WO2005045409A1 - Electrical resistivity sensor and sensing method - Google Patents

Electrical resistivity sensor and sensing method Download PDF

Info

Publication number
WO2005045409A1
WO2005045409A1 PCT/JP2004/006583 JP2004006583W WO2005045409A1 WO 2005045409 A1 WO2005045409 A1 WO 2005045409A1 JP 2004006583 W JP2004006583 W JP 2004006583W WO 2005045409 A1 WO2005045409 A1 WO 2005045409A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric resistance
detection sensor
film
type detection
resistance type
Prior art date
Application number
PCT/JP2004/006583
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Nagaoka
Hiroshi Shiigi
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP2005515228A priority Critical patent/JP4389088B2/en
Publication of WO2005045409A1 publication Critical patent/WO2005045409A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Definitions

  • the present invention relates to an electric resistance type detection sensor and a detection method for detecting and confirming a target substance such as a nucleic acid such as DNA or RNA or a protein such as an antigen or an antibody.
  • a target substance such as a nucleic acid such as DNA or RNA or a protein such as an antigen or an antibody.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-287538
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-250088
  • a conventional DNA chip for example, a single-stranded DNA sample is first labeled with a fluorescent substance. Then, the sample is sprayed on a chip having the target DNA bound to the surface, and the target DNA in the sample and the DNA bound to the chip surface are hybridized. The fluorescent substance labeled with the sample emits light, and the emitted light is read using a microscope or laser fluorescence scanner to detect the presence of the target DNA.
  • Patent Document 3 detection of the presence or absence of a target DNA is performed by using a change in the refractive index of light caused by surface plasmon resonance (SPR) occurring on the chip surface. Is disclosed.
  • Patent Document 4 discloses a DNA chip having, on a substrate, a region in which a DNA complementary to a target DNA is bound. The publication Then, the DNA in the sample is first modified with conductive particles, and the obtained sample is sprayed on the above-mentioned region, and the DNA binding to the region and the DNA present in the sample are compared with the DNA present in the sample. Hybridize with complementary DNA. As a result, in the hybridized DNA, a current flows in the region through the conductive particles that have modified the DNA, and that fact is used to detect the presence or absence of the target DNA.
  • the specific binding partner (5) needs to be immobilized between the two electrodes on the substrate.
  • the immobilization to the conductive particles in (6) is achieved by the SH-modified oligonucleotide.
  • (5) is immobilized on a substrate by a silane coating method using APTES and the like, and the oligonucleotide is immobilized using this as a linker.
  • the sample must be modified with conductive particles every time the detection is performed, and the detection is troublesome and costly. Disclosure of the invention
  • the present invention provides a simpler, cheaper, more accurate, and more accurate method for reducing target substances such as nucleic acids such as DNA and RNA or proteins such as antigens and antibodies.
  • target substances such as nucleic acids such as DNA and RNA or proteins such as antigens and antibodies.
  • an electric resistance type detection sensor and an electric resistance type detection method which can be detected and confirmed at a low cost, and which can be inexpensively and easily used repeatedly.
  • a pair of electrodes are arranged facing each other on an electrically insulated substrate surface, and a film of conductive fine particles modified with a probe is formed on or between the electrodes.
  • An electric resistance type detection sensor is provided. Further, according to a second aspect of the present invention,
  • a concave portion is provided on the surface of the electrically insulated substrate, and a pair of electrodes are arranged in the concave portion so as to face each other, and a film of conductive fine particles modified with a probe is provided on and / or between the electrodes.
  • An electric resistance type detection sensor characterized by being formed is provided.
  • a substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles.
  • a second electrode
  • an electric resistance detection sensor characterized in that a film of conductive fine particles is modified with a probe.
  • a substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles.
  • a second electrode
  • An electric resistance type detection sensor characterized in that a first electrode is formed on a surface of a substrate, a second electrode is formed inside a recess, and a film of conductive fine particles is modified with a probe. I do. Further, according to a fifth aspect of the present invention,
  • an electric resistance type detection method for detecting the presence or absence of a target substance that reacts with a probe. Further according to a sixth aspect of the present invention,
  • FIG. 1 is a diagram showing the selectivity of the electric resistance type detection sensor of the present invention when single-stranded DNA is used as a probe. Arrows indicate when the target substance was dropped.
  • Figure 2 shows the change in the electrical resistance of the DNA before and after the DNA present on the membrane of the DNA nanoparticles modified with DNA (probe) was degraded by the DNAse enzyme to illustrate the present invention. It is.
  • the arrow shows the case where the target substance was dropped at the position 1 and the DNA degrading enzyme was dropped at the position of arrow 2.
  • FIG. 3 is a diagram showing a change in the electric resistance value of the electric resistance type detection sensor of the present invention when a single-stranded DNA having both ends thiolated is used as a probe.
  • the arrow indicates when the target substance has been dropped.
  • FIG. 4 is a diagram showing a change in the electric resistance value of the electric resistance type detection sensor of the present invention when a single-stranded DNA having both ends thiolated is used as a probe and the conductive fine particle film does not contain a binder. It is. Arrows indicate when the target substance was dropped.
  • FIG. 5 shows a sample of the present invention in which a single-stranded DNA having both ends thiolated as a probe and a measurement sample were prepared in advance, and the resulting sample was sprayed on a membrane consisting of only conductive fine particles containing a binder. It is a figure showing change of an electric resistance value of an electric resistance type detection sensor.
  • FIG. 6 shows the change in the resistance value of the gold nanoparticle membrane when a rabbit anti-mouse IgG antibody was used as a probe and a mouse IgG antigen was used as a target substance to illustrate the present invention.
  • FIG. The target substance was dropped at the position of the arrow.
  • FIG. 7 (a) is a block diagram showing a configuration of an electric resistance type detection sensor according to Embodiment 6 of the present invention.
  • (B) is a side sectional view of a main part showing a state of a concave portion of the electric resistance type detection sensor. is there.
  • FIG. 8 is a block diagram illustrating a configuration of a detection sensor according to Embodiment 6 of the present invention.
  • FIG. 9 is a block diagram illustrating a configuration of a lock-in amplifier circuit according to Embodiment 6 of the present invention. '
  • FIG. 10 is a block diagram showing a configuration of a detection sensor according to Embodiment 7 of the present invention, and (b) is a side sectional view of a main part showing a state of a concave portion of the detection sensor.
  • one set of electrodes is arranged on the substrate surface.
  • an electrically insulating substrate can be suitably used as the “substrate” of the present invention.
  • the material include glass, plastic, quartz, and silicon.
  • the material used for the "electrode” of the present invention the material used for the electrode of a normal sensor is sufficient, and specifically, Au, Pt, Cu, Al, Ni, Ti, etc.
  • polymers such as polypyrrole, polyaniline and polyacene may be mentioned.
  • the shape of the electrode is not particularly limited, and examples thereof include a comb electrode having a comb shape. Further, the electrodes may be coated with an insulating material.
  • a film of conductive fine particles is formed on the electrodes and / or between the electrodes.
  • the “film of conductive fine particles” of the present invention refers to a film formed so that the conductive fine particles and the electrode are in direct contact with each other, as well as close enough that the conductive fine particles and the electrode can be electrically connected. Nano-gap state. According to one aspect, the film of conductive fine particles can be expressed as a layer of conductive fine particles.
  • the conductive fine particles and the electrode only need to be electrically conductive through the binder.
  • the “conductive fine particles” of the present invention include a substance having conductivity and capable of directly and / or indirectly binding to a probe described later.
  • examples include particles made of materials such as irene, platinum, aluminum, gold, and silver. Among them, particles composed of metals such as gold and silver are preferable, and particles composed of gold are more preferable.
  • the size of the conductive fine particles may be appropriately selected according to the material of the particles and the probe. Among them, the average particle size of the conductive fine particles is preferably nano-sized, and more preferably 50 to 100 nm.
  • the film of the conductive fine particles can be formed by using a known method.
  • a gold nanoparticle film can be formed by bringing a gold colloid solution in which the gold nanoparticles are suspended in an appropriate solvent into contact with a substrate.
  • the solvent used include water and alcohols such as methanol and ethanol.
  • the film of the conductive fine particles contains a binder.
  • the “binder” may be appropriately selected according to the type of the conductive fine particles and the probe. Specifically, when a metal such as gold or silver is used as the material of the conductive fine particles, dithiols having an SH group such as 1,10-decanedithiol or NH such as 1,10-diaminodecane can be used.
  • binder examples include diamines having two groups. Of these, dithiols are preferred, and 1,10-decanedithiol is particularly preferred.
  • the film of the conductive fine particles containing the binder can be formed using a known method.
  • the binder and the gold nanoparticles are suspended in an appropriate solvent, and the suspension is applied to a substrate.
  • the contact makes it possible to form a film of conductive fine particles containing a binder.
  • the solvent to be used is water or an alcohol such as methanol or ethanol, as described above.
  • the film of the conductive fine particles with / without the binder of the present embodiment is decorated with a probe.
  • Modifying the conductive fine particle film of the present invention with a probe means not only that at least a part of the probe is in direct contact with the conductive fine particle film, but also that the probe and the conductive fine particle This includes the case where the film is in a nanogap state that is close enough to allow electrical conduction with the film.
  • the probe When a probe described later is modified with a specific group or the like, the probe may be modified on the film of the conductive fine particles via the group.
  • the “probe” of the present invention includes those capable of changing the electric resistance between the conductive fine particles by reacting the probe with the target substance.
  • a nucleic acid such as DNA or RNA, or a protein such as an antigen or an antibody is used as a probe.
  • the probe used may be a natural one or an artificial one.
  • the probes need not necessarily be 100% identical, and may contain other substances as long as they do not interfere with detection.
  • single-stranded DNA When single-stranded DNA is used as a probe, first, double-stranded DNA is collected using a known method, and the double-stranded DNA is suspended in distilled water or the like. After heating for about 10 minutes, transfer to ice and cool rapidly to obtain single-stranded DNA.
  • the “reaction” of the present invention includes not only a chemical reaction but also a physical interaction. As an example of the reaction, single-stranded DNA is used as a probe, and DNA that is complementary to the single-stranded DNA is used as a target substance.Hybridization between the DNAs, an antibody is used as a probe, Examples of such binding include those occurring when an antigen is used as a target substance.
  • the length of the DNA used as a probe is at least 2 to 3000 bp, preferably 4 to 100 bp, and more preferably 10 to 12 bp.
  • examples of the probe include an antibody or an antigen capable of reacting with a target antigen or an antibody. Further, it is also preferable to activate the probe with a specific group or the like.
  • the probe when gold nanoparticles are used as the conductive fine particles and DNA or antibody is used as the probe, the probe is preferably activated with a specific group such as an SH group or NH 2 group.
  • the sites to be activated include sites involved in the reaction (for example, if the target substance is DN
  • the part to be activated is preferably at the end of the probe, and more preferably at both ends of the probe.
  • the site to be activated may include a part of the site involved in the reaction.
  • the method of activating the probe may be appropriately selected from known methods depending on the type of the probe and the conductive fine particles to be used.
  • the probe when DNA is used as the probe, the probe can be treated with a thiol having an SH group such as 1,10-decanedithiol or a diamine having an NH 2 group such as 1,10-diaminodecane. Then, the probe can be activated.
  • an antibody when used as a probe and gold nanoparticles are used as conductive fine particles, for example, mercaptopropionic acid having an SH group that binds to the surface of the gold nanoparticles and having a lipoxyl group at the terminal, etc. And treated with N-hydroxysuccinimide, triethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride, etc. to form an activated site capable of binding to the antibody. Then, the probe having the NH 2 group can be immobilized on the gold nanoparticle, the electrode, or the like via the peptide bond.
  • the electric resistance type detection sensor shown in the second embodiment has a concave portion formed on the substrate surface of the first embodiment, and a film of the conductive fine particles modified with the probe is formed on the inner surface of the concave portion. It is formed on the surface. Otherwise, the same sensor as the electric resistance type detection sensor described in the first embodiment can be applied.
  • the “recess” of the present invention has such a size that a probe and a sample can react in the recess and a film of conductive fine particles can be formed in the recess. And those having a shape.
  • the shape of the concave portion may be a round or polygonal cylindrical shape or a mortar shape. Especially, it is preferable that it is a mortar shape. In other words, it is desirable that the concave portion has a smaller area at the bottom than the opening.
  • the number of recesses present on one substrate surface can be appropriately selected according to the application of the sensor. For example, when the size of the substrate and 1 cm 2 ⁇ 3 cm 2, the number of recesses, 1 0 0-3 0 0 0, preferably 5 0 0 or more, 1, 0 0 0 or more, More than 1,500, less than 2,000, less than 2,500.
  • the electrodes are provided so as to be in contact with the film of the conductive fine particles in each concave portion and not to directly contact each other.
  • the portion where the electrode is formed is not limited to the surface of the substrate, but may be the inside of the recess, the shoulder or the bottom.
  • the method for forming the concave portion can be selected from known methods according to the material of the substrate and the size and shape of the concave portion. For example, when a glass substrate or a plastic substrate is used, a mask having a pattern of a predetermined shape is formed on the substrate surface, and a predetermined concave portion is formed on the substrate surface by using a laser beam using a chemical etching agent. Can be formed.
  • the concave portion may be formed on the surface of the substrate by attaching the sheet having the concave portion to the substrate by lamination or the like.
  • an electrode As a method for forming an electrode, a known method can be used. For example, an electrode can be formed by forming a mask having a predetermined pattern on the substrate surface and depositing a metal film thereon.
  • Either the formation of the concave portion or the formation of the electrode may be performed first! /.
  • the binder described above may be contained in the gold nanoparticle film of the present invention. Further, as a third embodiment,
  • a substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles.
  • a second electrode
  • a plurality of fine concave portions are formed on the surface of the substrate according to the present embodiment.
  • the first and second electrodes of the electric resistance type detection sensor include one or more It can be connected via a multiplexer, preferably an analog multiplexer.
  • the multiplexer here functions as a demultiplexer.
  • the multiplexer includes an element having a function of switching a target sensor based on an external address signal.
  • a multiplexer having an input terminal, an output terminal, and an address input terminal for inputting an address signal is used. be able to.
  • a control unit such as a microphone computer that outputs an address signal is connected to the address input terminal.
  • the first and second electrodes connected via one or more multiplexers are connected to an electrical device such as a voltmeter, current meter, or resistance meter that measures electrical characteristics such as voltage, current, or resistance between electrodes. It is preferable to be connected via a characteristic measuring device.
  • first electrode and the second electrode may be connected via a lock-in circuit instead of the electrical property measuring device.
  • the electrical characteristic measuring device may be connected to an output terminal of the lock-in amplifier circuit.
  • the electrical characteristics measuring instrument preferably has an output terminal that outputs current, voltage, etc. according to the magnitude of the measured electrical characteristics, and a control unit is connected to this output terminal. Is preferred.
  • the control unit is preferably connected to an output terminal of the lock-in amplifier circuit. It is preferable that the control unit has a storage unit such as a memory and stores the output of the electrical characteristic measuring device.
  • the control unit is preferably further connected to an output device such as a monitor or a printer, and is preferably configured to output the electrical characteristics stored in the storage unit to the output device.
  • an output device such as a monitor or a printer
  • a second electrode By using an electric resistance type detection sensor in which a film of conductive fine particles is modified with a probe and connected to at least one electrode and / or another conductive fine particle, a separate probe is provided in each concave portion. After binding, the target substance in the sample can be easily detected and confirmed easily and in a short time.
  • a plurality of fine concave portions are formed on the surface of the substrate according to the present embodiment.
  • the first or second electrode corresponding to each recess may be electrically connected to each other. In this case, with the same configuration as in the third embodiment, it is possible to measure the sample introduced into each recess.
  • the first electrode is formed on the substrate surface includes the case where the first electrode formed on the substrate surface is covered with an insulating material or the like. That is, the portion where the first electrode is formed is not limited to the surface of the substrate, but may be the inside of the recess or the shoulder.
  • the second electrode may be exposed on the back surface.
  • the second electrode may be entirely or partially covered with an insulating material or the like.
  • the second electrode can be formed by forming a plurality of grooves that do not cross each other, preferably extend in parallel, on the back surface of the substrate, and fill the grooves with a conductor such as platinum.
  • a second substrate having a plurality of electrodes that do not intersect each other, and preferably has a plurality of electrodes extending in parallel is formed on the back surface of the first substrate by forming a through hole in the first substrate.
  • An electrode may be formed.
  • the plurality of recesses are arranged in a matrix of a plurality of rows and columns, and the first electrode of each row and the second electrode of each column are electrically connected to each other.
  • the rows and columns of the matrix preferably intersect at right angles, but may intersect at any desired angle.
  • the rows and columns may be linear or curved.
  • Each column of the first electrode and each row of the second electrode can be connected to a multiplexer, and by sequentially changing an address signal applied to the multiplexer, the output of the sensor is obtained for each concave portion arranged in a matrix. Can be measured.
  • control unit electrical characteristic measuring device, lock-in amplifier circuit, output device, etc., those described above can be applied. With such a configuration, there is an advantage that many measurements can be easily performed in a small space.
  • a measurement sample is sprayed on a film of conductive fine particles modified with a probe.
  • “Spraying on the conductive fine particle film” in the present invention means that the measurement sample is brought into contact with the conductive fine particle film. Specifically, for example, the measurement can be performed by dropping a measurement sample onto a film of conductive fine particles.
  • the “measurement sample” of the present invention is a sample in which the presence or absence of a target substance is detected so that the measurement is not hindered.
  • the sample is diluted with an appropriate solvent so that the concentration of the sample becomes an appropriate concentration for detection, or the obtained double-stranded DNA is converted into a single-stranded DNA in a form suitable for detection. And those treated with strand DNA.
  • the amount of the measurement sample is not particularly limited as long as it can contact at least the film of the conductive fine particles in the concave portion on the substrate.
  • the conditions under which the probe reacts with the measurement sample can be appropriately selected according to the probe and the measurement sample used.
  • the electric resistance between the obtained films of the conductive fine particles is measured, and the electric resistance of the film before and after the measurement sample is sprayed is measured to determine the presence or absence of the target substance. Can be detected and confirmed.
  • the current between the electrodes flows through the film of the conductive fine particles, but when the target substance is present in the measurement sample and the target substance reacts with the probe, the current flows through the probe. As a result, a difference occurs in the electric resistance value between the electrodes. By utilizing this fact, the presence or absence of the target substance can be electrically detected and confirmed.
  • the fifth embodiment is not limited to the electric resistance type detection sensors shown in the first to fourth embodiments,
  • the presence / absence of a target substance that reacts with the probe can be detected, confirmed, and confirmed.
  • the sample is sprayed on a film of conductive fine particles formed on the surface of an electrically insulated substrate, and the electrical resistance between two points on the obtained film of conductive fine particles is measured to react with the probe.
  • the presence or absence of the target substance to be detected can be detected and confirmed.
  • a sample prepared in advance containing a sample and a probe is sprayed on a film of conductive fine particles that have not been modified with a probe on the substrate. It differs from the above detection method in that it measures.
  • the above detection method does not require a step of modifying the conductive fine particle film with the probe.
  • the above-mentioned “preparing a measurement sample” includes exposing the probe and the measurement sample to conditions under which the target substance and the probe can react.
  • the measurement sample can be prepared by leaving the probe and the measurement sample to be detected at room temperature for 30 minutes.
  • Example 1 examined the selectivity of the electric resistance type detection sensor of the present invention.
  • 200 ml of an aqueous solution containing 6 ml of a 1% aqueous solution of tetrachloro base (III) acid tetrahydrate (Wako Pure Chemical) and 10 ml of a 3% aqueous solution of citrate (Katayama Chemical) was used.
  • the aqueous solution was stirred at 80 ° C for 20 minutes to prepare a colloidal gold solution.
  • “comb-shaped electrode platinum” manufactured by BAS Co., Ltd., which is formed by depositing platinum on a glass substrate (lcm X lcm) so that the gap between the electrodes is 5 zm, is applied to 1,10_decanedithiol Z By dipping in an ethanol solution and then in a gold colloid solution containing gold nanoparticles, a film of gold nanoparticles was formed on the electrodes and between the electrodes. Then, the 5 'end that serves as a probe is activated with an SH group on the obtained membrane.
  • DNA SEQ 1: 5'-TCTCAACTCGTA-3 '
  • aqueous solution of DNA was dropped 51 and allowed to stand for 30 minutes to form a film of gold nanoparticles on the electrodes and between the electrodes.
  • FIG. 1 shows a DNA having a sequence of SEQ 1 consisting of 12 bp as a probe, and a DNA having a sequence of SEQ 2 (single-stranded DNA having 2: 1 bp complementary) and a sequence of SEQ3 having a sequence of SEQ 2 as a measurement sample.
  • FIG. 2 shows the electrical resistance of the DNA (probe) -modified gold nanoparticle film before and after the DNA is degraded by the DNAse.
  • the electrical resistance of the gold nanoparticle film after decomposing the DNA modified with the gold nanoparticle film is almost the same as the electrical resistance value of the gold nanoparticle film before the DNA modification (624.36 ⁇ ). Became. This indicates that the electric resistance type detection sensor of the present invention can be used repeatedly.
  • Example 2 Same as Example 1 except that DNA having the sequence of SEQ5 was used as the measurement sample, and DNA having the sequence of SEQ1 (manufactured by Nisshinbo) whose both ends (3 and 5 ′) were thiolated was used as the probe.
  • the electrical resistance of the film was measured by various methods.
  • Example 3 the change in the electrical resistance of the membrane before and after the detection was 2.9 compared to the case where only one (5 ') end of the probe DNA was thiolated (Example 1 (5)). (Example 1: 0.30 ⁇ , Example 2: 0.87 ⁇ ). This indicates that the detection sensitivity increases as the number of probe modification sites increases.
  • the change in the electrical resistance of the film before and after the detection was 0.57 ⁇ . This indicates that the electrical resistance type detection sensor of the present invention can detect a target substance without including a binder in the conductive fine particle film.
  • Example 2 The same glass substrate as used in Example 1 and a comb-shaped electrode platinum were used, and as a probe.5 ⁇ l of a buffer solution containing DNA100 /] ⁇ having a sequence of 5 EQS-thiolated SEQU 1 was used as a probe. Then, as a measurement sample, a 5 ⁇ l buffer solution containing 100 ⁇ l of DNA having the sequence of SEQ 5 is mixed in a microphone opening tube (TreffLab, manufactured by Treff AG, Switzerland) in advance and prepared. Then, the electrode was immersed in a 1,10-decanedithiol / ethanol solution and then immersed in a colloidal gold solution to form a film of gold nanoparticles on the electrode and between the electrodes. Then, the gold nanoparticle film was moistened with a 1/1 TE buffer, the above prepared solution was dropped on the gold nanoparticle film, and the electric resistance value of the film before and after the drop was measured.
  • Figure 5 shows the results.
  • Example 5 illustrates that the detection method described in the sixth embodiment of the present invention is useful.
  • Example 2 Using the same glass substrate and comb-shaped electrode (manufactured by BAS Inc.) as used in Example 1, immerse them in a 1,10-decanedithiol ethanol solution and then immerse them in a colloidal gold solution. As a result, a film of gold nanoparticles was formed on the electrodes and between the electrodes. Then, the electrode on which the gold nanoparticle film was formed was connected to 1 OmM mercaptopropionic acid (Tokyo It was immersed in a (chemical formation) / ethanol solution for 30 minutes, and the gold nanoparticle film was modified with mercaptopropionic acid. Then, the obtained membrane was rinsed with ultrapure water and ultrasonically washed in ethanol for 5 minutes.
  • 1 OmM mercaptopropionic acid Tokyo It was immersed in a (chemical formation) / ethanol solution for 30 minutes, and the gold nanoparticle film was modified with mercaptopropionic acid.
  • the obtained membrane was rinsed
  • the gold nanoparticle film was rinsed with ultrapure water and dried.
  • the film of the gold nanoparticles is brought into contact with 20 ⁇ l of an aqueous solution of 10 OmgZ 1 of N-hydroxysuccinimide (Wako Pure Chemical), and further, 10 Omg // x 1 of 1-ethyl-3- [3- [Dimethylaminopropyl] carbodiimide hydrochloride (WSC) (Dojindo) aqueous solution 201 and then allowed to stand at room temperature.
  • 10 OmgZ 1 of N-hydroxysuccinimide Wired Chemical
  • the obtained gold nanoparticle film is rinsed with ultrapure water, further washed with 0.1 M Tris-monohydrochloride buffer ( ⁇ 8), and 10 ⁇ l of 0.1 ⁇ m is added to the gold nanoparticle film.
  • 1M Tris-hydrochloride buffer was added dropwise and left at room temperature for 100 seconds.
  • An antibody solution of rabbit anti-mouse IgG (Wako Pure Chemical Industries, Ltd.) diluted 100-fold with 0.1 M Tris-hydrochloride buffer was added dropwise to the obtained membrane, and the mixture was allowed to stand at room temperature for 30 minutes. .
  • the obtained membrane is rinsed with Tris-hydrochloride buffer, and then 0.1 1 of 0.1 M Tris-hydrochloride buffer is dropped thereon, followed by a drop of an aqueous solution of 201 ethanolamine (Wako Pure Chemical Industries). After allowing to stand at room temperature for 1 hour, the activated site where the antibody was not immobilized was masked. Then, the antibody-modified gold nanoparticle membrane was washed with ultrapure water, further washed with a tris-hydrochloride buffer, and the gold nanoparticle membrane was exposed to 10 ⁇ l of tris-hydrochloride buffer. .
  • FIG. 7 shows an electric resistance type detection sensor 51 according to Embodiment 6 of the present invention.
  • the electric resistance detection sensor 51 according to the second embodiment of the present invention includes a plurality of recesses 53 formed on the surface of a substrate 54, and a gold nanoparticle film 57 is formed on the inner surface of each recess 53. ing. Also, The first and second electrodes 55 and 56 are formed so as to be electrically connected to the gold nanoparticle film 57 in each recess 53.
  • the electric resistance type detection sensor 51 is manufactured by the following method. Formation and cleaning of electrodes
  • a plurality of platinum electrodes extending parallel to each other are formed on a substrate.
  • the platinum electrode can be formed, for example, by depositing platinum while masking a place other than the place where the platinum electrode is formed.
  • a recess is formed at the center of each electrode so as to bisect the platinum electrode.
  • the platinum electrode is divided by the recess, and the first and second electrodes are formed. After the formation of the concave portion, the platinum electrode is washed by the following method.
  • the platinum electrode was swept in 0.1 M H 2 SO 4 using Ag / Ag C 1 as a reference electrode and a platinum coil (manufactured by Niraco) as a counter electrode. Wash 25 to 10 times in a range of 1.3 V by repeating the sweep 50 times.
  • the electrochemical cleaning is performed using a potentiostat (263A-1 manufactured by Seiko EG & G).
  • a gold nanoparticle film is formed on the surface of the concave portion by pouring a colloidal gold solution into the concave portion.
  • the first and second electrodes 55 and 56 are electrically connected to the gold nanoparticle film 57 in each recess 53.
  • DNA (Nisshinbo) having a thiolated 5 ′ end was used as a probe.
  • fill the recess with 1 ⁇ l (recess volume 1 mm 3 ) of buffer containing 10 ⁇ M of the above DNA (10 mM Tris_HC1, 1 mM EDTA, 1M NaC1) for 30 min. put. This modifies the gold nanoparticles with the probe DNA.
  • the surface of the gold nanoparticles was washed with TE buffer to remove excess thiolated DNA, and further removed with 1 ⁇ l of TE buffer to remove the effect of interfacial resistance. Wet the particle surface.
  • the first electrode 55 corresponding to each recess 53 is electrically connected to the input terminal 61 of the multiplexer 60. Further, the output terminal 62 of the multiplexer 60 and the second electrode 56 corresponding to each of the concave portions 53 are electrically connected via the electric resistance measuring device 63.
  • the electric resistance measuring device 63 outputs a voltage corresponding to the measured electric resistance from its output terminal 64.
  • a microcomputer 65 is connected to an address input terminal 66 of the multiplexer 60 and an output terminal 64 of the electric resistance measuring instrument 63.
  • the multiplexer 60 functions as a demultiplexer, a plurality of outputs from each recess 53 are input to the input terminal 61 and output from a single output terminal 62.
  • the microcomputer 65 sequentially changes the output address and stores the output of the electric resistance measuring device 63 for each recess 53.
  • the microcomputer 65 is connected to an output device 67 such as a printer or a monitor, and is configured to output stored data to the output device 67. With such a configuration, many target DNAs can be easily detected at one time.
  • FIG. 8 is a block diagram illustrating a configuration of the electric resistance type detection sensor according to the seventh embodiment.
  • the output terminal 62 of the multiplexer 60 and the second electrode 56 corresponding to each recess 53 are electrically connected to the second electrode 56 via the lock-in amplifier circuit 68. It is.
  • the output terminal 69 of the mouth-in amplifier 68 is connected to the microcomputer 65.
  • Other configurations and the method of forming the gold nanoparticles are the same as those in the sixth embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of the lock-in circuit 68 according to the seventh embodiment.
  • A is an adder
  • B is an electric resistance type detection sensor indicated by a dotted line in FIG. 3
  • C is a current-voltage converter
  • D is a lock-in amplifier
  • E is a bias voltage
  • F is a synchronization signal.
  • the noise generated in the measurement environment can be eliminated or reduced by selectively detecting the output component synchronized with the signal F with the lock-in amplifier.
  • FIG. 10 shows an electric resistance type detection sensor 71 provided with a plurality of the electric resistance type detection sensors on a substrate according to Embodiment 7 of the present invention.
  • the electric resistance type detection sensor 71 includes a plurality of concave portions 73 arranged in a matrix composed of a plurality of rows X and a plurality of columns Y.
  • a film 77 of gold nanoparticles is formed on the inner surface of each recess 73.
  • the first and second electrodes 75, 76 1 are formed so as to be electrically connected to the gold nanoparticle film 77 in each recess 73.
  • the electrode 75 may be formed on the surface of the substrate 74 in the concave portion 73 in a ring or a similar shape.
  • the first electrode 75 is formed on the surface of the substrate 74, and the second electrode 76 is formed inside the concave portion 73 and is exposed on the back surface of the substrate 74.
  • the first electrode 75 of each row X and the second electrode 76 of each column Y are electrically connected to each other.
  • a plurality of grooves extending parallel to each other are formed on the back surface of the substrate, and a second electrode 76 is formed of platinum so as to fill the grooves.
  • the first electrode 75 is formed in a shape as shown in FIG. 10 (a).
  • a plurality of concave portions 73 arranged in a matrix are formed from the surface of the substrate 74 so as to face the second electrode 76.
  • the concave portion 73 is formed at a depth where the second electrode 76 is exposed on the surface side of the substrate 74.
  • a gold nanoparticle film 77 is formed on the inner surface of the concave portion 73 by the same method as that used in Example 6, and the formation of the electrode and the gold nanoparticle film is completed.
  • the gold nanoparticle film 77 is modified with a DNA probe in the same manner as that used in Example 6.
  • each column Y of the first electrode 75 and each row X of the second electrode 76 are connected to the input terminals 82, 83 of the multiplexers 80, 81, respectively.
  • the output terminals 84, 85 of the multiplexers 80, 81 are electrically connected to each other via an electric resistance measuring device 86.
  • the electric resistance measuring device may use a lock-in amplifier circuit 68 as shown in FIG.
  • the electric resistance measuring device 86 outputs a voltage corresponding to the measured electric resistance from its output terminal 87.
  • a microcomputer 88 is connected to address input terminals 89, 90 of the multiplexers 80, 81 and an output terminal 87 of the electric resistance measuring device 86.
  • the microcomputer 88 sequentially changes and outputs the output address to each of the multiplexers 80 and 81, scans the concave portions 73 arranged in a two-dimensional array, and measures the electric resistance of each concave portion 73. 8 Store the output of 6.
  • the microcomputer 88 is connected to an output device 91 such as a printer or a monitor, and has a structure for outputting stored data to the output device 91.
  • the sensors can be arranged at a high density, and the space of the device can be saved. . Detection of target DNA
  • the target DNA can be detected in the same manner as that used in Example 6.
  • the electric resistance type detection sensor of the present invention can be used more easily, quickly, and inexpensively than before, and can be used repeatedly.
  • the space required for the reaction can be reduced.
  • a target substance can be detected and confirmed with higher accuracy.
  • the target substance can be detected and confirmed more accurately.
  • the target substance can be detected and confirmed more accurately.
  • the shape of the concave portion into a mortar shape, detection can be performed more efficiently.
  • detection can be performed more efficiently.
  • electric resistance type detection method of the present invention it is easier, faster, and cheaper than before, without using a special reagent such as a fluorescent substance or a complicated device.
  • the target substance can be electrically detected and confirmed accurately and compactly.
  • the electric resistance type detection method of the present invention it is easier, faster, and easier than before. And the target substance can be detected and confirmed repeatedly at low cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

An electrical resistivity sensor characterized in that a set of electrodes are arranged oppositely on the electrically insulated surface of a substrate and a film of conductive fine particles modified with probe is formed on and/or between the electrodes.

Description

明細書 電気抵抗型検出センサおよび検出方法 技術分野  Description Electric resistance type detection sensor and detection method
本発明は、 D NAや R NAのような核酸、または抗原や抗体のようなタンパク質など の標的物質を検出、 確認するための電気抵抗型検出センサおよび検出方法に関する。 背景技術  The present invention relates to an electric resistance type detection sensor and a detection method for detecting and confirming a target substance such as a nucleic acid such as DNA or RNA or a protein such as an antigen or an antibody. Background art
近年、 特開 2003-287538号公報(特許文献 1 ) や、特開 2003-250088号公報 (特許文 献 2 ) などでは、各種の D NAチップを開示している。 し力 し、従来の D NAチップで は、例えば、 まず一本鎖 D N Aのサンプルを蛍光物質でラベルする。 そして表面に標的 となる D N Aを結合させたチップにサンプルを散布し、サンプル中の標的となる D N A とチップ表面に結合させた D N Aとをハイプリダイズさせる。そしてサンプルをラベル した蛍光物質を発光させ、その発光を顕微鏡やレーザー蛍光スキヤナーを使つて読み取 ることで、標的となる D NAの存在を検出している。 し力 し、 この技術では、 D NAが 基板に非特異的に吸着することを無視できず、 さらに、オリゴヌクレオチドプローブを 基板に固定させる方法も十分に確立されていない。 さらに、基板に固定させるプローブ の量を制御する方法も十分には確立されていなレ、。その上、サンプル中の D NAの存在 を検出するためには、 適切な蛍光ラベル化剤やインターカレーターなどが必要であり、 さらにレーザー蛍光スキャナーのような装置も必要である。そのため検出には、コスト が掛かり、 操作が煩雑であった。  In recent years, various DNA chips have been disclosed in Japanese Patent Application Laid-Open No. 2003-287538 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-250088 (Patent Document 2). However, with a conventional DNA chip, for example, a single-stranded DNA sample is first labeled with a fluorescent substance. Then, the sample is sprayed on a chip having the target DNA bound to the surface, and the target DNA in the sample and the DNA bound to the chip surface are hybridized. The fluorescent substance labeled with the sample emits light, and the emitted light is read using a microscope or laser fluorescence scanner to detect the presence of the target DNA. However, with this technique, it cannot be ignored that DNA is non-specifically adsorbed on a substrate, and a method for immobilizing an oligonucleotide probe on a substrate is not sufficiently established. Furthermore, methods for controlling the amount of probes immobilized on a substrate have not been well established. In addition, detection of the presence of DNA in a sample requires the use of appropriate fluorescent labeling agents and intercalators, as well as equipment such as a laser fluorescence scanner. Therefore, the detection was costly and the operation was complicated.
そこで特開 2003-514224号公報(特許文献 3 ) では、標的となる D NAの有無の検出 を、チップ表面で起こる表面プラズモン共鳴(S P R) に起因した光の屈折率の変化を 利用した検出方法を開示している。  In Japanese Patent Application Laid-Open No. 2003-514224 (Patent Document 3), detection of the presence or absence of a target DNA is performed by using a change in the refractive index of light caused by surface plasmon resonance (SPR) occurring on the chip surface. Is disclosed.
さらに、 特開 2002-533698号公報 (特許文献 4 ) では、基板上に、標的となる D N A に相補的な D N Aが結合した領域を有する D N Aチ プについて開示している。該公報 では、まずサンプル中の D N Aを導電性粒子で修飾し、そして、得られたサンプルを上 記の領域に散布し、該領域に結合している D NAと、サンプル中に存在するその D NA と相捕的な D NAとをハイプリダイズさせる。その結果、ハイプリダイズした D NAで は、 D N Aを修飾した導電性粒子を通して領域内に電流が流れ、 そのことを利用して、 標的となる D NAの存在の有無を検出している。 Furthermore, Japanese Patent Application Laid-Open No. 2002-533698 (Patent Document 4) discloses a DNA chip having, on a substrate, a region in which a DNA complementary to a target DNA is bound. The publication Then, the DNA in the sample is first modified with conductive particles, and the obtained sample is sprayed on the above-mentioned region, and the DNA binding to the region and the DNA present in the sample are compared with the DNA present in the sample. Hybridize with complementary DNA. As a result, in the hybridized DNA, a current flows in the region through the conductive particles that have modified the DNA, and that fact is used to detect the presence or absence of the target DNA.
つまり上記方法では、導電性粒子 (6 2 ) に相補的結合パートナー (6 ) を固定する 一方で、基板上の 2つの電極間に特異的結合パートナー( 5 )を固定させる必要がある。 そして(6 )の導電性粒子への固定化は S H化されたオリゴヌクレオチドにより達成さ れる。一方、 基板への (5 ) の固定は A P T E Sを用いたシラン被覆法などを用い、 こ れをリンカ一としてオリゴヌクレオチドを固定化している。  That is, in the above method, while the complementary binding partner (6) is immobilized on the conductive particles (62), the specific binding partner (5) needs to be immobilized between the two electrodes on the substrate. The immobilization to the conductive particles in (6) is achieved by the SH-modified oligonucleotide. On the other hand, (5) is immobilized on a substrate by a silane coating method using APTES and the like, and the oligonucleotide is immobilized using this as a linker.
このような検出方法では、 2つの電極間における導電率を向上させるために、電子移 動メディエータ(酸化還元、導電性物質)を添加する必要がある。つまり、 目的物質(ま たはプローブ) を導電性粒子に固定し、基板にあらかじめ固定化させたプローブ(また は目的物質)により電極間に析出させ、メディエータなどの添加によりその導電率を増 幅させて検知しなければならない。  In such a detection method, it is necessary to add an electron transfer mediator (redox, conductive substance) in order to improve the electrical conductivity between the two electrodes. In other words, the target substance (or probe) is immobilized on the conductive particles, deposited between the electrodes by the probe (or target substance) previously immobilized on the substrate, and the conductivity is increased by adding a mediator or the like. Must be detected.
そのため上記のような検出方法では、検出を行う度に、サンプルを導電性粒子で修飾 しなければならず、 検出には手間とコストがかかる。 発明の開示  Therefore, in the above-described detection method, the sample must be modified with conductive particles every time the detection is performed, and the detection is troublesome and costly. Disclosure of the invention
そこで本発明は、上記のような問題点、つまり D NAや RNAのような核酸、または 抗原や抗体のようなタンパク質などの標的物質を、従来よりも簡易で安価に、かつ精度 よく、電気的に検出、確認することができ、 さらには安価で容易に繰り返し使用するこ とができる電気抵抗型検出センサおよび電気抵抗型検出方法を提供する。  Accordingly, the present invention provides a simpler, cheaper, more accurate, and more accurate method for reducing target substances such as nucleic acids such as DNA and RNA or proteins such as antigens and antibodies. Provided are an electric resistance type detection sensor and an electric resistance type detection method which can be detected and confirmed at a low cost, and which can be inexpensively and easily used repeatedly.
かくして、 本発明の第 1の観点によれば、  Thus, according to a first aspect of the invention,
電気的に絶縁された基板表面に一組の電極が相対峙して配置され、電極上およぴ また は電極間に、プローブで修飾された導電性微粒子の膜が形成されてなることを特徴とす る電気抵抗型検出センサを提供する。 さらに、 本発明の第 2の観点によれば、 A pair of electrodes are arranged facing each other on an electrically insulated substrate surface, and a film of conductive fine particles modified with a probe is formed on or between the electrodes. An electric resistance type detection sensor is provided. Further, according to a second aspect of the present invention,
電気的に絶縁された基板表面に凹部を有し、 凹部に一組の電極が相対峙して配置され、 電極上およぴ /または電極間に、プローブで修飾された導電性微粒子の膜が形成されて なることを特徴とする電気抵抗型検出センサを提供する。 さらに、 本発明の第 3の観点によれば、 A concave portion is provided on the surface of the electrically insulated substrate, and a pair of electrodes are arranged in the concave portion so as to face each other, and a film of conductive fine particles modified with a probe is provided on and / or between the electrodes. An electric resistance type detection sensor characterized by being formed is provided. Further, according to a third aspect of the present invention,
表面に形成された複数の微細な凹部を有する基板と、各凹部の内部表面に形成された導 電性微粒子の膜と、導電性微粒子の膜に電気的に接続するように形成された第 1及び第 2電極とを備え、 A substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles. And a second electrode,
導電性微粒子の膜が、プローブで修飾されてなることを特徴とする電気抵抗型検出セン サを提供する。 さらに、 本発明の第 4の観点によれば、 Provided is an electric resistance detection sensor characterized in that a film of conductive fine particles is modified with a probe. Further, according to a fourth aspect of the present invention,
表面に形成された複数の微細な凹部を有する基板と、各凹部の内部表面に形成された導 電性微粒子の膜と、導電性微粒子の膜に電気的に接続するように形成された第 1及び第 2電極とを備え、 ' A substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles. And a second electrode,
第 1電極が、 基板の表面に形成され、 第 2電極が、 凹部の内部に形成され、 導電性微粒子の膜が、プローブで修飾されてなることを特徴とする電気抵抗型検出セン サを提供する。 さらに、 本発明の第 5の観点によれば、 An electric resistance type detection sensor characterized in that a first electrode is formed on a surface of a substrate, a second electrode is formed inside a recess, and a film of conductive fine particles is modified with a probe. I do. Further, according to a fifth aspect of the present invention,
電気的に絶縁された基板表面に形成された導電性微粒子の膜をプローブで修飾し、 該修飾した膜に検体を含む測定試料を散布し、 Modifying a film of conductive fine particles formed on the surface of the electrically insulated substrate with a probe, and spraying a measurement sample containing a specimen on the modified film;
得られた導電性微粒子の膜の 2点間の電気抵抗値を測定することにより、 By measuring the electrical resistance value between two points of the obtained film of conductive fine particles,
プローブと反応する標的物質の有無を検出する電気抵抗型検出方法を提供する。 さらに本発明の第 6の観点によれば、 Provided is an electric resistance type detection method for detecting the presence or absence of a target substance that reacts with a probe. Further according to a sixth aspect of the present invention,
予め検体とプローブとを含む測定試料を調製し、 Prepare a measurement sample containing a sample and a probe in advance,
電気的に絶縁された基板表面に形成された導電性微粒子の膜に該試料を散布し、 得られた導電性微粒子の膜の 2点間の電気抵抗値を測定することにより、 By spraying the sample on a film of conductive fine particles formed on the surface of an electrically insulated substrate and measuring the electrical resistance value between two points of the obtained film of conductive fine particles,
プローブと反応する標的物質の有無を検出する電気抵抗型検出方法を提供する。 図面の簡単な説明 Provided is an electric resistance type detection method for detecting the presence or absence of a target substance that reacts with a probe. Brief Description of Drawings
図 1は、プローブとして一本鎖 D N Aを用いた場合の、本発明の電気抵抗型検出セン サの選択性を示した図である。 矢印は、 標的物質を滴下したときを示している。  FIG. 1 is a diagram showing the selectivity of the electric resistance type detection sensor of the present invention when single-stranded DNA is used as a probe. Arrows indicate when the target substance was dropped.
図 2は、本発明を例証するため、 D NA (プロープ) で修飾された金ナノ粒子の膜に 存在する D N Aを、 D N A分解酵素で分解する前後の膜の電気抵抗値の変化を示した図 である。矢印は、 1の位置で標的物質、矢印 2の位置で D N A分解酵素を滴下したとき を示している。  Figure 2 shows the change in the electrical resistance of the DNA before and after the DNA present on the membrane of the DNA nanoparticles modified with DNA (probe) was degraded by the DNAse enzyme to illustrate the present invention. It is. The arrow shows the case where the target substance was dropped at the position 1 and the DNA degrading enzyme was dropped at the position of arrow 2.
図 3は、プローブとして両末端をチオール化した一本鎖 D N Aを用いた場合の本発明 の電気抵抗型検出センサの電気抵抗値の変化を示した図である。矢印は、標的物質を滴 下したときを示している。  FIG. 3 is a diagram showing a change in the electric resistance value of the electric resistance type detection sensor of the present invention when a single-stranded DNA having both ends thiolated is used as a probe. The arrow indicates when the target substance has been dropped.
図 4は、プローブとして両末端をチオールィ匕した一本鎖 D N Aを用い、導電性微粒子 の膜が結合剤を含まない場合の本発明の電気抵抗型検出センサの電気抵抗値の変化を 示した図である。 矢印は、 標的物質を滴下したときを示している。  FIG. 4 is a diagram showing a change in the electric resistance value of the electric resistance type detection sensor of the present invention when a single-stranded DNA having both ends thiolated is used as a probe and the conductive fine particle film does not contain a binder. It is. Arrows indicate when the target substance was dropped.
図 5は、プローブとして両末端をチオール化した一本鎖 D NAと測定試料とを予め調 製し、それを、結合剤を含む導電性微粒子のみからなる膜に散布した場合の、本発明の 電気抵抗型検出センサの電気抵抗値の変化を示した図である。  FIG. 5 shows a sample of the present invention in which a single-stranded DNA having both ends thiolated as a probe and a measurement sample were prepared in advance, and the resulting sample was sprayed on a membrane consisting of only conductive fine particles containing a binder. It is a figure showing change of an electric resistance value of an electric resistance type detection sensor.
図 6は、本発明を例証するため、プローブとしてラビットアンチマウス I g Gの抗体 を用い、標的物質としてマウス I g Gの抗原を用いた場合の金ナノ粒子の膜の抵抗値の 変化を示した図である。 矢印の位置で標的物質を滴下した。  FIG. 6 shows the change in the resistance value of the gold nanoparticle membrane when a rabbit anti-mouse IgG antibody was used as a probe and a mouse IgG antigen was used as a target substance to illustrate the present invention. FIG. The target substance was dropped at the position of the arrow.
図 7は、 (a ) は、本発明の実施例 6に係る電気抵抗型検出センサの構成を示すプロ ック図である。 (b ) は、電気抵抗型検出センサの凹部の状態を示す要部側面断面図で ある。 FIG. 7 (a) is a block diagram showing a configuration of an electric resistance type detection sensor according to Embodiment 6 of the present invention. (B) is a side sectional view of a main part showing a state of a concave portion of the electric resistance type detection sensor. is there.
図 8は、 本発明の実施例 6に係る検出センサの構成を示すブロック図である。  FIG. 8 is a block diagram illustrating a configuration of a detection sensor according to Embodiment 6 of the present invention.
図 9は、本発明の実施例 6に係るロックィンアンプ回路の構成を示すプロック図であ る。 '  FIG. 9 is a block diagram illustrating a configuration of a lock-in amplifier circuit according to Embodiment 6 of the present invention. '
図 1 0の (a ) は、本発明の実施例 7に係る検出センサの構成を示すプロック図であ り、 (b ) は、 検出センサの凹部の状態を示す要部側面断面図である。 発明を実施するための最良の形態  (A) of FIG. 10 is a block diagram showing a configuration of a detection sensor according to Embodiment 7 of the present invention, and (b) is a side sectional view of a main part showing a state of a concave portion of the detection sensor. BEST MODE FOR CARRYING OUT THE INVENTION
本願発明の第一の実施の形態の電気抵抗型検出センサでは、基板表面に 1組の電極が 配置されている。  In the electric resistance type detection sensor according to the first embodiment of the present invention, one set of electrodes is arranged on the substrate surface.
本発明の「基板」 としては、電気的に絶縁性を有するものを好適に用いることができ る。 その材料としては、具体的には、 ガラス、 プラスチック、水晶またはシリコンなど が挙げられる。  As the “substrate” of the present invention, an electrically insulating substrate can be suitably used. Specific examples of the material include glass, plastic, quartz, and silicon.
本発明の「電極」 に用いる材料としては、通常のセンサの電極に用いられている材料 で十分であり、 具体的には A u、 P t、 C u、 A l、 N i、 T iなどの金属、 又はこれ らの合金以外に、ポリピロール、ポリア二リンおょぴポリアセンなどのポリマーなどが 挙げられる。 また、電極の形状は特には限定されず、例えば櫛型の形状からなる櫛型電 極などが挙げられる。 さらに、 電極は絶縁材料で被覆しされていてもよい。  As the material used for the "electrode" of the present invention, the material used for the electrode of a normal sensor is sufficient, and specifically, Au, Pt, Cu, Al, Ni, Ti, etc. In addition to the above metals or alloys thereof, polymers such as polypyrrole, polyaniline and polyacene may be mentioned. The shape of the electrode is not particularly limited, and examples thereof include a comb electrode having a comb shape. Further, the electrodes may be coated with an insulating material.
そして、その電極上および/または電極間には、導電性微粒子の膜が形成されている。 本発明の「導電性微粒子の膜」 とは、導電性微粒子と電極とが直接接するように形成 されているもの以外に、導電性微粒子と電極が電気的に導通することができる程度に近 接しているナノギャップの状態のものも含まれる。ある観点によれば、導電性微粒子の 膜は導電性微粒子の層として表現できる。  Then, a film of conductive fine particles is formed on the electrodes and / or between the electrodes. The “film of conductive fine particles” of the present invention refers to a film formed so that the conductive fine particles and the electrode are in direct contact with each other, as well as close enough that the conductive fine particles and the electrode can be electrically connected. Nano-gap state. According to one aspect, the film of conductive fine particles can be expressed as a layer of conductive fine particles.
なお、後述する導電性微粒子の膜が結合剤を含む場合には、導電性微粒子と電極とは、 結合剤を介して電気的に導通できればよい。  In the case where the film of the conductive fine particles described later contains a binder, the conductive fine particles and the electrode only need to be electrically conductive through the binder.
また本発明の 「導電性微粒子」 とは、導電性を有し、 かつ、 後述するプローブと直接 および/ "または間接的に結合することができる物質を含む。具体的にはカーボン、フラ 一レン、 プラチナ、 アルミ、 金、銀などの材料からなる粒子が挙げられる。 中でも好ま しくは、金およぴ銀などの金属からなる粒子であり、 さらに好ましくは金からなる粒子 である。 In addition, the “conductive fine particles” of the present invention include a substance having conductivity and capable of directly and / or indirectly binding to a probe described later. Examples include particles made of materials such as irene, platinum, aluminum, gold, and silver. Among them, particles composed of metals such as gold and silver are preferable, and particles composed of gold are more preferable.
さらに、導電性微粒子の大きさは、粒子やプローブの材料に応じて適宜選択すればよ い。 中でも導電性微粒子の平均粒径は、ナノサイズが好ましく、 さらには 5 0〜 1 0 0 nmが特に好ましい。  Further, the size of the conductive fine particles may be appropriately selected according to the material of the particles and the probe. Among them, the average particle size of the conductive fine particles is preferably nano-sized, and more preferably 50 to 100 nm.
また、導電性微粒子の膜は、公知の方法を用いて形成することができる。 例えば、導 電子微粒子として金ナノ粒子を用いた場合、金ナノ粒子を適切な溶媒に懸濁させた金コ ロイド溶液を、基板上に接触させることで金ナノ粒子の膜を形成することができる。そ の際、使用する溶媒としては、水またはメタノールやエタノールなどのアルコール類な どが挙げられる。  Further, the film of the conductive fine particles can be formed by using a known method. For example, when gold nanoparticles are used as the electroconductive fine particles, a gold nanoparticle film can be formed by bringing a gold colloid solution in which the gold nanoparticles are suspended in an appropriate solvent into contact with a substrate. . In this case, examples of the solvent used include water and alcohols such as methanol and ethanol.
また、 導電性微粒子の膜が、 結合剤を含むことも好ましい。  It is also preferable that the film of the conductive fine particles contains a binder.
「結合剤」 は、導電性微粒子やプローブの種類に応じて適宜選択すればよい。 具体的 には、導電性微粒子の材料として金や銀などの金属を用いた場合、 1, 1 0—デカンジ チオールなどの S H基を有するジチオール類や、 1, 1 0—ジァミノデカンなどの NH The “binder” may be appropriately selected according to the type of the conductive fine particles and the probe. Specifically, when a metal such as gold or silver is used as the material of the conductive fine particles, dithiols having an SH group such as 1,10-decanedithiol or NH such as 1,10-diaminodecane can be used.
2基を有するジァミン類などが結合剤として挙げられる。 中でもジチオール類が好まし く、 さらには 1, 1 0—デカンジチオールが特に好ましい。 Examples of the binder include diamines having two groups. Of these, dithiols are preferred, and 1,10-decanedithiol is particularly preferred.
結合剤を含む導電性微粒子の膜は、公知の方法を用いて形成することができる。例え ば導電性微粒子として金ナノ粒子を用い、結合剤として上記のジチオール類ゃジァミン 類を用いた場合、結合剤と金ナノ粒子とを適切な溶媒に懸濁させ、該懸濁液を基板に接 触させることで、結合剤を含む導電性微粒子の膜を形成することができる。 その際、使 用する溶媒は、上記と同様に、水またはメタノールやエタノールなどのアルコール類が 挙げられる。  The film of the conductive fine particles containing the binder can be formed using a known method. For example, when gold nanoparticles are used as conductive fine particles and the above dithiols and diamines are used as a binder, the binder and the gold nanoparticles are suspended in an appropriate solvent, and the suspension is applied to a substrate. The contact makes it possible to form a film of conductive fine particles containing a binder. In this case, the solvent to be used is water or an alcohol such as methanol or ethanol, as described above.
さらに、本実施の形態の結合剤を含む/含まない導電性微粒子の膜は、プローブで修 飾されている。  Further, the film of the conductive fine particles with / without the binder of the present embodiment is decorated with a probe.
本発明の導電性微粒子の膜を「プローブで修飾する」 とは、プローブの少なくとも一 部が、導電性微粒子の膜に直接接するようにするだけでなく、プローブと導電性微粒子 の膜とが電気的に導通することができる程度に近接しているナノギャップの状態にす る場合も含まれる。 “Modifying the conductive fine particle film of the present invention with a probe” means not only that at least a part of the probe is in direct contact with the conductive fine particle film, but also that the probe and the conductive fine particle This includes the case where the film is in a nanogap state that is close enough to allow electrical conduction with the film.
なお、後述するようなプローブを特定の基などで修飾した場合、 プローブは、その基 を介して導電性微粒子の膜に修飾されていてもよい。  When a probe described later is modified with a specific group or the like, the probe may be modified on the film of the conductive fine particles via the group.
また、本発明の 「プローブ」 には、該プロープと標的物質が反応することで、 導電性 微粒子の膜の間での電気抵抗値を変化させることができるものが含まれる。具体的には、 DNAや RNAのような核酸、または抗原や抗体のようなタンパク質などがプローブと して挙げられる。 また、使用するプローブは天然のものであっても、人工のものであつ てもよい。 さらに、 プロープは、必ずしも 100%同一のものである必要はなく、検出 に支障をきたさない程度であれば、 それ以外のものを含んでいてもよい。  Further, the “probe” of the present invention includes those capable of changing the electric resistance between the conductive fine particles by reacting the probe with the target substance. Specifically, a nucleic acid such as DNA or RNA, or a protein such as an antigen or an antibody is used as a probe. Further, the probe used may be a natural one or an artificial one. Further, the probes need not necessarily be 100% identical, and may contain other substances as long as they do not interfere with detection.
また、プローブとして一本鎖 DNAを用いる場合、まず公知の方法を用いて二本鎖 D N Aを採取し、その二本鎖 DN Aを蒸留水などに懸濁させ、懸濁液を 100°Cで 10分 程度加熱した後に氷上に移行して急冷させることで一本鎖 DN Aを得ることができる。 さらに、 本発明の 「反応」 は、 化学的な反応ばかりでなく、 物理的相互作用も含む。 反応の例としては、プローブとして一本鎖 DNAを用い、その一本鎖 DNAと相補的な DNAを標的物質とした場合に起こる、それら DNA間でのハイブリダィズや、プロ一 ブとして抗体を用い、標的物質として抗原を用いた場合に起こる、それらの結合などが 挙げられる。  When single-stranded DNA is used as a probe, first, double-stranded DNA is collected using a known method, and the double-stranded DNA is suspended in distilled water or the like. After heating for about 10 minutes, transfer to ice and cool rapidly to obtain single-stranded DNA. Further, the “reaction” of the present invention includes not only a chemical reaction but also a physical interaction. As an example of the reaction, single-stranded DNA is used as a probe, and DNA that is complementary to the single-stranded DNA is used as a target substance.Hybridization between the DNAs, an antibody is used as a probe, Examples of such binding include those occurring when an antigen is used as a target substance.
また、 DNAをプローブとして用いた場合、 プローブとして用いる DNAの長さは、 少なくとも 2〜3000b p、好ましくは 4〜100b p、 さらに好ましくは 10〜 1 2 b pである。  When DNA is used as a probe, the length of the DNA used as a probe is at least 2 to 3000 bp, preferably 4 to 100 bp, and more preferably 10 to 12 bp.
また、抗体を標的物質とする場合、プローブとしては、 目的とする抗原または抗体と 反応できる抗体または抗原が挙げられる。 さらに、プローブを特定の基などで活性化さ せることも好ましい。  When an antibody is used as a target substance, examples of the probe include an antibody or an antigen capable of reacting with a target antigen or an antibody. Further, it is also preferable to activate the probe with a specific group or the like.
特に、導電性微粒子として金ナノ粒子を用い、プローブとして DN Aまたは抗体を用 いた場合、 プローブは、 SH基や NH 2基などの特定の基で活性化させることが好まし い。 その際、活性ィ匕させる部位としては、反応に関与する部位(例えば、標的物質が DNIn particular, when gold nanoparticles are used as the conductive fine particles and DNA or antibody is used as the probe, the probe is preferably activated with a specific group such as an SH group or NH 2 group. At this time, the sites to be activated include sites involved in the reaction (for example, if the target substance is DN
Aの場合には、標的とする配列を含む部位、抗原を標的物質とした場合には、抗体と結 合する部位)以外が好ましい。中でも活性ィ匕させる部分は、プローブの末端が好ましく、 さらにはプローブの両端が特に好ましい。 In the case of A, it is preferable to use a site other than the site containing the target sequence, or the site where the antigen is used as the target substance). Among them, the part to be activated is preferably at the end of the probe, and more preferably at both ends of the probe.
また、標的物質の検出に支障をきたさない程度であれば、活性化させる部位に、反応 に関与する部位の一部が含まれていてもよい。  Further, as long as the detection of the target substance is not hindered, the site to be activated may include a part of the site involved in the reaction.
プロ一プを活性化させる方法は、用いるプローブおよぴ導電性微粒子の種類に応じて、 公知の方法から適宜選択すればよい。例えば、 プローブとして D NAを用いた場合、 S H基を有する 1, 1 0—デカンジチオールなどのチオール類や、 NH 2基を有する 1, 1 0—ジァミノデカンなどのジァミン類でプローブを処理することで、プローブを活性 化させることができる。 The method of activating the probe may be appropriately selected from known methods depending on the type of the probe and the conductive fine particles to be used. For example, when DNA is used as the probe, the probe can be treated with a thiol having an SH group such as 1,10-decanedithiol or a diamine having an NH 2 group such as 1,10-diaminodecane. Then, the probe can be activated.
また、プローブとして抗体を用い、導電性微粒子として金ナノ粒子を用いた場合、例 えば金ナノ粒子表面と結合する S H基を有し、かつ、末端に力ルポキシル基を有するメ ルカプトプロピオン酸などと、 N—ヒドロキシこはく酸イミド、卜ェチル - 3-[3-ジメチ ルァミノプロピル]カルポジイミドハイドロクロライドなどを用いて処理することで、 抗体と結合しうる活性化された部位を形成する。そして、 NH2基を有するプローブを、 ぺプチド結合を介して金ナノ粒子や電極などに固定ィ匕させることができる。 In addition, when an antibody is used as a probe and gold nanoparticles are used as conductive fine particles, for example, mercaptopropionic acid having an SH group that binds to the surface of the gold nanoparticles and having a lipoxyl group at the terminal, etc. And treated with N-hydroxysuccinimide, triethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride, etc. to form an activated site capable of binding to the antibody. Then, the probe having the NH 2 group can be immobilized on the gold nanoparticle, the electrode, or the like via the peptide bond.
さらに、第二の実施の形態で示す電気抵抗型検出センサは、上記第一の実施の形態の 基板表面に凹部を形成し、プローブで修飾された導電性微粒子の膜を、その凹部の内表 面に形成させたものである。それ以外については、第一の実施の形態で述べた電気抵抗 型検出センサと同一なものを適用することができる。  Further, the electric resistance type detection sensor shown in the second embodiment has a concave portion formed on the substrate surface of the first embodiment, and a film of the conductive fine particles modified with the probe is formed on the inner surface of the concave portion. It is formed on the surface. Otherwise, the same sensor as the electric resistance type detection sensor described in the first embodiment can be applied.
本発明の 「凹部」 としては、具体的には、 プローブと検体とを、 凹部内で反応させる ことができ、かつ、導電性微粒子の膜を、その凹部内に形成させることができうる大き さと形状を備えているものが挙げられる。  Specifically, the “recess” of the present invention has such a size that a probe and a sample can react in the recess and a film of conductive fine particles can be formed in the recess. And those having a shape.
そのため凹部の形状は、丸や多角形の筒状であってもよく、すり鉢状の形状であって もよい。 中でも、すり鉢状の形状であることが好ましい。 換言すれば、 凹部は、 その底 部が開口部より小さな面積を有するのが望ましい。 さらに 1つの基板表面に存在する凹部の数は、センサの用途に応じて適宜選択するこ とができる。 例えば、 基板の大きさを 1 c m 2〜 3 c m 2とした場合、 凹部の数は、 1 0 0〜 3 , 0 0 0個、好ましくは 5 0 0個以上、 1 , 0 0 0個以上、 1, 5 0 0個以上、 2, 0 0 0個以下、 2, 5 0 0個以下である。 Therefore, the shape of the concave portion may be a round or polygonal cylindrical shape or a mortar shape. Especially, it is preferable that it is a mortar shape. In other words, it is desirable that the concave portion has a smaller area at the bottom than the opening. Furthermore, the number of recesses present on one substrate surface can be appropriately selected according to the application of the sensor. For example, when the size of the substrate and 1 cm 2 ~ 3 cm 2, the number of recesses, 1 0 0-3 0 0 0, preferably 5 0 0 or more, 1, 0 0 0 or more, More than 1,500, less than 2,000, less than 2,500.
さらに、電極は、各凹部内の導電性微粒子の膜と接し、電極同士が直接接しないよう に設けることが好ましい。  Further, it is preferable that the electrodes are provided so as to be in contact with the film of the conductive fine particles in each concave portion and not to directly contact each other.
また、電極を形成する部位は、基板表面に限定されるのではなく、 凹部の内部、肩部 または底部であってもよい。  Further, the portion where the electrode is formed is not limited to the surface of the substrate, but may be the inside of the recess, the shoulder or the bottom.
凹部を形成する方法は、基板の材料や、 凹部の大きさや形状に従って、公知の手法か ら選択することができる。例えば、ガラス基板やプラスチック基板を用いた場合、所定 の形状のパターンを有するマスクを基板表面に形成し、化学的ェッチング剤を用レヽるカ レーザー光を用いるかして基板表面に所定の凹部を形成することができる。  The method for forming the concave portion can be selected from known methods according to the material of the substrate and the size and shape of the concave portion. For example, when a glass substrate or a plastic substrate is used, a mask having a pattern of a predetermined shape is formed on the substrate surface, and a predetermined concave portion is formed on the substrate surface by using a laser beam using a chemical etching agent. Can be formed.
なお、凹部の部分を有するシートを、ラミネートなどによって基板に装着させること で基板表面に凹部を形成してもよい。  Note that the concave portion may be formed on the surface of the substrate by attaching the sheet having the concave portion to the substrate by lamination or the like.
電極を形成する方法は、公知の方法を用いて形成することができる。例えば、所定の パターンを有するマスクを基板表面に形成し、その上から金属膜を蒸着させることで電 極を形成することができる。  As a method for forming an electrode, a known method can be used. For example, an electrode can be formed by forming a mask having a predetermined pattern on the substrate surface and depositing a metal film thereon.
また、 上記凹部の形成と電極の形成とはどちらを先に行ってもよ!/、。  Either the formation of the concave portion or the formation of the electrode may be performed first! /.
また、 本発明の金ナノ粒子の膜には、 先に述べた結合剤が含まれていてもよい。 さらに第三の実施の形態として、  Further, the binder described above may be contained in the gold nanoparticle film of the present invention. Further, as a third embodiment,
表面に形成された複数の微細な凹部を有する基板と、各凹部の内部表面に形成された導 電性微粒子の膜と、導電性微粒子の膜に電気的に接続するように形成された第 1及び第 2電極とを備え、 A substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles. And a second electrode,
導電性微粒子の膜が、プローブで修飾されてなることを特徴とする電気抵抗型検出セン サも挙げられる。 There is also an electric resistance type detection sensor characterized in that a film of conductive fine particles is modified with a probe.
本実施の形態の基板の表面には、 複数の微細な凹部が形成されている。  A plurality of fine concave portions are formed on the surface of the substrate according to the present embodiment.
また本実施の形態の電気抵抗型検出センサの第 1及ぴ第 2電極は、 1又は複数のマル チプレクサ、好ましくはアナログマルチプレクサを介して接続することができる。マル チプレクサは、 ここではデマルチプレクサとして機能する。マルチプレクサには、外部 からのァドレス信号に基づいて、対象とするセンサを切り替える機能を有する素子が含 まれ、例えば、入力端子、 出力端子、 アドレス信号を入力するアドレス入力端子を有す るものを用いることができる。アドレス入力端子には、アドレス信号を出力するマイク 口コンピュータなどの制御部が接続されていることが好ましい。 Further, the first and second electrodes of the electric resistance type detection sensor according to the present embodiment include one or more It can be connected via a multiplexer, preferably an analog multiplexer. The multiplexer here functions as a demultiplexer. The multiplexer includes an element having a function of switching a target sensor based on an external address signal.For example, a multiplexer having an input terminal, an output terminal, and an address input terminal for inputting an address signal is used. be able to. It is preferable that a control unit such as a microphone computer that outputs an address signal is connected to the address input terminal.
1又は複数のマルチプレクサを介して接続される第 1電極と第 2電極は、電極間電圧、 電流又は抵抗などの電気的特性を測定する電圧測定器、電流測定器又は抵抗測定器など の電気的特性測定器をさらに介して接続されることが好ましい。  The first and second electrodes connected via one or more multiplexers are connected to an electrical device such as a voltmeter, current meter, or resistance meter that measures electrical characteristics such as voltage, current, or resistance between electrodes. It is preferable to be connected via a characteristic measuring device.
また、第 1電極と第 2電極は、電気的特性測定器の代わりにロックインァンプ回路を 介して接続されてもよい。 また、電気的特性測定器は、 ロックインアンプ回路の出力端 子に接続されてもよい。 この場合、周期的電圧変化の同期成分をロックインアンプで検 出することで測定環境において発生する雑音特性を除去または減少させることができ、 電気信号 (電圧)の高感度化が可能になる。  Further, the first electrode and the second electrode may be connected via a lock-in circuit instead of the electrical property measuring device. Further, the electrical characteristic measuring device may be connected to an output terminal of the lock-in amplifier circuit. In this case, by detecting the synchronous component of the periodic voltage change by the lock-in amplifier, noise characteristics generated in the measurement environment can be eliminated or reduced, and the sensitivity of the electric signal (voltage) can be increased.
電気的特性測定器は、測定した電気的特性の大きさに応じた電流、電圧などを出力す る出力端子を備えていることが好ましく、また、この出力端子に制御部が接続されてい ることが好ましい。電気的特性測定器の代わりに口ックインアンプ回路が用いられる場 合、制御部は、 ロックインアンプ回路の出力端子に接続されていることが好ましい。制 御部は、メモリなどの記憶部を有し、電気的特性測定器の出力を記憶する構成とするこ とが好ましい。  The electrical characteristics measuring instrument preferably has an output terminal that outputs current, voltage, etc. according to the magnitude of the measured electrical characteristics, and a control unit is connected to this output terminal. Is preferred. When a lock-in amplifier circuit is used instead of the electrical characteristic measuring device, the control unit is preferably connected to an output terminal of the lock-in amplifier circuit. It is preferable that the control unit has a storage unit such as a memory and stores the output of the electrical characteristic measuring device.
制御部は、さらにモニタ又はプリンタなどの出力機器に接続されていることが好まし く、 記憶部に記憶した電気的特性を出力機器に出力する構成とすることが好ましい。 上記以外は、 前述の第一おょぴ二の実施の形態で述べたものを用いることができる。 さらに、 第四の実施の形態として、  The control unit is preferably further connected to an output device such as a monitor or a printer, and is preferably configured to output the electrical characteristics stored in the storage unit to the output device. Other than the above, those described in the first and second embodiments can be used. Further, as a fourth embodiment,
表面に形成された複数の微細な凹部を有する基板と、各凹部の内部表面に形成された導 電性微粒子の膜と、導電性微粒子の膜に電気的に接続するように形成された第 1及び第 2電極とを備え、 導電性微粒子の膜が、プローブで修飾され、少なくとも一方の電極及び/又は他の導 電性微粒子に接続されてなる電気抵抗型検出センサを用いることにより、各凹部にそれ ぞれ別のプローブを結合させ、 簡便に短い時間で、 検体中の標的物質を電気的に検出、 確認することができる。 A substrate having a plurality of fine concave portions formed on the surface thereof; a film of conductive fine particles formed on the inner surface of each concave portion; and a first conductive film formed to be electrically connected to the film of conductive fine particles. And a second electrode, By using an electric resistance type detection sensor in which a film of conductive fine particles is modified with a probe and connected to at least one electrode and / or another conductive fine particle, a separate probe is provided in each concave portion. After binding, the target substance in the sample can be easily detected and confirmed easily and in a short time.
本実施の形態の基板の表面には、 複数の微細な凹部が形成されている。  A plurality of fine concave portions are formed on the surface of the substrate according to the present embodiment.
各凹部に対応する第 1または第 2電極は、互いに電気的に接続されてもよい。 この場 合、第三の実施の形態と同様の構成により、各凹部に導入された検体についての測定を 行うことができる。  The first or second electrode corresponding to each recess may be electrically connected to each other. In this case, with the same configuration as in the third embodiment, it is possible to measure the sample introduced into each recess.
「第 1電極が、 基板表面に形成され」 には、基板表面に形成された第 1電極が、 絶縁 材料等で被覆されている場合も含む。すなわち、第 1電極を形成する部位は、基板表面 に限定されるのではなく、 凹部の内部、 肩部であってもよい。  “The first electrode is formed on the substrate surface” includes the case where the first electrode formed on the substrate surface is covered with an insulating material or the like. That is, the portion where the first electrode is formed is not limited to the surface of the substrate, but may be the inside of the recess or the shoulder.
第 2電極は、裏面に露出してもよい。 また、第 2電極が裏面に露出する場合、第 2電 極は、 その全部又は一部が、 さらに絶縁材料等で被覆されていてもよい。  The second electrode may be exposed on the back surface. When the second electrode is exposed on the back surface, the second electrode may be entirely or partially covered with an insulating material or the like.
第 2電極は、基板裏面に互いに交差しない、好ましくは平行に延びる複数の溝を形成 し、 白金などの導電体で溝を埋めるようにして形成することができる。 また、第 1の基 板に貫通孔を形成し、互いに交差しない、好ましくは、平行に延びる複数の電極を有す る第 2の基板を、第 1の基板の裏面に貼り付けることによって第 2電極を形成してもよ レ、。  The second electrode can be formed by forming a plurality of grooves that do not cross each other, preferably extend in parallel, on the back surface of the substrate, and fill the grooves with a conductor such as platinum. In addition, a second substrate having a plurality of electrodes that do not intersect each other, and preferably has a plurality of electrodes extending in parallel, is formed on the back surface of the first substrate by forming a through hole in the first substrate. An electrode may be formed.
さらに、複数の凹部は、複数の行及ぴ列からなるマトリックス状に並ぴ、各行の第 1 電極及ぴ各列の第 2電極が、 それぞれ互いに電気的に接続されることが好ましい。 マトリックスの行及ぴ列は、直角に交わるのが好ましいが、所望の角度で交わってい てもよレヽ。 また、 行及び列は、 直線状であっても曲線状であってもよい。  Further, it is preferable that the plurality of recesses are arranged in a matrix of a plurality of rows and columns, and the first electrode of each row and the second electrode of each column are electrically connected to each other. The rows and columns of the matrix preferably intersect at right angles, but may intersect at any desired angle. The rows and columns may be linear or curved.
第 1電極の各列及ぴ第 2電極の各行を、それぞれマルチプレクサに接続することがで き、マルチプレクサに与えるァドレス信号を順次変化させることにより、マトリックス 状に並んだそれぞれの凹部について、 センサの出力を測定することができる。  Each column of the first electrode and each row of the second electrode can be connected to a multiplexer, and by sequentially changing an address signal applied to the multiplexer, the output of the sensor is obtained for each concave portion arranged in a matrix. Can be measured.
マルチプレクサ、制御部、電気的特性測定器、 ロックインアンプ回路、 出力機器など については、 先で述べたものを適用することができる。 このような構成にすることにより、省スペースで、簡易に、多くの測定を行うことが できるという利点を有している。 For the multiplexer, control unit, electrical characteristic measuring device, lock-in amplifier circuit, output device, etc., those described above can be applied. With such a configuration, there is an advantage that many measurements can be easily performed in a small space.
そして、以下に上記の第一〜四の実施の形態で示した電気抵抗型検出センサを用いた 標的物質の検出方法を記載する。  A method for detecting a target substance using the electric resistance type detection sensor described in the first to fourth embodiments will be described below.
本発明では、 まず測定試料を、 プローブで修飾された導電性微粒子の膜に散布する。 本願発明の「導電性微粒子の膜に散布する」 は、測定試料を導電性微粒子の膜に接触 させることを意味する。具体的には、例えば測定試料を導電性微粒子の膜に滴下させて 行うことができる。  In the present invention, first, a measurement sample is sprayed on a film of conductive fine particles modified with a probe. “Spraying on the conductive fine particle film” in the present invention means that the measurement sample is brought into contact with the conductive fine particle film. Specifically, for example, the measurement can be performed by dropping a measurement sample onto a film of conductive fine particles.
また本発明の 「測定試料」 は、標的物質の有無を検出する検体を、測定に支障をきた さないように調節したものである。具体的には、例えば、検体の濃度を、検出に適切な 濃度になるように、適切な溶媒で希釈したものや、得られた二本鎖 D NAを、検出に適 切な形態である一本鎖 D N Aに処理したものなどが挙げられる。  Further, the “measurement sample” of the present invention is a sample in which the presence or absence of a target substance is detected so that the measurement is not hindered. Specifically, for example, the sample is diluted with an appropriate solvent so that the concentration of the sample becomes an appropriate concentration for detection, or the obtained double-stranded DNA is converted into a single-stranded DNA in a form suitable for detection. And those treated with strand DNA.
測定試料の量は、少なくとも基板上の凹部内の導電性微粒子の膜に接触させることが できれば特には限定されるものではない。  The amount of the measurement sample is not particularly limited as long as it can contact at least the film of the conductive fine particles in the concave portion on the substrate.
さらに、プローブと測定試料を反応させる条件は、用いるプローブや測定試料に応じ て適宜選択することができる。  Furthermore, the conditions under which the probe reacts with the measurement sample can be appropriately selected according to the probe and the measurement sample used.
そして、公知の方法を用いて、得られた導電性微粒子の膜の間の電気抵抗値を測定し、 測定試料を散布する前後での膜の電気抵抗値を測定することで、標的物質の有無を検出、 確認することができる。  Then, by using a known method, the electric resistance between the obtained films of the conductive fine particles is measured, and the electric resistance of the film before and after the measurement sample is sprayed is measured to determine the presence or absence of the target substance. Can be detected and confirmed.
つまり、通常、電極間の電流は、導電性微粒子の膜を通して流れるが、測定試料中に 標的物質が存在し、標的物質とプローブとが反応した場合には、電流はプローブを介し て流れる。 その結果、電極間での電気抵抗値に違いが生じる。 そして、 そのことを利用 して標的物質の有無を電気的に検出、 確認することができる。  That is, usually, the current between the electrodes flows through the film of the conductive fine particles, but when the target substance is present in the measurement sample and the target substance reacts with the probe, the current flows through the probe. As a result, a difference occurs in the electric resistance value between the electrodes. By utilizing this fact, the presence or absence of the target substance can be electrically detected and confirmed.
さらに、第五の実施の形態として、上記第一〜四の実施の形態で示した電気抵抗型検 出センサに限らず、  Furthermore, the fifth embodiment is not limited to the electric resistance type detection sensors shown in the first to fourth embodiments,
電気的に絶縁された基板表面に形成された導電性微粒子の膜をプローブで修飾し、 該修飾した膜に検体を含む測定試料を散布し、 得られた導電性微粒子の膜の 2点間の電気抵抗値を測定することにより、 Modifying a film of conductive fine particles formed on the surface of the electrically insulated substrate with a probe, and spraying a measurement sample containing a specimen on the modified film; By measuring the electrical resistance value between two points of the obtained film of conductive fine particles,
プローブと反応する標的物質の有無を検出、 確認、することができる。 The presence / absence of a target substance that reacts with the probe can be detected, confirmed, and confirmed.
さらに、 第六の実施の形態の検出方法として、  Further, as a detection method of the sixth embodiment,
予め検体とプロープとを含む測定試料を調製し、  Prepare a measurement sample containing a sample and a probe in advance,
電気的に絶縁された基板表面に形成された導電性微粒子の膜に該試料を散布し、 得られた導電性微粒子の膜上の 2点間の電気抵抗値を測定することにより、 プローブと反応する標的物質の有無を検出、 確認することができる。 The sample is sprayed on a film of conductive fine particles formed on the surface of an electrically insulated substrate, and the electrical resistance between two points on the obtained film of conductive fine particles is measured to react with the probe. The presence or absence of the target substance to be detected can be detected and confirmed.
本検出方法は、予め検体とプローブを含む測定試料を調製したものを、基板にあるプ 口一ブで修飾されていな 1/、導電性微粒子の膜に散布して膜間の電気抵抗値の測定する 点で、 上記の検出方法とは異なる。  In this detection method, a sample prepared in advance containing a sample and a probe is sprayed on a film of conductive fine particles that have not been modified with a probe on the substrate. It differs from the above detection method in that it measures.
すなわち、上記検出方法は、導電性微粒子の膜をプローブで修飾する工程を要しない。 上記の 「測定試料を調製する」 には、 プローブと測定試料を、標的物質とプローブと が反応しうる条件下にさらすことを含む。  That is, the above detection method does not require a step of modifying the conductive fine particle film with the probe. The above-mentioned “preparing a measurement sample” includes exposing the probe and the measurement sample to conditions under which the target substance and the probe can react.
具体的には、例えばプローブとして 1 2 b p程度の一本鎖 D N Aを用いた場合、プロ ープと検出する測定試料とを室温で 3 0分間放置することで測定試料を調製すること ができる。  Specifically, for example, when a single-stranded DNA of about 12 bp is used as the probe, the measurement sample can be prepared by leaving the probe and the measurement sample to be detected at room temperature for 30 minutes.
それ以外については、 上記で述べたものを適用することができる。 実施例 1  Otherwise, those described above can be applied. Example 1
実施例 1は、 本発明の電気抵抗型検出センサの選択性について調べたものである。 本実施例では、 6 m 1の 1 %テトラクロ口金 (III) 酸四水和物 (和光純薬) 水溶液 と、 1 0 m 1の 3 %クェン酸(片山化学) 水溶液を含む 2 0 0 m lの水溶液を、 8 0 °C で 2 0分間攪拌し、 金コロイド溶液を調製した。 そして、 ガラス基板 (l c m X l c m) 上に電極間ギャップが 5 z mになるように白金蒸着された「くし型電極白金」 (ビー - エー.エス社製) を、 1, 1 0 _デカンジチオール Zエタノール溶液に浸漬させ、 次い で金ナノ粒子を含む金コロイド溶液に浸漬させることで、電極上おょぴ電極間に金ナノ 粒子の膜を形成した。 そして、得られた膜に、 プローブとなる 5 ' 末端を S H基で活性 ィ匕した 100 ]MW)DNA (SEQ 1 : 5 ' -TCTCAACTCGTA- 3 ' ) の水 溶液を 5 1滴下し、 30分間放置して、電極上おょぴ電極間に存在する金ナノ粒子の 膜をプロープで修飾した。 . Example 1 Example 1 examined the selectivity of the electric resistance type detection sensor of the present invention. In this example, 200 ml of an aqueous solution containing 6 ml of a 1% aqueous solution of tetrachloro base (III) acid tetrahydrate (Wako Pure Chemical) and 10 ml of a 3% aqueous solution of citrate (Katayama Chemical) was used. The aqueous solution was stirred at 80 ° C for 20 minutes to prepare a colloidal gold solution. Then, “comb-shaped electrode platinum” (manufactured by BAS Co., Ltd.), which is formed by depositing platinum on a glass substrate (lcm X lcm) so that the gap between the electrodes is 5 zm, is applied to 1,10_decanedithiol Z By dipping in an ethanol solution and then in a gold colloid solution containing gold nanoparticles, a film of gold nanoparticles was formed on the electrodes and between the electrodes. Then, the 5 'end that serves as a probe is activated with an SH group on the obtained membrane. 100] MW) DNA (SEQ 1: 5'-TCTCAACTCGTA-3 ') aqueous solution of DNA was dropped 51 and allowed to stand for 30 minutes to form a film of gold nanoparticles on the electrodes and between the electrodes. Was modified with a probe. .
次に得られた膜に、 TE緩衝液 (1 OmM T r i s_HC l、 1 mM EDTA、 1 M Na C l) を I I滴下して金ナノ粒子の膜を湿らせ、 膜の電気抵抗値が安定する まで放置した。 そして、測定試料として、 SEQ2〜5の配列を有する DNAを 100 /zM含む TE緩衝液を調製し、 該調製した液 5 を、 上記で得られた膜に滴下した。 図 1は、プローブとして 12 b pからなる SEQ 1の配列を有する DNAを用い、測 定試料として SEQ 2の配列を有する DN A (2 : 1 b pが相補的な一本鎖 D N A) 、 SEQ3の配列を有する DNA (3 : 8 b pが相補的な一本鎖 D N A) 、 S E Q 4の配 列を有する DN A (4 : 1 1 b pが相補的な一本鎖 DNA) 、 SEQ 5の配列を有する DNA (5 : 1 2 b ρの全てが相捕的な一本鎖 DNA) を用い、各々の測定試料を用い た場合での検出前後の膜の抵抗値の変化を示したものである。その結果、測定試料を D N Aで修飾した金ナノ粒子の膜に滴下すると、膜の電気抵抗は減少し、その後 1分程度 で、膜の抵抗値は安定した。その際、測定試料として SEQ5の DNAを用いた場合 ( 5 ) に、 検出前後での電気抵抗値の変化が最も大きかった (5.16X10—2Qcm) 。 一方、 それ 以外の DNAを測定試料として用いた場合には、 膜の電気抵抗値の変化は、 2.40X10-2 □ cm (4) 、 1.44X10-2Qcm (3) 、 1.39Xl(T2Qcm (2) 程度であった。 つまり、 検 出前後での膜の電気抵抗値の変化は、 (4) と (2) では l.OlXlO— cmZbaseであ るのに対し、 (4) と (5) の間では 2.76X10— 2 Ω cm/baseであり、 (4) と (5) の間で、最も顕著な変化がみられた。 このことは、本発明の電気抵抗型検出センサを用 いると、標的となる DN Aとの違いが 1 b pのものでも効率よく検出できることを示し ており、本発明の電気抵抗型検出センサが優れた選択性を有していることを示している。 次に、上記のようにして、金ナノ粒子の膜を、プローブとして SEQ 1の配列を有す る DNAで修飾した後、得られた金ナノ粒子の膜に、 1 μ 1の TE緩衝液を滴下して金 ナノ粒子の膜をまんべんなく湿らせた。そして、金ナノ粒子の膜の電気抵抗値が安定す るまで放置した。そして、安定してから約 100秒後、 SEQ5の配列を有する DNA を含む TE緩衝液 5 1を金ナノ粒子の膜に滴下し、金ナノ粒子の膜の電気抵抗値が安 定するまで、再度放置した。そして、その膜に DN A分解酵素 DNa s e I (和光純薬、Next, TE buffer solution (1 OmM Tris_HCl, 1 mM EDTA, 1 M NaCl) was added dropwise to the resulting membrane to wet the gold nanoparticle membrane, and the electrical resistance of the membrane was stabilized. It was left until. Then, a TE buffer containing 100 / zM of DNA having the sequence of SEQ2 to 5 was prepared as a measurement sample, and the prepared solution 5 was dropped on the membrane obtained above. FIG. 1 shows a DNA having a sequence of SEQ 1 consisting of 12 bp as a probe, and a DNA having a sequence of SEQ 2 (single-stranded DNA having 2: 1 bp complementary) and a sequence of SEQ3 having a sequence of SEQ 2 as a measurement sample. DNA (3: 8 bp complementary single-stranded DNA), SEQ ID NO: 4 having a sequence of SEQ 4 (4:11 bp complementary single-stranded DNA), DNA having a sequence of SEQ 5 This figure shows the change in the resistance value of the membrane before and after the detection when each measurement sample was used using (5: 12 b ρ all single-stranded DNAs are complementary). As a result, when the measurement sample was dropped on the DNA-modified gold nanoparticle film, the electric resistance of the film decreased, and the resistance value of the film stabilized in about 1 minute thereafter. At that time, when using the DNA of SEQ5 as a measurement sample (5), the change in the electrical resistance value before and after detection was greatest (5.16X10- 2 Qcm). On the other hand, in the case of using any other DNA as a measurement sample, the change in the electrical resistance of the film, 2.40X10-2 □ cm (4), 1.44X10- 2 Qcm (3), 1.39Xl (T 2 Qcm In other words, the change in the electrical resistance of the film before and after the detection was l.OlXlO-cmZbase in (4) and (2), whereas (4) and (5) between) and 2.76X10- 2 Ω cm / base, are use (between 4) and (5), the most significant changes were observed. this electrical resistive sensor of the present invention This shows that even a difference of 1 bp from the target DNA can be detected efficiently, indicating that the electric resistance detection sensor of the present invention has excellent selectivity. Then, as described above, after modifying the gold nanoparticle membrane with DNA having the sequence of SEQ 1 as a probe, 1 μl of TE buffer was dropped on the obtained gold nanoparticle membrane. And gold nanoparticles Damp film evenly. Then, the electric resistance of the film of the gold nanoparticles to stable Left until the Then, about 100 seconds after stabilization, TE buffer 51 containing DNA having the sequence of SEQ5 was dropped onto the gold nanoparticle film, and again until the electrical resistance of the gold nanoparticle film was stabilized. I left it. Then, the DNA-degrading enzyme DNase I (Wako Pure Chemical,
^11)を10 1滴下して室温で約 1時間放置し、 金ナノ粒子の膜に結合し た DNAを分解して、膜をプローブで修飾する前の状態に戻した。 図 2は、 DNA (プ ロープ)で修飾された金ナノ粒子の膜に存在する DNAを、 DNA分解酵素で分解する 前後での膜の電気抵抗値を示したものである。その結果、金ナノ粒子の膜を修飾した D N Aを分解した後の金ナノ粒子の膜の電気抵抗値は、 D N Aで修飾する前の金ナノ粒子 の膜の電気抵抗値 (624.36Ω)とほぼ同じになった。 このことは、本発明の電気抵抗型検 出センサが繰り返し使用できることを示している。 実施例 2  ^ 11) was added dropwise and left at room temperature for about 1 hour to decompose the DNA bound to the gold nanoparticle film and return the film to the state before modification with the probe. Figure 2 shows the electrical resistance of the DNA (probe) -modified gold nanoparticle film before and after the DNA is degraded by the DNAse. As a result, the electrical resistance of the gold nanoparticle film after decomposing the DNA modified with the gold nanoparticle film is almost the same as the electrical resistance value of the gold nanoparticle film before the DNA modification (624.36Ω). Became. This indicates that the electric resistance type detection sensor of the present invention can be used repeatedly. Example 2
測定試料として SEQ5の配列を有する DNAを用い、 プローブとして両末端(3, および 5' )をチオール化した SEQ 1の配列を有する DNA (日清紡製) を用いた以 外は、 実施例 1と同様な方法で膜の電気抵抗値を測定した。  Same as Example 1 except that DNA having the sequence of SEQ5 was used as the measurement sample, and DNA having the sequence of SEQ1 (manufactured by Nisshinbo) whose both ends (3 and 5 ′) were thiolated was used as the probe The electrical resistance of the film was measured by various methods.
図 3に示すように、 検出前後での膜の電気抵抗の変化は、 プローブの DNAの一方 (5' ) 末端のみをチオール化した場合 (実施例 1 (5) ) と比べて、 2. 9倍に増大 していた (実施例 1 : 0.30Ω、 実施例 2 : 0.87Ω)。 このことは、 プローブの修飾部位 の数が増加すると、 検出感度が増大することを示している。 実施例 3  As shown in Fig. 3, the change in the electrical resistance of the membrane before and after the detection was 2.9 compared to the case where only one (5 ') end of the probe DNA was thiolated (Example 1 (5)). (Example 1: 0.30Ω, Example 2: 0.87Ω). This indicates that the detection sensitivity increases as the number of probe modification sites increases. Example 3
金ナノ粒子を含む金コロイド溶液 1. 5mlと、两末端(3' および 5' )をチオール 化した S E Q 1の配列を有する DN Aを 50 μ Μ含む水溶液 5 μ 1とを混合し、 30分 間静置して金ナノ粒子をプローブ DN A (SEQ1) で修飾した。 そして、 この溶液を 遠心分離(600 Orpm、 10分)した後、 1. 5 m 1の水で溶液を再分散させた。 そし て、この操作を 2回繰り返し、最後に、 0. 5m 1の水で溶液を再分散させた。そして、 得られた溶液 30 μ 1をくし型電極白金(ビー ·エー ·エス社製) に滴下して電極上お よび電極間に結合剤を含まない金ナノ粒子の膜を作製した以外は、実施例 2と同様な方 法で電気抵抗値を測定した。 1.5 ml of colloidal gold solution containing gold nanoparticles and 5 μl of an aqueous solution containing 50 μl of DNA having the sequence of SEQ 1 with thiolated terminal (3 ′ and 5 ′) were mixed for 30 minutes After standing, the gold nanoparticles were modified with the probe DNA (SEQ1). Then, the solution was centrifuged (600 O rpm, 10 minutes), and the solution was re-dispersed with 1.5 ml of water. This operation was repeated twice, and finally, the solution was redispersed with 0.5 ml of water. Then, 30 μl of the obtained solution is dropped on a comb-shaped electrode platinum (manufactured by BS Co., Ltd.), and the solution is placed on the electrode. The electrical resistance was measured in the same manner as in Example 2 except that a film of gold nanoparticles containing no binder was prepared between the electrodes.
その結果、図 4に示すように、検出前後での膜の電気抵抗値の変化は、 0.57Ωであつ た。 このことは、本発明の電気抵抗型検出センサでは、 導電性微粒子の膜に、結合剤を 含まなくとも標的物質を検出することができることを示している。 実施例 4  As a result, as shown in FIG. 4, the change in the electrical resistance of the film before and after the detection was 0.57Ω. This indicates that the electrical resistance type detection sensor of the present invention can detect a target substance without including a binder in the conductive fine particle film. Example 4
実施例 1で使用したのと同様なガラス基板とくし型電極白金を用い、プローブとして. 5 ' 末端をチオール化した S EQ 1の配列を有する DNA1 00 / ]^を含む丁£緩衝 液 5 μ 1と、測定試料として、 SEQ 5の配列を有する DNA1 00 μΜを含む ΤΕ緩 衝液 5 μΐとをマイク口チューブ (TreffLab、 Treff AG社製、 スイス) 内で予め混合し て調製する。そして、電極を 1, 1 0—デカンジチオール/エタノール溶液に浸漬させ、 次いで金コロイド溶液に浸漬させることで、電極上おょぴ電極間に金ナノ粒子の膜を形 成した。そして、その金ナノ粒子の膜に 1 / 1の TE緩衝液で湿らせ、上記の調製した 液を金ナノ粒子の膜に滴下し、滴下前後での膜の電気抵抗値を測定し、その結果を図 5 に示した。  The same glass substrate as used in Example 1 and a comb-shaped electrode platinum were used, and as a probe.5 μl of a buffer solution containing DNA100 /] ^ having a sequence of 5 EQS-thiolated SEQU 1 was used as a probe. Then, as a measurement sample, a 5 μl buffer solution containing 100 μl of DNA having the sequence of SEQ 5 is mixed in a microphone opening tube (TreffLab, manufactured by Treff AG, Switzerland) in advance and prepared. Then, the electrode was immersed in a 1,10-decanedithiol / ethanol solution and then immersed in a colloidal gold solution to form a film of gold nanoparticles on the electrode and between the electrodes. Then, the gold nanoparticle film was moistened with a 1/1 TE buffer, the above prepared solution was dropped on the gold nanoparticle film, and the electric resistance value of the film before and after the drop was measured. Figure 5 shows the results.
その結果、実施例 1に記載のプローブとして 5 '末端のみをチオール化した DNAを 用いた場合 (0.30Ω)と比べて、検出前後での膜の電気抵抗値は 2. 7倍に増大していた (0.81Ω)。 このことは、本発明の第六の実施の形態に記載の検出方法が有用であること を示している。 実施例 5 Increase as a result, as compared with the case of using a DNA thiolated only 5 'end as probes as described in Example 1 (0. 3 0Ω), the electrical resistance of the film before and after detection 2. sevenfold (0.81Ω). This indicates that the detection method described in the sixth embodiment of the present invention is useful. Example 5
次に、 プローブとして抗体を用いた場合を以下に説明する。  Next, the case where an antibody is used as a probe will be described below.
実施例 1で使用したのと同様なガラス基板とくし櫛型電極 (ビー■エー ·エス社製) を用い、それらを 1, 1 0—デカンジチオール エタノール溶液に浸漬させ、次いで金 コロイド溶液に浸漬させることで、 電極上おょぴ電極間に金ナノ粒子の膜を形成した。 そして、 金ナノ粒子の膜を形成した電極を、 1 OmMのメルカプトプロピオン酸 (東京 化成)/エタノール溶液に 30分間浸漬させ、金ナノ粒子の膜をメルカプトプロピオン酸 で修飾した。そして、得られた膜を超純水ですすぎ、エタノール中で 5分間超音波洗浄 した。 次に、超純水で金ナノ粒子の膜をすすぎ、 そして乾燥させた。 次に、 金ナノ粒子 の膜を、 10 OmgZ 1の N—ヒドロキシこはく酸ィミド(和光純薬)水溶液 20 μ 1 に接触させ、 さらに 10 Omg//x 1の 1-ェチル- 3-[3-ジメチルァミノプロピル] カルポジィミドハイドロクロライド(WS C) (同仁化学)水溶液 20 1に接触させた 後、 室温で静置した。 Using the same glass substrate and comb-shaped electrode (manufactured by BAS Inc.) as used in Example 1, immerse them in a 1,10-decanedithiol ethanol solution and then immerse them in a colloidal gold solution. As a result, a film of gold nanoparticles was formed on the electrodes and between the electrodes. Then, the electrode on which the gold nanoparticle film was formed was connected to 1 OmM mercaptopropionic acid (Tokyo It was immersed in a (chemical formation) / ethanol solution for 30 minutes, and the gold nanoparticle film was modified with mercaptopropionic acid. Then, the obtained membrane was rinsed with ultrapure water and ultrasonically washed in ethanol for 5 minutes. Next, the gold nanoparticle film was rinsed with ultrapure water and dried. Next, the film of the gold nanoparticles is brought into contact with 20 μl of an aqueous solution of 10 OmgZ 1 of N-hydroxysuccinimide (Wako Pure Chemical), and further, 10 Omg // x 1 of 1-ethyl-3- [3- [Dimethylaminopropyl] carbodiimide hydrochloride (WSC) (Dojindo) aqueous solution 201 and then allowed to stand at room temperature.
その後、得られた金ナノ粒子の膜を超純水ですすぎ、 さらに 0. 1Mのトリス一塩酸 塩緩衝液(ρΗ 8)で洗浄し、 そして金ナノ粒子の膜上に 10 μ 1の 0. 1Mのトリス- 塩酸塩緩衝液を滴下させて 100秒間室温で静置した。得られた膜に、 0. 1Mのトリ ス-塩酸塩緩衝液で 100倍に希釈したラビットアンチマウス I g G (和光純薬)の抗体 溶液を、 10 1滴下して室温で 30分間放置した。  Then, the obtained gold nanoparticle film is rinsed with ultrapure water, further washed with 0.1 M Tris-monohydrochloride buffer (ρΗ8), and 10 μl of 0.1 μm is added to the gold nanoparticle film. 1M Tris-hydrochloride buffer was added dropwise and left at room temperature for 100 seconds. An antibody solution of rabbit anti-mouse IgG (Wako Pure Chemical Industries, Ltd.) diluted 100-fold with 0.1 M Tris-hydrochloride buffer was added dropwise to the obtained membrane, and the mixture was allowed to stand at room temperature for 30 minutes. .
その後、 得られた膜をトリス-塩酸塩緩衝液ですすぎ、 その上に 0. 1Mのトリス- 塩酸塩緩衝液を 10 1滴下し、さらに 20 1のェタノールァミン (和光純薬)水溶液 を滴下して室温で 1時間静置し、 抗体が固定化されなかった活性化部位をマスクした。 そして、 抗体で修飾した金ナノ粒子の膜を超純水で洗浄し、 さらにトリス-塩酸塩緩 衝液で洗浄し、 そして金ナノ粒子の膜を 10 μ 1のトリス-塩酸塩緩衝液にさらした。 そのまま 100秒間放置した後、 得られた膜上に、 100/zgのマウス I gG (UpstateBioTechnology社)/トリス-塩酸塩緩衝液 1 iLの抗原溶液を 10 /z 1滴下し た。 滴下後, すぐに膜の電気抵抗値を観測し、 その結果を図 6に示した。  Thereafter, the obtained membrane is rinsed with Tris-hydrochloride buffer, and then 0.1 1 of 0.1 M Tris-hydrochloride buffer is dropped thereon, followed by a drop of an aqueous solution of 201 ethanolamine (Wako Pure Chemical Industries). After allowing to stand at room temperature for 1 hour, the activated site where the antibody was not immobilized was masked. Then, the antibody-modified gold nanoparticle membrane was washed with ultrapure water, further washed with a tris-hydrochloride buffer, and the gold nanoparticle membrane was exposed to 10 μl of tris-hydrochloride buffer. . After allowing the mixture to stand for 100 seconds, an antigen solution of 100 / zg mouse IgG (Upstate BioTechnology) / tris-hydrochloride buffer solution (1 iL) was added dropwise to the obtained membrane at 10 / z1. Immediately after dropping, the electrical resistance of the film was observed, and the results are shown in Figure 6.
図 6の結果は、本発明の電気抵抗型検出センサは、抗原の検出にも適用できることを 示している。 実施例 6  The results in FIG. 6 indicate that the electric resistance type detection sensor of the present invention can be applied to the detection of an antigen. Example 6
図 7は、本発明の実施例 6に係る電気抵抗型検出センサ 51を示す。本発明の実施例 2に係る電気抵抗型検出センサ 51は、基板 54表面に形成された複数の凹部 53を備 えており、 各凹部 53の内部表面には、 金ナノ粒子の膜 57が形成されている。 また、 第 1及ぴ第 2電極 55、 56力 各凹部 53の金ナノ粒子の膜 57に電気的に接続する ように形成されている。電気抵抗型検出センサ 51は、以下の方法によって製造される。 電極の形成及び洗浄 FIG. 7 shows an electric resistance type detection sensor 51 according to Embodiment 6 of the present invention. The electric resistance detection sensor 51 according to the second embodiment of the present invention includes a plurality of recesses 53 formed on the surface of a substrate 54, and a gold nanoparticle film 57 is formed on the inner surface of each recess 53. ing. Also, The first and second electrodes 55 and 56 are formed so as to be electrically connected to the gold nanoparticle film 57 in each recess 53. The electric resistance type detection sensor 51 is manufactured by the following method. Formation and cleaning of electrodes
まず、基板に互いに平行に延びる複数本の白金電極を形成する。 白金電極は、 白金電 極を形成する場所以外の場所をマスクした状態で、白金を蒸着する等により形成するこ とができる。 次に、 図 7に (a) に示すように、 白金電極を二分するように、 各電極の 中央部に 1つずつ凹部を形成する。 白金電極が凹部により分断され、第 1及ぴ第 2電極 が形成される。 凹部の形成後、 以下の方法により、 白金電極の洗浄を行う。  First, a plurality of platinum electrodes extending parallel to each other are formed on a substrate. The platinum electrode can be formed, for example, by depositing platinum while masking a place other than the place where the platinum electrode is formed. Next, as shown in FIG. 7A, a recess is formed at the center of each electrode so as to bisect the platinum electrode. The platinum electrode is divided by the recess, and the first and second electrodes are formed. After the formation of the concave portion, the platinum electrode is washed by the following method.
まず、 上記白金電極を、 0. 1Mの H2S04中で、 参照極として Ag/Ag C 1を 用い、対極として白金コイル(二ラコ社製)を用いて、掃引速度 20 OmVZs、 -0. 25〜十 1. 3 Vの範囲で掃引を 50回繰り返して洗浄する。電気化学的な洗浄は、 ポ テンシヨスタツト (セイコー EG&G社製 263A - 1) を用いて行う。 First, the platinum electrode was swept in 0.1 M H 2 SO 4 using Ag / Ag C 1 as a reference electrode and a platinum coil (manufactured by Niraco) as a counter electrode. Wash 25 to 10 times in a range of 1.3 V by repeating the sweep 50 times. The electrochemical cleaning is performed using a potentiostat (263A-1 manufactured by Seiko EG & G).
金ナノ粒子の膜の形成 Formation of gold nanoparticle film
次に、 金ナノ粒子の膜の形成方法について説明する。  Next, a method of forming a gold nanoparticle film will be described.
まず、 6mlの 1%テトラクロ口金 (III) 酸四水和物 (和光純薬) 水溶液と、 10m 1の 3%クェン酸(片山化学)水溶液を含む 20 Omlの水溶液を、 80°Cで 20分間 攪拌し、 金コロイド溶液を調製する。 First, 6 ml of an aqueous solution of 1% tetrachloro base (III) acid tetrahydrate (Wako Pure Chemical) and a 20 ml of an aqueous solution containing 10 ml of a 3% aqueous solution of citrate (Katayama Chemical) at 80 ° C for 20 minutes Stir to prepare colloidal gold solution.
次に、 囬部に 5 mMの 1, 10—デカンジチオールを含むエタノール溶液を注入し、 エタノールが蒸発した後、エタノールで軽くすすぐ。次に、凹部に金コロイド溶液を注 入することにより、 凹部表面に金ナノ粒子膜が形成される。  Next, inject the ethanol solution containing 5 mM 1,10-decanedithiol into the upper part, and after the ethanol evaporates, lightly rinse with ethanol. Next, a gold nanoparticle film is formed on the surface of the concave portion by pouring a colloidal gold solution into the concave portion.
このようにして金ナノ粒子の膜を形成することにより、第 1及ぴ第 2電極 55、 56 力 各凹部 53の金ナノ粒子の膜 57に電気的に接続される。  By forming the gold nanoparticle film in this manner, the first and second electrodes 55 and 56 are electrically connected to the gold nanoparticle film 57 in each recess 53.
DN Aプロープでの修飾 Modification with DNA probes
まず、 プローブとして、 5' 末端がチオール化された DN A (日清紡製) を用いた。 次に、 凹部を 100 μΜの上記 DNAを含む 1 μ 1 (凹部体積 1 mm3)の Τ Ε緩衝液 ( 10 mM T r i s _H C 1、 1 mM EDTA、 1M Na C 1 ) で満たし、 30分間 放置する。 これにより、 金ナノ粒子がプローブ DNAで修飾される。 次に、余分なチオール化した D NAを除去するため、 T E緩衝液を用いて金ナノ粒子 の表面を洗浄し、 さらに界面抵抗の影響を取り除くため、 1 μ 1の T E緩衝液にて金ナ ノ粒子表面を湿らせる。 First, DNA (Nisshinbo) having a thiolated 5 ′ end was used as a probe. Next, fill the recess with 1 μl (recess volume 1 mm 3 ) of buffer containing 10 μM of the above DNA (10 mM Tris_HC1, 1 mM EDTA, 1M NaC1) for 30 min. put. This modifies the gold nanoparticles with the probe DNA. Next, the surface of the gold nanoparticles was washed with TE buffer to remove excess thiolated DNA, and further removed with 1 μl of TE buffer to remove the effect of interfacial resistance. Wet the particle surface.
周辺装置 Peripheral equipment
次に、 電気抵抗型検出センサ 5 1に接続される周辺装置等について説明する。  Next, peripheral devices and the like connected to the electric resistance type detection sensor 51 will be described.
図 7に示すように、各凹部 5 3に対応する第 1電極 5 5は、マルチプレクサ 6 0の入 力端子 6 1に電気的に接続される。また、マルチプレクサ 6 0の出力端子 6 2と各凹部 5 3に対応する第 2電極 5 6とが、電気抵抗測定器 6 3を介して、電気的に接続される。 電気抵抗測定器 6 3は、その出力端子 6 4から測定した電気抵抗に対応した電圧を出力 する。 また、マイクロコンピュータ 6 5が、マルチプレクサ 6 0のァドレス入力端子 6 6及び電気抵抗測定器 6 3の出力端子 6 4に接続される。マルチプレクサ 6 0は、 ここ では、デマルチプレクサとして機能するため、各凹部 5 3からの複数の出力は入力端子 6 1に入力され、 単一の出力端子 6 2から出力される。  As shown in FIG. 7, the first electrode 55 corresponding to each recess 53 is electrically connected to the input terminal 61 of the multiplexer 60. Further, the output terminal 62 of the multiplexer 60 and the second electrode 56 corresponding to each of the concave portions 53 are electrically connected via the electric resistance measuring device 63. The electric resistance measuring device 63 outputs a voltage corresponding to the measured electric resistance from its output terminal 64. Further, a microcomputer 65 is connected to an address input terminal 66 of the multiplexer 60 and an output terminal 64 of the electric resistance measuring instrument 63. Here, since the multiplexer 60 functions as a demultiplexer, a plurality of outputs from each recess 53 are input to the input terminal 61 and output from a single output terminal 62.
マイクロコンピュータ 6 5は、順次出力アドレスを変化させ、各凹部 5 3に対する電 気抵抗測定器 6 3の出力を記憶する。マイクロコンピュータ 6 5は、プリンタ又はモニ タなどの出力機器 6 7に接続されており、記憶したデータを出力機器 6 7に出力する構 成となっている。 このような構成をとることにより、一度に多くの標的 D NAを簡易に 検出することができる。  The microcomputer 65 sequentially changes the output address and stores the output of the electric resistance measuring device 63 for each recess 53. The microcomputer 65 is connected to an output device 67 such as a printer or a monitor, and is configured to output stored data to the output device 67. With such a configuration, many target DNAs can be easily detected at one time.
標的 D NAの検出 Detection of target DNA
次に、本発明の電気抵抗型検出センサ 5 1及ぴその周辺装置を用いた標的 D NAの検 出方法について説明する。  Next, a method for detecting a target DNA using the electric resistance type detection sensor 51 of the present invention and its peripheral devices will be described.
まず、電気抵抗型検出センサの凹部 5 3に、 1 0 0 Mの測定試料を含む 5 0 /i 1の T E緩衝液を、 先に調製した金ナノ粒子表面にまんべんなく滴下し、 3分間放置する。 そして、 デジタルマルチメーター (HEWLETT PACKARD社製 34401 A型) 6 3を用いて、 2 2 ± 1 °Cで電極の両端の電気抵抗を測定する。 実施例 7 図 8は、実施例 7に係る電気抵抗型検出センサの構成を示すプロック図である。実施 例 7に係る電気抵抗型検出センサでは、マルチプレクサ 6 0の出力端子 6 2と各凹部 5 3に対応する第 2電極 5 6と力 ロックインアンプ回路 6 8を介して、電気的に接続さ れる。 口ックインアンプ回路 6 8の出力端子 6 9が、マイクロコンピュータ 6 5に接続 される。 その他の構成や金ナノ粒子の形成方法などは、 実施例 6と同様である。 First, a 50 / i 1 TE buffer solution containing a 100 M measurement sample is dripped evenly over the surface of the previously prepared gold nanoparticles into the recess 53 of the electric resistance detection sensor, and left for 3 minutes. . Then, using a digital multimeter (type 34401A, manufactured by HEWLETT PACKARD) 63, measure the electrical resistance at both ends of the electrode at 22 ± 1 ° C. Example 7 FIG. 8 is a block diagram illustrating a configuration of the electric resistance type detection sensor according to the seventh embodiment. In the electric resistance type detection sensor according to the seventh embodiment, the output terminal 62 of the multiplexer 60 and the second electrode 56 corresponding to each recess 53 are electrically connected to the second electrode 56 via the lock-in amplifier circuit 68. It is. The output terminal 69 of the mouth-in amplifier 68 is connected to the microcomputer 65. Other configurations and the method of forming the gold nanoparticles are the same as those in the sixth embodiment.
図 9は、 実施例 7に係るロックインァンプ回路 6 8の構成を示すブロック図である。 Aは加算器、 Bは図 3の点線で示す電気抵抗型検出センサ、 Cは電流電圧変換器、 Dは ロックインアンプ、 Eはバイアス電圧、 Fは同期信号である。信号 Fに同期する出力成 分をロックインァンプで選択的に検出することで測定環境において発生する雑音を除 去または減少させることが出来る。 実施例 8  FIG. 9 is a block diagram illustrating a configuration of the lock-in circuit 68 according to the seventh embodiment. A is an adder, B is an electric resistance type detection sensor indicated by a dotted line in FIG. 3, C is a current-voltage converter, D is a lock-in amplifier, E is a bias voltage, and F is a synchronization signal. The noise generated in the measurement environment can be eliminated or reduced by selectively detecting the output component synchronized with the signal F with the lock-in amplifier. Example 8
図 1 0に本発明の実施例 7に係る基板上に上記の電気抵抗型検出センサを複数個備 えた電気抵抗型検出センサ 7 1を示す。電気抵抗型検出センサ 7 1は、複数の行 X及ぴ 列 Yからなるマトリックス状に並んだ複数の凹部 7 3を備える。  FIG. 10 shows an electric resistance type detection sensor 71 provided with a plurality of the electric resistance type detection sensors on a substrate according to Embodiment 7 of the present invention. The electric resistance type detection sensor 71 includes a plurality of concave portions 73 arranged in a matrix composed of a plurality of rows X and a plurality of columns Y.
さらに、 各凹部 7 3の内部表面には、 金ナノ粒子の膜 7 7が形成されている。 また、 第 1及ぴ第 2電極 7 5、 7 6 1 各凹部 7 3の金ナノ粒子の膜 7 7に電気的に接続する ように形成されている。また、電極 7 5は凹部 7 3の基板 7 4表面にリングあるいはそ れに類似する形に作製されてもよい。  Further, a film 77 of gold nanoparticles is formed on the inner surface of each recess 73. In addition, the first and second electrodes 75, 76 1 are formed so as to be electrically connected to the gold nanoparticle film 77 in each recess 73. Further, the electrode 75 may be formed on the surface of the substrate 74 in the concave portion 73 in a ring or a similar shape.
第 1電極 7 5は、基板 7 4表面に形成され、第 2電極 7 6は、凹部 7 3の内部に形成 されると共に基板 7 4の裏面に露出している。また、各行 Xの第 1電極 7 5及ぴ各列 Y の第 2電極 7 6は、 それぞれ互いに電気的に接続されている。  The first electrode 75 is formed on the surface of the substrate 74, and the second electrode 76 is formed inside the concave portion 73 and is exposed on the back surface of the substrate 74. The first electrode 75 of each row X and the second electrode 76 of each column Y are electrically connected to each other.
電極及ぴ金ナノ粒子の膜の形成 Electrode and gold nanoparticle film formation
次に、 このような電極 7 5、 7 6及ぴこれらに電気的に接続する金ナノ粒子の膜 7 7 の形成方法について説明する。  Next, a method of forming the electrodes 75 and 76 and a gold nanoparticle film 77 electrically connected thereto will be described.
まず、基板裏面に互いに平行に延びる複数の溝を形成し、溝を埋めるようにして白金 で第 2電極 7 6を形成する。 次に、 図 1 0 ( a ) で示すような形状で第 1電極 7 5を形成する。 First, a plurality of grooves extending parallel to each other are formed on the back surface of the substrate, and a second electrode 76 is formed of platinum so as to fill the grooves. Next, the first electrode 75 is formed in a shape as shown in FIG. 10 (a).
次に、基板 7 4表面からに第 2電極 7 6に対向するように、マトリックス状に並んだ 複数の凹部 7 3を形成する。凹部 7 3は、第 2電極 7 6が基板 7 4表面側に露出する深 さに形成する。  Next, a plurality of concave portions 73 arranged in a matrix are formed from the surface of the substrate 74 so as to face the second electrode 76. The concave portion 73 is formed at a depth where the second electrode 76 is exposed on the surface side of the substrate 74.
最後に、実施例 6で用いたのと同様の方法により、凹部 7 3の内部表面に金ナノ粒子 の膜 7 7を形成し、 電極及び金ナノ粒子の膜の形成を完了する。  Finally, a gold nanoparticle film 77 is formed on the inner surface of the concave portion 73 by the same method as that used in Example 6, and the formation of the electrode and the gold nanoparticle film is completed.
D N Aプロープでの修飾 Modification with DNA probe
次に、実施例 6で用いたのと同様の方法により、金ナノ粒子の膜 7 7を D N Aプロ一 プで修飾する。  Next, the gold nanoparticle film 77 is modified with a DNA probe in the same manner as that used in Example 6.
周辺装置 Peripheral equipment
次に、 電気抵抗型検出センサ 7 1に接続される周辺装置等について説明する。  Next, peripheral devices connected to the electric resistance type detection sensor 71 will be described.
図 1 0に示すように、第 1電極 7 5の各列 Y及ぴ第 2電極 7 6の各行 Xは、それぞれ マルチプレクサ 8 0、 8 1の入力端子 8 2、 8 3に接続される。各マルチプレクサ 8 0、 8 1の出力端子 8 4、 8 5は、電気抵抗測定器 8 6を介して、互いに電気的に接続され る。 電気抵抗測定器は図 9に示すようなロックインアンプ回路 6 8を使用してもよレ、。 電気抵抗測定器 8 6は、その出力端子 8 7から測定した電気抵抗に対応した電圧を出力 する。 また、マイクロコンピュータ 8 8が、各マルチプレクサ 8 0、 8 1のァドレス入 力端子 8 9、 9 0及び電気抵抗測定器 8 6の出力端子 8 7に接続されている。  As shown in FIG. 10, each column Y of the first electrode 75 and each row X of the second electrode 76 are connected to the input terminals 82, 83 of the multiplexers 80, 81, respectively. The output terminals 84, 85 of the multiplexers 80, 81 are electrically connected to each other via an electric resistance measuring device 86. The electric resistance measuring device may use a lock-in amplifier circuit 68 as shown in FIG. The electric resistance measuring device 86 outputs a voltage corresponding to the measured electric resistance from its output terminal 87. A microcomputer 88 is connected to address input terminals 89, 90 of the multiplexers 80, 81 and an output terminal 87 of the electric resistance measuring device 86.
さらにマイクロコンピュータ 8 8は、各マルチプレクサ 8 0、 8 1に対する出力ァド レスを順次変化させて出力し、二次元アレイ状に並んだ凹部 7 3を走査し、各凹部 7 3 に対する電気抵抗測定器 8 6の出力を記憶する。マイクロコンビュ タ 8 8は、プリン タ又はモニタなどの出力機器 9 1に接続されており、記憶したデータを出力機器 9 1に 出力する構造となっている。  Further, the microcomputer 88 sequentially changes and outputs the output address to each of the multiplexers 80 and 81, scans the concave portions 73 arranged in a two-dimensional array, and measures the electric resistance of each concave portion 73. 8 Store the output of 6. The microcomputer 88 is connected to an output device 91 such as a printer or a monitor, and has a structure for outputting stored data to the output device 91.
このような構成とすることにより、一度にさらに多くの標的 D N Aを検知することが できる。 また、第 1電極を基板表面に配置し、第 2電極を基板裏面に配置するという構 造をとることで、高密度にセンサを配置することができ、装置の省スペース化を図るこ ともできる。 標的 D NAの検出 With such a configuration, more target DNAs can be detected at one time. In addition, by adopting a structure in which the first electrode is arranged on the front surface of the substrate and the second electrode is arranged on the back surface of the substrate, the sensors can be arranged at a high density, and the space of the device can be saved. . Detection of target DNA
実施例 9の電気抵抗型検出センサ Ί 1及びその周辺装置を用いて、実施例 6で用いた のと同様の方法により、 標的 D NAの検出を行うことができる。 産業上の利用の可能性  Using the electrical resistance type detection sensor 1 of Example 9 and its peripheral devices, the target DNA can be detected in the same manner as that used in Example 6. Industrial potential
本発明の上記の電気抵抗型検出センサを用いることで、蛍光物質などの特殊な試薬や、 複雑な装置を用いることなく、 従来よりも、容易で、迅速に、 そして安価で、 かつコン パクトに精度よく標的物質の有無を電気的に検出、 確認することができる。  By using the above-described electric resistance type detection sensor of the present invention, it is easier, faster, cheaper and more compact than before, without using special reagents such as fluorescent substances or complicated devices. The presence or absence of the target substance can be accurately detected and confirmed accurately.
さらに本発明の電気抵抗型検出センサは、従来よりも容易で、迅速に、そして安価で 繰り返して使用することができる。  Further, the electric resistance type detection sensor of the present invention can be used more easily, quickly, and inexpensively than before, and can be used repeatedly.
さらに基板に凹部を形成し、凹部内にプローブで修飾した導電性微粒子の膜を形成し、 測定試料とプローブとを凹部内で反応させることで、反応に要するスペースを少なくす ることができる。  Further, by forming a concave portion in the substrate, forming a film of conductive fine particles modified with a probe in the concave portion, and reacting the measurement sample with the probe in the concave portion, the space required for the reaction can be reduced.
さらに、同一基板に複数の囬部を形成させることで、一度に多種の測定試科および Z または標的物質を電気的に検出、 確認、することができる。  In addition, by forming a plurality of parts on the same substrate, it is possible to electrically detect, confirm, and confirm a variety of measurement samples and Z or target substances at once.
さらに、 導電性微粒子として金ナノ粒子を用い、 プローブとして S H基または NH 2 基で活性化させた D NAまたは抗体を用いることで、より精度よく標的物質を検出、確 認することができる。 Furthermore, by using gold nanoparticles as conductive fine particles and using a DNA or an antibody activated with an SH group or NH 2 group as a probe, a target substance can be detected and confirmed with higher accuracy.
また、プローブの一端を活性ィ匕することで、 より精度よく標的物質を検出、確認する ことができる。  Further, by activating one end of the probe, the target substance can be detected and confirmed more accurately.
また、プローブの両端を活性ィ匕することで、 より精度よく標的物質を検出、確認する ことができる。  In addition, by activating both ends of the probe, the target substance can be detected and confirmed more accurately.
また、 凹部の形状をすり鉢状にすることで、 検出をより効率的に行うことができる。 また、本発明の上記の電気抵抗型検出方法を用いることで、蛍光物質などの特殊な試 薬や、複雑な装置を用いることなく、 従来よりも、容易で、迅速に、 そして安価で、 力 つコンパクトに精度よく標的物質を電気的に検出、 確認することができる。  In addition, by making the shape of the concave portion into a mortar shape, detection can be performed more efficiently. In addition, by using the above-described electric resistance type detection method of the present invention, it is easier, faster, and cheaper than before, without using a special reagent such as a fluorescent substance or a complicated device. The target substance can be electrically detected and confirmed accurately and compactly.
また、 本発明の電気抵抗型検出方法を用いることで、 従来よりも、 容易で、 迅速に、 そして安価で繰り返して標的物質を検出、 確認することができる。 Also, by using the electric resistance type detection method of the present invention, it is easier, faster, and easier than before. And the target substance can be detected and confirmed repeatedly at low cost.

Claims

請求の範囲 The scope of the claims
1. 電気的に絶縁された基板表面に一組の電極が相対峙して配置され、電極上おょぴ1. A pair of electrodes are placed facing each other on the surface of an electrically insulated substrate and placed on the electrodes.
Zまたは電極間に、プローブで修飾された導電性微粒子の膜が形成されてなることを特 徴とする電気抵抗型検出センサ。 An electric resistance type detection sensor characterized in that a film of conductive fine particles modified with a probe is formed between Z or an electrode.
2. 電気的に絶縁された基板表面に凹部を有し、凹部に一組の電極が相対峙して配置 され、電極上および/または電極間に、プローブで修飾された導電性微粒子の膜が形成 されてなることを特徴とする電気抵抗型検出センサ。  2. A concave portion is formed on the surface of the electrically insulated substrate, and a pair of electrodes are arranged in the concave portion so as to face each other. An electric resistance type detection sensor characterized by being formed.
3. 導電性微粒子の膜が、結合剤を含む請求項 1または 2に記載の電気抵抗型検出セ ンサ。  3. The electric resistance detection sensor according to claim 1, wherein the film of the conductive fine particles contains a binder.
4. プローブが、 DNAまたは抗体である請求項 1〜 3のいずれか 1つに記載の電気 抵抗型検出センサ。  4. The electrical resistance type detection sensor according to claim 1, wherein the probe is DNA or an antibody.
5. 導電性粒子が、金ナノ粒子である請求項:!〜 4のいずれか 1つに記載の電気抵抗 型検出センサ。  5. The conductive particles are gold nanoparticles. The electrical resistance type detection sensor according to any one of claims 1 to 4.
6. 結合剤が、 1, 10—デカンジチオールである請求項 5に記載の電気抵抗型検出 センサ。 6. The electric resistance type detection sensor according to claim 5, wherein the binder is 1,10-decanedithiol.
7. DNAまたは抗体が、 SH基又は NH2基で活性化されている請求項 5または 6 に記載の電気抵抗型検出センサ。 7. The electric resistance type detection sensor according to claim 5, wherein the DNA or the antibody is activated by an SH group or an NH 2 group.
8. DNAまたは抗体の少なくとも一端が、 SH基又は NH2基で活性化されている 請求項 5〜 7のいずれか 1つに記載の電気抵抗型検出センサ。 8. The electrical resistance type detection sensor according to any one of claims 5 to 7, wherein at least one end of the DNA or the antibody is activated by an SH group or an NH 2 group.
9. DNAまたは抗体の両端が、 SH基又は NH2基で活' [·生化されている請求項 5〜 8のいずれか 1つに記載の電気抵抗型検出センサ。 9. The electrical resistance type detection sensor according to any one of claims 5 to 8, wherein both ends of the DNA or the antibody are activated by an SH group or an NH 2 group.
10. 表面に形成された複数の微細な凹部を有する基板と、各凹部の内部表面に形成 された導電性微粒子の膜と、導電性微粒子の膜に電気的に接続するように形成された第 1及び第 2電極とを備え、  10. A substrate having a plurality of fine concave portions formed on the surface, a film of conductive fine particles formed on the inner surface of each concave portion, and a second conductive film formed to be electrically connected to the conductive fine particle film. A first electrode and a second electrode,
導電性微粒子の膜が、プロープで修飾されてなることを特徴とする電気抵抗型検出セン サ。 An electric resistance type detection sensor characterized in that a film of conductive fine particles is modified with a probe.
11. 表面に形成された複数の微細な凹部を有する基板と、各凹部の内部表面に形成 された導電性微粒子の膜と、導電性微粒子の膜に電気的に接続するように形成された第11. A substrate having a plurality of fine concave portions formed on the surface, a film of conductive fine particles formed on the inner surface of each concave portion, and a second conductive film formed to be electrically connected to the conductive fine particle film.
1及び第 2電極とを備え、 A first electrode and a second electrode,
第 1電極が、 基板の表面に形成され、 第 2電極が、 四部の内部に形成され、 導電性微粒子の膜が、プローブで修飾されてなることを特徴とする電気抵抗型検出セン サ。 An electric resistance type detection sensor, wherein a first electrode is formed on a surface of a substrate, a second electrode is formed inside four parts, and a film of conductive fine particles is modified with a probe.
12. 第 1及び第 2電極の何れか一方力 S、互いに電気的に接続される請求項 10また は 11に記載の電気抵抗型検出センサ。  12. The electric resistance type detection sensor according to claim 10, wherein one of the first and second electrodes S is electrically connected to each other.
13. 複数の凹部が、複数の行及ぴ列からなるマトリックス状に並ぴ、各行の第 1電 極及び各列の第 2電極が、それぞれ互いに電気的に接続される請求項 11に記載の電気 抵抗型検出センサ。  13. The method according to claim 11, wherein the plurality of recesses are arranged in a matrix comprising a plurality of rows and columns, and the first electrode in each row and the second electrode in each column are electrically connected to each other. Electric resistance type detection sensor.
14. 凹部が、すり鉢形状である請求項 10〜: 13のいずれか 1つに記載の電気抵抗 型検出センサ。  14. The electric resistance type detection sensor according to any one of claims 10 to 13, wherein the recess has a mortar shape.
15. 導電性微粒子の膜が、結合剤を含む請求項 10〜; 14のいずれか 1つに記載の 電気抵抗型検出センサ。  15. The electric resistance type detection sensor according to any one of claims 10 to 14, wherein the film of the conductive fine particles contains a binder.
16. プローブが、 DNAまたは抗体である請求項 10~15のいずれか 1つに記载 の電気抵抗型検出センサ。  16. The electric resistance type detection sensor according to any one of claims 10 to 15, wherein the probe is a DNA or an antibody.
17. 導電性粒子が、金ナノ粒子である請求項 10〜 16のいずれか 1つに記載の電 気抵抗型検出センサ。  17. The electric resistance detection sensor according to any one of claims 10 to 16, wherein the conductive particles are gold nanoparticles.
18. 結合剤が、 1, 10—デカンジチオールである請求項 17に記載の電気抵抗型 検出センサ。 18. The electric resistance type detection sensor according to claim 17, wherein the binder is 1,10-decanedithiol.
19. DNAまたは抗体が、 SH基又は NH2基で活性ィ匕されている請求項 17また は 18に記載の電気抵抗型検出センサ。 19. The electric resistance type detection sensor according to claim 17, wherein the DNA or the antibody is activated by an SH group or an NH 2 group.
20. DNAまたは抗体の少なくとも一端が、 SH基又は NH2基で活性化されてい る請求項 17〜19のいずれか 1つに記載の電気抵抗型検出センサ。 20. The electric resistance type detection sensor according to any one of claims 17 to 19, wherein at least one end of the DNA or the antibody is activated by an SH group or an NH 2 group.
21. DNAまたは抗体の両端が、 SH基又は NH2基で活性化されている請求項 1 7〜 20のいずれか 1つに記載の電気抵抗型検出センサ。 21. The electric resistance type detection sensor according to any one of claims 17 to 20, wherein both ends of the DNA or the antibody are activated by SH groups or NH 2 groups.
2 2 . 電気的に絶縁された基板表面に形成された導電性微粒子の膜をプローブで修飾 し、 2 2. Modify the conductive fine particle film formed on the electrically insulated substrate surface with a probe,
該修飾した膜に検体を含む測定試料を散布し、 . Spray the measurement sample containing the analyte on the modified membrane,
得られた導電性微粒子の膜の 2点間の電気抵抗値を測定することにより、 By measuring the electrical resistance value between two points of the obtained film of conductive fine particles,
プローブと反応する標的物質の有無を検出する電気抵抗型検出方法。 An electric resistance type detection method for detecting the presence or absence of a target substance that reacts with a probe.
2 3 . 予め検体とプローブとを含む測定試料を調製し、 2 3. Prepare a measurement sample containing a sample and a probe in advance,
電気的に絶縁された基板表面に形成された導電性微粒子の膜に該試料を散布し、 得られた導電性微粒子の膜の 2点間の電気抵抗値を測定することにより、 By spraying the sample on a film of conductive fine particles formed on the surface of an electrically insulated substrate and measuring the electrical resistance value between two points of the obtained film of conductive fine particles,
プローブと反応する標的物質の有無を検出する電気抵抗型検出方法。 An electric resistance type detection method for detecting the presence or absence of a target substance that reacts with a probe.
2 4 . プローブが、 D NAまたは抗体である請求項 2 2または 2 3に記載の電気抵抗 型検出方法。 24. The electric resistance type detection method according to claim 22, wherein the probe is a DNA or an antibody.
PCT/JP2004/006583 2003-11-07 2004-05-10 Electrical resistivity sensor and sensing method WO2005045409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515228A JP4389088B2 (en) 2003-11-07 2004-05-10 Electrical resistance type detection sensor and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003378602 2003-11-07
JP2003-378602 2003-11-07

Publications (1)

Publication Number Publication Date
WO2005045409A1 true WO2005045409A1 (en) 2005-05-19

Family

ID=34567184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006583 WO2005045409A1 (en) 2003-11-07 2004-05-10 Electrical resistivity sensor and sensing method

Country Status (2)

Country Link
JP (1) JP4389088B2 (en)
WO (1) WO2005045409A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010321A (en) * 2005-06-28 2007-01-18 Sony Corp Biosensor
JP2008051715A (en) * 2006-08-25 2008-03-06 Yoshiharu Nagamatsu Wireless tag type sensor
JP2008233074A (en) * 2007-02-19 2008-10-02 National Institute Of Advanced Industrial & Technology Sensor using ultrahigh-density noble metal nanoparticle dispersion composite thin film, and sensor system
JP2009216516A (en) * 2008-03-10 2009-09-24 Sumitomo Electric Ind Ltd Biosensor chip and its manufacturing method
JP2013068436A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Gene analysis wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806724B2 (en) * 2018-03-22 2021-01-06 株式会社東芝 Molecule detection element and molecule detection device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311861A (en) * 1986-03-25 1988-01-19 イムノトロニクス インコーポレーテッド Method of electronically measuring coupling reaction
JPH03128449A (en) * 1989-06-15 1991-05-31 Biocircuits Corp Biosensor using electrical, optical and mechanical signals
JPH05322817A (en) * 1991-11-19 1993-12-07 Houston Advanced Res Center Method and device for detecting molecule
JPH1010065A (en) * 1996-06-21 1998-01-16 Showa Shell Sekiyu Kk Immunosensor
JP2000214120A (en) * 1999-01-21 2000-08-04 Sony Internatl Europ Gmbh Manufacture of electronic device, chemical sensor, and fine-particle structure
WO2002048701A2 (en) * 2000-12-11 2002-06-20 President And Fellows Of Harvard College Nanosensors
JP2002522748A (en) * 1998-05-04 2002-07-23 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Detection of targets in samples
JP2002228616A (en) * 2000-12-12 2002-08-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing the same, and specimen detection method
JP2003139775A (en) * 2001-07-19 2003-05-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing chemical sensor, and method of detecting specimen
JP2003185662A (en) * 1992-04-23 2003-07-03 Massachusetts Inst Of Technol <Mit> Optical and electric method and apparatus for detecting molecule
JP2003522936A (en) * 1999-12-13 2003-07-29 ノヴェンバー アクティエンゲゼルシャフト ゲゼルシャフト フューア モレクラーレ メディツィーン Method and apparatus for detecting and quantifying biomolecules

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311861A (en) * 1986-03-25 1988-01-19 イムノトロニクス インコーポレーテッド Method of electronically measuring coupling reaction
JPH03128449A (en) * 1989-06-15 1991-05-31 Biocircuits Corp Biosensor using electrical, optical and mechanical signals
JPH05322817A (en) * 1991-11-19 1993-12-07 Houston Advanced Res Center Method and device for detecting molecule
JP2003185662A (en) * 1992-04-23 2003-07-03 Massachusetts Inst Of Technol <Mit> Optical and electric method and apparatus for detecting molecule
JPH1010065A (en) * 1996-06-21 1998-01-16 Showa Shell Sekiyu Kk Immunosensor
JP2002522748A (en) * 1998-05-04 2002-07-23 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Detection of targets in samples
JP2000214120A (en) * 1999-01-21 2000-08-04 Sony Internatl Europ Gmbh Manufacture of electronic device, chemical sensor, and fine-particle structure
JP2003522936A (en) * 1999-12-13 2003-07-29 ノヴェンバー アクティエンゲゼルシャフト ゲゼルシャフト フューア モレクラーレ メディツィーン Method and apparatus for detecting and quantifying biomolecules
WO2002048701A2 (en) * 2000-12-11 2002-06-20 President And Fellows Of Harvard College Nanosensors
JP2002228616A (en) * 2000-12-12 2002-08-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing the same, and specimen detection method
JP2003139775A (en) * 2001-07-19 2003-05-14 Sony Internatl Europ Gmbh Chemical sensor, method of manufacturing chemical sensor, and method of detecting specimen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAGAOKA T. ET AL: "Kin Nano Ryushimaku o Mochiiru Denryu Kenshutsugata DNA Chip no Kaihatsu", OSAKA PREFECTURE UNIVERSITY GIJUTSU SHOKAI FAIR 2003, HAPPYO SHIZU GUIDE BOOK, 16 October 2003 (2003-10-16), pages 36, XP002987070 *
TOKONAMI S. ET AL: "Kin Nano Ryushi o Mochiita DNA Sensor no Kaihatsu", DAI 64 KAI BUNSEKI KAGAKU TORONKAI KOEN YOSHISHU, 10 May 2003 (2003-05-10), pages 66, XP002987069 *
TOKONAMI S. ET AL: "Kin Nano Ryushimaku o Mochiita DNA Sensor no Kaihatsu", SOCIETY OF NANO SCIENCE AND TECHNOLOGY SORITSU TAIKAI KOEN YOKOSHU, 29 May 2003 (2003-05-29), pages 205, XP002987068 *
YAMAMOTO Y. ET AL: "Nano Gap o Motsu Kin Nano Ryushimaku o Mochiita Atarashii Denki Teikogata DNA Sensor no Teian", THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, DAI 52 NENKAI KOEN YOSHISHU, 9 September 2003 (2003-09-09), pages 92, XP002987067 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010321A (en) * 2005-06-28 2007-01-18 Sony Corp Biosensor
JP4696723B2 (en) * 2005-06-28 2011-06-08 ソニー株式会社 Biosensor
JP2008051715A (en) * 2006-08-25 2008-03-06 Yoshiharu Nagamatsu Wireless tag type sensor
JP2008233074A (en) * 2007-02-19 2008-10-02 National Institute Of Advanced Industrial & Technology Sensor using ultrahigh-density noble metal nanoparticle dispersion composite thin film, and sensor system
JP2009216516A (en) * 2008-03-10 2009-09-24 Sumitomo Electric Ind Ltd Biosensor chip and its manufacturing method
JP2013068436A (en) * 2011-09-21 2013-04-18 Kyocer Slc Technologies Corp Gene analysis wiring board

Also Published As

Publication number Publication date
JPWO2005045409A1 (en) 2007-05-17
JP4389088B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
Das et al. Reagentless biomolecular analysis using a molecular pendulum
Aydın et al. Electrochemical immunosensor based on chitosan/conductive carbon black composite modified disposable ITO electrode: An analytical platform for p53 detection
JP4714745B2 (en) Improved method for electrochemical analysis of specimens
Arkan et al. A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode
Tang et al. Fabrication of immunosensor microwell arrays from gold compact discs for detection of cancer biomarker proteins
US6824669B1 (en) Protein and peptide sensors using electrical detection methods
Arkan et al. Multiwall carbon nanotube-ionic liquid electrode modified with gold nanoparticles as a base for preparation of a novel impedimetric immunosensor for low level detection of human serum albumin in biological fluids
de la Escosura-Muñiz et al. Electrochemical analysis with nanoparticle-based biosystems
EP1996734B1 (en) Method and apparatus for target detection using electrode-bound viruses
Dong et al. Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection
Berggren et al. Capacitance measurements of antibody− antigen interactions in a flow system
Xia et al. Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles
US6436699B1 (en) Capacity affinity sensor
US20020028441A1 (en) Detection of molecules and molecule complexes
US9841416B2 (en) Systems and methods for single-molecule nucleic-acid assay platforms
US20090084686A1 (en) Biosensor comprising interdigitated electrode sensor units
JP5061342B2 (en) Carbon nanotube electrode and sensor using the electrode
Liu et al. General signal amplification strategy for nonfaradic impedimetric sensing: trastuzumab detection employing a peptide immunosensor
Bahadır et al. Label-free, ITO-based immunosensor for the detection of a cancer biomarker: Receptor for Activated C Kinase 1
Wu et al. A sensitive immunoassay based on electropolymerized films by capacitance measurements for direct detection of immunospecies
Wu et al. A novel capacitive immunosensor based on gold colloid monolayers associated with a sol–gel matrix
Henry et al. Design and testing of a packaged microfluidic cell for the multiplexed electrochemical detection of cancer markers
Mourougou-Candoni et al. Adsorption of thiolated oligonucleotides on gold surfaces: An atomic force microscopy study
US20030087277A1 (en) Means and methods for detection of binding of members of specific binding pairs
Chen et al. Label‐free selective detection of protein markers in the picomolar range via a convenient voltammetric sensing strategy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515228

Country of ref document: JP

122 Ep: pct application non-entry in european phase