグラフィーまたはゲル濾過などのタンパク質の精製のた めの公知の方法を適宜組み合わせて精製することが可能である。例えば、ァフィニテ ィークロマトグラフィーを利用する場合には、本発明のタンパク質に対する抗体を結 合させた担体を用いることにより目的タンパク質を精製することができる。 [0015] The origin of the protein used as the ACL racemase in the present invention may be a natural protein, a recombinant protein, or a chemically synthesized protein. When a natural protein is desired, the target protein can be expressed using a tissue or cultured cell culture as a starting material, and then used for protein precipitation, affinity chromatography, ion-exchange chromatography, or gel filtration. Of purification It is possible to purify by appropriately combining known methods. For example, when affinity chromatography is used, the target protein can be purified by using a carrier to which an antibody against the protein of the present invention is bound.
[0016] また、組換えタンパク質を得たい場合には、上記のように目的タンパク質をコードす る本発明の遺伝子を好適な発現ベクター中にクローニングして得られた組換え発現 ベクターを宿主 (大腸菌、酵母など)に形質転換し、形質転換体を好適な条件下で培 養することにより目的とするタンパク質を産生させることができる。 目的タンパク質の単 離のためには、 目的タンパク質を培養上清中に分泌させることが一般には好ましぐ これは、組換えベクター/宿主の組み合わせや培養条件などを適宜選択することに よって行うことができる。また、所望のアミノ酸配列を有するタンパク質を化学合成的 に製造することも当業者ならば適宜行うことができる。  When a recombinant protein is desired to be obtained, a recombinant expression vector obtained by cloning the gene of the present invention encoding the target protein into a suitable expression vector as described above is used as a host (E. coli). , Yeast, etc.) and culturing the transformant under suitable conditions to produce the desired protein. In order to isolate the target protein, it is generally preferable to secrete the target protein into the culture supernatant.This can be done by appropriately selecting the combination of the recombinant vector / host and the culture conditions. Can be. Furthermore, those skilled in the art can also appropriately produce a protein having a desired amino acid sequence by chemical synthesis.
[0017] さらに、アミノ酸アミドラセマーゼ活性を保持する限り、上記のタンパク質に薬学的に 許容しうる適当な修飾をすることが可能である。すなわち、配列番号 2、 50, 52又は 5 4で表されるアミノ酸配列のタンパク質および部分配列などを含有するタンパク質は C 末端が通常カルボキシル基(-COOH)またはカルボキシレート (-COO-)である力 C 末端がアミド(-CONH )またはエステル (-COOR)であってもよレ、。エステルの Rとして  [0017] Furthermore, as long as the amino acid amido racemase activity is retained, the above-mentioned protein can be appropriately modified pharmaceutically acceptable. That is, the protein having the amino acid sequence represented by SEQ ID NO: 2, 50, 52 or 54 and the protein containing the partial sequence have the ability to have a carboxyl group (-COOH) or a carboxylate (-COO-) at the C-terminal. The C-terminus may be amide (-CONH) or ester (-COOR). As R of the ester
2  2
は、例えばメチル、ェチル、 n プロピル、イソプロピルもしくは n ブチルなどの C ァ  Is a C-alkyl such as methyl, ethyl, n-propyl, isopropyl or n-butyl.
1-6 ノレキノレ基、シクロペンチル、シクロへキシルなどの C シクロアルキル基、フエニル、  1-6 C cycloalkyl groups such as olequinole group, cyclopentyl, cyclohexyl, phenyl,
3-8  3-8
ひ ナフチルなどの C ァリール基、ベンジル、フエネチル、ベンズヒドリルなどのフ  C-aryl groups such as naphthyl, and benzyl, phenethyl, and benzhydryl
6-12  6-12
工ニルー C アルキル、もしくは α ナフチルメチルなどの α ナフチルー C アルキ  C-alkyl or α-naphthyl-C alkyl such as α-naphthylmethyl
1-2 1-2 ノレなどの C ァラルキル基のほ力、経口用エステルとして汎用されるビバロイルォキ  1-2 1-2 The strength of C aralkyl groups such as glue,
7-14  7-14
シメチルエステルなどが挙げられる。本発明のタンパク質の塩としては、薬学的に許 容される塩基 (例えばアルカリ金属など)や酸 (有機酸、無機酸)との塩が用いられる が、とりわけ薬学的に許容される酸付加塩が好ましい。このような塩としては例えば無 機酸 (例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸 (例えば、 酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クェン酸、リン ゴ酸、シユウ酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用い られる。 したがって、配列番号 2、 50, 52又は 54のアミノ酸配列をこれらの天然又は人工的 な変異で変異させたアミノ酸配列を有するタンパク質もアミノ酸アミドラセマーゼ活性 を有する限り、本発明の製造法において使用できる。 Cimethyl ester and the like. As the salt of the protein of the present invention, a salt with a pharmaceutically acceptable base (eg, an alkali metal or the like) or an acid (organic acid, inorganic acid) is used, and particularly, a pharmaceutically acceptable acid addition salt. Is preferred. Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid) And tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid). Therefore, a protein having an amino acid sequence obtained by mutating the amino acid sequence of SEQ ID NO: 2, 50, 52 or 54 by these natural or artificial mutations can also be used in the production method of the present invention as long as it has amino acid amido racemase activity.
[0018] したがって、本発明において使用される ACLラセマーゼとしては、(1)上記の配列番 号 2, 50, 52, 54, 56又は 58で示されたアミノ酸配列からなるタンパク質、(2)該アミ ノ酸配列において、 1若しくは複数個のアミノ酸が欠失、置換又は付加されたアミノ酸 配列からなり、かつアミノ酸アミドラセマーゼ活性を有するタンパク質、又は (3)該ァミノ 酸配列と 70%以上、好ましくは 85%以上、より好ましくは 90%以上の相同性を有す るアミノ酸配列からなり、かつアミノ酸アミドラセマーゼ活性を有するタンパク質も包含 される。 Accordingly, the ACL racemase used in the present invention includes (1) a protein consisting of the amino acid sequence represented by the above SEQ ID NO: 2, 50, 52, 54, 56 or 58; A protein comprising an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence and having an amino acid amido racemase activity, or (3) 70% or more, preferably 85%, of the amino acid sequence. A protein consisting of an amino acid sequence having a homology of at least 90%, more preferably at least 90%, and having an amino acid amidoracemase activity is also included.
[0019] 従って、本発明において使用される ACLラセマーゼとしては、要求される酵素活性 を有するものであれば特に制限なく使用でき、例えば、微生物培養物から精製して 得られた酵素、微生物培養物の酵素活性を有する粗精製物、遺伝子工学的に製造 された酵素などが使用できる。微生物培養物としては、培養液、培養菌体などが挙げ られ、培養菌体が好ましい。遺伝子工学的な製造では、上記のアミノ酸配列に基づき 化学合成によってペプチドを調製する方法、あるいは上記の DNA配列を用いて組 換え DNA技術で生産する方法などにより ACLラセマーゼを取得することもできる。例 えば、組換え DNA技術によって ACLラセマーゼを取得する場合には、この配列又は その断片を有するベクターからインビトロ転写によって RNAを調製し、これを铸型とし てインビトロ翻訳を行なうことによりインビトロで発現できる。また翻訳領域を公知の方 法により適当な発現ベクターに組換えてやれば、大腸菌、枯草菌、酵母、動物細胞 等で、 cDNAがコードする ACLラセマーゼを大量に発現させることができる。  [0019] Accordingly, the ACL racemase used in the present invention can be used without any particular limitation as long as it has the required enzymatic activity. For example, enzymes and microorganism cultures obtained by purifying from microorganism cultures A crude product having the above enzyme activity, an enzyme produced by genetic engineering, and the like can be used. Examples of the microorganism culture include a culture solution and cultured cells, with the cultured cells being preferred. In the case of genetic engineering production, ACL racemase can also be obtained by a method of preparing a peptide by chemical synthesis based on the above amino acid sequence, or a method of producing the above DNA sequence by recombinant DNA technology. For example, when ACL racemase is obtained by recombinant DNA technology, RNA can be expressed in vitro by preparing RNA by in vitro transcription from a vector having this sequence or a fragment thereof and performing in vitro translation using this as a type III. . If the translation region is recombined into an appropriate expression vector by a known method, a large amount of ACL racemase encoded by cDNA can be expressed in Escherichia coli, Bacillus subtilis, yeast, animal cells and the like.
[0020] ACLラセマーゼを大腸菌などの微生物で発現させる場合には、微生物中で複製可 能なオリジン、プロモーター、リボソーム結合部位、 cDNAクローニング部位、ターミネ 一ター等を有する発現ベクターに、この発明の cDNAの翻訳領域を揷入結合して組 換えた発現ベクターを作成し、この発現ベクターで宿主細胞を形質転換したのち、得 られた形質転換体を培養してやれば、 cDNAがコードしている ACLラセマーゼを微 生物内で大量生産することができる。あるいは、他の蛋白質との融合蛋白質として発 現させることもできる。得られた融合蛋白質を適当なプロテアーゼで切断することによ つて、 cDNAがコードするタンパク質部分のみを取得することもできる。 When ACL racemase is expressed in a microorganism such as Escherichia coli, the cDNA of the present invention is added to an expression vector having an origin, a promoter, a ribosome binding site, a cDNA cloning site, a terminator, and the like, which are replicable in the microorganism. A translation expression region is inserted and ligated to create a recombinant expression vector, host cells are transformed with the expression vector, and the resulting transformant is cultured to obtain the ACL racemase encoded by the cDNA. It can be mass-produced in microorganisms. Alternatively, it is developed as a fusion protein with other proteins. It can also be manifested. By cleaving the obtained fusion protein with an appropriate protease, only the protein portion encoded by the cDNA can be obtained.
[0021] 本発明の D,L-アミノ酸アミド混合物の製造方法において、原料は、 D-アミノ酸アミド 、 L-アミノ酸アミドのいずれ力、を含み、 D-アミノ酸アミドと L-アミノ酸アミドの混合物で あっても良い。しかし、原料が D -アミノ酸アミドと L-アミノ酸アミドの等量混合物(ラセミ 体)である場合には、 ACLラセマーゼを作用させても D -アミノ酸アミドと L-アミノ酸アミ ドの含有割合が変化することはないため、原料からのぞかれる。好ましい D,L -ァミノ 酸アミド混合物は、 D-アミノ酸アミドのモル数/ (D -アミノ酸アミドのモル数 + L-ァミノ 酸アミドのモル数)が 0.001 0.499及び 0.501 0.999であり、より好ましいのは、 0.001 一 0.49及び 0.51 0.999であり、よりいつそう好ましいのは 0.001— 0.48及び 0.52 0.999である。アミノ酸アミドとしては、光学活性体の存在する公知のアミノ酸のアミド が包含され、例えば、ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フ ェニルァラニンアミド、ノくリンアミド、プロリンアミド、ァスパラギンアミド、システィンアミド 、シスチンアミド、トレオニンアミド、イソロイシンアミド、トリプトファンアミド、グルタミンァ ミド、チロシンアミド、リシンアミド、アルギニンアミド、ヒスチジンアミド、ァスパラギン酸 アミド、ク、'ノレタミン酸アミド、、 2_了ミノ酷酸アミド、、ノノレ/ リンアミド、、ノノレロイシン了ミド、ぺ ニシラミンアミドなどであり、 D体、 L体を問わず、また 1種単独でも 2種以上を組み合 わせても使用できる。好ましくは、ァラニンアミド、メチォニンアミド、ロイシンアミド、セリ ンアミド、フエニノレアラニンアミド、 ノくリンアミド、プロリンアミド、ァスハ。ラギンアミド、シス ティンアミド、シスチンアミド、トレ才ニンアミド、 2_アミノ酷酸アミド、ノノレ/ リンアミド、ノ ノレロイシンアミド、ぺニシラミンアミドであり、より好ましくは、ァラニンアミド、メチォニン アミド、ロイシンアミド、セリンアミド、フエ二ルァラニンアミド、ノ リンアミド、 2-ァミノ酪酸 アミド、ノノレバリンアミド、ノノレロイシンアミド、トレオニンアミド、ぺニシラミンアミドであり 、よりいつそう好ましくは、ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド 、フエ二ルァラニンアミド、バリンアミド、 2—ァミノ酪酸アミド、トレオニンアミド、ぺニシラ ミンアミドである。 [0021] In the method for producing a D, L-amino acid amide mixture of the present invention, the raw material includes any one of D-amino acid amide and L-amino acid amide, and is a mixture of D-amino acid amide and L-amino acid amide. May be. However, when the raw material is an equal mixture (racemate) of D-amino acid amide and L-amino acid amide, the content of D-amino acid amide and L-amino acid amide changes even when ACL racemase is applied. Since it is not, it is prayed from raw materials. A preferred D, L-amino acid amide mixture has a molar ratio of D-amino acid amide / (moles of D-amino acid amide + moles of L-amino amide) of 0.001 0.499 and 0.501 0.999, and more preferably , 0.001-0.49 and 0.51 0.999, more preferably 0.001-0.48 and 0.52 0.999. Amino acid amides include amides of known amino acids in which an optically active form exists, such as alaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, quinamide, prolinamide, asparaginamide, and cysteine. Amide, cystinamide, threonamide, isoleucinamide, tryptophanamide, glutamine amide, tyrosine amide, lysinamide, argininamide, histidine amide, aspartic amide, ku, 'noletamic amide, Norele / phosphoramide, noreleucine amide, penicillamineamide, etc., which can be used singly or in combination of two or more, regardless of D-form or L-form. Preferably, alaninamide, methionamide, leucinamide, serinamide, pheninolealanineamide, phosphorus amide, prolinamide, Asha. Laginamide, cystinamide, cystinamide, treninninamide, 2_ amino acid amide, nonole / linamide, noroleucinamide, penicillamineamide, more preferably alaninamide, methionamide, leucinamide, serinamide, Phenylalaninamide, norinamide, 2-aminobutyric acid amide, nonolevulinamide, nonorleucinamide, threonamide, and penicillamineamide, and more preferably, alaninamide, methioninamide, leucinamide, serinamide, and phenyamide. Luraninamide, valinamide, 2-aminobutyric acid amide, threonamide, and penicillamine amide.
[0022] 原料が D,L -アミノ酸アミド混合物の場合、原料中の D体の含有割合及び L体の含有 割合は特に制限されなレ、。原料のアミノ酸アミドは、通常 1一 500g/liter程度の濃度で 使用する。低濃度で使用する場合には遊離塩基の形で使用ことができるが、比較的 高濃度で使用する場合には例えば、塩酸塩やトシノレ酸塩等の形で使用することが、 反応系の pHを考慮すると、好ましい。 [0022] When the raw material is a D, L-amino acid amide mixture, the content ratio of D-form and L-form in the raw material is not particularly limited. The raw material amino acid amide is usually used at a concentration of about 500 g / liter. use. When used at a low concentration, it can be used in the form of a free base, but when used at a relatively high concentration, for example, it can be used in the form of hydrochloride or tosinoleate, etc. Considering the above, it is preferable.
[0023] 反応媒体としては、水、又は、アセトン、ァセトニトリル、 DMSO、 DMF等を含む水 性液、例えば、水性緩衝液を用いることができる。緩衝液としては、例えば、トリス一 H C1緩衝液、リン酸カリウム緩衝液等を使用することができる。また、ケトン、エーテル、 炭化水素、芳香族ォレフイン、ハロゲン化炭化水素、有機酸エステル、アルコール、 二トリル等の水と混合しない有機溶媒をも用いることもできる。例えば、メチルブチル ケトン、イソプロピルエーテル、石油エーテル、へキサン、ヘプタン、シクロへキサン、 四塩化炭素、クロロフオルム、二塩化メチレン、トリクロロェタン、ベンゼン、トルエン、 キシレン、酢酸ェチル、酢酸ブチル、ブタノール、へキサノール、ォクタノール等を使 用すること力 Sできる。また、それらの有機溶媒の混合物を使うこともできるし、水飽和の 有機溶媒、水性緩衝液との二層系あるいは、ェマルジヨンとして反応させることもでき る。好ましいのは、水性液であり、より好ましいのは、水性緩衝液である。  As the reaction medium, water or an aqueous liquid containing acetone, acetonitrile, DMSO, DMF, etc., for example, an aqueous buffer can be used. As the buffer, for example, Tris-HCl buffer, potassium phosphate buffer and the like can be used. In addition, organic solvents that do not mix with water, such as ketones, ethers, hydrocarbons, aromatic olefins, halogenated hydrocarbons, organic acid esters, alcohols, and nitrile, can also be used. For example, methyl butyl ketone, isopropyl ether, petroleum ether, hexane, heptane, cyclohexane, carbon tetrachloride, chloroform, methylene dichloride, trichloroethane, benzene, toluene, xylene, ethyl acetate, butyl acetate, butanol, hexanol , Or Octanol, etc. can be used. Further, a mixture of these organic solvents can be used, and the reaction can be carried out as a two-layer system with a water-saturated organic solvent or an aqueous buffer, or as an emulsion. Preferred are aqueous liquids, and more preferred are aqueous buffers.
[0024] 上記の原料に対する ACLラセマーゼの使用量は特に制限されなレ、が、 0.01— lOOOU/ml程度、好ましくは 0.05— 100U/mlである。なお、この場合の ACLラセマーゼ の 1ユニットは、 1分間に 1マイクロモルのアミノ酸アミドの生成を触媒する酵素量とする 。 ACLラセマーゼを作用させる際、反応温度は通常、 20— 70°C程度、好ましくは 25— 50°C程度であり、 pHは、通常 4一 11程度、好ましくは pH6— 10程度である。  [0024] The amount of ACL racemase to be used with respect to the above-mentioned raw materials is not particularly limited, but is about 0.01 to 100 U / ml, preferably 0.05 to 100 U / ml. In this case, one unit of ACL racemase is an amount of an enzyme that catalyzes the production of 1 micromol of amino acid amide per minute. When the ACL racemase is allowed to act, the reaction temperature is usually about 20 to 70 ° C, preferably about 25 to 50 ° C, and the pH is usually about 411, preferably about pH 6 to 10.
[0025] また、反応時間は、原料であるアミノ酸アミドの種類や量、酵素量、反応温度、生成 物における所望の D,L混合割合などに応じて適宜設定可能である。通常 0.2時間一 10日程度、好ましくは 0.5時間一 2日程度である。反応時間を長くすればアミノ酸アミド ラセミ体に近い D,L-アミノ酸混合物を得ることができる。  [0025] The reaction time can be appropriately set according to the type and amount of the amino acid amide as the raw material, the amount of the enzyme, the reaction temperature, the desired D / L mixing ratio in the product, and the like. It is usually about 0.2 hours to 10 days, preferably about 0.5 hours to 12 days. By increasing the reaction time, a D, L-amino acid mixture close to the racemic amino acid amide can be obtained.
[0026] 製造の態様は特に制限されず、例えば、原料と ACLラセマーゼを一つの容器に仕 込んでバッチ式で製造することもできるし、 ACLラセマーゼをカラムに固定し、原料を 含有する溶液をそのカラムに通液することにより製造することもできる。酵素反応後、 生成したアミノ酸は任意に常法によって精製採取することができる。例えば、反応終 了後に、菌体ゃ固定化した酵素剤を、タンパク質変性剤の添加後、遠心分離する方 法、 His-Tagなどを融合させた酵素を使用している場合であれば、 Niカラムなどを用 レ、て選択的に除去する方法により除去し、除去後の液中に含まれるアミノ酸を溶媒 抽出やイオン交換樹脂等により精製し、結晶化する。 [0026] The mode of production is not particularly limited. For example, the raw material and ACL racemase can be prepared in a batch by charging them in one container, or the ACL racemase can be immobilized on a column, and a solution containing the raw material can be prepared. It can also be produced by passing the solution through the column. After the enzymatic reaction, the produced amino acid can be optionally purified and collected by a conventional method. For example, after the reaction is completed, the cells are centrifuged after adding the protein denaturant to the immobilized enzyme. If using an enzyme fused with His-Tag, etc., use a Ni column or the like to remove it by selective removal, and remove the amino acids contained in the removed solution with a solvent. It is purified by extraction or ion exchange resin and crystallized.
[0027] 使用する酵素の態様は、細胞培養液、培養上清液、培養液から分離した菌体の処 理物、これ力 得た酵素剤、さらに、これらの酵素又は、酵素含有物を常法によって 固定化したもの等、酵素活性を有するものなどが使用できる。工業的な実施にあたつ ては、生菌体、固定化菌体等を用いるのが有利である。固定化担体は、ポリアクリノレ アミド、光架橋性樹脂、ポリウレタン樹脂、カッパカラギーナン、アルギン酸ナトリウム、 イオン交換樹脂、半透膜等を用いることができる。酵素を固定化するには、例えば担 体に酵素液を吸収させる方法、酵素液と担体とを混合し、酵素を吸着固定する方法[0027] The embodiment of the enzyme to be used includes a cell culture solution, a culture supernatant solution, a processed product of cells isolated from the culture solution, an enzymatic agent obtained therefrom, and further, these enzymes or enzyme-containing substances. Those immobilized by the method and those having enzyme activity can be used. In industrial practice, it is advantageous to use live cells, immobilized cells and the like. As the immobilization carrier, polyacrylanolamide, photocrosslinkable resin, polyurethane resin, kappa carrageenan, sodium alginate, ion exchange resin, semipermeable membrane, and the like can be used. To immobilize an enzyme, for example, a method in which a carrier absorbs an enzyme solution, a method in which an enzyme solution is mixed with a carrier, and an enzyme is absorbed and fixed
、酵素を包括固定化する方法、酵素を架橋剤で架橋する方法等を採用することがで きる。 Alternatively, a method of entrapping and immobilizing the enzyme, a method of crosslinking the enzyme with a crosslinking agent, and the like can be employed.
[0028] このようにして、所望の D山-アミノ酸アミド混合物を得ることができる。得られた D,L- アミノ酸アミド混合物は、原料であるアミノ酸アミドよりも光学活性の点で低いものとな る。製造される D,L-アミノ酸アミド混合物のアミノ酸アミドの種類については上記の原 料のアミノ酸アミドと同様である。また、製造される D,L-アミノ酸アミド混合物は D体と L 体の含有量比が 1: 1のものであってもよい。  [0028] In this manner, a desired D-mount-amino acid amide mixture can be obtained. The resulting D, L-amino acid amide mixture is lower in optical activity than the starting material amino acid amide. The type of amino acid amide of the D, L-amino acid amide mixture to be produced is the same as the amino acid amide of the above-mentioned raw material. The D, L-amino acid amide mixture to be produced may have a D-form / L-form content ratio of 1: 1.
[0029] 得られた D,L-アミノ酸アミド混合物は、 D又は L-アミノ酸の製造原料としても利用で きる。例えば、 D山-アミノ酸アミド混合物に、 D又は L-アミノ酸アミドに立体特異的に作 用して D又は L-アミノ酸に変換する酵素を作用させる方法等によって D又は L-ァミノ 酸を製造することができる。  [0029] The obtained D, L-amino acid amide mixture can also be used as a raw material for producing D or L-amino acids. For example, the production of D or L-amino acid by a method in which an enzyme that converts D or L-amino acid amide to a D or L-amino acid by acting stereospecifically on the D-amino acid amide mixture is allowed to act. Can be.
[0030] (2) D又は L -アミノ酸の製造方法  (2) Method for producing D or L-amino acid
本発明の D又は L -アミノ酸の製造方法は、 D-アミノ酸アミド及び L -アミノ酸アミドカ、ら なる群から選択される少なくとも 1種のアミノ酸アミドに、 ひ-アミノ- ε -カプロラクタムラ セマーゼ及び D又は L -アミノ酸アミドに選択的に作用して D又は L -アミノ酸に変換す る酵素(以下、アミノ酸に変換する酵素と称することがある)を作用させる、ことを特徴 とする。  The method for producing a D- or L-amino acid of the present invention comprises the steps of: adding at least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amidoca; An enzyme that selectively acts on L-amino acid amide and converts it into D or L-amino acid (hereinafter sometimes referred to as an enzyme that converts into amino acid).
[0031] この製造方法により D -アミノ酸を得る場合、 D-アミノ酸アミド、 L-アミノ酸アミド又は D—アミノ酸アミド及び L-アミノ酸アミドの昆合物に、 α—ァミノ— ε—力プロラタタムラセマ ーゼ及び D-アミノ酸アミドに選択的に作用して D-アミノ酸に変換する酵素を作用させ る。反応系中の D-アミノ酸アミドは D-アミノ酸に変換する酵素によって D-アミノ酸に変 換され、反応系中の L -アミノ酸アミドは ACLラセマーゼによって D -アミノ酸アミドに変 換された後、該 D-アミノ酸アミドが、 D-アミノ酸に変換する酵素によって、 D -アミノ酸 に変換されて D-アミノ酸が製造される。 When a D-amino acid is obtained by this production method, D-amino acid amide, L-amino acid amide or An enzyme that selectively acts on α-amino-ε-force prolatatum racemase and D-amino acid amide to convert the D-amino acid amide and L-amino acid amide compound into D-amino acid . The D-amino acid amide in the reaction system is converted to D-amino acid by an enzyme that converts to D-amino acid, and the L-amino acid amide in the reaction system is converted to D-amino acid amide by ACL racemase. -Amino acid amide is converted to D-amino acid by an enzyme that converts to D-amino acid to produce D-amino acid.
[0032] また、この製造方法により L-アミノ酸を得る場合、 D-アミノ酸アミド、 L -アミノ酸アミド 、又は D-アミノ酸アミド及び L -アミノ酸アミドの混合物に、 ACLラセマーゼ及び L-アミ ノ酸アミドに選択的に作用して L-アミノ酸に変換する酵素を作用させる。反応系中の L-アミノ酸アミドは L-アミノ酸に変換する酵素によって L -アミノ酸に変換され、反応系 中の D-アミノ酸アミドは ACLラセマーゼによって L-アミノ酸アミドに変換された後、該 L-アミノ酸アミドが、 L-アミノ酸に変換する酵素によって、 L-アミノ酸に変換されて L- アミノ酸が製造される。 When an L-amino acid is obtained by this production method, D-amino acid amide, L-amino acid amide, or a mixture of D-amino acid amide and L-amino acid amide, ACL racemase and L-amino acid amide are used. Enzymes that selectively act to convert to L-amino acids. The L-amino acid amide in the reaction system is converted to an L-amino acid by an enzyme that converts to an L-amino acid, and the D-amino acid amide in the reaction system is converted to an L-amino acid amide by an ACL racemase. Amides are converted to L-amino acids by enzymes that convert L-amino acids to produce L-amino acids.
[0033] この製造方法においては、 D又は L-アミノ酸に変換する酵素の基質となるアミノ酸ァ ミドは減少するが、 D又は L-アミノ酸に変換する酵素の基質とならなレ、アミノ酸アミドが ACLラセマーゼの作用によって変換されて、 D又は L-アミノ酸に変換する酵素の基質 となるアミノ酸アミドが生成する。このアミノ酸アミドを D又は L-アミノ酸に変換する酵素 力 ¾又は L-アミノ酸に変換するため、 D又は L-アミノ酸に変換する酵素の基質となる アミノ酸アミドだけでなく、 D又は L-アミノ酸に変換する酵素の基質とならないアミノ酸 アミドも原料として有効に利用できる。  [0033] In this production method, the amount of amino acid amide that serves as a substrate for an enzyme that converts to D or L-amino acid is reduced, but the amino acid amide that is not a substrate for an enzyme that converts to D or L-amino acid is an ACL. It is converted by the action of racemase to produce an amino acid amide that serves as a substrate for the enzyme that converts to D or L-amino acids. Enzyme that converts this amino acid amide into D- or L-amino acid.To convert it into D- or L-amino acid, it converts not only amino acid amide that is a substrate of enzyme that converts into D or L-amino acid, but also D or L-amino acid. Amino acid amides, which do not serve as substrates for the enzyme, can also be effectively used as raw materials.
[0034] 本製造方法にぉレ、ては、 D—アミノ酸アミド、 L—アミノ酸アミド、 D—アミノ酸アミドとし—ァ ミノ酸アミドの混合物(D,L-アミノ酸アミド)が原料として使用され、その態様は次に記 載の点を除き、上記(1)の場合と同様である。なお、 D -アミノ酸アミドと L-アミノ酸アミ ドの混合物(D,L -アミノ酸アミド)については、上記(1)の場合と異なり、 D-アミノ酸アミ ドと L -アミノ酸アミドの等量混合物(ラセミ体)も使用できるため、本製造方法において D,L-アミノ酸アミド混合物は D-アミノ酸アミドと L -アミノ酸アミドの等量混合物(ラセミ 体)も包含する。また、本製造方法において使用される ACLラセマーゼの態様につい ても上記(1)の場合と同様である。 [0035] D又は L-アミノ酸アミドに選択的に作用して D又は L-アミノ酸に変換する酵素は、 D_ アミノ酸アミドに選択的に作用して D-アミノ酸を生成する酵素、 L-アミノ酸アミドに選 択的に作用して L-アミノ酸を生成する酵素、であれば特に制限なく使用されうる。 [0034] In the present production method, a mixture of D-amino acid amide, L-amino acid amide, D-amino acid amide and amino acid amide (D, L-amino acid amide) is used as a raw material. The embodiment is the same as the above (1) except for the following points. The mixture of D-amino acid amide and L-amino acid amide (D, L-amino acid amide) differs from the case of (1) above in that an equal mixture of D-amino acid amide and L-amino acid amide (racemic) In this production method, the D, L-amino acid amide mixture also includes an equal mixture (racemic) of D-amino acid amide and L-amino acid amide. Further, the embodiment of the ACL racemase used in the present production method is the same as in the case of the above (1). [0035] Enzymes that selectively act on D or L-amino acid amides to convert to D or L-amino acids include enzymes that selectively act on D_ amino acid amides to generate D-amino acids, and L-amino acid amides. Any enzyme capable of selectively acting to produce an L-amino acid can be used without particular limitation.
[0036] D又は L -アミノ酸アミドに選択的に作用して D又は L -アミノ酸に変換する酵素は、通 常、アミノ酸アミダーゼ、アミノぺプチダーゼ、プロテアーゼ等の名称が付けられてい る。例えば、 D -アミノぺプチダーゼ、アルカリ D-ぺプチダーゼ、 D -ァラニンアミダーゼ 、 L -アミノぺプチダーゼと呼ばれる酵素などが挙げられる。また、一般的にアミダーゼ 、ぺプチダーゼ、プロテアーゼ、プロティナーゼ、立体特異的アミダーゼ、ェナンチォ マー特異的アミダーゼと呼ばれるものでもよい。これらの酵素は、要求される酵素活 性を有するものであれば特に制限なく使用でき、例えば、微生物培養物から精製し て得られた酵素、微生物培養物の酵素活性を有する粗精製物、遺伝子工学的に製 造された酵素などが使用できる。ここで、遺伝子工学的な製造法は、上記の ACLラセ マーゼの遺伝子工学的製造法と同様である。  [0036] Enzymes that selectively act on D or L-amino acid amides to convert them into D or L-amino acids are usually given names such as amino acid amidase, aminopeptidase, and protease. For example, enzymes called D-aminopeptidase, alkaline D-peptidase, D-alanine amidase, L-aminopeptidase and the like can be mentioned. Moreover, what is generally called an amidase, a peptidase, a protease, a proteinase, a stereospecific amidase, or an enantiomer-specific amidase may be used. These enzymes can be used without particular limitation as long as they have the required enzyme activity.For example, enzymes obtained by purifying from a microorganism culture, crudely purified products having the enzymatic activity of the microorganism culture, and genes can be used. Engineered enzymes can be used. Here, the genetic engineering production method is the same as the above-described ACL racemase genetic engineering production method.
[0037] より具体的には、 L-アミノ酸アミダーゼ、 D-アミノぺプチダーゼ、 L-アミノぺプチダー ゼ、 Comamonas acidovorans KPO_2771_4由来の(S)_及び (R)_ェナンチォマー特 異的アミダーゼ(Hayashi, Τ·ら, J. Ferment. Bioeng., 83(1997), 139-145)、  [0037] More specifically, L-amino acid amidase, D-aminopeptidase, L-aminopeptidase, (S) _ and (R) _enantiomer-specific amidases derived from Comamonas acidovorans KPO_2771_4 (Hayashi, Τ · Et al., J. Ferment. Bioeng., 83 (1997), 139-145),
Pseudomonas putida ATCC 12633由来の(S)_立体特異的アミダーゼ(Hermes, H.F.M.ら, Appl. Environ. Microbiol. , 59(1993), 4330—4334)、 Ochrobactrum anthropi NCIMB 40321由来の(S)_立体特異的アミダーゼ(van den Tweelら, Appl. Microbiol. Biotechnol., 39(1993), 296-300)、 Mycobacterium neoaurum ATCC 25795由来の(S)_立体特異的アミノ酸アミダーゼ(Hermesら, Appl. Environ.  (S) _stereospecific amidase from Pseudomonas putida ATCC 12633 (Hermes, HFM et al., Appl. Environ. Microbiol., 59 (1993), 4330-4334), (S) _stereospecific from Ochrobactrum anthropi NCIMB 40321 Amidase (van den Tweel et al., Appl. Microbiol. Biotechnol., 39 (1993), 296-300), (S) _stereospecific amino acid amidase from Mycobacterium neoaurum ATCC 25795 (Hermes et al., Appl. Environ.
Microbiol., 60(1994), 153-159)、 Pseudomonas azotoformans IAM 1603由来の (S)-立 体特異的アミノ酸アミダーゼ(米田英伸ら、 Pseudomonas azotoformans由来の (S)体 特異的 N-tert-プチルビペラジンカルボキサミド加水分解酵素、 日本農芸化学会 2002年度大会、 2002.3.26 (仙台市))、 Ochrobactrum anthropi C1-38由来の (R) -立 体特異的アミノ酸アミダーゼ(Asanoら, J. Biol. Chem., 264(1989), 14233-14239及び Asanoら, Biochemistry, 31(1992), 2316—2328)、 Ochrobactrum anthropi SV3 ( Komedaら, Eur. J. Biochem., 267 (2000), 2028-2035)由来の (R)_立体特異的ァミノ 酸アミダーゼ、 Arthrobacter sp. NJ-26由来の (R)_立体特異的アミノ酸アミダーゼ( Ozakiら, Biosci. Biotech. Biochem" 56(1992), 1980—1984)、 Brevibacillus borstelensis BCS-1由来の (R)_立体特異的アミノ酸アミダーゼ(Baekら, Appl. Microbiol., 60 (1994), 153-159), (S) -constituent specific amino acid amidase from Pseudomonas azotoformans IAM 1603 (Hidenobu Yoneda et al. Perazinecarboxamide hydrolase, Japanese Society for Agricultural Chemistry 2002 Annual Meeting, March 26, 2002 (Sendai City)), (R) -Conformational amino acid amidase from Ochrobactrum anthropi C1-38 (Asano et al., J. Biol. Chem.) ., 264 (1989), 14233-14239 and Asano et al., Biochemistry, 31 (1992), 2316-2328), Ochrobactrum anthropi SV3 (Komeda et al., Eur. J. Biochem., 267 (2000), 2028-2035) (R) _Stereospecific amino Acid amidase, (R) _stereospecific amino acid amidase from Arthrobacter sp. NJ-26 (Ozaki et al., Biosci. Biotech. Biochem "56 (1992), 1980-1984), (R) from Brevibacillus borstelensis BCS-1 _Stereospecific amino acid amidase (Baek et al., Appl.
Environ. Microbiol , 69(2003), 980-986)、 Pseudomonas sp.由来の (R)_立体特異的 アミノ酸アミダーゼ(米田英伸ら、 Pseudomonas sp.由来の (R)_体特異的ピペラジン -2-tert-ブチルカルボキサミド加水分解酵素、 日本生物工学会平成 14年度大会、 2002.10.29 (大阪市))、 Pseudomonas aeruginosa PAOl由来の (R)_立体特異的ァミノ 酸アミダーゼ(米田英伸ら、 Pseudomonas aeruginosa PAOl由来のアミダーゼ相同タ ンパク質 PA3598の諸性質、 日本農芸化学会 2003年度大会、 2003.4.1 (藤沢巿))な どを挙げること力 Sできる。  Environ. Microbiol, 69 (2003), 980-986), (R) _stereospecific amino acid amidase from Pseudomonas sp. (Hidenobu Yoneda et al., (R) _body specific piperazine from Pseudomonas sp. -Butylcarboxamide hydrolase, Japanese Society for Biotechnology, 2002 Annual Meeting, October 29, 2002 (Osaka City), (R) _stereospecific amino acid amidase from Pseudomonas aeruginosa PAOl (Hidenobu Yoneda et al., From Pseudomonas aeruginosa PAOl) The properties of the amidase homologous protein PA3598, the Japanese Society of Agricultural Chemistry 2003 Annual Meeting, 2003.4.1 (Fujisawa II)) can be mentioned.
[0038] 原料が D,L -アミノ酸アミド混合物の場合、原料中の D体の含有割合及び L体の含有 割合は特に制限されない。上記の原料に対する ACLラセマーゼの使用量は、 0.01— lOOOU/ml程度、好ましくは 0.5— lOOU/mlであり、アミノ酸に変換する酵素の使用量は 0.01— 1000U/ml、好ましくは 0.5— 100U/mlである。なおアミノ酸に変換する酵素の 1 ユニットは、 1分間に 1マイクロモルのアミノ酸アミドの加水分解を触媒する酵素量とす る。上記の ACLラセマーゼ及びアミノ酸アミダーゼを作用させる際、反応温度は通常 、 20— 70°C程度、好ましくは 25— 50°C程度であり、 pHは通常 4一 11程度、好ましくは 6 一 10程度である。 [0038] When the raw material is a D, L-amino acid amide mixture, the content ratio of D-form and L-form in the raw material is not particularly limited. The amount of ACL racemase used for the above raw materials is about 0.01-lOOOU / ml, preferably 0.5-lOOU / ml, and the amount of enzyme used to convert amino acids is 0.01-1000U / ml, preferably 0.5-100U / ml. It is. One unit of the enzyme to be converted into an amino acid is the amount of the enzyme that catalyzes the hydrolysis of 1 micromol of the amino acid amide per minute. When the above-mentioned ACL racemase and amino acid amidase are allowed to act, the reaction temperature is usually about 20-70 ° C, preferably about 25-50 ° C, and the pH is usually about 411, preferably about 610. is there.
また、反応時間は、原料であるアミノ酸アミドの種類や量、酵素量、反応温度、生成 物における所望の D,L混合割合などに応じて適宜設定可能である。通常 0.2時間一 10日程度、好ましくは 0.5時間一 2日程度である。  The reaction time can be appropriately set according to the kind and amount of the amino acid amide as the raw material, the amount of the enzyme, the reaction temperature, the desired D and L mixing ratio in the product, and the like. It is usually about 0.2 hours to 10 days, preferably about 0.5 hours to 12 days.
[0039] 製造の態様は特に制限されず、例えば、原料と ACLラセマーゼ及びアミノ酸に変換 する酵素を一つの容器に仕込んでバッチ式で製造することもできるし、 ACLラセマー ゼをカラムに固定し、原料を含有する溶液をそのカラムに通液し、次いでこの液をアミ ノ酸に変換する酵素と反応させることにより製造することもできる。酵素反応後、生成 したアミノ酸は (1)の場合と同様にして精製できる。また、反応に使用される酵素の態 様も (1)と同様である。 [0039] The mode of production is not particularly limited. For example, a raw material, an ACL racemase, and an enzyme to be converted into an amino acid can be prepared in a single container by charging them in a single container, or the ACL racemase can be immobilized on a column. It can also be produced by passing a solution containing the raw materials through the column, and then reacting the solution with an enzyme that converts the solution into an amino acid. After the enzymatic reaction, the generated amino acids can be purified in the same manner as in (1). The form of the enzyme used in the reaction is the same as in (1).
[0040] このようにして製造された D又は L-アミノ酸としては、光学活性体の存在する公知の アミノ酸が包含され、例えば、ァラニン、メチォニン、ロイシン、セリン、フエ二ルァラ二 ン、バリン、プロリン、ァスパラギン、システィン、シスチン、トレオニン、イソロイシン、ト リプトフアン、グルタミン、チロシン、リシン、アルギニン、ヒスチジン、ァスパラギン酸、 グノレタミン酸、 2-ァミノ酪酸、ノルパリン、ノルロイシン、ぺニシラミンなどであり、 1種単 独でも 2種以上を組み合わせても使用できる。好ましくは、ァラニン、メチォニン、ロイ シン、セリン、フエニノレアラニン、バリン、プロリン、ァスパラギン、システィン、シスチン 、トレオニン、 2-ァミノ酪酸、ノルパリン、ノルロイシン、ぺニシラミンであり、より好ましく は、ァラニン、メチォニン、ロイシン、セリン、フエ二ルァラニン、バリン、 2 -ァミノ酪酸、 ノルパリン、ノノレロイシン、トレオニン、ぺニシラミンである。よりいつそう好ましくは、ァラ ニン、メチォニン、ロイシン、セリン、フエ二ルァラニン、バリン、 2 -ァミノ酪酸、トレオニ ン、ぺニシラミンである。 [0040] The D- or L-amino acid thus produced is a known D- or L-amino acid having an optically active substance. Amino acids are included, e.g., alanine, methionine, leucine, serine, phenylalanine, valine, proline, asparagine, cystine, cystine, threonine, isoleucine, tryptophan, glutamine, tyrosine, lysine, arginine, histidine, aspartate. Gnoretamic acid, 2-aminobutyric acid, norparin, norleucine, penicillamine, etc., which can be used alone or in combination of two or more. Preferably, alanine, methionine, leucine, serine, pheninolealanine, valine, proline, asparagine, cystine, cystine, threonine, 2-aminobutyric acid, norpaline, norleucine, penicillamine, more preferably alanine, methionine, Leucine, serine, phenylalanine, valine, 2-aminobutyric acid, norparin, nonoleucine, threonine, penicillamine. More preferably, they are alanine, methionine, leucine, serine, phenylalanine, valine, 2-aminobutyric acid, threonine and penicillamine.
[0041] (3) D又は L -アミノ酸アミドの製造方法  (3) Method for producing D or L-amino acid amide
本発明の D又は L-アミノ酸アミドの製造方法は、 D-アミノ酸アミド及び L-アミノ酸アミ ドの混合物に、 α -ァミノ- ε -力プロラタタムラセマーゼ及び D又は L-アミノ酸アミドに 選択的に作用して D又は L-アミノ酸に変換する酵素を作用させて D又は L-アミノ酸を 生成させ、生成した D又は L-アミノ酸をアミド化することを特徴とする。  The method for producing D- or L-amino acid amide of the present invention selectively acts on a mixture of D-amino acid amide and L-amino acid amide, α-amino-ε-force prolatatam racemase and D or L-amino acid amide. And then reacting with an enzyme that converts to D or L-amino acid to produce D or L-amino acid, and amidating the generated D or L-amino acid.
[0042] D,L-アミノ酸アミドの混合物から D又は L-アミノ酸アミドを分離する方法としては、光 学活性な塩基を用いて、ジァステレオマーを生成し、物理化学的性質の差異により 分離する方法や、酵素を用いて立体選択的に加水分解し光学活性体を得る方法が 知られているが、前者は分離が困難であり、後者は収率が悪いため実用的ではなか つた。しかし、本製造方法では、 D,L-アミノ酸アミドの混合物に ACLラセマーゼとアミ ノ酸に変換する酵素作用させ、反応液から D又は L-アミノ酸を分離する。ここまでは (2)と同様にして行うことができる。得られた D又は L -アミノ酸に、公知のアミノ酸をアミ ド化する方法を適用することによって、 D又は L-アミノ酸アミドを分離することができる  [0042] As a method for separating D or L-amino acid amide from a mixture of D, L-amino acid amides, a method of generating a diastereomer by using an optically active base and separating it by a difference in physicochemical properties, A method of obtaining an optically active substance by stereoselective hydrolysis using an enzyme is known. However, the former method is difficult to separate, and the latter method is not practical because the yield is low. However, in this production method, a mixture of D, L-amino acid amide is made to act as an enzyme for converting ACL racemase and amino acid, and D or L-amino acid is separated from the reaction solution. Up to this point, it can be performed in the same manner as (2). The D or L-amino acid amide can be separated by applying a known amino acid amidating method to the obtained D or L-amino acid.
[0043] D又は L -アミノ酸をアミド化する方法は、従来公知の方法を広く使用できる。例えば 、アミノ酸をアミノ酸エステノレにし、アンモニアガスを吹き込む方法などである。 As a method for amidating D- or L-amino acids, conventionally known methods can be widely used. For example, there is a method in which an amino acid is converted into an amino acid ester, and ammonia gas is blown.
図面の簡単な説明 [0044] [図 1]実施例 2における、 ACLラセマーゼによる L-2-ァミノ酪酸アミドのラセミ化を示す グラフである。 Brief Description of Drawings FIG. 1 is a graph showing racemization of L-2-aminobutyric acid amide by ACL racemase in Example 2.
[図 2]実施例 2における、 ACLラセマーゼによる L-ァラニンアミドのラセミ化を示すダラ フである。  FIG. 2 is a daraf showing racemization of L-alaninamide by ACL racemase in Example 2.
[図 3]実施例 3における、 D-フエ二ルァラニンアミドのラセミィ匕を示すグラフである。  FIG. 3 is a graph showing racemization of D-phenylalaninamide in Example 3.
[図 4]実施例 3における、 L-フエ二ルァラニンアミドのラセミ化を示すグラフである。  FIG. 4 is a graph showing racemization of L-phenylalaninamide in Example 3.
[図 5]実施例 4における、 L -ァラニンアミドを原料とした D -ァラニンの合成を示すダラ フである。  FIG. 5 is a daraf showing the synthesis of D-alanine from L-alananamide in Example 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。 Hereinafter, the present invention will be described in more detail, but the present invention is not limited to these examples.
実施例  Example
[0046] 材料 [0046] Material
ここでは、以下の材料を使用した。  Here, the following materials were used.
組み換えプラスミドの宿主: E. coli JM109  Recombinant plasmid host: E. coli JM109
クローニングベクター: pUC18 (宝酒造社製)  Cloning vector: pUC18 (Takara Shuzo)
培養培地:アンピシリン添カロ LB培地(lOg/1 Bacto tryptone)、 5g/lBacto酵素エキス、 lOg/1 NaCl、 80 μ g/mlアンピシリン、 pH 7.2)  Culture medium: Calo LB medium (lOg / 1 Bacto tryptone) supplemented with ampicillin, 5 g / l Bacto enzyme extract, lOg / 1 NaCl, 80 μg / ml ampicillin, pH 7.2)
オリゴヌクレオチド:北海道システムサイエンス社製  Oligonucleotide: manufactured by Hokkaido System Science
DNAポリメラーゼ: Takara Ex Taq DNAポリメラーゼ(宝酒造社製)  DNA polymerase: Takara Ex Taq DNA polymerase (Takara Shuzo)
制限酵素: EcoRI (New England Biolabs社製)、 Sphl (東洋紡社製)  Restriction enzymes: EcoRI (New England Biolabs), Sphl (Toyobo)
ホスファターゼ:シュリンプアルカリホスファターゼ(ベーリンガーマンハイム社) リゲーシヨンキット ver. 2 (宝酒造社製)  Phosphatase: Shrimp alkaline phosphatase (Boehringer Mannheim) Religion kit ver. 2 (Takara Shuzo)
クラウンパック CR(+)カラム (ダイセル化学社製)  Crown Pack CR (+) Column (Daicel Chemical)
DEAE-Toyopearl 650M及び Butyle-Toyopearl 650M (トーソ一社製)  DEAE-Toyopearl 650M and Butyle-Toyopearl 650M (Toso One)
Superdex 200 HR 10/30及び Mono Q HR 5/5 (Pharmacia社製)  Superdex 200 HR 10/30 and Mono Q HR 5/5 (Pharmacia)
Bacto酵素エキス及び Bacto tryptone (Difco社製)  Bacto enzyme extract and Bacto tryptone (Difco)
D,L_ a -ァミノ- ε -カプロラタタムラセマーゼ (D,L_ACL) (東京化成社製)  D, L_a-Amino-ε-caprolatatam racemase (D, L_ACL) (Tokyo Kasei)
L-Aし L : Brennerりの方法 (M. Brenner, H. R. Rickenbacher, Helv. し him. Acta. 41(1958) 181-188)に従って、(S)_ (-) _L_ピロリドンカルボン酸を用いる光学分割によ り、 D,L-ACL力ら調製した。 LA then L: Brenner method (M. Brenner, HR Rickenbacher, Helv. And him. Acta. 41, (1958) 181-188), D, L-ACL was prepared by optical resolution using (S) _ (-) _ L_pyrrolidonecarboxylic acid.
[0047] 製造例 1 Production Example 1
< ひ-アミノ- ε -カプロラタタムラセマーゼの遺伝子工学的製造 >  <Genetically engineered production of hyamino-ε-caprolatatam racemase>
1.プライマー  1. Primer
配列番号 2に示した ACLラセマーゼのアミノ酸配列を含むようにプライマーを 46個 設計した。これら 46個のプライマーを A1プライマーカも Α46プライマーと称し、各々の ヌクレオチド配列を配列番号 3 48に示した。設計方法は、各々のプライマーが約 50merで、そのうち 20merずつ重なるように設計した(各々のプライマーの 5 '側は、 G,Cにした)。 A1プライマーには、開始コドン(atg)、ストップコドン (tag)、リボソーム結 合サイト(aggagg)、 EcoRI認識サイト(gaattc)を設けた。 A45プライマーにはストップコ ドン (taa)、 A46プライマーには、 Sphl認識サイト (gcatgc)を設けた。  Forty-six primers were designed to include the amino acid sequence of the ACL racemase shown in SEQ ID NO: 2. These 46 primers were also referred to as A1 primers and # 46 primers, and their nucleotide sequences are shown in SEQ ID NO: 348. The design method was designed so that each primer was about 50 mer, of which 20 mer overlapped (the 5 'side of each primer was G, C). The A1 primer was provided with a start codon (atg), a stop codon (tag), a ribosome binding site (aggagg), and an EcoRI recognition site (gaattc). The A45 primer was provided with a stop codon (taa), and the A46 primer was provided with a Sphl recognition site (gcatgc).
[0048] 2. PCR [0048] 2. PCR
これらのプライマーを用いて PCRを行った。各プライマー(46個)を 100 pmol/ /i lの 濃度に調整したプライマー液を 1 μ 1ずつ混ぜて Mixプライマーとした。 Mixプライマー 0.5 μ 1、 0.5 μ 1の Takara Ex Taqポリメラーゼ、 TAKARA Ex Taq用 Buffer,及び  PCR was performed using these primers. Each primer (46 pieces) was adjusted to a concentration of 100 pmol // l, and 1 μl of each primer solution was mixed to obtain a mix primer. Mix primer 0.5 μ1, 0.5 μ1 Takara Ex Taq polymerase, TAKARA Ex Taq Buffer, and
2.5mMの dNTPの 5 μ 1で全量を 50 μ 1とし、 PCRを行った。 PCRの条件は、 94°Cで 30s、 52°Cで 30s、 72°Cで 30sをワンセットとし、これを 55回繰り返した。  PCR was performed using 5 μl of 2.5 mM dNTP to make the total amount 50 μl. The PCR conditions were one set of 30 s at 94 ° C, 30 s at 52 ° C, and 30 s at 72 ° C, and this was repeated 55 times.
[0049] PCR反応液 1.3 μ 1、 0.5 μ 1の Ex Taqポリメラーゼ、 Ex Taq用 Buffer、 2.5mMの dNTP の 5 μ 1、 Alプライマー液 1 a 1、及び A46プライマー液 1 μ 1で全量を 50 μ 1とし、 PCRを 行った。 PCRの条件は 94°Cで 30s、 52°Cで 30s、 72°Cで 60sをワンセットとし、これを 23 回繰り返した。なお、 PCRは PTC- 200 (MJ Research社)を使用して行った。  [0049] The total volume of the PCR reaction solution was 1.3 μl, 0.5 μl of Ex Taq polymerase, Ex Taq buffer, 5 μl of 2.5 mM dNTP, 1 μl of Al primer solution, and 1 μl of A46 primer solution. μ1, and PCR was performed. The PCR conditions were one set of 30 s at 94 ° C, 30 s at 52 ° C, and 60 s at 72 ° C, and this was repeated 23 times. In addition, PCR was performed using PTC-200 (MJ Research).
[0050] 3.クローニング  [0050] 3. Cloning
PCRにより増幅された DNAの 1400bp付近をゲル抽出し、 EcoRI-Sphl処理、アルカリ 処理して得られた断片を、 pUC 18ベクター中の lacプロモーターの下流にインサートし 、これを大腸菌 JM109に揷入し、アンピシリン添加 LB培地で 37°C 12時間培養して、形 質転換した。 ACL活性を示すコロニーを選択し、 ACL活性を示す形質転換大腸菌( E. coli JM109/pACL60)を得た。 [0051] 4.形質転換大腸菌からの ACLラセマーゼの精製 The DNA amplified by PCR was gel-extracted around 1400 bp, and the fragment obtained by EcoRI-Sphl treatment and alkali treatment was inserted downstream of the lac promoter in the pUC18 vector, and this was inserted into E. coli JM109. The cells were cultured in an LB medium supplemented with ampicillin for 12 hours at 37 ° C. for transformation. A colony showing ACL activity was selected to obtain a transformed E. coli JM109 / pACL60 showing ACL activity. [0051] 4. Purification of ACL racemase from transformed E. coli
E. coli JM109/pACL60をアンピシリン添力 QLB培地(5ml)の入った試験管に入れ、 37°Cで 12時間培養した。得られた培養液(5ml)を、 80 /i g/mlのアンピシリン及び 0.5mMのイソプロピルチオ- β -D_ガラクトシド(IPTG)を添加した 500mlの LB培地の入 つた 2Lのフラスコに入れ、 37°Cで 8時間振とう培養した。培養後、遠心分離 (4°C、 8000g、 5分間)で菌体を分取し、菌体を 0.85%NaClで洗浄した。同様にして、 500ml の LB培地の入った 2Lフラスコ(20本)で形質転換大腸菌を培養し、合計 10Lの培養液 を得た。  E. coli JM109 / pACL60 was placed in a test tube containing ampicillin-added QLB medium (5 ml), and cultured at 37 ° C for 12 hours. The obtained culture solution (5 ml) was placed in a 2 L flask containing 500 ml of LB medium supplemented with 80 / ig / ml of ampicillin and 0.5 mM of isopropylthio-β-D_galactoside (IPTG). C. The cells were cultured with shaking for 8 hours. After the culture, cells were collected by centrifugation (4 ° C, 8000 g, 5 minutes), and the cells were washed with 0.85% NaCl. Similarly, the transformed Escherichia coli was cultured in 2 L flasks (20 tubes) containing 500 ml of LB medium to obtain a total of 10 L of culture solution.
[0052] 10Lの培養液から同様にして菌体を分取し、 0.25Mのスクロース及び 2 μ Μのピリドキ サールリン酸(以下、 PLPと称する)を含んだ lOOmMの ΚΡΒ緩衝液(ρΗ7.0、以下、本 製造例 (酵素活性測定に使用する緩衝液をのぞく)における「緩衝液」は、この緩衝 液を意味する。 )に懸濁し、 10分間超音波処理(19KHz、 Insonator model 201M、クボ タ社製)した。その後、懸濁液を遠心分離 (4°C、 15000g、 30分間)して菌体を除去し た。菌体除去後の液を熱処理 (60°C、 10分間)し、変性タンパク質を遠心分離により 除去し、上清を得た。上清を、 10mMの緩衝液で平衡化した DEAE-トヨパール 650M力 ラム(直径 3cm X長さ 25cm)にかけ、 10mMの緩衝液でカラムを洗浄した。 0から  [0052] Cells were similarly fractionated from 10 L of the culture solution, and a lOOmM ΚΡΒ buffer solution (ρ Η 7.0, containing 0.25M sucrose and 2 µm of pyridoxal phosphate (hereinafter referred to as PLP). Hereinafter, the “buffer” in this Production Example (excluding the buffer used for measuring enzyme activity) means this buffer.), And is suspended in a sonicator for 10 minutes (19 KHz, Insonator model 201M, Kubota Corporation). Company). Thereafter, the suspension was centrifuged (4 ° C, 15000g, 30 minutes) to remove the cells. The solution after removing the cells was heat-treated (60 ° C, 10 minutes), and denatured proteins were removed by centrifugation to obtain a supernatant. The supernatant was applied to a DEAE-Toyopearl 650 M column (3 cm diameter × 25 cm length) equilibrated with 10 mM buffer, and the column was washed with 10 mM buffer. From 0
300mMの NaClの濃度勾配をつけた 10mMの緩衝液で溶出し、フラクションを得た。  Elution was carried out with a 10 mM buffer having a concentration gradient of 300 mM NaCl to obtain a fraction.
ACLラセマーゼ活性のあるフラクションを硫化アンモニゥムで 30%飽和させた。この液 を、硫化アンモニゥムで 30%飽和させた緩衝液で平衡化したブチルトヨパール 650M カラム(直径 1.5cm X長さ 13cm)に吸着させた。カラムを硫化アンモニゥムで 30%飽和 させた緩衝液で洗浄した後、 30%から 0%の硫化アンモニゥムを含有する緩衝液で 濃度勾配溶出した。活性を有するフラクションを集め、セントリコン 10 (Centricon 10) で濃縮した。この濃縮物を、 150mMの NaClを含む 10mMの緩衝液で平衡化した  The ACL racemase active fraction was saturated with ammonium sulfide 30%. This solution was adsorbed to a butyl Toyopearl 650M column (1.5 cm diameter × 13 cm length) equilibrated with a buffer saturated with 30% ammonium sulfide. The column was washed with a buffer saturated with 30% ammonium sulfide, and then eluted with a buffer containing 30% to 0% ammonium sulfide in a concentration gradient. Active fractions were collected and concentrated on Centricon 10. This concentrate was equilibrated with 10 mM buffer containing 150 mM NaCl.
Superdex 200 HR 10/30カラムの上部に吸着させた。 FPLC (Pharmacia)によりカラム を 0.4ml/分の速度で溶出し、活性を有するフラクションを集め、セントリコン 10で濃縮 した。濃縮物を、 lOmMの緩衝液で平衡化した Mono Q HR5/5に吸着させ、 0— 300mMの NaClを含有する 10mMの緩衝液で濃度勾配溶出した。活性を含むフラクシ ヨンを集め、セントリコン 10で濃縮し、 ACLラセマーゼを得た。得られた ACL-ラセマー ゼを SDS電気泳動にかけて単一であることを確認した。この酵素の分子量は 4万であ つた。なお、各精製段階での ACLラセマーゼ活性の確認は以下のようにして ACLラセ マーゼ活性を測定することにより行った。 Adsorbed to the top of a Superdex 200 HR 10/30 column. The column was eluted by FPLC (Pharmacia) at a rate of 0.4 ml / min. Active fractions were collected and concentrated with Centricon 10. The concentrate was adsorbed on Mono Q HR5 / 5 equilibrated with lOmM buffer and eluted with 10mM buffer containing 0-300mM NaCl. The fractions containing the activity were collected and concentrated with Centricon 10 to obtain ACL racemase. The ACL-racemer obtained The enzyme was subjected to SDS electrophoresis and confirmed to be single. The molecular weight of this enzyme was 40,000. The ACL racemase activity at each purification stage was confirmed by measuring the ACL racemase activity as follows.
[0053] <ACLラセマーゼ活性の測定方法 > <Method for measuring ACL racemase activity>
lOOmMリン酸カリウム緩衝液(KPB、 pH 7.0)、 2 μ Μピリドキサールリン酸(PLP)、 lOmMの L-ACL及び各段階で得られた酵素活性液 20 μ 1を含有する混合液 (2ml)を、 30°Cで 30分間反応させ、 2Nの HC10を 20 μ 1添加して反応を終了させ、 D-ACL生成  A mixture (2 ml) containing lOOmM potassium phosphate buffer (KPB, pH 7.0), 2 μΜ pyridoxal phosphate (PLP), l-OmM L-ACL and 20 μl of the enzyme activity solution obtained at each step Reaction at 30 ° C for 30 minutes, add 20 μl of 2N HC10 to terminate the reaction, and generate D-ACL
4  Four
量に基づいて ACLラセマーゼ活性を決定する。ただし、 SDS電気泳動で単一であるこ とを確認された最終フラクションの測定では、酵素活性液の使用量は 1 μ 1 (混合液全 量は 2ml)、反応時間は 1分間とした。 D-ACL生成量はクラウンパック CR(+)カラムを用 いた HPLC (0.6 ml/分、溶媒 60mMの HCIO )により決定した。溶出液の吸光度(  Determine ACL racemase activity based on amount. However, in the measurement of the final fraction that was confirmed to be single by SDS electrophoresis, the amount of enzyme active solution used was 1 μl (total volume of the mixture was 2 ml), and the reaction time was 1 minute. The amount of D-ACL produced was determined by HPLC (0.6 ml / min, HCIO with 60 mM solvent) using a Crownpak CR (+) column. Absorbance of eluate (
4  Four
200nM)を測定した。 D-ACLをラセミィ匕し、 1分間に 1 μモルの L-ACLの生成を触媒す る酵素量を 1ユニットとした。  200 nM) was measured. D-ACL was racemized and the amount of enzyme that catalyzes the production of 1 μmol L-ACL per minute was defined as 1 unit.
[0054] 実施例 1 Example 1
く ACLラセマーゼによる L-2-ァミノ酪酸アミド、 L-トレオニンアミド、 L-ァラニンアミド、 L-セリンアミド、 L-ノルパリンアミド、 L-ノルロイシンアミド、 L-メチォニンアミド、 L-バリ ンアミド、 L-ロイシンアミド及び L-フエ二ルァラニンアミドのラセミ化 >  L-Aminobutyric acid amide, L-threoninamide, L-alaninamide, L-serinamide, L-norparinamide, L-norleucinamide, L-methioninamide, L-valinamide, L-leucinamide by ACL racemase And racemization of L-phenylalaninamide>
2 i Mi PLP, lOOmMの KPB (pH7.0)、 10mMのアミノ酸アミド及び製造例 1で得られ た ACLラセマーゼ 71.2ngの混合液(2ml)を 30°Cで 30分間反応させた。 HC10を添加  A mixture (2 ml) of 2 i Mi PLP, 100 mM KPB (pH 7.0), 10 mM amino acid amide and 71.2 ng of ACL racemase obtained in Production Example 1 was reacted at 30 ° C. for 30 minutes. HC10 added
4 して反応を停止させ、反応液を、クラウンパック CR(+)カラムを装着した HPLC (溶媒は 60mMの HCIO (0.6ml/分))にかけ、 200nm吸光度で反応系中の D-アミノ酸アミド量を  4 to stop the reaction, run the reaction mixture on a HPLC equipped with a Crown Pack CR (+) column (solvent: 60 mM HCIO (0.6 ml / min)), and determine the amount of D-amino acid amide in the reaction system at 200 nm absorbance. To
4  Four
測定し、 L-アミノ酸アミドに対する ACLラセマーゼの比活性を算出した。その結果を 表 1に示す。なお、 L-ACLに対する ACLラセマーゼの活性は 350U/mgであった。 表 1から ACLラセマーゼが L-アミノ酸アミドを D -アミノ酸アミドを生成し、ラセミ化するこ とが確認された。  The specific activity of ACL racemase for L-amino acid amide was calculated. The results are shown in Table 1. The activity of ACL racemase for L-ACL was 350 U / mg. From Table 1, it was confirmed that ACL racemase generated L-amino acid amide to D-amino acid amide and racemized.
[0055] なお、アミノ酸アミドを下記のアミノ酸の D体又は L体に代えて、 ACLラセマーゼと反 応させ生成物を定量したところ、 ACLラセマーゼは下記のアミノ酸をラセミ化しなレ、こ とを確認した。使用したアミノ酸:ァラニン、パリン、セリン、メチォニン、ロイシン、フエ 二ルァラニンの各 D体及び L体 [0055] When the amino acid amide was replaced with the following amino acid D-form or L-form and reacted with ACL racemase to quantify the product, it was confirmed that ACL racemase did not racemize the following amino acid. did. Amino acids used: alanine, palin, serine, methionine, leucine, hue D- and L-forms of dilualanine
[0056] [表 1] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0057] 実施例 2  Example 2
く ACLラセマーゼによる、 L- 2-ァミノ酪酸アミドおよび L-ァラニンアミドのラセミ化〉 Racemization of L-2-aminobutyric acid amide and L-arananamide by ACL racemase>
20 μ M PLP, lOOmMの KPB (pH7.0)、 40mMの L_2_ァミノ酪酸アミド及び製造例 1 で得られた 71.2ngの ACLラセマーゼの混合液(2ml)を 30°Cで 120分間反応させ、反応 液中のアミノ酸アミドの D体と L体の存在比を 200nm吸光度から測定した。また、 L_2_ ァミノ酪酸アミドを L-ァラニンアミドに代えた以外は同様にして測定した。結果を図 1 ( ァミノ酪酸アミド)及び図 2 (ァラニンアミド)に示す。時間の経過と共に L-2 -ァミノ酪酸 アミド及び L -ァラニンアミドがラセミィ匕されていくことが確認された。 A mixture (2 ml) of 20 μM PLP, 100 mM KPB (pH 7.0), 40 mM L_2_aminobutyramide and 71.2 ng of ACL racemase obtained in Production Example 1 was reacted at 30 ° C. for 120 minutes, The abundance ratio of the D-form and the L-form of the amino acid amide in the reaction solution was measured from the absorbance at 200 nm. The measurement was carried out in the same manner except that L_2-aminobutyric acid amide was replaced with L-arananamide. The results are shown in FIG. 1 (aminobutyric acid amide) and FIG. 2 (arananamide). It was confirmed that L-2-aminobutyric acid amide and L-alaninamide were racemized over time.
[0058] 実施例 3 Example 3
く D又は L-フエ二ルァラニンアミドのラセミ化及び光学活性なフエ二ルァラニンの製 造 >  Racemization of D or L-phenylalanine amide and production of optically active phenylalanine>
形質転換大腸菌(E. coli JM109/pACL60)を 80 β g/mlのアンピシリンを含む 50mlの LB培地の入った試験管に入れ、 37°Cで 12時間培養した。この培養液から得られる菌 体を、 0.1Mの Tris/HCl (pH8.0)、 10mMの D-フエ二ルァラニンアミドからなる 5mlの溶 液に懸濁し 30°Cで 24時間反応させた。なお、大腸菌体には L-フエ二ルァラニンアミド を L-フエ二ルァラニンに変換する酵素(L-フエ二ルァラニンアミダーゼ)が含有されて おり、反応系中の L-フエ二ルァラニンアミドは L-フエ二ルァラニンに変換される。 HCIOを添加して反応を停止させ、反応液を、クラウンパック CR(+)カラムを装着したTransformed E. coli (E. coli JM109 / pACL60) was placed in a test tube containing 50 ml of LB medium containing 80 β g / ml of ampicillin, and cultured at 37 ° C for 12 hours. The cells obtained from this culture were suspended in 5 ml of a solution consisting of 0.1 M Tris / HCl (pH 8.0) and 10 mM D-phenylalaninamide and reacted at 30 ° C. for 24 hours. The Escherichia coli body contains an enzyme that converts L-phenylalaninamide to L-phenylalanine (L-phenylalanine amidase), and L-phenylalaninamide in the reaction system is converted to L-phenylalanine. Converted to luranin. The reaction was stopped by adding HCIO, and the reaction solution was mounted on a crown pack CR (+) column.
HPLC (溶媒は 60mMの HCIO (0.8ml/min)にかけ、 200nm吸光度から D及び L-フエ二 ルァラニンアミド並びに D及び L-フエ二ルァラニンを定量した。結果を図 3に示す。ま た、 D-フエ二ルァラニンアミドを L-フエ二ルァラニンアミドに代え、反応時間を 8時間 に代えて、同様に定量した。結果を図 4に示す。なお、大腸菌体には D-フエ二ルァラ ニンアミドを D-フエ二ルァラニンに変換する酵素(D-フエ二ルァラニンアミダーゼ)が 含有されておらず、反応系中の D-フエ二ルァラニンアミドは D-フエ二ルァラニンに変 換されない。 HPLC (solvent was 60 mM HCIO (0.8 ml / min), and D and L-phenylalaninamide and D and L-phenylalanine were quantified from the absorbance at 200 nm. The results are shown in FIG. Quantification was performed in the same manner by replacing L-phenylalaninamide with L-phenylalaninamide and changing the reaction time to 8 hours, and the results are shown in Fig. 4. In the E. coli body, D-phenylalaninamide was replaced with D-phenylalaninamide. It does not contain the enzyme (D-phenylalanine amidase) that converts to D-phenylamine, and D-phenylalanine amide in the reaction system is not converted to D-phenylalanine.
[0059] 図 3では、 D -フエ二ルァラニンアミドが減少し、反応当初には存在していなかった L- フエ二ルァラニンアミド及び L -フエ二ルァラニンが生成している。これは、菌体が D-フ ェニルァラニンアミドを L -フエ二ルァラニンアミドに転換し、生成した L -フエ二ルァラ二 ンアミドが L-アミノ酸アミダーゼにより L-フエ二ルァラニンに転換されたことを示す。  In FIG. 3, D-phenylalaninamide is reduced, and L-phenylalanineamide and L-phenylalanine, which were not present at the beginning of the reaction, are produced. This indicates that the cells converted D-phenylalaninamide to L-phenylalaninamide and the resulting L-phenylalaninamide was converted to L-phenylalanin by L-amino acid amidase. .
[0060] 図 4では、 L-フエ二ルァラニンアミドが減少し、反応当初には存在していなかった D- フエ二ルァラニンアミド及び L-フエ二ルァラニンが生成している。これは、菌体が L-フ ェニルァラニンアミドを D-フエ二ルァラニンアミドに転換し、 L-アミノ酸アミダーゼが L- フエ二ルァラニンアミドを L-フエ二ルァラニンに転換したことを示す。  In FIG. 4, L-phenylalaninamide is reduced, and D-phenylalaninamide and L-phenylalanine, which were not present at the beginning of the reaction, are produced. This indicates that the cells converted L-phenylalaninamide to D-phenylalaninamide and the L-amino acid amidase converted L-phenylalaninamide to L-phenylalanine.
[0061] 実施例 4  Example 4
< L-ァラニンアミドを原料とした D-ァラニンの合成 >  <Synthesis of D-alanine from L-alananamide>
L-ァラニンアミドに、製造例 1で得られた ACLラセマーゼ及び Ochrobactrum anthropi C 1-38由来の D_アミノぺプチダーゼを作用させて D_ァラニンを合成した。 2 μ Μの PLP、 lOOmMの KPB (pH7.0)、 45mMの L-ァラニンアミド、 ACLラセマーゼ( 0.22U)及び D-アミノぺプチダーゼ(2.2U)を混合し(2ml)、 30°Cで 7時間反応させた。  The D_alanan was synthesized by allowing the ACL racemase obtained in Production Example 1 and the D_aminopeptidase derived from Ochrobactrum anthropi C 1-38 to act on L-arananamide. Mix 2 μΜ of PLP, 100 mM KPB (pH 7.0), 45 mM L-alaninamide, ACL racemase (0.22 U) and D-aminopeptidase (2.2 U) (2 ml) and 7 hours at 30 ° C. Reacted.
HC10を添加して反応を停止させ、反応液を、クラウンパック CR(+)カラムを装着した The reaction was stopped by adding HC10, and the reaction solution was mounted on a crown pack CR (+) column.
HPLC (溶媒は 60mMの HCIO (0.4ml/min)にかけ、 200nm吸光度から D及び L-ァラニ ンアミド並びに D -ァラニンを定量した。結果を図 5に示す。なお、ここで使用した D -ァ ノへフナタ、、 1 ~ fa~、 Y. Asano, et al, Biochem. Biophys. Res. Commun., 162, 470-474 (1989)に記載の方法に従って製造した。 HPLC (solvent: 60mM HCIO (0.4ml / min), D and L-alaninamide and D-alanine were quantified from the absorbance at 200nm. The results are shown in Fig. 5. The D-ano was used here. Funata, 1 -fa ~, Y. Asano, et al, Biochem. Biophys. Res. Commun., 162, 470-474 (1989).
[0062] 図 5では、 L-ァラニンアミドが減少し、反応当初には存在していなかった D -ァラニン アミド及び D-ァラニンが生成している。これは、菌体が L-ァラニンアミドを D-ァラニン アミドに転換し、生成した D-ァラニンアミドが D-アミノぺプチダーゼにより D-ァラニン に転換されたことを示す。 [0062] In FIG. 5, L-alananamide decreased and D-alanine which was not present at the beginning of the reaction was observed. Amide and D-alanine are produced. This indicates that the cells converted L-alananamide into D-alananamide and the resulting D-alananamide was converted to D-alananamide by D-aminopeptidase.
産業上の利用可能性  Industrial applicability
[0063] 本発明の (1)D -アミノ酸アミド及び L-アミノ酸アミドの混合物の製造方法は、 ACLラ セマーゼを作用させるという簡便な方法である。また、本発明の (2)D又は L -アミノ酸 の製造方法では、 D又は L-アミノ酸に変換する酵素の基質となるアミノ酸アミドは減少 する力 D又は L-アミノ酸に変換する酵素の基質とならなレ、アミノ酸アミドが ACLラセ マーゼの作用によって変換されて、 D又は L-アミノ酸に変換する酵素の基質となるァ ミノ酸アミドが生成する。このアミノ酸アミドを D又は L-アミノ酸に変換する酵素が D又 は L-アミノ酸に変換するため、 D又は L-アミノ酸に変換する酵素の基質となるアミノ酸 アミドだけでなぐ D又は L-アミノ酸に変換する酵素の基質とならないアミノ酸アミドも 原料として有効に利用できるため、(2)の製造方法は、光学分割操作の不要な、収率 のよい簡便な方法である。さらに本発明の (3)の D又は L-アミノ酸アミドの製造方法は 、(2)の製造方法により得られた光学活性なアミノ酸を公知の方法でアミド化するもの であることから、(2)の製造方法と同様に、光学分割操作の不要な、収率のよい簡便な 方法である。 [0063] The method for producing a mixture of (1) D-amino acid amide and L-amino acid amide according to the present invention is a simple method of reacting ACL racemase. In the method for producing (2) D- or L-amino acid of the present invention, the amino acid amide serving as a substrate for an enzyme that converts to D- or L-amino acid is a reducing force. Furthermore, amino acid amide is converted by the action of ACL racemase to produce amino acid amide, which is a substrate for the enzyme that converts to D or L-amino acid. Since the enzyme that converts this amino acid amide to D or L-amino acid converts it to D or L-amino acid, it can be converted to D or L-amino acid without using only the amino acid amide that is the substrate of the enzyme that converts to D or L-amino acid. Since the amino acid amide that does not serve as a substrate for the enzyme to be used can also be effectively used as a raw material, the production method (2) is a simple method with a high yield that does not require optical resolution. Furthermore, the method for producing a D- or L-amino acid amide of (3) of the present invention comprises amidating the optically active amino acid obtained by the method of (2) by a known method. It is a simple and high-yield method that does not require an optical resolution operation as in the case of the production method.
配列表フリーテキスト  Sequence listing free text
[0064] 配列番号 3— 48は、それぞれ A1— A46プライマーの DNA配列を示す。 [0064] SEQ ID NOs: 3-48 show the DNA sequences of A1-A46 primers, respectively.

Claims

請求の範囲 The scope of the claims
[1] D -アミノ酸アミド及び L-アミノ酸アミドからなる群から選択される少なくとも 1種のアミノ 酸アミドを原料とし、該原料にひ-アミノ- ε -力プロラタタムラセマーゼを作用させる、 該原料より光学活性の低下した D -アミノ酸アミド及び L -アミノ酸アミドの混合物の製 造方法。  [1] Using at least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide as a raw material, and reacting the raw material with para-amino-ε-force prolatatum racemase; A method for producing a mixture of D-amino acid amide and L-amino acid amide having reduced optical activity.
[2] ひ-アミノ- ε -カプロラタタムラセマーゼが、 Achromobacter obae由来である請求項 1 に記載のアミノ酸アミドの混合物の製造方法。  [2] The method for producing a mixture of amino acid amides according to claim 1, wherein the para-amino-ε-caprolatatam racemase is derived from Achromobacter obae.
[3] アミノ酸アミド力 ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フエ二 ルァラニンアミド、バリンアミド、プロリンアミド、ァスパラギンアミド、システィンアミド、シ スチンアミド、トレオニンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノノレロイシンアミド 及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである請求項 1 又は 2に記載のアミノ酸アミドの混合物の製造方法。  [3] Amino acid amide power alaninamide, methionamide, leucinamide, serinamide, phenylalanamide, valinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, threonamide, 2-aminobutyramide, nonolevalinamide, nonoamide The method for producing a mixture of amino acid amides according to claim 1 or 2, wherein the method is at least one amide selected from the group consisting of releucinamide and threoninamide.
[4] アミノ酸アミド力 ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フエ二 ルァラニンアミド、バリンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノルロイシンアミド 及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである請求項 1 一 3のいずれかに記載のアミノ酸アミドの混合物の製造方法。  [4] Amino acid amide power At least one amide selected from the group consisting of alaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, valinamide, 2-aminobutyramide, nonolevalinamide, norleucinamide and threonamide. A method for producing a mixture of amino acid amides according to any one of claims 13 to 13.
[5] D -アミノ酸アミド及び L-アミノ酸アミドからなる群から選択される少なくとも 1種のアミノ 酸アミドに、 ひ-アミノ- ε -力プロラタタムラセマーゼ及び D又は L-アミノ酸アミドに選択 的に作用して D又は L -アミノ酸に変換する酵素を作用させる、 D又は L-アミノ酸の製 造方法。  [5] selectively acts on at least one amino acid amide selected from the group consisting of D-amino acid amide and L-amino acid amide, and on amino-amino-ε-force prolatatum racemase and D or L-amino acid amide A method for producing D- or L-amino acids, wherein the enzyme is converted to D- or L-amino acids.
[6] ひ-アミノ- ε -カプロラタタムラセマーゼが、 Achromobacter obae由来である請求項 5 に記載の D又は L-アミノ酸の製造方法。  [6] The method for producing a D- or L-amino acid according to claim 5, wherein the para-amino-ε-caprolatatam racemase is derived from Achromobacter obae.
[7] アミノ酸アミドカ ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フエ二 ルァラニンアミド、バリンアミド、プロリンアミド、ァスパラギンアミド、システィンアミド、シ スチンアミド、トレオニンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノノレロイシンアミド 及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである請求項 5 又は 6に記載の D又は L-アミノ酸の製造方法。  [7] Amino acid amidocaranamide, methionamide, leucinamide, serinamide, phenylalanamide, valinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, threonamide, 2-aminobutyric acid amide, nonolevalinamide, nonolenin 7. The method for producing a D- or L-amino acid according to claim 5, which is at least one amide selected from the group consisting of leucinamide and threonamide.
[8] アミノ酸アミド力 ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フエ二 ルァラニンアミド、バリンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノルロイシンアミド 及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである請求項 5 一 7のいずれかに記載の D又は L-アミノ酸の製造方法。 [8] Amino acid amide power alaninamide, methionamide, leucinamide, serinamide, fenii The D- or L-amino acid according to any one of claims 5 to 7, which is at least one amide selected from the group consisting of ualaninamide, valinamide, 2-aminobutyric amide, nonolevalinamide, norleucinamide and threoninamide. Manufacturing method.
[9] D-アミノ酸アミド及び L-アミノ酸アミドの混合物に、 ひ-アミノ- ε -カプロラタタムラセマ ーゼ及び D又は L -アミノ酸アミドに選択的に作用して D又は L -アミノ酸に変換する酵 素を作用させて D又は L -アミノ酸を生成させ、生成した D又は L -アミノ酸をアミド化し て D又は L-アミノ酸アミドを製造する方法。  [9] Selectively reacts with a mixture of D-amino acid amide and L-amino acid amide to para-amino-ε-caprolatatam racemase and D or L-amino acid amide to convert to D or L-amino acid A method for producing a D or L-amino acid amide by reacting an enzyme to produce a D or L-amino acid, and amidating the produced D or L-amino acid.
[10] ひ-アミノ- ε -カプロラタタムラセマーゼが、 Achromobacter obae由来である請求項 9 に記載の D又は L-アミノ酸アミドの製造方法。  [10] The method for producing a D- or L-amino acid amide according to claim 9, wherein the para-amino-ε-caprolatatam racemase is derived from Achromobacter obae.
[11] アミノ酸アミドカ ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フエ二 ルァラニンアミド、バリンアミド、プロリンアミド、ァスパラギンアミド、システィンアミド、シ スチンアミド、卜レ才ニンアミド、、 2 -ァミノ酪酸アミド、ノノレノ リンアミド、、ノノレロイシンアミド、 及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである請求項 9 又は 10に記載の D又は L-アミノ酸アミドの製造方法。  [11] Amino acid amide caralaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, valinamide, prolinamide, asparaginamide, cysteinamide, cystinamide, trenininamide, 2-aminobutyric amide, nonolenolinamide, The method for producing a D- or L-amino acid amide according to claim 9 or 10, wherein the method is at least one amide selected from the group consisting of nonoleucinamide and threoninamide.
[12] アミノ酸アミド力 ァラニンアミド、メチォニンアミド、ロイシンアミド、セリンアミド、フエ二 ルァラニンアミド、バリンアミド、 2—ァミノ酪酸アミド、ノノレバリンアミド、ノルロイシンアミド 及びトレォニンアミドからなる群から選択される少なくとも 1種のアミドである請求項 9 一 1 1のいずれかに記載の D又は L-アミノ酸アミドの製造方法。  [12] Amino acid amide power At least one amide selected from the group consisting of alaninamide, methionamide, leucinamide, serinamide, phenylalaninamide, valinamide, 2-aminobutyramide, nonolevalinamide, norleucinamide and threonamide. A method for producing a D- or L-amino acid amide according to any one of claims 9-11.
PCT/JP2005/002933 2004-02-24 2005-02-23 PROCESS FOR, WITH USE OF α-AMINO- &epsiv; -CAPROLACTAM RACEMASE, PRODUCING MIXTURE OF D- AND L-AMINO ACID AMIDE, PRODUCING D- OR L-AMINO ACID, AND PRODUCING D- OR L-AMINO ACID AMIDE WO2005080584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510295A JP4122416B2 (en) 2004-02-24 2005-02-23 Method for producing a mixture of D and L-amino acid amide using α-amino-ε-caprolactam racemase, method for producing D or L-amino acid, method for producing D or L-amino acid amide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-048530 2004-02-24
JP2004048530 2004-02-24

Publications (1)

Publication Number Publication Date
WO2005080584A1 true WO2005080584A1 (en) 2005-09-01

Family

ID=34879518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002933 WO2005080584A1 (en) 2004-02-24 2005-02-23 PROCESS FOR, WITH USE OF α-AMINO- &epsiv; -CAPROLACTAM RACEMASE, PRODUCING MIXTURE OF D- AND L-AMINO ACID AMIDE, PRODUCING D- OR L-AMINO ACID, AND PRODUCING D- OR L-AMINO ACID AMIDE

Country Status (2)

Country Link
JP (1) JP4122416B2 (en)
WO (1) WO2005080584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371555B2 (en) 2002-06-14 2008-05-13 Dsm Ip Assets B.V. Polypeptides having α-H-α-amino acid amide racemase activity and nucleic acids encoding the same
CN111321178A (en) * 2020-03-02 2020-06-23 宁波酶赛生物工程有限公司 Preparation method of L-2-aminobutanamide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321192B (en) * 2020-02-18 2022-03-08 浙江工业大学 Amino acid racemase and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129984A (en) * 1986-11-21 1988-06-02 Toray Ind Inc Alpha-amino-epsilon-caprolactam racemase
JPH02501531A (en) * 1987-08-17 1990-05-31 ノヴオ―ノルデイスク アー/エス Organic chemical manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129984A (en) * 1986-11-21 1988-06-02 Toray Ind Inc Alpha-amino-epsilon-caprolactam racemase
JPH02501531A (en) * 1987-08-17 1990-05-31 ノヴオ―ノルデイスク アー/エス Organic chemical manufacturing method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AHMED S A, ET AL: "Mechanisum of alpha-amino-eta-caprolactam racemase reaction", BIOCHEMISTRY, vol. 25, 1986, pages 385 - 388, XP008052366 *
AHMED S A, ET AL: "Properties of alpha-amino- eta-caprolactam racemase from achromobacter obae", AGRIC. BIOL. CHEM., vol. 47, no. 8, 1983, pages 1887 - 1893, XP001074250 *
AHMED S A, ET AL: "Racemization of alpha-amino-delta-valerolactam catalyzed by alpha-amino-eta-caprolactam racemase from achromobacter obae", AGRIC. BIOL. CHEM., vol. 47, no. 5, 1983, pages 1149 - 1150, XP002990834 *
AHMED S. A: "Production and stabilization of alpha-amino-eta-caprolactam racemase from achromobacter obae", BULL. INST. CHEM. RES., vol. 60, no. 5-6, 1982, pages 342 - 346, XP008052518 *
AHMED S.A.: "Purification and properties of alpha-amino-eta-caprolactam racemase from achromobacter obae", FEBS LETT., vol. 150, no. 2, 1982, pages 370 - 374, XP002989824 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371555B2 (en) 2002-06-14 2008-05-13 Dsm Ip Assets B.V. Polypeptides having α-H-α-amino acid amide racemase activity and nucleic acids encoding the same
CN111321178A (en) * 2020-03-02 2020-06-23 宁波酶赛生物工程有限公司 Preparation method of L-2-aminobutanamide

Also Published As

Publication number Publication date
JPWO2005080584A1 (en) 2007-10-25
JP4122416B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US7316916B2 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
CA2270400C (en) Mutant penicillin g acylases
EP1513946B1 (en) Polypeptides having alpha-h-alpha amino acid amide racemase activity and nucleic acids encoding the same
NZ260907A (en) Hydrophobic hydrophilic fusion proteins and coding sequences and protein preparation
Wilms et al. Cloning, nucleotide sequence and expression of a new LN-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli
US7858348B2 (en) N-acetyl-(R,S)-beta-amino acid acylase gene
WO2005080584A1 (en) PROCESS FOR, WITH USE OF α-AMINO- &amp;epsiv; -CAPROLACTAM RACEMASE, PRODUCING MIXTURE OF D- AND L-AMINO ACID AMIDE, PRODUCING D- OR L-AMINO ACID, AND PRODUCING D- OR L-AMINO ACID AMIDE
JPH11253168A (en) Protein involving in activation of nitrile hydratase, and gene coding for the same
US6869788B2 (en) DNA encoding novel D-aminoacylase and process for producing D-amino acid by using the same
Sonke et al. Peptide deformylase as biocatalyst for the synthesis of enantiomerically pure amino acid derivatives
US6953677B2 (en) Recombinant L-N-carbamoylase from Arthrobacter aurescens and method of producing L-amino acids therewith
IE883462L (en) A method for the selective cleavage of fusion proteins
WO1997004083A1 (en) Enzymes and micro-organisms with amidase activity which hydrolyse polyamides
US6664083B2 (en) Methods for racemizing N-acylamino acids and producing optically active amino acids
US5824522A (en) Recombinant decarbamylases for producing D-α-amino acids
KR101114937B1 (en) L-amino acid amide asymmetric hydrolase and dna encoding the same
US20230265409A1 (en) Polypeptide having cephalosporin c acylase activity and use thereof
JPH0822228B2 (en) Amino acid amide hydrolase and use thereof
Asano A Japanese screening approach: selection of an opine dehydrogenase and alkaline D-peptidase
US6767725B2 (en) Acetyl amino acid racemase from amycolatopsis orientalis for racemizing carbamoyl amino acids
JP2003061692A (en) METHOD FOR PRODUCING ACTIVATED rec-HYDANTOINASE, THE RESULTANT rec-HYDANTOINASE, NUCLEIC ACID ENCODING THE SAME, PLASMID, VECTOR AND MICROORGANISM EACH HAVING THE NUCLEIC ACID, NUCLEIC ACID TO BE HYBRIDIZED, PRIMER FOR PRODUCING THE NUCLEIC ACID, AND USE OF THE rec- HYDANTOINASE AND THE NUCLEIC ACID
JP2002153285A (en) New heat-resistant aminotransferase
JPH08242863A (en) Gene capable of coding new glutamate dehydrogenase and production of glutamate dehydrogenase using the same gene
MXPA99003870A (en) Mutant penicillin g acylases
JP2001078791A (en) Thermophilic aminopeptidase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510295

Country of ref document: JP

122 Ep: pct application non-entry in european phase