WO2005060058A1 - Semiconductor laser and its manufacturing method - Google Patents

Semiconductor laser and its manufacturing method Download PDF

Info

Publication number
WO2005060058A1
WO2005060058A1 PCT/JP2004/018703 JP2004018703W WO2005060058A1 WO 2005060058 A1 WO2005060058 A1 WO 2005060058A1 JP 2004018703 W JP2004018703 W JP 2004018703W WO 2005060058 A1 WO2005060058 A1 WO 2005060058A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
grating
semiconductor laser
active
region
Prior art date
Application number
PCT/JP2004/018703
Other languages
French (fr)
Japanese (ja)
Inventor
Kiichi Hamamoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005516315A priority Critical patent/JPWO2005060058A1/en
Publication of WO2005060058A1 publication Critical patent/WO2005060058A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1203Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers over only a part of the length of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts

Definitions

  • the present invention relates to a semiconductor laser, and more particularly to a dynamic multimode optical interference (active MMI) semiconductor laser and a method for manufacturing the same.
  • active MMI dynamic multimode optical interference
  • optical communication technology that enables high-speed, large-capacity communication is not only a basic system (meaning between metropolitan areas) but also a so-called metro system (meaning urban areas) and access. It has also been applied to areas such as systems (meaning between homes and buildings). Metro / access systems are expected to be used in large quantities (for example, the number of subscribers is expected to increase due to penetration of optical communication technologies such as “Fiber to the Home (FTTH)” into access systems).
  • FTTH Fiber to the Home
  • a transmission light source with low cost and low power consumption is required.
  • transmission light sources with high light output performance are also required. For example, in the case of a metro system, realizing high light output performance eliminates the need to install a repeater along the transmission path, and allows the entire system to be constructed at low cost.
  • DFB-LD distributed feedback semiconductor laser
  • This active MMI semiconductor laser is a semiconductor laser that outputs single-mode light.
  • An active waveguide including an active layer is composed of a 1X1-MMI waveguide and a pair of single-mode waveguides connected to both ends. (A single-mode waveguide designed to propagate only the fundamental mode).
  • the 1X1_MMI waveguide is designed to perform “1X1 operation” based on the MMI theory. The following is a brief explanation of the MMI theory.
  • the MMI theory is known as a theory for designing a 1XN or NXN branching / merging passive optical waveguide (for example, “Lucas B. Soldano”, “Journal of Lightware Technology” Ichi “, Vol. 13, No. 4, pp. 615-627, 1995).
  • This MMI theory (the derived MMI length LTT is given by the following equation.
  • L is the length of the MMI region
  • W1 is the width of the MMI region
  • Nr is the refractive index of the waveguide region
  • Nc is the refractive index of the cladding region
  • is the wavelength of the incident light. ⁇ is “0” in the ⁇ mode and “1” in the axis mode.
  • the MMI region operates as a 1 XN optical waveguide.
  • the width of the waveguide can be increased (the area of the active layer can be increased).
  • the element resistance can be reduced and low power consumption characteristics can be realized, as compared with an existing semiconductor laser having the same element length composed only of a single mode waveguide. For this reason, if an active MMI-type semiconductor laser can realize a structure capable of obtaining stable oscillation at a single wavelength, it is considered promising as a future transmission light source for metro / access systems.
  • JP-A-2003-46190 As a semiconductor laser having an MMI waveguide and capable of oscillating at a single wavelength, for example, there is a semiconductor laser described in JP-A-2003-46190.
  • an active region (light emitting region) is constituted only by the MMI waveguide, and a grating is provided in a passive region behind the active region.
  • Japanese Patent Application Laid-Open No. 2003-46190 describes a structure in which an external grating is provided behind an active region.
  • the DFB-LD described in the above non-patent document can oscillate at a single wavelength, but since the waveguide structure is formed of a narrow single-mode waveguide, There's a problem.
  • the device resistance can be reduced by increasing the area of the active layer (light-emitting layer).
  • the active layer light-emitting layer
  • increasing the element length reduces the element resistance S
  • the force S that can be applied and an increase in the element length lead to a decrease in the element yield (production volume), which increases the cost.
  • the DFB-LD has a problem that it cannot achieve the low power consumption characteristics and the high optical output performance required for the transmission light source of the metro / access system.
  • the area of the active layer can be increased, so that low power consumption characteristics and high light required for the transmission light source of the Metro Z access system are required. Output performance can be achieved, but there is a problem that stable oscillation at a single wavelength cannot be obtained.
  • the active MMI semiconductor laser it is conceivable to provide a grating near the active layer like a DFB-LD in order to perform single-wavelength oscillation.
  • a grating near the active layer like a DFB-LD in order to perform single-wavelength oscillation.
  • the main light emitting region is composed of an MMI waveguide
  • there are a plurality of different propagation modes in the MMI waveguide so even if a grating is simply provided near the active layer, stable single-wavelength oscillation can be achieved. It is difficult to achieve.
  • a grating is provided in the passive waveguide region connected to the MMI waveguide, so that a passive region is newly integrated in addition to the active region for light emission.
  • a passive region is newly integrated in addition to the active region for light emission.
  • light loss in the passive region was unavoidable, and the structure was not suitable for increasing the output. It is necessary to form the passive region and the active region in the same device, which is disadvantageous in terms of cost reduction.
  • the same problem occurs in the structure in which the external grating is provided.
  • An object of the present invention is to solve the above-mentioned problems, obtain low power consumption characteristics and high optical output performance required for a transmission light source of a metro / access system, and perform stable single-wavelength oscillation. It is to provide a semiconductor laser which can be used.
  • Another object of the present invention is to provide a method of manufacturing a semiconductor laser capable of manufacturing such a semiconductor laser at a high yield at low cost.
  • Another object of the present invention is to provide an optical communication module including such a semiconductor laser.
  • the semiconductor laser of the present invention is characterized in that at least one multimode interference waveguide
  • the active waveguide is provided in a part of the active waveguide. It has a grating to select a single wavelength from the propagating oscillation light.
  • a single wavelength (single-axis mode) of the oscillating light propagating through the active waveguide is selected by the grating, so that stable laser oscillation at a single wavelength is possible. Therefore, by applying this structure, an active MM type semiconductor laser capable of single-wavelength oscillation can be realized.
  • an active waveguide including a multi-mode interference waveguide since the element resistance can be reduced by increasing the area of the active layer, the same element length consisting of only a single mode waveguide is used. Power consumption characteristics can be greatly improved compared to existing semiconductor lasers. Therefore, it is possible to achieve low power consumption characteristics required for the transmission light source of the Metro Z access system.
  • the kink of the DFB-LD (non-linearity in light output vs. operating current characteristics) is a cause. That is, the center wavelength shift of the active layer itself due to the current injection hardly occurs. For this reason, stable single-wavelength oscillation can be achieved even with a high injection current, thereby realizing high output characteristics.
  • the grating may be provided in the single-mode waveguide. According to this configuration, a single wavelength is selected in the single mode waveguide, and stimulated emission occurs even in the multimode interference waveguide for the selected single wavelength.
  • the grating width should be within 2 times the width of the single-mode waveguide. According to this configuration, among a plurality of transverse modes propagating in the multimode interference waveguide, a single transverse mode can be reflected with respect to the center wavelength of the grating, thereby achieving stable single-wavelength operation. Is done. If the grating width exceeds twice the width of the single-mode waveguide, grating reflection occurs for each transverse mode propagating in the multi-mode interference waveguide, resulting in a stable reflection. It is relatively difficult to obtain single-wavelength oscillation.
  • the grating may be provided over the entire length of the active waveguide, and a phase adjustment region may be provided in a portion of the grating located in the middle of the active waveguide.
  • the phase of the grating is inverted before and after the phase adjustment region, so that the gain difference between the single transverse mode selected by the grating and the other modes is sufficiently large. It becomes possible to take. Therefore, it is possible to realize a single wavelength oscillation at a high yield.
  • a feature of the optical communication module of the present invention is that any one of the semiconductor lasers described above and a circuit for driving the semiconductor laser are housed therein.
  • the method for manufacturing a semiconductor laser according to the present invention includes a step of forming a grating region having a width wider than the width of the single mode waveguide in a region where the single mode waveguide is formed on the semiconductor substrate. And etching the formed grating region into the shape of an active waveguide. According to this manufacturing method, among the above-described semiconductor lasers of the present invention, a semiconductor laser having a structure in which a grating is provided in a single-mode waveguide can be manufactured with high yield and low cost.
  • the width of the single-mode waveguide is not less than twice the width of the single-mode waveguide in the region where the active waveguide is formed on the semiconductor substrate. Forming a grating region having a width over the entire length of the active waveguide; and etching the formed grating region into the shape of the active waveguide. According to this manufacturing method, of the above-described semiconductor lasers of the present invention, it is possible to manufacture a semiconductor laser having a structure in which a grating is provided in a multimode interference waveguide at a low cost with good yield.
  • an active MMI semiconductor laser capable of performing stable single-wavelength oscillation is realized, and low power consumption characteristics and high output required for the transmission light source of the Metro Z access system are achieved. The effect that characteristics can be achieved is produced.
  • FIG. 1A is a schematic diagram when an active MMI semiconductor laser according to a first embodiment of the present invention is viewed from above.
  • FIG. 1B is a cross-sectional view taken along a dashed-dotted line ⁇ _ ⁇ ′ in FIG. 1A.
  • FIG. 1C is a cross-sectional view taken along a dashed-dotted line ⁇ —B ′ in FIG. 1A.
  • FIG. 2 is a schematic view showing a cross-sectional structure of an active layer of the active semiconductor laser shown in FIG. 1.
  • FIG. 3A is a diagram for explaining a manufacturing step of the active semiconductor laser shown in FIGS. 1A to 1C, and is a top view of a grating formation region.
  • FIG. 3D is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after the MO-VPE step.
  • FIG. 3C is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A to 1C, and is a top view after the formation of a mask for forming a mesa.
  • FIG. 3D is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after the mesa is manufactured.
  • FIG. 3A is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after the MO-VPE recrystallization growth step.
  • FIG. 3F is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after electrodes are formed.
  • FIG. 4 ⁇ is a schematic diagram of an active type semiconductor laser according to a second embodiment of the present invention when viewed from above.
  • FIG. 4 ⁇ is a cross-sectional view taken along a dashed-dotted line ⁇ _ ⁇ ′ in FIG. 4 ⁇ .
  • FIG. 4C is a sectional view taken along dashed-dotted line ⁇ —B ′ in FIG. 4 ⁇ .
  • FIG. 5 is a schematic diagram for explaining the grating region width of the active semiconductor laser shown in FIGS. 4A to 4C.
  • FIG. 6I A third embodiment of the active ⁇ semiconductor laser according to the present invention It is a schematic diagram when it sees.
  • FIG. 6B is a sectional view taken along dashed line AA ′ of FIG. 6A.
  • FIG. 6C is a sectional view taken along dashed line BB ′ in FIG. 6A.
  • FIG. 7A is a schematic diagram for explaining a grating region width of the active MMI type semiconductor laser shown in FIG. 6C.
  • FIG. 1A is a schematic diagram of an active MMI semiconductor laser according to a first embodiment of the present invention as viewed from above.
  • This active MMI semiconductor laser includes an active layer.
  • the active waveguide structure includes a 1 ⁇ 1-MMI waveguide region 111 and a pair of single mode waveguide regions 112 and 113 provided at both ends thereof.
  • An end face of the single mode waveguide area 112 opposite to the side connected to the 1X1-MMI waveguide area 111 is a front end face of the element (hereinafter, simply referred to as a front end face), The laser light is emitted from here.
  • An antireflection film is provided on the front end face (cleavage face).
  • the end surface of the single mode mode waveguide region 113 opposite to the side connected to the 1 ⁇ 1-MMI waveguide region 111 is an end surface on the rear side of the element (hereinafter, simply referred to as a rear end surface).
  • a high reflection film is provided on the rear end face.
  • the front end face provided with the anti-reflection film and the rear end face provided with the high reflection film constitute reflectors before and after the laser resonator.
  • the element length is about 600 zm
  • the length of the single mode waveguide region 112 is about 300 ⁇ m
  • the length of the 11 1 1 1 waveguide region 111 is about 230 111.
  • the waveguide width of the 1 ⁇ 1-MMI waveguide region 111 is about 9 zm
  • the waveguide widths of the single-mode waveguide regions 112 and 113 are both about 2 ⁇ m.
  • FIG. 1B schematically shows a cross-sectional structure taken along a dashed line AA ′ of FIG. 1A.
  • This cross section is obtained by cutting the single mode waveguide region 112 in a direction intersecting the longitudinal direction of the device.
  • the waveguide portion of the single mode mode waveguide region 112 is formed on an n-InP semiconductor substrate 101 by forming an n-InGaAsP guide layer 102, an n-InP cladding layer 103, an active layer (light emitting layer) 104, and a p-InP cladding layer 105.
  • a current block layer in which a p-InP current block layer 131 and an n-InP current block layer 132 are sequentially stacked is formed on both sides of the mesa structure. Is formed.
  • the active layer 104 has an existing structure that is well known for semiconductor lasers. For example, as shown in FIG.
  • the structure is such that an InGaAsP / InGaAsP-MQW (multiple quantum well) layer 109 is sandwiched between InGaAsP-SCH (separated confinement heterostructure) layers 108 from above and below.
  • P _inp cladding layer 106, p-InGaAs contact layer 107, electrodes 135 are sequentially stacked.
  • an electrode 136 is formed on the back surface of the n-InP semiconductor substrate 101.
  • FIG. 1C schematically shows a cross-sectional structure taken along a dashed-dotted line ⁇ _ ⁇ ′ in FIG. 1A.
  • This cross section is composed of the 1 ⁇ 1-MMI waveguide region 111 and the waveguide portions of the single mode waveguide regions 112 and 113. It is cut along the longitudinal direction of the child.
  • a grating 120 having periodic irregularities is formed at the interface between the n-InP semiconductor substrate 101 and the n-InGaAsP guide layer 102 over the longitudinal direction.
  • the normalized coupling constant (kL) by the grating 120 is about 2.
  • the power grating 120 having the same laminated structure as the single mode waveguide region 112 is not formed.
  • the mesa structure limited by the current blocking layer is applied.
  • a current flows through the active layer 104 at the center of the portion. If the current is less than the threshold current, spontaneous emission and absorption occur. If the current exceeds the threshold current (the stimulated emission exceeds the absorption), the laser is ready for oscillation.
  • the light amplified by stimulated emission is, according to the MMI theory, a force that propagates as multi-mode light in the 1 ⁇ 1-MMI waveguide region 111.
  • the light propagates as single mode light.
  • a single wavelength is selected by the grating 120, and one laser oscillates at the selected single wavelength.
  • the selected single wavelength is a wavelength at which the reflectance at the grating 120 is maximized, and can be arbitrarily set by adjusting the interval between the gratings 120.
  • a part of the laser light oscillated at a single wavelength propagates in the rear 1 ⁇ 1—MMI waveguide region 111, further propagates in the single mode waveguide region 113 behind it, and reaches the rear end face. To reach.
  • the single-mode light having the single wavelength that has reached the rear end face is reflected there, propagates again in the single-mode waveguide region 113 and the 1 ⁇ 1 MMI waveguide region 111, and then enters the single-mode waveguide region 112. It reaches and is emitted as laser light from the front end face.
  • the single-wavelength light selected by the single-mode waveguide 112 undergoes stimulated emission even in the 1 ⁇ 1 MMI waveguide region 111, so that stable laser oscillation at a single wavelength is achieved. Operation is realized.
  • the active waveguide has a structure including the 1 ⁇ 1-MMI waveguide region 111, the following advantages are provided in addition to the above features. (1) Since the element resistance can be reduced by increasing the waveguide width (enlarging the area of the active layer), the existing half of the same element length composed of only a single mode waveguide can be used. It has excellent low power consumption characteristics as compared to the semiconductor laser.
  • FIGS. 3A to 3F show a series of manufacturing steps of the active MMI semiconductor laser shown in FIGS. 1A to 1C.
  • FIGS. 3A and 3C are schematic views of the waveguide viewed from the upper surface side
  • FIGS. 3B, 3D, and 3F are cross-sectional views of the waveguide (corresponding to the cross-section taken along a dashed line A-A 'in FIG. 1A). is there.
  • a grating 120 is formed on a part of the n-InP semiconductor substrate 101 by an electron beam exposure method and a usual wet etching method.
  • the formation range of the grating 120 is a range including the single mode waveguide region 112, and the width thereof (in the width direction of the waveguide) is wider than the width of the single mode waveguide region 112.
  • the n_InGaAsP guide layer 102 and n-InP are formed on the n-InP semiconductor substrate 101 on which the grating 120 is formed by metal organic chemical vapor deposition (MO-VPE).
  • MO-VPE metal organic chemical vapor deposition
  • a cladding layer 103, an active layer 104, and a p_InP cladding layer 105 are sequentially formed.
  • a Si ⁇ film is deposited on the entire surface by thermal CVD, and a Si ⁇ mask 130 is formed by using ordinary photolithography and reactive ion etching (RIE). Form.
  • RIE reactive ion etching
  • a mesa is formed using an SiO mask 130 by an inductively coupled plasma (ICP) method.
  • ICP inductively coupled plasma
  • the surface of the n-InP semiconductor substrate 101 is also etched, so that the region of the grating 120 coincides with the single mode waveguide region 112.
  • a p-InP current blocking layer 131 and an n_InP current blocking layer 132 are formed around the mesa using the M ⁇ VPE method, and the Si ⁇ mask remaining on the mesa is formed.
  • an electrode 135 is formed on the upper surface by an electron beam evaporation method, and the back surface of the n-InP semiconductor substrate 101 is polished to form an electrode 136.
  • a plurality of laser elements are formed on the wafer in accordance with the above-described fabrication procedure of Figs. 3A and 3F.
  • a laser element having a structure as shown in FIGS. 1A to 1C is obtained.
  • the rear end face and the front end face of the laser element are respectively formed.
  • an anti-reflection film is formed on the front end face and a high reflection film is formed on the rear end face, respectively, and the manufacture of the device is completed.
  • the grating is directly provided in the active region, and the process of separately integrating the passive region as in a conventional semiconductor laser (see JP-A-2003-46190) is performed. Since it does not include it, it is possible to manufacture laser devices at low cost with good yield.
  • the waveguide structure and the method of manufacturing the same according to the present embodiment described above are merely examples, and the configuration and procedure thereof can be changed as appropriate.
  • the force S using the M ⁇ VPE method as the crystal growth method and for example, a molecular beam growth method (MBE method) may be used instead.
  • MBE method molecular beam growth method
  • the RIE method which is not limited to the ICP method, can be applied to the mesa formation process.
  • the grating 120 is provided on the surface of the n_InP semiconductor substrate 101 under the active layer 104, but the present invention is not limited to this structure. ,. If stable single wavelength oscillation can be obtained, grating 1 20 may be provided in another part. As a specific forming portion of the grating 120, for example,
  • an n-InGaAs guide layer is provided between the p-InP clad layer 105 and the p-InP clad layer 106, and between the n-InGaAs guide layer and the p-InP clad layer 105 or the p-InP clad layer 106. It is also conceivable to provide a grating 120 in the structure.
  • the grating 120 may be formed over the entire length of the single mode waveguide region 112 or may be formed in a part of the single mode waveguide region 112.
  • the grating 120 may be formed in the single mode waveguide region 113 instead of the single mode waveguide region 112, or may be formed in both the single mode waveguide regions 112 and 113. .
  • FIG. 4A is a schematic diagram when an active MMI semiconductor laser according to a second embodiment of the present invention is viewed from above.
  • 4B is a cross-sectional view taken along a dashed-dotted line AA ′ in FIG. 4A
  • FIG. 4C is a cross-sectional view taken along a dashed-dotted line ⁇ _ ⁇ ′ in FIG. 4A.
  • the active ⁇ ⁇ ⁇ ⁇ ⁇ semiconductor laser of the present embodiment also has an active waveguide including an active layer provided in a 1 ⁇ 1 ⁇ ⁇ waveguide region 111 and at both ends thereof.
  • the waveguide structure is basically the same as that of the first embodiment described above except that the formation portion of the grating 120 is different. Is the same as
  • the element length is about 600 zm
  • the single-mode waveguide areas 112 and 113 have a waveguide length of about Sl85 zm and a width of about 2 m.
  • the length of the 1 ⁇ 1—MMI waveguide region 111 is about 230 ⁇ m, and the width is about 9 ⁇ m.
  • the grating 120 is formed on the surface of the n-InP semiconductor substrate 101 below the active layer 104, from the rear end face to the front end face.
  • a ⁇ ⁇ 4 phase adjustment region 121 is formed between the rear end surface and the front end surface of the grating 120.
  • the phase adjustment region 121 is obtained by shifting the pitch of the grating 120 by / 4, and the phase of the grating 120 is inverted with the ⁇ / 4 phase adjustment region 121 interposed therebetween.
  • the width of the grating 120 is the same as the width of these waveguides (about 2 zm).
  • the width of the grating 120 is about 3 xm, and the normalized coupling constant (kL) is about 1. Note that an anti-reflection film is provided on both the rear end face and the front end face.
  • the grating 120 is formed at the waveguide center of the 1 ⁇ 1-MMI waveguide region 111, and the grating width is also the single-mode waveguides 112 and 113 (these are , which is equivalent to a single transverse mode waveguide). According to this structure, among the transverse modes propagating in the 1 ⁇ 1-M Ml waveguide region 111, a single transverse mode can be reflected with respect to the grating center wavelength, so that it is stable. A single wavelength operation is realized.
  • a ⁇ / 4 phase adjustment region 121 is formed in the resonator, and the phase of the grating 120 is inverted with the / 4 phase adjustment region 121 interposed therebetween. Accordingly, it is possible to make the gain difference between the so-called main and sub-modes sufficiently large. Thus, single-wavelength oscillation with a high yield can be realized. Other advantages are the same as those of the first embodiment.
  • the active ⁇ -type semiconductor laser of the present embodiment also basically has a method of forming the force grating 120 that can be manufactured by the steps shown in FIGS. 3A to 3F according to the first embodiment. This is different from the case (process in Fig. 3 ⁇ ). That is, in the present embodiment, as shown in FIG. As described above, the grating 120 is formed on the surface of the n-InP semiconductor substrate 101 in the region where the active waveguide is formed, over the entire length of the active waveguide.
  • the width A of the grating 120 is set to be equal to or more than the waveguide width B (same as the waveguide width of the single mode waveguide 113) of the single mode waveguide 112 to be formed in a later step and within twice the waveguide width B. .
  • the waveguide width B of the single mode waveguide 112 is about 2 zm
  • the width A of the grating 120 is about 3 zm.
  • the width A of the grating 120 be sufficiently larger than the waveguide width B.
  • the steps shown in FIGS. 3B to 3F are performed. Then, the rear end face and the front end face of the laser element are formed by cleavage, and an antireflection film is formed on both end faces, thereby completing the manufacture of the element. Thus, a laser device having the structure shown in FIGS. 4A and 4C is obtained.
  • a molecular beam growth method MBE method
  • the RIE method can be used instead of the ICP method.
  • the formation position of the grating 120 can be changed in a range where stable single-wavelength oscillation can be obtained.
  • the grating 120 may be provided at any of the positions a) to d) described in the first embodiment.
  • grating 120 is 1 X 1-M
  • FIG. 6A is a schematic diagram when an active MMI semiconductor laser according to a third embodiment of the present invention is viewed from above.
  • FIG. 6B is a cross-sectional view taken along a dashed-dotted line A—A ′ in FIG.
  • FIG. 6C is a sectional view taken along dashed line BB ′ in FIG. 6A.
  • the active MMI semiconductor laser of the present embodiment has the 1 ⁇ 1-MMI waveguide region 111 in the structure of the second embodiment described above, One 1X1-MMI waveguide region llla, 111b is replaced by a single mode waveguide region 114 connecting these.
  • the other parts are basically the same as those shown in FIGS. 4A to 4C.
  • the element length is about 600 / im.
  • the single-mode waveguide regions 112 and 113 both have a waveguide length of about 40 xm and a width of about 2 zm.
  • Each of the lXl_MMI waveguide regions llla and 11 lb has a waveguide length of about 230 ⁇ m and a width of about 9 xm.
  • the length of the single mode waveguide region 114 is about 60 ⁇ m and the width is about 2 ⁇ m.
  • the grating 120 is formed on the surface of the n_InP semiconductor substrate 101 under the active layer 104 and extends from the rear end face to the front end face. Have been.
  • the ⁇ 4 phase adjustment region 121 is obtained by shifting the pitch of the grating 120 by ⁇ / 4, and the phase of the grating 120 is inverted with the ⁇ / 4 phase adjustment region 121 interposed therebetween.
  • the width of the grating 120 is the same as the width of these waveguides (about 2 ⁇ ).
  • the single mode waveguide region 112 The width is set to within twice (about 4 / im) the width of the waveguide of 113.
  • the width of the grating 120 is about 3 ⁇
  • the normalized coupling constant (kL) is about 1. Note that an antireflection film is provided on both the rear end face and the front end face.
  • the grating 120 is formed at the center of the waveguide in the 1 ⁇ 1—MMI waveguide region llla, 1 lib, and the force of the grating is the same as that of the single mode waveguide 112 —
  • the width is set to within twice the width of the 114 waveguide. Therefore, among the transverse modes propagating in the 1X1-MMI waveguide regions llla and 111b, a single transverse mode can be reflected with respect to the center wavelength of the grating, thereby achieving a stable single-wavelength operation.
  • Other advantages are the same as those of the first and second embodiments described above.
  • the active MMI semiconductor laser of the present embodiment also basically has a force 1 ⁇ 1 MMI waveguide region and grating that can be manufactured by the steps shown in FIGS. 3A to 3F.
  • the region in which the metal is formed is different from the case of the first and second embodiments described above (the steps of FIGS. 3A and 5A). That is, in the present embodiment, as shown in FIG. 7, the grating 120 includes the 1 ⁇ 1-MMI waveguide regions ll la and 111b and the sinal mode waveguide region 112 114 on the surface of the n-InP semiconductor substrate 101. In the region where the active waveguide is formed, it is formed over the entire length of the active waveguide.
  • the width of the grating 120 is set to be equal to or larger than the waveguide width of the single mode waveguides 112 to 114 formed in a later step and equal to or smaller than twice the waveguide width.
  • the waveguide width of the single mode waveguide 112 114 is about, and the width of the grating 120 is about 3 ⁇ m.
  • an active waveguide including the 1 ⁇ 1—MMI waveguide region 11 la, 11 lb and the single mode waveguide region 112 114 is formed. Then, the rear end face and the front end face of the laser element are formed by cleavage, and antireflection films are formed on both end faces, thereby completing the manufacture of the element. Thus, a laser device having the structure shown in FIGS. 6A and 6C is obtained.
  • the waveguide structure and the method of manufacturing the same according to the present embodiment described above are merely examples, and the configuration and procedure thereof can be changed as appropriate.
  • a molecular beam growth method MBE method
  • an RIE method can be used instead of the ICP method.
  • the formation position of the grating 120 can be changed within a range where stable single-wavelength oscillation can be obtained.
  • the grating 120 may be provided at any of the positions a) and d) described in the first embodiment.
  • the grating 120 may be provided only in the 1 ⁇ 1-M Ml waveguide region l la, 111b. Further, the grating 120 may be provided only on one of the 11_1 ⁇ 1 ⁇ 1 waveguide regions 111 & and 11lb.
  • the number of 1 ⁇ 1-MMI waveguide regions can also be changed without increasing the element length.
  • three or more 1 ⁇ 1-MMI waveguide regions may be provided.
  • the active waveguide including the active layer is partially configured by the 1 ⁇ 1-M Ml waveguide, but the present invention is not limited to this. What is done for example, it is also possible to use a 1 XN-MMI waveguide or a NXN-MMI waveguide instead of a 1 X 1-MMI waveguide.
  • a 1 ⁇ N-MMI waveguide is used, the “N” side is on the rear side, the “1” side is on the front side, and the single mode waveguide 113 is provided on the rear side at a position corresponding to the N branch.
  • a single mode waveguide 112 is provided at a position corresponding to the N branch on the front side, and a single mode waveguide 113 is provided at a position corresponding to the N branch on the rear side.
  • the waveguide structure of each of the above-described embodiments has a structure in which a single mode waveguide is connected to both ends of the MMI waveguide, but only the front or rear side of the MMI waveguide has a single mode. It is also possible to adopt a structure having a mode waveguide.
  • the end face of the MMI waveguide on which the single mode waveguide is not provided is the laser element end face. For example, when there is no single mode waveguide on the rear side, the rear end face of the MMI waveguide becomes the rear end face of the laser element, and a high reflection film is formed on this end face.
  • an optical communication module such as an optical transmission module / optical transmission / reception module can be configured.
  • the active MMI semiconductor laser of the present invention and a circuit for driving the semiconductor laser are mounted.
  • the active MMI semiconductor laser of the present invention, a circuit for driving the semiconductor laser, and a light receiving unit for receiving light input from the outside are mounted.
  • various other circuits such as a modulation circuit and a waveform shaping circuit
  • These optical communication modules can be driven at a low voltage by using the active MMI semiconductor laser of the present invention. Therefore, it is possible to provide a module which is excellent in low power consumption, which has not existed conventionally.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor laser having an active waveguide composed of a 1×1-MMI waveguide region (111) and single-mode waveguide regions (112, 113) connected to both ends of the 1×1-MMI waveguide region (111). A grating for selecting a single wavelength of the oscillated light propagated through the active waveguide is provided to the single-mode waveguide region (112).

Description

明 細 書  Specification
半導体レーザーおよびその製造方法  Semiconductor laser and method of manufacturing the same
技術分野  Technical field
[0001] 本発明は、半導体レーザーに関し、特に動的多モード光干渉型(アクティブ MMI) 半導体レーザーおよびその製造方法に関する。  The present invention relates to a semiconductor laser, and more particularly to a dynamic multimode optical interference (active MMI) semiconductor laser and a method for manufacturing the same.
背景技術  Background art
[0002] 近年の通信需要の伸びに伴い、高速大容量通信を可能とする光通信技術は、基 幹系(大都市間を指す)のみならず、いわゆるメトロ系(都市圏内を指す)やアクセス 系(家庭やビル間を指す)といった領域にまで適用されるようになってきた。メトロ/ァ クセス系では、大量の利用が見込める(例えば「Fiber to the Home(FTTH)」などの 光通信技術のアクセス系への浸透に伴う加入者数の伸びが予測される)ことから、低 コストで低消費電力の送信光源が要求される。その一方で、高光出力性能の送信光 源も求められている。例えば、メトロ系であれば、高光出力性能を実現することで、伝 送路途上に中継器を設置する必要が無くなり、システム全体を低コストで構築するこ とが可能となる。  [0002] With the recent increase in communication demand, optical communication technology that enables high-speed, large-capacity communication is not only a basic system (meaning between metropolitan areas) but also a so-called metro system (meaning urban areas) and access. It has also been applied to areas such as systems (meaning between homes and buildings). Metro / access systems are expected to be used in large quantities (for example, the number of subscribers is expected to increase due to penetration of optical communication technologies such as “Fiber to the Home (FTTH)” into access systems). A transmission light source with low cost and low power consumption is required. On the other hand, transmission light sources with high light output performance are also required. For example, in the case of a metro system, realizing high light output performance eliminates the need to install a repeater along the transmission path, and allows the entire system to be constructed at low cost.
[0003] ところで、光ファイバ一伝送が行われる光通信において、送信光源に、発振波長に 複数の波長を含む半導体レーザー、例えばフアブリペロー型半導体レーザー( FP-LD)を用いた場合、光ファイバ一中での伝播速度差に起因した波長分散が生じ てしまい、高速信号通信ができなくなってしまう。このような光ファイバ一の波長分散 の影響を回避するために、通常は、送信光源として、単一波長(単一軸モード)での 発振が可能な半導体レーザーが用いられる。  [0003] By the way, in an optical communication in which optical fiber transmission is performed, when a semiconductor laser having a plurality of oscillation wavelengths, for example, a Fabry-Perot semiconductor laser (FP-LD) is used as a transmission light source, an Chromatic dispersion occurs due to the difference in the propagation speeds, and high-speed signal communication cannot be performed. In order to avoid the influence of the chromatic dispersion of the optical fiber, a semiconductor laser capable of oscillating at a single wavelength (single axis mode) is usually used as a transmission light source.
[0004] 単一波長での発振が可能な半導体レーザーとして、分布帰還型半導体レーザー( DFB- LD)が知られている。例えば、非特許文献(Govind P. Agrawal著、  [0004] As a semiconductor laser capable of oscillating at a single wavelength, a distributed feedback semiconductor laser (DFB-LD) is known. For example, non-patent literature (Govind P. Agrawal,
"Fiber-Optic Communication Systems, WILEY—INTERSCIENCE社、 p. 105等)に は、発光層(活性層)の近傍(直下もしくは直上)にグレーティング層を設けた DFB— L Dが記載されている。しかし、メトロ/アクセス系の送信光源に要求される低消費電力 特性、高光出力性能を有する DFB-LDは、未だ実現されていないのが現状である。 [0005] 一方、 FP - LDではあるが、低消費電力特性、高光出力性能を実現可能な新しレヽ 半導体レーザーとして、アクティブ MMI型半導体レーザー力 本出願の発明者であ る浜本らによって提案されている(特開平 11一 68241号公報参照)。このアクティブ MMI型半導体レーザーは、シングルモード光を出力する半導体レーザーであって、 活性層を含む能動導波路が、 1X1 - MMI導波路と、その両端部に接続された 1対 のシングルモード導波路(基本モードだけが伝播するように設計された単一モード導 波路)とからなる。 1X1_MMI導波路は、 MMI理論に基づき「1X1動作」が行われ るように設計されたものである。以下に、 MMI理論を簡単に説明する。 "Fiber-Optic Communication Systems, WILEY-INTERSCIENCE, p. 105, etc.) describes a DFB-LD in which a grating layer is provided near (directly under or directly above) a light-emitting layer (active layer). At present, DFB-LDs with low power consumption characteristics and high optical output performance required for transmission light sources in metro / access systems have not yet been realized. [0005] On the other hand, although it is an FP-LD, an active MMI type semiconductor laser has been proposed as a new laser diode capable of realizing low power consumption characteristics and high optical output performance by Hamamoto et al., The inventor of the present application. (See JP-A-11-68241). This active MMI semiconductor laser is a semiconductor laser that outputs single-mode light. An active waveguide including an active layer is composed of a 1X1-MMI waveguide and a pair of single-mode waveguides connected to both ends. (A single-mode waveguide designed to propagate only the fundamental mode). The 1X1_MMI waveguide is designed to perform “1X1 operation” based on the MMI theory. The following is a brief explanation of the MMI theory.
[0006] MMI理論は、 1XNもしくは NX Nの分岐'合流受動光導波路を設計する理論とし て知られている(例えば、「Lucas B. Soldano」著、「ジャーナル'ォブ 'ライトウェア'テ クノロジ一」、 Vol.13、 No.4、第 615— 627頁、 1995年を参'照)。この MMI理論 (こ よって導かれる MMI長 LTTは以下の式で与えられる。  [0006] The MMI theory is known as a theory for designing a 1XN or NXN branching / merging passive optical waveguide (for example, "Lucas B. Soldano", "Journal of Lightware Technology" Ichi ", Vol. 13, No. 4, pp. 615-627, 1995). This MMI theory (the derived MMI length LTT is given by the following equation.
[0007] [数 1]  [0007] [number 1]
We-Wl+ (ス0 丌) (Nc/Nr) (Nr'-Nc2) 2 W e -Wl + (scan 0 丌) (Nc / Nr) 2σ ( Nr'-Nc 2) 2
ここで、 Lは MMI領域の長さ、 W1は MMI領域の幅、 Nrは導波領域の屈折率、 Nc はクラッド領域の屈折率、 λθは入射光波長である。 σは、 ΤΕモードのとき「0」、軸モ ードのとき「1」である。 Here, L is the length of the MMI region, W1 is the width of the MMI region, Nr is the refractive index of the waveguide region, Nc is the refractive index of the cladding region, and λθ is the wavelength of the incident light. σ is “0” in the ΤΕ mode and “1” in the axis mode.
[0008] ΜΜΙ理論によると、  [0008] ΜΜΙAccording to theory,
[0009] [数 2]  [0009] [number 2]
L= (3Z4 L, (Nは正の整数) という条件を満たすとき、 MMI領域は 1 XN光導波路として動作する。また、 When the condition of L = (3Z4 L, (N is a positive integer) is satisfied, the MMI region operates as a 1 XN optical waveguide.
[0010] [数 3] L = ( 3 N ) L , ( Nは正の整数) という条件を満たすとき、 MMI領域は N X N光導波路として動作する。この原理に基 づき、両端部においてシングノレモード光となるような 1 X 1— MMI導波路を設計するこ とが可能である。 [0010] [number 3] When L = (3 N) L, where N is a positive integer, the MMI region operates as an NXN optical waveguide. Based on this principle, it is possible to design a 1 × 1-MMI waveguide that becomes single mode light at both ends.
[0011] 上記のように能動導波路の一部が MMI導波路で構成されるアクティブ MMI型半 導体レーザーにおいては、導波路幅を広くする(活性層の面積を大きくする)ことがで きるので、シングルモード導波路のみで構成される同一素子長の既存の半導体レー ザ一に比べて、素子抵抗を小さくすることができ、低消費電力特性を実現することが できる。このため、もしアクティブ MMI型半導体レーザーで、単一波長での安定した 発振を得られるような構造を実現することができれば、メトロ/アクセス系の将来の送 信光源として有望と考えられる。  As described above, in an active MMI semiconductor laser in which a part of the active waveguide is composed of an MMI waveguide, the width of the waveguide can be increased (the area of the active layer can be increased). In addition, the element resistance can be reduced and low power consumption characteristics can be realized, as compared with an existing semiconductor laser having the same element length composed only of a single mode waveguide. For this reason, if an active MMI-type semiconductor laser can realize a structure capable of obtaining stable oscillation at a single wavelength, it is considered promising as a future transmission light source for metro / access systems.
[0012] MMI導波路を有する半導体レーザーで、単一波長での発振が可能なものとして、 例えば、特開 2003— 46190号公報に記載された半導体レーザーがある。この半導 体レーザーは、 MMI導波路のみで能動領域 (発光領域)を構成するものであって、 その能動領域の後方の受動領域にグレーティングが設けられている。また、別の形 態として、特開 2003— 46190号公報には、能動領域の後方に外部グレーティングを 設けた構造も記載されてレヽる。  As a semiconductor laser having an MMI waveguide and capable of oscillating at a single wavelength, for example, there is a semiconductor laser described in JP-A-2003-46190. In this semiconductor laser, an active region (light emitting region) is constituted only by the MMI waveguide, and a grating is provided in a passive region behind the active region. As another mode, Japanese Patent Application Laid-Open No. 2003-46190 describes a structure in which an external grating is provided behind an active region.
発明の開示  Disclosure of the invention
[0013] 発明が解決しょうとする課題は、上述した従来技術が有している以下の問題点であ る。  [0013] Problems to be solved by the invention are the following problems of the above-described conventional technology.
[0014] 上記非特許文献に記載された DFB - LDは、単一波長での発振が可能であるが、 導波路構造が幅の細いシングルモード導波路で構成されているため、以下のような 問題がある。  [0014] The DFB-LD described in the above non-patent document can oscillate at a single wavelength, but since the waveguide structure is formed of a narrow single-mode waveguide, There's a problem.
[0015] 低消費電力化を行うためには、素子抵抗を小さくして駆動電圧を低減させる必要が ある。活性層(発光層)の面積を大きくすることで素子抵抗を小さくすることができるが 、導波路構造が幅の細いシングノレモード導波路よりなる DFB— LDでは、そのような 活性層の面積の増大は困難である。なお、素子長を長くすることで素子抵抗を小さく すること力 Sできる力 S、素子長の増大は、素子収量 (生産量)の低下を招くため、コスト が増大することになる。このように、 DFB—LDでは、メトロ/アクセス系の送信光源に 要求される低消費電力特性、高光出力性能を達成することができない、という問題が める。 [0015] In order to reduce power consumption, it is necessary to reduce the element resistance to reduce the driving voltage. The device resistance can be reduced by increasing the area of the active layer (light-emitting layer). However, in a DFB-LD in which the waveguide structure is composed of a narrow single mode waveguide, It is difficult to increase the area of the active layer. It should be noted that increasing the element length reduces the element resistance S The force S that can be applied and an increase in the element length lead to a decrease in the element yield (production volume), which increases the cost. Thus, the DFB-LD has a problem that it cannot achieve the low power consumption characteristics and the high optical output performance required for the transmission light source of the metro / access system.
[0016] 特開平 11—68241号公報に記載のアクティブ MMI型半導体レーザーにおいては 、活性層の面積を大きくすることができるため、メトロ Zアクセス系の送信光源に要求 される低消費電力特性、高光出力性能を達成することが可能であるが、単一波長で の安定した発振を得られなレ、、という問題がある。  [0016] In the active MMI semiconductor laser described in Japanese Patent Application Laid-Open No. 11-68241, the area of the active layer can be increased, so that low power consumption characteristics and high light required for the transmission light source of the Metro Z access system are required. Output performance can be achieved, but there is a problem that stable oscillation at a single wavelength cannot be obtained.
[0017] なお、アクティブ MMI型半導体レーザーにおいて、単一波長発振を行うために、 D FB-LDのように活性層近傍にグレーティングを設けることが考えられる。しかし、主 発光領域が MMI導波路よりなる構造では、 MMI導波路中に異なる複数の伝播モー ドが存在するため、単純に活性層近傍にグレーティングを設けても、安定した単一波 長発振を実現することは困難である。  [0017] In the active MMI semiconductor laser, it is conceivable to provide a grating near the active layer like a DFB-LD in order to perform single-wavelength oscillation. However, in a structure in which the main light emitting region is composed of an MMI waveguide, there are a plurality of different propagation modes in the MMI waveguide, so even if a grating is simply provided near the active layer, stable single-wavelength oscillation can be achieved. It is difficult to achieve.
[0018] 特開 2003— 46190号公報に記載の半導体レーザーにおいては、 MMI導波路に 接続した受動導波路領域にグレーティングを設けるため、発光のための能動領域に 加え、新たに受動領域を集積する必要がある。このため、受動領域での光損失が避 けられず、大出力化に適した構造とは言えなかった。カロえて、受動領域と能動領域と を同一素子内に作る必要があるため、低コスト化の面でも不利なものとなる。外部グ レーティングを設ける構造においても、同様な問題を有する。  In the semiconductor laser described in JP-A-2003-46190, a grating is provided in the passive waveguide region connected to the MMI waveguide, so that a passive region is newly integrated in addition to the active region for light emission. There is a need. For this reason, light loss in the passive region was unavoidable, and the structure was not suitable for increasing the output. It is necessary to form the passive region and the active region in the same device, which is disadvantageous in terms of cost reduction. The same problem occurs in the structure in which the external grating is provided.
[0019] 本発明の目的は、上記各問題を解決し、メトロ/アクセス系の送信光源に要求され る低消費電力特性、高光出力性能を得られ、かつ、安定した単一波長発振を行うこと のできる半導体レーザーを提供することにある。 An object of the present invention is to solve the above-mentioned problems, obtain low power consumption characteristics and high optical output performance required for a transmission light source of a metro / access system, and perform stable single-wavelength oscillation. It is to provide a semiconductor laser which can be used.
[0020] 本発明の別の目的は、そのような半導体レーザーを歩留まりよく低コストに製造する ことのできる半導体レーザーの製造方法を提供することにある。 [0020] Another object of the present invention is to provide a method of manufacturing a semiconductor laser capable of manufacturing such a semiconductor laser at a high yield at low cost.
[0021] 本発明の他の目的は、そのような半導体レーザーを備える光通信モジュールを提 供する。 Another object of the present invention is to provide an optical communication module including such a semiconductor laser.
[0022] 本発明の半導体レーザーの特徴は、少なくとも 1つの多モード干渉導波路と、該多 モード干渉導波路の両端部または一方の端部に接続された少なくとも 1つのシング ルモード導波路とから能動導波路が構成される半導体レーザーにおいて、前記能動 導波路の一部に、当該能動導波路を伝播する発振光のうちの単一波長を選択する ためのグレーティングを設けたことにある。 The semiconductor laser of the present invention is characterized in that at least one multimode interference waveguide In a semiconductor laser in which an active waveguide is composed of at least one single-mode waveguide connected to both ends or one end of a mode interference waveguide, the active waveguide is provided in a part of the active waveguide. It has a grating to select a single wavelength from the propagating oscillation light.
[0023] 上記の構成によれば、グレーティングによって、能動導波路を伝播する発振光の単 一波長(単一軸モード)が選択されるので、単一波長での安定したレーザー発振が 可能である。よって、この構造を適用することで、単一波長発振が可能なアクティブ M Ml型半導体レーザーを実現することができる。  According to the above configuration, a single wavelength (single-axis mode) of the oscillating light propagating through the active waveguide is selected by the grating, so that stable laser oscillation at a single wavelength is possible. Therefore, by applying this structure, an active MM type semiconductor laser capable of single-wavelength oscillation can be realized.
[0024] また、多モード干渉導波路を備える能動導波路においては、活性層の面積を大きく して素子抵抗を小さくすることができるため、シングノレモード導波路のみで構成される 同一素子長の既存の半導体レーザーに比べて消費電力特性を大幅に改善すること ができる。よって、メトロ Zアクセス系の送信光源に要求される低消費電力特性を達 成することが可能である。  In an active waveguide including a multi-mode interference waveguide, since the element resistance can be reduced by increasing the area of the active layer, the same element length consisting of only a single mode waveguide is used. Power consumption characteristics can be greatly improved compared to existing semiconductor lasers. Therefore, it is possible to achieve low power consumption characteristics required for the transmission light source of the Metro Z access system.
[0025] 加えて、素子抵抗を小さくすることで、活性層にて発生する電流注入に伴う発熱量 が下がるので、 DFB— LDのキンク(光出力一動作電流特性における非直線性)の原 因である、電流注入に伴う活性層自身の中心波長シフトが生じにくい。このため、高 い注入電流に対しても安定した単一波長発振を達成することができ、これにより高出 力特性が実現される。  [0025] In addition, since the amount of heat generated by current injection generated in the active layer is reduced by reducing the element resistance, the kink of the DFB-LD (non-linearity in light output vs. operating current characteristics) is a cause. That is, the center wavelength shift of the active layer itself due to the current injection hardly occurs. For this reason, stable single-wavelength oscillation can be achieved even with a high injection current, thereby realizing high output characteristics.
[0026] 上述した本発明の半導体レーザーにおいて、グレーティングをシングルモード導波 路に設けてもよい。この構成によれば、シングルモード導波路にて単一波長が選択さ れ、その選択された単一波長に対して多モード干渉導波路内でも誘導放出が生じる [0026] In the above-described semiconductor laser of the present invention, the grating may be provided in the single-mode waveguide. According to this configuration, a single wavelength is selected in the single mode waveguide, and stimulated emission occurs even in the multimode interference waveguide for the selected single wavelength.
。よって、より安定した単一波長発振での高出力が可能となる。 . Therefore, more stable high-output with single-wavelength oscillation is possible.
[0027] また、グレーティングを多モード干渉導波路に設け、そのグレーティング幅をシング ルモード導波路の幅の 2倍以内としてもよい。この構成によれば、多モード干渉導波 路中を伝播する複数の横モードのうち、単一横モードをグレーティング中心波長に対 して反射させることができるため、安定した単一波長動作が実現される。なお、グレー ティング幅がシングルモード導波路の幅の 2倍の大きさを超えた場合は、多モード干 渉導波路中を伝播する各横モードに対してグレーティング反射が生じるため、安定し た単一波長発振を得ることは比較的困難である。 [0027] In addition, provided the grating multimode interference waveguide, may the grating width should be within 2 times the width of the single-mode waveguide. According to this configuration, among a plurality of transverse modes propagating in the multimode interference waveguide, a single transverse mode can be reflected with respect to the center wavelength of the grating, thereby achieving stable single-wavelength operation. Is done. If the grating width exceeds twice the width of the single-mode waveguide, grating reflection occurs for each transverse mode propagating in the multi-mode interference waveguide, resulting in a stable reflection. It is relatively difficult to obtain single-wavelength oscillation.
[0028] さらに、グレーティングを能動導波路の長さ全体にわたって設け、該グレーティング の、能動導波路の中間に位置する部分に位相調整領域を設けてもよい。この構成に よれば、グレーティングの位相が位相調整領域の前後で反転するようになっているの で、グレーティングで選択される単一横モードと、その他のモードとの間の利得差を 十分に大きくとることが可能になる。よって、高い歩留まりでの単一波長発振を実現す ること力 Sできる。  [0028] Further, the grating may be provided over the entire length of the active waveguide, and a phase adjustment region may be provided in a portion of the grating located in the middle of the active waveguide. According to this configuration, the phase of the grating is inverted before and after the phase adjustment region, so that the gain difference between the single transverse mode selected by the grating and the other modes is sufficiently large. It becomes possible to take. Therefore, it is possible to realize a single wavelength oscillation at a high yield.
[0029] 本発明の光通信モジュールの特徴は、上述したいずれかの半導体レーザーと、該 半導体レーザーを駆動する回路とを収容したことを特徴とする。上述した半導体レー ザ一を備えることで、メトロ Zアクセス系の送信光源に要求される低消費電力特性、 高光出力性能を有する光通信モジュールが実現される。  A feature of the optical communication module of the present invention is that any one of the semiconductor lasers described above and a circuit for driving the semiconductor laser are housed therein. By providing the semiconductor laser described above, an optical communication module having low power consumption characteristics and high light output performance required for a transmission light source of the Metro Z access system is realized.
[0030] 本発明の半導体レーザーの製造方法は、半導体基板上の、シングルモード導波路 が形成される領域に、該シングルモード導波路の幅より広い幅を有するグレーティン グ領域を形成する工程と、その形成したグレーティング領域を能動導波路の形状に エッチングする工程とを含むことを特徴とする。この製造方法によれば、上述した本 発明の半導体レーザーのうち、グレーティングをシングノレモード導波路に設ける構造 のものを、歩留まりよく低コストに製造することが可能である。  [0030] The method for manufacturing a semiconductor laser according to the present invention includes a step of forming a grating region having a width wider than the width of the single mode waveguide in a region where the single mode waveguide is formed on the semiconductor substrate. And etching the formed grating region into the shape of an active waveguide. According to this manufacturing method, among the above-described semiconductor lasers of the present invention, a semiconductor laser having a structure in which a grating is provided in a single-mode waveguide can be manufactured with high yield and low cost.
[0031] また、本発明の半導体レーザーの製造方法は、半導体基板上の能動導波路が形 成される領域に、シングルモード導波路の幅以上で、シングルモード導波路の幅の 2 倍以内の幅を有するグレーティング領域を能動導波路の長さ全体にわたって形成す る工程と、その形成したグレーティング領域を能動導波路の形状にエッチングするェ 程とを含むことを特徴とする。この製造方法によれば、上述した本発明の半導体レー ザ一のうち、グレーティングを多モード干渉導波路に設ける構造のものを、歩留まりよ く低コストに製造することが可能である。  [0031] Further, according to the method for manufacturing a semiconductor laser of the present invention, the width of the single-mode waveguide is not less than twice the width of the single-mode waveguide in the region where the active waveguide is formed on the semiconductor substrate. Forming a grating region having a width over the entire length of the active waveguide; and etching the formed grating region into the shape of the active waveguide. According to this manufacturing method, of the above-described semiconductor lasers of the present invention, it is possible to manufacture a semiconductor laser having a structure in which a grating is provided in a multimode interference waveguide at a low cost with good yield.
[0032] 上述のように、本発明によれば、安定した単一波長発振が可能なアクティブ MMI 型半導体レーザーを実現し、メトロ Zアクセス系の送信光源に要求される低消費電力 特性、高出力特性を達成することができる、という効果を奏する。  As described above, according to the present invention, an active MMI semiconductor laser capable of performing stable single-wavelength oscillation is realized, and low power consumption characteristics and high output required for the transmission light source of the Metro Z access system are achieved. The effect that characteristics can be achieved is produced.
[0033] カロえて、高出力特性を達成したことで、メトロ Zアクセス系の通信システム、特にメト 口系通信システムにおいて、伝送路途上に中継器を設置する必要が無くなり、システ ム全体を低コストで構築することができる、とレ、う効果を奏する。 [0033] The high output characteristics achieved by the calorie enable metro Z-access communication systems, especially In a mouth-to-mouth communication system, there is no need to install a repeater on the transmission path, and the entire system can be constructed at low cost.
図面の簡単な説明 Brief Description of Drawings
[図 1A]本発明の第 1の実施形態であるアクティブ MMI型半導体レーザーを上面から みた場合の模式図である。 FIG. 1A is a schematic diagram when an active MMI semiconductor laser according to a first embodiment of the present invention is viewed from above.
[図 1B]図 1Aの一点鎖線 Α_Α'における断面図である。  FIG. 1B is a cross-sectional view taken along a dashed-dotted line Α_Α ′ in FIG. 1A.
[図 1C]図 1Aの一点鎖線 Β— B'における断面図である。 FIG. 1C is a cross-sectional view taken along a dashed-dotted line Β—B ′ in FIG. 1A.
[図 2]図 1に示すアクティブ ΜΜΙ型半導体レーザーの活性層の断面構造を示す模式 図である。  FIG. 2 is a schematic view showing a cross-sectional structure of an active layer of the active semiconductor laser shown in FIG. 1.
[図 3Α]図 1A—図 1Cに示すアクティブ ΜΜΙ型半導体レーザーの製造工程を説明す るための図であって、グレーティング形成領域の上面図である。  FIG. 3A is a diagram for explaining a manufacturing step of the active semiconductor laser shown in FIGS. 1A to 1C, and is a top view of a grating formation region.
[図 3Β]図 1A—図 1Cに示すアクティブ ΜΜΙ型半導体レーザーの製造工程を説明す るための図であって、 MO-VPE工程後の断面図である。 FIG. 3D is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after the MO-VPE step.
[図 3C]図 1A—図 1Cに示すアクティブ ΜΜΙ型半導体レーザーの製造工程を説明す るための図であって、メサ作製用マスク形成後の上面図である。  FIG. 3C is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A to 1C, and is a top view after the formation of a mask for forming a mesa.
[図 3D]図 1A—図 1Cに示すアクティブ ΜΜΙ型半導体レーザーの製造工程を説明す るための図であって、メサ作製後の断面図である。 FIG. 3D is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after the mesa is manufactured.
[図 3Ε]図 1A—図 1Cに示すアクティブ ΜΜΙ型半導体レーザーの製造工程を説明す るための図であって、 MO-VPE再結晶成長工程後の断面図である。  FIG. 3A is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after the MO-VPE recrystallization growth step.
[図 3F]図 1A—図 1Cに示すアクティブ ΜΜΙ型半導体レーザーの製造工程を説明す るための図であって、電極形成後の断面図である。 FIG. 3F is a view for explaining the manufacturing step of the active semiconductor laser shown in FIGS. 1A-1C, and is a cross-sectional view after electrodes are formed.
[図 4Α]本発明の第 2の実施形態であるアクティブ ΜΜΙ型半導体レーザーを上面から みた場合の模式図である。  FIG. 4Α is a schematic diagram of an active type semiconductor laser according to a second embodiment of the present invention when viewed from above.
[図 4Β]図 4Αの一点鎖線 Α_Α'における断面図である。  FIG. 4Β is a cross-sectional view taken along a dashed-dotted line Α_Α ′ in FIG. 4Α.
[図 4C]図 4Αの一点鎖線 Β— B'における断面図である。 FIG. 4C is a sectional view taken along dashed-dotted line Β—B ′ in FIG. 4Α.
[図 5]図 4Α—図 4Cに示すアクティブ ΜΜΙ型半導体レーザーのグレーティング領域 幅を説明するための模式図である。  FIG. 5 is a schematic diagram for explaining the grating region width of the active semiconductor laser shown in FIGS. 4A to 4C.
[図 6Α]本発明の第 3の実施形態であるアクティブ ΜΜΙ型半導体レーザーを上面から みた場合の模式図である。 [FIG. 6I] A third embodiment of the active を semiconductor laser according to the present invention It is a schematic diagram when it sees.
[図 6B]図 6 Aの一点鎖線 A— A'における断面図である。  FIG. 6B is a sectional view taken along dashed line AA ′ of FIG. 6A.
[図 6C]図 6Aの一点鎖線 B— B 'における断面図である。  FIG. 6C is a sectional view taken along dashed line BB ′ in FIG. 6A.
[図 7]図 6A 図 6Cに示すアクティブ MMI型半導体レーザーのグレーティング領域 幅を説明するための模式図である。  FIG. 7A is a schematic diagram for explaining a grating region width of the active MMI type semiconductor laser shown in FIG. 6C.
符号の説明  Explanation of symbols
[0035] 101 n-InP半導体基板 [0035] 101 n-InP semiconductor substrate
102 n-InGaAsPガイド層  102 n-InGaAsP guide layer
103 n-InPクラッド層  103 n-InP cladding layer
104 活性層  104 Active layer
105 p-InPクラッド層  105 p-InP cladding layer
106 p-InPクラッド層  106 p-InP cladding layer
107 p-InGaAsコンタクト層  107 p-InGaAs contact layer
108 InGaAsP- SCH層  108 InGaAsP-SCH layer
109 InGaAsP/InGaAsP-MQW層  109 InGaAsP / InGaAsP-MQW layer
111 lxl-MMI導波路領域  111 lxl-MMI waveguide region
112-114 シングルモード導波路領域  112-114 Single mode waveguide region
120 グレーティング  120 grating
121 λ /4位相調整領域  121 λ / 4 phase adjustment region
121 SiO膜  121 SiO film
131 p-InP電流ブロック層  131 p-InP current block layer
132 n - InP電流ブロック層  132 n-InP current block layer
135、 136 電極  135, 136 electrodes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 次に、本発明の実施の形態について図面を参照して詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0037] (実施形態 1) (Embodiment 1)
図 1Aは、本発明の第 1の実施形態であるアクティブ MMI型半導体レーザーを上 面から見た模式図である。このアクティブ MMI型半導体レーザーでは、活性層を含 む能動導波路構造が、 1 X 1 - MMI導波路領域 111と、その両端部に設けられた一 対のシングルモード導波路領域 112、 113とから構成されている。 FIG. 1A is a schematic diagram of an active MMI semiconductor laser according to a first embodiment of the present invention as viewed from above. This active MMI semiconductor laser includes an active layer. The active waveguide structure includes a 1 × 1-MMI waveguide region 111 and a pair of single mode waveguide regions 112 and 113 provided at both ends thereof.
[0038] シングルモード導波路領域 112の、 1 X 1 - MMI導波路領域 111と接続される側と は反対の端面が、素子の前方側の端面 (以下、単に前方端面と呼ぶ)であり、ここか らレーザー光が出射される。この前方端面 (劈開面)には反射防止膜が設けられてい る。他方、シングノレモード導波路領域 113の、 1 X 1—MMI導波路領域 111と接続さ れる側とは反対の端面が、素子の後方側の端面 (以下、単に後方端面と呼ぶ)である 。この後方端面には高反射膜が設けられている。反射防止膜が設けられた前方端面 と高反射膜が設けられた後方端面とで、レーザー共振器の前後の反射鏡を構成して いる。素子長は 600 z m程度、シングルモード導波路領域 112の長さは 300 x m程 度、 1 1_1^1^1導波路領域111の長さは230 111程度でぁる。 1 X 1—MMI導波路 領域 111の導波路幅は 9 z m程度で、シングノレモード導波路領域 112、 113の導波 路幅はともに 2 μ m程度である。  [0038] An end face of the single mode waveguide area 112 opposite to the side connected to the 1X1-MMI waveguide area 111 is a front end face of the element (hereinafter, simply referred to as a front end face), The laser light is emitted from here. An antireflection film is provided on the front end face (cleavage face). On the other hand, the end surface of the single mode mode waveguide region 113 opposite to the side connected to the 1 × 1-MMI waveguide region 111 is an end surface on the rear side of the element (hereinafter, simply referred to as a rear end surface). A high reflection film is provided on the rear end face. The front end face provided with the anti-reflection film and the rear end face provided with the high reflection film constitute reflectors before and after the laser resonator. The element length is about 600 zm, the length of the single mode waveguide region 112 is about 300 × m, and the length of the 11 1 1 1 waveguide region 111 is about 230 111. The waveguide width of the 1 × 1-MMI waveguide region 111 is about 9 zm, and the waveguide widths of the single-mode waveguide regions 112 and 113 are both about 2 μm.
[0039] 図 1Bに、図 1 Aの一点鎖線 A— A'での断面構造を模式的に示す。この断面は、シ ングノレモード導波路領域 112を素子の長手方向と交差する方向に切断したものであ る。シングノレモード導波路領域 112の導波路部は、 n-InP半導体基板 101上に、 n-InGaAsPガイド層 102、 n-InPクラッド層 103、活性層(発光層) 104、 p-InPクラッド 層 105を順次積層したものをメサ形状に形成した構造を有し、このメサ構造部の両側 部には、 p-InP電流ブロック層 131、 n-InP電流ブロック層 132を順次積層した電流ブ ロック層が形成されている。活性層 104は、半導体レーザーでよく知られた既存の構 造のものであって、例えば図 2に示すように、量子井戸を多層に積層した  FIG. 1B schematically shows a cross-sectional structure taken along a dashed line AA ′ of FIG. 1A. This cross section is obtained by cutting the single mode waveguide region 112 in a direction intersecting the longitudinal direction of the device. The waveguide portion of the single mode mode waveguide region 112 is formed on an n-InP semiconductor substrate 101 by forming an n-InGaAsP guide layer 102, an n-InP cladding layer 103, an active layer (light emitting layer) 104, and a p-InP cladding layer 105. A current block layer in which a p-InP current block layer 131 and an n-InP current block layer 132 are sequentially stacked is formed on both sides of the mesa structure. Is formed. The active layer 104 has an existing structure that is well known for semiconductor lasers. For example, as shown in FIG.
InGaAsP/InGaAsP-MQW (多重量子井戸)層 109をその上下から InGaAsP-SCH (分 離閉じ込めヘテロ構造)層 108で挟んだ構造になっている。メサ構造部の上層と電流 ブロック層の上層との面上には、 P_InPクラッド層 106、 p-InGaAsコンタクト層 107、電 極 135が順次積層されている。 n-InP半導体基板 101の裏面側には、電極 136が形 成されている。 The structure is such that an InGaAsP / InGaAsP-MQW (multiple quantum well) layer 109 is sandwiched between InGaAsP-SCH (separated confinement heterostructure) layers 108 from above and below. On the face of the upper layer of the upper layer and the current blocking layer of the mesa structure, P _inp cladding layer 106, p-InGaAs contact layer 107, electrodes 135 are sequentially stacked. On the back surface of the n-InP semiconductor substrate 101, an electrode 136 is formed.
[0040] 図 1Cに、図 1Aの一点鎖線 Β_Β'での断面構造を模式的に示す。この断面は、 1 X 1—MMI導波路領域 111とシングノレモード導波路領域 112、 113の導波路部分を素 子の長手方向に沿って切断したものである。シングルモード導波路領域 112の導波 路部分は、その長手方向にわたって、 n-InP半導体基板 101と n-InGaAsPガイド層 10 2の界面に周期的な凹凸を有するグレーティング 120が形成されている。グレーティ ング 120による規格化結合定数 (kL)は 2程度である。他方、 1 X 1 - MMI導波路領 域 111とシングルモード導波路領域 113の導波路部分は、シングルモード導波路領 域 112と同様な積層構造を有する力 グレーティング 120は形成されていない。 FIG. 1C schematically shows a cross-sectional structure taken along a dashed-dotted line Β_Β ′ in FIG. 1A. This cross section is composed of the 1 × 1-MMI waveguide region 111 and the waveguide portions of the single mode waveguide regions 112 and 113. It is cut along the longitudinal direction of the child. In the waveguide portion of the single mode waveguide region 112, a grating 120 having periodic irregularities is formed at the interface between the n-InP semiconductor substrate 101 and the n-InGaAsP guide layer 102 over the longitudinal direction. The normalized coupling constant (kL) by the grating 120 is about 2. On the other hand, in the waveguide portion of the 1 × 1-MMI waveguide region 111 and the single mode waveguide region 113, the power grating 120 having the same laminated structure as the single mode waveguide region 112 is not formed.
[0041] 上述のように構成された本実施形態のアクティブ MMI型半導体レーザーでは、電 極 135、 136の間に所定のバイアス電圧を印加することで、電流ブロック層により制 限された、メサ構造部の中央部の活性層 104に電流が流れる。閾値電流未満では、 自然放出と吸収が生じ、閾値電流以上になる(誘導放出が吸収を上回る)と、レーザ 一発振可能な状態になる。  In the active MMI semiconductor laser according to the present embodiment configured as described above, by applying a predetermined bias voltage between the electrodes 135 and 136, the mesa structure limited by the current blocking layer is applied. A current flows through the active layer 104 at the center of the portion. If the current is less than the threshold current, spontaneous emission and absorption occur. If the current exceeds the threshold current (the stimulated emission exceeds the absorption), the laser is ready for oscillation.
[0042] レーザー発振可能な状態になると、誘導放出により増幅された光は、 MMI理論に より、 1 X 1-MMI導波路領域 111では、マルチモード光として伝播する力 その両 端部のシングルモード導波路領域 112、 113においては、シングルモード光として伝 播する。シングノレモード光がシングノレモード導波路領域 112を伝播する過程にぉレ、 て、グレーティング 120にて単一波長が選択され、この選択された単一波長でレーザ 一発振する。選択される単一波長は、グレーティング 120にて反射率が最大となる波 長であり、グレーティング 120の間隔を調整することで任意に設定することができる。  When laser oscillation is possible, the light amplified by stimulated emission is, according to the MMI theory, a force that propagates as multi-mode light in the 1 × 1-MMI waveguide region 111. In the waveguide regions 112 and 113, the light propagates as single mode light. During the process in which the single-mode light propagates through the single-mode waveguide region 112, a single wavelength is selected by the grating 120, and one laser oscillates at the selected single wavelength. The selected single wavelength is a wavelength at which the reflectance at the grating 120 is maximized, and can be arbitrarily set by adjusting the interval between the gratings 120.
[0043] 単一波長でレーザー発振した光の一部は、後方の 1 X 1— MMI導波路領域 111内 を伝播し、さらにその後方のシングルモード導波路領域 113内を伝播して後方端面 に到達する。後方端面に到達した単一波長のシングルモード光は、そこで反射され て再びシングルモード導波路領域 113及び 1 X 1一 MMI導波路領域 1 11内を伝播し た後、シングルモード導波路領域 112に到達し、前方端面からレーザー光として出 射される。この伝播過程において、シングルモード導波路 112で選択された単一波 長の光に対して、 1 X 1— MMI導波路領域 111内でも誘導放出が生じるため、単一 波長での安定したレーザー発振動作が実現される。  A part of the laser light oscillated at a single wavelength propagates in the rear 1 × 1—MMI waveguide region 111, further propagates in the single mode waveguide region 113 behind it, and reaches the rear end face. To reach. The single-mode light having the single wavelength that has reached the rear end face is reflected there, propagates again in the single-mode waveguide region 113 and the 1 × 1 MMI waveguide region 111, and then enters the single-mode waveguide region 112. It reaches and is emitted as laser light from the front end face. During this propagation process, the single-wavelength light selected by the single-mode waveguide 112 undergoes stimulated emission even in the 1 × 1 MMI waveguide region 111, so that stable laser oscillation at a single wavelength is achieved. Operation is realized.
[0044] また、能動導波路が 1 X 1— MMI導波路領域 111を含む構造であるため、上記の 特徴に加えて、以下のような利点も有する。 [0045] (1)導波路幅を広くする(活性層の面積を大きくする)ことで素子抵抗を小さくするこ とができるため、シングルモード導波路のみで構成される同一素子長の既存の半導 体レーザーに比べて低消費電力特性に優れている。 In addition, since the active waveguide has a structure including the 1 × 1-MMI waveguide region 111, the following advantages are provided in addition to the above features. (1) Since the element resistance can be reduced by increasing the waveguide width (enlarging the area of the active layer), the existing half of the same element length composed of only a single mode waveguide can be used. It has excellent low power consumption characteristics as compared to the semiconductor laser.
[0046] (2)通常の DFB-LDのキンク(光出力-動作電流特性における非直線性)の原因 である、電流注入に伴う活性層自身の中心波長シフトも生じにくいため、高い注入電 流に対しても安定した単一波長発振が達成でき、高出力特性が実現される。  (2) Since the center wavelength shift of the active layer itself due to current injection, which is a cause of kink (non-linearity in optical output-operating current characteristics) of a normal DFB-LD, is unlikely to occur, a high injection current is obtained. , Stable single wavelength oscillation can be achieved, and high output characteristics can be realized.
[0047] 上記(2)の利点について簡単に説明する。通常、活性層では、電流注入に伴う発 熱によって屈折率が変化し、この屈折率変化により中心波長がシフトする。 1 X 1-M Ml導波路領域 111を備える導波路構造によれば、活性層の面積を大きくして電気 抵抗を小さくすることで発熱量がさがり、その結果、中心波長のシフト量が相対的に 小さくなる。  [0047] The advantage of the above (2) will be briefly described. Normally, in the active layer, the refractive index changes due to heat generated by current injection, and the center wavelength shifts due to the change in the refractive index. According to the waveguide structure including the 1 X 1-M Ml waveguide region 111, the amount of heat generation is reduced by increasing the area of the active layer and decreasing the electric resistance, and as a result, the shift amount of the center wavelength is relatively reduced. It becomes smaller.
[0048] また、本実施形態のものでは、グレーティング付き受動導波路領域や外部グレーテ イング領域を集積する必要が無いため、半導体レーザーを歩留まり良く低コストで作 製すること力 Sできる。  In the embodiment, since it is not necessary to integrate the passive waveguide region with the grating and the external grating region, it is possible to produce a semiconductor laser with good yield at low cost.
[0049] 次に、上述した本実施形態のアクティブ MMI型半導体レーザーの製造方法につ いて説明する。図 3A—図 3Fに、図 1A—図 1Cに示したアクティブ MMI型半導体レ 一ザ一の一連の製造手順を示す。図 3Aおよび図 3Cは、導波路の上面側からみた 模式図、図 3B、図 3D—図 3Fは導波路の断面図(図 1Aの一点鎖線 A— A'での断面 部分に相当する)である。  Next, a method of manufacturing the above-described active MMI semiconductor laser of the present embodiment will be described. FIGS. 3A to 3F show a series of manufacturing steps of the active MMI semiconductor laser shown in FIGS. 1A to 1C. FIGS. 3A and 3C are schematic views of the waveguide viewed from the upper surface side, and FIGS. 3B, 3D, and 3F are cross-sectional views of the waveguide (corresponding to the cross-section taken along a dashed line A-A 'in FIG. 1A). is there.
[0050] まず、図 3Aに示すように、 n-InP半導体基板 101上の一部に、電子ビーム露光法と 通常のウエットエッチング法とによってグレーティング 120を形成する。グレーティング 120の形成範囲は、シングルモード導波路領域 112を含む範囲であり、その幅(導波 路の幅方向)は、シングルモード導波路領域 112の幅より広い。  First, as shown in FIG. 3A, a grating 120 is formed on a part of the n-InP semiconductor substrate 101 by an electron beam exposure method and a usual wet etching method. The formation range of the grating 120 is a range including the single mode waveguide region 112, and the width thereof (in the width direction of the waveguide) is wider than the width of the single mode waveguide region 112.
[0051] 次いで、図 3Bに示すように、グレーティング 120が形成された n-InP半導体基板 10 1上に、有機金属気相成長法(MO-VPE法)によって、 n_InGaAsPガイド層 102、 n-InPクラッド層 103、活性層 104、 p_InPクラッド層 105を順次形成する。その後、図 3Cに示すように、熱 CVD法を用いて、全面に Si〇膜を堆積し、通常のフォトリソダラ フィ法と反応性イオンエッチング法 (RIE法)とを用いて Si〇マスク 130を形成する。こ のとき、 SiOマスク 130は、グレーティング 120上にシングルモード導波路領域 112 が形成されるような導波路形状に作製する。 Next, as shown in FIG. 3B, the n_InGaAsP guide layer 102 and n-InP are formed on the n-InP semiconductor substrate 101 on which the grating 120 is formed by metal organic chemical vapor deposition (MO-VPE). A cladding layer 103, an active layer 104, and a p_InP cladding layer 105 are sequentially formed. After that, as shown in Fig. 3C, a Si〇 film is deposited on the entire surface by thermal CVD, and a Si〇 mask 130 is formed by using ordinary photolithography and reactive ion etching (RIE). Form. This At this time, the SiO mask 130 is formed in a waveguide shape such that the single-mode waveguide region 112 is formed on the grating 120.
[0052] 次いで、図 3Dに示すように、 SiOマスク 130を用いて、誘導結合プラズマ(ICP)法 によりメサを形成する。このメサの形成工程では、 n-InP半導体基板 101上の表面も エッチングされることから、グレーティング 120の領域は、シングルモード導波路領域 112と一致することとなる。メサ形成後、図 3Eに示すように、 M〇一 VPE法を用いて、 メサの周辺に p-InP電流ブロック層 131、 n_InP電流ブロック層 132を形成し、メサ上 部に残った Si〇マスク 130をバッファード沸酸を用いて除去し、全面に p_InPクラッド 層 106、 p-InGaAsコンタクト層 107を順次形成する。この後、図 3Fに示すように、電 子ビーム蒸着法で上面に電極 135を形成し、 n-InP半導体基板 101の裏面を研磨し て電極 136を形成する。  Next, as shown in FIG. 3D, a mesa is formed using an SiO mask 130 by an inductively coupled plasma (ICP) method. In the step of forming the mesa, the surface of the n-InP semiconductor substrate 101 is also etched, so that the region of the grating 120 coincides with the single mode waveguide region 112. After the formation of the mesa, as shown in FIG. 3E, a p-InP current blocking layer 131 and an n_InP current blocking layer 132 are formed around the mesa using the M〇VPE method, and the Si〇 mask remaining on the mesa is formed. 130 is removed using buffered hydrofluoric acid, and a p_InP cladding layer 106 and a p-InGaAs contact layer 107 are sequentially formed on the entire surface. Thereafter, as shown in FIG. 3F, an electrode 135 is formed on the upper surface by an electron beam evaporation method, and the back surface of the n-InP semiconductor substrate 101 is polished to form an electrode 136.
[0053] 上述した図 3A 図 3Fの作製手順に従って、ゥヱーハ上に複数のレーザー素子が 形成される。各レーザー素子間の境界に沿って劈開することで、図 1A—図 1Cに示 したような構造を有するレーザー素子を得る。この劈開により、レーザー素子の後方 端面、前方端面がそれぞれ形成される。最後に、前方端面に反射防止膜を、後方端 面に高反射膜をそれぞれ形成して、素子の製造を終了する。  [0053] A plurality of laser elements are formed on the wafer in accordance with the above-described fabrication procedure of Figs. 3A and 3F. By cleaving along the boundary between the laser elements, a laser element having a structure as shown in FIGS. 1A to 1C is obtained. By this cleavage, the rear end face and the front end face of the laser element are respectively formed. Finally, an anti-reflection film is formed on the front end face and a high reflection film is formed on the rear end face, respectively, and the manufacture of the device is completed.
[0054] 上述の製造工程によれば、グレーティングを直接能動領域に設ける工程となってお り、従来の半導体レーザー(特開 2003— 46190号公報参照)のように別途受動領域 を集積する工程を含んでいないため、歩留まり良ぐ低コストでレーザー素子を製作 すること力 Sできる。  According to the above-described manufacturing process, the grating is directly provided in the active region, and the process of separately integrating the passive region as in a conventional semiconductor laser (see JP-A-2003-46190) is performed. Since it does not include it, it is possible to manufacture laser devices at low cost with good yield.
[0055] 以上説明した本実施形態の導波路構造およびその製造方法は一例であって、そ の構成および手順は適宜変更可能である。例えば、上述した製造工程において、結 晶成長方法に M〇一 VPE法を用いる力 S、これに代えて、例えば分子線ビーム成長法 (MBE法)を用いても良レ、。また、メサ形成工程についても、 ICP法に限るわけでは なぐ RIE法などを適用することも可能である。  The waveguide structure and the method of manufacturing the same according to the present embodiment described above are merely examples, and the configuration and procedure thereof can be changed as appropriate. For example, in the manufacturing process described above, the force S using the M〇VPE method as the crystal growth method, and for example, a molecular beam growth method (MBE method) may be used instead. Also, the RIE method, which is not limited to the ICP method, can be applied to the mesa formation process.
[0056] また、本実施形態の導波路構造では、活性層 104下部の、 n_InP半導体基板 101 の表面にグレーティング 120を設ける構造としているが、本発明は、この構造に限定 されるものではなレ、。安定した単一波長発振が得られるのであれば、グレーティング 1 20を他の部分に設けてもよい。グレーティング 120の具体的な形成箇所としては、例 えば、 Further, in the waveguide structure of the present embodiment, the grating 120 is provided on the surface of the n_InP semiconductor substrate 101 under the active layer 104, but the present invention is not limited to this structure. ,. If stable single wavelength oscillation can be obtained, grating 1 20 may be provided in another part. As a specific forming portion of the grating 120, for example,
a) n-InGaAsPガイド層 102と n-InPクラッド層 103の間  a) Between n-InGaAsP guide layer 102 and n-InP cladding layer 103
b) n-InPクラッド層 103と活性層 104の間  b) Between the n-InP cladding layer 103 and the active layer 104
c)活性層 104と p-InPクラッド層 105の間  c) Between active layer 104 and p-InP cladding layer 105
d) p-InPクラッド層 106と p-InGaAsコンタクト層 107の間  d) Between p-InP cladding layer 106 and p-InGaAs contact layer 107
など挙げられる。この他、 p- InPクラッド層 105と p-InPクラッド層 106の間に n-InGaAs ガイド層を設け、この n-InGaAsガイド層と p-InPクラッド層 105または p- InPクラッド層 1 06の間にグレーティング 120を設けるといった構造も考えられる。  And the like. In addition, an n-InGaAs guide layer is provided between the p-InP clad layer 105 and the p-InP clad layer 106, and between the n-InGaAs guide layer and the p-InP clad layer 105 or the p-InP clad layer 106. It is also conceivable to provide a grating 120 in the structure.
[0057] また、グレーティング 120は、シングルモード導波路領域 112の長さ全体にわたつ て形成されても、シングルモード導波路領域 112の一部に形成されてもよい。  The grating 120 may be formed over the entire length of the single mode waveguide region 112 or may be formed in a part of the single mode waveguide region 112.
[0058] さらに、グレーティング 120は、シングルモード導波路領域 112に代えてシングルモ ード導波路領域 113に形成されてもよいし、シングノレモード導波路領域 112、 113の 両方に形成されてもよい。  Further, the grating 120 may be formed in the single mode waveguide region 113 instead of the single mode waveguide region 112, or may be formed in both the single mode waveguide regions 112 and 113. .
[0059] (実施形態 2)  (Embodiment 2)
図 4Aは、本発明の第 2の実施形態であるアクティブ MMI型半導体レーザーを上 面からみた場合の模式図である。図 4Bは、図 4Aの一点鎖線 A— A'での断面図、図 4 Cは、図 4Aの一点鎖線 Β_Β'での断面図である。  FIG. 4A is a schematic diagram when an active MMI semiconductor laser according to a second embodiment of the present invention is viewed from above. 4B is a cross-sectional view taken along a dashed-dotted line AA ′ in FIG. 4A, and FIG. 4C is a cross-sectional view taken along a dashed-dotted line Β_Β ′ in FIG. 4A.
[0060] 本実施形態のアクティブ ΜΜΙ型半導体レーザーも、図 4Α—図 4Cに示すように、 活性層を含む能動導波路が、 1 X 1 - ΜΜΙ導波路領域 111と、その両端部に設けら れた一対のシングノレモード導波路領域 112、 113とから構成されており、その導波路 構造は、グレーティング 120の形成部分が異なる以外は、基本的には、上述した第 1 の実施形態にものと同様である。素子長は、 600 z m程度、シングノレモード導波路領 域 112、 113はともに、導波路の長さ力 Sl85 z m程度、幅力 2 m程度である。 1 X 1 —MMI導波路領域 111の長さは 230 μ m程度で、幅は 9 μ m程度である。  As shown in FIGS. 4A to 4C, the active ア ク テ ィ ブ semiconductor laser of the present embodiment also has an active waveguide including an active layer provided in a 1 × 1 − ΜΜΙ waveguide region 111 and at both ends thereof. The waveguide structure is basically the same as that of the first embodiment described above except that the formation portion of the grating 120 is different. Is the same as The element length is about 600 zm, and the single-mode waveguide areas 112 and 113 have a waveguide length of about Sl85 zm and a width of about 2 m. The length of the 1 × 1—MMI waveguide region 111 is about 230 μm, and the width is about 9 μm.
[0061] 本実施形態では、グレーティング 120は、活性層 104の下部の、 n-InP半導体基板 101の表面に、後方端面から前方端面にわたって形成されている。グレーティング 1 20の、後方端面と前方端面との間には、 λ Ζ4位相調整領域 121が形成されている 位相調整領域 121は、グレーティング 120のピッチをえ /4だけずらしたもの であって、この λ /4位相調整領域 121を挟んでグレーティング 120の位相が反転す るようになっている。グレーティング 120の幅は、シングルモード導波路領域 112、 11 3では、これら導波路の幅(2 z m程度)と同じであり、 1 X I— MMI導波路領域 111で は、シングルモード導波路領域 112、 113の導波路幅の 2倍 (4 x m程度)以内とされ る。ここでは、グレーティング 120の幅を 3 x m程度とし、規格化結合定数 (kL)を 1程 度としている。なお、後方端面、前方端面には、ともに反射防止膜が設けられる。 In the present embodiment, the grating 120 is formed on the surface of the n-InP semiconductor substrate 101 below the active layer 104, from the rear end face to the front end face. A λ Ζ4 phase adjustment region 121 is formed between the rear end surface and the front end surface of the grating 120. The phase adjustment region 121 is obtained by shifting the pitch of the grating 120 by / 4, and the phase of the grating 120 is inverted with the λ / 4 phase adjustment region 121 interposed therebetween. In the single mode waveguide regions 112 and 113, the width of the grating 120 is the same as the width of these waveguides (about 2 zm). In the 1 XI—MMI waveguide region 111, the single mode waveguide region 112 and It should be within twice (about 4 xm) the width of the 113 waveguide. Here, the width of the grating 120 is about 3 xm, and the normalized coupling constant (kL) is about 1. Note that an anti-reflection film is provided on both the rear end face and the front end face.
[0062] 1 X 1一 MMI導波路領域 111中に、何の制約もなしにグレーティングを設けると、通 常は、基本モードだけでなぐ高次モードに対してもグレーティング反射が生じるため 、安定した単一波長発振を得ることはできない。本発明者らによるこれまでの実験結 果から、基本モードと高次モードの伝播定数が異なるために、結果として、単一波長 発振を得られなくなる、という知見が得られている。本実施形態では、グレーティング 120は、 1 X 1-MMI導波路領域 111の導波中心に形成されており、しカゝも、そのグ レーティング幅は、シングノレモード導波路 112、 113 (これらは、単一横モード導波路 に相当する)の導波路幅の 2倍以内の幅とされている。この構造によれば、 1 X 1-M Ml導波路領域 111中におレ、て伝播する各横モードのうち、単一横モードをグレーテ イング中心波長に対して反射させることができるため、安定した単一波長動作が実現 される。  If a grating is provided in the 1 × 1 MMI waveguide region 111 without any restrictions, grating reflection usually occurs not only for the fundamental mode but also for higher-order modes, and therefore, stable Single wavelength oscillation cannot be obtained. From the experimental results by the present inventors so far, it has been found that since the propagation constants of the fundamental mode and the higher-order mode are different, single-wavelength oscillation cannot be obtained as a result. In the present embodiment, the grating 120 is formed at the waveguide center of the 1 × 1-MMI waveguide region 111, and the grating width is also the single-mode waveguides 112 and 113 (these are , Which is equivalent to a single transverse mode waveguide). According to this structure, among the transverse modes propagating in the 1 × 1-M Ml waveguide region 111, a single transverse mode can be reflected with respect to the grating center wavelength, so that it is stable. A single wavelength operation is realized.
[0063] また、共振器中には、 λ /4位相調整領域 121が形成されており、このえ /4位相 調整領域 121を挟んでグレーティング 120の位相が反転するようになっているので、 これにより、いわゆる主一副モード間の利得差を十分に大きくとることが可能になる。よ つて、高い歩留まりでの単一波長発振を実現することができる。この他の利点につい ては、上述した第 1の実施形態のものと同様である。  Further, a λ / 4 phase adjustment region 121 is formed in the resonator, and the phase of the grating 120 is inverted with the / 4 phase adjustment region 121 interposed therebetween. Accordingly, it is possible to make the gain difference between the so-called main and sub-modes sufficiently large. Thus, single-wavelength oscillation with a high yield can be realized. Other advantages are the same as those of the first embodiment.
[0064] 次に、上述した本実施形態のアクティブ ΜΜΙ型半導体レーザーの製造方法につ いて説明する。  Next, a method for manufacturing the above-described active semiconductor laser of the present embodiment will be described.
[0065] 本実施形態のアクティブ ΜΜΙ型半導体レーザーも、基本的には、図 3Α—図 3Fに 示した工程で作製することができる力 グレーティング 120の形成の仕方が前述の第 1の実施形態の場合(図 3Αの工程)と異なる。すなわち、本実施形態では、図 5に示 すように、グレーティング 120は、 n-InP半導体基板 101の表面の、能動導波路が形 成される領域に、その能動導波路の長さ全体にわたって形成される。グレーティング 120の幅 Aは、後の工程で形成されるシングルモード導波路 112の導波路幅 B (シン グノレモード導波路 113の導波路幅と同じ)以上、導波路幅 Bの 2倍以内とされる。ここ では、シングノレモード導波路 112の導波路幅 Bは 2 z m程度とされ、グレーティング 1 20の幅 Aは 3 z m程度とされる。ただし、メサ形成工程における位置精度(グレーティ ング 120とシングルモード導波路 112、 113との位置精度)を考慮すると、グレーティ ング 120の幅 Aは、導波路幅 Bより十分に大きくとることが望ましい。 The active も -type semiconductor laser of the present embodiment also basically has a method of forming the force grating 120 that can be manufactured by the steps shown in FIGS. 3A to 3F according to the first embodiment. This is different from the case (process in Fig. 3Α). That is, in the present embodiment, as shown in FIG. As described above, the grating 120 is formed on the surface of the n-InP semiconductor substrate 101 in the region where the active waveguide is formed, over the entire length of the active waveguide. The width A of the grating 120 is set to be equal to or more than the waveguide width B (same as the waveguide width of the single mode waveguide 113) of the single mode waveguide 112 to be formed in a later step and within twice the waveguide width B. . Here, the waveguide width B of the single mode waveguide 112 is about 2 zm, and the width A of the grating 120 is about 3 zm. However, considering the positional accuracy in the mesa forming process (the positional accuracy between the grating 120 and the single mode waveguides 112 and 113), it is desirable that the width A of the grating 120 be sufficiently larger than the waveguide width B.
[0066] グレーティング 120の形成後、図 3B—図 3Fに示した工程が行われる。そして、劈 開によりレーザー素子の後方端面、前方端面をそれぞれ形成し、両端面に反射防止 膜を形成して素子の製造を終了する。こうして、図 4A 図 4Cに示した構造を有する レーザー素子を得る。 After forming the grating 120, the steps shown in FIGS. 3B to 3F are performed. Then, the rear end face and the front end face of the laser element are formed by cleavage, and an antireflection film is formed on both end faces, thereby completing the manufacture of the element. Thus, a laser device having the structure shown in FIGS. 4A and 4C is obtained.
[0067] 上記の製造方法においても、前述した第 1の実施形態における製造方法と同様、 歩留まり良ぐ低コストな素子の製作が可能である。  [0067] Also in the above manufacturing method, similarly to the manufacturing method in the above-described first embodiment, it is possible to manufacture a low-cost element with a good yield.
[0068] 以上説明した本実施形態の導波路構造およびその製造方法は一例であって、そ の構成および手順は適宜変更可能である。例えば、上述した製造工程において、 MThe above-described waveguide structure of the present embodiment and the method of manufacturing the same are merely examples, and the configuration and procedure thereof can be changed as appropriate. For example, in the manufacturing process described above,
O— VPE法の代わりに、例えば分子線ビーム成長法(MBE法)を用いたり、 ICP法の 代わりに RIE法などを用いたりすることができる。 Instead of the O-VPE method, for example, a molecular beam growth method (MBE method) can be used, or the RIE method can be used instead of the ICP method.
[0069] また、グレーティング 120の形成位置も、安定した単一波長発振が得られる範囲で 変更可能である。例えば、グレーティング 120は、前述の第 1の実施形態で説明した a)— d)の位置のいずれに設けられてもよい。また、グレーティング 120は、 1 X 1-M[0069] Further, the formation position of the grating 120 can be changed in a range where stable single-wavelength oscillation can be obtained. For example, the grating 120 may be provided at any of the positions a) to d) described in the first embodiment. Also, grating 120 is 1 X 1-M
Ml導波路領域 111にのみ設けられてもよレ、。 It may be provided only in the Ml waveguide region 111.
[0070] (実施形態 3) (Embodiment 3)
図 6Aは、本発明の第 3の実施形態であるアクティブ MMI型半導体レーザーを上 面からみた場合の模式図である。図 6Bは、図 6Aの一点鎖線 A— A 'での断面図、図 6 FIG. 6A is a schematic diagram when an active MMI semiconductor laser according to a third embodiment of the present invention is viewed from above. FIG. 6B is a cross-sectional view taken along a dashed-dotted line A—A ′ in FIG.
Cは、図 6Aの一点鎖線 B—B'での断面図である。 FIG. 6C is a sectional view taken along dashed line BB ′ in FIG. 6A.
[0071] 本実施形態のアクティブ MMI型半導体レーザーは、図 6A 図 6Cに示すように、 前述した第 2の実施形態の構造における 1 X 1 - MMI導波路領域 111の部分を、 2 つの 1X1-MMI導波路領域 llla、 111bと、これらを接続するシングルモード導波 路領域 114とで置き換えたものである。これ以外の部分は、基本的には、図 4A—図 4Cに記載した構造と同じになっている。素子長は、 600 /im程度である。シングルモ ード導波路領域 112、 113はともに、導波路の長さが 40 xm程度、幅が 2 zm程度で ある。 lXl_MMI導波路領域llla、 11 lbはともに、導波路の長さが 230 μ m程度 で、幅が 9 xm程度である。シングルモード導波路領域 114の長さは 60 xm、幅は 2 μ m程度である。 As shown in FIG. 6A and FIG. 6C, the active MMI semiconductor laser of the present embodiment has the 1 × 1-MMI waveguide region 111 in the structure of the second embodiment described above, One 1X1-MMI waveguide region llla, 111b is replaced by a single mode waveguide region 114 connecting these. The other parts are basically the same as those shown in FIGS. 4A to 4C. The element length is about 600 / im. The single-mode waveguide regions 112 and 113 both have a waveguide length of about 40 xm and a width of about 2 zm. Each of the lXl_MMI waveguide regions llla and 11 lb has a waveguide length of about 230 μm and a width of about 9 xm. The length of the single mode waveguide region 114 is about 60 × m and the width is about 2 μm.
[0072] グレーティング 120は、活性層 104の下部の、 n_InP半導体基板 101の表面に、後 方端面から前方端面にわたって形成されており、グレーティング 120の共振器中に は、 λΖ4位相調整領域 121が形成されている。 λΖ4位相調整領域 121は、グレー ティング 120のピッチを λ /4だけずらしたものであって、この λ /4位相調整領域 1 21を挟んでグレーティング 120の位相が反転するようになっている。グレーティング 1 20の幅は、シングルモード導波路領域 112、 113では、これら導波路の幅(2μΐη程 度)と同じであり、 1 X 1— ΜΜΙ導波路領域 111では、シングルモード導波路領域 112 、 113の導波路幅の 2倍(4 /im程度)以内とされる。ここでは、グレーティング 120の 幅を 3μΐη程度とし、規格化結合定数 (kL)を 1程度としている。なお、後方端面、前 方端面には、ともに反射防止膜が設けられる。  The grating 120 is formed on the surface of the n_InP semiconductor substrate 101 under the active layer 104 and extends from the rear end face to the front end face. Have been. The λΖ4 phase adjustment region 121 is obtained by shifting the pitch of the grating 120 by λ / 4, and the phase of the grating 120 is inverted with the λ / 4 phase adjustment region 121 interposed therebetween. In the single mode waveguide regions 112 and 113, the width of the grating 120 is the same as the width of these waveguides (about 2 μΐη). In the 1 × 1 — waveguide region 111, the single mode waveguide region 112 The width is set to within twice (about 4 / im) the width of the waveguide of 113. Here, the width of the grating 120 is about 3 μΐη, and the normalized coupling constant (kL) is about 1. Note that an antireflection film is provided on both the rear end face and the front end face.
[0073] 本実施形態においても、グレーティング 120は、 1 X 1— MMI導波路領域 llla、 1 libにおいて、導波中心に形成されており、し力も、そのグレーティング幅は、シング ルモード導波路 112— 114の導波路幅の 2倍以内の幅とされている。よって、 1X1- MMI導波路領域 llla、 111b中において伝播する各横モードのうち、単一横モード をグレーティング中心波長に対して反射させることができるため、安定した単一波長 動作が実現される。この他の利点については、上述した第 1および 2の実施形態のも のと同様である。  Also in the present embodiment, the grating 120 is formed at the center of the waveguide in the 1 × 1—MMI waveguide region llla, 1 lib, and the force of the grating is the same as that of the single mode waveguide 112 — The width is set to within twice the width of the 114 waveguide. Therefore, among the transverse modes propagating in the 1X1-MMI waveguide regions llla and 111b, a single transverse mode can be reflected with respect to the center wavelength of the grating, thereby achieving a stable single-wavelength operation. Other advantages are the same as those of the first and second embodiments described above.
[0074] 次に、上述した本実施形態のアクティブ MMI型半導体レーザーの製造方法につ いて説明する。  Next, a method of manufacturing the active MMI semiconductor laser according to the above-described embodiment will be described.
[0075] 本実施形態のアクティブ MMI型半導体レーザーも、基本的には、図 3A—図 3Fに 示した工程で作製することができる力 1 X 1一 MMI導波路領域およびグレーティン グを形成する領域が前述の第 1および第 2の実施形態の場合(図 3A、図 5aの工程) と異なる。すなわち、本実施形態では、図 7に示すように、グレーティング 120は、 n-InP半導体基板 101の表面の、 1 X 1-MMI導波路領域 l l la、 111bおよびシン ダルモード導波路領域 112 114を含む能動導波路が形成される領域に、その能 動導波路の長さ全体にわたって形成される。グレーティング 120の幅は、後の工程で 形成されるシングルモード導波路 112— 114の導波路幅以上、該導波路幅の 2倍以 内とされる。ここでは、シングノレモード導波路 112 114の導波路幅は 程度とさ れ、グレーティング 120の幅は 3 μ m程度とされる。 The active MMI semiconductor laser of the present embodiment also basically has a force 1 × 1 MMI waveguide region and grating that can be manufactured by the steps shown in FIGS. 3A to 3F. The region in which the metal is formed is different from the case of the first and second embodiments described above (the steps of FIGS. 3A and 5A). That is, in the present embodiment, as shown in FIG. 7, the grating 120 includes the 1 × 1-MMI waveguide regions ll la and 111b and the sinal mode waveguide region 112 114 on the surface of the n-InP semiconductor substrate 101. In the region where the active waveguide is formed, it is formed over the entire length of the active waveguide. The width of the grating 120 is set to be equal to or larger than the waveguide width of the single mode waveguides 112 to 114 formed in a later step and equal to or smaller than twice the waveguide width. Here, the waveguide width of the single mode waveguide 112 114 is about, and the width of the grating 120 is about 3 μm.
[0076] グレーティング 120の形成後、 1 X 1— MMI導波路領域 l l la、 11 lbおよびシング ルモード導波路領域 112 114を含む能動導波路が形成される。そして、劈開によ りレーザー素子の後方端面、前方端面をそれぞれ形成し、両端面に反射防止膜を 形成して素子の製造を終了する。こうして、図 6A 図 6Cに示した構造を有するレー ザ一素子を得る。 After the formation of the grating 120, an active waveguide including the 1 × 1—MMI waveguide region 11 la, 11 lb and the single mode waveguide region 112 114 is formed. Then, the rear end face and the front end face of the laser element are formed by cleavage, and antireflection films are formed on both end faces, thereby completing the manufacture of the element. Thus, a laser device having the structure shown in FIGS. 6A and 6C is obtained.
[0077] 上記の製造方法においても、前述した第 1の実施形態における製造方法と同様、 歩留まり良ぐ低コストな素子の製作が可能である。  [0077] Also in the above manufacturing method, similarly to the manufacturing method in the above-described first embodiment, it is possible to manufacture a low-cost element with a good yield.
[0078] 以上説明した本実施形態の導波路構造およびその製造方法は一例であって、そ の構成および手順は適宜変更可能である。例えば、上述した製造工程において、 M O— VPE法の代わりに、例えば分子線ビーム成長法(MBE法)を用いたり、 ICP法の 代わりに RIE法などを用いたりすることができる。  The waveguide structure and the method of manufacturing the same according to the present embodiment described above are merely examples, and the configuration and procedure thereof can be changed as appropriate. For example, in the above-described manufacturing process, for example, a molecular beam growth method (MBE method) can be used instead of the MO-VPE method, and an RIE method can be used instead of the ICP method.
[0079] また、グレーティング 120の形成位置も、安定した単一波長発振が得られる範囲で 変更可能である。例えば、グレーティング 120は、前述の第 1の実施形態で説明した a) d)の位置のいずれに設けられてもよレ、。また、グレーティング 120は、 1 X 1-M Ml導波路領域 l l la、 111bにのみ設けられてもよレ、。さらに、グレーティング 120は 、 1 1_1^1^1導波路領域111&、 11 lbの一方にのみ設けられてもよい。  Further, the formation position of the grating 120 can be changed within a range where stable single-wavelength oscillation can be obtained. For example, the grating 120 may be provided at any of the positions a) and d) described in the first embodiment. The grating 120 may be provided only in the 1 × 1-M Ml waveguide region l la, 111b. Further, the grating 120 may be provided only on one of the 11_1 ^ 1 ^ 1 waveguide regions 111 & and 11lb.
[0080] さらに、 1 X 1— MMI導波路領域の数も、素子長が増大しない範囲で変更可能であ る。例えば、 1 X 1-MMI導波路領域は 3つ以上設けられてもよい。  Further, the number of 1 × 1-MMI waveguide regions can also be changed without increasing the element length. For example, three or more 1 × 1-MMI waveguide regions may be provided.
[0081] 上述した第 1一第 3の実施形態では、活性層を含む能動導波路の一部を 1 X 1-M Ml導波路により構成したものについて説明したが、本発明は、これに限定されるもの ではなぐ例えば 1 X 1— MMI導波路に代えて、 1 X N— MMI導波路や N X N— MMI 導波路を用いることも可能である。 1 X N-MMI導波路を用いる場合は、「N」側が後 方側、「1」側が前方側となり、後方側では、 N分岐に対応する位置にそれぞれシング ルモード導波路 113を設ける。 N X N— MMI導波路を用いる場合は、前方側の N分 岐に対応する位置にそれぞれシングノレモード導波路 112を設け、後方側の N分岐に 対応する位置にそれぞれシングルモード導波路 113を設ける。 In the first to third embodiments described above, the active waveguide including the active layer is partially configured by the 1 × 1-M Ml waveguide, but the present invention is not limited to this. What is done For example, it is also possible to use a 1 XN-MMI waveguide or a NXN-MMI waveguide instead of a 1 X 1-MMI waveguide. When a 1 × N-MMI waveguide is used, the “N” side is on the rear side, the “1” side is on the front side, and the single mode waveguide 113 is provided on the rear side at a position corresponding to the N branch. When the NXN-MMI waveguide is used, a single mode waveguide 112 is provided at a position corresponding to the N branch on the front side, and a single mode waveguide 113 is provided at a position corresponding to the N branch on the rear side.
[0082] また、上述した各実施形態の導波路構造は、 MMI導波路の両端にシングノレモード 導波路を接続した構造になっているが、 MMI導波路の前方側または後方側のみが シングノレモード導波路を持つような構造とすることも可能である。この場合は、 MMI 導波路の、シングノレモード導波路が設けられていない方の端面がレーザー素子端面 とされる。例えば、後方側にシングルモード導波路を持たない場合は、 MMI導波路 の後方側の端面がレーザー素子の後方側の端面となり、この端面に高反射膜が形 成される。  The waveguide structure of each of the above-described embodiments has a structure in which a single mode waveguide is connected to both ends of the MMI waveguide, but only the front or rear side of the MMI waveguide has a single mode. It is also possible to adopt a structure having a mode waveguide. In this case, the end face of the MMI waveguide on which the single mode waveguide is not provided is the laser element end face. For example, when there is no single mode waveguide on the rear side, the rear end face of the MMI waveguide becomes the rear end face of the laser element, and a high reflection film is formed on this end face.
[0083] (モジュール構造)  [0083] (Module structure)
以上説明した本発明のアクティブ MMI型半導体レーザーを用いて、光送信モジュ 一ルゃ光送受信モジュールなどの光通信モジュールを構成することができる。光送 信モジュールの場合は、本発明のアクティブ MMI型半導体レーザーと、これを駆動 する回路とを搭載する。光送受信モジュールの場合は、本発明のアクティブ MMI型 半導体レーザーと、これを駆動する回路と、外部から入力される光を受光する受光部 とを搭載する。いずれの場合も、使用に応じた種々の他の回路 (変調回路や波形整 形回路など)を搭載することができる。これら光通信モジュールは、本発明のァクティ ブ MMI型半導体レーザーを用いることで、低電圧での駆動が可能となっている。よ つて、従来にない、低消費電力化に優れたモジュールの提供が可能である。  Using the active MMI semiconductor laser of the present invention described above, an optical communication module such as an optical transmission module / optical transmission / reception module can be configured. In the case of the optical transmission module, the active MMI semiconductor laser of the present invention and a circuit for driving the semiconductor laser are mounted. In the case of an optical transceiver module, the active MMI semiconductor laser of the present invention, a circuit for driving the semiconductor laser, and a light receiving unit for receiving light input from the outside are mounted. In each case, various other circuits (such as a modulation circuit and a waveform shaping circuit) can be mounted according to the use. These optical communication modules can be driven at a low voltage by using the active MMI semiconductor laser of the present invention. Therefore, it is possible to provide a module which is excellent in low power consumption, which has not existed conventionally.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも 1つの多モード干渉導波路と、該多モード干渉導波路の両端部または一 方の端部に接続された少なくとも 1つのシングノレモード導波路とから能動導波路が構 成される半導体レーザーであって、  [1] An active waveguide is composed of at least one multi-mode interference waveguide and at least one single mode waveguide connected to both ends or one end of the multi-mode interference waveguide. A semiconductor laser,
前記能動導波路の一部に、当該能動導波路を伝播する発振光の単一波長を選択 するためのグレーティングを有する半導体レーザー。  A semiconductor laser having a grating in a part of the active waveguide for selecting a single wavelength of oscillation light propagating through the active waveguide.
[2] 前記グレーティングが、前記シングルモード導波路の領域に設けられている、請求 項 1に記載の半導体レーザー。  2. The semiconductor laser according to claim 1, wherein the grating is provided in a region of the single mode waveguide.
[3] 前記シングルモード導波路が、前記能動導波路の両端部に設けられた一対のシン ダルモード導波路であり、 [3] The single mode waveguide is a pair of sinal mode waveguides provided at both ends of the active waveguide,
前記グレーティングが、前記一対のシングノレモード導波路の少なくとも一方に設け られている、請求項 2に記載の半導体レーザー。  3. The semiconductor laser according to claim 2, wherein the grating is provided on at least one of the pair of single mode waveguides.
[4] 前記グレーティングが、前記多モード干渉導波路の領域に設けられてレ、る、請求項[4] The grating is provided in a region of the multi-mode interference waveguide.
1に記載の半導体レーザー。 The semiconductor laser according to 1.
[5] 前記グレーティングの幅が、前記シングノレモード導波路の幅の 2倍以内である、請 求項 4に記載の半導体レーザー。 [5] The semiconductor laser according to claim 4, wherein the width of the grating is within twice the width of the single mode waveguide.
[6] 前記シングルモード導波路が、前記能動導波路の両端部に設けられた一対のシン ダルモード導波路であり、 [6] The single mode waveguide is a pair of sinal mode waveguides provided at both ends of the active waveguide,
前記グレーティングが、前記多モード干渉導波路の、前記一対のシングノレモード導 波路の延長線上の領域に設けられている、請求項 5に記載の半導体レーザー。  6. The semiconductor laser according to claim 5, wherein the grating is provided in an area of the multimode interference waveguide on an extension of the pair of single mode waveguides.
[7] 前記グレーティングが、前記能動導波路の長さ全体にわたって設けられている、請 求項 6に記載の半導体レーザー。 7. The semiconductor laser according to claim 6, wherein said grating is provided over the entire length of said active waveguide.
[8] 前記グレーティング中に、位相調整領域が設けられている、請求項 7に記載の半導 体レ1 ~ザ1 ~。 [8] The semiconductor laser 1 to 1 according to claim 7, wherein a phase adjustment region is provided in the grating.
[9] 請求項 1から 8のいずれ力 1項に記載の半導体レーザーと、該半導体レーザーを駆 動する回路とを収容する光通信モジュール。  [9] An optical communication module that houses the semiconductor laser according to any one of claims 1 to 8 and a circuit that drives the semiconductor laser.
[10] 少なくとも 1つの多モード干渉導波路と、該多モード干渉導波路の両端部または一 方の端部に接続された少なくとも 1つのシングノレモード導波路とから能動導波路が構 成される半導体レーザーの製造方法であって、 [10] An active waveguide is composed of at least one multimode interference waveguide and at least one single mode waveguide connected to both ends or one end of the multimode interference waveguide. A method of manufacturing a semiconductor laser, comprising:
半導体基板上の、前記シングルモード導波路が形成される領域に、該シングルモ ード導波路の幅より広い幅を有するグレーティング領域を形成する工程と、  Forming a grating region having a width larger than the width of the single mode waveguide in a region on the semiconductor substrate where the single mode waveguide is formed;
前記グレーティング領域を、前記能動導波路の形状にエッチングする工程とを含む 半導体レーザーの製造方法。  Etching the grating region into the shape of the active waveguide.
[11] 少なくとも 1つの多モード干渉導波路と、該多モード干渉導波路の両端部または一 方の端部に接続された少なくとも 1つのシングノレモード導波路とから能動導波路が構 成される半導体レーザーの製造方法であって、  [11] An active waveguide is composed of at least one multimode interference waveguide and at least one single mode waveguide connected to both ends or one end of the multimode interference waveguide. A method for manufacturing a semiconductor laser,
半導体基板上の前記能動導波路が形成される領域に、前記シングルモード導波 路の幅以上で、前記シングノレモード導波路の幅の 2倍以内の幅を有するグレーティ ング領域を、前記能動導波路の長さ全体にわたって形成する工程と、  In a region on the semiconductor substrate where the active waveguide is formed, a grating region having a width equal to or larger than the width of the single mode waveguide and within twice the width of the single mode waveguide is placed in the active waveguide. Forming over the entire length of the waveguide;
前記グレーティング領域を、前記能動導波路の形状にエッチングする工程とを含む 半導体レーザーの製造方法。  Etching the grating region into the shape of the active waveguide.
PCT/JP2004/018703 2003-12-18 2004-12-15 Semiconductor laser and its manufacturing method WO2005060058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516315A JPWO2005060058A1 (en) 2003-12-18 2004-12-15 Semiconductor laser and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-420742 2003-12-18
JP2003420742 2003-12-18

Publications (1)

Publication Number Publication Date
WO2005060058A1 true WO2005060058A1 (en) 2005-06-30

Family

ID=34697259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018703 WO2005060058A1 (en) 2003-12-18 2004-12-15 Semiconductor laser and its manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2005060058A1 (en)
WO (1) WO2005060058A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1833128A1 (en) * 2006-03-10 2007-09-12 Fujitsu Limited Optical semiconductor device with diffraction grating
WO2008117527A1 (en) * 2007-03-23 2008-10-02 Kyushu University, National University Corporation High-intensity light-emitting diode
WO2009119131A1 (en) * 2008-03-28 2009-10-01 日本電気株式会社 Semiconductor light-emitting element and method for fabricating the element
JP2011109001A (en) * 2009-11-20 2011-06-02 Kyushu Univ Waveguide type optical filter and semiconductor laser
CN103915758A (en) * 2014-03-26 2014-07-09 中国科学院上海微系统与信息技术研究所 Terahertz quantum cascade laser of multiple-mode interface structure and manufacturing method thereof
JP2017157583A (en) * 2016-02-29 2017-09-07 日本オクラロ株式会社 Optical transmission module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369886A (en) * 1991-06-19 1992-12-22 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser
JPH06310801A (en) * 1993-04-26 1994-11-04 Yokogawa Electric Corp Semiconductor laser
JPH1168222A (en) * 1997-08-11 1999-03-09 Oki Electric Ind Co Ltd Manufacture of semiconductor laser
JP2003046190A (en) * 2001-07-30 2003-02-14 Hitachi Ltd Semiconductor laser
JP2003273462A (en) * 2002-03-14 2003-09-26 Nec Corp Semiconductor laser module, fiber type optical amplifier, optical repeater, and optical transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369886A (en) * 1991-06-19 1992-12-22 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser
JPH06310801A (en) * 1993-04-26 1994-11-04 Yokogawa Electric Corp Semiconductor laser
JPH1168222A (en) * 1997-08-11 1999-03-09 Oki Electric Ind Co Ltd Manufacture of semiconductor laser
JP2003046190A (en) * 2001-07-30 2003-02-14 Hitachi Ltd Semiconductor laser
JP2003273462A (en) * 2002-03-14 2003-09-26 Nec Corp Semiconductor laser module, fiber type optical amplifier, optical repeater, and optical transmission system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1833128A1 (en) * 2006-03-10 2007-09-12 Fujitsu Limited Optical semiconductor device with diffraction grating
US7738523B2 (en) 2006-03-10 2010-06-15 Fujitsu Limited Optical semiconductor device having diffraction grating
WO2008117527A1 (en) * 2007-03-23 2008-10-02 Kyushu University, National University Corporation High-intensity light-emitting diode
JPWO2008117527A1 (en) * 2007-03-23 2010-07-15 国立大学法人九州大学 High brightness light emitting diode
US8295663B2 (en) 2007-03-23 2012-10-23 Kyushu University, National University Corporation Super-luminescent light emitting diode
JP5616629B2 (en) * 2007-03-23 2014-10-29 国立大学法人九州大学 High brightness light emitting diode
WO2009119131A1 (en) * 2008-03-28 2009-10-01 日本電気株式会社 Semiconductor light-emitting element and method for fabricating the element
JP2011109001A (en) * 2009-11-20 2011-06-02 Kyushu Univ Waveguide type optical filter and semiconductor laser
CN103915758A (en) * 2014-03-26 2014-07-09 中国科学院上海微系统与信息技术研究所 Terahertz quantum cascade laser of multiple-mode interface structure and manufacturing method thereof
JP2017157583A (en) * 2016-02-29 2017-09-07 日本オクラロ株式会社 Optical transmission module

Also Published As

Publication number Publication date
JPWO2005060058A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5287460B2 (en) Semiconductor laser
US8155161B2 (en) Semiconductor laser
JP3985159B2 (en) Gain clamp type semiconductor optical amplifier
JP2016178283A (en) Wavelength variable laser element and laser module
US9088132B2 (en) Semiconductor optical element, integrated semiconductor optical element, and semiconductor optical element module
US9728938B2 (en) Optical semiconductor device, optical semiconductor device array, and optical transmitter module
JP6487195B2 (en) Semiconductor optical integrated device, semiconductor optical integrated device manufacturing method, and optical module
JP3244115B2 (en) Semiconductor laser
US7466736B2 (en) Semiconductor laser diode, semiconductor optical amplifier, and optical communication device
JP6588859B2 (en) Semiconductor laser
US7680169B2 (en) Self-mode locked multi-section semiconductor laser diode
JP2007158057A (en) Integrated laser device
JP6247944B2 (en) Horizontal cavity surface emitting laser element
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JP2012256667A (en) Semiconductor laser light source
WO2005060058A1 (en) Semiconductor laser and its manufacturing method
JP2017204600A (en) Semiconductor laser
US20050226283A1 (en) Single-mode semiconductor laser with integrated optical waveguide filter
JP2000077771A (en) Semiconductor optical amplifying device
JP6610834B2 (en) Tunable laser device
JP2004055647A (en) Distributed bragg reflector semiconductor laser diode, integrated semiconductor laser, semiconductor laser module, and optical network system
JP5987251B2 (en) Semiconductor laser
JP5163355B2 (en) Semiconductor laser device
JP3529275B2 (en) WDM light source
JP2019091780A (en) Semiconductor optical device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516315

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase