WO2005040380A1 - Rodent immune response regulatory proteins - Google Patents

Rodent immune response regulatory proteins Download PDF

Info

Publication number
WO2005040380A1
WO2005040380A1 PCT/JP2004/016376 JP2004016376W WO2005040380A1 WO 2005040380 A1 WO2005040380 A1 WO 2005040380A1 JP 2004016376 W JP2004016376 W JP 2004016376W WO 2005040380 A1 WO2005040380 A1 WO 2005040380A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
immune response
seq
unk
gene
Prior art date
Application number
PCT/JP2004/016376
Other languages
French (fr)
Japanese (ja)
Inventor
Saburo Saito
Kinya Nagata
Kazuyuki Ogawa
Kunou Suzuki
Ryutaro Oba
Nobutake Akiyama
Original Assignee
Bml, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bml, Inc. filed Critical Bml, Inc.
Publication of WO2005040380A1 publication Critical patent/WO2005040380A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the invention of this application relates to a novel immune response regulatory gene and an immune response regulatory protein that regulate an immune response.
  • the W immune system plays an essential role in host defense. Activation of the immune system is regulated by a variety of trace proteins secreted between cells, intracellularly or extracellularly. Immune cells work through these molecules in host defense while maintaining homeostasis. On the other hand, disruption of the immune system not only causes serious infections, but also causes various diseases such as autoimmune diseases, allergies, immunodeficiency and cancer. Therefore, elucidation of trace protein substances that regulate immunity will not only contribute to the defense of the immune system in vivo, but will also be useful in overcoming various immune disorders.
  • Proteins involved in the regulation of the immune response include, for example, inuichi leukin 1-15, lipid A, phospholipase A2, endotoxin, staphylococcal enterotoxin B and other toxins, influenza I type, interferon type II , Tumor necrosis factor, transforming growth factor-J3 ("TGF- / 3"), lymphotoxin, migration inhibitor, granulocyte macrophage colony stimulating factor (CSF), monocyte macrophage CSF, granulocyte CSF, vascular epithelium Growth factors, angiotensin, transforming growth factor, heat shock protein, sugar group of blood group, Rh factor, fibroblast growth factor and the like are known.
  • the first invention is an isolated rodent gene, wherein the amino acid sequence of any of SEQ ID NO: 2 or 4 or one or more amino acid residues of SEQ ID NO: 2 or 4 is It is an immune response regulatory gene encoding an immune response regulatory protein having a sequence deleted, added or substituted with another amino acid residue.
  • cDNA synthesized from the transcript mRNA is a gene having the nucleotide sequence of SEQ ID NO: 1 or 3, respectively.
  • a second invention is a polynucleotide purified from the genomic DNA, mRNA, cDNA or their complementary sequence of the immune response regulatory gene of the first invention.
  • a third invention is an oligonucleotide probe that hybridizes under stringent conditions with the immune response regulator gene of the first invention or the purified polynucleotide of the second invention.
  • a fourth invention is a primer set for PCR-amplifying the immune response regulator gene of the first invention or the purified polynucleotide of the second invention.
  • a fifth invention is a recombinant vector having the purified polynucleotide of the second invention.
  • a sixth invention is a transformed cell obtained by the recombinant vector according to the fifth invention.
  • a seventh invention is a purified rodent protein, wherein the amino acid sequence of any one of SEQ ID NO: 2 or 4 or one or more amino acid residues in SEQ ID NO: 2 or 4 are deleted or added.
  • an immune response regulatory protein having a sequence substituted with another amino acid residue is a protein that is an expression product of the immune response regulating gene of the first invention or the polynucleotide of the second invention.
  • the eighth aspect is a purified or synthesized peptide comprising a part of the immune response regulating protein of the seventh aspect.
  • One embodiment of the peptide of the eighth invention is a peptide consisting of 10 or more consecutive amino acid sequences of amino acids 1-163 in SEQ ID NO: 2, or a continuous peptide of amino acids 1-162 in SEQ ID NO: 4.
  • the A ninth invention is an antibody that specifically recognizes the immune response control protein of the seventh invention.
  • the 10th invention is a cell or animal in which the immune response regulatory protein of the 7th invention is overexpressed.
  • the eleventh invention is a cell or animal in which the function of the immune response regulatory gene of the first invention is defective.
  • a twelfth invention is a method for producing an antibody against an arbitrary protein in a rodent, the method comprising administering an antigenic substance to the animal according to the tenth invention, and isolating the antibody from the animal. It is a method characterized by including a process.
  • polynucleotide refers to a phosphate ester of a nucleoside having a 3-N-glycosidic bond (ATP, GTP, CTP, UTP; or dATP, dGTP, dCTP, dTTP).
  • oligonucleotide refers to a molecule with 2-99 bonds.
  • Protein and “peptide” refer to a molecule composed of a plurality of amino acid residues linked together by amide bonds (peptide bonds) or unnatural residue linkages fc.
  • “deletion or addition of one or more amino acid residues or substitution with another amino acid residue” refers to a range in which the function of the immune response regulatory protein of the present invention is not practically changed. In the above, it means that 30% or less, preferably 20% or less, more preferably 10% or less of amino acid residues in the entire amino acid sequence are added, deleted or substituted.
  • Other terms and concepts in each invention of this application are defined in detail in the description of the embodiments of the invention and examples. Also, various techniques used to implement the present invention. The technique can be easily and reliably performed by those skilled in the art based on known literature and the like, except for the technique whose source is clearly indicated.
  • FIG. 1 is a graph showing the results of testing the effect of m-UNK on promoting B cell proliferation.
  • FIG. 2 is a graph showing the results of testing the effect of m-UNK on the immunization of mice with ovalbumin (OVA).
  • FIG. 3 shows the results of detection of the m-UNK protein by the eight-muster polyclonal antibody.
  • FIG. 4 is a graph showing the results of confirming the effect of m-UNK on the anti-sheep erythrocyte antibody production ability in mouse spleen cells.
  • the immune response regulator gene of the present invention is a genomic gene encoding a rodent immune response regulator protein (hereinafter sometimes referred to as “UNK:”).
  • UNK rodent immune response regulator protein
  • Target Contains a mouse gene encoding a mouse immune response regulatory protein having the amino acid sequence of SEQ ID NO: 2 (hereinafter sometimes referred to as “M-UNK”); and a rat immune response regulatory protein having the amino acid sequence of SEQ ID NO: 4. (Hereinafter sometimes referred to as “R-UNK:”).
  • M-UNK mouse gene encoding a mouse immune response regulatory protein having the amino acid sequence of SEQ ID NO: 2
  • R-UNK rat immune response regulatory protein having the amino acid sequence of SEQ ID NO: 4.
  • the cDNA of the M-UNK gene has the nucleotide sequence of SEQ ID NO: 1
  • the cDNA of the R-UNK gene has the nucleotide sequence of SEQ ID NO: 3.
  • the UNK gene can be isolated by screening using a mouse or rat genomic cDMA library using the oligonucleotide probes provided by this invention, respectively.
  • a partial sequence (15 bp or more) of the purified polynucleotide (eg, cDNA) provided by the present invention or its complementary sequence can be used. Screening with a probe can be performed under stringent end conditions that allow specific hybridization between the genomic DNA and the probe. Stringent conditions are defined by the salt concentration in the hybridization and washing steps, the concentration of organic solvents (such as formaldehyde), temperature conditions, and the like. For example, the conditions disclosed in U.S. Patent No. 6,100,037 can be employed.
  • the probe can be labeled by a radioisotope (RI) method or a non-RI method, but it is preferable to use a non-RI method.
  • RI radioisotope
  • non-RI method examples include a fluorescent labeling method, a biotin labeling method, and a chemiluminescent method, and it is preferable to use a fluorescent labeling method.
  • the fluorescent substance a substance capable of binding to the base moiety of the oligonucleotide can be appropriately selected and used.
  • the fluorescent substance examples include a cyanine dye (for example, Cy3 and Cy5 of the Cy DyeTM series), a monodamine 6G reagent, -N2-Acetylaminofluorene (AAF), AAIF (iodine derivative of AAF) and the like can be used.
  • a cyanine dye for example, Cy3 and Cy5 of the Cy DyeTM series
  • AAF -N2-Acetylaminofluorene
  • AAIF iodine derivative of AAF
  • the UNK gene can also be amplified by a PCR (Polymerase Chain Reaction) method using rat genomic DNA or mouse genomic DNA as a ⁇ type using the primer set provided by the present invention.
  • the primer set can be prepared by combining two or more of partial sequences (15 bp or more) selected from the purified polynucleotide (cDNA) provided by the present invention.
  • the upstream of the gene was determined by the RACE method using one primer on the fifth side of the cDNA. It is also possible to PCR amplify the downstream part of the gene by the RACE method using one primer on the three sides of the cDNA.
  • the following points can be pointed out as points to keep in mind when designing primers.
  • the size (number of bases) of the primer is 15-40 bases, preferably 15-30 bases, in view of satisfying the specific annealing with type I DNA. However, when performing LA (long and accurate) PCR, at least 30 bases are efficient. Avoid the complementary sequence between one primer or one pair (two) consisting of the sense strand (5 'end) and the antisense strand (3, end) so that they do not anneal to each other.
  • the GC content should be about 50% to ensure stable binding to type I DNA, so that GC-rich or AT-rich is not unevenly distributed in the primers. Since the annealing temperature depends on the melting temperature (Tm), primers with a Tm value of 55-65 and similarity to each other should be selected to obtain highly specific PCR products.
  • primer design it is also necessary to take care to adjust the final concentration of primer used in PCR to be about 0.1 to about l_iM.
  • commercially available software for primer design for example, OligoTM (manufactured by National Bioscience Inc. (USA)), GENETYX (manufactured by Softea Development Co., Ltd. (Japan)) and the like can also be used.
  • the full-length genomic gene obtained in this manner is usually used, for example, by PCR, NASBN (Nucleic acid sequence based amplification), TMA (transcription-mediated amplification), and SDA (Strand Displacement Amplification). It can also be amplified by a gene amplification method.
  • the UNK genomic gene can be used to prepare purified polynucleotides (DNA fragments and RNA fragments) from mRNA transcribed by this gene and cDNA synthesized from mRNA.
  • cDNA can be synthesized as type III using poly (A) + RNA extracted from rodent cells such as mouse and rat.
  • the rodent cells may be cells extracted from animals or cultured cells.
  • cDNA can be synthesized using a known method (Mol. Cell. Biol. 2, 167-170, 1982; J. Gene 25, 263-269, 1983; Gene, 150, 243-250, 1994).
  • the target cDNA can also be synthesized using the set of primers provided by the above-mentioned method and the RT-PCR method in which mRNA isolated from a rodent cell is type II.
  • the target cDNA can also be synthesized by synthesizing partial sequences using a DNA oligo synthesizer and joining them using enzymatic and subcloning techniques.
  • the cDNA prepared in this manner specifically has the nucleotide sequences of SEQ ID NOS: 1 and 3. These polynucleotides can be used for genetically engineered production of UNK proteins. These polynucleotides can also be used as genetic material (transgene) for overexpressing UNK protein in animals.
  • the UNK protein When the UNK protein is produced by genetic engineering or used as a transgene, it does not need to be the full length of SEQ ID NOS: 1 and 3, respectively.
  • at least the respective protein coding regions (CDS) constitute Polynucleotide sequence.
  • CDS protein coding regions
  • a sequence consisting of more than 60 consecutive nucleotides of the 1st to 489th nucleotides of SEQ ID NO: 1 or the first nucleotide of SEQ ID NO: 3 Oligonucleotides or polynucleotides each containing more than 60 consecutive 527 bases can also be used.
  • Such oligonucleotides or polynucleotides can be made, for example, by cleaving cDNA with an appropriate restriction enzyme, or can be prepared by literature (eg, Carruthers (1982) Cold Spring Harbor Symp. Quant. Biol. 47:41 1-418). ; Adams (1983) J. Am. Chem. Soc. 105: 661; Belousov (1997) Nucleic Acid Res. 25: 3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19: 373-380; Blommers ( 1994) Biochemistry 33: 7886--7896; Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol.
  • the recombination vector of the present invention is a cloning vector or an expression vector, and an appropriate one is used depending on the kind of the polynucleotide as the insert and the purpose of use.
  • expression vectors for in vitro transcription E. coli, Speech vectors suitable for prokaryotic cells such as bacteria, eukaryotic cells such as yeast cells, insect cells, and mammalian cells can also be used.
  • BAC Bacillerial Artificial Chromosome vector or cosmid vector
  • the transformed cell of the present invention for example, when a large amount of UNK protein is produced, prokaryotic cells such as Escherichia coli and Bacillus subtilis, and eukaryotic cells such as yeast, insect cells, and mammalian cells can be used. . These transformed cells can be prepared by introducing a recombinant vector into the cells by a known method such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method.
  • the UNK protein of the present invention can be isolated from a rodent organ or a cell line, a method for preparing a peptide by chemical synthesis based on the amino acid sequences of SEQ ID NOS: 2 and 4, or the purification provided by the present invention. It can be obtained by a method using a polynucleotide (cDNA or a translation region thereof) by recombinant DNA technology, but a method obtained by recombinant DNA technology is preferably used.
  • a protein can be expressed in vitro by preparing RNA from a vector having the above-mentioned polynucleotide by in vitro transcription and performing in vitro translation using this as a type III.
  • the polynucleotide is recombined into an appropriate expression vector by a known method, the polynucleotide is encoded in prokaryotic cells such as Escherichia coli and Bacillus subtilis, and eukaryotic cells such as yeast, insect cells, and mammalian cells. You can express a large amount of protein.
  • prokaryotic cells such as Escherichia coli and Bacillus subtilis
  • eukaryotic cells such as yeast, insect cells, and mammalian cells. You can express a large amount of protein.
  • the above-mentioned polynucleotide is inserted into a vector having an RNA polymerase promoter to prepare a recombinant vector.
  • the RNA polymerase promoter that can produce UNK protein in vitro when added to an in vitro translation system such as a heron reticulocyte lysate or a wheat germ extract containing RNA polymerase corresponding to T3, T7, and SP6 And the like.
  • examples of vectors containing these RNA polymerase promoters include pKAl, pCDM8, pT3 / T718, pT7 / 319, and pBluescriptll.
  • an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, a sunset and a mineral sequence that can be replicated in the microorganism, etc.
  • an expression vector is prepared by recombining the above-mentioned polynucleotide, a host cell is transformed with the expression vector, and the resulting transformant is cultured, whereby the protein encoded by the polynucleotide is obtained. Can be mass-produced in microorganisms.
  • a protein fragment containing an arbitrary region can also be obtained by adding a start codon and a stop codon before and after the arbitrary translation region and expressing it.
  • it can be expressed as a fusion protein with another protein.
  • expression vectors for Escherichia coli include a pUC system, a BluescriptII, pET expression system, and a PGEX expression system.
  • the polynucleotide When the UNK protein is produced by expressing DNA in a eukaryotic cell, the polynucleotide is converted into an eukaryotic expression vector having a promoter, a splicing region, a poly (A) addition site, and the like. If inserted and made into a recombinant vector and introduced into eukaryotic cells, UNK protein can be produced in eukaryotic cells.
  • expression vectors include pKAl, pCDM8, pSV3, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, and pYE82.
  • pIND / V5-His When pIND / V5-His, pFLAG-CMV-2, pEGFP-Nl, pEGFP-Cl, etc. are used as expression vectors, they can be expressed as fusion proteins with various tags such as His tag, FLAG tag, and GFP. I can come out.
  • eukaryotic cells monkey kidney cells COS-7, Chinese hamster ovary cells, cultured mammalian cells such as CHO, budding yeast, fission yeast, silkworm cells, African frog egg cells and the like are generally used. Any eukaryotic cell that can express it can be used.
  • known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used.
  • isolation and purification of the target protein from the culture can be performed by a combination of known separation procedures.
  • a denaturant such as urea or a surfactant, sonication, enzyme digestion, salting-out, solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, Examples thereof include ion exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography.
  • the recombinant UNK protein obtained by the above method includes a fusion protein with any other protein.
  • a fusion protein with glutathione-S-transferase (GST) recording color fluorescent protein (GFP) can be exemplified.
  • GST glutathione-S-transferase
  • the protein of the invention may be subjected to various modifications in cells after being translated. Therefore, modified proteins are also included in the scope of the protein of the present invention. Examples of such post-translational modifications include elimination of N-terminal methionine, N-terminal acetylation, addition of sugar chains, limited degradation by intracellular protease, mistrailization, isoprenylation, phosphorylation and the like.
  • the peptides of these inventions are peptide fragments consisting of a part of the UNK protein.
  • each UNK protein has an antigen recognition increasing activity on the C-terminal side.
  • M-UNK has an activity of increasing antigen recognition at amino acid residues 1-163 of SEQ ID NO: 2 and R-UNK has amino acid residues 1-162 of SEQ ID NO: 4 (FIG. 2). ). Therefore, peptides prepared from these regions can be used as a raw material for improving antigen recognition in animals, for example, by fusing antigens, and also used to induce tolerance in animals by overdose, etc. You can do it. These peptides can be prepared by cleaving the UNK protein with any restriction enzyme. Also, based on the amino acid sequence of SEQ ID NO: 2 or 4, Known peptide synthesis methods (Merrifield, RBJ Solid phase peptide synthesis I. The synthesis of tetrapeptide. J.
  • these peptides may be composed of a residue linkage other than a natural amide bond.
  • Residue linkages other than the natural amide bond include, for example, daltaraldehyde, N-hydroxysuccinimide ester, bifunctional maleimide, ⁇ , ⁇ , -dicyclohexylcarpoimide (DCC), or ⁇ , ⁇ , Examples include chemical bonding or coupling means such as -diisopropyl carpoimide (DIC).
  • the antibody of the present invention is the aforementioned purified rodent polyclonal antibody or monoclonal antibody. Specifically, it is an antibody prepared using each purified UNK protein or its partial peptide as an antigen.
  • the antibodies of the present invention include whole molecules capable of binding to the epitope of each UNK protein, Fab, F (ab ') 2 , Fv fragments, etc.
  • the antibody in the case of a polyclonal antibody, the antibody can be obtained from serum after immunizing an animal using the UNK protein or peptide as an antigen.
  • mice, rats, hamsters, egrets, goats, sheep, geese, geese, bush, dogs, cats, monkeys, birds, etc. are used.
  • the immunization of animals with antigenic peptides can be performed by known methods (for example, Shigeru Muramatsu, et al., Experimental Biology Lecture 14, Immunobiology, Maruzen Co., Ltd., 1985, Japanese Biochemical Society, Ed. Immune Biochemistry Research, Tokyo Chemical Dojin, 1986, The Japanese Biochemical Society, Ed., New Chemistry Laboratory 12, Molecular Immunology III, Antigen ⁇ antibody ⁇ complement, the method described in Tokyo Chemical Dojin, 1992, etc.).
  • immunization can be performed by injecting an antigenic peptide intraperitoneally or subcutaneously into a mammal. Further, the antigen peptide may be administered together with adipant.
  • Adjuvants include, for example, Freund's complete (or incomplete) adjuvant, Ribi adjuvant, pertussis vaccine, BCG, lipid A, ribosomes, aluminum hydroxide, silica, and the like.
  • a recombinant plasmid vector naked DNA, DNA peptide
  • a protein or polypeptide expressing the gene incorporated in the plasmid vector is used as an antigen for immunization.
  • An antiserum containing a polyclonal antibody can be prepared from blood collected from an immunized animal after breeding the animal for a predetermined period of time.
  • Monoclonal antibodies can be prepared using known monoclonal antibody production methods (“Monoclonal Antibodies”, by Kamei Nagamune and Hiroshi Terada, Hirokawa Shoten, 1990; “Monoclonal Antibody” James W. Godmg, third edition, Academic Press, 1996; Monoclonal Antibody Production Techniques and Applications, pp. 79-97, Marcel Dekker, Inc., New York, 1987, etc.).
  • the antibodies of the present invention also include those conjugated with various labels (enzymes, radioisotopes, fluorescent dyes, etc.). These antibodies can be used, for example, to detect the expression of the UNK gene, or to administer to experimental animals to neutralize endogenous UNK and create an experimental model of the above immune response.
  • This animal or cell is, for example, a method of injecting an UNK protein solution into an animal; a metal colloid and an UNK protein as described in Patent Document 1 A method of administering to an animal by binding to the animal; An active UNK gene (that is, a purified polynucleotide linked to a high-expression promoter, etc.) is administered to an animal according to a gene therapy method using a retrovirus vector or an adenovirus vector.
  • an active UNK gene that is, a purified polynucleotide linked to a high-expression promoter, etc.
  • Method for introduction Preparation using the calcium phosphate method, a method using ribosomes or erythrocyte ghosts, an electoral portation method, a method for introducing the UNK gene into cells by a microinjection method using a glass pipe, etc.
  • these animals and cells can be prepared according to a known transgenic animal preparation method (eg, ', Proc. Natl. Acad. Scl. USA 77; 7380-7384, 1980). That is, an activated UNK gene is introduced into a totipotent cell of a non-human animal (preferably a mouse or a lad), the cell is developed into an individual, and an individual having the somatic cell genome into which the UNK gene is integrated is used.
  • a non-human animal preferably a mouse or a lad
  • the method of gene transfer into totipotent cells is a physical injection (microinjection) method of foreign gene DNA. Is optimal.
  • the fertilized egg into which the gene has been injected is then transplanted into the fetal oviduct of the foster parent, and the animals that have developed and born are placed in foster parents and reared, and then DNA is extracted from a part of the body (tail tip, etc.).
  • DNA is extracted from a part of the body (tail tip, etc.).
  • the transgenic animal of the present invention includes a primary heterozygous animal, a homozygous animal obtained by crossing heterozygotes, their progeny, or their fetuses.
  • the eleventh invention is a cell or animal in which the function of the immune response regulatory gene of the first invention is defective. “Functional deficiency” in this case means, for example, that the UNK gene product, UNK protein, is not functioning normally in the immune response system. Therefore, the cells or animals of the eleventh invention are immunodeficient cells or immunodeficient animals in which the immune response is not functioning normally.
  • Such a cell or animal is a cell or animal that does not produce UNK protein due to the absence of the UNK gene coding region in the chromosomal genome.
  • one or more nucleotides in the coding region of the UNK gene are deleted, added, or substituted with other nucleotides (genetic mutation) so that they do not produce the UNK protein or have a mutant form.
  • Yet another embodiment is a cell or animal that does not express the UNK gene due to deletion or partial mutation of the expression control region of the UNK gene, and thus does not produce UNK protein.
  • a ribozyme that cleaves a sense strand, antisense strand, sense / antisense double strand (siRNA), RNAi, and UNK mRNA for a transcript (mRNA) from the UNK gene is expressed, and UNK is expressed from the mRNA.
  • Cells expressing the sense strand, antisense strand, sense 'antisense duplex (siRNA), and RNAi lipozyme can be prepared by introducing a DNA fragment encoding them into cells, but the UNK gene It is preferable to introduce a deletion mutation into the coding region and / or the expression control region of the UNK gene in order to ensure that the gene is defective.
  • a twelfth invention is a method for producing an antibody against an arbitrary protein in a rodent, comprising the steps of: administering an antigen to the animal of the tenth invention; and isolating the antibody from the animal. Is included.
  • an animal of the tenth invention for example, a method of administering an UNK protein to an animal or a method of introducing an UNK gene into an animal in accordance with a method of gene therapy
  • an animal Increase the activity of UNK protein and administer any antigenic substance to animals. Since the immune response of animals is activated by administration and high expression of UNK protein, antibodies can be efficiently produced.
  • an antibody is produced using a transgenic animal having an activated UNK gene in somatic cells. It is a method to accomplish. This animal overexpresses the UNK protein due to high expression of the introduced UNK gene, and has a high immune response ability, so that it efficiently produces antibodies.
  • the antibody is a polyclonal antibody or a monoclonal antibody, and can be prepared by the same procedure as the antibody of the ninth invention.
  • a cDNA prepared from mRNA extracted from mouse spleen was amplified by PCR as type III. .
  • the PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host Escherichia coli DH-5a FT (manufactured by Invitorgen).
  • the nucleotide sequence of the obtained clone was determined, and a clone in which an amplification error did not occur during the reverse transcription reaction and the PCR reaction was selected.
  • the resulting clone, m-UNK has a total length of 578 bp and an open reading frame of 489 bp.
  • ORF had a structure consisting of a 53 bp 3 ′ untranslated region (SEQ ID NO: 1).
  • the ORF encoded a protein consisting of 163 amino acid residues, and had a characteristic signal sequence of a secreted protein. (SEQ ID NO: 2).
  • the cDNA prepared from the mRNA extracted from the rat spleen was amplified by PCR as type III. .
  • the PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host E. coli DH-5a FT (manufactured by Invitorgen).
  • the nucleotide sequence of the obtained clone was determined, and a clone in which no amplification error occurred during the reverse transcription reaction and the PCR reaction was selected.
  • the obtained clone RUNK had a total length of 527 bp, and had a structure of an open reading frame (ORF) of 483 bp, a structure of 44 bp and 3 untranslated regions (SEQ ID NO: 3).
  • the ORF encoded a protein consisting of 162 amino acid residues, and had a characteristic signal sequence of a secreted protein. (SEQ ID NO: 4).
  • Example 3 The translation region was amplified by PCR using the m-UNK cDNA specified in Example 1 as type III.
  • PCR primer As a PCR primer, a 30-mer sense primer (SEQ ID NO: 9) to which a BamHI site was added and a 30-mer antisense primer (SEQ ID NO: 10) to which an Apal site was added were used.
  • the PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host Escherichia coli DH-5a FT (manufactured by Invitorgen).
  • KOD polymerase manufactured by Toyobo
  • the nucleotide sequence of the obtained clone was determined, and a clone having the desired structure was selected without generating amplification errors during the PCR reaction.
  • BamHI to Apal fragment was inserted between BamHI and Apal of pcDNA3.1-myc-his- (B) + and transformed into host Escherichia coli DH-5 o! FT (manufactured by Invitorgen). .
  • Example 4 The cDNA of m-UNK specified in Example 1 was digested with EcoRI and Notl in the multi-cloning site with restriction enzymes.After electrophoresis, the target band was cut out, and pcDNA3-A- ( After introduction between the EcoRI and Notl sites of (+), host Escherichia coli DH-5a FT (Invitrogen) was transformed. The nucleotide sequence was confirmed, and a clone having a structure capable of expressing m-UNK was selected by cytomegalovirus promoter. This clone was cultured in LB medium at 37 for 16 hours, and the expression plasmid DNA (m-UNK / pcDNA3- (A) +) was purified.
  • PCR was performed by PCR using a 45-mer sense primer (oligonucleotide of SEQ ID NO: 11) to which an Xbal site was added and an 18-mer antisense primer (oligonucleotide of SEQ ID NO: 12). Amplified.
  • the PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host E. coli DH-5a FT (manufactured by Invitorgen). The nucleotide sequence was confirmed, and a clone having the desired structure was selected.
  • This clone was cultured in LB medium at 37 for 16 hours, and the expression plasmid DNA was purified.
  • the cDNA fragment between the Xbal site and the Pmel site of this plasmid was digested with restriction enzymes, purified, and inserted between the Xbal site and the EcoRV site of an E. coli expression vector (PET30-A Novagen).
  • PT30-A Novagen E. coli expression vector
  • This plasmid was transformed into host E. coli BL21-Codon Plus (manufactured by Stratagene), cultured in SOB medium containing kanamycin, and the protein was induced by IPTG, and the expression of m-UNK protein was induced in the host. . 8 M urea after recovery of E. coli
  • the cells were suspended in a PBS buffer solution, freeze-thawed, and disrupted by ultrasonication. The supernatant was separated from the crushed liquid by centrifugation, the purified liquid containing c- urea purified by NTA-resin (Qiagen) was separated by gel filtration, and the fraction containing m-UNK protein was collected. Dialysis and centrifugation to remove insolubles.
  • the protein from which the obtained signal sequence was deleted was used as m-UNK-myc-his protein in the subsequent experiments.
  • Example 5 The expression plasmid DNA (m-UNK / pcDNA3- (A) +) obtained in Example 4 was injected into the muscle of an Armenian hamster for immunization, and two weeks later, the m-UN obtained in Example 4 was used. After immunization with the UNK-myc-his protein, and two weeks later, the expression plasmid DNA (m-UNK / pcDNA3- (A) +) was injected into the muscle for immunization. Two weeks after the final immunization, blood was collected from Hams by the usual method to purify the polyclonal antibody and to prepare a monoclonal antibody from spleen cells.
  • Example 6 Plasmid m-UNK / pcDNA3- (A) + was introduced into monkey kidney cells COS-7 by calcium phosphate method, and after 24 hours, the culture solution was changed to one containing no serum components. After culturing for 48 hours at 37, the cell supernatant and cells were collected separately, and the protein components were separated by SDS-PAGE, and then m-UNK was detected by Western blotting using a polyclonal antibody. It was confirmed that m-UNK was correctly expressed, processed, and released into the supernatant.
  • Example 7 Using the baculovirus expression plasmid pAC-GP67-B (manufactured by Invitrogen) as type III, the sense primer 1 (SEQ ID NO: 13) and the antisense primer 1 containing the sequence of m-UNK (SEQ ID NO: 14) PCR was performed to amplify the signal sequence of paculovirus.
  • Plasmid DNA (m-UNK / pcDNA3- (A) +) is a ⁇ type, which is a complementary strand of SEQ ID NO: 14 including a partial baculovirus signal sequence, and downstream of the cleavage site of the m-UNK signal sequence PCR was performed using a primer (SEQ ID NO: 15) containing the above sequence and an antisense primer (SEQ ID NO: 12) to amplify a partial cDNA of m-UNK.
  • PCR was performed using a sense primer (SEQ ID NO: 13) and an antisense primer (SEQ ID NO: 12) to obtain a baculovirus signal sequence.
  • Amplified DNA (SEQ ID NO: 15) fused with the sequence downstream of the cleavage point of the m-UNK and m-UNK signal sequences, blunted with KOD polymerase (manufactured by Toyobo), and inserted into the EcoRV site of pZero-2.0 Then, the host Escherichia coli DH-5 o! FT (Invitorgen) was transformed.
  • a clone having the desired structure was selected, and the plasmid was purified.
  • This plasmid was digested with Spel and Notl, and the obtained fragment was inserted between Spel and Notl of the Bacchus virus expression plasmid pAC-GP67-B and inserted into the host E. coli DH-50! FT (Invitorgen). Transformation was performed.
  • a clone having the desired structure was selected, and the plasmid was purified.
  • a recombinant baculovirus expressing the m-UNK protein was prepared according to the protocol of Pharmingen, the m-UNK protein was released into a protein-free medium, and the insect cells were collected. The protein is dissolved from the supernatant and cells by SDS, and Western blotting is performed to confirm that the m-UNK protein is expressed and released, and to electrophoretically confirm that the sugar chain is modified. confirmed.
  • Example 8 B cells were fractionated from a spleen cell of BAJLB / c mouse using a column, and m-UNK protein When cultured in the presence of quality, as compared to the absence and c growth was observed in the dominant B cell, LPS non-responder mice in which C3H / similar proliferative activity in B cells from HeJ The results showed that this reaction was not due to LPS but was induced by H1-UNK protein (FIG. 1).
  • Example 9 To examine the effect of m-UNK protein on the immune response, BALB / c mice were intraperitoneally administered with ovalbumin (OVA) alone or a mixture of OVA and m-UNK protein. Two weeks after the administration, the serum antibody titer to OVA of each mouse was measured, and a significant increase in the serum antibody titer to OVA was observed in the group administered with the mixture of OVA and m-UNK protein compared to the group administered with OVA alone. ( Figure 2).
  • OVA ovalbumin
  • Example 10 Mouse spleen cells and sheep erythrocytes were cultured in the presence and absence of m-UNK for 4 days, and antibody production against sheep erythrocytes was analyzed by measuring the number of hemolytic plaque forming cells (PFCs) See “Selected Methods in cellular Immunology", edited by Barbara B. Mishell and Stanley M. Shiigi, 1980, WH Freeman and Company, p. 86-89).
  • PFCs hemolytic plaque forming cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

It is intended to provide a rodent immune response regulatory protein having an amino acid sequence represented by SEQ ID NO:2 or 4; an immune response regulatory gene encoding this protein; and a method of constructing an arbitrary antibody in a rodent with the use of the same. By immunizing an experimental animal with the above-described protein and a fused protein thereof, immunization can be effectively performed and various polyclonal and monoclonal antibodies can be conveniently obtained. Since immunization can be efficiently carried out in experimental animals, model mice of immunopathy such as auto immune diseases can be efficiently constructed.

Description

明細書 げっ歯類動物の免疫応答調節蛋白質  Description: Immune response regulatory proteins in rodents
技術分野 この出願の発明は、 免疫応答を調節する新規な免疫応答調節遺伝子と免疫応答 調節蛋白質に関するものでる。 TECHNICAL FIELD The invention of this application relates to a novel immune response regulatory gene and an immune response regulatory protein that regulate an immune response.
W景技 W了 免疫システムは、 生体防御に必須の役割を担っている。 免疫システムの活性化 は、 細胞間、 細胞内あるいは細胞外に分泌される多彩な微量蛋白物質によって調 節されている。 免疫細胞は、 これらの分子を介して恒常性を保ちながら生体防御 に働いている。 一方、 免疫システムの破綻は、 重篤な感染症を引き起こすばかり でなく、 自己免疫疾患、 アレルギー、 免疫不全や癌などさまざまな疾患を引き起 こす。 したがって、 免疫を調節する微量蛋白物質の解明は、 免疫システムの生体 防御に寄与するばかりでなく、 さまざまな免疫異常疾患の克服に有用となる。 免疫応答の調節に関与する蛋白質としては、 例えば、 ィン夕一ロイキン 1〜 15、 リピド A、 ホスホリパーゼ A2、 エンド毒素、 ブドウ球菌ェンテロトキシン Bおよび他の毒素、 I型イン夕一フエロン、 II型インターフェロン、 腫瘍壊死因 子、 トランスフォーミング増殖因子 - J3 ( 「TGF— /3」 ) 、 リンホ毒素、 遊走阻 止因子、 顆粒球マクロファージコロニー刺激因子 (CSF) 、 単球マクロファージ CSF、 顆粒球 CSF、 血管上皮増殖因子、 アンギオテンシン、 トランスフォーミ ング増殖因子、 熱ショックタンパク質、 血液型の糖鎖部分、 Rh 因子、 線維芽細 胞増殖因子等が知られている。 また、 これらの免疫応答調節物質を金属コロイド等と結合させた標識化送達系 と、 これを用いた免疫応答増強方法おょぴモノクローナル抗体の産生方法が提案 されている (特表 2002-503639号公報) 。 The W immune system plays an essential role in host defense. Activation of the immune system is regulated by a variety of trace proteins secreted between cells, intracellularly or extracellularly. Immune cells work through these molecules in host defense while maintaining homeostasis. On the other hand, disruption of the immune system not only causes serious infections, but also causes various diseases such as autoimmune diseases, allergies, immunodeficiency and cancer. Therefore, elucidation of trace protein substances that regulate immunity will not only contribute to the defense of the immune system in vivo, but will also be useful in overcoming various immune disorders. Proteins involved in the regulation of the immune response include, for example, inuichi leukin 1-15, lipid A, phospholipase A2, endotoxin, staphylococcal enterotoxin B and other toxins, influenza I type, interferon type II , Tumor necrosis factor, transforming growth factor-J3 ("TGF- / 3"), lymphotoxin, migration inhibitor, granulocyte macrophage colony stimulating factor (CSF), monocyte macrophage CSF, granulocyte CSF, vascular epithelium Growth factors, angiotensin, transforming growth factor, heat shock protein, sugar group of blood group, Rh factor, fibroblast growth factor and the like are known. In addition, a labeled delivery system in which these immune response modifiers are bound to a metal colloid or the like, and a method for enhancing an immune response and a method for producing a monoclonal antibody using the same have been proposed (Japanese Patent Application Publication No. 2002-503639). Gazette).
発明の開示 免疫応答を制御する微量蛋白質は発癌および免疫異常に関連した低分子医薬品 を開発するためのターゲット蛋白質としての可能性を秘めており、 出来るだけ多 くの免疫関連蛋白質を得ることが望まれている。 また、 免疫応答の促進機能に優れた蛋白質は、 動物体内での有用抗体の作成に 有用である。 さらには、 その蛋白質の過剰発現または機能欠損動物は、 様々な疾 患モデル動物として治療法の確立および医薬品の開発に大きく寄与することが期 待される。 この出願の発明は、 以上のとおりの事情に鑑みてなされたものであって、 げっ 歯類動物の新規な免疫応答調節蛋白質とその遺伝子、 ならびにそれらを利用した 発明を提供することを課題としている。 この出願は、 前記の課題を解決するものとして、 以下の発明を提供する。 すなわち、 第 1 の発明は、 げっ歯類の単離遺伝子であって、 配列番号 2 また は 4のいずれかのアミノ酸配列、 または配列番号 2または 4における 1若しく は複数個のアミノ酸残基が欠失、 付加または他のアミノ酸残基に置換した配列を 有する免疫応答調節蛋白質をコードする免疫応答調節遺伝子である。 この第 1発明の免疫応答調節遺伝子の一態様は、 転写産物 mRNAから合成さ れる cDNAが、 それぞれ配列番号 1 または 3の塩基配列を有する遺伝子である, 第 2の発明は、 前記第 1発明の免疫応答調節遺伝子のゲノム DNA、 mRNA, cDNAまたはそれらの相補配列から精製されたポリヌクレオチドである。 第 3の発明は、 前記第 1発明の免疫応答調節遺伝子または第 2発明の精製ポ リヌクレオヂドとストリンジェントな条件下でハイブリダィズするオリゴヌクレ ォチドプローブである。 第 4の発明は、 前記第 1発明の免疫応答調節遺伝子または第 2発明の精製ポ リヌクレオデドを PCR増幅するプライマーセットである。 第 5 の発明は、 前記第 2 発明の精製ポリヌクレオチドを保有する組換えべク 夕一である。 第 6の発明は、 前記第 5発明の組換えべクタ一による形質転換細胞である。 第 7の発明は、 げっ歯類の精製蛋白質であって、 配列番号 2 または 4のいず れかのアミノ酸配列、 または配列番号 2 または 4における 1若しくは複数個の アミノ酸残基が欠失、 付加または他のアミノ酸残基に置換した配列を有する免疫 応答調節蛋白質である。 この第 7 発明の免疫応答調節蛋白質の一態様は、 前記第 1 発明の免疫応答調 節遺伝子または前記第 2 発明のポリヌクレオチドの発現産物である蛋白質であ る。 第 8 の 明は、 前記第 7 発明の免疫応答調節蛋白質の一部分からなる精製ま たは合成されたべプチドである。 この第 8 発明のペプチドの一態様は、 配列番号 2における第 1-163アミノ酸 残基の連続 10以上のアミノ酸配列からなるペプチド、 または配列番号 4におけ る第 1- 162 アミノ酸残基の連続 10 以上のアミノ酸配列からなるペプチドであ る。 第 9 の発明は、 前記第 7 発明の免疫応答調節蛋白質を特異的に認識する抗体 である。 第 lOの発明は、 前記第 7発明の免疫応答調蛋白質が過剰に機能発現している 細胞または動物である。 第 1 1 の発明は、 前記第 1発明の免疫応答調節遺伝子が機能欠損している細胞 または動物である。 第 12 の発明は、 任意の蛋白質に対する抗体をげつ歯類動物体内で作成する方 法であって、 前記第 10発明の動物に抗原物質を投与する工程と、 この動物から 抗体を単離する工程を含むことを特徴とする方法である。 なお、 この発明において、 「ポリヌクレオチド」 とは、 プリンまたはピリミジ ンが糖に)3 -N-グリコシド結合したヌクレオシドのリン酸エステル (ATP、 GTP、 CTP、 UTP; または dATP、 dGTP、 dCTP、 dTTP) が 100個以上結合した分子 を言い、 「オリゴヌクレオチド」 とは 2-99個連結した分子を言う。 「蛋白質」 および 「ペプチド」 とは、 アミド結合 (ペプチド結合) または非天然の残基連結 fcよつて互いに結合した複数個のアミノ酸残基から構成された分子を意味する。 またこの発明において、 「1 若しくは複数個のアミノ酸残基が欠失、 付加また は他のアミノ酸残基への置換」 とは、 この発明の免疫応答調節蛋白質の機能が実 施的に変化しない範囲において、 全アミノ酸配列における 30 %以下、 好ましく は 20 %以下、 さらに好ましくは 10 %以下のアミノ酸残基が付加、 欠失または置 換していることを意味する。 この出願の各発明におけるその他の用語や概念は、 発明の実施形態の説明や実 施例において詳しく規定する。 またこの発明を実施するために使用する様々な技 術は、 特にその出典を明示した技術を除いては、 公知の文献等に基づいて当業者 であれば容易かつ確実に実施可能である。 例えば、 遺伝子工学および分子生物学 的 fe Sambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995 等に記載されている。 さらに、 この発明における用語は 基本的には IUPAC-IUB Commission on Biochemical Nomenclatureによるも のであり、 あるいは当該分野において慣用的に使用される用語の意味に基づくも のである。 DISCLOSURE OF THE INVENTION Trace proteins that regulate immune responses have the potential as target proteins for the development of low-molecular-weight drugs related to carcinogenesis and immune disorders, and it is desirable to obtain as many immune-related proteins as possible. It is rare. In addition, proteins having excellent functions of promoting an immune response are useful for producing useful antibodies in animals. Furthermore, overexpressed or deficient animals of the protein are expected to greatly contribute to the establishment of therapeutic methods and the development of pharmaceuticals as various disease model animals. The invention of this application has been made in view of the above circumstances, and has as its object to provide a novel rodent immune response regulatory protein and its gene, and an invention utilizing them. . This application provides the following inventions to solve the above-mentioned problems. That is, the first invention is an isolated rodent gene, wherein the amino acid sequence of any of SEQ ID NO: 2 or 4 or one or more amino acid residues of SEQ ID NO: 2 or 4 is It is an immune response regulatory gene encoding an immune response regulatory protein having a sequence deleted, added or substituted with another amino acid residue. In one embodiment of the immune response regulating gene of the first invention, cDNA synthesized from the transcript mRNA is a gene having the nucleotide sequence of SEQ ID NO: 1 or 3, respectively. A second invention is a polynucleotide purified from the genomic DNA, mRNA, cDNA or their complementary sequence of the immune response regulatory gene of the first invention. A third invention is an oligonucleotide probe that hybridizes under stringent conditions with the immune response regulator gene of the first invention or the purified polynucleotide of the second invention. A fourth invention is a primer set for PCR-amplifying the immune response regulator gene of the first invention or the purified polynucleotide of the second invention. A fifth invention is a recombinant vector having the purified polynucleotide of the second invention. A sixth invention is a transformed cell obtained by the recombinant vector according to the fifth invention. A seventh invention is a purified rodent protein, wherein the amino acid sequence of any one of SEQ ID NO: 2 or 4 or one or more amino acid residues in SEQ ID NO: 2 or 4 are deleted or added. Or an immune response regulatory protein having a sequence substituted with another amino acid residue. One embodiment of the immune response regulating protein of the seventh invention is a protein that is an expression product of the immune response regulating gene of the first invention or the polynucleotide of the second invention. The eighth aspect is a purified or synthesized peptide comprising a part of the immune response regulating protein of the seventh aspect. One embodiment of the peptide of the eighth invention is a peptide consisting of 10 or more consecutive amino acid sequences of amino acids 1-163 in SEQ ID NO: 2, or a continuous peptide of amino acids 1-162 in SEQ ID NO: 4. A peptide having the above amino acid sequence. The A ninth invention is an antibody that specifically recognizes the immune response control protein of the seventh invention. The 10th invention is a cell or animal in which the immune response regulatory protein of the 7th invention is overexpressed. The eleventh invention is a cell or animal in which the function of the immune response regulatory gene of the first invention is defective. A twelfth invention is a method for producing an antibody against an arbitrary protein in a rodent, the method comprising administering an antigenic substance to the animal according to the tenth invention, and isolating the antibody from the animal. It is a method characterized by including a process. In the present invention, the term "polynucleotide" refers to a phosphate ester of a nucleoside having a 3-N-glycosidic bond (ATP, GTP, CTP, UTP; or dATP, dGTP, dCTP, dTTP). ) Refers to a molecule with 100 or more bonds, and “oligonucleotide” refers to a molecule with 2-99 bonds. "Protein" and "peptide" refer to a molecule composed of a plurality of amino acid residues linked together by amide bonds (peptide bonds) or unnatural residue linkages fc. Further, in the present invention, “deletion or addition of one or more amino acid residues or substitution with another amino acid residue” refers to a range in which the function of the immune response regulatory protein of the present invention is not practically changed. In the above, it means that 30% or less, preferably 20% or less, more preferably 10% or less of amino acid residues in the entire amino acid sequence are added, deleted or substituted. Other terms and concepts in each invention of this application are defined in detail in the description of the embodiments of the invention and examples. Also, various techniques used to implement the present invention. The technique can be easily and reliably performed by those skilled in the art based on known literature and the like, except for the technique whose source is clearly indicated. For example, genetic engineering and molecular biology fe Sambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons , New York, NY, 1995. Further, the terms in the present invention are basically based on the IUPAC-IUB Commission on Biochemical Nomenclature or based on the meanings of terms commonly used in the art.
図面の簡単な説明 図 1 は m-UNKによる B細胞の増殖促進効果を試験した結果を示すグラフで ある。 図 2は、 m-UNKによるォブアルブミン (OVA) のマウスに対する免疫促進効 果を試験した結果を示すグラフである。 図 3 は、 八ムスターポリクロ一ナル抗体により m-UNK 蛋白質を検出した結 果を示す。 図 4 は、 マウス脾臓細胞における抗羊赤血球抗体の産生能に対する m- UNK の効果を確認した結果を示すグラフである。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the results of testing the effect of m-UNK on promoting B cell proliferation. FIG. 2 is a graph showing the results of testing the effect of m-UNK on the immunization of mice with ovalbumin (OVA). FIG. 3 shows the results of detection of the m-UNK protein by the eight-muster polyclonal antibody. FIG. 4 is a graph showing the results of confirming the effect of m-UNK on the anti-sheep erythrocyte antibody production ability in mouse spleen cells.
発明を実施するための最良の形態 この発明の免疫応答調節遺伝子は、 げっ歯類動物の免疫応答調節蛋白質 (以下 「UNK:」 と記載することがある。 ) をコードするゲノム遺伝子であり、 具体的 には配列番号 2 のアミノ酸配列を有するマウス免疫応答調節蛋白質 (以下 「M- UNK」 と記載することがある。 ) をコードするマウス遺伝子と、 配列番号 4 の アミノ酸配列を有するラット免疫応答調節蛋白質 (以下 「R-UNK:」 と記載する ことがある。 ) をコードするラット遺伝子である。 そして、 M-UNK遺伝子はそ の cDNAが配列番号 1の塩基配列を有し、 R-UNK遺伝子の cDNAは配列番号 3 の塩基配列を有している。 BEST MODE FOR CARRYING OUT THE INVENTION The immune response regulator gene of the present invention is a genomic gene encoding a rodent immune response regulator protein (hereinafter sometimes referred to as “UNK:”). Target Contains a mouse gene encoding a mouse immune response regulatory protein having the amino acid sequence of SEQ ID NO: 2 (hereinafter sometimes referred to as “M-UNK”); and a rat immune response regulatory protein having the amino acid sequence of SEQ ID NO: 4. (Hereinafter sometimes referred to as “R-UNK:”). The cDNA of the M-UNK gene has the nucleotide sequence of SEQ ID NO: 1, and the cDNA of the R-UNK gene has the nucleotide sequence of SEQ ID NO: 3.
UNK遺伝子はそれぞれこの発明によって提供されるオリゴヌクレオチドプロ —ブを用いてマウスまたはラットゲノム cDMA ライブラリーを用いてスクリ一 ニングすることによって単離することが出来る。 プローブは、 例えばこの発明に よって提供される精製ポリヌクレオチド (例えば cDNA) の一部配列 (15bp 以 上) またはその相補配列を利用する事ができる。 プローブによるスクリーニング は、 ゲノム DNA とプローブとの特異的なハイプリダイゼーシヨンを可能とする ストリンジエンドな条件下で行うことが出来る。 ストリンジェント条件は、 ハイ ブリダィゼーシヨンおよび洗浄工程における塩濃度、 有機溶媒 (ホルムアルデヒ ド等) の濃度、 温度条件等によっ て規定される。 例えば、 米国特許 No.,6, 100,037 等に開示されている条件を採用することが出来る。 またプロ一 ブの標識は、 ラジオアイソトープ (RI) 法または非 RI 法によって行うことがで きるが、 非 RI 法を用いることが好ましい。 非 RI 法としては、 蛍光標識法、 ビ ォチン標識法、 化学発光法等が挙げられるが、 蛍光標識法を用いることが好まし い。 蛍光物質としては、 オリゴヌクレオチドの塩基部分と結合できるものを適宜 に選択して用いることができるが、 シァニン色素 (例えば、 Cy DyeTMシリーズ の Cy3、 Cy5 等) 、 口一ダミン 6G 試薬、 N-ァセトキシ -N2-ァセチルアミノフ ルオレン (AAF) 、 AAIF (AAF のヨウ素誘導体) などを使用することができる。 The UNK gene can be isolated by screening using a mouse or rat genomic cDMA library using the oligonucleotide probes provided by this invention, respectively. As the probe, for example, a partial sequence (15 bp or more) of the purified polynucleotide (eg, cDNA) provided by the present invention or its complementary sequence can be used. Screening with a probe can be performed under stringent end conditions that allow specific hybridization between the genomic DNA and the probe. Stringent conditions are defined by the salt concentration in the hybridization and washing steps, the concentration of organic solvents (such as formaldehyde), temperature conditions, and the like. For example, the conditions disclosed in U.S. Patent No. 6,100,037 can be employed. The probe can be labeled by a radioisotope (RI) method or a non-RI method, but it is preferable to use a non-RI method. Examples of the non-RI method include a fluorescent labeling method, a biotin labeling method, and a chemiluminescent method, and it is preferable to use a fluorescent labeling method. As the fluorescent substance, a substance capable of binding to the base moiety of the oligonucleotide can be appropriately selected and used. Examples of the fluorescent substance include a cyanine dye (for example, Cy3 and Cy5 of the Cy DyeTM series), a monodamine 6G reagent, -N2-Acetylaminofluorene (AAF), AAIF (iodine derivative of AAF) and the like can be used.
UNK遺伝子はまた、 この発明によって提供されるプライマーセットを用い、 ラットゲノムまたはマウスゲノム DNAを踌型とする PCR (Polymerase Chain Reaction) 法によって増幅することも出来る。 プライマ一セッ トはこの発明に よって提供される精製ポリヌク レオチド ( cDNA) から選択した一部配列 ( 15bp 以上) の 2以上の組み合わせによって作成することが出来る。 また、 cDNA の 5,側の 1プライマーを用いた 5, RACE 法によって遺伝子の上流を、 cDNAの 3,側の 1プライマーを用いた 3, RACE法によって遺伝子の下流部分を PCR 増幅することも出きる。 なお、 プライマ一設計の留意点として、 例えば以 下を指摘することも出きる。 プライマーのサイズ (塩基数) は、 铸型 DNA との 間の特異的なアニーリングを満足させることを考慮し、 15-40 塩基、 望ましく は 15-30塩基である。 ただし、 LA(long and accurate) PCRを行う場合には、 少なくても 30 塩基が効率的である。 センス鎖 (5'末端側) とアンチセンス鎖 (3,末端側) からなる 1組あるいは一対 (2本) のプライマーが互いにァニール しないよう、 両プライマー間の相補的配列を避けるようにする。 さらに、 铸型 DNAとの安定な結合を確保するため GC含量を約 50 %にし、 プライマー内にお いて GC-rich あるいは AT-richが偏在しないようにする。 アニーリング温度は Tm (melting temperature) に依存するので、 特異性の高い PCR 産物をえる ため、 Tm値が 55-65でで互いに近似したプライマーを選定する。 また、 PCRに おけるプライマ一使用の最終濃度が約 0. 1 から約 l _i M になるよう調整する等 を留意することも必要である。 また、 プライマー設計用の市販のソフトウェア、 例えば OligoTM [National Bioscience Inc. (米国)製]、 GENETYX (ソフトゥェ ァ開発 (株) (日本) 製) 等を用いることもできる。 このようにして得られた全長ゲノム遺伝子は、 例えば、 PCR 法、 NASBN (Nucleic acid sequence based ampliiication )法、 TMA ( Transcription― mediated amplification ) 法 お よ び SDA ( Strand Displacement Amplification) 法などの通常行われる遺伝子増幅法により増幅することもでき る。 そして、 この UNK ゲノム遺伝子はこの遺伝子が転写する mRNA、 mRNA か ら合成した cDNA から精製ポリヌクレオチド (DNA断片や RNA断片) を調整 することができる。 例えば、 cDNAはマウスやラット等のげつ歯類細胞から抽出 したポリ (A) +RNA を铸型として合成することもできる。 げっ歯類細胞として は、 動物より摘出したものでも培養細胞でも良い。 cDNA は、 公知の方法 ( Mol.Cell.Biol.2, 167- 170, 1982; J.Gene 25,263-269 , 1983; Gene, 150, 243-250 , 1994) を用いて合成することができる。 あるいは、 この発明によつ て提供されるプライマ一セットを用いて、 げっ歯類細胞から単離した mRNA を 铸型とする RT- PCR法を用いて、 目的 cDNAを合成することもできる。 または、 DNA オリゴ合成機によって部分配列を合成し、 それを酵素的手法およびサブク ローニングの手法を使ってつなぎ合わせる事によっても目的 cDNA を合成する ことも出きる。 このようにして調整される cDNA は、 具体的には配列番号 1お よび 3のそれぞれの塩基配列を有している。 これらのポリヌクレオチドは、 UNK 蛋白質の遺伝子工学的な製造に使用することができる。 また、 これらのポ リヌクレオチドは、 動物に UNK蛋白質を過剰発現させるための遺伝子材料 (導 入遺伝子) としても使用することができる。 なお、 UNK 蛋白質を遺伝子工学的 に作成するため、 あるいは導入遺伝子として使用する場合には、 それぞれ配列番 号 1および 3の全長でなくてもよく、 例えば少なくともそれぞれの蛋白質コード 領域 (CDS) を構成するポリヌクレオチド配列でよい。 また目的の抗原に対す る動物の抗原 忍識を向上させるために遺伝子導入する場合には、 例えば、 配列番 号 1 の第 1—489 塩基の連続 60 以上の塩基、 または配列番号 3 の第 1 一 527 塩基の連続 60 以上の塩基をそれぞれ含むオリゴヌクレオチドまたはポリヌクレ ォチドを使用することもできる。 このようなオリゴヌクレオチドまたはポリヌク レオチドは、 例えば cDNA を適当な制限酵素で切断して作成することもでき、 あるいは文献 (例えば Carruthers ( 1982 ) Cold Spring Harbor Symp. Quant. Biol. 47 :41 1 -418; Adams ( 1983 ) J. Am. Chem. Soc. 105:661 ; Belousov ( 1997) Nucleic Acid Res. 25:3440-3444; Frenkel ( 1995) Free Radic. Biol. Med. 19:373-380; Blommers ( 1994) Biochemistry 33:7886- 7896; Narang ( 1979 ) Meth. Enzymol. 68:90; Brown ( 1979 ) Meth. Enzymol. 68 : 109 ; Beaucage ( 1981 ) Tetra. Lett. 22 : 1859; 米国特許第 4,458,066号) に記載されているような周知の化学合成技術により、 in vitroに おいて合成することができる。 この発明の組換えべクタ一はクローニングベクターまたは発現べクタ一であり、 インサートと してのポリヌクレオチドの種類や、 その使用目的等に応じて適宣の ものを使用する。 例えば、 cDNAまたはその ORF領域をインサートとして UNK 蛋白質を生産する場合には、 インビトロ転写用の発現べクタ一や、 大腸菌、 枯草 菌等の原核細胞、 酵母、 昆虫細胞、 哺乳動物細胞等の真核細胞のそれぞれに適し た発言べクタ一を使用することもできる。 また UNK遺伝子のゲノム DNAゃィ ンサートとする場合には、 BAC (Bacterial Artificial Chromosome) ベクター やコスミドベクタ一等を使用することもできる。 この発明の形質転換細胞は、 例えば、 UNK 蛋白質を大量製造する場合には、 大腸菌、 枯草菌等の原核細胞や、 酵母、 昆虫細胞、 哺乳動物細胞等の真核細胞等 を使用することができる。 これらの形質転換細胞は、 電気穿孔法、 リン酸カルシ ゥム法、 リボゾーム法、 DEAE デキストラン法など公知の方法によって組換え ベクターを細胞に導入することによって調整することができる。 この発明の UNK蛋白質は、 げっ歯類の臓器、 細胞株から単離する方法、 配列 番号 2および 4のアミノ酸配列に基づいて化学合成によってべプチドを調整する 方法、 あるいはこの発明によって提供される精製ポリヌクレオチド (cDNAまた はその翻訳領域) を用いて組換え DNA技術で生産する方法などにより取得でき るが、 組換え DNA技術で取得する方法が好ましく用いられる。 例えば前記のポ リヌクレオチドを有するベクタ一からィンビトロ転写によって RNA を調整し、 これを铸型としてインビトロ翻訳を行うことによりインビトロで蛋白質を発現で きる。 またポリヌクレオチドを公知の方法により適当な発現ベクターに組換えれ ば、 大腸菌、 枯草菌等の原核細胞や、 酵母、 昆虫細胞、 哺乳動物細胞等の真核細 胞で、 ポリヌクレオチドがコードしている蛋白質を大量に発現させる事が出きる。 The UNK gene can also be amplified by a PCR (Polymerase Chain Reaction) method using rat genomic DNA or mouse genomic DNA as a 踌 type using the primer set provided by the present invention. The primer set can be prepared by combining two or more of partial sequences (15 bp or more) selected from the purified polynucleotide (cDNA) provided by the present invention. In addition, the upstream of the gene was determined by the RACE method using one primer on the fifth side of the cDNA. It is also possible to PCR amplify the downstream part of the gene by the RACE method using one primer on the three sides of the cDNA. In addition, the following points can be pointed out as points to keep in mind when designing primers. The size (number of bases) of the primer is 15-40 bases, preferably 15-30 bases, in view of satisfying the specific annealing with type I DNA. However, when performing LA (long and accurate) PCR, at least 30 bases are efficient. Avoid the complementary sequence between one primer or one pair (two) consisting of the sense strand (5 'end) and the antisense strand (3, end) so that they do not anneal to each other. In addition, the GC content should be about 50% to ensure stable binding to type I DNA, so that GC-rich or AT-rich is not unevenly distributed in the primers. Since the annealing temperature depends on the melting temperature (Tm), primers with a Tm value of 55-65 and similarity to each other should be selected to obtain highly specific PCR products. It is also necessary to take care to adjust the final concentration of primer used in PCR to be about 0.1 to about l_iM. In addition, commercially available software for primer design, for example, OligoTM (manufactured by National Bioscience Inc. (USA)), GENETYX (manufactured by Softea Development Co., Ltd. (Japan)) and the like can also be used. The full-length genomic gene obtained in this manner is usually used, for example, by PCR, NASBN (Nucleic acid sequence based amplification), TMA (transcription-mediated amplification), and SDA (Strand Displacement Amplification). It can also be amplified by a gene amplification method. The UNK genomic gene can be used to prepare purified polynucleotides (DNA fragments and RNA fragments) from mRNA transcribed by this gene and cDNA synthesized from mRNA. For example, cDNA can be synthesized as type III using poly (A) + RNA extracted from rodent cells such as mouse and rat. The rodent cells may be cells extracted from animals or cultured cells. cDNA can be synthesized using a known method (Mol. Cell. Biol. 2, 167-170, 1982; J. Gene 25, 263-269, 1983; Gene, 150, 243-250, 1994). Or according to the invention The target cDNA can also be synthesized using the set of primers provided by the above-mentioned method and the RT-PCR method in which mRNA isolated from a rodent cell is type II. Alternatively, the target cDNA can also be synthesized by synthesizing partial sequences using a DNA oligo synthesizer and joining them using enzymatic and subcloning techniques. The cDNA prepared in this manner specifically has the nucleotide sequences of SEQ ID NOS: 1 and 3. These polynucleotides can be used for genetically engineered production of UNK proteins. These polynucleotides can also be used as genetic material (transgene) for overexpressing UNK protein in animals. When the UNK protein is produced by genetic engineering or used as a transgene, it does not need to be the full length of SEQ ID NOS: 1 and 3, respectively. For example, at least the respective protein coding regions (CDS) constitute Polynucleotide sequence. In addition, when transfecting a gene to improve the animal's antigenic wisdom for the antigen of interest, for example, a sequence consisting of more than 60 consecutive nucleotides of the 1st to 489th nucleotides of SEQ ID NO: 1 or the first nucleotide of SEQ ID NO: 3 Oligonucleotides or polynucleotides each containing more than 60 consecutive 527 bases can also be used. Such oligonucleotides or polynucleotides can be made, for example, by cleaving cDNA with an appropriate restriction enzyme, or can be prepared by literature (eg, Carruthers (1982) Cold Spring Harbor Symp. Quant. Biol. 47:41 1-418). ; Adams (1983) J. Am. Chem. Soc. 105: 661; Belousov (1997) Nucleic Acid Res. 25: 3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19: 373-380; Blommers ( 1994) Biochemistry 33: 7886--7896; Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol. 68: 109; Beaucage (1981) Tetra. Lett. 22: 1859; U.S. Pat. No. 458,066), and can be synthesized in vitro by a well-known chemical synthesis technique. The recombination vector of the present invention is a cloning vector or an expression vector, and an appropriate one is used depending on the kind of the polynucleotide as the insert and the purpose of use. For example, when producing UNK protein using cDNA or its ORF region as an insert, expression vectors for in vitro transcription, E. coli, Speech vectors suitable for prokaryotic cells such as bacteria, eukaryotic cells such as yeast cells, insect cells, and mammalian cells can also be used. In the case of genomic DNA insert of UNK gene, BAC (Bacterial Artificial Chromosome) vector or cosmid vector can also be used. As the transformed cell of the present invention, for example, when a large amount of UNK protein is produced, prokaryotic cells such as Escherichia coli and Bacillus subtilis, and eukaryotic cells such as yeast, insect cells, and mammalian cells can be used. . These transformed cells can be prepared by introducing a recombinant vector into the cells by a known method such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method. The UNK protein of the present invention can be isolated from a rodent organ or a cell line, a method for preparing a peptide by chemical synthesis based on the amino acid sequences of SEQ ID NOS: 2 and 4, or the purification provided by the present invention. It can be obtained by a method using a polynucleotide (cDNA or a translation region thereof) by recombinant DNA technology, but a method obtained by recombinant DNA technology is preferably used. For example, a protein can be expressed in vitro by preparing RNA from a vector having the above-mentioned polynucleotide by in vitro transcription and performing in vitro translation using this as a type III. If the polynucleotide is recombined into an appropriate expression vector by a known method, the polynucleotide is encoded in prokaryotic cells such as Escherichia coli and Bacillus subtilis, and eukaryotic cells such as yeast, insect cells, and mammalian cells. You can express a large amount of protein.
UNK 蛋白質をインビトロ翻訳で DNA を発現させて生産させる場合には、 前 記のポリヌクレオチドを、 RNA ポリメラーゼプロモータ一を有するベクターに 挿入して組換えベクターを作成し、 このベクターを、 プロモ一夕一に対応する RNA ポリメラーゼを含むゥサギ網状赤血球溶解物や小麦胚芽抽出物などのィン ピトロ翻訳系に添加すれば、 UNK 蛋白質をインビトロで生産することができる RNA ポリメラーゼプロモーターとしては、 T3,T7,SP6 などが例示できる。 これ らの RNAポリメラ一ゼプロモーターを含むベクターとしては、 pKAl, pCDM8, pT3/T718、 pT7/319, pBluescriptllなどが例示できる。 UNK 蛋白質を大腸菌などの微生物で DNA を発現させる場合には、 微生物中 で複製可能なオリジン、 プロモー夕一、 リボソーム結合部位、 DNA クローニン グ部位、 夕一ミネ一夕一配列等を有する発現べクタ一に前記のポリヌクレオチド を組換えた発現ベクターを作成し、 この発現べクタ一で宿主細胞を形質転換した のち、 得られた形質転換体を培養すれば、 このポリヌクレオチドがコードしてい る蛋白質を微生物内で大量生産することができる。 この際、 任意の翻訳領域の前 後に開始コドンと停止コドンを付加して発現させれば、 任意の領域を含む蛋白質 断片を得ることもできる。 あるいは、 他の蛋白質との融合蛋白質として発現させ ることも出きる。 この融合蛋白質を適当なプロテアーゼで切断することによって もこのポリヌクレオチドがコードする蛋白質部分のみを取得することも出きる。 大腸菌用発現ベクターとしては、 pUC 系、 : BluescriptII,pET 発現システム、 P GEX発現システムなどが例示できる。 When the UNK protein is produced by expressing DNA by in vitro translation, the above-mentioned polynucleotide is inserted into a vector having an RNA polymerase promoter to prepare a recombinant vector. The RNA polymerase promoter that can produce UNK protein in vitro when added to an in vitro translation system such as a heron reticulocyte lysate or a wheat germ extract containing RNA polymerase corresponding to T3, T7, and SP6 And the like. Examples of vectors containing these RNA polymerase promoters include pKAl, pCDM8, pT3 / T718, pT7 / 319, and pBluescriptll. When expressing the DNA of a UNK protein in a microorganism such as Escherichia coli, an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, a sunset and a mineral sequence that can be replicated in the microorganism, etc. First, an expression vector is prepared by recombining the above-mentioned polynucleotide, a host cell is transformed with the expression vector, and the resulting transformant is cultured, whereby the protein encoded by the polynucleotide is obtained. Can be mass-produced in microorganisms. At this time, a protein fragment containing an arbitrary region can also be obtained by adding a start codon and a stop codon before and after the arbitrary translation region and expressing it. Alternatively, it can be expressed as a fusion protein with another protein. By cleaving this fusion protein with an appropriate protease, it is possible to obtain only the protein portion encoded by the polynucleotide. Examples of expression vectors for Escherichia coli include a pUC system, a BluescriptII, pET expression system, and a PGEX expression system.
UNK 蛋白質を、 真核細胞で DNA を発現させて生産させる場合にば、 前記ポ リヌクレオチドを、 プロモ一夕一、 スプラインシング領域、 ポリ (A) 付加部位 等を有する真核細胞用発現ベクターに挿入して組換えべクタ一を作成し、 真核細 胞内に導入すれば、 UNK 蛋白質を真核細胞内で生産することができる。 発現べ クタ一としては、 pKAl , pCDM8, pSV 3, pSVL, pBK-CMV, pBK-RSV, EBV ベクタ一、 pRS, pYE82 などが例示できる。 また、 pIND/V5-His, pFLAG- CMV-2 , pEGFP-Nl , pEGFP-C lなどを発現ベクターとして用いれば、 Hisタグ、 FLAG タグ、 GFP など各種タグを付加した融合蛋白質として発現させることも 出きる。 真核細胞としては、 サル腎臓細胞 COS-7、 チャイニーズハムスター卵 巣細胞 CHOなどの哺乳動物培養細胞、 出芽酵母、 分裂酵母、 カイコ細胞、 ァフ リカツメガエル卵細胞などが一般に用いられるが、 UNK 蛋白質を発現できるも のであれば、 いかなる真核細胞でもよい。 発現ベクターを真核細胞に導入するに は、 電気穿孔法、 リン酸カルシウム法、 リボゾーム法、 DEAE デキストラン法 など公知の方法を用いることができる。 When the UNK protein is produced by expressing DNA in a eukaryotic cell, the polynucleotide is converted into an eukaryotic expression vector having a promoter, a splicing region, a poly (A) addition site, and the like. If inserted and made into a recombinant vector and introduced into eukaryotic cells, UNK protein can be produced in eukaryotic cells. Examples of expression vectors include pKAl, pCDM8, pSV3, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, and pYE82. When pIND / V5-His, pFLAG-CMV-2, pEGFP-Nl, pEGFP-Cl, etc. are used as expression vectors, they can be expressed as fusion proteins with various tags such as His tag, FLAG tag, and GFP. I can come out. As eukaryotic cells, monkey kidney cells COS-7, Chinese hamster ovary cells, cultured mammalian cells such as CHO, budding yeast, fission yeast, silkworm cells, African frog egg cells and the like are generally used. Any eukaryotic cell that can express it can be used. To introduce the expression vector into eukaryotic cells, known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used.
UN 蛋白質を原核細胞や真核細胞で発現させた後、 培養物から目的蛋白質を 単離精製するためには、 公知の分離操作を組み合わせて行うことが出きる。 例え ば、 尿素などの変性剤や界面活性剤による処理、 超音波処理、 酵素消化、 塩析ゃ 溶媒沈殿法、 透析、 遠心分離、 限外濾過、 ゲル濾過、 SDS— PAGE,等電点電気 泳動、 イオン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ァフィニテ ィークロマトグラフィー、 逆相クロマトグラフィーなどが挙げられる。 なお、 以上の方法によって得られる組換え UNK蛋白質には、 他の任意の蛋白 質との融合蛋白質も含まれる。 例えば、 グル夕チオン - S-トランスフェラ一ゼ (GST) ゃ録色蛍光蛋白質 (GFP) との融合蛋白質などが例示できる。 さらに、 前記発明の蛋白質は、 翻訳された後、 細胞内で各種修飾を受ける場合がある。 従 つて、 修飾された蛋白質も前記発明の蛋白質の範囲に含まれる。 このような翻訳 後の修飾としては、 N末端メチォニンの脱離、 N末端ァセチル化、 糖鎖付加、 細 胞内プロテアーゼによる限定分解、 ミストレイル化、 イソプレニル化、 リン酸化 などが例示できる。 これらの発明のペプチドは、 UNK 蛋白質の一部分からなるペプチド断片であ る。 すなわち、 配列番号 2および 4における連続 10 アミノ酸配列、 1 1~30 ァ ミノ酸配列、 31〜60アミノ酸配列、 61〜: 110アミノ酸配列、 1 1 1 ~ 160ァミノ 酸配列のペプチドである。 さらに具体的には、 配列番号 2における第 1- 163 ァ ミノ酸残基の連続 10以上のアミノ酸配列からなるペプチド、 または配列番号 4 における第 1- 162 アミノ酸残基の連続 10 以上のアミノ酸配列からなるぺプチ ドである。 すなわち、 後記実施例で示したように、 各 UNK蛋白質はそれぞれ C 末端側に抗原認識上昇活性を有している。 具体的には M-UNKは配列番号 2の第 1- 163アミ ノ酸残基、 R-UNKは配列番号 4の第 1- 162アミノ酸残基に抗原認識 上昇活性を有している (図 2) 。 従って、 これらの領域から調製されたペプチド は、 例えば抗原を融合させることによって、 動物に抗原認識を向上させる原料と 用いることが出きると共に、 過剰投与等により動物に免疫寛容を生じさせるため に使用する こともできる。 これらのペプチドは、 前記の UNK蛋白質を任意の制限酵素で切断することに よって調整することができる。 また、 配列番号 2または 4のアミノ酸配列に基づ き、 公知のペプチ ド合成法 ( Merrifield, R.B. J. Solid phase peptide synthesis I. The synthesis of tetrapeptide. J. Amer. Chem. Soc. 85, 2149- 2154, 1963; Fmoc Solid Phase Peptide Synthesis. A Practical Approach. Chan, W.C. and White, P.D. , Oxford University Press, 2000) によって作成 することもできる。 また、 これらのペプチドは天然のアミド結合以外の残基連結 からなるものであってもよい。 天然のアミド結合以外の残基連結は、 例えばダル タルアルデヒド、 N-ヒドロキシスクシンィミドエステル、 2官能マレイミド、 Ν,Ν,-ジシクロへキシルカルポジイミ ド (DCC) 、 または Ν,Ν,-ジイソプロピル カルポジイミ ド (DIC) 等の化学結合またはカップリング手段を例示することが できる。 また、 ペプチド結合の代替となり得る連結基は、 例えばケトメチレン (例えば、 - C ( =θ) -CH2-に対する- C ( =0) -NH-) 、 アミノメチレン (CH2- NH) 、 エチレン、 ォレフィン (CH= CH) 、 エーテル (CH2-0) 、 チォエーテ ル (CH2-S) 、 テトラゾール (CN4-) 、 チアゾ一ル、 レトロアミド、 チォアミ ド、 またはエステルを含む (例えば、 Spatola ( 1983) in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 7, pp 267-357, "Peptide Backbone Modifications," Marc ell Dekker, NYを参照) 。 この発明の抗体は、 前記の精製げつ歯類ポリクローナル抗体またはモノクロ一 ナル抗体である。 具体的には、 それぞれの精製 UNK蛋白質やその部分ペプチド を抗原として調整される抗体である。 この発明の抗体には、 各 UNK蛋白質のェ ピト一プに結合することができる全体分子、 および Fab, F(ab')2, Fv断片等が全 て含まれる。 例えばポリクローナル抗体の場合には、 前記の UNK蛋白質またはべプチドを 抗原として動物を免役した後、 血清から得ることができる。 動物としては、 マウ ス、 ラッ ト、 ハムスター、 ゥサギ、 ャギ、 ヒッジ、 ゥシ、 ゥマ、 ブ夕、 ィヌ、 ネ コ、 サル、 ニヮトリなどが用いられる。 抗原ペプチドによる動物の免疫は公知の 方法 (例えば、 村松繁、 他編、 実験生物学講座 14 、 免疫生物学、 丸善株式会 社、 昭和 60年、 日本生化学会編、 続生化学実験講座 5、 免疫生化学研究法、 東 京化学同人、 1986 年、 日本生化学会編、 新生化学実験講座 12、 分子免疫学 III、 抗原 ·抗体 ·補体、 東京化学同人、 1992年などに記載された方法) に準じて行 うことができる。 例えば、 一般的方法としては、 抗原ペプチドを哺乳動物の腹腔 内または皮下に注射することにより免疫化を行うことができる。 また、 抗原ぺプ チドをアジパントと共に投与してもよい。 アジュバントとしては、 例えばフロイ ント完全 (または不完全) アジュバント、 リビ (Ribi)アジュバント、 百日咳ワク チン、 BCG、 リピッド A、 リボソーム、 水酸化アルミニウム、 シリカなどが挙 げられる。 さらにまた、 組換えプラスミドベクター (naked DNA、 DNAヮクチ ン) を哺乳動物の骨格筋、 皮膚または心筋内に直接注入し、 プラスミドベクター に組み込まれた遺伝子が発現するタンパク質やポリぺプチドを抗原として免疫す る方法 (Science, 247: 1465- 1468, 1990等) を採用することもできる。 ポリクローナル抗体を含む抗血清は、 免疫された動物を所定の期間飼育した後、 その動物から採血した血液から調製することができる。 また、 モノクローナル抗体は、 公知のモノクロ一ナル抗体作製法 ( 「単クロ一 ン抗体」 、 長宗香明、 寺田弘共著、 廣川書店、 1990 年 ; "Monoclonal Antibody" James W. Godmg, third edition, Academic Press, 1996 ; Monoclonal Antibody Production Techniques and Applications, pp.79-97, Marcel Dekker, Inc. , New York, 1987 など) に従い作製することができる。 またこの発明の抗体には、 各種の標識 (酵素、 放射性同位体、 蛍光色素等) を 結合したものも含まれる。 これらの抗体は、 例えば、 UNK 遺伝子の発現を検出するため、 あるいは実験 動物に投与することにより内在性 UNK を中和し免疫応答の以上の実験モデルの 作成に使用することができる。 次に、 UNK 蛋白質が過剰に機能発現している第 10 発明の細胞または動物に ついて説明する。 この動物または細胞は、 例えば、 動物に UNK蛋白質溶液を注 射する方法; 特許文献 1に記載されているような金属コロイ ドと UNK蛋白質を 結合させて動物に投与する方法; レトロウイルスベクターやアデノウイルスべク 夕一を用いた遺伝子治療の方法に準じて動物に活性型 UNK遺伝子 (すなわち、 高発現プロモーター等を連結した精製ポリヌクレオチド) を導入する方法; リン 酸カルシウム法、 リボソームや赤血球ゴーストを使用する方法、 エレクト口ポー レーション法、 ガラスピぺットを用いた微量注入法等によって細胞に UNK遺伝 子を導入する方法等によって作成することができる。 さらに、 これらの動物や細胞は、 公知のトランスジエニック動物作成法 (例え は'、 Proc. Natl. Acad. Scl. USA 77;7380-7384, 1980) に従って作成すること ができる。 すなわち、 活性型 UNK遺伝子を非ヒト動物 (好ましくはマウスまた はラッド) の分化全能性細胞に導入し、 この細胞を個体へと発生させ、 体細胞の ゲノム中に UNK遺伝子が組み込まれた個体を選別することによって目的とする トランスジエニック動物を作製することができる。 分化全能性細胞への遺伝子導 入法としては、 トランスジエニック動物個体の産出高率や次代への導入遺伝子の 伝達効率を考慮した場合、 外来遺伝子 DNAの物理的注入 (マイクロインジェク シヨ ン) 法が最適である。 遺伝子を注入した受精卵は、 次に仮親の卵管に移植さ れ、 個体まで発生し出生した動物を里親につけて飼育させたのち、 体の一部 (尾 部先端等) から DNAを抽出し、 サザンプロット解析や PCRアツセィにより導 入した外来遺伝子の存在を確認することによって、 2倍体染色体の一方に外来遺 伝子が導入された初代のへテロ接合体動物が得られ、 このへテロ接合体同士を交 配することによってホモ接合体動物が獲られる。 この発明のトランスジエニック 動物には、 初代へテロ接合体動物、 ヘテロ接合体同士を交配して得られるホモ接 合体動物、 それらの子孫動物、 またはそれらの胎児が含まれる。 第 1 1 の発明は、 前記第 1発明の免疫応答調節遺伝子が機能欠損している細胞 または動物である。 この場合の 「機能欠損」 とは、 例えば UNK遺伝子産物である UNK 蛋白質が免疫応答システムにおいて正常に機能していないことを意味する。 従って、 この 第 1 1発明の細胞または動物は、 免疫応答が正常に機能していない免疫不全細胞または免 疫不全動物である。 このような細胞または動物の一つの態様は、 染色体ゲノムに UNK遺伝子コード領域が 存在していないことによって UNK蛋白質を産生しない細胞または動物である。 別の態様 は、 UNK遺伝子のコード領域における 1以上のヌクレオチドが欠失、 付加、 または他のヌ クレオチドに置換していること (遺伝子変異) によって、 UNK蛋白質を産生しないか、 ま たは変異型 UNK蛋白質を産生する細胞または動物である。 また別の態様は、 UNK遺伝子 の発現制御領域が欠失または部分的に変異していることによって、 UNK遺伝子が発現せず、 その結果として UNK蛋白質を産生しない細胞または動物である。 さらに別の態様は、 UNK遺伝子からの転写産物 (mRNA) に対するセンス鎖、 アンチセンス鎖、 センス ·アン チセンス二重鎖 (siRNA)、 RNAi、 UNK mRNAを切断するリボザィムを発現し、 mRNAか ら UNK蛋白質が合成されない細胞または動物である。 センス鎖、 アンチセンス鎖、 センス 'アンチセンス二重鎖 (siRNA)、 RNAiゃリポザィム を発現する細胞は、 それらをコードする DNA断片を細胞に導入することによって作製す ることができるが、 UNK遺伝子を確実に機能欠損させるためには、 UNK遺伝子のコード 領域および または発現制御領域に欠失変異を導入することが好ましい。 このような遺伝 子特異的な変異導入は、 公知の標的遺伝子組換え法 (ジーン夕一ゲティング法: Science 244: 1288- 1292, 1989) により行うことができる。 そして、 変異導入 した全能性細胞 (ES細胞) を個体は発生させることによって、 体細胞の全てに おいて UNK蛋白質が機能欠損した動物 (ノックアウト動物) を得ることができ る。 第 12 の発明は、 任意の蛋白質に対する抗体をげつ歯類動物体内で作成する方 法であって、 前記第 10発明の動物に抗原を投与する工程と、 この動物から抗体 を単離する工程を含むことを特徴とする方法である。 具体的には、 第 10発明の 動物作成と同一の手段 (例えば、 動物に UNK蛋白質を投与する方法や、 遺伝子 治療の方法に準じて動物に UNK 遺伝子を導入する方法等) で動物体内での UNK 蛋白質の活性を上昇させると共に、 任意の抗原物質を動物に投与する。 UNK 蛋白質の投与や高発現によって動物の免疫応答が活性化されるため、 効率 よく抗体を作成することが可能となる。 またこの第 12発明における別の態様は、 活性型 UNK遺伝子を体細胞に有するトランスジエニック動物を用いて抗体を作 成する方法である。 この動物は導入 UNK遺伝子の高発現によって UNK蛋白質 を過剰に 現し、 高い免疫応答能を有するため、 効率良く抗体を産生する。 なお、 抗体はポリ クローナル抗体またはモノクローナル抗体であり、 前記第 9発明の抗 体と同一の手続で作成することができる。 After expressing the UN protein in prokaryotic or eukaryotic cells, isolation and purification of the target protein from the culture can be performed by a combination of known separation procedures. example For example, treatment with a denaturant such as urea or a surfactant, sonication, enzyme digestion, salting-out, solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, Examples thereof include ion exchange chromatography, hydrophobic chromatography, affinity chromatography, and reverse phase chromatography. In addition, the recombinant UNK protein obtained by the above method includes a fusion protein with any other protein. For example, a fusion protein with glutathione-S-transferase (GST) recording color fluorescent protein (GFP) can be exemplified. Further, the protein of the invention may be subjected to various modifications in cells after being translated. Therefore, modified proteins are also included in the scope of the protein of the present invention. Examples of such post-translational modifications include elimination of N-terminal methionine, N-terminal acetylation, addition of sugar chains, limited degradation by intracellular protease, mistrailization, isoprenylation, phosphorylation and the like. The peptides of these inventions are peptide fragments consisting of a part of the UNK protein. That is, it is a peptide having a continuous 10 amino acid sequence, 11 to 30 amino acid sequence, 31 to 60 amino acid sequence, 61 to 110 amino acid sequence, and 11 to 160 amino acid sequence in SEQ ID NOs: 2 and 4. More specifically, a peptide consisting of a continuous amino acid sequence of amino acids 1 to 163 in SEQ ID NO: 2 or 10 or a continuous amino acid sequence of amino acids 1 to 162 in SEQ ID NO: 4 It is a peptide. That is, as shown in Examples described later, each UNK protein has an antigen recognition increasing activity on the C-terminal side. Specifically, M-UNK has an activity of increasing antigen recognition at amino acid residues 1-163 of SEQ ID NO: 2 and R-UNK has amino acid residues 1-162 of SEQ ID NO: 4 (FIG. 2). ). Therefore, peptides prepared from these regions can be used as a raw material for improving antigen recognition in animals, for example, by fusing antigens, and also used to induce tolerance in animals by overdose, etc. You can do it. These peptides can be prepared by cleaving the UNK protein with any restriction enzyme. Also, based on the amino acid sequence of SEQ ID NO: 2 or 4, Known peptide synthesis methods (Merrifield, RBJ Solid phase peptide synthesis I. The synthesis of tetrapeptide. J. Amer. Chem. Soc. 85, 2149-2154, 1963; Fmoc Solid Phase Peptide Synthesis. A Practical Approach. Chan , WC and White, PD, Oxford University Press, 2000). Further, these peptides may be composed of a residue linkage other than a natural amide bond. Residue linkages other than the natural amide bond include, for example, daltaraldehyde, N-hydroxysuccinimide ester, bifunctional maleimide, Ν, Ν, -dicyclohexylcarpoimide (DCC), or Ν, Ν, Examples include chemical bonding or coupling means such as -diisopropyl carpoimide (DIC). Furthermore, the linking group can be a substitute for a peptide bond, for example, ketomethylene (e.g., - C (= θ) -CH 2 - for - C (= 0) -NH-) , aminomethylene (CH 2 - NH), ethylene, Orefin (CH = CH), ether (CH2-0), Chioete Le (CH 2 -S), tetrazole (CN 4 -), thiazole Ichiru, retro amide, including Chioami de or esters, (e.g., Spatola (1983 ) in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 7, pp 267-357, "Peptide Backbone Modifications," Marcell Dekker, NY). The antibody of the present invention is the aforementioned purified rodent polyclonal antibody or monoclonal antibody. Specifically, it is an antibody prepared using each purified UNK protein or its partial peptide as an antigen. The antibodies of the present invention include whole molecules capable of binding to the epitope of each UNK protein, Fab, F (ab ') 2 , Fv fragments, etc. For example, in the case of a polyclonal antibody, the antibody can be obtained from serum after immunizing an animal using the UNK protein or peptide as an antigen. As animals, mice, rats, hamsters, egrets, goats, sheep, geese, geese, bush, dogs, cats, monkeys, birds, etc. are used. The immunization of animals with antigenic peptides can be performed by known methods (for example, Shigeru Muramatsu, et al., Experimental Biology Lecture 14, Immunobiology, Maruzen Co., Ltd., 1985, Japanese Biochemical Society, Ed. Immune Biochemistry Research, Tokyo Chemical Dojin, 1986, The Japanese Biochemical Society, Ed., New Chemistry Laboratory 12, Molecular Immunology III, Antigen · antibody · complement, the method described in Tokyo Chemical Dojin, 1992, etc.). For example, as a general method, immunization can be performed by injecting an antigenic peptide intraperitoneally or subcutaneously into a mammal. Further, the antigen peptide may be administered together with adipant. Adjuvants include, for example, Freund's complete (or incomplete) adjuvant, Ribi adjuvant, pertussis vaccine, BCG, lipid A, ribosomes, aluminum hydroxide, silica, and the like. Furthermore, a recombinant plasmid vector (naked DNA, DNA peptide) is directly injected into mammalian skeletal muscle, skin, or myocardium, and a protein or polypeptide expressing the gene incorporated in the plasmid vector is used as an antigen for immunization. (Science, 247: 1465-1468, 1990, etc.). An antiserum containing a polyclonal antibody can be prepared from blood collected from an immunized animal after breeding the animal for a predetermined period of time. Monoclonal antibodies can be prepared using known monoclonal antibody production methods (“Monoclonal Antibodies”, by Kamei Nagamune and Hiroshi Terada, Hirokawa Shoten, 1990; “Monoclonal Antibody” James W. Godmg, third edition, Academic Press, 1996; Monoclonal Antibody Production Techniques and Applications, pp. 79-97, Marcel Dekker, Inc., New York, 1987, etc.). The antibodies of the present invention also include those conjugated with various labels (enzymes, radioisotopes, fluorescent dyes, etc.). These antibodies can be used, for example, to detect the expression of the UNK gene, or to administer to experimental animals to neutralize endogenous UNK and create an experimental model of the above immune response. Next, the cell or animal of the tenth invention in which the UNK protein is excessively expressed will be described. This animal or cell is, for example, a method of injecting an UNK protein solution into an animal; a metal colloid and an UNK protein as described in Patent Document 1 A method of administering to an animal by binding to the animal; An active UNK gene (that is, a purified polynucleotide linked to a high-expression promoter, etc.) is administered to an animal according to a gene therapy method using a retrovirus vector or an adenovirus vector. Method for introduction; Preparation using the calcium phosphate method, a method using ribosomes or erythrocyte ghosts, an electoral portation method, a method for introducing the UNK gene into cells by a microinjection method using a glass pipe, etc. Can be. Furthermore, these animals and cells can be prepared according to a known transgenic animal preparation method (eg, ', Proc. Natl. Acad. Scl. USA 77; 7380-7384, 1980). That is, an activated UNK gene is introduced into a totipotent cell of a non-human animal (preferably a mouse or a lad), the cell is developed into an individual, and an individual having the somatic cell genome into which the UNK gene is integrated is used. By selecting, a transgenic animal of interest can be produced. Considering the yield of transgenic animals and the efficiency of transgene transfer to the next generation, the method of gene transfer into totipotent cells is a physical injection (microinjection) method of foreign gene DNA. Is optimal. The fertilized egg into which the gene has been injected is then transplanted into the fetal oviduct of the foster parent, and the animals that have developed and born are placed in foster parents and reared, and then DNA is extracted from a part of the body (tail tip, etc.). By confirming the presence of the introduced foreign gene by Southern blot analysis or PCR assay, a primary heterozygous animal in which the foreign gene was introduced into one of the diploid chromosomes was obtained. Homozygous animals are obtained by crossing zygotes. The transgenic animal of the present invention includes a primary heterozygous animal, a homozygous animal obtained by crossing heterozygotes, their progeny, or their fetuses. The eleventh invention is a cell or animal in which the function of the immune response regulatory gene of the first invention is defective. “Functional deficiency” in this case means, for example, that the UNK gene product, UNK protein, is not functioning normally in the immune response system. Therefore, the cells or animals of the eleventh invention are immunodeficient cells or immunodeficient animals in which the immune response is not functioning normally. One embodiment of such a cell or animal is a cell or animal that does not produce UNK protein due to the absence of the UNK gene coding region in the chromosomal genome. In another embodiment, one or more nucleotides in the coding region of the UNK gene are deleted, added, or substituted with other nucleotides (genetic mutation) so that they do not produce the UNK protein or have a mutant form. A cell or animal that produces UNK protein. Yet another embodiment is a cell or animal that does not express the UNK gene due to deletion or partial mutation of the expression control region of the UNK gene, and thus does not produce UNK protein. In still another embodiment, a ribozyme that cleaves a sense strand, antisense strand, sense / antisense double strand (siRNA), RNAi, and UNK mRNA for a transcript (mRNA) from the UNK gene is expressed, and UNK is expressed from the mRNA. A cell or animal in which no protein is synthesized. Cells expressing the sense strand, antisense strand, sense 'antisense duplex (siRNA), and RNAi lipozyme can be prepared by introducing a DNA fragment encoding them into cells, but the UNK gene It is preferable to introduce a deletion mutation into the coding region and / or the expression control region of the UNK gene in order to ensure that the gene is defective. Such gene-specific mutagenesis can be performed by a known target gene recombination method (Gene Yuichi targeting method: Science 244: 1288-1292, 1989). Then, by generating a mutagenized totipotent cell (ES cell) in an individual, an animal (knockout animal) in which the function of UNK protein is deficient in all somatic cells can be obtained. A twelfth invention is a method for producing an antibody against an arbitrary protein in a rodent, comprising the steps of: administering an antigen to the animal of the tenth invention; and isolating the antibody from the animal. Is included. Specifically, the same means as in the production of an animal of the tenth invention (for example, a method of administering an UNK protein to an animal or a method of introducing an UNK gene into an animal in accordance with a method of gene therapy) can be used in an animal. Increase the activity of UNK protein and administer any antigenic substance to animals. Since the immune response of animals is activated by administration and high expression of UNK protein, antibodies can be efficiently produced. In another aspect of the twelfth invention, an antibody is produced using a transgenic animal having an activated UNK gene in somatic cells. It is a method to accomplish. This animal overexpresses the UNK protein due to high expression of the introduced UNK gene, and has a high immune response ability, so that it efficiently produces antibodies. The antibody is a polyclonal antibody or a monoclonal antibody, and can be prepared by the same procedure as the antibody of the ninth invention.
実施例 次に実施例を示しこの発明をさらに詳細かつ具体的に説明するが、 この発明は これらの例に限定されるものではない。 なお、 DNA の組換えに関する基本的な 操作および酵素反応は、 文献 ( "Molecular Cloning, Laboratory Manual" Cold Spring Harbor Laboratory, 1989) に従った。 制限酵素および各種修飾 酵素は特に記載のない場合には、 Invitrogen 社製のものを用いた。 各酵素反応 の緩衝液組成、 並びに反応条件は付属の説明書に従った。 EXAMPLES Next, the present invention will be described in more detail and specifically with reference to examples, but the present invention is not limited to these examples. The basic operation and enzymatic reaction for DNA recombination were in accordance with the literature ("Molecular Cloning, Laboratory Manual", Cold Spring Harbor Laboratory, 1989). Unless otherwise specified, restriction enzymes and various modifying enzymes were manufactured by Invitrogen. The buffer composition and reaction conditions for each enzyme reaction were in accordance with the attached instructions.
実施例 Example
30 mer のセンスプライマー (配列番号 5のオリゴヌクレオチド) と 30 mer のアンチセンスプライマー (配列番号 6のオリゴヌクレオチド) を用い、 マウス 脾臓から抽出した mRNAから調整した cDNA を铸型として PCR により増幅し た。 PCR 産物を KODポリメラーゼ (東洋紡社製) により平滑化し、 pZero-2.0 の EcoRV部位に挿入し、 宿主大腸菌 DH-5 a FT (Invitorgen社製) に形質転換 を行った。 得られたクローンの塩基配列を決定し、 逆転写反応、 および PCR 反 応中に増幅エラーが生じなかったクローンを選択した。 得られたクローン m- UNK は全長 578 b pからなり、 489 bp のオープンリーディ ングフレームUsing a 30-mer sense primer (oligonucleotide of SEQ ID NO: 5) and a 30-mer antisense primer (oligonucleotide of SEQ ID NO: 6), a cDNA prepared from mRNA extracted from mouse spleen was amplified by PCR as type III. . The PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host Escherichia coli DH-5a FT (manufactured by Invitorgen). The nucleotide sequence of the obtained clone was determined, and a clone in which an amplification error did not occur during the reverse transcription reaction and the PCR reaction was selected. The resulting clone, m-UNK, has a total length of 578 bp and an open reading frame of 489 bp.
(ORF) 、 53 bp の 3'非翻訳領域からなる構造を有していた (配列番号 1 ) 。 (ORF) had a structure consisting of a 53 bp 3 ′ untranslated region (SEQ ID NO: 1).
ORFは 163 アミノ酸残基からなる蛋白質をコードおり、 分泌蛋白質の特徴的な シグナル配列が存在していた。 (配列番号 2 ) 。 実施例 2 The ORF encoded a protein consisting of 163 amino acid residues, and had a characteristic signal sequence of a secreted protein. (SEQ ID NO: 2). Example 2
30 mer のセンスプライマー (配列番号 7のオリゴヌクレオチド) と 30 mer のアンチセンスプライマー (配列番号 8 のオリゴヌクレオチド) を用い、 ラッ ト脾臓から抽出した mRNAから調整した cDNA を铸型として PCRにより増幅 した。 PCR 産物を KOD ポリメラーゼ (東洋紡社製) により平滑化し、 pZero- 2.0の EcoRV部位に揷入し、 宿主大腸菌 DH-5 a FT (Invitorgen社製) に形質 転換を行った。 得られたクローンの塩基配列を決定し、 逆転写反応、 および PCR 反応中に増幅エラーが生じなかったクローンを選択した。 得られたクロー ン RUNK は全長 527 bp からなり、 483 bp のオープンリ一ディングフレーム (ORF) 、 44 bp の 3,非翻訳領域からなる構造を有していた (配列番号 3) 。 ORF は 162 アミノ酸残基からなる蛋白質をコードしており、 分泌蛋白質の特徴 的なシグナル配列が存在していた。 (配列番号 4 ) 。 Using a 30-mer sense primer (oligonucleotide of SEQ ID NO: 7) and a 30-mer antisense primer (oligonucleotide of SEQ ID NO: 8), the cDNA prepared from the mRNA extracted from the rat spleen was amplified by PCR as type III. . The PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host E. coli DH-5a FT (manufactured by Invitorgen). The nucleotide sequence of the obtained clone was determined, and a clone in which no amplification error occurred during the reverse transcription reaction and the PCR reaction was selected. The obtained clone RUNK had a total length of 527 bp, and had a structure of an open reading frame (ORF) of 483 bp, a structure of 44 bp and 3 untranslated regions (SEQ ID NO: 3). The ORF encoded a protein consisting of 162 amino acid residues, and had a characteristic signal sequence of a secreted protein. (SEQ ID NO: 4).
実施例 3 実施例 1で特定した m— UNKの cDNAを铸型として、 PCRにより翻訳領域を 増幅した。 Example 3 The translation region was amplified by PCR using the m-UNK cDNA specified in Example 1 as type III.
PCRプライマ一は BamHIサイトを付加した 30 merのセンスプライマー (配列 番号 9) と Apalサイトを付加した 30 merのアンチセンスプライマ一 (配列番 号 1 0 ) を用いた。  As a PCR primer, a 30-mer sense primer (SEQ ID NO: 9) to which a BamHI site was added and a 30-mer antisense primer (SEQ ID NO: 10) to which an Apal site was added were used.
PCR産物を KODポリメラ一ゼ (東洋紡社製) により平滑化し、 pZero-2.0の EcoRV部位に揷入し、 宿主大腸菌 DH- 5 a FT (Invitorgen社製) に形質転換を 行った。 得られたクローンの塩基配列を決定し、 PCR 反応中に増幅エラ一が生 ぜず、 目的の構造を有するクローンを選択した。 このプラスミドから BamHIか ら Apalのフラグメントを pcDNA3.1-myc-his-(B) +の BamHIから Apalの間に 挿入し宿主大腸菌 DH-5 o! FT (Invitorgen 社製) に形質転換を行った。 塩基配 列を確認し、 各 cDNAの ORFの C末端に Mycタグと His夕グが融合した蛋白 質として発現されるクローンを選択した。 このクローンを LB培地で 37でで 16 時間培養し、 発現プラスミド DNA (m-UNK-MH/pcDNA3. 1-myc-his-(B) +を精 製した。 The PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host Escherichia coli DH-5a FT (manufactured by Invitorgen). The nucleotide sequence of the obtained clone was determined, and a clone having the desired structure was selected without generating amplification errors during the PCR reaction. From this plasmid, BamHI to Apal fragment was inserted between BamHI and Apal of pcDNA3.1-myc-his- (B) + and transformed into host Escherichia coli DH-5 o! FT (manufactured by Invitorgen). . Check the nucleotide sequence and confirm that the Myc tag and His protein are fused to the C-terminal of the ORF of each cDNA. Clones that were expressed as quality were selected. This clone was cultured in LB medium at 37 for 16 hours to purify the expression plasmid DNA (m-UNK-MH / pcDNA3.1-myc-his- (B) +).
実施例 4 実施例 1 で特定した m-UNK の cDNA をマルチクロ一ニングサイトの中にあ る EcoRIおよび Notlにより制限酵素で切断し、 電気泳動の後、 目的のバンドを 切り出し、 pcDNA3-A-(+)の EcoRIおよび Notl のサイトの間に導入した後、 宿 主大腸菌 DH-5 a FT (Invitrogen 社製) に形質転換を行った。 塩基配列を確認 し、 サイ卜メガロウィルスプロモー夕一により m-UNKを発現させる構造を有す るクローンを選択した。 このクローンを LB培地で 37でで 16時間培養し、 発現 プラスミド DNA (m-UNK /pcDNA3- (A) +) を精製した。 Example 4 The cDNA of m-UNK specified in Example 1 was digested with EcoRI and Notl in the multi-cloning site with restriction enzymes.After electrophoresis, the target band was cut out, and pcDNA3-A- ( After introduction between the EcoRI and Notl sites of (+), host Escherichia coli DH-5a FT (Invitrogen) was transformed. The nucleotide sequence was confirmed, and a clone having a structure capable of expressing m-UNK was selected by cytomegalovirus promoter. This clone was cultured in LB medium at 37 for 16 hours, and the expression plasmid DNA (m-UNK / pcDNA3- (A) +) was purified.
このプラスミ ドを铸型として、 Xbalサイトを付加した 45 merのセンスプラ イマ一 (配列番号 1 1のオリゴヌクレオチド) と 18 merのアンチセンスプライ マー (配列番号 1 2のオリゴヌクレオチド) を用い、 PCR により増幅した。 PCR産物を KOD ポリメラーゼ (東洋紡社製) により平滑化し、 pZero-2.0 の EcoRV部位に挿入し、 宿主大腸菌 DH-5 a FT (Invitorgen社製) に形質転換を 行った。 塩基配列を確認し、 目的の構造を有するクローンを選択した。 このクロ ーンを LB 培地で 37でで 16時間培養し、 発現プラスミド DNAを精製した。 こ のプラスミ ドの Xbalサイトから Pmelサイトの間の cDNAフラグメントを制限 酵素による切断後、 精製し、 大腸菌発現ベクター (PET30-A Novagen 社製)の Xbal サイ トカ、ら EcoRV サイ トの間に挿入し'、 宿主大腸菌 DH-5 FT Using this plasmid as type I, PCR was performed by PCR using a 45-mer sense primer (oligonucleotide of SEQ ID NO: 11) to which an Xbal site was added and an 18-mer antisense primer (oligonucleotide of SEQ ID NO: 12). Amplified. The PCR product was blunted with KOD polymerase (manufactured by Toyobo), inserted into the EcoRV site of pZero-2.0, and transformed into host E. coli DH-5a FT (manufactured by Invitorgen). The nucleotide sequence was confirmed, and a clone having the desired structure was selected. This clone was cultured in LB medium at 37 for 16 hours, and the expression plasmid DNA was purified. The cDNA fragment between the Xbal site and the Pmel site of this plasmid was digested with restriction enzymes, purified, and inserted between the Xbal site and the EcoRV site of an E. coli expression vector (PET30-A Novagen). ', Host E. coli DH-5 FT
(Invitorgen 社製) に形質転換を行った。 塩基配列を確認し、 目的の構造を有 するクローンを選択した。 このクローンを LB培地で 37でで 16時間培養し、 発 現プラスミ ド DNAを精製した。 (Manufactured by Invitorgen). The nucleotide sequence was confirmed, and a clone having the desired structure was selected. This clone was cultured in LB medium at 37 for 16 hours, and the expressed plasmid DNA was purified.
このプラスミ ドを宿主大腸菌 BL21 -Codon Plus (Stratagene 社製)に形質転 換を行い、 カナマイシンを含む SOB 培地で培養し、 IPTG により蛋白質の誘導 を行い、 宿主に m-UNK 蛋白質の発現を誘導した。 大腸菌の回収後 8 M 尿素を 含む PBS 緩衝液に懸濁し、 凍結融解処理を行った後、 超音波で破砕した。 破砕 液を遠心操作により上清を分離し、 NTA-レジン (Qiagen社製) により精製した c 尿素を含む精製液をゲル濾過により分離し、 m-UNK 蛋白質を含む画分を集めた 後、 PBSにより透析し、 遠心操作により不溶物を除去した。 This plasmid was transformed into host E. coli BL21-Codon Plus (manufactured by Stratagene), cultured in SOB medium containing kanamycin, and the protein was induced by IPTG, and the expression of m-UNK protein was induced in the host. . 8 M urea after recovery of E. coli The cells were suspended in a PBS buffer solution, freeze-thawed, and disrupted by ultrasonication. The supernatant was separated from the crushed liquid by centrifugation, the purified liquid containing c- urea purified by NTA-resin (Qiagen) was separated by gel filtration, and the fraction containing m-UNK protein was collected. Dialysis and centrifugation to remove insolubles.
得られたシグナル配列を削除した蛋白質を m-UNK-myc-his 蛋白質として以 降の実験に用いた。  The protein from which the obtained signal sequence was deleted was used as m-UNK-myc-his protein in the subsequent experiments.
実施例 5 実施例 4で得られた発現プラスミド DNA (m-UNK /pcDNA3- (A) + ) をアル メニアンハムスターの筋肉に注射し免疫し、 2週間後実施例 4で得られた m- UNK-myc-his 蛋白質を免疫し、 更に 2週間後、 発現プラスミド DNA (m-UNK / pcDNA3- (A) + ) を筋肉に注射し免疫した。 最終免疫から 2週間後、 ハムス夕 一より定法に従って、 採血し、 ポリクロ一ナル抗体を精製すると共に、 脾臓細胞 からモノクロ一ナル抗体の作成を行った。 Example 5 The expression plasmid DNA (m-UNK / pcDNA3- (A) +) obtained in Example 4 was injected into the muscle of an Armenian hamster for immunization, and two weeks later, the m-UN obtained in Example 4 was used. After immunization with the UNK-myc-his protein, and two weeks later, the expression plasmid DNA (m-UNK / pcDNA3- (A) +) was injected into the muscle for immunization. Two weeks after the final immunization, blood was collected from Hams by the usual method to purify the polyclonal antibody and to prepare a monoclonal antibody from spleen cells.
得られたポリクローナル抗体を用いて m-UNK-myc-his 蛋白質を検出し、 抗 体が作成されていることを確認した。 (図 3)  Using the obtained polyclonal antibody, m-UNK-myc-his protein was detected, and it was confirmed that the antibody was produced. (Figure 3)
実施例 6 プラスミド m-UNK /pcDNA3- (A) +をサル腎臓細胞 COS-7にリン酸カルシゥ ム法にて細胞に導入し、 2 4時間後、 培養液を血清成分が含まない物に変更し、 48 時間更に 37でで培養した後、 細胞上清と細胞を各々回収し、 蛋白成分を SDS-PAGE により分離した後、 ポリクローナル抗体を用いてウェスタンプロッ 卜法により m-UNKを検出し、 正しく m-UNKが発現していることを確認すると 共に、 プロセッシングが行われ、 上清に放出されている事を確認した。 実施例 7 バキュロウィルス発現プラスミド pAC-GP67-B (Invitrogen 社製) を铸型と して、 センスプライマ一 (配列番号 13) と m-UNK の配列を含むアンチセンス プライマ一 (配列番号 1 4 ) を用いて PCR を行い、 パキュロウィルスのシグナ ル配列を増幅した。 プラスミド DNA (m-UNK /pcDNA3- (A) + ) を铸型として、 バキュロウィルスの一部シグナル配列を含み配列番号 1 4の相補鎖であり、 かつ m-UNK のシグナル配列の切断店の下流の配列を含むプライマー (配列番号 1 5 ) とアンチセンスプライマー (配列番号 1 2 ) を用いて PCRを行い、 m- UNK の部分 cDNA を増幅した。 この cDNA と前述のパキュロウィルスのシグナル配 列の DNA を铸型として、 センスプライマー (配列番号 1 3 ) とアンチセンスプ ライア一 (配列番号 1 2 ) を用いて PCR を行い、 バキュロウィルスのシグナル 配列と m-UNKのシグナル配列の切断点の下流の配列が融合した DNAを増幅し (配列番号 1 5 ) 、 KOD ポリメラ一ゼ (東洋紡社製) により平滑化し、 pZero- 2.0の EcoRV部位に揷入し、 宿主大腸菌 DH-5 o! FT (Invitorgen社製) に形質 転換を行った。 目的の構造を持つクローンを選択し、 プラスミドを精製した。 このプラスミドを Spel と Notl で切断し、 得られたフラグメントをバキュ口 ウィルス発現プラスミド pAC-GP67-Bの Spelと Notlの間に挿入し、 宿主大腸 菌 DH-5 0! FT (Invitorgen 社製) に形質転換を行った。 目的の構造を持つクロ ーンを選択し、 プラスミドを精製した。 得られたプラスミドを Pharmingen 社 のプロトコルに従い、 m-UNK 蛋白質を発現する組換えバキュロウィルスを作成 し、 m- UNK 蛋白質を無蛋白質培地の中に放出させると共に、 昆虫細胞を回収し た。 上清と細胞から SDS により蛋白質を溶解させ、 ウエスタンプロットをおこ ない、 m-UNK 蛋白質が発現し、 放出されていることを確認すると共に、 糖鎖修 飾がされていることを電気泳動的に確認した。 Example 6 Plasmid m-UNK / pcDNA3- (A) + was introduced into monkey kidney cells COS-7 by calcium phosphate method, and after 24 hours, the culture solution was changed to one containing no serum components. After culturing for 48 hours at 37, the cell supernatant and cells were collected separately, and the protein components were separated by SDS-PAGE, and then m-UNK was detected by Western blotting using a polyclonal antibody. It was confirmed that m-UNK was correctly expressed, processed, and released into the supernatant. Example 7 Using the baculovirus expression plasmid pAC-GP67-B (manufactured by Invitrogen) as type III, the sense primer 1 (SEQ ID NO: 13) and the antisense primer 1 containing the sequence of m-UNK (SEQ ID NO: 14) PCR was performed to amplify the signal sequence of paculovirus. Plasmid DNA (m-UNK / pcDNA3- (A) +) is a 铸 type, which is a complementary strand of SEQ ID NO: 14 including a partial baculovirus signal sequence, and downstream of the cleavage site of the m-UNK signal sequence PCR was performed using a primer (SEQ ID NO: 15) containing the above sequence and an antisense primer (SEQ ID NO: 12) to amplify a partial cDNA of m-UNK. Using this cDNA and the DNA of the signal sequence of the paculovirus as described above as a 铸 type, PCR was performed using a sense primer (SEQ ID NO: 13) and an antisense primer (SEQ ID NO: 12) to obtain a baculovirus signal sequence. Amplified DNA (SEQ ID NO: 15) fused with the sequence downstream of the cleavage point of the m-UNK and m-UNK signal sequences, blunted with KOD polymerase (manufactured by Toyobo), and inserted into the EcoRV site of pZero-2.0 Then, the host Escherichia coli DH-5 o! FT (Invitorgen) was transformed. A clone having the desired structure was selected, and the plasmid was purified. This plasmid was digested with Spel and Notl, and the obtained fragment was inserted between Spel and Notl of the Bacchus virus expression plasmid pAC-GP67-B and inserted into the host E. coli DH-50! FT (Invitorgen). Transformation was performed. A clone having the desired structure was selected, and the plasmid was purified. Using the obtained plasmid, a recombinant baculovirus expressing the m-UNK protein was prepared according to the protocol of Pharmingen, the m-UNK protein was released into a protein-free medium, and the insect cells were collected. The protein is dissolved from the supernatant and cells by SDS, and Western blotting is performed to confirm that the m-UNK protein is expressed and released, and to electrophoretically confirm that the sugar chain is modified. confirmed.
実施例 8 BAJLB/cマウス脾臓細胞から、 カラムを用いて B細胞を分画し、 m-UNK蛋白 質の存在下で培養すると、 非存在下に比較して優位な B細胞の増殖が認められた c さらに、 LPS 非応答性マウスである C3H/HeJ から得られた B細胞にも同様な 増殖活性能を示すことから、 この反応は LPS によるものではなく、 H1-UNK 蛋 白質により誘導された反応であることが確認された (図 1 ) 。 Example 8 B cells were fractionated from a spleen cell of BAJLB / c mouse using a column, and m-UNK protein When cultured in the presence of quality, as compared to the absence and c growth was observed in the dominant B cell, LPS non-responder mice in which C3H / similar proliferative activity in B cells from HeJ The results showed that this reaction was not due to LPS but was induced by H1-UNK protein (FIG. 1).
実施例 9 m-UNK蛋白質の免疫応答に作用する効果を調べるために、 BALB/cマウスを ォブアルブミン (OVA) 単独あるいは OVA と m-UNK蛋白質の混合液を腹腔内 に投与した。 投与 2週間後、 それぞれのマウスの OVA に対する血清抗体価を測 定したところ、 OVA単独投群に比べ OVAと m-UNK蛋白質の混合液投与群では OVAに対する血清抗体価の優位な上昇が認められた (図 2 ) 。 Example 9 To examine the effect of m-UNK protein on the immune response, BALB / c mice were intraperitoneally administered with ovalbumin (OVA) alone or a mixture of OVA and m-UNK protein. Two weeks after the administration, the serum antibody titer to OVA of each mouse was measured, and a significant increase in the serum antibody titer to OVA was observed in the group administered with the mixture of OVA and m-UNK protein compared to the group administered with OVA alone. (Figure 2).
実施例 10 マウス脾臓細胞と羊赤血球を m-UNK存在下および非存在下で 4日間培養後、 羊赤血球に対する抗体産生を、 溶血斑形成細胞 (PFC) 数を測定することで解析 した (PFCについては、 "Selected Methods in cellular Immunology", edited by Barbara B. Mishell and Stanley M. Shiigi, 1980, W. H. Freeman and Company, p 86-89参照) 。 Example 10 Mouse spleen cells and sheep erythrocytes were cultured in the presence and absence of m-UNK for 4 days, and antibody production against sheep erythrocytes was analyzed by measuring the number of hemolytic plaque forming cells (PFCs) See "Selected Methods in cellular Immunology", edited by Barbara B. Mishell and Stanley M. Shiigi, 1980, WH Freeman and Company, p. 86-89).
結果は図 4 に示したとおりである。 羊赤血球の存在下では、 コントロールと して用いたベクタ一 pET30 に比較して、 m-UNK 存在下では、 溶血斑数が増加 していたことから、 抗体産生が増強されていることが判明した。 これに対し、 羊 赤血球の非存在下では、 m-UNK 存在下においても溶血斑数が増加しないことか ら、 特異的抗体産生は認められないことが判明した。  The results are shown in Figure 4. In the presence of sheep erythrocytes, the number of hemolytic plaques was increased in the presence of m-UNK compared to the control vector pET30, indicating that antibody production was enhanced. . On the other hand, in the absence of sheep erythrocytes, the number of hemolytic spots did not increase even in the presence of m-UNK, indicating no specific antibody production.
以上の結果から、 UNKが in vitro において抗原特異的抗体産生を増強させる ことが確認された。  From the above results, it was confirmed that UNK enhances the production of antigen-specific antibodies in vitro.

Claims

請求の範囲 The scope of the claims
1. げっ歯類の単離遺伝子であって、 配列番号 2または 4のいずれかのアミノ 酸配列、 または配列番号 2 または 4における 1若しくは複数個のアミノ酸残基 が欠失、 付加または他のアミノ酸残基に置換した配列を有する免疫応答調節蛋白 質をコードする免疫応答調節遺伝子。 1. an isolated rodent gene, wherein the amino acid sequence of either SEQ ID NO: 2 or 4 or one or more amino acid residues in SEQ ID NO: 2 or 4 are deleted, added or other amino acids An immune response regulatory gene encoding an immune response regulatory protein having a sequence substituted for a residue.
2. 転写産物 mRNAから合成される cDNAが、 それぞれ配列番号 1または 3 の塩基配列を有する請求項 1の免疫応答調節遺伝子。 2. The immune response regulatory gene according to claim 1, wherein the cDNA synthesized from the transcript mRNA has the nucleotide sequence of SEQ ID NO: 1 or 3, respectively.
3. 請求項 1の免疫応答調節遺伝子のゲノム DNA、 mRNA、 cDNAまたはそれ らの相補配列から精製されたポリヌクレオチド。 3. A polynucleotide purified from genomic DNA, mRNA, cDNA, or a sequence complementary thereto, of the immune response regulatory gene of claim 1.
4. 請求項 1の免疫応答調節遺伝子または請求項 3の精製ポリヌクレオチドと ストリンジェン卜な条件下でハイプリダイズするオリゴヌクレオチドプローブ。' 4. An oligonucleotide probe that hybridizes under stringent conditions with the immune response regulatory gene of claim 1 or the purified polynucleotide of claim 3. '
5. 請求項 1の免疫応答調節遺伝子または請求項 3の精製ポリヌクレオチドを PCR増幅するプライマーセッ卜。 5. A primer set for PCR-amplifying the immune response control gene of claim 1 or the purified polynucleotide of claim 3.
6. 請求項 3の精製ポリヌクレオチドを保有する組換えベクター。 6. A recombinant vector carrying the purified polynucleotide of claim 3.
7. 請求項 6の組換えべクタ一による形質転換細胞。 7. A transformed cell obtained by the recombinant vector according to claim 6.
8. げっ歯類の精製蛋白質であって、 配列番号 2または 4のいずれかのアミノ 酸配列、 または配列番号 2または 4における 1若しくは複数個のアミノ酸残基が 欠失、 付加または他のアミノ酸残基に置換した配列を有する免疫応答調節蛋白質 < 8. Purified rodent protein, wherein the amino acid sequence of either SEQ ID NO: 2 or 4 or one or more amino acid residues in SEQ ID NO: 2 or 4 are deleted, added or other amino acid residues Immune Response Regulatory Protein Having a Substituted Sequence <
9. 請求項 1の免疫応答調節遺伝子または請求項 3のポリヌクレオチドの発現 産物である請求項 8の免疫応答調節蛋白質。 9. The immune response regulatory protein of claim 8, which is an expression product of the immune response regulatory gene of claim 1 or the polynucleotide of claim 3.
10. 請求項 8の免疫応答調節蛋白質の一部分からなる精製または合成された ぺプチド。 10. A purified or synthesized peptide comprising a part of the immune response regulatory protein of claim 8.
1 1. 配列番号 2における第 1- 163 アミノ酸残基の連続 1 0以上のアミノ酸配 列からなる請求項 1 0のペプチド。 1 1. The peptide according to claim 10, comprising 10 or more consecutive amino acid sequences of amino acids 1-163 in SEQ ID NO: 2.
12. 配列番号 4における第 1- 162アミノ酸残基の連続 1 0以上のアミノ酸配 列からなる請求項 1 0のぺプチド。 12. The peptide according to claim 10, comprising a continuous 10 or more amino acid sequence of amino acids 1-162 in SEQ ID NO: 4.
13. 請求項 8の免疫応答調節蛋白質を特異的に認識する抗体。 13. An antibody that specifically recognizes the immune response regulatory protein of claim 8.
14. 請求項 8の免疫応答調蛋白質が過剰に機能発現している細胞または動物 14. A cell or animal in which the immune response modulator protein of claim 8 is overexpressed.
15. 請求項 1の免疫応答調節遺伝子が機能欠損している細胞または動物。 15. A cell or animal in which the immune response regulatory gene according to claim 1 is defective.
16. 任意の蛋白質に対する抗体をげつ歯類動物体内で作成する方法であって. 請求項 1 4の動物に抗原物質を投与する工程と、 この動物から抗体を単離するェ 程を含むことを特徴とする方法。 16. A method for producing an antibody against a desired protein in a rodent. The method according to claim 14, comprising administering an antigenic substance to the animal, and isolating the antibody from the animal. The method characterized by the above.
PCT/JP2004/016376 2003-10-29 2004-10-28 Rodent immune response regulatory proteins WO2005040380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-369583 2003-10-29
JP2003369583 2003-10-29

Publications (1)

Publication Number Publication Date
WO2005040380A1 true WO2005040380A1 (en) 2005-05-06

Family

ID=34510400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016376 WO2005040380A1 (en) 2003-10-29 2004-10-28 Rodent immune response regulatory proteins

Country Status (1)

Country Link
WO (1) WO2005040380A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060090A2 (en) * 2002-01-18 2003-07-24 Zymogenetics, Inc. Novel cytokine zcytor17 ligand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060090A2 (en) * 2002-01-18 2003-07-24 Zymogenetics, Inc. Novel cytokine zcytor17 ligand

Similar Documents

Publication Publication Date Title
US7501553B2 (en) Non-human transgenic mammal comprising a modified MSP-1 nucleic acid
CN101263158B (en) Suppression of B-cell apoptosis in transgenic animals expressing humanized immunoglobulin
WO2020207286A1 (en) Rna site-directed editing using artificially constructed rna editing enzymes and related uses
CA2138999A1 (en) Cloning and expression of gonadotropin-releasing hormone receptor
JPH06500690A (en) Human egg zona pellucida protein ZP3
EP1731032B1 (en) Transgenic mice carrying gene for soluble form of membrane protein useful for antibody production against a target antigen, and methods using thereof
WO2005040380A1 (en) Rodent immune response regulatory proteins
JP2003517845A (en) Improved nucleic acid vaccination
CN107446937B (en) Chimeric antigen receptor, expression gene thereof, photo-controlled chimeric antigen receptor modified T cell and application thereof
WO2005063986A1 (en) Immune response regulatory protein
JP3764286B2 (en) Protein AMSH and its cDNA
JPH1066582A (en) Gene fragment or the like of antibody capable of recognizing helix d domain of il-6
FI3687287T3 (en) Rodents expressing humanized c1q complex
JP3823148B2 (en) Fish with enhanced environmental stress tolerance
WO1997007670A1 (en) Immunologically tolerant vertebrate and use of the same
JPH114638A (en) Purification of high-order transcription complex from transgenic non-human animal
EP1132468A1 (en) MAST CELL-SPECIFIC SIGNAL TRANSDUCING MOLECULES AND cDNAS THEREOF
JPWO2002048349A6 (en) Polypeptide having heparin binding ability
JP2003259871A (en) Secretory protein creg2 expressing brain-specific expression and application of the same
AU2003200914B2 (en) Novel modified nucleic acid sequences and methods for increasing mRNA levels and protein expression in cell systems
JPH1084813A (en) Hepatitis c model animal
WO2006054666A1 (en) Chick lif protein and utilization thereof
JPH0499800A (en) Production of recombinant mouse il-6 receptor
WO2000023468A1 (en) HUMAN PROTEINS STAM2a AND STAM2b AND cDNAS ENCODING THESE MOLECULES
WO2000023586A1 (en) HUMAN PROTEIN Grf40 AND cDNA THEREOF

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP