WO2005076435A1 - Electromagnetic induction motor - Google Patents

Electromagnetic induction motor Download PDF

Info

Publication number
WO2005076435A1
WO2005076435A1 PCT/ES2004/000053 ES2004000053W WO2005076435A1 WO 2005076435 A1 WO2005076435 A1 WO 2005076435A1 ES 2004000053 W ES2004000053 W ES 2004000053W WO 2005076435 A1 WO2005076435 A1 WO 2005076435A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
coils
axis
motor according
rotation
Prior art date
Application number
PCT/ES2004/000053
Other languages
Spanish (es)
French (fr)
Inventor
Gregorio Arias Juberias
Original Assignee
Gregorio Arias Juberias
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gregorio Arias Juberias filed Critical Gregorio Arias Juberias
Priority to PCT/ES2004/000053 priority Critical patent/WO2005076435A1/en
Publication of WO2005076435A1 publication Critical patent/WO2005076435A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors

Definitions

  • the present invention falls within the field of electromagnetic induction motors; more specifically, it refers to an electromagnetic radial induction motor and va ⁇ able on a solid copper armature that along its perimeter has longitudinal grooves made towards the axis.
  • the electromagnetic induction motor of the present invention comprises a cover, a stator, a rotor formed by an armature integral to a rotation axis, supports and a base.
  • the stator comprises a number N1 of solenoid-type magnetizing coils arranged perimeter around the rotor, and the axis of said coils is parallel to the axis of rotation of the rotor.
  • the rotor consists of a grooved disk of the same thickness as the length of said coils, said grooving consisting of a number N2 of radial grooves extending radially from the surface of the disk towards the axis of rotation, and longitudinally along the entire thickness of the disk, so that the rotor is like a turbine with blades of non-light material.
  • said disk is constituted from a solid copper piece.
  • the motor comprises two covers consisting of two discs whose inner diameter is larger than the diameter of the rotor shaft, and which are fixed to the lateral faces of the cover. N2 does not depend on N1.
  • said cover is a hollow cylinder in whose internal internal wall there is a number N3 of holes, the size of the holes being greater than the size of said magnetizing coils to be able to accommodate them, and the internal diameter of said hollow cylinder being greater than the outside diameter of the rotor. More preferably, N3 is equal to or greater than N1.
  • said grooved disk is integral with the axis of rotation.
  • Said magnetizing coils can be of the solenoid type, or they can be totally or partially replaced in permanent magnets.
  • the disk is constituted from a piece of solid copper and contains the axis of rotation.
  • Said axis of rotation has a diameter that is easy-going; said axis of rotation has a diameter that is preferably a means of the corresponding diameter of the armature.
  • the inductor, the armature, the cover and the covers form a single assembly to function as a magnetic circuit.
  • the electromagnetic motor of the present invention is an induction motor of non-uniform and variable radial flux at will, on a solid copper armature that along its perimeter has longitudinal grooves. The only primary power consumption of the motor is limited to what the magnetizing coils that make up the stator need.
  • the induced solid copper with grooves is of very low internal resistance and becomes a powerful magnet in repulsion due to the action of the magnetizing field.
  • the engine of the present invention in its preferred embodiment consists of several distinct parts that form a single assembly: - the cover that allows to accommodate the magnetizing coils that make up the stator and, more preferably, the side covers; - the stator or set of coils that produce the electromagnetic fields; - the rotor, or grooved induced with its shaft, of solid copper where the induced currents appear; - more preferably, the side covers that prevent flow dispersion; the supports to accommodate the bearings and fix the rotor shaft, and - the base that allows joining all the parts mentioned in order to achieve a strong assembly.
  • Figure 3 shows plan, side and section views of the magnetizing coils of the stator.
  • Figure 4 is a perspective view of Figure 3.
  • Figure 5 shows plan, side and section views of the rotor.
  • Figure 6 is a perspective of Figure 5.
  • Figure 7 shows plan, side and section views of one of the "blades" of the armature constituted by the rotor.
  • Figure 8 is a perspective of Figure 7.
  • Figure 9 shows side views and section of one of the covers.
  • Figure 9a shows the detail B of the cover indicated in Figure 9.
  • Figure 10 is a perspective of Figure 9.
  • Figure 11 shows plan, side and section views of the bearing support.
  • Figure 12 is a perspective of Figure 11.
  • Figure 13 shows plan, side and section views of the base.
  • Figure 14 is a perspective of Figure 13.
  • Figure 15 shows plan, side and section views of the bearing caps.
  • Figure 15a shows the detail A of the bearing cover indicated in Figure 15.
  • Figure 16 is a perspective of Figure 15.
  • Figure -17- shows-views in plan, side and section of the motor as a whole .
  • Figure 18 is a perspective of Figure 17.
  • Figure 19 is the exploded view of the motor in perspective.
  • Figure 20 shows a scheme that helps the understanding of the operation of the engine of the invention.
  • the cover 10 of the induction motor 1 of the present invention is a hollow cylinder in whose inner perimeter wall 11 holes 12 are made to accommodate the magnetizing coils 21 that make up the stator 20 or inductor, while the central hollow 13 of the cover will be occupied by the rotor 30 formed by an armature 32 or disc with grooves and its axis 31 of rotation in a solid piece (see figures 5 and 6) .
  • Said cover has a hollow by revolution or circular groove 14 in both sections that cuts through the highest point to the holes 12 where the coils are housed to make a groove and to give exit to the cables, which are braided and embedded in the mentioned hollow for your food
  • this cover is fixed with screws to a base 50 (see figures
  • the stator 20 is shown, formed by the magnetizing coils 21, which can be of solenoid type with air core to guarantee the extinction of the magnetic fields quickly without leaving residues of magnetization once the power supply has been interrupted in the case of using the motor with precision in a variable operating speed. If we want to keep a certain number of revolutions constant over time, different cores can be used to increase the intensity of the field and reduce the consumption, or it is also possible to use permanent hands in replacement of the solenoid type coils, or a mounting mixed permanent magnets and coils.
  • the magnetizing coils 21 are housed in each of the holes 12 made in the inner wall of the cover. They are preferably manufactured with very fine yarn to increase the magnetomotive force with the minimum possible consumption. .
  • the rotor 30 is shown in Figures 5 (in elevation, plan, and side view) and 6
  • the armature 32 which is a disk of the same thickness as the length of the magnetizing coils; cuts are made that constitute grooves 32a that are radial seen from their respective longitudinal sections according to the length of the length-of-the-outer-circumference; furthermore the rotor 30 contains the axis of rotation 31, both forming a piece of solid copper; said axis of rotation has a diameter that in this case is a third of the diameter of the surface of the disc, but which, in general, is accommodating to the specific application of the motor.
  • the axle 31 must have a turning stop 32b to fit it against the bearings and avoid sideways swings.
  • the cuts or grooves 32a, made in the induced disk give rise to what appear to be "blades" 33 of a turbine (as shown in more detail in Figures 7 and 8) and withstand the currents induced by the magnetizing field.
  • the covers 60 are shown, which are discs that have a central hole 61 to let the shaft 31 of the rotor 30 out, and are fixed to the lateral faces of the cover 10.
  • the inner face of the covers has of a circular projection on its outer edge 62 that serves as a stop against the wall of the cover and to fix the magnetizing coils and the cables thereof and create an inner air chamber to free the rotor. With them the dispersion of flow is avoided.
  • the supports 40 containing the bearings are shown in Figures 11 and 12.
  • Figures 17, 18 and 19 show a view of the engine 1 of the invention as a whole, as well as an exploded view thereof, with the different elements that constitute it. Below is an explanation that helps to understand the operation of the engine, while Figure 20 shows a scheme that helps to visualize it.
  • the planes of all the atoms contained in the armature conductors are oriented in an ordered rectangular matrix of columns and rows throughout their volumetric surface.
  • the axes of the columns of atoms are perpendicular to the axis of the rotor.
  • Each atom becomes an elementary dipole or magnetic domain that opposes the influence of the magnetizing field (Lenz's law).
  • the induction lines of all the non-deviated electrons add to each other producing a resulting magnetic field that extends along the entire conductor in concentric circles. This effect appears in all conductors causing the total magnetization of the armature while the atoms are ordered.
  • the armature has two magnetic sections, a north pole in front of the north pole inductor and a south pole in front of the south pole inductor.
  • the induced disk is in the form of a magnetized flywheel that rotates within a non-uniform magnetic field.
  • the conductors that comprise it have a positive charge due to the abandonment of free electrons.
  • the cuts or grooves that are made to the induced disk not only suppresses the surface current that would appear due to the magnetizing field that affects its metal surface, but also reduce the heating by Joule effect caused by eddy currents or whirlpool circular currents.
  • the armature (which has the appearance of being formed by a succession of insulated sheets with an appropriate and superimposed varnish), measures the behavior of the laminated core of a transformer taking advantage of the magnetic energy that passes through it.
  • the direction of the magnetic lines surrounding the driver and the displacement of the negative charges towards the axis is represented by the rule of the right hand (the thumb indicates the direction of the charges towards the axis and the rest of the fingers the direction of induction lines).
  • the volume of copper that we will introduce into the radial magnetic field the intensity and flow rate at the beginning of the movement; and the intensity of flow and speed of the disc that constitutes the induced one when it is in movement.
  • the number of free charges that can be displaced for a given armature depends on the unit of quantity of substance of the international system used in chemistry, equivalent to the number of atoms contained in twelve grams of the carbon isotope of atomic weight twelve.
  • the flow depends on the number of turns of the coils and the intensity of current flowing through them and this of the resistance of the wire to heating or the maximum tension they can withstand without losing the magnetic effect.
  • the flow through the armature is the sum of the individual flows that provide all-coil-composing-the-inductor.
  • the speed and frequency in the flow variation depends on the time constant of the coils.
  • the direction of rotation of the rotor is reversible and will depend on the direction of the induction lines. This feature can be used to brake the engine.
  • the power delivered by the motor and the precision of rotation can be controlled with the voltage supplied to the magnetizing coils. For this, it is convenient to use a programmable automaton that ensures and maintains the operating constants required in each case and protects it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

The invention relates to an electromagnetic induction motor (1) consisting of a cover (10), a stator (20) and a rotor (30) comprising an armature (32) which is solidly connected to a rotary shaft (31). The stator (20) comprises a number N1 of magnetising coils (21) which are arranged peripherally such as to surround the armature (32), and the axis of said coils is parallel to the rotary shaft (31) of the rotor. The rotor (30) consists of a grooved disk (32), the thickness of which equals the length of the magnetising coils, said grooving comprising a number N2 of radial grooves (32a) which extend radially from the surface of the disk towards the rotary shaft (31) and longitudinally over the entire thickness of the disk.

Description

MOTOR DE INDUCCIÓN ELECTROMAGNÉTICA ELECTROMAGNETIC INDUCTION MOTOR
Campo de la invención La presente invención se engloba dentro del campo de los motores de inducción electromagnética; más en concreto se refiere a un motor electromagnético de inducción de flujo radial y vaπable sobre un inducido de cobre sólido que a lo largo de su perímetro tiene practicadas ranuras longitudinales hacia el eje.Field of the Invention The present invention falls within the field of electromagnetic induction motors; more specifically, it refers to an electromagnetic radial induction motor and vaπable on a solid copper armature that along its perimeter has longitudinal grooves made towards the axis.
Antecedentes de la invención Se conocen numerosos y diferentes tipos de motores de corriente continua y corriente alterna. La diferencia entre ellos estriba en la forma en que se construyen y alimentan. Algunas de las desventajas que presentan los motores hasta ahora conocidos son* 1. Bajo rendimiento que se obtiene con relación al consumo que necesitan. 2. El peso y las dimensiones que presentan con su construcción, en relación a la potencia que desarrollan, lo que no permite instalados en vehículos. 3. El diseño y fabricación son complejos. 4. Están limitados en las revoluciones.Background of the invention Numerous and different types of DC and AC motors are known. The difference between them lies in the way they are built and fed. Some of the disadvantages of the engines known up to now are * 1. Low performance obtained in relation to the consumption they need. 2. The weight and dimensions they present with their construction, in relation to the power they develop, which does not allow installed in vehicles. 3. Design and manufacturing are complex. 4. They are limited in revolutions.
Descripción de la invención La invención se refiere a un motor de inducción electromagnética de acuerdo con la reivindicación 1. Realizaciones preferidas del motor se definen en las reivindicaciones dependientes. Es un objetivo de la presente invención proporcionar un motor de uso preferiblemente industrial, y diseñado para ofrecer numerosas y notables ventajas sobre los motores eléctricos que se conocen en la técnica actual, bien sean de corriente continua o de corriente alterna. Así el motor de inducción electromagnética de la presente invención comprende una cubierta, un estator, un rotor formado por un inducido solidario a un eje de rotación, unos soportes y una base. El estator comprende un número N1 de bobinas magnetizantes tipo solenoide dispuestas perimetralmente rodeando al rotor, y el eje de dichas bobinas es paralelo al eje de rotación del rotor. El rotor consiste en un disco ranurado del mismo grosor que la longitud de dichas bobinas, consistiendo dicho ranurado en un número N2 de ranuras radiales que se extienden radialmente desde la superficie del disco hacia el eje de rotación, y longitudinalmente a lo largo de todo el grosor del disco, de forma que el rotor es como una turbina con aspas de material no ligero. Preferiblemente dicho disco se constituye a partir de una pieza de cobre sólida. Preferiblemente, el motor comprende dos tapas que consisten en dos discos cuyo diámetro interior es superior al diámetro del eje del rotor, y que se fijan a las caras laterales de la cubierta. N2 no depende de N1. Preferiblemente, dicha cubierta es un cilindro hueco en cuya interna pared interna hay un número N3 de agujeros, siendo el tamaño de los agujeros superior al tamaño de dichas bobinas magnetizantes para poder alojarlas, y siendo el diámetro interno de dicho cilindro hueco superior al diámetro exterior del rotor. Más preferiblemente, N3 es igual o superior a N1. Preferiblemente dicho disco ranurado es solidario con el eje de rotación. Dichas bobinas magnetizantes pueden ser de tipo solenoide, o pueden ser sustituidas total o parcialmente en imanes permanentes. Preferiblemente el disco se constituye a partir de una pieza de cobre sólida y contiene el eje de rotación. Dicho eje de rotación tiene un diámetro que es acomodadizo; dicho eje de rotación tiene un diámetro que es preferiblemente un medio del diámetro correspondiente del inducido. En el motor de la presente invención, el inductor, el inducido, la cubierta y las tapas, forman un solo conjunto para funcionar como un circuito magnético. Así, el motor electromagnético de la presente invención es un motor de inducción de flujo radial no uniforme y variable a voluntad, sobre un inducido de cobre sólido que a lo largo de su perímetro tiene practicadas ranuras longitudinales. El único consumo de energía eléctrica primaria del motor se limita al que necesitan las bobinas magnetizantes que conforman el estator. El inducido de cobre sólido con ranuras es de muy baja resistencia interior y se convierte en un potente imán en repulsión por la acción del campo magnetizante. Debido al bajo consumo, peso y dimensiones, en relación a su potencia mecánica, permite ser instalado en vehículos. Como se ha indicado, el motor de la presente invención en su realización preferente consta de varias partes bien diferenciadas que forman un solo conjunto: - la cubierta que permite alojar las bobinas magnetizantes que conforman el estator y, más preferiblemente, las tapas laterales; - el estator o conjunto de bobinas que producen los campos electromagnéticos; - el rotor, o inducido ranurado con su eje, de cobre sólido donde aparecen las corrientes inducidas; - más preferiblemente, las tapas laterales que evitan la dispersión de flujo; los soportes para alojar los rodamientos y fijar el eje del rotor, y - la base que permite unir todas las partes que se han mencionado a fin de conseguir un conjunto resistente. „ Entre las ventajas de la presente invención con respecto a la técnica anterior se indican a continuación las más esenciales, con carácter meramente enunciativo y no limitativo: 1. Alta potencia mecánica y bajo consumo. 2. Se reducen las dimensiones en relación a la misma potencia. 3. Control preciso de las revoluciones en ambos sentidos, incluso la parada del motor invirtiendo el campo magnetizante. 4. Fabricación sencilla. 5. Admite ser instalado en vehículos. Breve descripción de los dibujos A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. La figura 1 muestra vistas en planta, lateral y sección de la cubierta del motor de acuerdo con una realización preferida de éste. La figura 2 muestra una vista en perspectiva de la figura 1. La figura 3 muestra vistas en planta, lateral y sección de las bobinas magnetizantes del estator. La figura 4 es una vista en perspectiva de la figura 3. La figura 5 muestra vistas en planta, lateral y sección del rotor. La figura 6 es una perspectiva de la figura 5. La figura 7 muestra vistas en planta, lateral y sección de una de las "aspas" del inducido constituido por el rotor. La figura 8 es una perspectiva de la figura 7. La figura 9 muestra vistas lateral y sección de una de las tapas. La figura 9a muestra el detalle B de la tapa indicado en la figura 9. La figura 10 es una perspectiva de la figura 9. La figura 11 muestra vistas en planta, lateral y sección del soporte para rodamientos. La figura 12 es una perspectiva de la figura 11. La figura 13 muestra vistas en planta, lateral y sección de la base. La figura 14 es una perspectiva de la figura 13. La figura 15 muestra vistas en planta, lateral y sección de las tapas para los rodamientos. La figura 15a muestra el detalle A de la tapa de los rodamientos indicado en la figura 15. La figura 16 es una perspectiva de la figura 15. La-figura -17— muestra-vistas en planta, lateral y sección del motor en su conjunto. La figura 18 es una perspectiva de la figura 17. La figura 19 es el despiece del motor en perspectiva. La figura 20 muestra un esquema que ayuda a la comprensión del funcionamiento del motor de la invención.Description of the invention The invention relates to an electromagnetic induction motor according to claim 1. Preferred embodiments of the motor are defined in the dependent claims. It is an objective of the present invention to provide a motor of preferably industrial use, and designed to offer numerous and notable advantages over electric motors that are known in the current art, whether they are direct current or alternating current. Thus, the electromagnetic induction motor of the present invention comprises a cover, a stator, a rotor formed by an armature integral to a rotation axis, supports and a base. The stator comprises a number N1 of solenoid-type magnetizing coils arranged perimeter around the rotor, and the axis of said coils is parallel to the axis of rotation of the rotor. The rotor consists of a grooved disk of the same thickness as the length of said coils, said grooving consisting of a number N2 of radial grooves extending radially from the surface of the disk towards the axis of rotation, and longitudinally along the entire thickness of the disk, so that the rotor is like a turbine with blades of non-light material. Preferably said disk is constituted from a solid copper piece. Preferably, the motor comprises two covers consisting of two discs whose inner diameter is larger than the diameter of the rotor shaft, and which are fixed to the lateral faces of the cover. N2 does not depend on N1. Preferably, said cover is a hollow cylinder in whose internal internal wall there is a number N3 of holes, the size of the holes being greater than the size of said magnetizing coils to be able to accommodate them, and the internal diameter of said hollow cylinder being greater than the outside diameter of the rotor. More preferably, N3 is equal to or greater than N1. Preferably said grooved disk is integral with the axis of rotation. Said magnetizing coils can be of the solenoid type, or they can be totally or partially replaced in permanent magnets. Preferably the disk is constituted from a piece of solid copper and contains the axis of rotation. Said axis of rotation has a diameter that is easy-going; said axis of rotation has a diameter that is preferably a means of the corresponding diameter of the armature. In the motor of the present invention, the inductor, the armature, the cover and the covers form a single assembly to function as a magnetic circuit. Thus, the electromagnetic motor of the present invention is an induction motor of non-uniform and variable radial flux at will, on a solid copper armature that along its perimeter has longitudinal grooves. The only primary power consumption of the motor is limited to what the magnetizing coils that make up the stator need. The induced solid copper with grooves is of very low internal resistance and becomes a powerful magnet in repulsion due to the action of the magnetizing field. Due to the low consumption, weight and dimensions, in relation to its mechanical power, it can be installed in vehicles. As indicated, the engine of the present invention in its preferred embodiment consists of several distinct parts that form a single assembly: - the cover that allows to accommodate the magnetizing coils that make up the stator and, more preferably, the side covers; - the stator or set of coils that produce the electromagnetic fields; - the rotor, or grooved induced with its shaft, of solid copper where the induced currents appear; - more preferably, the side covers that prevent flow dispersion; the supports to accommodate the bearings and fix the rotor shaft, and - the base that allows joining all the parts mentioned in order to achieve a strong assembly. „Among the advantages of the present invention with respect to the prior art, the following are the most essential, with a purely enunciative and non-limiting nature: 1. High mechanical power and low consumption. 2. The dimensions are reduced in relation to the same power. 3. Precise control of the revolutions in both directions, including the engine stop reversing the magnetizing field. 4. Simple manufacturing. 5. Supports being installed in vehicles. BRIEF DESCRIPTION OF THE DRAWINGS A series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention that is presented as a non-limiting example thereof is described very briefly below. Figure 1 shows plan, side and section views of the engine cover according to a preferred embodiment thereof. Figure 2 shows a perspective view of Figure 1. Figure 3 shows plan, side and section views of the magnetizing coils of the stator. Figure 4 is a perspective view of Figure 3. Figure 5 shows plan, side and section views of the rotor. Figure 6 is a perspective of Figure 5. Figure 7 shows plan, side and section views of one of the "blades" of the armature constituted by the rotor. Figure 8 is a perspective of Figure 7. Figure 9 shows side views and section of one of the covers. Figure 9a shows the detail B of the cover indicated in Figure 9. Figure 10 is a perspective of Figure 9. Figure 11 shows plan, side and section views of the bearing support. Figure 12 is a perspective of Figure 11. Figure 13 shows plan, side and section views of the base. Figure 14 is a perspective of Figure 13. Figure 15 shows plan, side and section views of the bearing caps. Figure 15a shows the detail A of the bearing cover indicated in Figure 15. Figure 16 is a perspective of Figure 15. Figure -17- shows-views in plan, side and section of the motor as a whole . Figure 18 is a perspective of Figure 17. Figure 19 is the exploded view of the motor in perspective. Figure 20 shows a scheme that helps the understanding of the operation of the engine of the invention.
Descripción de una realización preferida de la invención Como se muestra en las figuras 1 y 2, la cubierta 10 del motor 1 de inducción de la presente invención, es un cilindro hueco en cuya pared perimetral interna 11 se practican agujeros 12 para alojar las bobinas magnetizantes 21 que conforman el estator 20 o inductor, mientras que el hueco central 13 de la cubierta será ocupado por el rotor 30 conformado por un inducido 32 o disco con ranuras y su eje 31 de rotación en una pieza sólida (véanse figuras 5 y 6). Dicha cubierta tiene un vaciado por revolución o ranura circular 14 en ambas secciones que corta por el punto más alto a los agujeros 12 donde se alojan las bobinas para hacer un surco y dar salida a los cables, que son trenzados y empotrados en el vaciado mencionado para su alimentación. Además esta cubierta se fija con tornillos a una base 50 (véase figurasDESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION As shown in Figures 1 and 2, the cover 10 of the induction motor 1 of the present invention is a hollow cylinder in whose inner perimeter wall 11 holes 12 are made to accommodate the magnetizing coils 21 that make up the stator 20 or inductor, while the central hollow 13 of the cover will be occupied by the rotor 30 formed by an armature 32 or disc with grooves and its axis 31 of rotation in a solid piece (see figures 5 and 6) . Said cover has a hollow by revolution or circular groove 14 in both sections that cuts through the highest point to the holes 12 where the coils are housed to make a groove and to give exit to the cables, which are braided and embedded in the mentioned hollow for your food In addition, this cover is fixed with screws to a base 50 (see figures
13 y 14), para hacer un conjunto unido y resistente. En las figuras 3 y 4 se muestra el estator 20, conformado por las bobinas magnetizantes 21 , que pueden ser de tipo solenoide con núcleo de aire para garantizar la extinción de los campos magnéticos con rapidez sin dejar residuos de imantación una vez interrumpido el suministro eléctrico en el caso de utilizar el motor con precisión en régimen variable de marcha. Si deseamos mantener constantes un número determinado de revoluciones a lo largo del tiempo, pueden utilizarse núcleos diferentes para aumentar la intensidad del campo y reducir el consumo, o también es posible utilizar ¡manes permanentes en sustitución de las bobinas de tipo solenoide, o un montaje mixto de imanes permanentes y bobinas. Las bobinas magnetizantes 21 se alojan en cada uno de los agujeros 12 practicados en la pared interna de la cubierta. Se fabrican preferentemente con hilo muy fino para aumentar la fuerza magnetomotriz con el mínimo consumo posible. . El rotor 30 se muestra en las figuras 5 (en alzado, planta, y vista lateral) y 613 and 14), to make a united and resistant set. In figures 3 and 4 the stator 20 is shown, formed by the magnetizing coils 21, which can be of solenoid type with air core to guarantee the extinction of the magnetic fields quickly without leaving residues of magnetization once the power supply has been interrupted in the case of using the motor with precision in a variable operating speed. If we want to keep a certain number of revolutions constant over time, different cores can be used to increase the intensity of the field and reduce the consumption, or it is also possible to use permanent hands in replacement of the solenoid type coils, or a mounting mixed permanent magnets and coils. The magnetizing coils 21 are housed in each of the holes 12 made in the inner wall of the cover. They are preferably manufactured with very fine yarn to increase the magnetomotive force with the minimum possible consumption. . The rotor 30 is shown in Figures 5 (in elevation, plan, and side view) and 6
(vista en perspectiva), y está formado por el inducido 32 que es un disco del mismo grosor que la longitud de las bobinas magnetizantes; se le realizan unos cortes que constituyen unas ranuras 32a que son radiales vistas desde sus respectivas secciones y-longitudinales-según-se-mir-a-a-lΘHarge-de -la-longitud-de-la -circunferencia exterior; además el rotor 30 contiene el eje 31 de rotación, formando ambos una pieza de cobre sólida; dicho eje de rotación tiene un diámetro que en este caso es una tercera parte del diámetro de la superficie del disco, pero que, en general, es acomodadizo a la aplicación concreta del motor. El eje 31 ha de llevar un tope 32b torneado para ajusfarlo contra los cojinetes y evitar vaivenes laterales. Los cortes o ranuras 32a, practicados en el disco inducido dan origen a lo que en apariencia son "aspas" 33 de una turbina (como muestra más en detalle en las figuras 7 y 8) y soportan las corrientes inducidas por el campo magnetizante. En las figuras 9 y 10 se muestran las tapas 60, que son discos que tienen un agujero central 61 para dejar salir el eje 31 del rotor 30, y se fijan a las caras laterales de la cubierta 10. La cara interior de las tapas dispone de un saliente circular en su borde externo 62 que sirve de tope contra la pared de la cubierta y para fijar las bobinas magnetizantes y los cables de las mismas y crear una cámara interior de aire para dejar libre el rotor. Con ellas se evita la dispersión de flujo. Los soportes 40 que contienen los rodamientos se muestran en las figuras 11 y 12. Se adaptan al tipo de rodamiento que se utilice para alojar el eje 31 de rotor 30, y se fijan a la base 50 al igual que la cubierta 10, a fin de conseguir un conjunto resistente. El que los rodamientos se sitúen fuera de las tapas es evitar la distorsión de los campos magnéticos generados en el interior de la cubierta. Si los rodamientos son de un material no magnético pueden ser soportados por las tapas 60, en este caso no serían necesarios los soportes ni la base. En las figuras 13 y 14 se muestra la base 50, donde se fijan la cubierta 10 y los soportes 40 de los rodamientos. Por su parte en las figuras 15, 15a y 16 se muestra una realización posible para las tapas 70 para los rodamientos. En las figuras 17, 18 y 19 se muestra una visión del motor 1 de la invención en su conjunto, así como un despiece del mismo, con los diferentes elementos que lo constituyen. A continuación se expone una explicación que ayuda a comprender el funcionamiento del motor, mientras que la figura 20 muestra un esquema que ayuda a visualizarlo. Al aplicar tensión a las bobinas inductoras éstas producen un campo magnético radial y perimetral no uniforme que aumenta en intensidad a medida que pasa el tiempo y abraza a todos los conductores del inducido dando lugar a las tensiones(perspective view), and is formed by the armature 32 which is a disk of the same thickness as the length of the magnetizing coils; cuts are made that constitute grooves 32a that are radial seen from their respective longitudinal sections according to the length of the length-of-the-outer-circumference; furthermore the rotor 30 contains the axis of rotation 31, both forming a piece of solid copper; said axis of rotation has a diameter that in this case is a third of the diameter of the surface of the disc, but which, in general, is accommodating to the specific application of the motor. The axle 31 must have a turning stop 32b to fit it against the bearings and avoid sideways swings. The cuts or grooves 32a, made in the induced disk give rise to what appear to be "blades" 33 of a turbine (as shown in more detail in Figures 7 and 8) and withstand the currents induced by the magnetizing field. In Figures 9 and 10 the covers 60 are shown, which are discs that have a central hole 61 to let the shaft 31 of the rotor 30 out, and are fixed to the lateral faces of the cover 10. The inner face of the covers has of a circular projection on its outer edge 62 that serves as a stop against the wall of the cover and to fix the magnetizing coils and the cables thereof and create an inner air chamber to free the rotor. With them the dispersion of flow is avoided. The supports 40 containing the bearings are shown in Figures 11 and 12. They are adapted to the type of bearing used to house the rotor shaft 31, and are fixed to the base 50 as well as the cover 10, in order of getting a tough set. The fact that the bearings are located outside the covers is to avoid distortion of the magnetic fields generated inside the cover. If the bearings are made of a non-magnetic material, they can be supported by the covers 60, in this case the supports and the base would not be necessary. In figures 13 and 14 the base 50 is shown, where the cover 10 and the bearings 40 of the bearings are fixed. On the other hand, figures 15, 15a and 16 show a possible embodiment for the covers 70 for the bearings. Figures 17, 18 and 19 show a view of the engine 1 of the invention as a whole, as well as an exploded view thereof, with the different elements that constitute it. Below is an explanation that helps to understand the operation of the engine, while Figure 20 shows a scheme that helps to visualize it. By applying voltage to the inductor coils they produce a non-uniform radial and perimeter magnetic field that increases in intensity as time passes and embraces all conductors of the armature giving rise to tensions
- inducidas - (-Ley-de -Faraday-)-que-erean un-despla-zamiento-de-cargas- hacia el eje (fuerza de Lorentz y regla de la mano izquierda) donde permanecen mientras actúa el campo magnetizante. En la condición mencionada los planos de todos los átomos que contienen los conductores del inducido quedan orientados en una matriz rectangular ordenada de columnas y filas por toda su superficie volumétrica. Los ejes de las columnas de átomos se sitúan perpendicularmente al eje del rotor. Cada átomo se convierte en un dipolo elemental o dominio magnético que se opone a la influencia del campo magnetizante (ley de Lenz). Las líneas de inducción de todos los electrones no desviados se suman entre sí produciendo un campo magnético resultante que se extiende a lo largo de todo el conductor en círculos concéntricos. Este efecto aparece en todos los conductores provocando la imantación total del inducido mientras los átomos están ordenados. El inducido presenta dos secciones magnéticas, un polo norte frente al polo norte inductor y un polo sur frente al polo sur inductor. El disco inducido tiene la forma de un volante de inercia imantado que gira en el seno de un campo magnético no uniforme. Los conductores que lo conforman tienen carga positiva por el abandono de los electrones libres. Ahora una carga positiva se desplaza en el seno del campo magnético no uniforme, los planos de todos los átomos siguen orientados en la misma dirección y sentido que al inicio del proceso, la fuerza impulsora continúa. Los cortes o ranuras que se practican al disco inducido, no solo suprime la corriente superficial que aparecería por causa del campo magnetizante que incide en su superficie metálica, sino que también reducen el calentamiento por efecto Joule que provocan las corrientes de Foucault o corrientes circulares en forma de torbellino. El inducido (que tiene la apariencia de estar formado por una sucesión de chapas aisladas con un barniz apropiado y superpuestas), ¡mita el comportamiento del núcleo laminado de un transformador aprovechando la energía magnética que lo atraviesa. Para evitar la dispersión de flujo se colocan dos tapas laterales contra la cubierta que cierran en un cuerpo las bobinas magnetizantes y el rotor. El par de arranque es muy fuerte porque el inducido tiene una resistencia interior muy baja. Puesto que inductor e inducido están construidos a base de cobre, siendo éste un material diamagnético, al interrumpir el suministro de corriente a las bobinas ¡nductoras se extinguen los campos magnéticos con gran rapidez sin dejan residuos de imantación; la estructura de todos los átomos vuelve a su estado natural y la fuerza de-giro-eesar Como se ha indicado, la figura 20 ayuda a visualizar el funcionamiento del motor cuando se ve sometido al flujo magnetizante. Puesto que los conductores son planos, sus caras son paralelas a la trayectoria parabólica de las líneas de flujo, mientras que su longitud es perpendicular a las mismas. Cuando entran en contacto con el flujo magnético, los electrones libres se desvían hacia el eje, mientras que los espines de los electrones de cada uno de los átomos dan origen a que las líneas de inducción se opongan al cambio, así en la cara superior del conductor el sentido de las líneas magnéticas que lo rodean es contrario al campo magnetizante y en esta región se debilita el mismo trayecto al conductor en el sentido de la fuerza según se marca en la figura, es decir hacia arriba. Las líneas magnéticas que rodean al conductor siguen el mismo sentido que las líneas magnetizantes en su cara inferior, el campo magnético en esta región queda fortalecido y repele el conductor en el mismo sentido de la fuerza que indica la flecha, es decir, hacia arriba. La combinación de los efectos mencionados es simultánea y da origen a una fuerza a lo largo del conductor que lo pone en movimiento (regla de la mano izquierda). El sentido de las líneas magnéticas que rodean al conductor y el desplazamiento de las cargas negativas hacia el eje viene representado por la regla de la mano derecha (el pulgar señala el sentido de las cargas hacia el eje y el resto de los dedos el sentido de las líneas de inducción). Para calcular la fuerza de repulsión que se desea en una aplicación determinada, hay que tener en cuenta; el volumen de cobre que vamos a introducir en el seno del campo magnético radial; la intensidad y velocidad de flujo al inicio del movimiento; y la intensidad de flujo y velocidad del disco que constituye el inducido cuando está en movimiento. El número de cargas libres que se pueden desplazar para un determinado inducido depende de la unidad de cantidad de sustancia del sistema internacional empleada en química, equivalente al número de átomos contenidos en doce gramos del isótopo de carbono de peso atómico doce. El flujo depende del número de espiras de las bobinas y de la intensidad de corriente que circula por ellas y ésta de la resistencia del hilo al calentamiento o a la máxima tensión que pueden soportar sin perder el efecto magnético. El flujo que atraviesa al inducido es la suma de los flujos individuales que proporcionan todas las -bobinas-que-compone-el-inductor. La rapidez y frecuencia en la variación de flujo depende de la constante de tiempo de las bobinas. El sentido del giro del rotor es reversible y dependerá del sentido que lleven las líneas de inducción. Esta característica se puede utilizar para frenar el motor. La potencia que entrega el motor y la precisión de giro se pueden controlar con la tensión que se suministra a las bobinas magnetizantes. Para ello es conveniente utilizar un autómata programable que asegure y mantenga las constantes de funcionamiento requeridas en cada caso y lo proteja. - induced - (-Faraday-Law -) - that emanate a-displacement-of-loads- towards the axis (Lorentz force and left hand rule) where they remain while the magnetizing field acts. In the aforementioned condition, the planes of all the atoms contained in the armature conductors are oriented in an ordered rectangular matrix of columns and rows throughout their volumetric surface. The axes of the columns of atoms are perpendicular to the axis of the rotor. Each atom becomes an elementary dipole or magnetic domain that opposes the influence of the magnetizing field (Lenz's law). The induction lines of all the non-deviated electrons add to each other producing a resulting magnetic field that extends along the entire conductor in concentric circles. This effect appears in all conductors causing the total magnetization of the armature while the atoms are ordered. The armature has two magnetic sections, a north pole in front of the north pole inductor and a south pole in front of the south pole inductor. The induced disk is in the form of a magnetized flywheel that rotates within a non-uniform magnetic field. The conductors that comprise it have a positive charge due to the abandonment of free electrons. Now a positive charge moves within the non-uniform magnetic field, the planes of all atoms remain oriented in the same direction and direction as at the beginning of the process, the driving force continues. The cuts or grooves that are made to the induced disk, not only suppresses the surface current that would appear due to the magnetizing field that affects its metal surface, but also reduce the heating by Joule effect caused by eddy currents or whirlpool circular currents. The armature (which has the appearance of being formed by a succession of insulated sheets with an appropriate and superimposed varnish), measures the behavior of the laminated core of a transformer taking advantage of the magnetic energy that passes through it. To avoid the dispersion of flow, two side covers are placed against the cover that close the magnetizing coils and the rotor in one body. The starting torque is very strong because the armature has a very low internal resistance. Since inductors and inductors are made of copper, this being a diamagnetic material, by interrupting the supply of current to the inductor coils, the magnetic fields extinguish very quickly without leaving magnetization residues; The structure of all atoms returns to its natural state and the force of spin-eesar As indicated, Figure 20 helps to visualize the operation of the motor when it is subjected to the magnetizing flow. Since the conductors are flat, their faces are parallel to the parabolic path of the flow lines, while their length is perpendicular to them. When they come into contact with the magnetic flux, the free electrons deviate towards the axis, while the spins of the electrons of each of the atoms give rise to the induction lines opposing the change, thus on the upper face of the The direction of the magnetic lines that surround the conductor is contrary to the magnetizing field and in this region the same path to the conductor is weakened in the sense of force as marked in the figure, that is, upwards. The magnetic lines surrounding the conductor follow the same direction as the magnetizing lines on its lower face, the magnetic field in this region is strengthened and repels the conductor in the same direction of the force indicated by the arrow, that is, upwards. The combination of the aforementioned effects is simultaneous and gives rise to a force along the driver that sets it in motion (left hand rule). The direction of the magnetic lines surrounding the driver and the displacement of the negative charges towards the axis is represented by the rule of the right hand (the thumb indicates the direction of the charges towards the axis and the rest of the fingers the direction of induction lines). To calculate the repulsive force that is desired in a given application, one must take into account; the volume of copper that we will introduce into the radial magnetic field; the intensity and flow rate at the beginning of the movement; and the intensity of flow and speed of the disc that constitutes the induced one when it is in movement. The number of free charges that can be displaced for a given armature depends on the unit of quantity of substance of the international system used in chemistry, equivalent to the number of atoms contained in twelve grams of the carbon isotope of atomic weight twelve. The flow depends on the number of turns of the coils and the intensity of current flowing through them and this of the resistance of the wire to heating or the maximum tension they can withstand without losing the magnetic effect. The flow through the armature is the sum of the individual flows that provide all-coil-composing-the-inductor. The speed and frequency in the flow variation depends on the time constant of the coils. The direction of rotation of the rotor is reversible and will depend on the direction of the induction lines. This feature can be used to brake the engine. The power delivered by the motor and the precision of rotation can be controlled with the voltage supplied to the magnetizing coils. For this, it is convenient to use a programmable automaton that ensures and maintains the operating constants required in each case and protects it.

Claims

REIVINDICACIONES
1.- Motor (1 ) de inducción electromagnética, que comprende una cubierta (10), un estator (20), un rotor (30) constituido por un inducido (32) solidario a un eje (31 ) de rotación, caracterizado porque el estator (20) comprende un número N1 de bobinas magnetizantes (21) dispuestas perimetralmente rodeando al inducido (32), y el eje de dichas bobinas es paralelo al eje (31) de rotación del rotor, el rotor (30) consiste en un disco ranurado (32) del mismo grosor que la longitud de dichas bobinas magnetizantes, consistiendo dicho ranurado en un número N2 de ranuras (32a) radiales que se extienden radialmente desde la superficie del disco hacia el eje (31 ) de rotación y longitudinalmente a lo largo de todo el grosor del disco.1.- Electromagnetic induction motor (1), comprising a cover (10), a stator (20), a rotor (30) constituted by an armature (32) integral with a rotation axis (31), characterized in that the Stator (20) comprises a number N1 of magnetizing coils (21) arranged perimeter around the armature (32), and the axis of said coils is parallel to the axis (31) of rotation of the rotor, the rotor (30) consists of a disk grooved (32) of the same thickness as the length of said magnetizing coils, said grooving consisting of a number N2 of radial grooves (32a) extending radially from the surface of the disk towards the axis (31) of rotation and longitudinally along of the entire thickness of the disc.
2.- Motor según la reivindicación 1 , caracterizado porque comprende dos tapas2. Motor according to claim 1, characterized in that it comprises two covers
(-60)-que-eonsisten en dos discos cuyo diámetro interior (61) es superior al diámetro del eje (31 ) de rotación del rotor (30).(-60) -which consist of two discs whose inner diameter (61) is greater than the diameter of the shaft (31) of rotation of the rotor (30).
3.- Motor según cualquiera de las reivindicaciones anteriores, caracterizado porque dicha cubierta (10) es un cilindro hueco en cuya interna pared interna (11) hay un número N3 de agujeros (12), siendo el tamaño de los agujeros superior al tamaño de dichas bobinas magnetizantes (21) para poder alojarlas, y siendo el diámetro interno de dicho cilindro hueco superior al diámetro exterior del rotor (30).3. Motor according to any of the preceding claims, characterized in that said cover (10) is a hollow cylinder in whose internal internal wall (11) there is a number N3 of holes (12), the size of the holes being greater than the size of said magnetizing coils (21) to accommodate them, and the internal diameter of said hollow cylinder being greater than the outer diameter of the rotor (30).
4.- Motor según la reivindicación 3, caracterizado porque N3 es igual o superior a4. Motor according to claim 3, characterized in that N3 is equal to or greater than
N1.N1
5.- Motor según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho disco ranurado (32) es solidario con el eje (31) de rotación. 5. Motor according to any of the preceding claims, characterized in that said slotted disc (32) is integral with the rotation axis (31).
6.- Motor según cualquiera de las reivindicaciones anteriores, caracterizado porque dichas bobinas magnetizantes (21) son de tipo solenoide.6. Motor according to any of the preceding claims, characterized in that said magnetizing coils (21) are of the solenoid type.
7.- Motor según cualquiera de las reivindicaciones 1-5, caracterizado porque dichas bobinas magnetizantes (21 ) consisten total o parcialmente en imanes permanentes. 7. Motor according to any of claims 1-5, characterized in that said magnetizing coils (21) consist totally or partially of permanent magnets.
8.- Motor según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho disco se constituye a partir de una pieza de cobre sólida y contiene el eje8. Motor according to any of the preceding claims, characterized in that said disk is constituted from a solid copper piece and contains the shaft
(31) de rotación. (31) of rotation.
PCT/ES2004/000053 2004-02-06 2004-02-06 Electromagnetic induction motor WO2005076435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/000053 WO2005076435A1 (en) 2004-02-06 2004-02-06 Electromagnetic induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/000053 WO2005076435A1 (en) 2004-02-06 2004-02-06 Electromagnetic induction motor

Publications (1)

Publication Number Publication Date
WO2005076435A1 true WO2005076435A1 (en) 2005-08-18

Family

ID=34833883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000053 WO2005076435A1 (en) 2004-02-06 2004-02-06 Electromagnetic induction motor

Country Status (1)

Country Link
WO (1) WO2005076435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233421A1 (en) * 2011-12-19 2015-08-20 Siemens Aktiengesellschaft Magnetic radial bearing with a rotor laminated in a star-shaped manner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB214536A (en) * 1923-08-28 1924-04-24 Otis Elevator Co Improvements in rotors for squirrel-cage alternating current electric motors
GB280858A (en) * 1926-11-17 1928-11-05 Schneider & Cie An improved synchronous electric motor
US4217515A (en) * 1978-02-14 1980-08-12 Westinghouse Electric Corp. Embedded field winding end turns for dynamoelectric machine rotors
EP0314860A1 (en) * 1987-11-04 1989-05-10 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
US5952757A (en) * 1995-12-04 1999-09-14 General Electric Company Line start permanent magnet motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB214536A (en) * 1923-08-28 1924-04-24 Otis Elevator Co Improvements in rotors for squirrel-cage alternating current electric motors
GB280858A (en) * 1926-11-17 1928-11-05 Schneider & Cie An improved synchronous electric motor
US4217515A (en) * 1978-02-14 1980-08-12 Westinghouse Electric Corp. Embedded field winding end turns for dynamoelectric machine rotors
EP0314860A1 (en) * 1987-11-04 1989-05-10 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
US5952757A (en) * 1995-12-04 1999-09-14 General Electric Company Line start permanent magnet motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233421A1 (en) * 2011-12-19 2015-08-20 Siemens Aktiengesellschaft Magnetic radial bearing with a rotor laminated in a star-shaped manner

Similar Documents

Publication Publication Date Title
ES2533178T3 (en) Electric disc rotor motor and electric bicycle or electric assistance bicycle with electric disc rotor motor
ES2894660T3 (en) Electromagnetic motor or generator with two rotors and four stators and integrated cooling system
ES2277614T3 (en) ROTARY ELECTRIC MACHINE EQUIPPED WITH FIELD CONTROL COIL.
JP4504853B2 (en) Motor structure
RU2396675C1 (en) Electric machine (versions)
US9515525B2 (en) Electric motor
KR20080045223A (en) Dc induction electric motor generator
ES2217744T3 (en) IMPROVED ELECTRIC MOTOR.
US6841916B2 (en) Axial flux electromotive generator having rotor magnets and shaped core assembly
US6897595B1 (en) Axial flux motor with active flux shaping
ES2282205T3 (en) ACTUATOR ABLE TO ROTATE.
ES2618261T3 (en) Electric machine
WO2005076435A1 (en) Electromagnetic induction motor
ES2774081T3 (en) Rotor of a Waveform Monoblock Magnet Axial Flux Electromagnetic Motor
ES2542417T3 (en) Electromagnetic linear drive device comprising a mobile element provided with a multitude of magnetized masses
JP5731055B1 (en) Outer rotor generator
JP2020171072A (en) Rotary electric machine
RU84639U1 (en) ELECTRIC MACHINE
US11152842B2 (en) Electromagnetic motor and generator
ES2207370B1 (en) RADIAL AND VARIABLE ELECTROMAGNETIC INDUCTION MOTOR ON SOLID COPPER INDUCTION WITH SLOTS.
US20090322177A1 (en) Electromagnetic actuator
KR100613495B1 (en) A Rotator for Direct Current Motor with a Commutatorless
KR20050112619A (en) Generator having high efficiency
ES1262089U (en) DYNAMO (Machine-translation by Google Translate, not legally binding)
JP3691834B2 (en) Eccentric motor and fluid pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase