WO2005044104A1 - Method of quantifying blood flow through heart muscle - Google Patents

Method of quantifying blood flow through heart muscle Download PDF

Info

Publication number
WO2005044104A1
WO2005044104A1 PCT/JP2004/016192 JP2004016192W WO2005044104A1 WO 2005044104 A1 WO2005044104 A1 WO 2005044104A1 JP 2004016192 W JP2004016192 W JP 2004016192W WO 2005044104 A1 WO2005044104 A1 WO 2005044104A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
contrast agent
signal intensity
concentration
magnetic resonance
Prior art date
Application number
PCT/JP2004/016192
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Sakuma
Takahiro Natsume
Hisato Maeda
Original Assignee
Mie Tlo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Tlo Co., Ltd. filed Critical Mie Tlo Co., Ltd.
Publication of WO2005044104A1 publication Critical patent/WO2005044104A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging

Definitions

  • a dynamic scan is performed by injecting a magnetic resonance contrast agent into a subject, and blood flow dynamics of the magnetic resonance contrast agent passing through the myocardium (perfusion) based on time-series data obtained by the scan.
  • the present invention relates to a method for quantifying myocardial blood flow, which displays a calculation result reflecting the above as a numerical value or an image.
  • Ischemic heart disease is the leading cause of death in the United States and Europe, and about 70,000 people die each year in Japan from ischemic heart disease. In diagnosing ischemic heart disease, it is important to accurately evaluate myocardial blood flow as well as morphological evaluation of coronary stenosis.
  • Myocardial blood flow is directly related to myocardial oxygen supply, and reduced myocardial blood flow is a sharp reflection of ischemia.
  • myocardial blood flow in ischemic heart disease has been performed mainly by nuclear medicine, but it has the disadvantage that it cannot detect subintimal ischemia due to low spatial resolution.
  • MRI magnetic resonance imaging
  • MRI is an image that excites the nuclear spin of the subject tissue placed in a static magnetic field with a high-frequency signal having the Larmor frequency, and reconstructs an image from the magnetic resonance signal generated by this excitation. It is a diagnostic method.
  • An object of the present invention is to provide a method for quantifying myocardial blood flow, which can accurately evaluate myocardial blood flow. Disclosure of the invention
  • a method for quantifying myocardial blood flow comprises a method for diagnosing myocardial blood flow by electrocardiogram-gated first-pass magnetic resonance imaging (Gated First-Pass MRI) using a magnetic resonance contrast agent having a T1 shortening effect.
  • a means for correcting body movement a means for setting processing of a region of interest (ROI), and an input and output curve are created from a signal intensity corresponding to a change with time of the magnetic resonance contrast medium concentration.
  • a magnetic resonance contrast agent having a low contrast agent concentration is used, and when measuring the signal intensity in myocardial tissue, Using a normal concentration of magnetic resonance contrast agent Good to be.
  • the means for performing body motion correction sets a joint point between the left ventricle and the right ventricle and moves the processed image so that the joint point becomes a fixed point.
  • the means for performing the signal intensity saturation correction of the input curve corresponding to the time-dependent change of the magnetic resonance contrast agent concentration prepares a quantitative line relating to the relationship between the contrast agent concentration and the signal intensity (concentration signal curve) in advance. It is good to find a regression line by the least squares method using the data of the low concentration area on the curve, and to set the regression line to the relationship between the contrast agent concentration and the signal intensity (signal intensity saturation correction function) in the entire concentration area. .
  • the value is obtained in each segment of the myocardium, the base of the heart is arranged around the apex, and the value is displayed concentrically at each angle divided from the side wall.
  • the myocardial blood flow quantification method according to the present invention having the above-described configuration corrects the MR signal saturation phenomenon in the high-contrast-concentration region, and enables quantitative analysis of abnormal blood flow and blood flow reserve.
  • This is a new method using a contrast agent. It is also a method of correcting left ventricular movement due to breathing. In addition, this method comprehensively corrects the effects of non-uniform signal intensity due to coil sensitivity in the left ventricular myocardium and left ventricular lumen, including the three-dimensional positional relationship between the myocardial and blood regions of interest. Further, this is a method of correcting the signal intensity saturation of the blood input curve.
  • this is a signal processing method that automatically sets the approximate range of background subtraction processing and Patrac plot for many regions of interest in the entire myocardium.
  • This is an image processing and display method that integrates and draws information on the myocardial blood flow of the entire left ventricle and information on the blood flow reserve or the myocardial blood flow gradient from the intima to the adventitia.
  • FIG. 1 is a diagram showing extraction of a 64 ⁇ 64 matrix image including a left ventricular myocardial region from a 256 ⁇ 256 matrix left ventricle short axis image captured by a Gated First-Pass MRI examination according to the present invention.
  • Figure 2 shows the relationship between MR contrast agent concentration (in this case, G d-DTPA concentration) and signal strength.
  • Figure 3 shows the configuration of a polar coordinate map in which the apex is located at the center and the base is located at the center in a concentric circle at each angle obtained by dividing the myocardial blood flow value of each segment (l to n) from the side wall. It is.
  • FIG. 4 is a diagram showing extraction of a 64 ⁇ 64 matrix image including a left ventricular myocardial region from a 256 ⁇ 256 matrix left ventricle short-axis image captured by the Gated First-Pass MRI examination according to the present invention. .
  • FIG. 5 is a diagram showing a temporal image of the fourth slice of the left ventricular short-axis tomographic image after extracting the 64 ⁇ 64 matrix region at the time of the rest examination.
  • FIG. 6 is a diagram showing an image in which a myocardial region and a region of interest (ROI) are set in a left ventricular short-axis tomogram and a left ventricular normal region.
  • ROI region of interest
  • FIG. 7 is a diagram showing input and output curves obtained from the case of FIG.
  • the input curve [C a (t)] is the T S C in the left ventricular lumen
  • the output curve [C b (t)] is the T S C in the left ventricular myocardium (side wall).
  • FIG. 8 is a diagram showing a Patrac plot created using the input / output curves of FIG.
  • the straight line in the graph is the regression line of the linear part of the Patrac plot (6 points from 2 forces), and the slope is a value reflecting myocardial hemodynamics.
  • FIG. 9 is a graph showing the relationship between various concentrations of Gd-DTPA (mol / L) mixed with blood and MR signal intensity (5 examples).
  • the straight line on the graph is linear approximation using data up to Gd-DTPA concentration of 0.7 mmol / L, and the obtained regression line is used as the signal intensity saturation function.
  • Figure 10 shows the input curves before and after the correction of signal intensity saturation at rest in a case in which a proportional relationship holds between Gd-DTPA concentration and MR signal intensity at 1/5 dose and no ischemia.
  • FIG. 7 is a diagram showing a correction input curve.
  • FIG. 11 is a diagram showing a polar coordinate map of an example of correcting the signal detection sensitivity of the MR coil in a case where ischemia was not observed.
  • FIG. 12 is a diagram showing a value pole coordinate map and a CFR polar coordinate map of a case diagnosed as right coronary artery (RCA) stenosis.
  • FIG. 13 is a diagram showing a comparison table between the values and the maximum slope of the upslope.
  • the extracellular fluid distribution or intravascular distribution with T1 shortening effect was evaluated in order to evaluate abnormal blood flow and blood flow reserve in the myocardium or other organs.
  • a magnetic resonance imaging method which has the function of repeatedly injecting a magnetic resonance contrast agent as shown below into a vein and repeatedly taking images with an imaging time interval of less than 4 seconds, the signal in both the observed blood and tissue
  • Magnetic resonance contrast agents containing paramagnetic lanthanide and exhibiting extracellular fluid or intravascular distribution eg, Gd-DTPA, Gd-DTPA-BMA, etc.
  • Dose is administered after dilution in saline, dextrose or water to make the same volume as that of the magnetic resonance contrast agent 0.01 to 0.075 mimol / kg, and repeated at an imaging time interval of less than 4 seconds.
  • a magnetic resonance imaging method with the function Detect intermittent fluctuations.
  • the above-mentioned magnetic resonance contrast agent is administered at a dose of 0.01 to 0.075 mimol / kg, and the blood is collected by using a magnetic resonance imaging method having a function of repeatedly performing imaging at an imaging time interval of less than 4 seconds. It detects temporal changes in signals in both the tissue and the tissue.
  • the blood signal is linear with the contrast agent concentration on the images obtained by various magnetic resonance imaging methods that have the function of performing repeated imaging. Relationship.
  • the junction of the right ventricle (R V) and LV (! ⁇ ⁇ point) is used as an anatomical index.
  • an RV-LV point is set for each temporal image of the slice to be processed in the left ventricular short-axis tomographic image. Then, by moving the processed image up, down, left, and right (X-Y) so that the set RV-LV point has constant coordinates, the time-dependent movement of LV due to respiration in each time-series image is obtained. Correction becomes possible.
  • extraction is performed to images with an arbitrary matrix number based on the scale point.
  • the signal detection sensitivity nonuniformity correction coefficient of the left ventricular myocardial region was calculated using the image of the phase before the contrast agent flowed into the left ventricular myocardial region. Since the T1 value of the left ventricular myocardium does not change significantly in the region of the myocardium and the T1 value can be assumed to be almost the same within the left ventricular myocardial region, the signal intensity distribution in the left ventricular myocardial region before the inflow of the contrast agent The non-uniformity of the signal and the difference in signal strength between slices are considered to almost reflect the signal detection sensitivity of the MR coil system.
  • a region of interest is set in the left ventricular myocardial region of the left ventricular short-axis tomogram.
  • the ROI is divided into arbitrary segments to correct signal detection sensitivity nonuniformity, and the relative signal strength to the average signal strength of all segments in the ROI in all slices of the left ventricular short-axis tomogram is calculated in the ROI of each slice.
  • the signal detection sensitivity non-uniformity correction coefficient of each segment in the ROI in each slice was calculated.
  • the non-uniform correction coefficient for signal detection sensitivity in the left ventricle lumen was calculated using the correction coefficient for signal detection sensitivity in the left ventricular myocardial region.
  • the correction coefficient for signal detection sensitivity in the left ventricular myocardial region As shown in Fig. 1, within the ROI set in the left ventricular myocardium of the slice in which the ROI was set in the left ventricle lumen, 45 degrees, 135 degrees, 222 degrees, and 31 degrees from the center of the left ventricle Four points ((X1, Y1), ( ⁇ 2, ⁇ 2), and the midpoint of the endocardial and epicardial ROIs at each angle of 5 degrees Find the coordinates of (X3, Y3), (X4, Y4)).
  • the signal detection sensitivity correction coefficient for each pixel in the ROI set in the left ventricle lumen is calculated by interpolation using the correction coefficient of the left ventricular myocardium at the obtained coordinates of the four points. Since the correction coefficient of the left ventricular myocardial region is calculated in consideration of the unevenness of signal detection sensitivity between slices, the signal detection of the left ventricular cavity calculated using the obtained correction coefficient of the left ventricular myocardial region In the sensitivity nonuniformity correction coefficient, the nonuniformity of the signal detection sensitivity between slices is considered. By multiplying the obtained signal detection sensitivity non-uniformity correction coefficient of the left ventricle cavity by the left ventricle space of each temporal image, it is possible to correct the signal detection sensitivity non-uniformity of the left ventricle space.
  • the relationship between the MR contrast agent concentration (in this case, G d-DTPA concentration) and the signal intensity is represented by the linear part y1 in the low concentration area and the exponential function part (saturation characteristic part) in the high concentration area. ) It consists of y2. From the intravenous Gd concentration of 0.01 mmol / kg to the estimated left ventricular concentration of 0.7 mmol / l, the linearity of the contrast agent concentration in the left ventricular blood and the signal intensity was confirmed by phantom and volunteer tests using contrast agents. It is clear that is secured.
  • contrast agent concentration and signal intensity were obtained by mixing blood samples and various contrast agent amounts in advance and imaging samples with various contrast agent concentrations under the same conditions as those used in contrast dynamic MRI. Curve). A straight line approximation by the least squares method is performed using data in the low concentration area that has a substantially linear proportional relationship, and the regression line is used for the case where a proportional relation is established between the contrast agent concentration and the signal intensity in the entire contrast agent concentration region.
  • contrast agent concentration and signal intensity signal intensity saturation correction function
  • a test (lZn dose test) in which the concentration of the contrast agent is reduced to 1 / n of this test.
  • the value of the dilution factor n is a value that does not cause saturation in the blood MR signal.
  • a rest test is performed, and the peak of the input curve for the rest test is Calculate the signal intensity saturation ratio at the peak of the input curve of the resting test from the signal intensity ratio of the peak of the 1 / n dose test to the peak.
  • the signal intensity saturation ratio is applied to the concentration signal curve and the signal intensity saturation correction function to calculate the contrast agent concentration in the left ventricular cavity at the peak of the input curve.
  • Equation 2 [Equation 2] d [Cb (i)] d [Ca ⁇ t)].
  • T ⁇ r _
  • Vm is a constant indicating the volume of G d-DTPA distribution pooled in the myocardium. Equation 3 is obtained by integrating Equation 2.
  • Equation 4 Equation 4 is obtained.
  • Equation 4 can be regarded as a linear equation like Equation 5.
  • Equation 5 By plotting Equation 5 on a graph, a Patrac plot can be obtained. Also, by performing a straight line approximation by the least squares method on the straight line portion of the Patrac plot, the inclination of the straight line portion, ie, Ki can be obtained. In this case, this is a constant representing the rate of ingestion of extracellular fluid from the capillaries into the myocardial region, and is considered to reflect myocardial blood flow.
  • the time-signal intensity curve of the left ventricle lumen (input curve) and the time-signal intensity curve of the left ventricular myocardium (output curve) were used for this Patrac plot analysis. Use. In order to quantitatively calculate myocardial blood flow, it is necessary to subtract the signal (background) of each tissue from the input / output curve, so the tissue signal intensity in the left ventricular cavity and myocardial region from the image before the inflow of the contrast agent Is calculated and subtracted as the background of each curve.
  • the time phase immediately before the time phase at which the differential coefficient of the input curve becomes maximum is set as the rise time of the input curve.
  • the slowest time when the increase in the signal strength due to the contrast agent becomes almost 0 is set as the rise time of the output curve.
  • the signal strength of the time phase before the rise time of each curve is 0.
  • a method to effectively display myocardial blood flow and blood flow reserve in the entire left ventricle using high-resolution MR images of multiple slices and to overlay and visualize the intimal to epicardial blood flow ratio I do The myocardial blood flow of all slices and all segments calculated by Gated First-Pass MRI data processing can be displayed on one image by displaying it in polar coordinates.
  • the polar coordinate display method of myocardial blood flow has the advantage that not only can the myocardial blood flow of the entire left ventricle be evaluated at one time, but also that it can be easily associated with coronary arteries.
  • the method of displaying myocardial blood flow in polar coordinates is used in nuclear medicine examinations, but M Since RI has high spatial resolution, it can separate and evaluate myocardial blood flow on the intima and adventitia, which was difficult in nuclear medicine. Since the myocardial blood flow decrease accompanying coronary artery stenosis occurs strongly on the intima side, the ratio of the intima side to the adventitia side myocardial blood flow is important information for diagnosing the pathological condition of ischemic heart disease. In addition, the myocardial blood flow at rest and during loading is quantitatively evaluated by contrast-enhanced MRI, and the ratio between the two is calculated to calculate the myocardial blood flow reserve quantitatively.
  • the present inventors have invented a method for quantitatively and comprehensively displaying the distribution of myocardial blood flow and myocardial blood flow reserve, or the distribution of myocardial blood flow and myocardial intima side blood flow Z epicardial side blood flow ratio. .
  • the left ventricular myocardial region is divided at an arbitrary angle (for example, every 10 degrees) so that the side wall becomes 0 degree, and the no-track analysis is performed. By doing so, the average myocardial blood flow (kl) in each segment is calculated. As shown in Fig. 3, a polar map is created in which the apex is located at the center and the base is located at the periphery in a concentric manner at each angle obtained by dividing the myocardial blood flow value of each segment from the side wall.
  • myocardial perfusion and perfusion reserve can be comprehensively displayed.
  • the blood flow gradient in the myocardium can be quantitatively displayed.
  • the method of quantifying myocardial blood flow according to the present invention was performed on 12 heart disease patients, 8 males, 4 females, and an average age of 64 ⁇ 9 years.
  • Gd—DTPA (0.05 mmol / kg) was injected at a rate of 4 ml / sec by bolus injection, and a GE 1.5T high-speed MR device for heart (Signa CV / i) and a GE EPI-compatible phased array coil for heart were used. And used for imaging.
  • electrocardiogram synchronization (2R-R interval) triggered by R wave was performed under respiratory arrest, and 30 time-lapse images of each slice were captured.
  • 0.56 mg / kg of dipyridamole was intravenously injected as a drug load, and hand grip load was also used.
  • the test was performed at 1/5 dose (0.01 mmol / kg: 15 doses below) of the amount used at rest and load test to correct the signal intensity saturation of the input curve. After performing the test, a resting test was performed, and a load test was started 15 minutes after the resting test was completed.
  • DIICOM digital imaging and communications in medicine
  • GCC GNU compiler collection
  • GDK GIMP drawing kit
  • the experimental values were approximated by a fifth-order polynomial.
  • the Gd-DTPA concentration at the peak of the input curve was calculated from the ratio of the peak in TSC of the lumen of the left ventricle at the 1/5 dose to the peak signal intensity of the input curve.
  • the signal intensity of the input curve is converted from the relationship between the Gd-DTPA concentration and the signal intensity to the Gd-DTPA concentration, and the corrected signal intensity is calculated from the concentration obtained using the signal intensity saturation correction function. Calculated.
  • the nonuniform detection sensitivity of the coil Since the signal detection sensitivity in MRI differs depending on the distance from the coil, the signal intensity increases from the anterior wall near the coil to the septum in the left ventricular short-axis tomogram. Since the T1 value of the tissue in the myocardial region is almost uniform, the nonuniform detection sensitivity was corrected using the signal intensity of each region in the myocardium before the inflow of the contrast agent.
  • the average signal intensity in the region of 5 ° to 20 ° within the ROI set in the myocardial region is calculated, and a shallow profile curve is created for the left ventricular short-axis tomographic image of each slice did.
  • the obtained perimeter profile curve is approximated by Fourier series, and the approximate curve force, 2
  • K cl ⁇ ngle, slici) K bl (a? Igie y slice) x (angle, slice)
  • n is the number of processing slices
  • S seg angle, slise
  • K bl angle, slise
  • K cl angle, slise
  • FIG. 4 shows an example of the image over time. This is a time-lapse image of the fourth slice of the left ventricular short-axis tomogram (64-year-old female, without ischemia) after extraction of the 64X64 matrix area at the time of the rest examination. The value shown below each image is the elapsed time (seconds) from the start of imaging.
  • Bolus injection It is confirmed that the obtained G d-DTPA contrast agent passes through the right ventricle and flows into the left ventricular myocardial region after a further time from the left heart lumen.
  • G d— DPTA flows into the myocardium and several points are set at the left ventricular lumen and the left ventricular myocardium in the image where the border of the left ventricular myocardium can be confirmed, and a cubic spline function is used between each point.
  • a region of interest (hereinafter referred to as ROI) was set in the left ventricular cavity and left ventricular myocardium by interpolation as shown in Fig. 6.
  • the TSC obtained from R ⁇ I set in the left ventricular cavity was used as the input curve for Patrac plot analysis, and the left ventricular myocardium was divided into regions in the range of 5 ° to 20 °.
  • the TSC obtained from the region was used as the output curve.
  • Figure 7 shows the input and output curves actually obtained.
  • a Patrick plot shown in Fig. 8 was created, and a minimum The gradient was calculated for each slice and each region from the approximate straight line by the multiplicative method. No ,.
  • a correlation coefficient with the obtained approximate straight line was calculated.
  • a polar map was created using the Kt value as a parameter, using the polar map display method often used in nuclear cardiology examinations.
  • Coronary blood flow reserve is obtained from the ratio of resting coronary blood flow to maximum coronary blood flow after drug loading, and is an excellent indicator of the degree of functional stenosis of coronary arteries.
  • Non-invasive CFR measurement includes evaluation of functional stenosis of coronary stenosis lesions, percutaneous transluminal coronary angioplasty (PTCA), evaluation of restenosis after intervention with stents, coronary artery bypass It is expected to be applied to diagnosis of graft stenosis.
  • the CFR was calculated from the value as an index of myocardial perfusion obtained from MRI and equation (9). [Equation 9] ⁇ ⁇ -stress
  • K stress is the value obtained from the stress test
  • K rest is the value obtained from the test at rest .
  • a polar coordinate map was created using CFR as a parameter in the same way as the values.
  • Figure 9 shows the relationship between the Gd-DTPA concentration and the signal intensity obtained from the experiment (average of 5 cases).
  • the Gd-DTPA concentration and the signal intensity showed an almost proportional relationship, but beyond that, the proportional relationship was not established. Similar results were obtained for each of the five cases.
  • FIG. 10 shows the result of correcting the signal intensity saturation of the input curve in a case where ischemia was not observed.
  • the peak signal intensity was low due to the nonlinearity between the Gd-DTPA concentration and the signal intensity, and the shape was 5 times the TSC obtained with the 1 Z 5 dose and the shape Different.
  • the input curve after the saturation correction almost coincided with the TSC shape obtained at the 15 dose, and the effect of correcting the saturation of the signal intensity was recognized.
  • the value was high from the front wall to the septum before the correction of non-uniformity in detection sensitivity, but a more uniform polar coordinate map was obtained after the correction.
  • the mean value and standard deviation of the values of the entire left ventricular myocardium before correction were 0.018i0.007
  • the coefficient of variation (CV) was 39.2%
  • the values after correction were 0.016 ⁇ 0.002 and 10.5%, respectively.
  • the mean and standard deviation of the CVs for the four patients without ischemia were 34.6 ⁇ 9.0% before correction and 10.4 ⁇ 1.9% after correction.
  • Figure 12 shows the K ⁇ value polar map and the CFR polar map of a case (57-year-old, male) diagnosed with right coronary artery (RCA) stenosis.
  • K-value polar map no local decrease was observed at rest, and under load, a decrease was observed in the region from the side wall force to the lower wall.
  • the CFR polar map also showed a decrease in CFR in that region. Was observed. This area was almost identical to the area controlled by RCA.
  • Equation 5 The kinetic model of G d—D TPA in the body in this method is finally expressed by Equation 5 under hypothetical conditions, in which case the Patrac plot is a straight line on the graph. All slices and all regions of 12 cases have a straight line portion in at least 5 frames, and good linear approximation results (correlation coefficient 0.9967 ⁇ 0.0081) are obtained, and the above assumption is considered to hold.
  • the 1/5 dose test and resting test were performed under the same conditions, and the input curve at rest at 5 times the TSC in the left ventricular lumen at 1 Z5 dose was originally It can be assumed that they are almost equal. However, the shape of the input curve actually obtained during the resting test was significantly different from that at the time of the 15 dose due to the nonlinearity between the signal intensity and the Gd-DTPA concentration. Is recognized. By performing the saturation correction as shown in Fig. 10, the shape of the input curve at rest is almost the same as the shape at the time of the 15 dose, and the saturation according to the present embodiment is obtained. Correction is useful, and more accurate Ki value calculation has become possible.
  • Gated First-Pass MRI was used to calculate myocardial TSC, calculate the maximum slope of upslope from the TS volume of the myocardial region during the first-pass of the contrast agent, and reported a semi-quantitative evaluation of myocardial hemodynamics. I have. However, as shown in the table of Fig. 13, the maximum slope of upslope was determined in four cases in which ischemia was not observed.As a result, the average CV was 15.65%, and the fluctuation was smaller than the value of 8.52%. large.
  • this method is an analysis based on a kinetic model of G d-DTPA in the body, and its gradient value is calculated from a linear approximation using at least five points. It is less affected by fluctuations, and enables a more accurate myocardial hemodynamic test than myocardial hemodynamic measurement using other indices.
  • the Ki value obtained by using the method reflects myocardial hemodynamics.
  • CFR is an excellent indicator of functional stenosis of the coronary artery and impaired myocardial microcirculation, and its measurement required intracoronary Doppler flowwire and PET. Insertion of Doppler flowwire into the coronary artery is invasive, and PET is expensive, so available facilities are limited.
  • the CFR calculated from the index value of myocardial hemodynamics obtained by the present method showed a decrease in the area of control of stenotic vessels, and the CFR calculated by the present method reflected coronary artery stenosis.
  • the possibility of noninvasive CFR measurement was suggested. Except for correction and R_ ⁇ I set of body motion due to breathing in all process, it is possible to automate the creation of polar coordinate map in which the K t value as a parameter.
  • this method shortened the processing time for creating a polar coordinate map and reduced the burden on the operator.
  • this method has a higher spatial resolution than nuclear medicine examinations, is not affected by attenuation of scattered rays and gamma rays, which is a problem in nuclear medicine examinations, and has a faster and more accurate noninvasive myocardium. Hemodynamic tests are possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A method of quantifying the blood flow through a heart muscle is provided. A dynamic scan is performed on the subject to whom a magnetic resonance contrast agent is injected, and time-series data is obtained. The blood flow is calculated based on the data obtained in such a way that the dynamic state of the flow of the blood passing through the heart muscle is accurately reflected on the calculation result. The result is displayed with a numerical value or an image. The method of quantifying the blood flow through the heart muscle uses electrocardiographically gated first-pass MRI using an MRI contrast agent having a T1 reduction effect. In the method, a means for correcting a body movement, a means for setting a processing of a region of interest (ROI), a means for creating an input curve and an output curve using the signal strength varying depending on the variation with time of the concentration of the magnetic resonance imaging contrast agent, a means for performing signal strength saturation correction of the input curve, and a means for determining the slope (K1) of the linear portion of the Patlak plot obtained from the corrected input and output curves are provided.

Description

明細書 心筋血流の定量化方法 技術分野  Description Quantification method for myocardial blood flow
本発明は磁気共鳴造影剤を被検体に注入してダイナミックスキャンを 行い、 このスキャンにより得られた時系列データに基づいて磁気共鳴造 影剤の心筋を通過する血流動態 (パーフュージョン: perfusion) を反映 した演算結果を数値やイメージとして表示する心筋血流の定量化方法に 関する。 背景技術  In the present invention, a dynamic scan is performed by injecting a magnetic resonance contrast agent into a subject, and blood flow dynamics of the magnetic resonance contrast agent passing through the myocardium (perfusion) based on time-series data obtained by the scan. The present invention relates to a method for quantifying myocardial blood flow, which displays a calculation result reflecting the above as a numerical value or an image. Background art
虚血性心疾患は欧米において死因の第一位を占めており、 日本におい ても年間約 7万人が虚血性心疾患のために死亡している。 虚血性心疾患 の診断には冠動脈狭窄の形態的評価だけでなく、 心筋血流を正確に評価 することが重要である。  Ischemic heart disease is the leading cause of death in the United States and Europe, and about 70,000 people die each year in Japan from ischemic heart disease. In diagnosing ischemic heart disease, it is important to accurately evaluate myocardial blood flow as well as morphological evaluation of coronary stenosis.
心筋血流は心筋への酸素供給に直接関係しており、 心筋血流低下は虚 血を鋭敏に反映する。 これまで虚血性心疾患における心筋血流は、 主と して核医学検査によって行われてきたが、 空間解像度が低いため内膜下 虚血を検出できない欠点があった。 磁気共鳴イメージング (M R I ) を 用い、 急速静注した M R造影剤の心筋を通過する血流動態を観察し、 心 筋血流分布を評価する手法は 1 9 9 0年代前半に臨床研究が開始された。 M R Iは、 静磁場中に置かれた被検体組織の原子核スピンに対して、 そ のラーモア周波数をもつ高周波信号で励起し、 この励起に伴って発生す る磁気共鳴信号から画像を再構成する画像診断法である。  Myocardial blood flow is directly related to myocardial oxygen supply, and reduced myocardial blood flow is a sharp reflection of ischemia. Until now, myocardial blood flow in ischemic heart disease has been performed mainly by nuclear medicine, but it has the disadvantage that it cannot detect subintimal ischemia due to low spatial resolution. Using magnetic resonance imaging (MRI), a clinical study was started in the early 1990s to evaluate the cardiac blood flow distribution by observing the blood flow dynamics of a rapidly intravenously injected MR contrast medium through the myocardium. Was. MRI is an image that excites the nuclear spin of the subject tissue placed in a static magnetic field with a high-frequency signal having the Larmor frequency, and reconstructs an image from the magnetic resonance signal generated by this excitation. It is a diagnostic method.
臨床研究の開始当初は心筋の撮像範囲が限られており、 時間分解能も 不十分でアーチファク トが多く、 その診断精度は不十分であった。 しか し心臓領域における高速 MR Iの発展により、 k空間分割ダラディエン トエコー法とエコーブラナーデータ収集を組み合わせ、 画像の歪みゃァ ーチファク トの少ない T 1 (縦緩和時間) 強調画像の超高速撮像が可能 となってきた。 At the beginning of clinical research, the myocardial imaging range was limited, the temporal resolution was inadequate, there were many artifacts, and the diagnostic accuracy was insufficient. Only With the development of high-speed MRI in the heart region, the combination of k-space partitioned Daladiant Echo and echo-brainer data acquisition enables ultra-high-speed imaging of T1 (longitudinal relaxation time) -weighted images with little image distortion artifacts. It has become.
現在では、 空間分解能 3 mm、 スライス数 8程度のサチユレーシヨン リ力バリ型ダイナミック MR画像を 2心拍毎に繰り返し収集することが 可能となっている。 MR Iによる心筋血流検査は空間分解能に優れ、 視 覚的評価を用いた研究でも、 核医学心筋血流製剤を用いた S P E CT (single photon emission computed tomography) より 優ォした 、筋虚 血検出能が得られており、 定量的解析法を利用した客観的な虚血診断法 の開発が強く望まれている。  At present, it is possible to repeatedly acquire a dynamic MR image with a spatial resolution of 3 mm and a slice number of about 8 every two heartbeats. Myocardial perfusion testing by MR I has excellent spatial resolution, and even in studies using visual evaluation, detection of myocardial ischemia is superior to SPE CT (single photon emission computed tomography) using nuclear medicine myocardial perfusion products Therefore, the development of an objective ischemia diagnosis method using a quantitative analysis method is strongly desired.
(特許文献 1 )  (Patent Document 1)
特開平 6— 26 9424号  JP-A-6-26 9424
(非特許文献 1 )  (Non-Patent Document 1)
松田 豪、 外 6名, 「MR Iを用いた虚血性心疾患検査の現状」, 日本放射線技術学会雑誌, 平成 1 3年 6月, 第 5 7巻, 第 6号, p. 6 64 - 6 70  Go Matsuda, et al., “Current status of ischemic heart disease testing using MR I”, Journal of the Japanese Society of Radiological Technology, June 2001, Vol. 57, No. 6, p. 6 64-6 70
(非特許文献 2)  (Non-patent document 2)
佐久間 肇, 「心臓領域における MR I用造影剤の実際の使用方 法」, 日本医放会誌, 平成 1 4年 1 0月, 第 6 2卷, 第 1 2号, p. 6 8 2 - 6 89  Hakuma Sakuma, "Practical Use of Contrast Agents for MR I in the Cardiac Area", Nippon Medical Review, October 2004, Vol. 62, No. 12, p. 682-6 89
これまでの MR Iによる心筋血流の定量解析では、 心筋領域の時間— 信号強度曲線 (time-signal intensity curve:以下 T S Cとレ、う) の上り 勾配 (upslope) の最大傾斜およびピーク信号強度を指標とした評価が 行われてきたが、 その定量性と診断精度には限界があった。 核医学領域 では、 トレーサーの血液 (入力) と組織 (出力) 動態をコンパ一トメン ト解析することにより、 組織血流の定量的計測が行われている。 M R Iによる心筋血流解析に関しても、 血液入力と組織出力をコンパ 一トメント解析することにより、 核医学よりも高い空間解像度で心筋血 流診断を行えるものと期待される。 しかし、 M R造影剤を用いて心筋血 流を定量的に評価するためには、 次の 5つの技術的課題を解決する必要 がある。 ( 1 )造影剤高濃度領域において M R信号が飽和現象を示し、血 流定量性が失われる問題。 (2 )ダイナミック M R I画像収集中の呼吸 - 体動による心臓の位置変動の影響。 ( 3 ) M R信号受信コイルの感度分布 不均一により血流定量性が失われる問題。 (4 )血流解析におけるバック グランド信号と、 心筋部位による造影剤到達時間差が血流定量性を低下 させる問題。 ( 5 )得られた心筋血流データから心筋内膜側一外膜側への 血流勾配や血流予備能を効果的に定量表示する方法がない。 To date, quantitative analysis of myocardial blood flow by MRI has shown that the maximum slope of the upslope and the peak signal intensity of the time-signal intensity curve (TSC) in the myocardial region are determined. Evaluations have been performed as indicators, but their quantitativeness and diagnostic accuracy are limited. In the field of nuclear medicine, quantitative measurement of tissue blood flow is performed by performing a comparative analysis of blood (input) and tissue (output) dynamics of a tracer. Regarding myocardial blood flow analysis by MRI, it is expected that myocardial blood flow diagnosis can be performed with higher spatial resolution than nuclear medicine by performing a comparative analysis of blood input and tissue output. However, to quantitatively evaluate myocardial blood flow using MR contrast agents, it is necessary to solve the following five technical issues. (1) The problem that the MR signal shows a saturation phenomenon in the high-contrast-concentration region and blood flow quantification is lost. (2) Breathing during acquisition of dynamic MRI images-Influence of heart position fluctuation due to body motion. (3) The problem of loss of blood flow quantification due to uneven sensitivity distribution of MR signal receiving coil. (4) The problem that the difference between the background signal in the blood flow analysis and the arrival time of the contrast agent depending on the myocardial site deteriorates the blood flow quantification. (5) There is no method to effectively and quantitatively display the blood flow gradient from the obtained myocardial blood flow data to the myocardial intima side and epicardial side and the blood flow reserve.
本発明が解決しょうとする課題は、 心筋血流を正確に評価すること可 能な心筋血流の定量化方法を提供することを目的とする。 発明の開示  An object of the present invention is to provide a method for quantifying myocardial blood flow, which can accurately evaluate myocardial blood flow. Disclosure of the invention
この課題を解決するために本発明に係る心筋血流の定量化方法は、 T 1短縮効果を有する磁気共鳴造影剤を用いた心電図同期ファーストパス 磁気共鳴イメージング (Gated First-Pass MRI) によって心筋血流を定 量化する方法において、 体動補正を行う手段と、 関心領域 (R O I ) の 処理を設定する手段と、 前記磁気共鳴造影剤濃度の経時変化に対応する 信号強度から入力及び出力曲線を作成する手段と、 該入力曲線の信号強 度飽和補正を行う手段と、 該補正後の入力曲線と出力曲線から得られる パトラックプロッ トの直線部分の傾き K iを求める手段と備えているこ とを要旨とするものである。  In order to solve this problem, a method for quantifying myocardial blood flow according to the present invention comprises a method for diagnosing myocardial blood flow by electrocardiogram-gated first-pass magnetic resonance imaging (Gated First-Pass MRI) using a magnetic resonance contrast agent having a T1 shortening effect. In the method for quantifying the flow, a means for correcting body movement, a means for setting processing of a region of interest (ROI), and an input and output curve are created from a signal intensity corresponding to a change with time of the magnetic resonance contrast medium concentration. Means for performing signal strength saturation correction of the input curve, and means for calculating the slope K i of a linear portion of the Patrac plot obtained from the corrected input curve and output curve. It is the gist.
この場合、 更に前記磁気共鳴造影剤において、 血液中の信号強度を測 定する場合には、 造影剤濃度が希薄濃度の磁気共鳴造影剤を用い、 心筋 組織中の信号強度を測定する場合には普通濃度の磁気共鳴造影剤を用い ると良い。 In this case, when measuring the signal intensity in blood with the magnetic resonance contrast agent, a magnetic resonance contrast agent having a low contrast agent concentration is used, and when measuring the signal intensity in myocardial tissue, Using a normal concentration of magnetic resonance contrast agent Good to be.
更に前記体動補正を行う手段が、 左心室と右心室の接合点を設定し、 該接合点が定点となるように処理画像を移動すると良い。  Further, it is preferable that the means for performing body motion correction sets a joint point between the left ventricle and the right ventricle and moves the processed image so that the joint point becomes a fixed point.
更に前記磁気共鳴造影剤濃度の経時変化に対応する入力曲線の信号強 度飽和補正を行う手段が、 あらかじめ造影剤濃度一信号強度の関係 (濃 度信号曲線) に係る定量線を作成し、 該曲線上で低濃度領域のデータを 用いて最小二乗法による回帰直線を求め、 該回帰直線を全濃度領域にお ける造影剤濃度一信号強度の関係 (信号強度飽和補正関数) とすると良 レ、。  Further, the means for performing the signal intensity saturation correction of the input curve corresponding to the time-dependent change of the magnetic resonance contrast agent concentration prepares a quantitative line relating to the relationship between the contrast agent concentration and the signal intensity (concentration signal curve) in advance. It is good to find a regression line by the least squares method using the data of the low concentration area on the curve, and to set the regression line to the relationship between the contrast agent concentration and the signal intensity (signal intensity saturation correction function) in the entire concentration area. .
更に心筋の各セグメントにおいて前記 値を求め、 心尖部を中心に 心基部を周辺に配置し、 側壁から分割した角度毎に同心円状に該 値 を表示すると良い。  Further, it is preferable that the value is obtained in each segment of the myocardium, the base of the heart is arranged around the apex, and the value is displayed concentrically at each angle divided from the side wall.
更に、 左心室心筋および左心室内腔における信号検出感度不均一を補 正する手段を備えていると良い。  Further, it is preferable to provide a means for correcting non-uniform signal detection sensitivity in the left ventricular myocardium and the left ventricle lumen.
上記構成を有する本発明に係る心筋血流の定量化方法は、 造影剤高濃 度領域における M R信号の飽和現象を補正し、 血流異常と血流予備能の 定量的解析を可能とする希釈造影剤を用いた新しい方法である。 また、 呼吸による左心室の動きを補正する方法である。 さらに左心室心筋およ び左心室内腔のコイル感度に起因する信号強度不均一の影響を、 心筋お よび血液の関心領域の 3次元的位置関係を含めて総合的に補正する方法 である。 さらに血液入力曲線の信号強度飽和を補正する方法である。 ま た、 定量血流解析において、 バックグランド減算処理およびパトラック プロッ トの近似範囲を、 心筋全体の多数の関心領域に対して自動的に設 定する信号処理方法である。 そして左心室全体の心筋血流と、 血流予備 能ないし内膜側〜外膜側の心筋血流勾配の情報を統合して描出する画像 処理 ·表示方法である。 図面の簡単な説明 The myocardial blood flow quantification method according to the present invention having the above-described configuration corrects the MR signal saturation phenomenon in the high-contrast-concentration region, and enables quantitative analysis of abnormal blood flow and blood flow reserve. This is a new method using a contrast agent. It is also a method of correcting left ventricular movement due to breathing. In addition, this method comprehensively corrects the effects of non-uniform signal intensity due to coil sensitivity in the left ventricular myocardium and left ventricular lumen, including the three-dimensional positional relationship between the myocardial and blood regions of interest. Further, this is a method of correcting the signal intensity saturation of the blood input curve. In addition, in quantitative blood flow analysis, this is a signal processing method that automatically sets the approximate range of background subtraction processing and Patrac plot for many regions of interest in the entire myocardium. This is an image processing and display method that integrates and draws information on the myocardial blood flow of the entire left ventricle and information on the blood flow reserve or the myocardial blood flow gradient from the intima to the adventitia. Brief Description of Drawings
図 1は、 本発明に係る Gated First-Pass MRI検査で撮像された 256 X256 マトリ ックスの左心室短軸画像から左心室心筋領域を含む 64X 64マトリ ッタスの画像の抽出を示した図である。  FIG. 1 is a diagram showing extraction of a 64 × 64 matrix image including a left ventricular myocardial region from a 256 × 256 matrix left ventricle short axis image captured by a Gated First-Pass MRI examination according to the present invention.
図 2は、 MR造影剤濃度 (この場合は G d— DT P A濃度) と信号強 度の関係を示した図である。  Figure 2 shows the relationship between MR contrast agent concentration (in this case, G d-DTPA concentration) and signal strength.
図 3は、 各セグメント ( l〜n) の心筋血流値を側壁から分割した角 度ごとに同心円状に心尖部を中心部、 心基部を周辺部に配置した極座標 マップの構成を示した図である。  Figure 3 shows the configuration of a polar coordinate map in which the apex is located at the center and the base is located at the center in a concentric circle at each angle obtained by dividing the myocardial blood flow value of each segment (l to n) from the side wall. It is.
図 4は、 本発明に係る Gated First-Pass MRI検査で撮像された 256 X256 マトリ ックスの左心室短軸画像から左心室心筋領域を含む 64 X 64マトリ ックスの画像の抽出を示した図である。  FIG. 4 is a diagram showing extraction of a 64 × 64 matrix image including a left ventricular myocardial region from a 256 × 256 matrix left ventricle short-axis image captured by the Gated First-Pass MRI examination according to the present invention. .
図 5は、 安静検査時における 64X64マ トリックス領域抽出後の左心 室短軸断層像第 4スライスの経時的画像を示した図である。  FIG. 5 is a diagram showing a temporal image of the fourth slice of the left ventricular short-axis tomographic image after extracting the 64 × 64 matrix region at the time of the rest examination.
図 6は、 左心室短軸断層像に心筋領域および左心室内腔正域に関心領 域 (RO I ) を設定した画像を示した図である。  FIG. 6 is a diagram showing an image in which a myocardial region and a region of interest (ROI) are set in a left ventricular short-axis tomogram and a left ventricular normal region.
図 7は、 図 5の症例から得られた入力および出力曲線を示した図であ る。 入力曲線 [C a ( t )] は左心内腔における T S C、 出力曲線 [C b ( t)] は左心室心筋 (側壁) における T S Cである。  FIG. 7 is a diagram showing input and output curves obtained from the case of FIG. The input curve [C a (t)] is the T S C in the left ventricular lumen, and the output curve [C b (t)] is the T S C in the left ventricular myocardium (side wall).
図 8は、 図 7の入出力曲線を用いて作成したパトラックプロッ トを示 した図である。 グラフの直線はパトラックプロッ トの直線部分 (2力 ら 6点) の回帰直線であり、 その傾きは心筋血流動態を反映する 値で ある。  FIG. 8 is a diagram showing a Patrac plot created using the input / output curves of FIG. The straight line in the graph is the regression line of the linear part of the Patrac plot (6 points from 2 forces), and the slope is a value reflecting myocardial hemodynamics.
図 9は、 血液に混和した種々濃度の G d— DT P A (mol/L) と MR 信号強度との関係 (5例) を示した図である。 グラフ上の直線は G d— DT P A濃度が 0.7mmol/Lまでのデータを用いて直線近似を行レ、、得ら れた回帰直線を信号強度飽和関数とする。 図 1 0は、 G d— DT P A濃度と MR信号強度間に比例関係が成立す る 1/5投与量と虚血が認められなかった症例の安静時における信号強 度飽和補正前後の入力曲線および補正入力曲線を示した図である。 FIG. 9 is a graph showing the relationship between various concentrations of Gd-DTPA (mol / L) mixed with blood and MR signal intensity (5 examples). The straight line on the graph is linear approximation using data up to Gd-DTPA concentration of 0.7 mmol / L, and the obtained regression line is used as the signal intensity saturation function. Figure 10 shows the input curves before and after the correction of signal intensity saturation at rest in a case in which a proportional relationship holds between Gd-DTPA concentration and MR signal intensity at 1/5 dose and no ischemia. FIG. 7 is a diagram showing a correction input curve.
図 1 1は、 虚血が認められなかった症例の MRコイルの信号検出感度 不均一補正例の極座標マップを示した図である。  FIG. 11 is a diagram showing a polar coordinate map of an example of correcting the signal detection sensitivity of the MR coil in a case where ischemia was not observed.
図 1 2は、 右冠状動脈 (RCA) 狭窄と診断された症例の 値極座 標マップおよび C F R極座標マップを示した図である。  FIG. 12 is a diagram showing a value pole coordinate map and a CFR polar coordinate map of a case diagnosed as right coronary artery (RCA) stenosis.
図 1 3は、 値と upslopeの最大傾斜との比較表を示した図である。 発明を実施するための最良の形態  FIG. 13 is a diagram showing a comparison table between the values and the maximum slope of the upslope. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明に係る心筋血流の定量化方法の実施の形態について図面を 参照して説明する。 まず、 造影剤高濃度領域における MR信号の飽和現 象を補正し、 血流異常と血流予備能の定量的解析を可能とする方法につ いて説明する。  Hereinafter, an embodiment of a method for quantifying myocardial blood flow according to the present invention will be described with reference to the drawings. First, a method is described that corrects the phenomenon of MR signal saturation in the high-contrast-concentration region and enables quantitative analysis of abnormal blood flow and blood flow reserve.
ヒ トまたはヒ ト以外の動物において、 心筋または心筋以外の臓器中の 血流異常と血流予備能を評価する目的で、 T 1短縮効果を有し細胞外液 型分布または血管内型分布を示す磁気共鳴造影コントラスト剤を静脈投 与し、 4秒未満の撮影時間間隔を持って繰り返し撮影を行う機能を有す る磁気共鳴画像撮影法を用い、 観察された血液と組織の両者における信 号強度の時間的変動を検出し、 血流異常と血流予備能の定量的解析を可 能とする方法を発明した。  In humans or non-human animals, the extracellular fluid distribution or intravascular distribution with T1 shortening effect was evaluated in order to evaluate abnormal blood flow and blood flow reserve in the myocardium or other organs. Using a magnetic resonance imaging method, which has the function of repeatedly injecting a magnetic resonance contrast agent as shown below into a vein and repeatedly taking images with an imaging time interval of less than 4 seconds, the signal in both the observed blood and tissue We have invented a method that detects temporal variations in intensity and enables quantitative analysis of abnormal blood flow and blood flow reserve.
常磁性ランタノィ ドを含有し細胞外液型分布または血管内型分布を示 す磁気共鳴造影剤 (例えば G d— DT PA、 G d --DT P A-BMA 等) 0.001〜0.01 ミリモル/ kgの用量を、 磁気共鳴造影剤 0.01〜0.075ミ リモル/ kg 用量の場合と同一容積となるように生理食塩水、 ブドウ糖液 または水に希釈した後に投与し、 4秒未満の撮影時間間隔を持って繰り 返し撮影を行う機能を有する磁気共鳴画像撮影法を用い、 血液信号の時 間的変動を検出する。 Magnetic resonance contrast agents containing paramagnetic lanthanide and exhibiting extracellular fluid or intravascular distribution (eg, Gd-DTPA, Gd-DTPA-BMA, etc.) 0.001-0.01 mmol / kg Dose is administered after dilution in saline, dextrose or water to make the same volume as that of the magnetic resonance contrast agent 0.01 to 0.075 mimol / kg, and repeated at an imaging time interval of less than 4 seconds. When using a magnetic resonance imaging method with the function Detect intermittent fluctuations.
さらに、 前記の磁気共鳴造影剤 0.01〜0.075 ミ リモル/ kgの用量を投 与し、 4秒未満の撮影時間間隔を持って繰り返し撮影を行う機能を有す る磁気共鳴画像撮影法を用い、 血液と組織両者における信号の時間的変 動を検出する。  In addition, the above-mentioned magnetic resonance contrast agent is administered at a dose of 0.01 to 0.075 mimol / kg, and the blood is collected by using a magnetic resonance imaging method having a function of repeatedly performing imaging at an imaging time interval of less than 4 seconds. It detects temporal changes in signals in both the tissue and the tissue.
血流予備能の評価を行う場合には、 組織内の動脈、 細動脈または毛細 血管に対して拡張作用を有する薬剤を投与し、 前記の磁気共鳴造影剤 0.01〜0.075 ミリモル/ kgの用量を投与し、 4秒未満の撮影時間間隔を持 つて繰り返し撮影を行う機能を有する磁気共鳴画像撮影法を用い、 血液 と組織両者における信号の時間的変動を検出する。  When assessing blood flow reserve, administer a drug that has a dilating effect on arteries, arterioles or capillaries in the tissue, and administer the above magnetic resonance contrast agent at a dose of 0.01 to 0.075 mmol / kg. Then, using a magnetic resonance imaging method having a function of repeatedly performing imaging with an imaging time interval of less than 4 seconds, a temporal variation of a signal in both blood and tissue is detected.
磁気共鳴造影剤を用いた組織血流と血流予備能の定量的診断では、 造 影剤濃度と信号強度の直線性が保たれている必要がある。 発明者が行つ た基礎的検討の結果、 常磁性ランタノィ ドであるガドリニウムを有する 磁気共鳴造影剤 0.01〜0.075 ミリモル/ kg を急速静脈投与した場合、 繰 り返し撮影を行う機能を有する各種の磁気共鳴画像撮影法によって得ら れる画像上、 心筋およびその他の組織において観察される信号は造影剤 濃度と直線的な関係を示すが、 血液において観察される信号と造影剤濃 度の間には飽和現象が生じ直線性が失われていた。  Quantitative diagnosis of tissue blood flow and blood flow reserve using magnetic resonance contrast agents requires that the contrast agent concentration and signal intensity be linear. As a result of a basic study conducted by the inventor, various types of magnets that have the function of performing repeated imaging when 0.01 to 0.075 mmol / kg of a magnetic resonance contrast agent containing gadolinium, which is a paramagnetic lanthanide, are rapidly intravenously administered. On the images obtained by resonance imaging, the signals observed in the myocardium and other tissues show a linear relationship with the contrast agent concentration, but there is a saturation between the signal observed in blood and the contrast agent concentration. A phenomenon occurred and the linearity was lost.
一方、ガドリニウムを有する磁気共鳴造影剤 0.001〜0.01 ミリモル/ kg を投与した場合には、 繰り返し撮影を行う機能を有する各種の磁気共鳴 画像撮影法によって得られる画像上、 血液信号は造影剤濃度と直線的な 関係を示した。  On the other hand, when a gadolinium-containing magnetic resonance contrast agent of 0.001 to 0.01 mmol / kg is administered, the blood signal is linear with the contrast agent concentration on the images obtained by various magnetic resonance imaging methods that have the function of performing repeated imaging. Relationship.
これらの結果より、 磁気共鳴造影剤 0.001〜0.01 ミ リモル/ kg を磁気 共鳴造影剤 0.01〜0.075 ミ リモル/ kg用量の場合と同一容積となるよう に生理食塩水、 ブドウ糖液または水に希釈し、 造影剤投与後の循環動態 が同一となるように調整した上で投与し、 繰り返し撮影を行う機能を有 する磁気共鳴画像撮影法を用いて撮影を行うことにより、 血液内の造影 剤濃度を磁気共鳴画像の信号から定量的に求めることが可能になる。 この場合、 磁気共鳴造影剤 0.01〜0.075 ミ リモル/ kg用量を用い、 磁 気共鳴撮影装置の高周波出力および受信感度を一定に保つか、 高周波出 力および受信感度を記録した上で撮影を行い、 血液と組織両者における 信号の時間的変動を検出する。 さらに、 組織内の動脈、 細動脈または毛 細血管に対して拡張作用を有する薬剤を投与ないし、 磁気共鳴造影剤 0.01〜0.075 ミリモル/ kg用量を用いた撮影を行い、負荷後の血液と組織 両者における信号の時間的変動を検出する。 この方法により、 血液と組 織両者における造影剤濃度の経時的変化の定量計測から、 組織血流量お よび組織血流予備能の定量評価が可能となる。 Based on these results, dilute 0.001-0.01 mmol / kg of magnetic resonance contrast agent into saline, dextrose solution, or water to make the same volume as that of the 0.01-0.075 mmol / kg dose of magnetic resonance contrast agent. Imaging in the blood by adjusting the circulatory dynamics after administration of the contrast agent and performing imaging using magnetic resonance imaging, which has the function of performing repeated imaging, is performed. The agent concentration can be quantitatively determined from the signal of the magnetic resonance image. In this case, using a magnetic resonance contrast agent of 0.01 to 0.075 mmol / kg dose, keep the high-frequency output and reception sensitivity of the magnetic resonance imaging apparatus constant, or record the high-frequency output and reception sensitivity and perform imaging. It detects temporal variations in signals in both blood and tissue. Furthermore, do not administer a drug that has a dilating effect on arteries, arterioles or capillaries in the tissue, perform imaging using a magnetic resonance contrast agent at a dose of 0.01 to 0.075 mmol / kg, and examine the blood and tissue after loading. Of the signal is detected. This method enables quantitative evaluation of tissue blood flow and tissue blood flow reserve from quantitative measurement of changes over time in contrast agent concentration in both blood and tissue.
次に、 呼吸による左心室の経時的な動きの補正 (体動補正) 方法につ いて説明する。 造影ダイナミック M R I において関心領域 (R〇 I ) を 設定する際、 呼吸による左心室 (L V ) の経時的な動きが問題となる。 そこで解剖学的な指標を用いて L Vの経時的な動きを容易に補正する方 法を発明した。  Next, a method of correcting temporal movement of the left ventricle due to respiration (body motion correction) will be described. When setting a region of interest (R〇I) in contrast dynamic MRI, the temporal movement of the left ventricle (LV) due to respiration becomes a problem. Therefore, we invented a method to easily correct the movement of LV over time using anatomical indices.
解剖学的な指標として右心室 (R V ) と L Vの接合点 (!^ ー 点) を用いる。 まず左心室短軸断層像において処理を行うスライスの各経時 的画像に対して R V— L V点を設定する。 その後、 設定された R V— L V点が一定の座標となるように処理画像を上下左右 (X— Y ) 方向に移 動することにより、 各経時的画像における呼吸による L Vの経時的な動 きの補正が可能となる。 また後のデータ処理を容易にするために呼吸に よる L Vの動きを補正した後、 尺 ーし 点を基準として任意のマトリ ックス数の画像へと抽出を行う。  The junction of the right ventricle (R V) and LV (! ^ ー point) is used as an anatomical index. First, an RV-LV point is set for each temporal image of the slice to be processed in the left ventricular short-axis tomographic image. Then, by moving the processed image up, down, left, and right (X-Y) so that the set RV-LV point has constant coordinates, the time-dependent movement of LV due to respiration in each time-series image is obtained. Correction becomes possible. In addition, after the LV movement due to respiration is corrected to facilitate later data processing, extraction is performed to images with an arbitrary matrix number based on the scale point.
R V— L V点設定後は呼吸による LVの経時的な動きの補正および任 意のマトリックス数の画像への抽出をすベて自動で行うことが可能とな る。  After setting the RV-LV point, it is possible to automatically correct the movement of the LV over time due to respiration and extract an arbitrary number of matrices into the image.
次に、 左心室心筋および左心室内腔におけるコィル信号感度の不均一 を総合的に補正する方法について説明する。 造影ダイナミック M R I を 用いて心筋血流および冠動脈血流予備能を定量的に測定する際に、 信号 検出コイルからの距離に依存した信号検出感度の不均一性が問題となる。 そこで、 心筋血流および血流予備能を定量測定するために、 左心室心筋 および左心室内腔における信号検出感度不均一を三次元的に補正する方 法を発明した。 Next, the non-uniformity of coil signal sensitivity in the left ventricular myocardium and left ventricular lumen Will be described. When quantitatively measuring myocardial blood flow and coronary blood flow reserve using contrast-enhanced dynamic MRI, the non-uniformity of signal detection sensitivity depending on the distance from the signal detection coil becomes a problem. Thus, in order to quantitatively measure myocardial blood flow and blood flow reserve, a method for three-dimensionally correcting nonuniform signal detection sensitivity in the left ventricular myocardium and left ventricular lumen was invented.
造影ダイナミック M R Iにおいて造影剤が左心室心筋領域に流入する 前の時相の画像を用いて左心室心筋領域の信号検出感度不均一補正係数 を算出した。 左心室心筋の T 1値は心筋の部位に大きく変化せず、 左心 室心筋領域内であれば T 1値はほぼ同一と仮定できるので、 造影剤流入 前における左心室心筋領域の信号強度分布の不均一とスライス間の信号 強度の差異は M Rコイル系の信号検出感度をほぼ反映していると考えら れる。  In contrast dynamic MRI, the signal detection sensitivity nonuniformity correction coefficient of the left ventricular myocardial region was calculated using the image of the phase before the contrast agent flowed into the left ventricular myocardial region. Since the T1 value of the left ventricular myocardium does not change significantly in the region of the myocardium and the T1 value can be assumed to be almost the same within the left ventricular myocardial region, the signal intensity distribution in the left ventricular myocardial region before the inflow of the contrast agent The non-uniformity of the signal and the difference in signal strength between slices are considered to almost reflect the signal detection sensitivity of the MR coil system.
まず、 左心室短軸断層像の左心室心筋領域に関心領域 (R O I ) を設 定する。 信号検出感度不均一を補正するために R O Iを任意のセグメン トに分割し、 左心室短軸断層像の全スライスにおける R O I内の全セグ メントの平均信号強度に対する相対信号強度を各スライスの R O I内の 各セグメントについて算出した。 得られた相対信号強度を用いて各スラ イスにおける R O I内の各セグメントの信号検出感度不均一補正係数を 算出した。 得られた左心室心筋領域の信号検出感度不均一補正係数を測 定された心筋血流値に乗ずることにより左心室心筋領域の信号検出感度 不均一補正が可能である。  First, a region of interest (ROI) is set in the left ventricular myocardial region of the left ventricular short-axis tomogram. The ROI is divided into arbitrary segments to correct signal detection sensitivity nonuniformity, and the relative signal strength to the average signal strength of all segments in the ROI in all slices of the left ventricular short-axis tomogram is calculated in the ROI of each slice. Was calculated for each segment. Using the obtained relative signal intensities, the signal detection sensitivity non-uniformity correction coefficient of each segment in the ROI in each slice was calculated. By multiplying the obtained non-uniform signal detection sensitivity correction coefficient of the left ventricular myocardial region by the measured myocardial blood flow value, it is possible to correct the non-uniform signal detection sensitivity of the left ventricular myocardial region.
左心室内腔の信号検出感度不均一補正係数は、 左心室心筋領域の信号 検出感度補正係数を用いて算出した。 図 1に示すように、 左心室内腔に R O Iを設定したスライスの左心室心筋に設定された R O I内において、 左心室の中心より 4 5度、 1 3 5度、 2 2 5度、 3 1 5度の各角度にお ける心内膜、 外膜側 R O I の中間点となる 4点 ((X1,Y1)、 (Χ2,Υ2)、 (X3,Y3)、 (X4,Y4)) の座標を求める。 The non-uniform correction coefficient for signal detection sensitivity in the left ventricle lumen was calculated using the correction coefficient for signal detection sensitivity in the left ventricular myocardial region. As shown in Fig. 1, within the ROI set in the left ventricular myocardium of the slice in which the ROI was set in the left ventricle lumen, 45 degrees, 135 degrees, 222 degrees, and 31 degrees from the center of the left ventricle Four points ((X1, Y1), (Χ2, Υ2), and the midpoint of the endocardial and epicardial ROIs at each angle of 5 degrees Find the coordinates of (X3, Y3), (X4, Y4)).
得られた 4点の座標における左心室心筋の補正係数を用いて補間計算 により左心室内腔に設定された R O I内の各ピクセルにおける信号検出 感度補正係数を算出する。 左心室心筋領域の補正係数ではスライス間の 信号検出感度の不均一も考慮して算出されているため、 得られた左心室 心筋領域の補正係数を用いて算出された左心室内腔の信号検出感度不均 一補正係数においてもスライス間の信号検出感度の不均一が考慮されて いる。 得られた左心室内腔の信号検出感度不均一補正係数を各経時的画 像の左心室内腔に乗ずることにより左心室内腔の信号検出感度不均一補 正が可能である。  The signal detection sensitivity correction coefficient for each pixel in the ROI set in the left ventricle lumen is calculated by interpolation using the correction coefficient of the left ventricular myocardium at the obtained coordinates of the four points. Since the correction coefficient of the left ventricular myocardial region is calculated in consideration of the unevenness of signal detection sensitivity between slices, the signal detection of the left ventricular cavity calculated using the obtained correction coefficient of the left ventricular myocardial region In the sensitivity nonuniformity correction coefficient, the nonuniformity of the signal detection sensitivity between slices is considered. By multiplying the obtained signal detection sensitivity non-uniformity correction coefficient of the left ventricle cavity by the left ventricle space of each temporal image, it is possible to correct the signal detection sensitivity non-uniformity of the left ventricle space.
次に、 血液入力曲線の信号強度飽和補正の方法について説明する。 図 2に示すように、 M R造影剤濃度 (この場合は G d— D T P A濃度) と 信号強度の関係は、 低濃度領域における直線部 y 1 と高濃度領域におけ る指数関数部 (飽和特性部) y 2から構成される。 造影剤を用いたファ ントムおよびボランティア検査により、静注 G d濃度 0.01mmol/kgから 左心室内濃度推定値 0.7mmol/lまでは、 左心室血液中の造影剤濃度と信 号強度の直線性は確保されていることが明らかとなっている。  Next, a method of correcting the signal intensity saturation of the blood input curve will be described. As shown in Fig. 2, the relationship between the MR contrast agent concentration (in this case, G d-DTPA concentration) and the signal intensity is represented by the linear part y1 in the low concentration area and the exponential function part (saturation characteristic part) in the high concentration area. ) It consists of y2. From the intravenous Gd concentration of 0.01 mmol / kg to the estimated left ventricular concentration of 0.7 mmol / l, the linearity of the contrast agent concentration in the left ventricular blood and the signal intensity was confirmed by phantom and volunteer tests using contrast agents. It is clear that is secured.
あらかじめ血液サンプルと種々の造影剤量を混合し、 種々の造影剤濃 度のサンプルを造影ダイナミック M R Iで用いられるのと同一の条件で 撮像することにより、 造影剤濃度一信号強度の関係 (濃度信号曲線) を 求める。 ほぼ直線比例関係を有する低濃度領域のデータを用いて最小 2 乗法による直線近似を行い、 その回帰直線を造影剤の全濃度領域におい て造影剤濃度一信号強度間に比例関係が成立した場合の造影剤濃度一信 号強度の関係 (信号強度飽和補正関数) とする。  The relationship between contrast agent concentration and signal intensity (concentration signal) was obtained by mixing blood samples and various contrast agent amounts in advance and imaging samples with various contrast agent concentrations under the same conditions as those used in contrast dynamic MRI. Curve). A straight line approximation by the least squares method is performed using data in the low concentration area that has a substantially linear proportional relationship, and the regression line is used for the case where a proportional relation is established between the contrast agent concentration and the signal intensity in the entire contrast agent concentration region. The relationship between contrast agent concentration and signal intensity (signal intensity saturation correction function).
安静、 負荷検査を行う前に造影剤濃度を本検査の n分の 1 とした検査 ( l Z n投与量検査) を行う。 希釈係数 nの値は血液 M R信号に飽和が 生じない値とする。 続いて安静検査を行い、 安静検査の入力曲線のピー クに対する 1 / n投与量検査のピークの信号強度比から安静検査の入力 曲線のピークにおける信号強度飽和割合を算出する。 この信号強度飽和 割合を濃度信号曲線および信号強度飽和補正関数に当てはめ、 入力曲線 のピークにおける左心室内腔での造影剤濃度を算出する。 続いて入力曲 線の各時相における信号強度の低下を濃度信号曲線と信号強度飽和補正 関数を用いて補正する。 負荷検査では安静検査で得られた入力曲線のピ ークにおける造影剤濃度を用いて入力曲線の信号強度飽和補正を行う。 次に、 2コンパートメント法に基づく血流解析において、 バックダラ ンド減算およびパトラックプロッ トの近似範囲を自動的に設定する方法 について説明する。 G d— DT P Aなどの MR造影剤は毛細血管膜を通 過し細胞外液へと分布するが、 細胞内には摂取されない。 そこで毛細血 管から細胞外液へと定数 K iで摂取され、 そして細胞外液から毛細血管 へと定数 k 2で排泄されるモデルを仮定する。 ここで動脈内における G d— DT P A濃度を C a ( t )、心筋領域における G d— DT P A濃度を C b ( t) とすると、 C b ( t ) の時間的な変化は数 1式の一次微分方 程式によって示される。 Before performing a resting or stress test, perform a test (lZn dose test) in which the concentration of the contrast agent is reduced to 1 / n of this test. The value of the dilution factor n is a value that does not cause saturation in the blood MR signal. Next, a rest test is performed, and the peak of the input curve for the rest test is Calculate the signal intensity saturation ratio at the peak of the input curve of the resting test from the signal intensity ratio of the peak of the 1 / n dose test to the peak. The signal intensity saturation ratio is applied to the concentration signal curve and the signal intensity saturation correction function to calculate the contrast agent concentration in the left ventricular cavity at the peak of the input curve. Next, the signal strength reduction in each phase of the input curve is corrected using the density signal curve and the signal strength saturation correction function. In the stress test, signal intensity saturation correction of the input curve is performed using the contrast agent concentration at the peak of the input curve obtained by the rest test. Next, a method of automatically setting the approximate range of back-round subtraction and Patrac plot in blood flow analysis based on the two-compartment method will be described. MR contrast agents, such as Gd-DTPA, pass through the capillary membrane and distribute to the extracellular fluid, but are not taken up into cells. Therefore, a model is assumed in which the protein is taken up from the capillary tube into the extracellular fluid at a constant K i and excreted from the extracellular fluid into the capillary vessel at a constant k 2 . Here, assuming that the Gd—DTPA concentration in the artery is C a (t) and the Gd—DTPA concentration in the myocardial region is C b (t), the temporal change of C b (t) is Is given by the first order differential equation.
【数 1】  [Equation 1]
d^Cb^y二 、 [Ca (¾ - k2 [Cb ( )] d ^ Cb ^ y2, [Ca (¾-k 2 [Cb ()]
dt このモデルにおいて G d -DT P Aの平均通過時間よりも早い時相に おいては心筋領域における G d— DT P A濃度は低く、 k 2 [C b ( t )] 項による G d— DT PAの排泄の影響が無視できるとすると数 2式の一 次微分方程式によって表されるモデルを仮定することができる。 dt In this model, in the phase earlier than the average transit time of Gd-DTPA, the concentration of Gd—DTPA in the myocardial region is low, and Gd—DTPA by the k 2 [C b (t)] term Assuming that the effect of excretion is negligible, a model represented by the first-order differential equation of Equation 2 can be assumed.
【数 2】 d[Cb(i)] d[Ca{t)].t ^ r _ , ここで Vmは心筋内にプールされた G d— D T P A分布容積を示す定 数である。 数 2式を積分すると数 3式が得られる。 [Equation 2] d [Cb (i)] d [Ca {t)]. T ^ r _, Here, Vm is a constant indicating the volume of G d-DTPA distribution pooled in the myocardium. Equation 3 is obtained by integrating Equation 2.
【数 3】  [Equation 3]
[ Cb ί = Vm [Ca ( ?)] + « i ^C (r ] T さらに数 3式の両辺を [ C a ( t ) ] で除することにより数 4式が得ら れる。 [Cb ί = Vm [Ca (?)] + «I ^ C (r) T Further, by dividing both sides of Equation 3 by [C a (t)], Equation 4 is obtained.
【数 4】
Figure imgf000014_0001
[Equation 4]
Figure imgf000014_0001
数 4式は数 5式のような一次方程式とみなすことができる。  Equation 4 can be regarded as a linear equation like Equation 5.
【数 5】  [Equation 5]
数 5式をグラフにプロッ トするとパトラックプロッ トが得られる。 ま たパトラックプロッ トの直線部分において最小二乗法による直線近似を 行うことで、 直線部分の傾き、 すなわち K iを得ることができる。 この 場合、 この は毛細血管から心筋領域の細胞外液への摂取割合を表す 定数であり、 心筋血流を反映するものと考えられる。 By plotting Equation 5 on a graph, a Patrac plot can be obtained. Also, by performing a straight line approximation by the least squares method on the straight line portion of the Patrac plot, the inclination of the straight line portion, ie, Ki can be obtained. In this case, this is a constant representing the rate of ingestion of extracellular fluid from the capillaries into the myocardial region, and is considered to reflect myocardial blood flow.
また、 Gated First-Pass MRI検査において左心室心筋領域の全スライ ス、 全セグメントについて上記のパトラックプロッ ト解析を行うために は膨大な処理が必要となる。 実際の臨床検査で使用するため、 パトラッ クプロッ ト解析を自動化する方法を発明した。  In addition, in Gated First-Pass MRI, enormous processing is required to perform the above-described Patrac plot analysis on all slices and all segments of the left ventricular myocardial region. He invented a method to automate the analysis of truck plots for use in actual clinical tests.
このパトラックプロッ ト解析には左心室内腔の時間一信号強度曲線 (入力曲線) および左心室心筋の時間一信号強度曲線 (出力曲線) を使 用する。 心筋血流を定量的に算出するためには入出力曲線から各組織の 信号 (バックグラウンド) を減算する必要があるため、 造影剤流入前の 画像より左心室内腔、 心筋領域の組織信号強度を算出し、 それぞれ各曲 線のバックグラウンドとして減算する。 The time-signal intensity curve of the left ventricle lumen (input curve) and the time-signal intensity curve of the left ventricular myocardium (output curve) were used for this Patrac plot analysis. Use. In order to quantitatively calculate myocardial blood flow, it is necessary to subtract the signal (background) of each tissue from the input / output curve, so the tissue signal intensity in the left ventricular cavity and myocardial region from the image before the inflow of the contrast agent Is calculated and subtracted as the background of each curve.
続いて、 入力曲線の微分係数が最大となる時相の 1つ前の時相を入力 曲線の立ち上がり時間とする。 そして、 出力曲線の微分係数が最大とな る時相までの間において、 造影剤による信号強度の増加がほぼ 0となる 最も遅い時相を出力曲線の立ち上がり時間とする。 各曲線の立ち上がり 時間以前の時相の信号強度は 0とする。  Subsequently, the time phase immediately before the time phase at which the differential coefficient of the input curve becomes maximum is set as the rise time of the input curve. Then, until the time when the differential coefficient of the output curve becomes maximum, the slowest time when the increase in the signal strength due to the contrast agent becomes almost 0 is set as the rise time of the output curve. The signal strength of the time phase before the rise time of each curve is 0.
このパトラックプロッ ト解析では入出力曲線より作成したパトラック プロッ 卜の直線部分のデータを用いて最小 2乗法による直線近似を行い、 得られた回帰直線の傾きから心筋血流 [ml/min/100g]を算出する。まずバ ックグラウンド減算後の入出力曲線を用いてパ卜ラックプロッ トを作成 する。 続いて直線近似範囲決定のためにパトラックプロッ トの最小値を 検出し、 検出された点の次の時相を近似開始点とする。 近似開始点を含 む 5点(5スキャン)を近似範囲とし、 直線近似を行うことにより心筋血 流を算出する。 出力曲線の立ち上がり時間決定処理により、 心筋の部位 によつて造影剤の流入開始時間が異なる場合を考慮したパトラックプロ ット解析の自動処理が可能である。  In this Patrac plot analysis, linear approximation by the least-squares method is performed using the data of the linear portion of the Patrac plot created from the input / output curve, and the slope of the obtained regression line is used to determine the myocardial blood flow [ml / min / 100g] is calculated. First, a track plot is created using the input / output curve after the background subtraction. Subsequently, the minimum value of the Patrac plot is detected to determine the straight-line approximation range, and the next phase after the detected point is set as the approximation start point. The myocardial blood flow is calculated by performing linear approximation using five points (five scans) including the approximation start point as the approximation range. The processing for determining the rise time of the output curve enables automatic processing of the Patrac plot analysis taking into account the case where the inflow start time of the contrast agent differs depending on the part of the myocardium.
次に、 複数スライスの高分解能 M R画像による左心室全体の心筋血流 と血流予備能を効果的に表示し、 さらに内膜側〜外膜側の血流比を重ね て描出する方法について説明する。 Gated First-Pass MRIデータ処理に より算出された全スライス、 全セグメントの心筋血流は極座標表示する ことにより 1枚の画像上に表示することができる。 心筋血流の極座標表 示法は左心室全体の心筋血流を 1度に評価できるだけでなく、 冠動脈と の対応が容易であるという利点を有する。  Next, a method to effectively display myocardial blood flow and blood flow reserve in the entire left ventricle using high-resolution MR images of multiple slices and to overlay and visualize the intimal to epicardial blood flow ratio I do. The myocardial blood flow of all slices and all segments calculated by Gated First-Pass MRI data processing can be displayed on one image by displaying it in polar coordinates. The polar coordinate display method of myocardial blood flow has the advantage that not only can the myocardial blood flow of the entire left ventricle be evaluated at one time, but also that it can be easily associated with coronary arteries.
心筋血流を極座標表示する方法は核医学検査で用いられているが、 M R Iは空間解像度が高いため核医学では困難であった内膜側と外膜側の 心筋血流の分離評価を行うことができる。 冠動脈狭窄に伴う心筋血流低 下は内膜側に強く生じるため、 内膜側と外膜側の心筋血流の比は虚血性 心疾患の病態診断上重要な情報となる。 また、 安静時および負荷時の心 筋血流を造影 M R Iから定量評価し、 両者の比を求めると心筋血流予備 能も定量的に算出される。 The method of displaying myocardial blood flow in polar coordinates is used in nuclear medicine examinations, but M Since RI has high spatial resolution, it can separate and evaluate myocardial blood flow on the intima and adventitia, which was difficult in nuclear medicine. Since the myocardial blood flow decrease accompanying coronary artery stenosis occurs strongly on the intima side, the ratio of the intima side to the adventitia side myocardial blood flow is important information for diagnosing the pathological condition of ischemic heart disease. In addition, the myocardial blood flow at rest and during loading is quantitatively evaluated by contrast-enhanced MRI, and the ratio between the two is calculated to calculate the myocardial blood flow reserve quantitatively.
今回発明者は、 心筋血流と心筋血流予備能の分布または、 心筋血流と 心筋内膜側血流 Z外膜側血流比の分布を定量的 ·総合的に表示する方法 を発明した。  The present inventors have invented a method for quantitatively and comprehensively displaying the distribution of myocardial blood flow and myocardial blood flow reserve, or the distribution of myocardial blood flow and myocardial intima side blood flow Z epicardial side blood flow ratio. .
各スライスの左心室内腔中央に設定した点を中心点として、 左心室心 筋領域を側壁が 0度となるように任意の角度 (例えば 1 0度ごと) に分 割し、 ノ トラック解析を行うことにより各セグメントにおける平均心筋 血流 (k l ) を算出する。 図 3に示すように、 各セグメントの心筋血流 値を側壁から分割した角度ごとに同心円状に心尖部を中心部、 心基部を 周辺部に配置した極座標マップ (polar map)を作成する。  Using the point set at the center of the left ventricular cavity of each slice as the center point, the left ventricular myocardial region is divided at an arbitrary angle (for example, every 10 degrees) so that the side wall becomes 0 degree, and the no-track analysis is performed. By doing so, the average myocardial blood flow (kl) in each segment is calculated. As shown in Fig. 3, a polar map is created in which the apex is located at the center and the base is located at the periphery in a concentric manner at each angle obtained by dividing the myocardial blood flow value of each segment from the side wall.
各セグメントにおける安静時心筋血流、 負荷時心筋血流と、 血流予備 能をカラースケールで表示することにより、 心筋血流と血流予備能を総 合的に表示できる。 さらに、 各セグメントにおける心筋内膜側血流 外 膜側血流比をカラースケールで表示することにより、 心筋内における血 流勾配を定量的に表示できる。  By displaying the myocardial perfusion at rest, myocardial perfusion at load, and perfusion reserve on a color scale in each segment, myocardial perfusion and perfusion reserve can be comprehensively displayed. In addition, by displaying the myocardial intimal blood flow and the epicardial blood flow ratio in each segment on a color scale, the blood flow gradient in the myocardium can be quantitatively displayed.
ぐ実施例 >  Examples>
心疾患患者 1 2名、 男性 8名、 女性 4名、 平均年齢 6 4 ± 9歳を対象 とした本発明に係る心筋血流の定量化方法を実施した。  The method of quantifying myocardial blood flow according to the present invention was performed on 12 heart disease patients, 8 males, 4 females, and an average age of 64 ± 9 years.
G d— D T P A(0.05mmol/kg)を 4ml/sec の速度でボーラス注入し、 G E社製 1.5T心臓用高速 M R装置 (Signa CV/i)および G E社製 E P I対 応心臓用フェーズドアレイコイルを用いて撮像した。 撮像パルスシーケ ンスにはハイブリッ ド E P I (TR=6〜7msec,TE=1.4msec,ET=4)を使用 し、 スライス厚 10mm、 スライスギャップ 2mm、 FOV33.9cmX 33.9cm, 収集マトリックスサイズ 128X128にて撮像を行った。 Gd—DTPA (0.05 mmol / kg) was injected at a rate of 4 ml / sec by bolus injection, and a GE 1.5T high-speed MR device for heart (Signa CV / i) and a GE EPI-compatible phased array coil for heart were used. And used for imaging. Hybrid EPI (TR = 6 to 7 msec, TE = 1.4 msec, ET = 4) is used for the imaging pulse sequence Then, images were taken with a slice thickness of 10 mm, a slice gap of 2 mm, FOV of 33.9 cm x 33.9 cm, and a collection matrix size of 128 x 128.
撮像中は呼吸停止下で R波をトリガーとした心電図同期 ( 2 R— R間 隔) を行い、 各スライスの経時的画像 3 0枚を撮像した。 負荷検査では 薬剤負荷としてジピリダモール 0.56mg/kgを静脈注射し、ハンドグリ ッ プ負荷を併用した。  During imaging, electrocardiogram synchronization (2R-R interval) triggered by R wave was performed under respiratory arrest, and 30 time-lapse images of each slice were captured. In the stress test, 0.56 mg / kg of dipyridamole was intravenously injected as a drug load, and hand grip load was also used.
安静時での検査の前に入力曲線の信号強度飽和補正のため、 安静、 負 荷検査時での使用量の 5分の 1投与量 (0.01mmol/kg: 以下 1 5投与 量)で検査を行った後、 安静時での検査を行い、 安静時の検査終了後 1 5 分より負荷検査を開始した。 収集および再構成された MR I画像は digital imaging and communications in medicine ( 下 D I COM) 形式で保存され、 CDを介してパーソナルコンピュータ (以下 P C) に 転达した。  Before the test at rest, the test was performed at 1/5 dose (0.01 mmol / kg: 15 doses below) of the amount used at rest and load test to correct the signal intensity saturation of the input curve. After performing the test, a resting test was performed, and a load test was started 15 minutes after the resting test was completed. The collected and reconstructed MRI images were stored in digital imaging and communications in medicine (DIICOM) format and transferred to a personal computer (PC) via CD.
MR Iデータ処理プログラムの構築には P Cを用いた。 オペレーティ ングシステム (以下 O S) には Turbolinux 8 Workstationを使用し、 プ ログラ ミ ング言語と して FORTRAN および C言語を使用した。 FORTRAN、 C言語コンパイラおよびリ ンカには、 GNU compiler collection (以下 GCC) version 2.95.3の中の g77、 gccをそれぞれ使 用した。 また処理プログラムの操作性向上のため graphical user interface (以下 GU I ) を基本としたプログラムを作成した。 GU I部 分のプログラム作成には G C Cと GIMP tool kit + (以下 GTK + ) version 1.2.10のライブラリおよび GIMP drawing kit (以下 GDK) の ライブラリを使用した。  PC was used to construct the MRI data processing program. Turbolinux 8 Workstation was used as the operating system (hereafter OS), and FORTRAN and C were used as programming languages. G77 and gcc in GNU compiler collection (hereinafter GCC) version 2.95.3 were used for FORTRAN, C language compiler and linker, respectively. To improve the operability of the processing program, a program based on a graphical user interface (GUI) was created. GCC and GIMP tool kit + (hereinafter GTK +) version 1.2.10 library and GIMP drawing kit (hereinafter GDK) library were used to create the program for the GU I part.
まず、 入力曲線の信号強度飽和補正について説明する。 G d— DT P A濃度がごく低濃度の領域 (0.7mmol/l 以下 : 図 9参照)では G d—DT PA濃度と信号強度はほぼ比例関係にあるが、 G d— DT P A濃度が高 くなるにつれてその間の比例関係が成立しなくなる。 ボーラス注入した G d— DT PAが比較的高濃度のまま通過する左心室内腔では信号強度 の飽和補正が必要となり、 あらかじめ最大信号強度においても比例関係 が成立している 1 Z5投与量での左心室内腔における時間一信号強度曲 線 (T S C) を用いて各検査の入力曲線の信号強度飽和補正を行った。 First, the correction of the signal intensity saturation of the input curve will be described. In the region where the G d—DT PA concentration is very low (0.7 mmol / l or less; see Fig. 9), the G d—DT PA concentration and the signal intensity are almost proportional, but the G d—DT PA concentration is high. As a result, the proportional relationship between them does not hold. Bolus injected Saturation correction of signal intensity is required in the left ventricular cavity where G d—DT PA passes at a relatively high concentration, and a proportional relationship is established in advance even at the maximum signal intensity. 1 Left ventricle at Z5 dose Signal intensity saturation correction of the input curves for each test was performed using the time-intensity signal curve (TSC) in the cavity.
G d— DT PA濃度と信号強度との関係を得るため、 5例について採 血した血液に Ommol/1から 6mmol/lまでの G d -DT P Aを混合した 1 1サンプルのファントムを作成した。ファントムを撮像することにより、 ハイブリッ ド型 E P Iシーケンスにおける G d— DT P A濃度と信号強 度との関係を求めた。 G d— DT P A濃度と信号強度との間に比例関係 が成立する 0.7mmol/lまでのデータを用いて直線近似を行い、 得られた 回帰直線を信号強度飽和補正関数とした。  In order to obtain a relationship between the Gd-DTPA concentration and the signal intensity, 11 samples of phantoms were prepared by mixing Gd-DTPA from Ommol / 1 to 6 mmol / L with blood collected from five cases. By imaging the phantom, the relationship between the Gd-DTPA concentration and the signal intensity in the hybrid EPI sequence was determined. Linear approximation was performed using data up to 0.7 mmol / l where a proportional relationship was established between the Gd-DTPA concentration and the signal intensity, and the obtained regression line was used as a signal intensity saturation correction function.
さらに実験値を第 5次多項式にて近似した。 1 / 5投与量での左心室 内腔の T S Cにおけるピークと入力曲線のピーク信号強度の比から、 入 力曲線のピークでの G d— DT PA濃度を算出した。 その後、 入力曲線 の信号強度を G d— DT P A濃度と信号強度の関係から G d -DT PA 濃度へと変換し、 信号強度飽和補正関数を用いて得られた濃度より補正 後の信号強度を算出した。  Furthermore, the experimental values were approximated by a fifth-order polynomial. The Gd-DTPA concentration at the peak of the input curve was calculated from the ratio of the peak in TSC of the lumen of the left ventricle at the 1/5 dose to the peak signal intensity of the input curve. Then, the signal intensity of the input curve is converted from the relationship between the Gd-DTPA concentration and the signal intensity to the Gd-DTPA concentration, and the corrected signal intensity is calculated from the concentration obtained using the signal intensity saturation correction function. Calculated.
次にコイルの信号検出感度不均一補正について説明する。 MR Iでの 信号検出感度は、 コイルからの距離に依存して異なるため、 左心室短軸 断層像ではコイルに近い前壁から中隔領域にかけて信号強度が高くなる。 心筋領域における組織の T 1値はほぼ均一であるため、 造影剤流入前の 心筋における各領域の信号強度を用いて検出感度不均一補正を行った。 まず造影剤流入前の画像において心筋領域に設定した RO I内の 5° 〜20° の範囲ごとの領域における平均信号強度を算出し、 各スライス の左心室短軸断層像における circumferential profile curveを作成した。 こ こ で信号の変動によ る影響を減少する ために、 得られた circumferential profile curve をフーリエ級数にて近似し、 近似曲線力、 2 Next, the correction of the non-uniform signal detection sensitivity of the coil will be described. Since the signal detection sensitivity in MRI differs depending on the distance from the coil, the signal intensity increases from the anterior wall near the coil to the septum in the left ventricular short-axis tomogram. Since the T1 value of the tissue in the myocardial region is almost uniform, the nonuniform detection sensitivity was corrected using the signal intensity of each region in the myocardium before the inflow of the contrast agent. First, in the image before contrast agent inflow, the average signal intensity in the region of 5 ° to 20 ° within the ROI set in the myocardial region is calculated, and a shallow profile curve is created for the left ventricular short-axis tomographic image of each slice did. Here, in order to reduce the influence of signal fluctuation, the obtained perimeter profile curve is approximated by Fourier series, and the approximate curve force, 2
17 ら心筋の各領域における信号強度を決定した。 次に数 6式で求められる 左心室心筋の平均信号強度 (Smy。) に対する各領域の相対感度を算出し、 その逆数を数 7式のように感度補正係数 (Cseg (angle, slise)) とし、 算出された各領域の 値に対して、 その領域に対応する感度補正係数 を乗ずることにより検出感度不均一補正を行った (数 8式)。 From 17 the signal intensity in each region of the myocardium was determined. Next, the relative sensitivity of each region to the average signal intensity (S my ) of the left ventricular myocardium calculated by Equation 6 is calculated, and the reciprocal is calculated as the sensitivity correction coefficient (C seg (angle, slise) ), The detection sensitivity non-uniformity was corrected by multiplying the calculated value of each area by the sensitivity correction coefficient corresponding to that area (Equation 8).
【数 6】 w 360  [Equation 6] w 360
。 二 ∑ ∑ U I ) 60: x «)  . 2 ∑ ∑ U I) 60: x «)
【数 7】 [Equation 7]
C seg {angle , slice ) -
Figure imgf000019_0001
C seg (angle, slice)-
Figure imgf000019_0001
【数 8】  [Equation 8]
Kcl ^ ngle,slici) = Kbl (a?igieyslice)x (angle, slice) ここで nは処理スライス数、 Sseg (angle, slise) は当該領域の平均 信号強度で、 Kb l (angle, slise) は感度補正前の 値、 および Kc l (angle, slise) は感度補正後の Kェ値である。 K cl ^ ngle, slici) = K bl (a? Igie y slice) x (angle, slice) where n is the number of processing slices, S seg (angle, slise) is the average signal strength of the area, and K bl ( angle, slise) is the value before sensitivity correction, and K cl (angle, slise) is the K value after sensitivity correction.
次に、 値算出方法について説明する。 図 4に示すように、 まず再 構成されたマトリックスサイズ 256X256の MR I画像の経時的左心室 短軸断層画像に対して、 左心室心筋を含む 64X64マトリ ックス領域を 抽出し、 さらに呼吸の影響による左心室の経時的な動きに対する補正を 手動で行った。 図 5にその経時的画像例を示す。 これは安静検査時にお ける 64X64マ ト リ ックス領域抽出後の左心室短軸断層像第 4スライス の経時的画像 (虚血が認められなかった 6 7歳、 女性) である。 各画像 の下に示した値は撮像開始からの経過時間 (秒) である。 ボーラス注入 された G d— D T P A造影剤が右心室を通過し、 左心内腔からさらに時 間が経過して左心室心筋領域に流入しているのが確認される。 Next, the value calculation method will be described. As shown in Fig. 4, first, a 64X64 matrix region including the left ventricular myocardium is extracted from the temporally reconstructed short-axis tomographic image of the left ventricle of the MRI image with the matrix size of 256x256, The correction for the movement of the left ventricle over time was manually performed. Figure 5 shows an example of the image over time. This is a time-lapse image of the fourth slice of the left ventricular short-axis tomogram (64-year-old female, without ischemia) after extraction of the 64X64 matrix area at the time of the rest examination. The value shown below each image is the elapsed time (seconds) from the start of imaging. Bolus injection It is confirmed that the obtained G d-DTPA contrast agent passes through the right ventricle and flows into the left ventricular myocardial region after a further time from the left heart lumen.
G d— D P T Aが心筋へ流入し、 左心室心筋の辺縁を確認できる画像 において左心室内腔および左心室心筋の辺縁に数点を設定し、 各点の間 を 3次スプライン関数を用いて補間することにより左心室内腔および左 心室心筋に関心領域 (以下 R O I ) を図 6に示すように設定した。 左心 室内腔に設定された R〇 Iから得られた T S Cをパトラックプロット解 析に用いる入力曲線とし、 また左心室心筋を 5 ° 〜2 0 ° の範囲ごとの 領域に区分した後、 各領域内から得られた T S Cを出力曲線とした。 実 際に得られた入力曲線および出力曲線を図 7に示す。  G d— DPTA flows into the myocardium and several points are set at the left ventricular lumen and the left ventricular myocardium in the image where the border of the left ventricular myocardium can be confirmed, and a cubic spline function is used between each point. A region of interest (hereinafter referred to as ROI) was set in the left ventricular cavity and left ventricular myocardium by interpolation as shown in Fig. 6. The TSC obtained from R〇I set in the left ventricular cavity was used as the input curve for Patrac plot analysis, and the left ventricular myocardium was divided into regions in the range of 5 ° to 20 °. The TSC obtained from the region was used as the output curve. Figure 7 shows the input and output curves actually obtained.
図示されるように、 得られた入力曲線 C a ( t ) と出力曲線 C b ( t ) からバックグラウンドを減算した後、 図 8に示すパトラックプロッ トを 作成し、 その直線部分について最小二乗法による近似直線からその勾配 を各スライス、 各領域について算出した。 ノ、。トラックプロ ッ トの直 線部分における直線性の評価のため、 得られた近似直線との相関係数を 算出した。 左心室心筋全体の 値の分布を視覚的に評価するために、 心臓核医学検査でよく用いられる極座標マップ表示法を用い、 K t値を パラメータとした極座標マップを作成した。 As shown in the figure, after subtracting the background from the obtained input curve C a (t) and output curve C b (t), a Patrick plot shown in Fig. 8 was created, and a minimum The gradient was calculated for each slice and each region from the approximate straight line by the multiplicative method. No ,. To evaluate the linearity of the linear portion of the track plot, a correlation coefficient with the obtained approximate straight line was calculated. In order to visually evaluate the distribution of values throughout the left ventricular myocardium, a polar map was created using the Kt value as a parameter, using the polar map display method often used in nuclear cardiology examinations.
次に、 冠動脈血流予備能の算出について説明する。 冠動脈血流予備能 (以下 C F R : coronary flow reserve) は安静時冠動脈血流と薬物負荷 後最大冠動脈血流の比から求められ、 冠動脈の機能的狭窄度を示す優れ た指標である。 非侵襲的な C F R計測は、 冠動脈狭窄病変の機能的狭窄 度の評価、 経皮経管的冠動脈形成術 (以下 P T C A)、 ステントなどによ るィンターべンショ ン後の再狭窄の評価、 冠動脈バイパスグラフト狭窄 の診断などへの応用が期待されている。 本実施例では M R Iから得られ た心筋パーフュージョンの指標である 値および数 9式により C F R を算出した。 【数 9】 ^ ― - stress Next, the calculation of the coronary artery blood flow reserve will be described. Coronary blood flow reserve (CFR) is obtained from the ratio of resting coronary blood flow to maximum coronary blood flow after drug loading, and is an excellent indicator of the degree of functional stenosis of coronary arteries. Non-invasive CFR measurement includes evaluation of functional stenosis of coronary stenosis lesions, percutaneous transluminal coronary angioplasty (PTCA), evaluation of restenosis after intervention with stents, coronary artery bypass It is expected to be applied to diagnosis of graft stenosis. In this example, the CFR was calculated from the value as an index of myocardial perfusion obtained from MRI and equation (9). [Equation 9] ^ ―-stress
ここで Kstressは負荷検査から得られた 値で、 Krestは安静時での検 查から得られた 値である。 また 値と同様に C F Rをパラメータと した極座標マップの作成を行った。 Here, K stress is the value obtained from the stress test, and K rest is the value obtained from the test at rest . Also, a polar coordinate map was created using CFR as a parameter in the same way as the values.
図 9に実験より得られた G d— D T P A濃度と信号強度の関係 ( 5例 の平均) を示す。 G d—D T P A濃度が 0.7mmol/lまでの領域において、 G d— D T P A濃度と信号強度はほぼ比例関係を示したが、 それ以上で は比例関係が成立しなかった。 また個々の 5例についても同様の結果が 得られた。 0.7mmol/l までのデータを用いて求めた回帰直線 (信号強度 飽和補正関数) は y=731.4x+164.7で、 その相関係数は 0.9978であった。 さ ら に実験値を第 5 次多項式で近似 した結果、 y=0.978x5- 17.38x4+122.1x3+447.2x2+983.4x+143.2が得られ、以後この 2つの関係 式を用いて入力曲線に対する飽和補正を行った。 Figure 9 shows the relationship between the Gd-DTPA concentration and the signal intensity obtained from the experiment (average of 5 cases). In the region where the Gd-DTPA concentration was up to 0.7 mmol / l, the Gd-DTPA concentration and the signal intensity showed an almost proportional relationship, but beyond that, the proportional relationship was not established. Similar results were obtained for each of the five cases. The regression line (signal intensity saturation correction function) calculated using data up to 0.7 mmol / l was y = 731.4x + 164.7, and the correlation coefficient was 0.9978. Results The experimental value was approximated by the fifth-order polynomial is found, y = 0.978x 5 - 17.38x 4 + 122.1x 3 + 447.2x 2 + 983.4x + 143.2 is obtained, with the subsequent two relations A saturation correction was performed on the input curve.
図 1 0に虚血が認められなかった症例における入力曲線の信号強度飽 和補正結果を示す。 飽和補正前の安静時における入力曲線では G d - D T P A濃度と信号強度間の非直線性の影響により ピーク信号強度が低く、 1 Z 5投与量で得られた T S Cを 5倍したものと形状が異なった。 飽和 補正後の入力曲線は 1 5投与量で得られた T S Cの形状とほぼ一致し ており、 信号強度の飽和補正効果が認められた。  FIG. 10 shows the result of correcting the signal intensity saturation of the input curve in a case where ischemia was not observed. In the input curve at rest before saturation correction, the peak signal intensity was low due to the nonlinearity between the Gd-DTPA concentration and the signal intensity, and the shape was 5 times the TSC obtained with the 1 Z 5 dose and the shape Different. The input curve after the saturation correction almost coincided with the TSC shape obtained at the 15 dose, and the effect of correcting the saturation of the signal intensity was recognized.
全 1 2症例の各スライス、 各領域のパトラックプロッ トの直線部分に おける回帰直線との相関係数の平均値および標準偏差は安静時検査 (n=1656)で 0.9962土 0.0108であり、負荷 B寺検查 (n=1656)で (ま 0.9971 +0.0041 であった。 また両検査含めた全体 (n=3312) での相関係数は 0.9967±0.0081であり、 高い直線性を示した。 図 1 1に虚血が認められなかった症例 (安静時) における検出感度不 均一補正前後の 値極座標マップおよび感度補正係数極座標マップを 示す。 検出コイルとの位置関係が図示されるようになるため検出感度不 均一補正前では前壁から中隔にかけて高い 値を示したが、 補正後で はより均一な 値極座標マップが得られた。 本例における補正前の左 心室心筋全体における 値の平均値および標準偏差は 0.018i0.007、変 動係数(以下 C V ) は 39.2%、補正後ではそれぞれ 0.016±0.002、 10.5% となった。虚血を認めない 4例についての C Vの平均および標準偏差は、 補正前では 34.6±9.0%、 補正後では 10.4±1.9%であった。 The average value and standard deviation of the correlation coefficient with the regression line in the linear part of the Patrac plot of each slice and region in all 12 cases were 0.9962 soil 0.0108 in the resting test (n = 1656). The correlation coefficient was 0.9971 +0.0041 for B-temple examination (n = 1656), and 0.9967 ± 0.0081 for the whole (n = 3312) including both tests, indicating high linearity. Figure 11 shows the value polar map and the sensitivity correction coefficient polar map before and after correction of nonuniformity in detection sensitivity in a case where no ischemia was observed (at rest). Since the positional relationship with the detection coil is shown in the figure, the value was high from the front wall to the septum before the correction of non-uniformity in detection sensitivity, but a more uniform polar coordinate map was obtained after the correction. In this example, the mean value and standard deviation of the values of the entire left ventricular myocardium before correction were 0.018i0.007, the coefficient of variation (CV) was 39.2%, and the values after correction were 0.016 ± 0.002 and 10.5%, respectively. The mean and standard deviation of the CVs for the four patients without ischemia were 34.6 ± 9.0% before correction and 10.4 ± 1.9% after correction.
図 1 2に右冠状動脈 (R C A ) 狭窄と診断された症例 ( 5 7歳、男性) の K丄値極座標マップおよび C F R極座標マップを示す。 K 値極座標マツ プにおいて安静時では局所的な 値低下は認められず、負荷時では側壁 力ら下壁にかけての領域に 値低下が認められ、 C F R極座標マップにお いても当該領域に C F Rの低下が認められた。この領域は R C Aの支配領 域とほぼ一致していた。  Figure 12 shows the K 丄 value polar map and the CFR polar map of a case (57-year-old, male) diagnosed with right coronary artery (RCA) stenosis. In the K-value polar map, no local decrease was observed at rest, and under load, a decrease was observed in the region from the side wall force to the lower wall.The CFR polar map also showed a decrease in CFR in that region. Was observed. This area was almost identical to the area controlled by RCA.
本法における G d— D T P Aの体内での動態モデルは、 仮定条件下で は最終的に数 5式で示され、 その場合パトラックプロットはグラフ上で 直線となる。 1 2症例の全スライス、 全領域において最低 5フレーム間 で直線部分を有し、 良好な直線近似結果 (相関係数 0.9967±0.0081) が 得られ、 前述した仮定が成立していると考えられる。  The kinetic model of G d—D TPA in the body in this method is finally expressed by Equation 5 under hypothetical conditions, in which case the Patrac plot is a straight line on the graph. All slices and all regions of 12 cases have a straight line portion in at least 5 frames, and good linear approximation results (correlation coefficient 0.9967 ± 0.0081) are obtained, and the above assumption is considered to hold.
1 / 5投与量検査時と安静時の検査は同じ条件下で行われており、 1 Z 5投与量時の左心室内腔における T S Cを 5倍したものと安静時での 入力曲線は、 本来ほぼ等しいと想定できる。 しかし、 実際に安静時の検 査で得られた入力曲線は信号強度と G d— D T P A濃度間の非直線性に より 1 5投与量時と形状が大きく異なり、 信号強度の飽和補正の必要 性が認められる。 図 1 0に示すごとく飽和補正を行うことにより安静時 の入力曲線は 1 5投与量時と形状がほぼ一致し、 本実施例による飽和 補正が有用であり、 より精度の高い K i値算出が可能となった。 The 1/5 dose test and resting test were performed under the same conditions, and the input curve at rest at 5 times the TSC in the left ventricular lumen at 1 Z5 dose was originally It can be assumed that they are almost equal. However, the shape of the input curve actually obtained during the resting test was significantly different from that at the time of the 15 dose due to the nonlinearity between the signal intensity and the Gd-DTPA concentration. Is recognized. By performing the saturation correction as shown in Fig. 10, the shape of the input curve at rest is almost the same as the shape at the time of the 15 dose, and the saturation according to the present embodiment is obtained. Correction is useful, and more accurate Ki value calculation has become possible.
M R Iでの信号検出感度は、コイルからの距離に依存して異なるため、 正確な 値算出には検出感度不均一補正が必要となる。 検出感度不均 一補正を行った結果、 図 1 1に示すごとく虚血が認められなかった症例 において、 より均一な 値極座標マップが得られ、 4例での平均 C V は 3 4 . 6 %から 1 0 . 4 %へと減少し、 本実施例の感度補正法の正当 性が認められ、 また高精度の 値算出には不可欠であると考えられる。  Since the signal detection sensitivity at the MRI differs depending on the distance from the coil, non-uniformity correction of the detection sensitivity is required for accurate value calculation. As a result of the detection sensitivity unevenness correction, a more uniform polar coordinate map was obtained in the case where ischemia was not observed as shown in Fig. 11, and the average CV in 4 cases was from 34.6%. This is reduced to 10.4%, which confirms the validity of the sensitivity correction method of this embodiment and is considered indispensable for high-precision value calculation.
Gated First-Pass MRIカゝら心筋の T S Cを求め、造影剤の First-Pass 時における心筋領域の T Sじより upslopeの最大傾斜を算出し、 心筋血 流動態の半定量的な評価が報告されている。 しかしながら、 図 1 3の表 に示すごとく虚血の認められない 4例において upslopeの最大傾斜を求 めた結果、 C Vの平均で 15.65%であり、 値の 8.52%に比して、 変 動が大きい。 また心筋領域における T S Cのピーク信号強度を心筋血流 動態の指標とした報告もなされているが、 値の変動が大きく、 positron emission tomography (以下 P E T ) を用いた測定結果との相関が低い ことが報告されている。 これらの心筋血流動態の半定量的な評価法では 造影剤のボーラス性低下の影響を直接受けるため、 その定量性や診断能 には限界があると考えられている。  Gated First-Pass MRI was used to calculate myocardial TSC, calculate the maximum slope of upslope from the TS volume of the myocardial region during the first-pass of the contrast agent, and reported a semi-quantitative evaluation of myocardial hemodynamics. I have. However, as shown in the table of Fig. 13, the maximum slope of upslope was determined in four cases in which ischemia was not observed.As a result, the average CV was 15.65%, and the fluctuation was smaller than the value of 8.52%. large. In addition, although it has been reported that the peak signal intensity of TSC in the myocardial region is used as an indicator of myocardial hemodynamics, the value fluctuates greatly and the correlation with the measurement results using positron emission tomography (PET) is low. It has been reported. These semi-quantitative methods for assessing myocardial hemodynamics are directly affected by the decrease in the bolus of the contrast agent, and their quantitative and diagnostic capabilities are considered to be limited.
一方、 本法は G d— D T P Aの体内における動態モデルを基本とした 解析であり、 最低 5点の値を用いた直線近似からその勾配 値を算出 しているため、 ボーラス性低下や信号強度の変動の影響を受けにく く、 他の指標を用いた心筋血流動態測定よりも高精度の心筋血流動態検査が 可能となる。  On the other hand, this method is an analysis based on a kinetic model of G d-DTPA in the body, and its gradient value is calculated from a linear approximation using at least five points. It is less affected by fluctuations, and enables a more accurate myocardial hemodynamic test than myocardial hemodynamic measurement using other indices.
虚血が認められなかった症例においては、 安静時および負荷時の K i 値極座標マップはほぼ均一となり、 また、 右冠状動脈狭窄の症例におけ る K i値極座標マップでは、狭窄血管の支配領域に K i値低下が認められ た。 他の症例においても、 所見と一致した 値の分布が得られ、 本法 を用いて得られた K i値が心筋血流動態を反映しているものと考えられ る。 In the case where ischemia was not observed, the K i value polar coordinate map at rest and during loading was almost uniform, and the K i value polar coordinate map in the case of right coronary artery stenosis showed that In addition, a decrease in the Ki value was observed. In other cases, a distribution of values consistent with the findings was obtained. It is considered that the Ki value obtained by using the method reflects myocardial hemodynamics.
C F Rは冠動脈の機能的狭窄度や心筋微小循環障害を示す優れた指標 であり、 その測定には冠動脈内ドプラ一フローワイヤや P E Tが必要で あった。 ドプラ一フローワイヤの冠動脈内挿入は侵襲的であり、 また P E Tは高価であるために利用できる施設が限られている。 しかし、 本法 で得られた心筋血流動態の指標である 値より算出した C F Rは狭窄 血管の支配領域に低下が認められ、 本法により算出された C F Rが冠動 脈狭窄を反映しており、 非侵襲的な C F R計測の可能性が示唆された。 全処理過程において呼吸による体動の補正および R〇 I設定を除き、 K t値をパラメータとした極座標マップの作成を自動化することが可能 である。 これにより 値極座標マップ作成のための処理時間の短縮お よび術者への負担が軽減した。 また本法は核医学検査と比較して高い空 間分解能を有し、 核医学検査で問題となる散乱線やガンマ線の減弱の影 響を受けず、 短時間でより精度の高い非侵襲的心筋血流動態検査が可能 である。 CFR is an excellent indicator of functional stenosis of the coronary artery and impaired myocardial microcirculation, and its measurement required intracoronary Doppler flowwire and PET. Insertion of Doppler flowwire into the coronary artery is invasive, and PET is expensive, so available facilities are limited. However, the CFR calculated from the index value of myocardial hemodynamics obtained by the present method showed a decrease in the area of control of stenotic vessels, and the CFR calculated by the present method reflected coronary artery stenosis. However, the possibility of noninvasive CFR measurement was suggested. Except for correction and R_〇 I set of body motion due to breathing in all process, it is possible to automate the creation of polar coordinate map in which the K t value as a parameter. This shortened the processing time for creating a polar coordinate map and reduced the burden on the operator. In addition, this method has a higher spatial resolution than nuclear medicine examinations, is not affected by attenuation of scattered rays and gamma rays, which is a problem in nuclear medicine examinations, and has a faster and more accurate noninvasive myocardium. Hemodynamic tests are possible.
以上、 本発明に係る心筋血流の定量化方法の一実施例について説明し たが、 本発明はこうした実施例に何ら限定されるものではなく、 本発明 の要旨を逸脱しない範囲において、 種々なる態様で実施できることは勿 論である。  As described above, one embodiment of the method for quantifying myocardial blood flow according to the present invention has been described.However, the present invention is not limited to such an embodiment, and various modifications may be made without departing from the gist of the present invention. Of course, it can be implemented in an embodiment.

Claims

請求の範囲 The scope of the claims
1 . T 1短縮効果を有する磁気共鳴造影剤を用いた心電図同期ファース トパス磁気共鳴イメージング (Gated First-Pass MRI) によって心筋血 流を定量化する方法において、 体動補正を行う手段と、 関心領域 (R O I ) の処理を設定する手段と、 前記磁気共鳴造影剤濃度の経時変化に対 応する信号強度から入力及び出力曲線を作成する手段と、 該入力曲線の 信号強度飽和補正を行う手段と、 該補正後の入力曲線と出力曲線から得 られるパトラックプロッ トの直線部分の傾き K iを求める手段と備えて いることを特徴とする心筋血流の定量化方法。 1. In a method of quantifying myocardial blood flow by Gated First-Pass MRI using a magnetic resonance contrast agent having a T1 shortening effect, a means for correcting body movement and a region of interest Means for setting (ROI) processing; means for creating input and output curves from signal intensities corresponding to temporal changes in the magnetic resonance contrast agent concentration; means for performing signal intensity saturation correction of the input curves; A method for quantifying myocardial blood flow, comprising: means for determining a slope K i of a linear part of a Patrac plot obtained from the corrected input curve and output curve.
2 . 前記磁気共鳴造影剤において、 血液中の信号強度を測定する場合に は、 造影剤濃度が希薄濃度の磁気共鳴造影剤を用い、 心筋組織中の信号 強度を測定する場合には普通濃度の磁気共鳴造影剤を用いることを特徴 とする請求項 1に記載の心筋血流の定量化方法。 2. When the signal intensity in blood is measured with the magnetic resonance contrast agent, a magnetic resonance contrast agent having a low concentration of the contrast agent is used, and when the signal intensity in myocardial tissue is measured, a normal concentration is used. 2. The method for quantifying myocardial blood flow according to claim 1, wherein a magnetic resonance contrast agent is used.
3 . 前記体動補正を行う手段が、 左心室と右心室の接合点を設定し、 該 接合点が定点となるように処理画像を移動することを特徴とする請求項 1又は 2に記載の心筋血流の定量化方法。 3. The method according to claim 1, wherein the means for performing body motion correction sets a junction between the left ventricle and the right ventricle, and moves the processed image so that the junction is a fixed point. Method for quantifying myocardial blood flow.
4 . 前記磁気共鳴造影剤濃度の経時変化に対応する入力曲線の信号強度 飽和補正を行う手段が、 予め造影剤濃度一信号強度の関係 (濃度信号曲 線) に係る定量線を作成し、 該曲線上で低濃度領域のデータを用いて最 小二乗法による回帰直線を求め、 該回帰直線を全濃度領域における造影 剤濃度一信号強度の関係 (信号強度飽和補正関数) とすることを特徴と する請求項 1から 3のいずれかに記載の心筋血流の定量化方法。 4. The means for performing the signal intensity saturation correction of the input curve corresponding to the time-dependent change of the magnetic resonance contrast agent concentration creates a quantitative line related to the relationship between the contrast agent concentration and the signal intensity (concentration signal curve) in advance. The method is characterized in that a regression line by the least-squares method is obtained on the curve using the data in the low-density region, and the regression line is defined as a relationship between the contrast agent concentration and the signal intensity in all the concentration regions (signal intensity saturation correction function). The method for quantifying myocardial blood flow according to any one of claims 1 to 3, wherein:
5 . 心筋の各セグメントにおいて前記 値を求め、 心尖部を中心に心 基部を周辺に配置し、 側壁から分割した角度毎に同心円状に該!^ェ値を 表示することを特徴とする請求項 1から 4のいずれかに記載の心筋血流 の定量化方法。 5. Obtain the above values for each segment of the myocardium, arrange the base of the heart around the apex, and concentrically form each angle divided from the side wall! The method for quantifying myocardial blood flow according to any one of claims 1 to 4, wherein the method further comprises displaying a ェ value.
6 . 更に、 左心室心筋および左心室内腔における信号検出感度不均一を 補正する手段を備えていることを特徴とする請求項 1から 5のいずれか に記載の心筋血流の定量化方法。 6. The method for quantifying myocardial blood flow according to any one of claims 1 to 5, further comprising means for correcting nonuniform signal detection sensitivity in the left ventricular myocardium and the left ventricle lumen.
PCT/JP2004/016192 2003-11-06 2004-10-25 Method of quantifying blood flow through heart muscle WO2005044104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-376921 2003-11-06
JP2003376921A JP4446049B2 (en) 2003-11-06 2003-11-06 Myocardial blood flow quantification device

Publications (1)

Publication Number Publication Date
WO2005044104A1 true WO2005044104A1 (en) 2005-05-19

Family

ID=34567122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016192 WO2005044104A1 (en) 2003-11-06 2004-10-25 Method of quantifying blood flow through heart muscle

Country Status (2)

Country Link
JP (1) JP4446049B2 (en)
WO (1) WO2005044104A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536914B (en) * 2008-03-19 2011-05-18 株式会社东芝 Image processing apparatus and x-ray computer tomography device
EP2886052A4 (en) * 2012-09-14 2016-04-20 Toshiba Kk Magnetic resonance imaging device
US10154797B2 (en) 2005-09-13 2018-12-18 Koninklijke Philips N.V. Multiple contrast agent injection for imaging
WO2019218076A1 (en) * 2018-05-17 2019-11-21 London Health Sciences Centre Research Inc. Dynamic angiographic imaging
CN115452929A (en) * 2022-09-30 2022-12-09 上海立迪生物技术股份有限公司 Imaging mass spectrum flow signal calibration method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449651B2 (en) * 2007-03-09 2014-03-19 株式会社東芝 X-ray CT apparatus and myocardial perfusion information generation system
JP5405046B2 (en) * 2007-06-28 2014-02-05 株式会社東芝 Image processing apparatus, image diagnostic apparatus, and image processing method
US10295638B2 (en) 2007-06-28 2019-05-21 Toshiba Medical Systems Corporation Image processing apparatus, image diagnostic apparatus and image processing method
JP4931746B2 (en) * 2007-09-14 2012-05-16 富士フイルムRiファーマ株式会社 Report creation program, recording medium, and report creation method
JP5358855B2 (en) * 2007-09-25 2013-12-04 富士フイルムRiファーマ株式会社 Apparatus and method for analyzing examination image by nuclear cardiology examination method
JP5361410B2 (en) 2009-01-22 2013-12-04 株式会社東芝 Image processing device
CN102860827B (en) 2009-09-18 2017-05-17 东芝医疗系统株式会社 MRI involving arterial spin labeling
US8315812B2 (en) * 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
JP5638324B2 (en) * 2010-09-09 2014-12-10 株式会社日立メディコ Magnetic resonance imaging apparatus and image correction method
CN102068269B (en) * 2011-01-21 2014-04-09 南京信息工程大学 Method for noninvasively and quantitatively measuring local blood flows of human organs
KR101501515B1 (en) * 2012-01-04 2015-03-11 삼성메디슨 주식회사 Diagnosis image apparatus and operating method thereof
JP5700712B2 (en) * 2013-03-26 2015-04-15 国立大学法人愛媛大学 Patrac analysis of 3D dynamic myocardial nuclear medicine image data
CN105848577B (en) * 2013-10-01 2019-11-05 皇家飞利浦有限公司 System and method for heart muscle perfusion Pathological hallmarks
JP7066526B2 (en) * 2018-05-30 2022-05-13 日本メジフィジックス株式会社 Signal processing programs, signal processing methods and signal processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116621A (en) * 1998-09-29 2000-04-25 Siemens Medical Syst Inc Apparatus for judging normal cardiac muscle tissue, damaged cardiac muscle tissue and infarcted cardiac muscle tissue in vivo by magnetic resonance imaging
WO2002065395A2 (en) * 2001-02-13 2002-08-22 Koninklijke Philips Electronics N.V. Analysis of successive data sets
JP2002306450A (en) * 2000-12-29 2002-10-22 Ge Medical Systems Global Technology Co Llc Method and system for improving detection of myocardial infarction by restraint of blood pool signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116621A (en) * 1998-09-29 2000-04-25 Siemens Medical Syst Inc Apparatus for judging normal cardiac muscle tissue, damaged cardiac muscle tissue and infarcted cardiac muscle tissue in vivo by magnetic resonance imaging
JP2002306450A (en) * 2000-12-29 2002-10-22 Ge Medical Systems Global Technology Co Llc Method and system for improving detection of myocardial infarction by restraint of blood pool signal
WO2002065395A2 (en) * 2001-02-13 2002-08-22 Koninklijke Philips Electronics N.V. Analysis of successive data sets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITAGAWA K. ET AL.: "Patlak-ho ni yoru shinkin perfusion MRI no teiryo kaiseki", NIPPON IGAKU HOSHASEN GAKKAI ZASSHI, vol. 63, no. 2, 25 February 2003 (2003-02-25), pages S151, XP002988126 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154797B2 (en) 2005-09-13 2018-12-18 Koninklijke Philips N.V. Multiple contrast agent injection for imaging
CN101536914B (en) * 2008-03-19 2011-05-18 株式会社东芝 Image processing apparatus and x-ray computer tomography device
EP2886052A4 (en) * 2012-09-14 2016-04-20 Toshiba Kk Magnetic resonance imaging device
US10368777B2 (en) 2012-09-14 2019-08-06 Toshiba Medical Systems Corporation Non-contrast dynamic MRI myocardial perfusion analysis and visualization
WO2019218076A1 (en) * 2018-05-17 2019-11-21 London Health Sciences Centre Research Inc. Dynamic angiographic imaging
JP2021522941A (en) * 2018-05-17 2021-09-02 ロンドン ヘルス サイエンシーズ センター リサーチ インコーポレイテッドLondon Health Sciences Centre Research Inc. Dynamic angiography imaging
JP7481264B2 (en) 2018-05-17 2024-05-10 ロンドン ヘルス サイエンシーズ センター リサーチ インコーポレイテッド Dynamic Angiographic Imaging
CN115452929A (en) * 2022-09-30 2022-12-09 上海立迪生物技术股份有限公司 Imaging mass spectrum flow signal calibration method
CN115452929B (en) * 2022-09-30 2023-04-21 上海立迪生物技术股份有限公司 Imaging mass spectrum flow type signal calibration method

Also Published As

Publication number Publication date
JP4446049B2 (en) 2010-04-07
JP2005137558A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4446049B2 (en) Myocardial blood flow quantification device
Hundley et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging
Utz et al. Cine MR determination of left ventricular ejection fraction
US9949650B2 (en) Fractional flow reserve estimation
Schmidt et al. Real-time three-dimensional echocardiography for measurement of left ventricular volumes
JP5659130B2 (en) System for evaluating tissue using global tissue characteristics of non-invasive imaging and determining global tissue characteristics of images
US20080119720A1 (en) Mri method for quantification of cerebral perfusion
EP2271257B1 (en) Imaging technique
US9232907B2 (en) System, method and computer-accessible medium for utilizing cardiac output to improve measurement of tracer input function in dynamic contrast-enhanced magnetic resonance imaging
US20180185519A1 (en) Assessment of coronary heart disease with carbon dioxide
Dewey et al. Myocardial viability: assessment with three-dimensional MR imaging in pigs and patients
Witschey et al. Real-time magnetic resonance imaging technique for determining left ventricle pressure-volume loops
JP2015519098A (en) Perfusion imaging
Choe et al. Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts
Sakuma et al. Fast magnetic resonance imaging of the heart
Liu et al. Ultrasound‐guided identification of cardiac imaging windows
Aquaro et al. Cardiac metabolism in a pig model of ischemia–reperfusion by cardiac magnetic resonance with hyperpolarized 13C-Pyruvate
Meßner et al. Pre-clinical functional magnetic resonance imaging part II: the heart
Blanken et al. Coronary flow assessment using accelerated 4D flow MRI with respiratory motion correction
Li et al. Myocardial perfusion imaging by cardiovascular magnetic resonance: research progress and current implementation
McCommis et al. Feasibility study of myocardial perfusion and oxygenation by noncontrast MRI: comparison with PET study in a canine model
Okur et al. Non-contrast-enhanced imaging of haemodialysis fistulas using quiescent-interval single-shot (QISS) MRA: a feasibility study
Prasad et al. The role of cardiovascular magnetic resonance in the evaluation of patients with heart failure
Patel et al. Role of perfusion at rest in the diagnosis of myocardial infarction using vasodilator stress cardiovascular magnetic resonance
Lee et al. Scientific basis and validation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase