WO2005040800A1 - Method for producing and using a new protein array, said protein array and the applications thereof - Google Patents

Method for producing and using a new protein array, said protein array and the applications thereof Download PDF

Info

Publication number
WO2005040800A1
WO2005040800A1 PCT/ES2004/070088 ES2004070088W WO2005040800A1 WO 2005040800 A1 WO2005040800 A1 WO 2005040800A1 ES 2004070088 W ES2004070088 W ES 2004070088W WO 2005040800 A1 WO2005040800 A1 WO 2005040800A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrays
array
protein
proteins
dehydration
Prior art date
Application number
PCT/ES2004/070088
Other languages
Spanish (es)
French (fr)
Other versions
WO2005040800B1 (en
Inventor
Fernando Martin Gordillo
José Luis CASTRILLO DIEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2005040800A1 publication Critical patent/WO2005040800A1/en
Publication of WO2005040800B1 publication Critical patent/WO2005040800B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures

Definitions

  • PROTEINS SUCH ARRAY OF PROTEINS AND ITS APPLICATIONS.
  • the invention has its most evident application in the area of biology and biomedical, being indicated as a procedure and array for the determination of protein-protein interactions and their expression patterns in the discovery of molecular mechanisms, validation of targets Therapeutics, drug validation, clinical validation and clinical diagnosis.
  • Protein arrays are frequently subjected to conditions that induce the denaturation of their components, mainly derived from dehydration and temperature. Hydration is very important to preserve the three-dimensional structure of proteins and their function, in fact they lose their activity in the absence of water (Dean, A. et al. Archives of Biochemistry and Biophysics (1999) 365, 289-298). Therefore, maintaining the structure of proteins in these conditions is crucial to preserve the characteristics of the array. Currently, these situations are avoided by short-term consumption or cold storage, which causes additional costs that make the product more expensive. Protein stability is the result of a balance between macromolecular interactions of protein functional groups and their interactions with the surrounding solvent. The addition of cosolvents to the medium can modify this balance favoring the native state of the proteins.
  • cosolvents are naturally present in various organisms that are subject to extreme conditions (dehydration, cold, high salt concentrations, etc.). Among them are sugars, polyalcohols, amino acids and certain salts. Two of them are trehalose and trimethylamine N-oxide. Trehalose disaccharide has been described as a good stabilizer of the structure and function of several macromolecules by virtue of its ability to form hydrogen bonds with membranes or its ability to modify the solvation layer of proteins, serving as a water substitute ( Sola-Penna, M. and and Meyer-Fernandez, J. Arch. Biochem. Biophys. (1998) 360, 10-14).
  • Trehalose has been described in patents as a stabilizer of dry protein reagents (WO-89/00693, Tills, D. et al., 1989), and dry forms of reagents with enzymatic activity (EP-192.320, Drake, RAL and Whiteley , SC, 1986). It has also been described as a protective agent for denaturation during drying of biological macromolecules (US-4,891,319, Roser, BJ, 1987).
  • Trimethylamine N-oxide is an osmolyte that also occurs in several species in nature and that functions as a chemical bucket inducing protein folding from its denatured state, or stabilizing the native state (Baskarov, I. and Bolen, DW JBiol Chem (1998) 279 (9), 4831-4834).
  • An object of the present invention is a method of manufacturing and using protein arrays and other types of arrays resistant to denaturation of its components by dehydration and / or temperature, based on the sequential use of specific solvents, trehalose and trimethylamine N-oxide (TMAO), respectively.
  • TMAO trimethylamine N-oxide
  • the array thus manufactured and its applications in the field of biology and biomedicine form part of the present invention.
  • the procedure can be used to protect the characteristics of protein and other arrays. types of arrays in environmental conditions without the need for short-term use or cold storage. This point lowers your storage and shipping costs and allows you to obtain higher quality products.
  • the present invention is based on the fact that the inventors have observed that the use of solvents, trehalose and TMAO, sequentially in the manufacture and use of protein arrays allows the conservation and subsequent renaturation of the proteins deposited in said array reaching a resistance level of 95% at limiting conditions such as dehydration and / or temperature.
  • an object of the present invention is a method of manufacturing and using, hereinafter method of the invention, protein arrays and other types of arrays resistant to denaturation of its components by dehydration and / or temperature, based on the sequential use of specific solvents and consisting of two parts: i) manufacturing process of said array that includes, at least, the dispensing of proteins in a buffer containing trehalose sugar at a concentration between 80 mM and 300 mM , preferably 80 mM (minimum sufficient concentration), and its subsequent dehydration; and ii) a method of using the array of i) which includes an incubation thereof with trimethylamine N-oxide (TMAO) at a concentration between 1 M and 2.5 M, preferably 1 M (minimum sufficient concentration), at the time prior to its use.
  • TMAO trimethylamine N-oxide
  • array refers to an ordered array of biological molecules of natural or artificial origin arranged on a support.
  • proteins as used in the present invention refers to any molecule that contains a polypeptide chain of natural or artificial origin, such as, for example, enzymes, hormones, structural proteins, antibodies or fragments thereof, receptors, peptides, peptide nucleic acids, etc.
  • other types of arrays refers to any type of array in whose composition proteins appear, for example, and without limiting the scope of the invention, cellular arrays, tissue arrays, arrays mixed cDNA / proteins and arrays of small molecules.
  • the term "method of manufacturing an array of proteins” refers to any of the different conventional methods of manufacturing arrays and which are referenced in the following documents by way of examples, without limiting the scope of the invention: MacBeath, G. and Schreiber, SL (2000) "Printing proteins as icroarrays for high-throughput function determination” Science 289, 1760-1763); and, Haab, BB et al. "Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions” (2001) Genome Biol. 2, 4.1-4.13. In general, existing technologies today are simple adaptations of those developed for cDNA arrays applications. No similar sequential treatment is collected in scientific articles known to date.
  • Trehalose has been used individually as a stabilizer in lyophilization and vacuum drying processes of restriction enzymes and various proteins. Both the mechanism and the stabilization procedure do not include in any case the use of this treatment proposed in the object of the invention.
  • a protein electrospray technique for the production of arrays is described. Trehalose is used as stabilizer in this process. The use of trehalose is used as a protein stabilizer to exclusively resist the electrospray process, not for the ultimate purpose of stabilizing the array under conditions of temperature dehydration.
  • the substrate is limited to plastic, when the supports on which the technology derived from our invention can be used range from nitrocellulose to glass.
  • EP-192,320 describes the storage of an enzymatic agent under stable conditions for an immunoassay. Trehalose is used optionally and, again, no further use of TMAO is mentioned. US Pat. No. 4,891,319 also makes no reference to the additional use of this compound that induces renaturation.
  • Another object of the present invention is an array manufactured by the method of the present invention point i) and in which the proteins are dispensed in a buffer containing trehalose sugar at a concentration between 80 mM and 300 M, preferably 80 mM (minimum concentration sufficient).
  • Another object of the present invention is the use of the method and the array of the present invention in the manufacture and application of protein arrays.
  • this method and these arrays it is possible to study, among others, protein-protein interactions (see Ge, Hui. "UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions ". 2000. Nucleic Acids Research. 28, No. 2) and expression patterns (see Fung et al.” Protein biochips for differential profiling ". 2001. Analytical Biotechnology, 12, 65-69). Its applications go through the determination of molecular mechanisms, validation of therapeutic targets, drug validation, clinical validation and clinical diagnosis.
  • EXAMPLE OF EMBODIMENT OF THE INVENTION The process of manufacturing and using stabilized protein arrays in a specific example is described below.
  • Ten rabbit polyclonal antibodies (anti-Bcl-2; anti-Bax-1; anti-Bag; anti-Caspase 3; anti-FAS; anti-FAS Ligand; anti-p53; and, anti-TRAIL) were selected which They were used as raw material in the construction of the pilot array. Equal volumes of antibodies were diluted with 160 mM PBS-trehalose (2x). Each sample was deposited in a microplate and microdispensed on a support.
  • the arrays are dehydrated 1 hour at 37 ° C and stored for two days at room temperature until used in an airtight container together with a desiccant (silica gel). Similarly, similar results have been obtained in experiments for samples preserved under the same conditions for periods of at least two months.
  • a protein extract was prepared from 10 7 cells with modified RIPA buffer (50 mM Sodium Borate; 1% NP-40; 0.5% Sodium Deoxycholate; 150 M NaCl; lmM EDTA; lmM PMSF; Aprotinin, Leupeptin and Pepstatinalmg / ml c / u; Na 3 VO 1 mM) of the U373MG cell line (derived from glioblastoma).
  • the array was incubated with 10 mg / ml of the biotinylated protein extract in blocking solution for 2 hours, washed with TBS-T, and incubated for half an hour with a streptavidin-peroxidase solution. The signals with ECL were revealed.
  • control arrays, arrays not subjected to dehydration, and other arrays subjected to dehydration were performed but without the treatment of trehalose or TMAO or without any of them ( Figure 1). The manufacture of them and their use were carried out under the same general conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention relates to a method for producing and using protein arrays and other types of arrays which are resistant to denaturalization of its components due to dehydration and/or temperature. The method is based in the sequential use of concrete solvents, trihalose and trimethylamine N-oxide (TMAO), respectively. The invention also relates to the array thus produced and its applications in the fields of biology and biomedicine. The method can be used to protect the characteristics of the protein arrays and other types of arrays under ambient conditions without requiring the use of short-term cold storage or cold preservation, which reduces storage and delivery costs and makes it possible to obtain better quality products.

Description

TITULOTITLE
PROCEDIMIENTO DE FABRICACIÓN Y USO DE UN NUEVO ARRAY DEPROCEDURE FOR MANUFACTURING AND USING A NEW ARRAY OF
PROTEÍNAS, DICHO ARRAY DE PROTEÍNAS Y SUS APLICACIONES.PROTEINS, SUCH ARRAY OF PROTEINS AND ITS APPLICATIONS.
SECTOR DE LA TÉCNICA: La invención tiene su aplicación más evidente en el área de biología y biomédica, estando indicado como procedimiento y array para la determinación de las interacciones proteína-proteína y sus patrones de expresión en el descubrimiento de mecanismos moleculares, validación de dianas terapéuticas, validación de drogas (drug screening), validación clínica y diagnóstico clínico.SECTOR OF THE TECHNIQUE: The invention has its most evident application in the area of biology and biomedical, being indicated as a procedure and array for the determination of protein-protein interactions and their expression patterns in the discovery of molecular mechanisms, validation of targets Therapeutics, drug validation, clinical validation and clinical diagnosis.
ESTADO DE LA TÉCNICA La identificación de las funciones y las estructuras de las proteínas codificadas por el genoma humano es uno de los grandes desafíos a los que ha de enfrentarse la biomedicina actual. Hasta hace relativamente poco tiempo, los análisis de proteínas se realizaban mediante técnicas como el western-blot que estudiaban individualmente cada una de ellas. Para llevar a cabo estos estudios a gran escala, se requieren nuevos métodos y tecnologías como los que ofrecen las matrices (en adelante "arrays"). Para ello, se depositan un gran número de diferentes proteínas en pequeñas cantidades en diversos soportes. Esta tecnología permite llevar a cabo diferentes experimentos en paralelo, con los que podremos comparar patrones de expresión o descubrir interacciones proteína- proteína. En principio, esta tecnología se desarrolló con éxito utilizando secuencias de DNA, aunque en la actualidad se está adaptando a diferentes moléculas, entre ellas, las proteínas. Mediante estos dispositivos es posible estudiar, entre otras, interacciones proteína-proteína y patrones de expresión. Sus aplicaciones pasan por la determinación de mecanismos moleculares, validación de dianas terapéuticas, validación de drogas (drug screening), validación clínica y diagnóstico clínico. Algunas patentes que describen micromatrices de proteínas son: US-6.197.599, US-6.475.808, US- 2002/0049152 (Nock, S. et al.) y US-2003/0003599. En ellas se describe la inmovilización química de proteínas y anticuerpos sobre soportes sin especificar mecanismos adicionales. Una de las dificultades que han de superar los arrays de proteínas para convertirse en una herramienta realmente útil es la desnaturalización de las proteínas que lo componen (Talapatra et al. Pharmacogenomics. (2001) 3 (4), 527-536;). Este hecho diferencial frente a los arrays de DNA deriva de la alta complejidad estructural de las proteínas, así como de su diversidad química. Los arrays de proteínas frecuentemente están sometidos a condiciones que inducen a la desnaturalización de sus componentes, derivada principalmente por la deshidratación y la temperatura. La hidratación es muy importante para conservar la estructura tridimensional de las proteínas y su función, de hecho pierden su actividad en ausencia de agua (Dean, A. et al. Archives of Biochemistry and Biophysics (1999) 365, 289-298). Por tanto, mantener la estructura de las proteínas en estas condiciones es crucial para conservar las características del array. Actualmente, se evitan estas situaciones mediante consumo a corto plazo o conservación en frío, lo que provoca gastos adicionales que encarecen el producto. La estabilidad de las proteínas es el resultado de un balance entre las interacciones macromoleculares de los grupos funcionales de la proteína y sus interacciones con el solvente que la rodea. La adición de cosolventes al medio puede modificar este balance favoreciendo el estado nativo de las proteínas. Algunos de estos cosolventes están presentes de forma natural en diversos organismos que están sometidos a condiciones extremas (deshidratación, frío, altas concentraciones salinas, etc.). Entre ellos destacan azúcares, pollialcoholes, aminoácidos y ciertas sales. Dos de ellos son la trehalosa y el N-óxido de trimetilamina. El disacárido trehalosa ha sido descrito como un buen estabilizador de la estructura y función de varias macromoléculas en virtud de su capacidad de formar puentes de hidrógeno con membranas o de su capacidad de modificar la capa de solvatación de las proteínas, sirviendo como sustituto del agua (Sola-Penna, M. y and Meyer-Fernandez, J. Arch. Biochem. Biophys. (1998) 360, 10-14). Este azúcar es especialmente efectivo en la protección de enzimas contra la deshidratación e inactivación térmica y es empleado con frecuencia en procesos de liofilización. La trehalosa ha sido descrita en patentes como un estabilizante de reactivos proteicos secos (WO-89/00693, Tills, D. et al., 1989), y formas secas de reactivos con actividad enzimática (EP-192.320, Drake, R.A.L. y Whiteley, S.C., 1986). Asimismo, se ha descrito como agente protector de la desnaturalización durante el secado de macromoléculas biológicas (US-4.891.319, Roser, B.J., 1987). Se ha observado en algunas ocasiones que, si bien la trehalosa ejerce un efecto protector durante la deshidratación, a veces no se recupera plenamente su conformación tridimensional de la proteína nativa tras la rehidratación (Miller, D.P. et al. Pharm Res (1998) 15 (8), 1215-21). El N-óxido de trimetilamina (TMAO) es un osmolito que también se presenta en varias especies en la naturaleza y que funciona como un chapetón químico induciendo el plegamiento de proteínas desde su estado desnaturalizado, o bien estabilizando el estado nativo (Baskarov, I. y Bolen, D.W. JBiol Chem (1998) 279(9), 4831 -4834). Ello se debe al aumento de la energía libre del estado desnaturalizado, desfavoreciendo la transición desde el estado nativo (Hill, C.M. JStructBiol. (2002) 139(l),13-26). En resumen, el actual inicio del desarrollo de arrays de proteínas y derivados está jugando un papel cada vez más relevante tanto en el descubrimiento de rutas moleculares biológicas como en el área del diagnóstico y terapéutica clínica mediante el análisis en paralelo de un alto número de proteínas. Sin embargo, estos instrumentos se encuentran con una serie de dificultades a superar inherentes a la complejidad y naturaleza química de las proteínas. Uno de estos problemas consiste en la labilidad de las mismas frente a condiciones de deshidratación y/o temperatura. Esta particularidad provoca la pérdida de las características intrínsecas de la proteína y la inutilización del array como herramienta de análisis y obliga a utilizar el producto en un muy breve plazo de tiempo o a conservarlo eή frío.STATE OF THE TECHNIQUE The identification of the functions and structures of proteins encoded by the human genome is one of the great challenges facing the current biomedicine. Until relatively recently, protein analyzes were performed using techniques such as western blotting that individually studied each of them. To carry out these studies on a large scale, new methods and technologies are required, such as those offered by matrices (hereinafter "arrays"). For this, a large number of different proteins are deposited in small quantities in various supports. This technology allows different experiments to be carried out in parallel, with which we can compare expression patterns or discover protein-protein interactions. In principle, this technology was successfully developed using DNA sequences, although it is currently adapting to different molecules, including proteins. Through these devices it is possible to study, among others, protein-protein interactions and expression patterns. Its applications go through the determination of molecular mechanisms, validation of therapeutic targets, drug validation, clinical validation and clinical diagnosis. Some patents describing protein microarrays are: US-6,197,599, US-6,475,808, US-2002/0049152 (Nock, S. et al.) And US-2003/0003599. They describe the chemical immobilization of proteins and antibodies on supports without specifying additional mechanisms. One of the difficulties that protein arrays have to overcome in order to become a really useful tool is the denaturation of the proteins that compose it (Talapatra et al. Pharmacogenomics. (2001) 3 (4), 527-536;). This differential fact against DNA arrays derives from the high structural complexity of proteins, as well as their chemical diversity. Protein arrays are frequently subjected to conditions that induce the denaturation of their components, mainly derived from dehydration and temperature. Hydration is very important to preserve the three-dimensional structure of proteins and their function, in fact they lose their activity in the absence of water (Dean, A. et al. Archives of Biochemistry and Biophysics (1999) 365, 289-298). Therefore, maintaining the structure of proteins in these conditions is crucial to preserve the characteristics of the array. Currently, these situations are avoided by short-term consumption or cold storage, which causes additional costs that make the product more expensive. Protein stability is the result of a balance between macromolecular interactions of protein functional groups and their interactions with the surrounding solvent. The addition of cosolvents to the medium can modify this balance favoring the native state of the proteins. Some of these cosolvents are naturally present in various organisms that are subject to extreme conditions (dehydration, cold, high salt concentrations, etc.). Among them are sugars, polyalcohols, amino acids and certain salts. Two of them are trehalose and trimethylamine N-oxide. Trehalose disaccharide has been described as a good stabilizer of the structure and function of several macromolecules by virtue of its ability to form hydrogen bonds with membranes or its ability to modify the solvation layer of proteins, serving as a water substitute ( Sola-Penna, M. and and Meyer-Fernandez, J. Arch. Biochem. Biophys. (1998) 360, 10-14). This sugar is especially effective in protecting enzymes against dehydration and thermal inactivation and is frequently used in lyophilization processes. Trehalose has been described in patents as a stabilizer of dry protein reagents (WO-89/00693, Tills, D. et al., 1989), and dry forms of reagents with enzymatic activity (EP-192.320, Drake, RAL and Whiteley , SC, 1986). It has also been described as a protective agent for denaturation during drying of biological macromolecules (US-4,891,319, Roser, BJ, 1987). It has been observed on some occasions that, although trehalose exerts a protective effect during dehydration, sometimes its three-dimensional conformation of the native protein is not fully recovered after rehydration (Miller, DP et al. Pharm Res (1998) 15 ( 8), 1215-21). Trimethylamine N-oxide (TMAO) is an osmolyte that also occurs in several species in nature and that functions as a chemical bucket inducing protein folding from its denatured state, or stabilizing the native state (Baskarov, I. and Bolen, DW JBiol Chem (1998) 279 (9), 4831-4834). This is due to the increase in the free energy of the denatured state, disfavoring the transition from the native state (Hill, CM JStructBiol. (2002) 139 (l), 13-26). In summary, the current start of the development of protein and derivative arrays is playing an increasingly important role both in the discovery of biological molecular pathways and in the area of clinical diagnosis and therapy through the parallel analysis of a high number of proteins. . However, these instruments encounter a series of difficulties to overcome inherent in the complexity and chemical nature of proteins. One of these problems consists in their lability against dehydration and / or temperature conditions. This particularity causes the loss of the intrinsic characteristics of the protein and the uselessness of the array as an analysis tool and forces the product to be used in a very short period of time or to keep it cold.
DESCRIPCIÓN DE LA INVENCIÓN Descripción breve Un objeto de la presente invención lo constituye un procedimiento de fabricación y uso de arrays de proteínas y de otros tipos de arrays resistentes a la desnaturalización de sus componentes por deshidratación y/o temperatura, basado en el uso secuencial de unos solventes concretos, la trehalosa y la trimetilamina N-óxido (TMAO), respectivamente. Igualmente, forma parte de la presente invención el array así fabricado y sus aplicaciones en el campo de la biología y biomedicina. El procedimiento puede emplearse en la protección de las características de los arrays de proteínas y otros tipos de arrays en condiciones ambientales sin necesidad de uso a corto plazo o de conservación en frío. Este punto disminuye sus costes de almacenaje y envío y permite la obtención de productos de mayor calidad.DESCRIPTION OF THE INVENTION Brief Description An object of the present invention is a method of manufacturing and using protein arrays and other types of arrays resistant to denaturation of its components by dehydration and / or temperature, based on the sequential use of specific solvents, trehalose and trimethylamine N-oxide (TMAO), respectively. Likewise, the array thus manufactured and its applications in the field of biology and biomedicine form part of the present invention. The procedure can be used to protect the characteristics of protein and other arrays. types of arrays in environmental conditions without the need for short-term use or cold storage. This point lowers your storage and shipping costs and allows you to obtain higher quality products.
Descripción detallada de la invención La presente invención se basa en que los inventores han observado que la utilización de los solventes, trehalosa y TMAO, de forma secuencial en la fabricación y uso de arrays de proteínas permite la conservación y posterior renaturalización de la proteínas depositadas en dicho array alcanzando un nivel de resistencia del 95% a condiciones limitantes como la deshidratación y/o temperatura. Así, un objeto de la presente invención lo constituye un procedimiento de fabricación y uso, en adelante procedimiento de la invención, de arrays de proteínas y de otros tipos de arrays resistentes a la desnaturalización de sus componentes por deshidratación y/o temperatura, basado en el uso secuencial de unos solventes concretos y que consta de dos partes: i) procedimiento de fabricación de dicho array que incluye, al menos, la dispensión de las proteínas en un tampón que contiene el azúcar trehalosa a una concentración entre 80 mM y 300 mM, preferentemente 80 mM (concentración mínima suficiente), y su posterior deshidratación; y ii) un procedimiento de uso del array de i) que incluye una incubación del mismo con trimetilamina N-óxido (TMAO) a una concentración entre 1 M y 2,5 M, preferentemente 1 M (concentración mínima suficiente), en los momentos previos a su utilización. El término "array" tal y como se utiliza en la presente invención se refiere a una matriz ordenada de moléculas biológicas de origen natural o artificial dispuestas sobre un soporte. El término "proteínas" tal como se utiliza en la presente invención se refiere a cualquier molécula que contenga una cadena polipéptidica de origen natural o artificial, como por ejemplo, enzimas, hormonas, proteínas estructurales, anticuerpos o fragmentos de ellos, receptores, péptidos, ácidos nucleicos peptídicos, etc. Tal como se utiliza en la presente invención el término "otros tipos de arrays" se refiere a cualquier tipo de array en cuya composición aparezcan proteínas, como por ejemplo, y sin limitar el alcance de la invención, arrays celulares, arrays de tejidos, arrays mixtos cDNA/proteínas y arrays de moléculas pequeñas. Tal como se utiliza en la presente invención el término "procedimiento de fabricación de un array de proteínas" se refiere a cualquiera de los distintos procedimientos convencionales de fabricación de arrays y que vienen referenciados en los siguientes documentos a título de ejemplos, sin limitar el alcance de la invención: MacBeath, G. y Schreiber, S.L (2000) "Printing proteins as icroarrays for high- throughput function determination" Science 289, 1760-1763); y, Haab, B.B. et al. "Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions" (2001) Genome Biol. 2, 4.1-4.13. En general, las tecnologías existentes en la actualidad son simples adaptaciones de las desarrolladas para las aplicaciones de arrays de cDNA. En los artículos científicos que se conocen hasta la fecha no se recoge ningún tratamiento secuencial similar. Se ha utilizado individualmente la trehalosa como estabilizante en procesos de liofϊlización y secado al vacío de enzimas de restricción y diversas proteínas. Tanto el mecanismo como el procedimiento de estabilización no recoge en ningún caso el uso de este tratamiento propuesto en el objeto de la invención. En el artículo de Moerman et al. (Anal. Chem. (2001) 73 (10), 2183-2189), se describe una técnica de electropulverización de proteínas para la producción de arrays. En el mismo se usa trehalosa como estabilizante en dicho proceso. El uso de trehalosa se emplea como estabilizante de la proteína para que resista exclusivamente el proceso de electropulverización, no con el fin último de estabilizar el array en condiciones de deshidratación temperatura. Asimismo, no emplea en ningún momento un tratamiento secuencial con trehalosa y trimetilamina N-óxido como el descrito en esta invención, básico para la correcta obtención de un array en perfectas condiciones para su uso. Existen también patentes relacionadas con la protección por trehalosa, entre las que destacan WO-89/00693 (Tills, D. et al, 1989), EP-192.320 (Drake, R.A.L. y Whiteley, S.C., 1986) y US-4.891.319 (Roser, B.J., 1987). En la primera de ellas se emplea trehalosa en el proceso de desecado de proteínas aplicadas sobre plástico. No se hace referencia a una renaturalización adicional con TMAO ni que se trate de un array. Además el sustrato se limita a plástico, cuando los soportes en los que se puede utilizar la tecnología derivada de nuestra invención van desde nitrocelulosa a vidrio. En la patente EP- 192.320 se describe el almacenamiento de un agente enzimático en condiciones estables para un inmunoensayo. La trehalosa se usa de forma opcional y, de nuevo, no se menciona el uso posterior de TMAO. La patente US -4.891.319 tampoco se hace referencia al uso adicional de este compuesto inductor de la renaturalización. Otro objeto de la presente invención lo constituye un array fabricado mediante el procedimiento de la presente invención punto i) y en el que las proteínas se encuentran dispensadas en un tampόn que contiene el azúcar trehalosa a una concentración entre 80 mM y 300 M, preferentemente 80 mM (concentración mínima suficiente). Finalmente, otro objeto de la presente invención lo constituye el uso del procedimiento y el array de la presente invención en la fabricación y aplicación de arrays de proteínas. A modo de ejemplo, y sin que se limite el alcance de la presente invención, mediante este procedimiento y estos arrays es posible estudiar, entre otras, interacciones proteína-proteína (ver Ge, Hui. "UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions". 2000. Nucleic Acids Research. 28, No. 2) y patrones de expresión (ver Fung et al. "Protein biochips for differential profiling". 2001. Analytical Biotechnology, 12, 65-69). Sus aplicaciones pasan por la determinación de mecanismos moleculares, validación de dianas terapéuticas, validación de drogas (drug screening), validación clínica y diagnóstico clínico. Algunas patentes que describen micromatrices de proteínas son: US-6.197.599, US-6.475.808, US-2002/0049152 (Nock, S. et al.) y US- 2003/0003599. La preservación de las características del array hasta el momento de su uso es de singular importancia para la industria, ya que al no ser necesarias condiciones especiales de conservación ayuda a reducir los costes de almacenaje y envío. Asimismo, el procedimiento y el array de la presente invención suponen una ventaja en este tipo de productos cuando están dirigidos especialmente al campo de la validación farmacéutica y el diagnóstico clínico, donde la calidad del producto es de vital importancia. BREVE DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURAS Figura 1. Experimento en el que un array de proteínas (anticuerpos) fue sometido a condiciones de deshidratación (1 hora a 37°C y conservación con desecante durante dos días en un frasco hermético).DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the fact that the inventors have observed that the use of solvents, trehalose and TMAO, sequentially in the manufacture and use of protein arrays allows the conservation and subsequent renaturation of the proteins deposited in said array reaching a resistance level of 95% at limiting conditions such as dehydration and / or temperature. Thus, an object of the present invention is a method of manufacturing and using, hereinafter method of the invention, protein arrays and other types of arrays resistant to denaturation of its components by dehydration and / or temperature, based on the sequential use of specific solvents and consisting of two parts: i) manufacturing process of said array that includes, at least, the dispensing of proteins in a buffer containing trehalose sugar at a concentration between 80 mM and 300 mM , preferably 80 mM (minimum sufficient concentration), and its subsequent dehydration; and ii) a method of using the array of i) which includes an incubation thereof with trimethylamine N-oxide (TMAO) at a concentration between 1 M and 2.5 M, preferably 1 M (minimum sufficient concentration), at the time prior to its use. The term "array" as used in the present invention refers to an ordered array of biological molecules of natural or artificial origin arranged on a support. The term "proteins" as used in the present invention refers to any molecule that contains a polypeptide chain of natural or artificial origin, such as, for example, enzymes, hormones, structural proteins, antibodies or fragments thereof, receptors, peptides, peptide nucleic acids, etc. As used in the present invention, the term "other types of arrays" refers to any type of array in whose composition proteins appear, for example, and without limiting the scope of the invention, cellular arrays, tissue arrays, arrays mixed cDNA / proteins and arrays of small molecules. As used in the present invention, the term "method of manufacturing an array of proteins" refers to any of the different conventional methods of manufacturing arrays and which are referenced in the following documents by way of examples, without limiting the scope of the invention: MacBeath, G. and Schreiber, SL (2000) "Printing proteins as icroarrays for high-throughput function determination" Science 289, 1760-1763); and, Haab, BB et al. "Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions" (2001) Genome Biol. 2, 4.1-4.13. In general, existing technologies today are simple adaptations of those developed for cDNA arrays applications. No similar sequential treatment is collected in scientific articles known to date. Trehalose has been used individually as a stabilizer in lyophilization and vacuum drying processes of restriction enzymes and various proteins. Both the mechanism and the stabilization procedure do not include in any case the use of this treatment proposed in the object of the invention. In the article by Moerman et al. (Anal. Chem. (2001) 73 (10), 2183-2189), a protein electrospray technique for the production of arrays is described. Trehalose is used as stabilizer in this process. The use of trehalose is used as a protein stabilizer to exclusively resist the electrospray process, not for the ultimate purpose of stabilizing the array under conditions of temperature dehydration. Likewise, it does not employ at any time a sequential treatment with trehalose and trimethylamine N-oxide as described in this invention, basic for the correct obtaining of an array in perfect conditions for its use. There are also patents related to trehalose protection, among which WO-89/00693 (Tills, D. et al, 1989), EP-192,320 (Drake, RAL and Whiteley, SC, 1986) and US-4,891,319 (Roser, BJ, 1987). In the first one, trehalose is used in the drying process of proteins applied on plastic. There is no reference to an additional renaturation with TMAO or that it is an array. In addition, the substrate is limited to plastic, when the supports on which the technology derived from our invention can be used range from nitrocellulose to glass. EP-192,320 describes the storage of an enzymatic agent under stable conditions for an immunoassay. Trehalose is used optionally and, again, no further use of TMAO is mentioned. US Pat. No. 4,891,319 also makes no reference to the additional use of this compound that induces renaturation. Another object of the present invention is an array manufactured by the method of the present invention point i) and in which the proteins are dispensed in a buffer containing trehalose sugar at a concentration between 80 mM and 300 M, preferably 80 mM (minimum concentration sufficient). Finally, another object of the present invention is the use of the method and the array of the present invention in the manufacture and application of protein arrays. By way of example, and without limiting the scope of the present invention, by this method and these arrays it is possible to study, among others, protein-protein interactions (see Ge, Hui. "UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions ". 2000. Nucleic Acids Research. 28, No. 2) and expression patterns (see Fung et al." Protein biochips for differential profiling ". 2001. Analytical Biotechnology, 12, 65-69). Its applications go through the determination of molecular mechanisms, validation of therapeutic targets, drug validation, clinical validation and clinical diagnosis. Some patents describing protein microarrays are: US-6,197,599, US-6,475,808, US-2002/0049152 (Nock, S. et al.) And US-2003/0003599. The preservation of the characteristics of the array until the moment of its use is of singular importance for the industry, since not being necessary special conditions of conservation helps to reduce the costs of storage and shipping. Likewise, the method and the array of the present invention represent an advantage in this type of products when they are especially directed to the field of pharmaceutical validation and clinical diagnosis, where the quality of the product is of vital importance. BRIEF DESCRIPTION OF THE CONTENT OF THE FIGURES Figure 1. Experiment in which an array of proteins (antibodies) was subjected to dehydration conditions (1 hour at 37 ° C and preservative with desiccant for two days in an airtight bottle).
Figura 2. Estudio de termoest bilidad que aporta este tratamiento, logrando recuperar la actividad de los anticuerpos anti-Bag, anti-Bax-1 y anti-FAS (1, 2, y 3; respectivamente) incluso tras soportar 3 horas a 37°C y 80°C. En el eje de abscisas se representan los resultados obtenidos para arrays no sometidos al tratamiento objeto de la invención (1) y sometidos al mismo (2).Figure 2. Thermostability study provided by this treatment, recovering the activity of anti-Bag, anti-Bax-1 and anti-FAS antibodies (1, 2, and 3; respectively) even after supporting 3 hours at 37 ° C and 80 ° C. In the abscissa axis, the results obtained for arrays not submitted to the treatment object of the invention (1) and submitted thereto (2) are represented.
EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN A continuación se describe el proceso de fabricación y utilización de los arrays de proteínas estabilizados en un ejemplo concreto. Se seleccionaron diez anticuerpos policlonales de conejo (anti-Bcl-2; anti-Bax-1; anti-Bag; anti-Caspasa 3; anti-FAS; anti-FAS Ligand; anti-p53; y, anti-TRAIL) distintos que fueron empleados como materia prima en la construcción del array piloto. Se diluyeron volúmenes iguales de anticuerpos con PBS-trehalosa 160 mM (2x). Cada muestra se depositó en una microplaca y se microdispensaron sobre un soporte. Los arrays son deshidratados 1 hora a 37°C y guardados durante dos días a temperatura ambiente hasta su uso en un recipiente hermético junto con un desecante (gel de sílice). Asimismo, resultados similares se han obtenido en experimentos para muestras conservadas en las mismas condiciones durante períodos de al menos dos meses. Por otra parte, se preparó un extracto proteico a partir de 107 células con tampón RIPA modificado (Borato Sódico 50 mM; NP-40 1%; Deoxicolato Sódico 0.5%; NaCl 150 M; EDTA lmM; PMSF lmM; Aprotinina, Leupeptina y Pepstatinalmg/ml c/u; Na3VO 1 mM) de la línea celular U373MG (derivada de glioblastoma). Se marcó 1 mi del mismo con 25 mi de biotincaproato-3 NHS (10 mg/ml) durante veinte minutos y se detuvo la reacción añadiendo 50 mi NHC1 e incubando quince minutos. Posteriormente, se purificó las proteínas marcadas mediante filtración en columna de Sephadex G-25, cuyo eluyente fue empleado en experimentos sucesivos. Previo al uso del array, éste se incubó durante toda la noche a temperatura ambiente con TBS conteniendo trimetilamina N-óxido 1 M. Tras el tratamiento, se lavó la membrana brevemente con TBS-T y se bloqueó durante 1 hora con leche descremada al 5% en el mismo tampón. Se incubó el array con 10 mg/ml del extracto proteico biotinilado en solución de bloqueo durante 2 horas, se lavó con TBS-T, y se incubó durante media hora con una solución de estreptavidina-peroxidasa. Se revelaron las señales con ECL. Igualmente, se realizaron arrays controles, arrays no sometidos a deshidratación, y otros arrays sometidos a deshidratación pero sin el tratamiento de trehalosa ni TMAO o sin alguno de ellos (Figura 1). La fabricación de los mismos y su uso se realizaron con las mismas condiciones generales. Se han realizado experimentos con distintas concentraciones de dichos solventes, que sugieren un rango de concentraciones que varía de 80 a 300 mM en el caso de trehalosa, y de 1 a 2,5 M en el caso de TMAO. Los resultados descritos en las figuras corresponden a 80 mM y 1M, respectivamente. Asimismo, el ensayo se realizó sobre diferentes soportes (nitrocelulosa, nylon, PNDF y vidrio), of eciendo los mejores resultados el uso de nitrocelulosa y vidrio. El empleo de este procedimiento secuencial permite obtener las proteínas del array en su estado conformacional nativo justo en el momento de su uso. Es necesario realizar ambos pasos secuenciales para la obtención y uso de un array en condiciones óptimas para su utilización. Así, se puede observar la caída de la señal obtenida en la muestra sin tratar, el aumento de sensibilidad derivado de una mayor estabilidad obtenido con este tratamiento (+Trehalosa+TMAO) (Figura 1). La adición de la trehalosa en el proceso de fabricación consigue preservar las proteínas, dotando al producto de termoestabilidad y resistencia a la deshidratación. De esta forma, el array así fabricado puede conservarse sin riesgo a temperatura ambiente y durante largos períodos de tiempo. Sin embargo, tras este primer tratamiento sólo se recupera alrededor del 50-70% del total de las proteínas depositadas (Figura 1). La incubación con trimetilamina Ν-óxido consigue inducir al plegamiento y renaturalización de las proteínas desnaturalizadas, obteniéndose arrays funcionales en un 90-95% (Figura 1). La Figura 2 muestra el aumento de termoestabilidad que ofrece el procedimiento objeto de la invención. Se produjeron dos arrays para cada experimento, uno de los cuales fue fabricado dispensando las muestras en trehalosa en las condiciones descritas anteriormente. Sin mediar deshidratación, fueron sometidos a distintas condiciones de temperatura (37°C y 80°C) durante tres horas. En la gráfica que representa los resultados obtenidos a 37°C se observa como las señales que se obtienen para los arrays sin tratar (1) como tratados (2) son similares, aunque ya se observan valores mayores en las muestras tratadas. A 80°C los arrays sin tratar (1) han perdido casi completamente su actividad, mientras que los arrays producidos y tratados mediante el proceso objeto de la invención conservan valores significativos de actividad. La realización del procedimiento de la invención puede llevarse a cabo tanto a partir de cultivos celulares como de tejidos y fluidos, variando simplemente el método de extracción. En el caso de tejidos (DeSeau N, et al. J Cell Biochem. 1987 Oct;35(2):l 13-28), es necesaria la homogenización previa del mismo, continuando con un protocolo similar al descrito. Para el análisis de fluidos debe dializarse las muestras y emplearse directamente sobre el array (Bergquist J, et al. Mass Spectrom Rev. 2002 Jan-Feb;21(l):2-15). EXAMPLE OF EMBODIMENT OF THE INVENTION The process of manufacturing and using stabilized protein arrays in a specific example is described below. Ten rabbit polyclonal antibodies (anti-Bcl-2; anti-Bax-1; anti-Bag; anti-Caspase 3; anti-FAS; anti-FAS Ligand; anti-p53; and, anti-TRAIL) were selected which They were used as raw material in the construction of the pilot array. Equal volumes of antibodies were diluted with 160 mM PBS-trehalose (2x). Each sample was deposited in a microplate and microdispensed on a support. The arrays are dehydrated 1 hour at 37 ° C and stored for two days at room temperature until used in an airtight container together with a desiccant (silica gel). Similarly, similar results have been obtained in experiments for samples preserved under the same conditions for periods of at least two months. On the other hand, a protein extract was prepared from 10 7 cells with modified RIPA buffer (50 mM Sodium Borate; 1% NP-40; 0.5% Sodium Deoxycholate; 150 M NaCl; lmM EDTA; lmM PMSF; Aprotinin, Leupeptin and Pepstatinalmg / ml c / u; Na 3 VO 1 mM) of the U373MG cell line (derived from glioblastoma). 1 ml of it was labeled with 25 ml of biotincaproate-3 NHS (10 mg / ml) for twenty minutes and the reaction was stopped by adding 50 ml NHC1 and incubating fifteen minutes. Subsequently, the labeled proteins were purified by column filtration of Sephadex G-25, whose eluent was used in successive experiments. Prior to using the array, it was incubated overnight at room temperature with TBS containing 1 M trimethylamine N-oxide. After treatment, it was washed the membrane briefly with TBS-T and was blocked for 1 hour with 5% skim milk in the same buffer. The array was incubated with 10 mg / ml of the biotinylated protein extract in blocking solution for 2 hours, washed with TBS-T, and incubated for half an hour with a streptavidin-peroxidase solution. The signals with ECL were revealed. Likewise, control arrays, arrays not subjected to dehydration, and other arrays subjected to dehydration were performed but without the treatment of trehalose or TMAO or without any of them (Figure 1). The manufacture of them and their use were carried out under the same general conditions. Experiments have been carried out with different concentrations of these solvents, which suggest a range of concentrations ranging from 80 to 300 mM in the case of trehalose, and from 1 to 2.5 M in the case of TMAO. The results described in the figures correspond to 80 mM and 1M, respectively. Likewise, the test was carried out on different supports (nitrocellulose, nylon, PNDF and glass), offering the best results the use of nitrocellulose and glass. The use of this sequential procedure allows the array proteins to be obtained in their native conformational state just at the time of use. It is necessary to perform both sequential steps to obtain and use an array in optimal conditions for its use. Thus, the fall of the signal obtained in the untreated sample, the increase in sensitivity derived from greater stability obtained with this treatment (+ Trehalose + TMAO) can be observed (Figure 1). The addition of trehalose in the manufacturing process manages to preserve the proteins, providing the product with thermostability and resistance to dehydration. In this way, the array thus manufactured can be safely stored at room temperature and for long periods of time. However, after this first treatment only about 50-70% of the total deposited proteins are recovered (Figure 1). The incubation with trimethylamine óxido-oxide manages to induce the folding and renaturation of the denatured proteins, obtaining functional arrays in 90-95% (Figure 1). Figure 2 shows the increase in thermostability offered by the process object of the invention. Two arrays were produced for each experiment, one of which was manufactured by dispensing the trehalose samples under the conditions described above. Without mediating dehydration, they were subjected to different conditions of temperature (37 ° C and 80 ° C) for three hours. The graph representing the results obtained at 37 ° C shows how the signals obtained for untreated arrays (1) as treated (2) are similar, although higher values are already observed in the treated samples. At 80 ° C the untreated arrays (1) have almost completely lost their activity, while the arrays produced and treated by the process object of the invention retain significant activity values. The realization of the process of the invention can be carried out both from cell cultures and from tissues and fluids, simply varying the extraction method. In the case of tissues (DeSeau N, et al. J Cell Biochem. 1987 Oct; 35 (2): 13-28), prior homogenization thereof is necessary, continuing with a protocol similar to that described. For fluid analysis, samples should be dialyzed and used directly on the array (Bergquist J, et al. Mass Spectrom Rev. 2002 Jan-Feb; 21 (l): 2-15).

Claims

REIVINDICACIONES
1.- Procedimiento de fabricación y uso de arrays de proteínas y de otros tipos de arrays resistentes a la desnaturalización de sus componentes por deshidratación y/o temperatura caracterizado por el uso secuencial de unos solventes concretos y que consta de dos partes: i) procedimiento de elaboración de dicho array que incluye, al menos, la dispensación de las proteínas en un tampón que contiene el azúcar trehalosa a una concentración entre 80 mM y mM, preferentemente 80 mM, y su posterior deshidratación; y ii) un procedimiento de uso del array de i) que incluye una incubación del mismo con trimetilamina N-óxido (TMAO) a una concentración entre 1M y 2,5 M, preferentemente 1 M, en los momentos previos a su utilización.1.- Procedure of manufacture and use of protein arrays and other types of arrays resistant to the denaturation of its components by dehydration and / or temperature characterized by the sequential use of specific solvents and consisting of two parts: i) procedure for preparing said array which includes, at least, the dispensing of proteins in a buffer containing trehalose sugar at a concentration between 80 mM and mM, preferably 80 mM, and subsequent dehydration; and ii) a method of using the array of i) that includes an incubation thereof with trimethylamine N-oxide (TMAO) at a concentration between 1M and 2.5M, preferably 1M, in the moments prior to its use.
2.- Ar ay de proteínas caracterizado porque es fabricado mediante el procedimiento según la reivindicación 1 i).2. Ar y of proteins characterized in that it is manufactured by the method according to claim 1 i).
3.- Uso del procedimiento según la reivindicación 1 y el array según la reivindicación 2 en la fabricación y aplicación de arrays de proteínas. 3. Use of the method according to claim 1 and the array according to claim 2 in the manufacture and application of protein arrays.
PCT/ES2004/070088 2003-10-23 2004-10-21 Method for producing and using a new protein array, said protein array and the applications thereof WO2005040800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200302464 2003-10-23
ES200302464 2003-10-23

Publications (2)

Publication Number Publication Date
WO2005040800A1 true WO2005040800A1 (en) 2005-05-06
WO2005040800B1 WO2005040800B1 (en) 2005-06-23

Family

ID=34507896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070088 WO2005040800A1 (en) 2003-10-23 2004-10-21 Method for producing and using a new protein array, said protein array and the applications thereof

Country Status (1)

Country Link
WO (1) WO2005040800A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000196A1 (en) * 1985-07-09 1987-01-15 Quadrant Bioresources Limited Protection of proteins and the like
US5827640A (en) * 1996-06-14 1998-10-27 Biostore New Zealand Limited Methods for the preservation of cells and tissues using trimethylamine oxide or betaine with raffinose or trehalose
US6475808B1 (en) * 1998-07-14 2002-11-05 Zyomyx, Incorporated Arrays of proteins and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000196A1 (en) * 1985-07-09 1987-01-15 Quadrant Bioresources Limited Protection of proteins and the like
US5827640A (en) * 1996-06-14 1998-10-27 Biostore New Zealand Limited Methods for the preservation of cells and tissues using trimethylamine oxide or betaine with raffinose or trehalose
US6475808B1 (en) * 1998-07-14 2002-11-05 Zyomyx, Incorporated Arrays of proteins and methods of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CELINSKI S.A. ET AL.: "Osmolyte effects on helix formation in peptides and the stability of coiled-coils", PROTEIN SCIENCE, vol. 11, 2002, pages 2048 - 2051 *

Also Published As

Publication number Publication date
WO2005040800B1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
Du et al. Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: implications for protein folding in physiological environments
AU2006347951B2 (en) Multilayer films, coatings and microcapsules comprising polypeptides
US7411038B2 (en) Artificial red blood cells
ES2668207T3 (en) Innovative discovery of therapeutic, diagnostic and antibody compositions related to fragments of methionyl-tRNA synthetases proteins
Sridhar et al. Thermal stabilization of biologics with photoresponsive hydrogels
WO2000014228A8 (en) Neutral amino acid transporter and gene thereof
Urbańczyk et al. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis
Lale et al. Development of lyophilization cycle and effect of excipients on the stability of catalase during lyophilization
Thess et al. Specific orientation and two-dimensional crystallization of the proteasome at metal-chelating lipid interfaces
US7550557B2 (en) Multilayer films, coatings, and microcapsules comprising polypeptides
ES2241609T3 (en) QUICK DEHYDRATION OF PROTEINS.
Peltier et al. Growth habit modification of ice crystals using antifreeze glycoprotein (AFGP) analogues
Yamasaki et al. 3ircular dichroism simulation shows a site-II-to-site-I displacement of human serum albumin-bound diclofenac by ibuprofen
Jourdan et al. A left‐handed α‐helix containing both L‐and D‐amino acids: The solution structure of the antimicrobial lipodepsipeptide tolaasin
Diana et al. Structural determinants of the unusual helix stability of a de novo engineered vascular endothelial growth factor (VEGF) mimicking peptide (2008) Chem
Chatterjee et al. Denaturant-induced equilibrium unfolding of concanavalin A is expressed by a three-state mechanism and provides an estimate of its protein stability
ES2322132T3 (en) STABILIZATION METHOD OF ALKALINE PHOSPHATASE.
WO2005040800A1 (en) Method for producing and using a new protein array, said protein array and the applications thereof
Adkins et al. Stoichiometry of Cyclin A− Cyclin-Dependent Kinase 2 Inhibition by p21Cip1/Waf1
Giuffrida et al. Bioprotection can be tuned with a proper protein/saccharide ratio: the case of solid amorphous matrices
Eniade et al. A general synthesis of structurally diverse building blocks for preparing analogues of C-linked antifreeze glycoproteins
Rezaei Behbehani et al. A thermodynamic study on the binding of PEG-stearic acid copolymer with lysozyme
Aisenbrey et al. Proton‐decoupled 15N and 31P solid‐state NMR investigations of the Pf3 coat protein in oriented phospholipid bilayers
Strzelczyk et al. Structural investigation of the interactions of biotinylruthenocene with avidin
AU2004325199B2 (en) Method for designing polypeptides for the nanofabrication of thin films, coatings and microcapsules by electrostatic layer-by-layer self assembly.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

B Later publication of amended claims

Effective date: 20050412

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase