WO2005035806A1 - METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca - Google Patents

METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca Download PDF

Info

Publication number
WO2005035806A1
WO2005035806A1 PCT/JP2004/014734 JP2004014734W WO2005035806A1 WO 2005035806 A1 WO2005035806 A1 WO 2005035806A1 JP 2004014734 W JP2004014734 W JP 2004014734W WO 2005035806 A1 WO2005035806 A1 WO 2005035806A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
molten salt
molten
reaction vessel
reduction
Prior art date
Application number
PCT/JP2004/014734
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Ogasawara
Makoto Yamaguchi
Masahiko Hori
Toru Uenishi
Yuko Urasaki
Kazuo Takemura
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004044552A external-priority patent/JP2005133196A/en
Priority claimed from JP2004074445A external-priority patent/JP2005264181A/en
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to US10/575,224 priority Critical patent/US20070131057A1/en
Priority to AU2004280401A priority patent/AU2004280401C1/en
Priority to EP04792090A priority patent/EP1683877A4/en
Publication of WO2005035806A1 publication Critical patent/WO2005035806A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals

Definitions

  • the present invention relates to a metal chloride containing TiCl, which is treated with Ca to reduce metal Ti or a Ti alloy.
  • the present invention relates to a method for producing Ti or a Ti alloy by reducing Ca to be produced.
  • metal Ti is produced through a reduction step and a vacuum separation step.
  • TiCl which is the raw material of Ti, is reduced by Mg in the reaction vessel and sponge-like.
  • Metal Ti is produced.
  • sponge-like unreacted metal T produced in the reaction vessel and MgCl as a by-product are removed.
  • TiCl is reduced by Mg to form particulate metal Ti.
  • Generated metal Ti is successively below
  • the specific gravity of 22 is larger than the specific gravity of molten Mg. Due to this difference in specific gravity, the by-product molten MgCl
  • Ti is generated in the form of particles near the liquid surface and settles.
  • the generated Ti powder settles in an agglomerated state, and during the sedimentation, it sinters due to the temperature of the melt, grows grains, and is collected outside the reaction vessel. Is difficult. For this reason, continuous production is difficult and productivity is hindered. This is precisely the reason why Ti is produced as a titanium sponge in a batch in a reaction vessel.
  • Ca has a stronger affinity for C1 than Mg. In principle, it is a reducing agent for TiCl.
  • TiCl is supplied to the liquid level of the reducing agent in the reaction vessel,
  • the reaction field expands compared to the case where the reaction field is limited, and the heat generation area expands and cooling becomes easier.Thus, the supply rate of TiCl, which is the raw material for Ti, can be greatly increased, and the productivity is greatly improved.
  • Still another Ti production method is the Olson method described in US Patent No. 2,845,386. This is an oxide that directly reduces TiO with Ca without passing through TiCl
  • An object of the present invention is to provide a method for economically producing high-purity metal Ti or Ti alloy with high efficiency and without using an expensive reducing agent.
  • Ca dissolves about 1.5% in CaCl.
  • the supply rate of TiCl can be increased as described above.
  • the present inventors consider that in order to industrially establish a method for producing Ti by Ca reduction, it is necessary to economically replenish Ca in the molten salt consumed in the reduction reaction.
  • a method of using Ca generated by electrolysis of molten salt and a method of using and circulating Ca by this.
  • Ca in the molten salt is consumed during the reduction reaction, but when the molten salt is electrolyzed, Ca is generated in the molten salt. If the Ca thus obtained is reused for the reduction reaction, This eliminates the need for external Ca supplementation.
  • Ca is not required to be taken out by itself, so that the economic efficiency is improved. It is very difficult to extract Ca alone as a solid, but it is relatively easy to produce Ca in the molten salt.
  • the present invention has been made on the basis of a powerful idea, and is a method for producing Ti or a Ti alloy by the following Ca reduction (1), (2) or (3).
  • Ti and Ti alloy particles in the molten salt by reacting a metal chloride containing TiCl with Ca
  • a method for producing Ti by Ca reduction including a reducing step of generating and a separation step of separating Ti particles or Ti alloy particles generated in the molten salt from the molten salt (hereinafter referred to as a ⁇ first production method '' ).
  • the molten salt in which Ca is dissolved is held in the reaction vessel, and Ca in the molten salt contains TiCl.
  • the molten metal used for producing the Ti or Ti alloy and drawn out of the reaction vessel
  • a combination of a circulating electrolysis process in which salt is electrolyzed to generate and replenish Ca in the molten salt and return to the reaction vessel, and in the electrolysis process, an alloy electrode capable of forming a molten Ca alloy is used as a cathode in the electrolysis process Manufacturing method of Ti or Ti alloy by Ca reduction (hereinafter referred to as “second manufacturing method”).
  • the molten salt is electrolyzed using a molten Ca alloy as a cathode to increase the Ca content in the molten Ca alloy.
  • the molten Ca alloy is brought into contact with molten salt containing CaCl to dissolve Ca in the molten salt.
  • the metal containing TiCl is added to the molten salt in which Ca is dissolved by the Ca replenishing process
  • a method for producing Ti or Ti alloy in a molten salt by supplying a salted sardine and producing Ti or Ti alloy in a molten salt. ).
  • the first production method includes a reduction step of generating Ti particles or Ti alloy particles in the molten salt, and a separation step of separating the generated Ti particles or Ti alloy particles from the molten salt.
  • a reduction step of generating Ti particles or Ti alloy particles in the molten salt and a separation step of separating the generated Ti particles or Ti alloy particles from the molten salt.
  • An embodiment may be adopted in which Ca is extracted to the outside and electrolyzed to generate Ca and used for a Ti or Ti alloy formation reaction (that is, a TiCl reduction reaction).
  • the second manufacturing method is
  • the feature of the dissolving step is that an alloy electrode that also has a molten Ca alloy force is used for the cathode.
  • a molten CaCl salt having an increased Ca concentration is circulated between the reduction step and the electrolysis step.
  • the third production method is similar to the second production method in that a molten Ca alloy electrode is used in the electrolysis step. However, when the Ca is circulated and used, the Ca content is increased. It is characterized in that molten Ca alloy is used as a Ca transport medium.
  • Ti particles are reduced by Ca reduction in a molten salt containing CaCl.
  • the vapor pressure at 850 ° C is very low, with 6.7 kPa (50 mmHg) for Mg and 0.3 kPa (2 mmHg) for Ca. Due to this difference in vapor pressure, the amount of Ti deposited on the inner surface of the upper part of the vessel is much smaller for Ca than for Mg. As a result, in the first to third manufacturing methods, the Ti C1 supply speed can be significantly increased.
  • Ca is inferior in wettability (adhesiveness) to Mg, and Ca adhering to precipitated Ti particles is CaC 1
  • the generated Ti can be taken out of the reaction vessel in a powder state, and continuous Ti production operation can be performed. Work is also possible.
  • a molten salt containing CaCl (hereinafter simply referred to as a molten salt or a molten salt)
  • TiCl Metal chloride containing TiCl in Ca dissolved in molten CaCl solution
  • the reduction reaction can be performed even in the molten Ca solution, and from this point, the reaction efficiency can be improved.
  • the direct supply of TiCl in the gaseous state to the molten CaCl solution is not suitable for Ca in the molten CaCl solution.
  • a TiCl liquid is supplied to the liquid surface of the molten Mg liquid.
  • TiCl gas could be supplied into the molten Mg solution to expand the reaction field.
  • the TiCl gas is supplied into the molten CaCl solution.
  • the reason may be that the vapor pressure of molten Ca is low.
  • the Ti generation step by the reduction reaction in the third production method corresponds to the reduction step
  • Ca is dissolved in the molten salt.
  • granular or Z or powdered Ti or Ti alloy hereinafter, also referred to as Ti particles or Ti alloy particles
  • the handling of Ti particles or Ti alloy particles generated in the molten salt it is also possible to separate the molten salt in the reaction vessel.
  • the operating capacity will be the S batch method.
  • it is preferable to take out the generated Ti in the form of particles withdraw the Ti together with the molten salt out of the reaction vessel, and separate the Ti particles from the molten salt outside the vessel.
  • Ti particles can be easily separated from the molten salt force by squeezing operation by mechanical compression.
  • the first manufacturing method includes the separation step, and the second and third manufacturing methods can also employ such an embodiment.
  • the extracting operation is performed in the second manufacturing method, and an embodiment in which the extracting operation is performed in the first manufacturing method can be adopted.
  • the third production method since the molten Ca alloy is used as a Ca transfer medium as described above, the extraction of the molten salt is not performed.
  • the second production method includes this circulation type electrolysis step, and the first production method also operates in an embodiment having this step.
  • the molten salt having the Ca concentration recovered in this way is returned to the reduction step, and this is repeated to produce Ti or a Ti alloy.
  • the phenomenon that occurs with respect to Ca is basically only an increase or decrease in the dissolved Ca concentration in the molten salt during the circulation process, and does not require an operation of extracting or supplementing Ca alone. Accordingly, high-purity metal Ti or Ti alloy can be produced economically with high efficiency and without using expensive reducing agents.
  • the third production method also includes a Ca generation step by electrolysis of a molten salt containing CaCl,
  • the first point is that the molten Ca alloy is used as a Ca transfer medium when replenishing the Ca of the molten salt. Or, it is different from the second manufacturing method.
  • the current efficiency in the electrolysis step has a large effect on economics, and furthermore, the success or failure of establishing industrial production technology.
  • One of the major causes of the reduction in current efficiency in this electrolysis process is the unreacted dissolved Ca in the molten salt sent to the electrolysis process in the reduction process.
  • the reduction reaction proceeds in the molten salt in the reaction vessel, and the dissolved Ca in the molten salt, which is the reducing agent, is consumed, but is not completely consumed. It cannot be avoided that unreacted dissolved Ca is contained in the molten salt obtained.
  • an alloy electrode made of a molten Ca alloy (hereinafter, referred to as a cathode) is used as a cathode in the electrolysis step.
  • a molten Ca alloy electrode or simply an alloy electrode.
  • the molten salt in the electrolytic cell, and the interface between the molten Ca alloy and the molten salt constituting the alloy electrode are separated by a partition wall and divided into an anode side and an anti-anode side. It is desirable to introduce a salt to the anti-anode side.
  • the molten salt on the anode side contains no or little dissolved Ca, and the above-described back reaction and the accompanying decrease in current efficiency do not occur.
  • the molten salt on the anti-anode side is a molten salt fed to the reduction step, and contains unreacted dissolved Ca, though not so much.
  • Ca is released from the alloy electrode (cathode) to the molten salt on the opposite side of the anode. That is, only the anode side in the electrolytic cell is an electrolysis region, and on the anode side, Ca is efficiently generated by electrolysis of the molten salt in the absence of dissolved Ca, and the generated Ca causes the alloy electrode (cathode) to be generated.
  • Ca is replenished to the molten salt on the anti-anode side (that is, the used molten salt sent from the reduction process).
  • Ca is generated at the interface between the alloy electrode and the molten salt on the anode side, but there is a potential on the anode side (a potential difference occurs at the interface), so that the generated metal Ca is transferred to the alloy electrode as the cathode. It is captured. As a result, the Ca concentration in the alloy electrode increases. On the other hand, since there is no potential at the interface between the alloy electrode and the molten salt on the anti-anode side, Ca is dissolved into the molten salt due to the difference in Ca concentration between the alloy electrode and the molten salt. Since the Ca concentration in the molten salt on the anti-anode side is reduced by the reduction reaction, Ca can be dissolved in the molten salt. The same is true for the molten Ca alloy electrode used in the third manufacturing method described later.
  • the molten salt decreases with the electrolysis.
  • the molten salt that does not contain dissolved Ca may be newly replenished, or a part of the molten salt that is supplied with the power of the reduction process. May be used cyclically. Reduction process power If only a part of the molten salt sent is used, dissolved Ca to be mixed in is small, and knock reaction can be suppressed to a level that does not cause any problem.
  • the Ca alloy constituting the molten Ca alloy electrode an Mg-Ca alloy, an A1-Ca alloy, a Zn-Ca alloy or the like is desirable.
  • the melting point of these Ca alloys is relatively low, 500 ° C or higher for Mg-Ca alloy, 600 ° C or higher for A1-Ca alloy, and 420 ° C or higher for Zn-Ca alloy.
  • the Ca concentration is particularly preferably 45% or less for a Mg—Ca alloy, more preferably 15% or less. 20% or less is desirable for A1-Ca alloy.
  • Zn—Ca alloy it is desirable that the content be 40% or less, and more preferably 20% or less.
  • the lower limit of the Ca concentration is desirably 0.5%.
  • the two points are clearly different from the use of the molten alloy electrode in the first to third production methods.
  • a molten Ca alloy electrode is used as a cathode in the electrolysis step, and this is used as a Ca transfer medium. That is, in the second production method, Ca generated on the cathode side is dissolved in a molten Ca alloy constituting an electrode, and the Ca is converted from the molten Ca alloy into a used molten salt introduced into the reaction vessel by the reaction vessel. The Ca is recirculated and used by increasing the Ca concentration of the molten salt by leaching and circulating it. On the other hand, in the third production method, the molten Ca alloy with increased Ca content is transferred to the reaction vessel, and the molten salt containing CaCl To dissolve Ca in the molten salt to recycle Ca.
  • an electrolytic cell is required for performing a Ca generation step by electrolysis (that is, performing an operation in the Ca generation step), and Ti is generated by a reduction reaction.
  • a reaction vessel is required to perform the operation in the production process, but the electrolytic cell and the reaction vessel can be shared by one vessel (or vessel).
  • a temperature difference can be imparted to the molten salt between the electrolytic cell and the reaction vessel.
  • the temperature of the molten salt in the electrolytic cell is lower than the temperature of the molten salt in the reaction vessel. That is, a combination of high-temperature reduction and low-temperature electrolysis.
  • the reactivity of Ca is increased by the high-temperature reduction, the production efficiency of Ti or Ti alloy is improved, and the solubility of Ca in the molten salt is reduced by low-temperature electrolysis, and the transfer of Ca from the molten salt to the molten Ca alloy Is promoted.
  • the molten salt containing CaCl is held in the reaction vessel also serving as the electrolytic vessel, and the molten salt in the reaction vessel, This solution
  • the interface between the molten salt and the molten Ca alloy constituting the cathode is separated into an anode side and an anti-anode side by a partition wall, and electrolysis is performed. In the vicinity of the anode, C1 gas is generated, and the cathode (molten Ca alloy),
  • Ca is generated in the vicinity of the cathode separated on the anode side by the partition (Ca generation step). This Ca is taken into the molten Ca alloy. On the other hand, on the anti-anode side, a Ca replenishment process in which Ca dissolves from the molten Ca alloy into the molten salt proceeds.
  • the handling of the Ti particles or Ti alloy particles generated in the molten salt is as described above, and the third production method also includes a Ti separation step of separating the generated Ti or Ti alloy from the molten salt.
  • Embodiments can be employed.
  • the molten salt separated from Ti or Ti alloy in the Ti separation step is reacted with the molten Ca alloy in which Ca has been consumed in the Ti generation step, and the unreacted Ca in the molten salt causes the molten Ca It is possible to increase the Ca in the alloy and use the molten Ca alloy in the Ca replenishment process. In this way, Ca in the molten Ca alloy can be supplemented without using electrolysis.
  • Replenishment of Ca is also preferably performed at a low temperature without using this electrolysis. At low temperatures, the solubility of Ca in the molten salt decreases, the efficiency of removing unreacted Ca increases, and the transfer of Ca into the molten Ca alloy is promoted, and the Ca in the molten Ca alloy tends to increase .
  • CaCl having a melting point of 780 ° C. is used as a molten salt.
  • Mixed molten salts may be used.
  • the use of a mixed molten salt lowers the melting point and lowers the temperature of the molten salt, which increases the durability of the furnace material, prolongs the life of the furnace material, and reduces the evaporation of Ca and salts from the liquid surface. Is suppressed.
  • the melting point of the molten salt can be lowered to about 500 ° C.
  • the advantage in terms of the furnace material by lowering the temperature of the molten salt can be obtained in all steps including the reduction step and the electrolysis step.
  • the temperature of the molten salt is lowered, so that the solubility of Ca is lowered, and the convection and diffusion of the molten salt are suppressed, and the back reaction of Ca is also suppressed. If importance is placed on the reactivity in the reduction step, raise the temperature of the molten salt in the reduction step!
  • the temperature of the molten salt is set to the melting point of Ca (838 ° C.). C) It cannot be reduced below.
  • other alkaline earth metals and alkali metals are mixed with Ca By doing so, the melting point can be lowered. For example, by mixing Ca with Mg, the melting point can be lowered to 516 ° C. Force and the mixture force of Ca and Mg
  • TiCl is basically used as a raw material of Ti.
  • Ti alloy can be manufactured by mixing TiCl with other metal chlorides.
  • metal salted slag here may be used in the form of gas, liquid, or misaligned.
  • the average particle size is 0.5 to 50 ⁇ m. Because, after these grains are formed in the molten salt, the grains are removed by the molten salt force, but if they are not small enough to flow together with the molten salt, the removal becomes difficult . Therefore, an appropriate size is 50 m or less. In addition, the reason why the appropriate minimum diameter is set to 0.5 m is a force that makes it possible to remove even smaller objects, and that makes it difficult to separate from molten salt.
  • the strike can be reduced.
  • Mg is produced by electrolysis of MgCl, but Mg is Mg
  • the generated Ca dissolves in CaCl, making it difficult to produce only Ca efficiently.
  • a molten salt in which Ca is dissolved is positively used, so if caution is taken in knocking reaction, the molten salt is mixed with Ca in the electrolysis step. No problem It is not necessary to completely separate only Ca. That is, Ca may be introduced into the reaction vessel from the electrolytic bath together with the molten salt or contained in the molten Ca alloy. Therefore, the cost of electrolytic production of Ca can be significantly reduced.
  • FIG. 1 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a first embodiment of a first manufacturing method.
  • FIG. 2 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a second embodiment of the first manufacturing method.
  • FIG. 3 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a third embodiment of the first manufacturing method.
  • FIG. 4 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a first embodiment of the second manufacturing method.
  • FIG. 5 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a second embodiment of the second manufacturing method.
  • FIG. 6 is a view for explaining the configuration of a metal Ti manufacturing apparatus showing a third embodiment of the second manufacturing method.
  • FIG. 7 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a first embodiment of the third manufacturing method.
  • FIG. 8 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a second embodiment of the third manufacturing method.
  • FIG. 9 is a view for explaining the configuration of a metal Ti manufacturing apparatus showing a third embodiment of the third manufacturing method.
  • FIG. 1 is a view for explaining a configuration of a metal Ti manufacturing apparatus showing a first embodiment of a first manufacturing method.
  • reaction vessel 1 is an iron closed vessel.
  • a reducing agent supply pipe 2 for supplying Ca as a reducing agent is provided at the ceiling of the reaction vessel 1.
  • the bottom of the reaction vessel 1 has a tapered shape whose diameter is gradually reduced downward to promote the discharge of the generated Ti particles, and the generated Ti particles are discharged to the center of the lower end.
  • a Ti discharge pipe 3 is provided.
  • a cylindrical separation wall 4 containing heat exchange is disposed with a predetermined gap between the separation wall 4 and the inner surface of the same part in a straight month.
  • a molten salt discharge pipe 5 for discharging CaCl in the vessel to the side is provided.
  • the raw material supply pipe 6 for supplying TiCl through the separation wall 4 reaches the center of the container.
  • the liquid level is set to a level higher than the molten salt discharge pipe 5 and lower than the upper end of the separation wall 4. Inside the separation wall 4, the molten Ca
  • TiCl gas is supplied as a metal chloride containing C1.
  • the reaction efficiency is increased by ascending in the solution and promoting stirring with the molten CaCl solution.
  • the Ti particles generated in the molten CaCl solution inside the separation wall 4 in the reaction vessel 1 Settles inside and accumulates on the bottom of the container.
  • the deposited Ti particles are appropriately extracted downward together with the molten CaC 1 liquid from the Ti discharge pipe 3 and sent to the separation step 7.
  • reaction vessel 1 Inside the separation wall 4, a molten CaCl solution in which Ca is dissolved is used, and the reduction reaction is performed by Ca in the molten CaCl solution.
  • the separation wall 4 is made of a molten CaCl solution containing a large amount of Ca before being used for the reduction of TiCl,
  • the separation step 7 the Ti particles extracted from the reaction vessel 1 together with the molten CaCl solution are dissolved.
  • the Ti particles are compressed to squeeze out the molten CaCl solution.
  • the electrolysis step 8 the molten CaCl solution introduced from the reaction vessel 1 and the separation step 7 is converted into electricity.
  • the easiness reduces the electrolytic production cost of Ca.
  • Oxygen is released in the form of CO.
  • the produced TiCl is reacted in
  • FIG. 2 is a configuration diagram of a metal Ti manufacturing apparatus showing a second embodiment of the first manufacturing method.
  • the second embodiment of the first manufacturing method differs from the first embodiment in that a reducing agent supply pipe 2a is provided at the lower part of the reaction vessel 1 and Ca is supplied from the lower part to the inside of the separation wall 4. I do.
  • the molten Ca liquid force as the reducing agent is determined by the specific gravity difference from the molten CaCl solution.
  • the inside of the separation wall 4 rises from bottom to top. Because Ca dissolves in CaCl during this floating process
  • FIG. 3 is a configuration diagram of a metal Ti manufacturing apparatus showing a third embodiment of the first manufacturing method.
  • the position of the raw material supply pipe 6a is different. That is, in the first or second embodiment, the raw material supply pipe 6 is configured to supply TiCl to the center of the container.
  • the configuration is such that TiCl is supplied to a position deviated from the center inside the separation wall 4.
  • FIG. 4 is a configuration diagram of a metal Ti manufacturing apparatus showing a first embodiment of the second manufacturing method.
  • a reaction vessel 1 for performing a reduction step and an electrolytic cell 10 for performing an electrolysis step are used.
  • the reaction vessel 1 holds Ca-rich molten CaCl in which Ca is dissolved in a relatively large amount as a molten salt.
  • CaCl has a melting point of about 780 ° C, and its molten salt is
  • the raw material supply pipe 6 is used to convert gaseous TiCl into molten salt in the reaction vessel 1.
  • the Ti particles collected at the bottom of the reaction vessel 1 are extracted from the reaction vessel 1 together with the molten salt present at the bottom, and sent to the Ti separation step 7.
  • the Ti particles extracted together with the molten salt from the reaction vessel 1 are separated by molten salt. Specifically, compress the Ti grains Squeeze out the molten salt.
  • the Ti particles obtained in the Ti separation step 7 are dissolved to form a Ti ingot.
  • the molten salt separated by Ti particle force in the Ti separation step 7 is a used molten salt, which consumes Ca and decreases the Ca concentration.
  • the molten salt is sent from the reaction vessel 1 to the electrolytic cell 10.
  • molten CaCl as a molten salt is electrolyzed between the anode 11 and the cathode 12.
  • An electrode rod 15 penetrated and inserted into the molten Ca alloy 14 and a partition wall 16 for partitioning the molten salt in the electrolytic cell 10 into an anode side and an anti-anode side are provided.
  • the molten Ca alloy 14 has a lower specific gravity than the molten salt here, for example, an Mg-Ca liquid or the like.
  • the heat-resistant and insulating partition wall 16 is located directly below the cathode 12 and divides the molten salt in the electrolytic cell 10 into an anode side and an anti-anode side together with an interface between the molten Ca alloy 14 and the molten salt.
  • the part is inserted into the molten Ca alloy 14, and the lower end is in close contact with the bottom plate of the electrolytic cell 10.
  • the molten salt sent from the reaction vessel 1 to the electrolytic cell 10 directly or via the Ti separation step 7 is introduced into the electrolytic cell 10 on the side opposite to the anode.
  • the molten salt on the anode side is molten CaCl containing substantially no dissolved Ca.
  • the molten salt on the anode side transfers electricity between anode 11 and cathode 12.
  • the Ca generated on the side melts into the molten Ca alloy.
  • the molten salt on the anti-anode side is a used molten salt introduced from the reaction vessel 1, and although dissolved Ca is consumed, unreacted dissolved Ca is included. Ca melts out of the molten Ca alloy 14 into this molten salt. As a result, dissolved Ca is replenished to the used molten salt introduced from the reaction vessel 1, and the Ca-rich molten salt is introduced into the reaction vessel 1 through the reducing agent supply pipe 2 to generate Ti particles by Ca reduction. Used for circulation.
  • TiCl which is a raw material of Ti, is generated by performing a salting treatment on TiO. Generated
  • TiCl is introduced into the reaction vessel 1 through the raw material supply pipe 6, and Ti particles are generated by Ca reduction.
  • the molten salt (molten CaCl 2 in which Ca is dissolved) is subjected to the reduction step (reaction vessel 1), the separation step 7, and the electrolysis step (electrolysis tank 10). Circulate and reduce
  • reaction vessel 1 By repeating the operation of replenishing Ca consumed in the step (reaction vessel 1) in the electrolysis step (electrolysis tank 10), production of Ti is continued in the reduction step (reaction vessel 1).
  • high-quality Ti grains are continuously produced by Ca reduction simply by manipulating the Ca concentration in the molten salt without performing supplementation and removal of solid Ca.
  • the used molten salt containing unreacted dissolved Ca is introduced into the electrolysis step, and the unreacted dissolved Ca is removed from the non- Since it is introduced on the anti-anode side, which is the region, and is not directly involved in electrolysis, back reaction due to dissolved Ca is prevented. Therefore, the current efficiency in the electrolysis process increases. On the anode side, which is an electrolysis area in the electrolysis tank 10, molten CaCl is consumed as electrolysis proceeds. Make up for this
  • molten CaCl containing substantially no dissolved Ca is externally supplemented.
  • a small amount of spent molten salt is introduced into the anode side separately from or together with the replenishment (according to the route shown by the broken line in FIG. 4).
  • the temperature of the molten salt is higher than the melting point of CaCl (about 780 ° C) in any process.
  • FIG. 5 is a configuration diagram of a metal Ti manufacturing apparatus showing a second embodiment of the second manufacturing method.
  • the reaction vessel 1 used here is a cylindrical closed vessel made of iron.
  • a reducing agent supply pipe 2 for supplying Ca as a reducing agent is provided at the ceiling of the reaction vessel 1.
  • the bottom of the reaction vessel 1 has a tapered shape whose diameter is gradually reduced downward in order to promote the discharge of the generated Ti particles.
  • a discharge pipe 3 is provided.
  • a cylindrical separation wall 4 containing heat exchange is arranged with a predetermined gap between the separation wall 4 and the inner surface of the same part.
  • a molten salt discharge pipe 5 for discharging CaCl in the vessel to the side is provided.
  • the liquid level is set to a level higher than the molten salt discharge pipe 5 and lower than the upper end of the separation wall 4.
  • TiCl gas is supplied as a metal chloride containing C1.
  • the TiCl is reduced by Ca in the molten CaCl solution
  • the reaction efficiency is increased by ascending in the solution and promoting stirring with the molten CaCl solution.
  • reaction vessel 1 Inside the separation wall 4, a molten CaCl solution in which Ca is dissolved is used, and the reduction reaction is performed by Ca in the molten CaCl solution.
  • the separation wall 4 is made of a molten CaCl solution containing a large amount of Ca before being used for the reduction of TiCl,
  • the Ti particles are compressed to squeeze out the molten CaCl solution.
  • the molten CaCl solution obtained in the separation step 7 is the molten CaCl
  • the electrolysis step 8 as described above, the molten CaCl liquid introduced from the reaction vessel 1 and the separation step 7 is separated into Ca and C1 gas by electrolysis using the molten Ca alloy electrode as a cathode.
  • the Ca is returned into the reaction vessel 1 through the reducing agent supply pipe 2.
  • Ca is from CaCl
  • the by-product oxygen is emitted in the form of CO.
  • the produced TiCl is supplied through the raw material supply pipe 6.
  • FIG. 6 is a configuration diagram of a metal Ti manufacturing apparatus showing a third embodiment of the second manufacturing method.
  • the position of the raw material supply pipe 6a is different from that in the second embodiment.
  • the raw material supply pipe 6 supplies TiCl to the center of the container.
  • TiCl is placed at a position where the central force inside the separation wall 4 is biased.
  • the temperature of the molten salt can be reduced by using the mixed molten salt also in the embodiment of V and deviation.
  • FIG. 7 is a configuration diagram of a metal Ti manufacturing apparatus showing a first embodiment of the third manufacturing method.
  • a reaction vessel 1 for performing a Ti generation step by a reduction reaction and an electrolytic cell 10 for performing a Ca replenishment step by electrolysis are used.
  • the reaction vessel 1 holds Ca-rich molten CaCl in which Ca is dissolved in a relatively large amount as a molten salt.
  • the inside of the reaction vessel 1 is divided into two parts except for a bottom part by a heat-resistant partition wall 17, one of which is a reduction chamber 18, and the other of which is a molten Ca alloy, which will be described later, is brought into contact with a molten salt to form a molten salt.
  • This is the Ca replenishing chamber 19 where Ca is dissolved in the molten salt. Both chambers communicate at the lower part of the reaction vessel 1, Guarantee the free flow of molten salt.
  • gaseous TiCl is dispersed and injected into the molten salt in the reaction vessel 1.
  • the Ti particles collected at the bottom of the reduction chamber 18 are extracted from the reduction chamber 18 together with the molten salt present at the bottom, and sent to the Ti separation step 7.
  • the Ti particles extracted together with the molten salt from the reduction chamber 18 are separated by molten salt power. Specifically, the Ti particles are compressed to squeeze out the molten salt.
  • the Ti particles obtained in the Ti separation step 7 are dissolved to form a Ti ingot.
  • the molten salt that has been subjected to Ti particle separation in the Ti separation step 7 is a used molten salt, Ca is consumed, and the Ca concentration is reduced. This molten salt is sent to the above-mentioned electrolytic cell 10.
  • the electrolytic cell 10 contains molten CaCl as a molten salt, and the molten CaCl is
  • the cathode 12 is a molten Ca alloy electrode.
  • the cathode 12 is an insulating heat-resistant container 13 that is inserted into the molten salt in the electrolytic bath 10 and has an open bottom, and is housed in the heat-resistant container 13.
  • the molten Ca alloy 14 and the electrode rod 15 inserted through the top plate of the heat-resistant container 13 and inserted into the molten Ca alloy 14 are provided.
  • the Ca generated on the side of the cathode 12 is taken into the molten Ca alloy 14 in the heat-resistant container 13 in the form of an alloy or solid solution. Thereby, the Ca concentration of the molten Ca alloy 14 in the heat-resistant container 13 increases.
  • the molten Ca alloy 14 in the heat-resistant container 13 reaches a predetermined concentration (for example, 15%)
  • the molten Ca alloy 14 having the high Ca concentration is transferred to the Ca in the reaction container 1 by the first transport pipe 20. Inject into refill chamber 19 from above.
  • the molten Ca alloy 14 'injected previously floats on the molten salt in the Ca replenishing chamber 19.
  • This molten Ca alloy 14 ⁇ has a high Ca concentration at the time of injection, and has a low Ca concentration (for example, several%) by releasing and dissolving Ca in a molten salt below. Therefore, in parallel with the transport of the molten Ca alloy 14 having a high Ca concentration from the inside of the heat-resistant container 13 to the Ca replenishing chamber 19, the used molten Ca alloy having a low Ca concentration that floats on the molten salt in the Ca replenishing chamber 19 14 ′ is transported into the heat-resistant container 13 by the second transport pipe 21.
  • Ca in the molten salt is consumed by the Ca reduction reaction in the reaction vessel 1, and the Ca is melted in the electrolytic cell 10. It is produced by electrolysis of salt and is recycled to produce Ti particles by reduction. In addition, it is not necessary to circulate the molten salt between the reaction vessel 1 and the electrolytic cell 10 when circulating Ca.
  • the molten Ca alloy 14 is used as the cathode in the electrolytic cell 10, and Ca is supplied to the molten salt in the reaction vessel 1 simply by reciprocating between the reaction vessel 1 and the electrolytic cell 10 using this as a Ca transfer medium. And Ti production continues.
  • FIG. 8 is a configuration diagram of a metal Ti manufacturing apparatus showing a second embodiment of the third manufacturing method.
  • the second embodiment differs from the first embodiment in the following points.
  • molten salt a multi-component molten salt having a low melting point obtained by mixing CaCl and another salted product is used.
  • the molten salt is introduced into the Ca removing tank 22. If the melting point of the molten salt is, for example, about 650 ° C., the reaction vessel 1 performs a high-temperature operation in which the temperature of the molten salt is increased to about 850 ° C. On the other hand, in the electrolytic cell 10 and the Ca removing tank 22, low-temperature operation is performed with the temperature of the molten salt lowered to about 700 ° C.
  • the molten salt sent from the reaction vessel 1 to the electrolytic cell 10 through the Ti separation step 7 is used molten salt, and although dissolved Ca is consumed, unreacted Contains dissolved Ca. If unreacted Ca enters the electrolysis process, C1 gas generated on the anode 11 side
  • the molten salt (containing unreacted Ca) introduced from the Ti separation step 7 is transported from the Ca replenishment chamber 19 in the reaction vessel 1 to the heat-resistant vessel 13 in the electrolysis vessel 10. It is mixed with a part of the used low Ca concentration molten Ca alloy 14 '(indicated as Mg in Fig. 9). As a result, the unreacted Ca in the molten salt is taken into the molten Ca alloy 14 ′ having a low Ca concentration, the unreacted Ca is removed, and the molten Ca alloy 14 having a high Ca concentration is generated.
  • the molten salt from which unreacted Ca has been removed in this way is circulated and used without waste, and the force is also increased by the back reaction due to the unreacted Ca in the molten salt and the current caused by the back reaction. A decrease in efficiency is suppressed.
  • the high Ca concentration molten Ca alloy 14 (indicated as Mg—Ca in FIG. 9) by-produced in the Ca removal tank 22 is introduced into the Ca replenishing chamber 19 in the reaction vessel 1.
  • the solubility of Ca in the molten salt is reduced, the convection and diffusion of the molten salt are also suppressed, and the back reaction is also suppressed at these point forces.
  • Ca solubility is reduced, Ca ⁇ precipitates, and the precipitated Ca is absorbed by the alloy.
  • FIG. 9 is a configuration diagram of a metal Ti manufacturing apparatus showing a third embodiment of the third manufacturing method.
  • the third embodiment differs from the first embodiment and the second embodiment in the following points.
  • the reaction vessel 1 also serves as an electrolytic cell, and includes a reduction chamber 23 having a deep bottom and an electrolysis chamber 24 having a shallow bottom.
  • the anode 11 is disposed on the anti-reduction chamber side in the electrolysis chamber 24,
  • the heat vessel 13 is disposed at a boundary between the reduction chamber 23 and the electrolysis chamber 24 so as to straddle both chambers.
  • the molten salt in the reaction vessel 1 is supplied to the anode 16 together with the interface between the molten Ca alloy 14 and the molten salt in the heat-resistant vessel 13 by a partition wall 16 provided at the boundary between the reduction chamber 23 and the electrolysis chamber 24.
  • Side and anti-anode side corresponds to the electrolysis chamber 24 having a shallow bottom
  • the anti-anode side corresponds to the reduction chamber 23 having a deep bottom.
  • the feature of the third embodiment is, firstly, that the reactor structure is simple because the reaction container 1 also serves as an electrolytic cell. Second, the efficiency of operation is increased because the molten Ca alloy 14 is not transported between the electrolytic cell and the reaction vessel. In addition, equipment for carrying out the transportation between the tank and the container is not required, and the equipment is also simplified from this point. However, it is difficult to give a temperature difference to the molten salt in the reduction zone and the electrolysis zone.
  • the method for producing Ti or a Ti alloy by the first to third Ca reductions is a method for reducing TiCl.
  • Ca is used as the reducing agent, and in particular, the molten salt containing CaCl and in which Ca is dissolved is held in a reaction vessel,
  • the supply rate of TiCl which is a raw material of Ti, can be increased, and the force is increased.
  • the second manufacturing method a decrease in current efficiency due to mixing of unreacted Ca, which is a problem in the electrolysis step, can be effectively suppressed by using a molten Ca alloy electrode.
  • the molten Ca alloy electrode used in the electrolysis step is used as a Ca transfer medium, so that a powerful circulation of the molten salt is not required.
  • the method for producing Ti or Ti alloy of the present invention can be effectively used as a means for efficiently and economically producing high-purity metal Ti.

Abstract

A method for producing Ti or a Ti alloy using the reduction by Ca, which comprises a reduction step of holding a molten salt containing CaCl2 and having Ca dissolved therein in a reaction vessel (1) and reacting Ca in the molten salt with a metal chloride containing TiCl4, to generate Ti particles or Ti alloy particles in the molten salt, and a separation step (7) of separating Ti particles or Ti alloy particles being formed in the molten salt from the molten salt. It is preferred to further add an electrolysis step (8) of electrolyzing the CaCl2 withdrawn out of the reaction vessel (1) into Ca and Cl2 and using the formed Ca for the reaction in the reaction vessel (1) for forming Ti or a Ti alloy. In the electrolysis step (8), the use of an alloy electrode comprising a molten Ca alloy as a cathode is effective for the improvement of electric current efficiency and the molten Ca alloy can also be utilized effectively as a medium for transporting Ca in order to enhance a Ca concentration. The above method allows the production of a metallic Ti having high purity with good efficiency at a low cost.

Description

Ca還元による Ti又は Ti合金の製造方法  Method for producing Ti or Ti alloy by Ca reduction
技術分野  Technical field
[0001] 本発明は、 TiClを含む金属塩化物を Caにより還元処理して金属 Ti又は Ti合金を  [0001] The present invention relates to a metal chloride containing TiCl, which is treated with Ca to reduce metal Ti or a Ti alloy.
4  Four
製造する Ca還元による Ti又は Ti合金の製造方法に関する。  The present invention relates to a method for producing Ti or a Ti alloy by reducing Ca to be produced.
背景技術  Background art
[0002] 金属 Tiの工業的な製法としては、 TiClを Mgにより還元するクロール法が一般的で  [0002] As an industrial production method of metal Ti, a chlor method of reducing TiCl with Mg is generally used.
4  Four
ある。このクロール法では、還元工程一真空分離工程を経て金属 Tiが製造される。還 元工程では、反応容器内で Tiの原料である TiClが Mgにより還元され、スポンジ状  is there. In this Kroll method, metal Ti is produced through a reduction step and a vacuum separation step. In the reduction step, TiCl, which is the raw material of Ti, is reduced by Mg in the reaction vessel and sponge-like.
4  Four
の金属 Tiが製造される。真空分離工程では、反応容器内に製造されたスポンジ状の 金属 T 未反応の Mg及び副生物である MgClが除去される。  Metal Ti is produced. In the vacuum separation step, sponge-like unreacted metal T produced in the reaction vessel and MgCl as a by-product are removed.
2  2
[0003] 還元工程について詳しく説明すると、この工程では、反応容器内に溶融 Mgを充填 し、その液面に上方から TiClの液体を供給する。これにより、溶融 Mgの液面近傍で  [0003] Explaining the reduction step in detail, in this step, a reaction vessel is filled with molten Mg, and a TiCl liquid is supplied to the liquid surface from above. As a result, near the liquid level of molten Mg
4  Four
TiClが Mgにより還元され、粒子状の金属 Tiが生成する。生成した金属 Tiは逐次下 TiCl is reduced by Mg to form particulate metal Ti. Generated metal Ti is successively below
4 Four
方へ沈降する。これと同時に、溶融 MgClが液面近傍に副生する力 溶融 MgClの  Settles toward At the same time, the force of by-produced molten MgCl near the liquid surface
2 2 比重は溶融 Mgの比重より大きい。この比重差のため、副生した溶融 MgClが下方  The specific gravity of 22 is larger than the specific gravity of molten Mg. Due to this difference in specific gravity, the by-product molten MgCl
2 に沈降し、代わりに溶融 Mgが液面に現れる。この比重差置換により、液面に溶融 M gが供給され続け、反応が継続される。  Settles in 2 and molten Mg appears on the surface instead. By this specific gravity difference substitution, the molten Mg is continuously supplied to the liquid surface, and the reaction is continued.
[0004] クロール法による金属 Tiの製造では、高純度の製品を製造することが可能である。 [0004] In the production of metal Ti by the Kroll method, it is possible to produce a high-purity product.
しかし、ノツチ式であるために製造コストが嵩み、製品価格が非常に高くなる。製造コ ストが嵩む原因の一つは、 TiClの供給速度を上げることが困難なことである。 TiCl  However, the manufacturing cost increases due to the notch type, and the product price becomes extremely high. One of the causes of the increase in manufacturing cost is that it is difficult to increase the supply rate of TiCl. TiCl
4 4 の供給速度が制限される理由としては次の 3つが考えられる。  There are three possible reasons why the supply speed in 4 is limited.
[0005] クロール法での生産性を高めるには、 Tiの原料である TiClの供給速度、即ち溶融 [0005] In order to increase the productivity by the Kroll method, the supply rate of TiCl, which is a raw material of Ti,
4  Four
Mgの液面への単位面積'単位時間あたりの供給量を増大させるのが有効である。し かし、供給速度を大きくしすぎると、前述した比重差置換の速度が間に合わず、液面 に MgClが残ってこれに TiClが供給されるようになるため、 TiClの利用効率が下 It is effective to increase the amount of Mg supplied to the liquid surface per unit area per unit time. However, if the supply rate is set too high, the above-mentioned rate of specific gravity difference replacement cannot keep up, and MgCl will remain on the liquid surface and TiCl will be supplied to it, so the TiCl utilization efficiency will decrease.
2 4 4 がる。その結果、供給原料が未反応の TiClガスや TiClなどの未反応生成ガス (こ れらを未反応ガスという)となって反応容器外へ排出される。また、未反応ガスの発生 は容器内圧の急激な上昇を伴うために避ける必要がある。これらの理由から、 Tiの原 料である TiClの供給速度には限界がある。 2 4 4 As a result, the unreacted product gas (such as TiCl gas or TiCl) These are called unreacted gases) and are discharged out of the reaction vessel. In addition, the generation of unreacted gas must be avoided because it causes a sharp rise in the internal pressure of the vessel. For these reasons, there is a limit to the supply rate of TiCl, which is a raw material for Ti.
4  Four
[0006] TiClの供給速度を大きくすると、液面より上方の容器内面における Ti析出量が多  [0006] When the supply rate of TiCl is increased, the amount of Ti precipitated on the inner surface of the container above the liquid level increases.
4  Four
くなる。還元反応が進むにつれて溶融 Mgの液面が断続的に上昇するため、容器上 部内面における析出 Ti力 還元反応の後半では溶融 Mgに漬かり、 Mg液面の有効 面積が減少し、反応速度が低下する。これを抑えるために、 TiClの  Become. Since the liquid level of molten Mg rises intermittently as the reduction reaction progresses, the precipitated Ti force on the inner surface of the upper part of the vessel is immersed in the molten Mg in the latter half of the reduction reaction, the effective area of the Mg liquid level decreases, and the reaction rate decreases. I do. To suppress this, TiCl
4 供給速度を制限 し、容器上部内面における Ti析出を抑制することが必要となる。容器上部内面にお ける Ti析出を抑制するための別の対策が特開平 8— 295955号公報に提示されてい るが、十分ではない。  4 It is necessary to limit the feed rate to suppress Ti precipitation on the inner surface of the upper part of the vessel. Another countermeasure for suppressing Ti precipitation on the inner surface of the upper part of the vessel is disclosed in Japanese Patent Application Laid-Open No. Hei 8-295955, but is not sufficient.
[0007] クロール法では又、反応容器内の溶融 Mg液の液面近傍だけで反応が行われるた め、発熱エリアが狭い。そのため、高速で TiCl  [0007] In the Kroll method, the reaction is performed only in the vicinity of the liquid surface of the molten Mg liquid in the reaction vessel, so the heat generation area is small. Therefore, TiCl
4を供給すると、冷却が間に合わなくな る。これも、 TiClの供給速度が制限される大きな理由である。  If you supply 4, cooling will not be in time. This is another major reason why the supply rate of TiCl is limited.
4  Four
[0008] TiClの供給速度に直接影響する問題ではな 、が、クロール法では、溶融 Mg液の  [0008] Although this is not a problem that directly affects the supply rate of TiCl, the crawl method does not
4  Four
液面近傍で Tiが粒子状に生成し、沈降する。しかし、溶融 Mgの濡れ性 (粘着性)の ため、生成した Ti粉が凝集した状態で沈降し、沈降中にも溶融液の温度により焼結 して粒成長し、反応容器外へ回収することが困難である。このため、連続的な製造が 困難であり、生産性が阻害されている。 Tiが反応容器内にスポンジチタンとしてバッ チ方式で製造されるのはまさにこのためである。  Ti is generated in the form of particles near the liquid surface and settles. However, due to the wettability (stickiness) of the molten Mg, the generated Ti powder settles in an agglomerated state, and during the sedimentation, it sinters due to the temperature of the melt, grows grains, and is collected outside the reaction vessel. Is difficult. For this reason, continuous production is difficult and productivity is hindered. This is precisely the reason why Ti is produced as a titanium sponge in a batch in a reaction vessel.
[0009] クロール法以外の Ti製造方法に関しては、 TiClの還元剤として Mg以外に例えば [0009] Regarding Ti production methods other than the Kroll method, other than Mg as a reducing agent for TiCl,
4  Four
Caの使用が可能なことが米国特許第 2205854号明細書に記載されている。そして 、 Caによる還元反応を用いた Ti製造方法としては、反応容器内に CaClの溶融塩を  It is described in U.S. Pat. No. 2,205,854 that Ca can be used. As a method for producing Ti using a reduction reaction with Ca, a molten salt of CaCl is placed in a reaction vessel.
2 保持し、その溶融塩中に上方力も金属 Ca粉末を供給して、溶融塩中に Caを溶け込 ませると共に、下方力 TiClガスを供給して、 CaClの溶融塩中で溶解 Caと TiClを  2 Hold the molten salt to supply the Ca metal powder with the upward force to dissolve Ca into the molten salt and supply the downward force TiCl gas to dissolve Ca and TiCl in the CaCl molten salt.
4 2 4 反応させる方法が米国特許第 4820339号明細書に記載されている。  The method of reacting 4 2 4 is described in US Pat. No. 4,820,339.
[0010] Caによる還元では、化学式 (i)の反応により、 TiCl力 金属 Tiが生成し、それと共 [0010] In the reduction by Ca, the reaction represented by the chemical formula (i) generates a TiCl metal Ti, which is
4  Four
に CaClが副生する。 Caは Mgより C1との親和力が強ぐ原理的には TiClの還元剤 Is by-produced. Ca has a stronger affinity for C1 than Mg. In principle, it is a reducing agent for TiCl.
2 4 に適している。特に、米国特許第 4820339号明細書に記載された方法では、 Caを 溶融 CaCl中に溶解させて使用する。溶融 CaCl中での Ca還元反応を利用すればSuitable for 2 4. In particular, in the method described in U.S. Pat. Use by dissolving in molten CaCl. Using the Ca reduction reaction in molten CaCl
2 2 twenty two
、クロール法のように反応容器内の還元剤の液面に TiClを供給し、液面近傍に反  As in the case of the Kroll method, TiCl is supplied to the liquid level of the reducing agent in the reaction vessel,
4  Four
応場が限定される場合と比べて反応場が拡大し、発熱領域も広がり冷却が容易にな ることから、 Tiの原料である TiCl給速度を大幅に増大でき、生産性の大幅な向上を  The reaction field expands compared to the case where the reaction field is limited, and the heat generation area expands and cooling becomes easier.Thus, the supply rate of TiCl, which is the raw material for Ti, can be greatly increased, and the productivity is greatly improved.
4  Four
期待できる。  Can be expected.
[0011] TiCl + 2Ca→Ti+ 2CaCl · · (i)  [0011] TiCl + 2Ca → Ti + 2CaCl · · (i)
4 2  4 2
[0012] し力しながら、米国特許第 4820339号明細書に記載された方法は、工業的な Ti製 造法としては成立し得ない。なぜなら、還元剤として金属 Caの粉末を使用するからで ある。即ち、金属 Caの粉末は極めて高価であるため、これを購入して使用すると、製 造コストは、 TiClの供給速度が制限されるクロール法よりも高価となるのである。加え  [0012] However, the method described in US Patent No. 4,820,339 cannot be feasible as an industrial Ti production method. This is because metal Ca powder is used as a reducing agent. That is, since the metal Ca powder is extremely expensive, if it is purchased and used, the manufacturing cost is higher than the crawl method in which the supply rate of TiCl is limited. In addition
4  Four
て、反応性が強い Caは取り扱いが非常に難しぐこのことも、 Ca還元による Ti製造方 法の工業ィ匕を阻害する大きな要因になっている。  The fact that highly reactive Ca is very difficult to handle is also a major factor that hinders the industrial process of producing Ti by Ca reduction.
[0013] 更に別の Ti製造方法としては、米国特許第 2845386号明細書に記載されたオル ソンの方法がある。これは、 TiClを経由せず、 TiOを Caにより直接還元する酸化物 [0013] Still another Ti production method is the Olson method described in US Patent No. 2,845,386. This is an oxide that directly reduces TiO with Ca without passing through TiCl
4 2  4 2
直接還元法の一種である。酸化物直接還元法は高能率であるが、高純度の Tiを製 造するのには適さない。なぜなら、高価な高純度の TiOを使用しなければならない  It is a kind of direct reduction method. Although the direct oxide reduction method is highly efficient, it is not suitable for producing high-purity Ti. Because expensive high-purity TiO must be used
2  2
力 である。  Power.
発明の開示  Disclosure of the invention
[0014] 本発明は、高純度の金属 Ti又は Ti合金を高能率に、しかも高価な還元剤を使用す ることなく経済的に製造する方法を提供することを目的にしている。  [0014] An object of the present invention is to provide a method for economically producing high-purity metal Ti or Ti alloy with high efficiency and without using an expensive reducing agent.
[0015] この目的を達成するために、本発明者らは、 TiClの Ca還元が不可欠であると考え [0015] To achieve this purpose, the present inventors consider that Ca reduction of TiCl is indispensable.
4  Four
、前掲の米国特許第 4820339号明細書に記載されたような CaClの溶融塩中に溶  Dissolve in a molten salt of CaCl as described in the aforementioned U.S. Pat.No. 4,820,339.
2  2
解する Caの利用を企画した。 Caは CaClに 1. 5%程度溶解するが、この溶融 CaCl  Understand the use of Ca. Ca dissolves about 1.5% in CaCl.
2 2 中での Caによる TiClの還元反応を利用すれば、前述のように、 TiClの供給速度を  If the reduction reaction of TiCl by Ca in 22 is used, the supply rate of TiCl can be increased as described above.
4 4  4 4
大幅に増大させ、生産量を飛躍的に高め得る可能性がある。  There is a possibility that it can be increased significantly and the production volume can be dramatically increased.
[0016] この Ca還元による Tiの製造を行う場合、還元反応容器内では、前記の化学式 (i) の反応の進行に伴い、溶融塩中の Caが消費されるが、これを補うために、米国特許 第 4820339号明細書に記載された方法では、金属 Caの粉末を還元反応容器内に 供給し続ける必要がある。 In the production of Ti by this Ca reduction, Ca in the molten salt is consumed in the reduction reaction vessel along with the progress of the reaction of the chemical formula (i), but in order to compensate for this, In the method described in U.S. Pat.No. 4,820,339, powder of metallic Ca is placed in a reduction reaction vessel. Need to keep supplying.
[0017] 本発明者らは、 Ca還元による Ti製造方法を工業的に確立するためには、還元反応 で消費される溶融塩中の Caを経済的に補充する必要があると考え、その補充手段と して、溶融塩の電気分解により生成する Caを利用する方法、及びこれによる Caの循 環使用の方法を案出した。即ち、還元反応に伴い溶融塩中の Caが消費されるが、そ の溶融塩を電気分解すれば溶融塩中に Caが生成し、こうして得られた Caを還元反 応に再使用すれば、外部からの Ca補充が不要になるのである。し力も、この方法で は、 Caを単独で取り出す必要がなぐこの点からも経済性が向上する。 Caは固体とし て単独で抽出する場合、非常な困難を伴うが、溶融塩中に Caを生成させるだけであ れば比較的容易だ力もである。  The present inventors consider that in order to industrially establish a method for producing Ti by Ca reduction, it is necessary to economically replenish Ca in the molten salt consumed in the reduction reaction. As means, we devised a method of using Ca generated by electrolysis of molten salt and a method of using and circulating Ca by this. In other words, Ca in the molten salt is consumed during the reduction reaction, but when the molten salt is electrolyzed, Ca is generated in the molten salt.If the Ca thus obtained is reused for the reduction reaction, This eliminates the need for external Ca supplementation. In this method, Ca is not required to be taken out by itself, so that the economic efficiency is improved. It is very difficult to extract Ca alone as a solid, but it is relatively easy to produce Ca in the molten salt.
[0018] 本発明は、力かる着想を基礎としてなされたもので、下記(1)、(2)又は(3)の Ca還 元による Ti又は Ti合金の製造方法である。  The present invention has been made on the basis of a powerful idea, and is a method for producing Ti or a Ti alloy by the following Ca reduction (1), (2) or (3).
[0019] (l) CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中  (L) A molten salt containing CaCl and in which Ca is dissolved is held in a reaction vessel, and the molten salt
2  2
の Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti粒又は Ti合金粒を  Of Ti and Ti alloy particles in the molten salt by reacting a metal chloride containing TiCl with Ca
4  Four
生成させる還元工程と、前記溶融塩中に生成された Ti粒又は Ti合金粒を前記溶融 塩から分離する分離工程とを含む Ca還元による Tiの製造方法 (以下、「第 1の製造 方法」という)。  A method for producing Ti by Ca reduction including a reducing step of generating and a separation step of separating Ti particles or Ti alloy particles generated in the molten salt from the molten salt (hereinafter referred to as a `` first production method '' ).
[0020] (2) Caによる還元反応を用いた Ti又は Ti合金の製造方法であって、 CaClを含み  (2) A method for producing Ti or a Ti alloy using a reduction reaction with Ca, comprising CaCl
2 且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中の Caに TiClを含  2 The molten salt in which Ca is dissolved is held in the reaction vessel, and Ca in the molten salt contains TiCl.
4 む金属塩ィ匕物を反応させて前記溶融塩中に Ti又は Ti合金を生成させる還元工程に 対して、前記 Ti又は Ti合金の生成に使用され前記反応容器カゝら抜き出された溶融 塩を電気分解し、前記溶融塩中に Caを生成補充して前記反応容器に戻す循環式 の電解工程を組み合わせ、且つ前記電解工程において、陰極に溶融 Ca合金力ゝらな る合金電極を用いる Ca還元による Ti又は Ti合金の製造方法 (以下、「第 2の製造方 法」という)。  4 For the reduction step of reacting the metal salt ridden product to produce Ti or Ti alloy in the molten salt, the molten metal used for producing the Ti or Ti alloy and drawn out of the reaction vessel A combination of a circulating electrolysis process in which salt is electrolyzed to generate and replenish Ca in the molten salt and return to the reaction vessel, and in the electrolysis process, an alloy electrode capable of forming a molten Ca alloy is used as a cathode in the electrolysis process Manufacturing method of Ti or Ti alloy by Ca reduction (hereinafter referred to as “second manufacturing method”).
[0021] (3) Caによる還元反応を用いた Ti又は Ti合金の製造方法であって、 CaClを含む  (3) A method for producing Ti or a Ti alloy using a reduction reaction with Ca, comprising CaCl
2 溶融塩を、溶融 Ca合金を陰極に用いて電気分解することにより、前記溶融 Ca合金 中の Ca分を増加させる、電気分解による Ca生成工程と、 Ca生成工程により Caが増 カロした溶融 Ca合金を、 CaClを含む溶融塩に接触させて、該溶融塩中に Caを溶解 (2) The molten salt is electrolyzed using a molten Ca alloy as a cathode to increase the Ca content in the molten Ca alloy. The molten Ca alloy is brought into contact with molten salt containing CaCl to dissolve Ca in the molten salt.
2  2
させる Ca補充工程と、 Ca補充工程により Caが溶解した溶融塩に、 TiClを含む金属  The metal containing TiCl is added to the molten salt in which Ca is dissolved by the Ca replenishing process
4  Four
塩ィ匕物を供給して、溶融塩中に Ti又は Ti合金を生成させる、還元反応による Ti生成 工程とを含む Ca還元による Ti又は Ti合金の製造方法 (以下、「第 3の製造方法」とい う)。  A method for producing Ti or Ti alloy in a molten salt by supplying a salted sardine and producing Ti or Ti alloy in a molten salt. ).
[0022] 前記第 1の製造方法は、溶融塩中に Ti粒又は Ti合金粒を生成させる還元工程と、 生成された Ti粒又は Ti合金粒を溶融塩から分離する分離工程とを含む製造方法で あるが、後述するように、 Ti又は Ti合金の生成に伴って副生する CaClを反応容器  [0022] The first production method includes a reduction step of generating Ti particles or Ti alloy particles in the molten salt, and a separation step of separating the generated Ti particles or Ti alloy particles from the molten salt. However, as described later, CaCl by-produced with the formation of Ti or Ti alloy
2  2
外へ抜き出し、これを電気分解して生成した Caを Ti又は Ti合金の生成反応 (即ち、 TiClの還元反応)に使用する実施形態を採ることができる。第 2の製造方法は、電 An embodiment may be adopted in which Ca is extracted to the outside and electrolyzed to generate Ca and used for a Ti or Ti alloy formation reaction (that is, a TiCl reduction reaction). The second manufacturing method is
4 Four
解工程において、陰極に溶融 Ca合金力もなる合金電極を用いる点に特徴がある。そ して、これら第 1及び第 2の製造方法では、 Caの循環使用に際し、 Ca濃度を高めた CaClの溶融塩を還元工程、電解工程間で循環させる。  The feature of the dissolving step is that an alloy electrode that also has a molten Ca alloy force is used for the cathode. In the first and second production methods, when Ca is used in a circulating manner, a molten CaCl salt having an increased Ca concentration is circulated between the reduction step and the electrolysis step.
2  2
[0023] また、第 3の製造方法は、電解工程にぉ 、て溶融 Ca合金電極を用いる点で第 2の 製造方法と類似しているが、 Caの循環使用に際して、 Ca分を増カロさせた溶融 Ca合 金を Ca移送媒体として利用する点に特徴を有している。  [0023] The third production method is similar to the second production method in that a molten Ca alloy electrode is used in the electrolysis step. However, when the Ca is circulated and used, the Ca content is increased. It is characterized in that molten Ca alloy is used as a Ca transport medium.
[0024] Caによる還元反応を利用し、且つ CaClの溶融塩を循環させる前記第 1及び第 2  [0024] The first and second methods utilizing a reduction reaction with Ca and circulating a molten salt of CaCl.
2  2
の製造方法は、その着想力も開発、完成に深く関与した 4名「小笠原、山口、巿橋、 金澤」のイニシャルをとり、 ΓΟΥΙΚ法 (ォーイツク法)」と命名されて!/、る。  The method of manufacturing was initially named "Ogasawara" by taking the initials of "Ogasawara, Yamaguchi, Takahashi and Kanazawa" who were deeply involved in the development and completion of the idea. /
[0025] 第 1一第 3の製造方法においては、 CaClを含む溶融塩中で Ca還元による Ti粒の [0025] In the first to third production methods, Ti particles are reduced by Ca reduction in a molten salt containing CaCl.
2  2
生成が行われることから、還元反応場が広がり、同時に発熱領域も広がる。更に、 85 0°Cでの蒸気圧は Mgが 6. 7kPa (50mmHg)であるのに対し、 Caは 0. 3kPa (2mm Hg)と極めて小さい。この蒸気圧の違いのため、容器上部内面への Ti析出量は Mg に比べて Caの方が格段に少ない。その結果、第 1一第 3の製造方法においては、 Ti C1供給速度の大幅増大も可能になる。  Since the generation is performed, the reduction reaction field expands, and at the same time, the heat generation region also expands. Furthermore, the vapor pressure at 850 ° C is very low, with 6.7 kPa (50 mmHg) for Mg and 0.3 kPa (2 mmHg) for Ca. Due to this difference in vapor pressure, the amount of Ti deposited on the inner surface of the upper part of the vessel is much smaller for Ca than for Mg. As a result, in the first to third manufacturing methods, the Ti C1 supply speed can be significantly increased.
4  Four
[0026] 更に、 Caは Mgより濡れ性 (粘着性)が劣る上に、析出 Ti粒子に付着する Caが CaC 1  [0026] Further, Ca is inferior in wettability (adhesiveness) to Mg, and Ca adhering to precipitated Ti particles is CaC 1
2に溶解するので、生成チタン粒子同士の凝集が少なぐ焼結も圧倒的に少ない。こ のため、生成 Tiを粉末状態で反応容器外へ取り出すことができ、連続的な Ti製造操 作も可能になる。 Since it is dissolved in 2, sintering with less aggregation of the produced titanium particles is also overwhelmingly less. As a result, the generated Ti can be taken out of the reaction vessel in a powder state, and continuous Ti production operation can be performed. Work is also possible.
[0027] 第 1一第 3の製造方法にぉ 、ては、 CaClを含む溶融塩 (以下、単に溶融塩又は溶  In the first to third production methods, a molten salt containing CaCl (hereinafter simply referred to as a molten salt or a molten salt)
2  2
融 CaCl液ともいう)中に溶解した Caに TiClを含む金属塩化物(以下、単に TiClと Metal chloride containing TiCl in Ca dissolved in molten CaCl solution (hereinafter simply referred to as TiCl)
2 4 4 もいう)を反応させる。更に、第 1の製造方法においては、反応容器内の溶融 CaCl 2 4 4). Furthermore, in the first production method, the molten CaCl
2 液上に溶融 Ca液を保持することを妨げない。むしろ、溶融 CaCl液上に溶融 Ca液を  It does not prevent holding the molten Ca liquid on the two liquids. Rather, the molten Ca solution is placed on the molten CaCl solution.
2  2
保持することにより、 Ca液層から下方の CaCl液層へ Caを供給でき、反応効率を上  By holding, Ca can be supplied from the Ca liquid layer to the CaCl liquid layer below, increasing the reaction efficiency.
2  2
げることが可能となる。また、その溶融 Ca液中でも還元反応が可能となり、この点から も反応効率を上げることが可能となる。  It becomes possible. In addition, the reduction reaction can be performed even in the molten Ca solution, and from this point, the reaction efficiency can be improved.
[0028] 第 1一第 3の製造方法において、溶融 CaCl液中への TiClの供給形態としては、 [0028] In the first to third production methods, the supply form of TiCl into the molten CaCl solution is as follows.
2 4  twenty four
TiClを溶融 CaCl液中へガス状態で直接供給するのが、溶融 CaCl液中の Caに対 The direct supply of TiCl in the gaseous state to the molten CaCl solution is not suitable for Ca in the molten CaCl solution.
4 2 2 する TiClの接触効率が高いことから特に望ましいが、溶融 CaCl液の液面に液体又 It is especially desirable because the contact efficiency of TiCl is high.
4 2 はガス状態の TiClを供給したり、溶融 CaCl液上に保持された溶融 Ca液の液面や  4 2 supplies gaseous TiCl, or measures the liquid level of molten Ca liquid held on molten CaCl
4 2  4 2
液中に液体又はガス状態の TiClを供給することも可能である。  It is also possible to supply liquid or gaseous TiCl in the liquid.
4  Four
[0029] そして更に、 TiClの溶融 CaCl液中への供給に関して、 TiClの Ca還元法では、  [0029] Further, regarding the supply of TiCl into the molten CaCl solution, the Ca reduction method of TiCl
4 2 4  4 2 4
Mg還元によるクロール法と比べて、次のような興味ある事実が判明した。  The following interesting facts were found in comparison with the Kroll method by Mg reduction.
[0030] Mg還元を用いるクロール法では、溶融 Mg液の液面に TiClの液体を供給するが [0030] In the Kroll method using Mg reduction, a TiCl liquid is supplied to the liquid surface of the molten Mg liquid.
4  Four
、過去には反応場の拡大を狙って溶融 Mg液の液中に TiClのガスを供給することも  In the past, TiCl gas could be supplied into the molten Mg solution to expand the reaction field.
4  Four
考えられた。しかし、前述したとおり、 Mgの蒸気圧が大きいため、供給ノズルへ Mg蒸 気が侵入し、 TiClと反応して供給管を閉塞させてしまう。また、溶融 MgCl液中に Ti  it was thought. However, as described above, since the vapor pressure of Mg is large, Mg vapor enters the supply nozzle and reacts with TiCl to block the supply pipe. Also, Ti in the molten MgCl solution
4 2  4 2
C1のガスを供給しても、ノズル閉塞の問題は依然として残る。なぜなら、供給管の閉 Even if the gas of C1 is supplied, the problem of nozzle clogging still remains. Because the supply pipe is closed
4 Four
塞頻度は低下するが、 TiClのパブリングにより溶融物が攪拌され、供給ノズルに溶  Although the frequency of clogging is reduced, the melt is agitated by TiCl
4  Four
融 Mgが到達する場合があるからである。そして何よりも、溶融 MgCl液中に TiClを  This is because molten Mg may reach. And above all, TiCl in molten MgCl solution
2 4 供給しても、その溶融液中に Mgが溶解しないため、 Tiの析出反応が起こりにくい。  Even if supplied, Mg does not dissolve in the melt, so that the precipitation reaction of Ti hardly occurs.
[0031] これに対し、 TiClの Ca還元法では、溶融 CaCl液中に TiClのガスを供給する場 [0031] On the other hand, in the Ca reduction method of TiCl, the TiCl gas is supplied into the molten CaCl solution.
4 2 4  4 2 4
合に供給ノズルの閉塞が発生しにくい。このため、溶融 CaCl液中への TiClガスの  In this case, blockage of the supply nozzle hardly occurs. For this reason, the TiCl gas
2 4 供給が可能であり、溶融 Ca液中への TiClガスの供給も可能である。ノズルが閉塞し  It is possible to supply 24 and supply of TiCl gas into the molten Ca solution. Nozzle clogged
4  Four
にく 、理由としては、溶融 Caの蒸気圧が小さ 、ことの関与も考えられる。  In particular, the reason may be that the vapor pressure of molten Ca is low.
[0032] 即ち、 TiClの Ca還元を利用する第 1一第 3の製造方法においては、 TiClを溶融 塩中へガス状態で直接供給するのが特に望ましいが、実際の換業上もこの供給形態 が問題なく可能なのである。また、溶融塩の液面に TiClの液体やガスを供給したり、 [0032] That is, in the first to third production methods utilizing the Ca reduction of TiCl, TiCl is melted. It is particularly desirable to supply the salt directly in gaseous form, but this form of supply is feasible without any problems in practical commerce. In addition, liquid or gas of TiCl is supplied to the liquid level of molten salt,
4  Four
溶融 CaCl液上に保持された溶融 Ca液の液面や液中に TiClの液体やガスを供給  Supplying TiCl liquid and gas to the liquid surface and liquid of molten Ca liquid held on molten CaCl liquid
2 4 する形態も問題なく可能である。  2 4 is possible without any problems.
[0033] この第 1一第 3の製造方法において、還元工程 (前記第 3の製造方法における還元 反応による Ti生成工程は、還元工程に該当する)では、溶融塩中に溶解する Caによ る還元反応により、反応容器内に粒状及び Z又は粉状の Ti又は Ti合金(以下、これ らを Ti粒又は Ti合金粒とも 、う)が生成する。  [0033] In the first to third production methods, in the reduction step (the Ti generation step by the reduction reaction in the third production method corresponds to the reduction step), Ca is dissolved in the molten salt. By the reduction reaction, granular or Z or powdered Ti or Ti alloy (hereinafter, also referred to as Ti particles or Ti alloy particles) is generated in the reaction vessel.
[0034] 溶融塩中に生成した Ti粒又は Ti合金粒の取り扱いに関しては、反応容器内で溶 融塩カも分離することも可能である。しかし、その場合は、操業力 Sバッチ方式となる。 生産性を高めるためには、生成 Tiが粒子状で得られることを利用して、溶融塩と共に 反応容器外へ抜き取り、容器外で Ti粒を溶融塩から分離するのがよい。機械的な圧 縮による絞り操作などによって、 Ti粒を溶融塩力も簡単に分離することができる。前 記第 1の製造方法はこの分離工程を含んでおり、第 2、第 3の製造方法でも、このよう な実施形態を採ることができる。  [0034] Regarding the handling of Ti particles or Ti alloy particles generated in the molten salt, it is also possible to separate the molten salt in the reaction vessel. However, in that case, the operating capacity will be the S batch method. In order to increase the productivity, it is preferable to take out the generated Ti in the form of particles, withdraw the Ti together with the molten salt out of the reaction vessel, and separate the Ti particles from the molten salt outside the vessel. Ti particles can be easily separated from the molten salt force by squeezing operation by mechanical compression. The first manufacturing method includes the separation step, and the second and third manufacturing methods can also employ such an embodiment.
[0035] 還元工程では、溶融塩中に Tiが生成すると同時に、 CaClが副生する。つまり、溶  [0035] In the reduction step, CaCl is by-produced at the same time as Ti is generated in the molten salt. In other words,
2  2
解 Ca濃度が低下し、 CaClが増加する。このため、反応容器内での CaClの副生に  Solution Ca concentration decreases and CaCl increases. As a result, CaCl
2 2 したがって容器内の CaClを容器外へ抜き出すのが望ましぐ Caが Tiの生成に使用  2 2 Therefore, it is desirable to extract CaCl in the container to the outside of the container. Ca is used for Ti generation.
2  2
された後の段階、即ち CaCl中に溶解した Caが消費された段階で抜き出すのが特  Extraction at the stage after the removal, that is, when the Ca dissolved in CaCl is consumed.
2  2
に望ましい。第 2の製造方法ではこの抜き出す操作が行われ、第 1の製造方法でもこ の操作を行う実施形態を採ることができる。但し、第 3の製造方法では、前記のように 溶融 Ca合金を Ca移送媒体として利用するので、溶融塩の抜き出しは行われな 、。  Desirable. The extracting operation is performed in the second manufacturing method, and an embodiment in which the extracting operation is performed in the first manufacturing method can be adopted. However, in the third production method, since the molten Ca alloy is used as a Ca transfer medium as described above, the extraction of the molten salt is not performed.
[0036] 前記抜き出された CaClについては、これを Caと C1に電気分解し、生成した Caに [0036] The extracted CaCl is electrolyzed into Ca and C1, and
2 2  twenty two
より、還元反応に伴って Ca濃度が低下した溶融塩の Caを補充するのが望ましい。ま た、溶融塩中に生成した Ti粒又は Ti合金粒を溶融塩と共に反応容器外へ抜き取り、 Ti粒又は Ti合金粒を分離した後の溶融塩も同様に処理するのが望ましい。前記第 2 の製造方法はこの循環式の電解工程を備えており、第 1の製造方法でもこの工程を 有する実施形態での操業が行われる。 [0037] このようして Ca濃度が回復した溶融塩が還元工程に戻され、これが繰り返されるこ とにより、 Ti又は Ti合金が製造される。ここで Caに関して生じる現象は、基本的に循 環過程での溶融塩中の溶解 Ca濃度の増減だけであり、 Caを単独で抽出したり補充 したりする操作を必要としない。従って、高純度の金属 Ti又は Ti合金が高能率に、し カゝも高価な還元剤を使用することなく経済的に製造される。 It is more desirable to replenish the Ca of the molten salt whose Ca concentration has decreased with the reduction reaction. In addition, it is desirable that the Ti particles or Ti alloy particles formed in the molten salt are drawn out of the reaction vessel together with the molten salt, and the molten salt after the Ti particles or Ti alloy particles are separated is similarly treated. The second production method includes this circulation type electrolysis step, and the first production method also operates in an embodiment having this step. [0037] The molten salt having the Ca concentration recovered in this way is returned to the reduction step, and this is repeated to produce Ti or a Ti alloy. Here, the phenomenon that occurs with respect to Ca is basically only an increase or decrease in the dissolved Ca concentration in the molten salt during the circulation process, and does not require an operation of extracting or supplementing Ca alone. Accordingly, high-purity metal Ti or Ti alloy can be produced economically with high efficiency and without using expensive reducing agents.
[0038] なお、第 3の製造方法も、 CaClを含む溶融塩の電気分解による Ca生成工程及び  [0038] The third production method also includes a Ca generation step by electrolysis of a molten salt containing CaCl,
2  2
Ca濃度が低下した溶融塩の Caを補充する Ca補充工程を備えて ヽるが、後述するよ うに、溶融塩の Caを補充する際、溶融 Ca合金を Ca移送媒体として利用する点で第 1 又は第 2の製造方法とは相違する。  Although a Ca replenishing step is provided to replenish Ca of the molten salt having a reduced Ca concentration, as described later, the first point is that the molten Ca alloy is used as a Ca transfer medium when replenishing the Ca of the molten salt. Or, it is different from the second manufacturing method.
[0039] 第 1一第 3の製造方法においては、電解工程での電流効率が経済性に大きな影響 を及ぼし、ひいては工業的生産技術確立の成否に影響する。この電解工程で電流 効率を低下させる大きな原因の一つが、還元工程力 電解工程へ送られる溶融塩中 の未反応の溶解 Caである。即ち、還元工程では反応容器内の溶融塩中で還元反応 が進行して還元剤である溶融塩中の溶解 Caが消費されるが、完全に消費されるわけ ではなぐ還元工程から電解工程へ送られる溶融塩中に未反応の溶解 Caが含まれ るのを避け得ない。 [0039] In the first to third production methods, the current efficiency in the electrolysis step has a large effect on economics, and furthermore, the success or failure of establishing industrial production technology. One of the major causes of the reduction in current efficiency in this electrolysis process is the unreacted dissolved Ca in the molten salt sent to the electrolysis process in the reduction process. In other words, in the reduction step, the reduction reaction proceeds in the molten salt in the reaction vessel, and the dissolved Ca in the molten salt, which is the reducing agent, is consumed, but is not completely consumed. It cannot be avoided that unreacted dissolved Ca is contained in the molten salt obtained.
[0040] 電解工程では、化学式 (ii)及び (iii)に示す反応が進行することにより、陰極側で Ca が生成し、陽極側で C1ガスが発生する。陰極側で生成する Caが陽極側へ移動しな  [0040] In the electrolysis step, as the reactions shown in chemical formulas (ii) and (iii) proceed, Ca is generated on the cathode side, and C1 gas is generated on the anode side. Ca generated on the cathode side does not move to the anode side
2  2
いようにすることは、例えば隔膜等の利用により可能である。しかし、電解工程に送ら れる溶融塩中に溶解 Caが含まれて 、ると、陽極の近傍力 Caを排除することは難し ぐこの Caが生成した C1と反応して CaClに戻るバックリアクションにより、電解時の  This can be achieved by using, for example, a diaphragm. However, if dissolved Ca is contained in the molten salt sent to the electrolysis process, it is difficult to eliminate the Ca near the anode. This Ca reacts with the generated C1 and returns to CaCl due to the back reaction. During electrolysis
2 2  twenty two
電流効率が低下する。  Current efficiency decreases.
[0041] 2Cl—→2e— +C1 (陽極) · ·(ii) [0041] 2Cl— → 2e— + C1 (anode) · · (ii)
2  2
Ca2+ + 2e"→Ca (陰極) · ·(iii) Ca 2+ + 2e "→ Ca (cathode) · · (iii)
[0042] 即ち、溶融塩中に Caが存在することは、還元工程では不可欠である力 Caを補充 する電解工程では、逆にこれが災いとなるのである。 That is, the presence of Ca in the molten salt adversely affects the electrolysis step of replenishing the force Ca which is indispensable in the reduction step.
[0043] 前記第 2の製造方法では、電解工程で陰極に溶融 Ca合金からなる合金電極 (以下[0043] In the second manufacturing method, an alloy electrode made of a molten Ca alloy (hereinafter, referred to as a cathode) is used as a cathode in the electrolysis step.
、溶融 Ca合金電極、又は単に合金電極という)を用いる。これにより、電解工程に送 られる溶融塩中の未反応の溶解 Caによる悪影響を可及的に排除することができる。 この場合、電解槽内の溶融塩、及び前記合金電極を構成する溶融 Ca合金と溶融塩 との界面を隔壁により仕切って陽極側と反陽極側とに 2分割し、反応容器から供給さ れる溶融塩を前記反陽極側へ導入するのが望まし ヽ。 , A molten Ca alloy electrode, or simply an alloy electrode). As a result, the The adverse effects of unreacted dissolved Ca in the resulting molten salt can be eliminated as much as possible. In this case, the molten salt in the electrolytic cell, and the interface between the molten Ca alloy and the molten salt constituting the alloy electrode are separated by a partition wall and divided into an anode side and an anti-anode side. It is desirable to introduce a salt to the anti-anode side.
[0044] このように、陽極側の溶融塩を、実質的に溶解 Caが含まれな ヽものとして電気分解 すると、陽極の表面で C1ガスが発生すると共に、陰極を構成する溶融 Ca合金と陽極 [0044] As described above, when the molten salt on the anode side is electrolyzed as substantially containing no dissolved Ca, C1 gas is generated on the surface of the anode, and the molten Ca alloy forming the cathode and the molten Ca alloy constitute the cathode.
2  2
側の溶融塩との界面で Caが生成し、生成した Caは前記溶融 Ca合金電極に吸収さ れる。陽極側の溶融塩は溶解 Caを含まないか、含んでいても僅かであり、前記のバ ックリアクションとそれに伴う電流効率の低下は起こらない。  Is generated at the interface with the molten salt on the side, and the generated Ca is absorbed by the molten Ca alloy electrode. The molten salt on the anode side contains no or little dissolved Ca, and the above-described back reaction and the accompanying decrease in current efficiency do not occur.
[0045] 一方、反陽極側の溶融塩は、還元工程力 送られてくる溶融塩であり、それ程多く はないが未反応の溶解 Caを含んでいる。合金電極(陰極)と反陽極側の溶融塩との 界面では、合金電極(陰極)から反陽極側の溶融塩へ Caが放出される。即ち、電解 槽内の陽極側のみが電解領域となり、その陽極側では、溶解 Caが存在しない状態 で溶融塩の電気分解により効率よく Caを生成し、この生成 Caによって前記合金電極 (陰極)を介して反陽極側の溶融塩 (つまり、還元工程カゝら送られてきた使用済みの 溶融塩)中に Caが補充されるのである。  On the other hand, the molten salt on the anti-anode side is a molten salt fed to the reduction step, and contains unreacted dissolved Ca, though not so much. At the interface between the alloy electrode (cathode) and the molten salt on the opposite side of the anode, Ca is released from the alloy electrode (cathode) to the molten salt on the opposite side of the anode. That is, only the anode side in the electrolytic cell is an electrolysis region, and on the anode side, Ca is efficiently generated by electrolysis of the molten salt in the absence of dissolved Ca, and the generated Ca causes the alloy electrode (cathode) to be generated. Ca is replenished to the molten salt on the anti-anode side (that is, the used molten salt sent from the reduction process).
[0046] このようにして、未反応の溶解 Caが残存することによる電解工程での電流効率の低 下が防止されつつ、溶融塩への溶解 Caの補充が行われる。合金電極の陽極側で C aの吸収が起こり、反陽極側で Caの放出が起こる理由は次のように考えられる。  [0046] In this way, replenishment of molten Ca to the molten salt is performed while preventing a decrease in current efficiency in the electrolysis step due to remaining unreacted dissolved Ca. The reason why absorption of Ca occurs on the anode side of the alloy electrode and release of Ca on the anti-anode side is considered as follows.
[0047] 合金電極と溶融塩の陽極側界面では Caが発生するが、陽極側では電位がある(界 面で電位差が生じて 、る)ために、発生した金属 Caは陰極である合金電極へ取り込 まれる。その結果、合金電極の Ca濃度が高まる。一方、合金電極と溶融塩の反陽極 側界面では電位がな 、ため、合金電極と溶融塩における Ca濃度差により合金電極 力 溶融塩へ Caが溶け込んでいく。反陽極側の溶融塩中の Ca濃度は還元反応によ つて低下しているので、 Caが溶融塩へ溶け込むことができる。以上の理由は後述す る第 3の製造方法で使用する溶融 Ca合金電極についても同様である。  [0047] Ca is generated at the interface between the alloy electrode and the molten salt on the anode side, but there is a potential on the anode side (a potential difference occurs at the interface), so that the generated metal Ca is transferred to the alloy electrode as the cathode. It is captured. As a result, the Ca concentration in the alloy electrode increases. On the other hand, since there is no potential at the interface between the alloy electrode and the molten salt on the anti-anode side, Ca is dissolved into the molten salt due to the difference in Ca concentration between the alloy electrode and the molten salt. Since the Ca concentration in the molten salt on the anti-anode side is reduced by the reduction reaction, Ca can be dissolved in the molten salt. The same is true for the molten Ca alloy electrode used in the third manufacturing method described later.
[0048] 陽極側では電気分解に伴って溶融塩が減少する。これを補うためには、溶解 Caを 含まな 、溶融塩を新たに補充してもよ 、し、還元工程力も送られてくる溶融塩の一部 を循環使用してもよい。還元工程力 送られてくる溶融塩の一部を使用する程度であ れば、混入する溶解 Caは僅かであり、ノ ックリアクションも問題のない程度に抑制す ることがでさる。 [0048] On the anode side, the molten salt decreases with the electrolysis. To compensate for this, the molten salt that does not contain dissolved Ca may be newly replenished, or a part of the molten salt that is supplied with the power of the reduction process. May be used cyclically. Reduction process power If only a part of the molten salt sent is used, dissolved Ca to be mixed in is small, and knock reaction can be suppressed to a level that does not cause any problem.
[0049] 溶融 Ca合金電極を構成する Ca合金としては Mg— Ca合金、 A1— Ca合金、 Zn— Ca 合金などが望ましい。これらの Ca合金の融点力 Mg— Ca合金では 500°C以上、 A1— Ca合金では 600°C以上、 Zn— Ca合金では 420°C以上と比較的低いからである。こ の低い融点を確保するために、 Ca濃度は、 Mg— Ca合金では 45%以下が望ましぐ 15%以下が特に望ましい。 A1— Ca合金では 20%以下が望ましい。また、 Zn— Ca合 金では 40%以下が望ましぐ 20%以下が特に望ましい。一方、 Ca濃度の下限につ いては、 0. 5%とするのが望ましい。反陽極側の溶融塩の Ca濃度と溶融 Ca合金の C a濃度の差が大きい方が溶融塩への Ca溶出速度を速くできる力もである。  [0049] As the Ca alloy constituting the molten Ca alloy electrode, an Mg-Ca alloy, an A1-Ca alloy, a Zn-Ca alloy or the like is desirable. The melting point of these Ca alloys is relatively low, 500 ° C or higher for Mg-Ca alloy, 600 ° C or higher for A1-Ca alloy, and 420 ° C or higher for Zn-Ca alloy. In order to ensure such a low melting point, the Ca concentration is particularly preferably 45% or less for a Mg—Ca alloy, more preferably 15% or less. 20% or less is desirable for A1-Ca alloy. Also, in the case of Zn—Ca alloy, it is desirable that the content be 40% or less, and more preferably 20% or less. On the other hand, the lower limit of the Ca concentration is desirably 0.5%. The greater the difference between the Ca concentration of the molten salt on the anti-anode side and the Ca concentration of the molten Ca alloy, the greater the ability to increase the Ca elution rate into the molten salt.
[0050] Pb— Ca合金や Sn— Ca合金の使用も必ずしも不可能ではないが、融点が低すぎる 難点がある。  [0050] It is not always impossible to use a Pb-Ca alloy or a Sn-Ca alloy, but there is a disadvantage that the melting point is too low.
[0051] なお、 CaClの電気分解に陰極として溶融合金電極を用いることは米国特許第 49  [0051] The use of a molten alloy electrode as a cathode in the electrolysis of CaCl is disclosed in US Pat.
2  2
92096号明細書に記載されている。し力し、ここ〖こおける CaClの電気分解は Ca還  No. 92096. The electrolysis of CaCl here is Ca conversion
2  2
元による FeZNdの製造に使用されおり、しかも CaClの循環は行われておらず、こ  It is used for the original production of FeZNd, and has no circulation of CaCl.
2  2
の 2点で第 1一第 3の製造方法における溶融合金電極の使用とは明確に相違してい る。  The two points are clearly different from the use of the molten alloy electrode in the first to third production methods.
[0052] 前述した第 1又は第 2の製造方法では、還元反応で消費される溶融塩中の Caの補 充手段として、溶融塩の電気分解により Ca濃度を高めた溶融塩を循環使用する。し 力しながら、この方法では、反応容器と電解槽との間で多量の溶融塩を循環させる必 要があり、設備が大が力りになる。  [0052] In the above-described first or second production method, as a means for supplementing Ca in the molten salt consumed in the reduction reaction, a molten salt whose Ca concentration is increased by electrolysis of the molten salt is circulated and used. However, in this method, it is necessary to circulate a large amount of the molten salt between the reaction vessel and the electrolytic cell, and the equipment becomes large.
[0053] そこで、前記第 3の製造方法では、電解工程での陰極に溶融 Ca合金電極を用い、 これを Caの移送媒体として利用する。即ち、第 2の製造方法では、陰極の側で生成 された Caを電極を構成する溶融 Ca合金に溶け込ませ、この Caを前記溶融 Ca合金 から、反応容器力 導入された使用済みの溶融塩に溶け出させて溶融塩の Ca濃度 を高め、それを循環させることにより、 Caを循環使用する。これに対し、第 3の製造方 法では、 Ca分を増加させた溶融 Ca合金を反応容器へ移送し、 CaClを含む溶融塩 に接触させて該溶融塩中に Caを溶解させることにより Caを循環使用する。 Therefore, in the third production method, a molten Ca alloy electrode is used as a cathode in the electrolysis step, and this is used as a Ca transfer medium. That is, in the second production method, Ca generated on the cathode side is dissolved in a molten Ca alloy constituting an electrode, and the Ca is converted from the molten Ca alloy into a used molten salt introduced into the reaction vessel by the reaction vessel. The Ca is recirculated and used by increasing the Ca concentration of the molten salt by leaching and circulating it. On the other hand, in the third production method, the molten Ca alloy with increased Ca content is transferred to the reaction vessel, and the molten salt containing CaCl To dissolve Ca in the molten salt to recycle Ca.
[0054] この第 3の製造方法にぉ 、ては、電気分解による Ca生成工程を行う(即ち、 Ca生 成工程での操作を実施する)ために電解槽が必要であり、還元反応による Ti生成ェ 程での操作を実施するために反応容器が必要であるが、電解槽と反応容器は一つ の槽 (又は容器)で共用することもできる。 [0054] In the third production method, an electrolytic cell is required for performing a Ca generation step by electrolysis (that is, performing an operation in the Ca generation step), and Ti is generated by a reduction reaction. A reaction vessel is required to perform the operation in the production process, but the electrolytic cell and the reaction vessel can be shared by one vessel (or vessel).
[0055] 電解槽と反応容器を別々に使用する場合は、例えば CaClを含む溶融塩を電解槽 When the electrolytic cell and the reaction vessel are used separately, for example, a molten salt containing CaCl
2  2
及び反応容器内に保持し、電解槽内で電解による Ca生成工程での操作を実施する と共に、電解槽から反応容器へ溶融 Ca合金を移送して、反応容器内で Ca補充工程 及び Ti生成工程での操作を実施し、槽内で Caが消費された溶融 Ca合金を電解槽 へ逆送する。  And holding it in the reaction vessel, performing the operation in the Ca generation step by electrolysis in the electrolysis tank, transferring the molten Ca alloy from the electrolysis tank to the reaction vessel, and replenishing the Ca and Ti generation steps in the reaction vessel. Then, the molten Ca alloy with Ca consumed in the tank is sent back to the electrolytic cell.
[0056] この場合、電解槽と反応容器の間で溶融塩に温度差を付与することができる。これ には次のような利点がある。例えば、電解槽における溶融塩の温度を、反応容器に おける溶融塩の温度より低くする。即ち、高温還元と低温電解の組合せである。この 場合、高温還元によって Caの反応性が上がり、 Ti又は Ti合金の生成効率が向上す ると共に、低温電解により溶融塩中の Caの溶解度が下がり、溶融塩から溶融 Ca合金 への Caの移行が促進される。  [0056] In this case, a temperature difference can be imparted to the molten salt between the electrolytic cell and the reaction vessel. This has the following advantages. For example, the temperature of the molten salt in the electrolytic cell is lower than the temperature of the molten salt in the reaction vessel. That is, a combination of high-temperature reduction and low-temperature electrolysis. In this case, the reactivity of Ca is increased by the high-temperature reduction, the production efficiency of Ti or Ti alloy is improved, and the solubility of Ca in the molten salt is reduced by low-temperature electrolysis, and the transfer of Ca from the molten salt to the molten Ca alloy Is promoted.
[0057] 電解槽と反応容器を一つの槽 (又は容器)で共用する場合は、例えば、電解槽を兼 ねる反応容器内に CaClを含む溶融塩を保持し、反応容器内の溶融塩、及びこの溶  When the electrolytic cell and the reaction vessel are shared by one vessel (or vessel), for example, the molten salt containing CaCl is held in the reaction vessel also serving as the electrolytic vessel, and the molten salt in the reaction vessel, This solution
2  2
融塩と陰極を構成する溶融 Ca合金の界面を隔壁により陽極側と反陽極側に分離し て、電気分解を行う。陽極の近傍では C1ガスが発生し、陰極 (溶融 Ca合金)、即ち  The interface between the molten salt and the molten Ca alloy constituting the cathode is separated into an anode side and an anti-anode side by a partition wall, and electrolysis is performed. In the vicinity of the anode, C1 gas is generated, and the cathode (molten Ca alloy),
2  2
隔壁により分離されて陽極側に配置された陰極の近傍では Caが生成する(Ca生成 工程)。この Caは溶融 Ca合金に取り込まれる。一方、反陽極側では溶融 Ca合金から 溶融塩へ Caが溶解する Ca補充工程が進行する。  Ca is generated in the vicinity of the cathode separated on the anode side by the partition (Ca generation step). This Ca is taken into the molten Ca alloy. On the other hand, on the anti-anode side, a Ca replenishment process in which Ca dissolves from the molten Ca alloy into the molten salt proceeds.
[0058] この場合、電解槽と反応容器の間で溶融塩に温度差を与える操作は困難であるが 、槽 (又は容器)の構造は簡単になり、溶融 Ca合金を輸送する設備、コストも不要に なる。 [0058] In this case, it is difficult to apply a temperature difference to the molten salt between the electrolytic tank and the reaction vessel, but the structure of the tank (or the vessel) is simplified, and facilities and cost for transporting the molten Ca alloy are also reduced. No longer needed.
[0059] 溶融塩中に生成した Ti粒又は Ti合金粒の取り扱いに関しては前述したとおりで、 第 3の製造方法でも、生成 Ti又は Ti合金を溶融塩から分離する Ti分離工程を含む 実施形態を採ることができる。 [0059] The handling of the Ti particles or Ti alloy particles generated in the molten salt is as described above, and the third production method also includes a Ti separation step of separating the generated Ti or Ti alloy from the molten salt. Embodiments can be employed.
[0060] Ti又は Ti合金カゝら分離された溶融塩の取り扱いに関しては、これを、電気分解によ る Ca生成工程及び Z又は還元反応による Ti生成工程に導入するのが合理的、経済 的である。  [0060] Regarding the handling of molten salt separated from Ti or Ti alloy powder, it is reasonable and economical to introduce this into the Ca generation step by electrolysis and the Z generation step by Z or reduction reaction. It is.
[0061] また、 Ti分離工程で Ti又は Ti合金カゝら分離された溶融塩を、 Ti生成工程で Caが 消費された溶融 Ca合金と反応させて、溶融塩中の未反応 Caにより溶融 Ca合金中の Caを増加させ、その溶融 Ca合金を Ca補充工程に使用することが可能である。こうす れば、電気分解によらずに、溶融 Ca合金中の Caを補充することができる。  [0061] Further, the molten salt separated from Ti or Ti alloy in the Ti separation step is reacted with the molten Ca alloy in which Ca has been consumed in the Ti generation step, and the unreacted Ca in the molten salt causes the molten Ca It is possible to increase the Ca in the alloy and use the molten Ca alloy in the Ca replenishment process. In this way, Ca in the molten Ca alloy can be supplemented without using electrolysis.
[0062] また、前記 Caが消費された溶融 Ca合金と反応させることにより、 Ti又は Ti合金から 分離された溶融塩中の未反応 Caを除去することができる。これにより、 Ti又は Ti合金 から分離された溶融塩を電気分解による Ca生成工程へ導入する場合に、バックリア クシヨンを防止することができ、有利となる。  [0062] Further, by reacting the Ca with the consumed molten Ca alloy, unreacted Ca in Ti or the molten salt separated from the Ti alloy can be removed. Thereby, when the molten salt separated from Ti or Ti alloy is introduced into the Ca generation step by electrolysis, back reaction can be prevented, which is advantageous.
[0063] この電気分解によらな 、Ca補充も低温で行うのがよ 、。低温の場合、溶融塩にお ける Caの溶解度が低下し、未反応 Caの除去効率が上がると共に、溶融 Ca合金中へ の Caの移行が促進され、溶融 Ca合金中の Caが増加し易くなる。  [0063] Replenishment of Ca is also preferably performed at a low temperature without using this electrolysis. At low temperatures, the solubility of Ca in the molten salt decreases, the efficiency of removing unreacted Ca increases, and the transfer of Ca into the molten Ca alloy is promoted, and the Ca in the molten Ca alloy tends to increase .
[0064] 第 1一第 3の製造方法においては、溶融塩として融点が 780°Cの CaClを用いるが  In the first to third production methods, CaCl having a melting point of 780 ° C. is used as a molten salt.
2 2
、 NaClや KC1、 CaFとの With NaCl, KC1, CaF
2 混合溶融塩を使用してもよい。混合溶融塩を使用すれば、 融点が下がり、溶融塩の温度を下げることが可能となるので、炉材の耐久性が増して 炉材寿命が延長し、液面からの Caや塩の蒸発が抑制される。例えば、 NaClとの混 合塩にすれば、溶融塩の融点を 500°C程度まで下げることができる。  2 Mixed molten salts may be used. The use of a mixed molten salt lowers the melting point and lowers the temperature of the molten salt, which increases the durability of the furnace material, prolongs the life of the furnace material, and reduces the evaporation of Ca and salts from the liquid surface. Is suppressed. For example, if a mixed salt with NaCl is used, the melting point of the molten salt can be lowered to about 500 ° C.
[0065] 溶融塩の温度を下げることによる炉材面での利点は、還元工程及び電解工程を含 む全工程で得られる。カロえて、電解工程では、溶融塩の温度が低くなることにより、 C aの溶解度が低下するとともに、溶融塩の対流や拡散が抑制され、それに伴い前述 の Caのバックリアクションも抑制される。還元工程での反応性を重視するならば、還 元工程で溶融塩の温度を上げればよ!、。  [0065] The advantage in terms of the furnace material by lowering the temperature of the molten salt can be obtained in all steps including the reduction step and the electrolysis step. In the electrolysis process, the temperature of the molten salt is lowered, so that the solubility of Ca is lowered, and the convection and diffusion of the molten salt are suppressed, and the back reaction of Ca is also suppressed. If importance is placed on the reactivity in the reduction step, raise the temperature of the molten salt in the reduction step!
[0066] また、前記第 1の製造方法においては、反応容器内の溶融塩上に溶融 Ca液を保 持する実施形態を採り得るが、その場合、溶融塩の温度を Caの融点(838°C)以下 に下げることができない。しかし、 Caに他のアルカリ土類金属やアルカリ金属を混合 することにより、その融点を下げることができる。例えば、 Caは Mgと混合することによ り、融点を 516°Cまで下げることができる。し力も、 Caと Mgの混合物力も CaClの溶 In the first production method, an embodiment in which a molten Ca solution is held on a molten salt in a reaction vessel may be adopted. In this case, the temperature of the molten salt is set to the melting point of Ca (838 ° C.). C) It cannot be reduced below. However, other alkaline earth metals and alkali metals are mixed with Ca By doing so, the melting point can be lowered. For example, by mixing Ca with Mg, the melting point can be lowered to 516 ° C. Force and the mixture force of Ca and Mg
2 融塩へは Caしか溶解せず、 Mgは殆ど溶解しないので、 Caに Mgを加えた溶融金属 を使用する場合でも、 CaClに溶解した Caによる TiClの還元反応を進行させること  (2) Since only Ca dissolves in the molten salt and Mg hardly dissolves, the reduction reaction of TiCl by Ca dissolved in CaCl should proceed even when using molten metal with Mg added to Ca.
2 4  twenty four
ができる。  Can do.
[0067] 第 1一第 3の製造方法において、 Tiの原料に関しては、基本的に TiClを使用する  [0067] In the first to third production methods, TiCl is basically used as a raw material of Ti.
4 力 TiClと他の金属塩化物とを混合して使用することで、 Ti合金を製造することも可  4 Ti alloy can be manufactured by mixing TiCl with other metal chlorides.
4  Four
能である。 TiClも他の金属塩ィ匕物も同時に Caにより還元されるため、この方法によ  Noh. Both TiCl and other metal chlorides are reduced by Ca at the same time.
4  Four
つて Ti合金粒を製造することができるのである。なお、ここにおける金属塩ィ匕物はガ ス状、液状の 、ずれの状態で使用してもょ 、。  Thus, Ti alloy grains can be produced. It should be noted that the metal salted slag here may be used in the form of gas, liquid, or misaligned.
[0068] また、生成する Ti又は Ti合金のサイズにつ!、ては、平均粒径で 0. 5— 50 μ mが望 ましい。なぜなら、これらの粒が溶融塩中で生成した後、その粒を溶融塩力 取り出 すことになるが、溶融塩と一緒に流動するような小さいサイズでなければ、その取り出 しが難しくなる。従って、適正なサイズとしては 50 m以下が望ましい。また適正最小 径を 0. 5 mとするのは、これより小さなものでも取り出しは可能である力 溶融塩と の分離が難しくなる力 である。  [0068] Regarding the size of the Ti or Ti alloy to be produced, it is preferable that the average particle size is 0.5 to 50 µm. Because, after these grains are formed in the molten salt, the grains are removed by the molten salt force, but if they are not small enough to flow together with the molten salt, the removal becomes difficult . Therefore, an appropriate size is 50 m or less. In addition, the reason why the appropriate minimum diameter is set to 0.5 m is a force that makes it possible to remove even smaller objects, and that makes it difficult to separate from molten salt.
[0069] 反応容器外へ抜き出された CaClの取り扱いについては、前述したとおり、これを C  [0069] Regarding the handling of CaCl extracted out of the reaction vessel, as described above,
2  2
aと C1とに電気分解し、電気分解で生成された Caを反応容器内での Tiの生成反応 electrolyzes into a and C1 and converts the Ca generated by electrolysis into Ti in the reaction vessel
2 2
に使用する。一方、電気分解で生成された C1については、これを TiOに反応させて  Used for On the other hand, C1 generated by electrolysis is reacted with TiO
2 2  twenty two
TiClを生成し、これを反応容器内での Tiの生成反応に使用するのが望ましい。  It is desirable to generate TiCl and use it for the Ti generation reaction in the reaction vessel.
4  Four
[0070] このようなサイクルを構成することにより、購入すれば高価な Caを何度でも還元剤と して繰り返し使用し、また、 TiClの生成コストを安価に抑え、 Ti又は Ti合金の生産コ  [0070] By configuring such a cycle, Ca that is expensive if purchased can be used repeatedly as a reducing agent many times, the production cost of TiCl can be kept low, and the production cost of Ti or Ti alloy can be reduced.
4  Four
ストを引き下げることができる。  The strike can be reduced.
[0071] ここで、特筆すべきことは、先にも触れた力 電解工程で生成する Caを CaClから  [0071] It should be noted here that Ca generated in the force electrolysis process mentioned above is converted from CaCl.
2 厳密に分離する必要がないことによる Ca製造コストの低減である。従来、金属 Tiのェ 業的な生産に Caが使用されてこな力つた理由の一つは、 Caと CaClの分離が困難  2 Reduction of Ca production cost due to the elimination of strict separation. One of the reasons why Ca has been used for industrial production of metal Ti is that separation of Ca and CaCl is difficult.
2  2
なことである。即ち、 Mgは MgClを電気分解することにより製造されるが、 Mgは Mg  That is what. That is, Mg is produced by electrolysis of MgCl, but Mg is Mg
2  2
C1に殆ど溶解しないので、生成した Mgは効率よく回収される。 Naも NaClの電気分 解により、 Mgと同様に効率よく製造できる。一方、 Caは CaClの電解により製造され Since it hardly dissolves in C1, the generated Mg is efficiently recovered. Na is also the electric component of NaCl By the solution, it can be produced efficiently as in the case of Mg. On the other hand, Ca is produced by CaCl electrolysis.
2  2
る力 生成した Caは CaClに溶解するため、 Caだけを効率よく製造することが難しく  The generated Ca dissolves in CaCl, making it difficult to produce only Ca efficiently.
2  2
、溶解した Caがバックリアクションで CaClに戻る現象も加わる。そのため、製造効率  Also, the phenomenon that dissolved Ca returns to CaCl by back reaction is added. Therefore, manufacturing efficiency
2  2
が悪ぐ Caの電解製造では電極を冷却するなどの工夫により Caの回収率を高めるな どの技術も用いられる力 それでも Caの製造コストは相当に高いことによるものである  In the electrolytic production of Ca, techniques such as increasing the recovery rate of Ca by devising the electrode etc. are also used. The cost of producing Ca is still high.
[0072] しかし、第 1一第 3の製造方法においては、 Caが溶解した溶融塩を積極的に使用 するので、ノ ックリアクションに注意すれば電解工程で Caに溶融塩が混在していても 何ら問題はなぐ Caだけを完全分離する必要がない。つまり、電解槽から反応容器 内へ溶融塩ごと、或いは溶融 Ca合金に含ませて Caを投入すればよい。このため、 C aの電解製造コストを大幅に低減することができる。 [0072] However, in the first to third production methods, a molten salt in which Ca is dissolved is positively used, so if caution is taken in knocking reaction, the molten salt is mixed with Ca in the electrolysis step. No problem It is not necessary to completely separate only Ca. That is, Ca may be introduced into the reaction vessel from the electrolytic bath together with the molten salt or contained in the molten Ca alloy. Therefore, the cost of electrolytic production of Ca can be significantly reduced.
図面の簡単な説明  Brief Description of Drawings
[0073] 図 1は、第 1の製造方法の第 1実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 1 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a first embodiment of a first manufacturing method.
図 2は、第 1の製造方法の第 2実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 2 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a second embodiment of the first manufacturing method.
図 3は、第 1の製造方法の第 3実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 3 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a third embodiment of the first manufacturing method.
図 4は、第 2の製造方法の第 1実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 4 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a first embodiment of the second manufacturing method.
図 5は、第 2の製造方法の第 2実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 5 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a second embodiment of the second manufacturing method.
図 6は、第 2の製造方法の第 3実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 6 is a view for explaining the configuration of a metal Ti manufacturing apparatus showing a third embodiment of the second manufacturing method.
図 7は、第 3の製造方法の第 1実施形態を示す金属 Ti製造装置の構成を説明する 図である。  FIG. 7 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a first embodiment of the third manufacturing method.
図 8は、第 3の製造方法の第 2実施形態を示す金属 Ti製造装置の構成を説明する 図である。 図 9は、第 3の製造方法の第 3実施形態を示す金属 Ti製造装置の構成を説明する 図である。 FIG. 8 is a diagram illustrating a configuration of a metal Ti manufacturing apparatus showing a second embodiment of the third manufacturing method. FIG. 9 is a view for explaining the configuration of a metal Ti manufacturing apparatus showing a third embodiment of the third manufacturing method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0074] 以下に第 1一第 3の製造方法の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the first to third manufacturing methods will be described with reference to the drawings.
1.第 1の製造方法について  1. About the first manufacturing method
図 1は第 1の製造方法の第 1実施形態を示す金属 Ti製造装置の構成を説明する図 である。  FIG. 1 is a view for explaining a configuration of a metal Ti manufacturing apparatus showing a first embodiment of a first manufacturing method.
[0075] 第 1の製造方法の第 1実施形態では、円筒形状の反応容器 1が使用される。反応 容器 1は鉄製の密閉容器である。反応容器 1の天井部には、還元剤である Caを供給 する還元剤供給管 2が設けられている。反応容器 1の底部は、生成 Ti粒の排出を促 進するために下方に向力つて漸次縮径されたテーパー形状になっており、その下端 中心部には、生成された Ti粒を排出する Ti排出管 3が設けられている。  [0075] In the first embodiment of the first manufacturing method, a cylindrical reaction vessel 1 is used. Reaction vessel 1 is an iron closed vessel. At the ceiling of the reaction vessel 1, a reducing agent supply pipe 2 for supplying Ca as a reducing agent is provided. The bottom of the reaction vessel 1 has a tapered shape whose diameter is gradually reduced downward to promote the discharge of the generated Ti particles, and the generated Ti particles are discharged to the center of the lower end. A Ti discharge pipe 3 is provided.
[0076] 一方、反応容器 1の内側には、熱交翻を内蔵した円筒形状の分離壁 4が、直月同 部内面との間に所定の隙間をあけて配置されている。反応容器 1の上部には、容器 内の CaClを側方へ排出する溶融塩排出管 5が設けられており、下部には、 Ti原料  On the other hand, inside the reaction vessel 1, a cylindrical separation wall 4 containing heat exchange is disposed with a predetermined gap between the separation wall 4 and the inner surface of the same part in a straight month. At the upper part of the reaction vessel 1, a molten salt discharge pipe 5 for discharging CaCl in the vessel to the side is provided.
2  2
である TiClを供給する原料供給管 6が、容器内中心部に達するように分離壁 4を貫  The raw material supply pipe 6 for supplying TiCl through the separation wall 4 reaches the center of the container.
4  Four
通して設けられている。  It is provided through.
[0077] 操業では、反応容器 1内に、溶融塩として、 Caが溶解した溶融 CaCl液が保持され  [0077] In operation, a molten CaCl solution in which Ca is dissolved is held as a molten salt in the reaction vessel 1.
2  2
る。その液面は、溶融塩排出管 5より高く分離壁 4の上端より低いレベルに設定される 。分離壁 4の内側では、溶融 CaCl液の上に、 Caを含む溶融金属として、溶融 Ca液  The The liquid level is set to a level higher than the molten salt discharge pipe 5 and lower than the upper end of the separation wall 4. Inside the separation wall 4, the molten Ca
2  2
が保持される。  Is held.
[0078] そして、この状態で、原料供給管 6により、分離壁 4より内側の溶融 CaCl液に、 Ti  Then, in this state, the molten CaCl solution inside the separation wall 4 is
2  2
C1を含む金属塩ィ匕物として、 TiClのガスが供給される。これにより、分離壁 4より内 TiCl gas is supplied as a metal chloride containing C1. As a result, the inside of the separation wall 4
4 4 4 4
側で、溶融 CaCl液中の Caにより TiClが還元され、その溶融 CaCl液中に粒子状  Side, the TiCl is reduced by Ca in the molten CaCl solution,
2 4 2  2 4 2
の金属 Tiが生成する。  Of metal Ti is produced.
[0079] 溶融 CaCl液中に供給された TiClのガスは、多数の気泡となってその溶融 CaCl  [0079] The TiCl gas supplied into the molten CaCl solution becomes a large number of bubbles, and the molten CaCl
2 4 2 液中を上昇し、溶融 CaCl液との攪拌を促進することにより、反応効率を高める。  The reaction efficiency is increased by ascending in the solution and promoting stirring with the molten CaCl solution.
2  2
[0080] 反応容器 1内の分離壁 4より内側の溶融 CaCl液中に生成された Ti粒は、その液 中を沈降して容器内の底部に堆積する。堆積 Ti粒は、適宜 Ti排出管 3から溶融 CaC 1液と共に下方に抜き出され、分離工程 7に送られる。 [0080] The Ti particles generated in the molten CaCl solution inside the separation wall 4 in the reaction vessel 1 Settles inside and accumulates on the bottom of the container. The deposited Ti particles are appropriately extracted downward together with the molten CaC 1 liquid from the Ti discharge pipe 3 and sent to the separation step 7.
2  2
[0081] 分離壁 4より内側での還元反応により Caを消費された溶融 CaCl液は、分離壁 4の  [0081] The molten CaCl solution having consumed Ca by the reduction reaction inside the separation wall 4
2  2
下方を経由して分離壁 4の外側を上昇し、溶融塩排出管 5から排出される。排出され た溶融 CaCl液は電解工程 8へ送られる。  It rises outside the separation wall 4 via the lower part and is discharged from the molten salt discharge pipe 5. The discharged molten CaCl solution is sent to the electrolysis step 8.
2  2
[0082] 分離壁 4より内側では、溶融 CaCl液の上に保持された溶融 Ca液から溶融 CaCl  [0082] Inside the separation wall 4, the molten CaCl 2 retained on the molten CaCl
2 2 液へ Caが溶解し補充される。これと共に、分離壁 4より内側の溶灘 CaCl液上へ、還  22 Ca is dissolved in solution 2 and replenished. At the same time, the solution is returned to the molten sea CaCl solution inside the separation wall 4.
2 元剤供給管 2から Caが補充される。  Ca is replenished from the two-agent supply pipe 2.
[0083] このようにして、反応容器 1内で金属 Tiが連続的に製造される。分離壁 4より内側で は、 Caが溶解した溶融 CaCl液を用い、その溶融 CaCl液中の Caにより還元反応を [0083] In this way, metal Ti is continuously produced in reaction vessel 1. Inside the separation wall 4, a molten CaCl solution in which Ca is dissolved is used, and the reduction reaction is performed by Ca in the molten CaCl solution.
2 2  twenty two
行うため、反応場が分離壁 4より内側のほぼ全体に拡がり、 TiClの供給速度増大が  As a result, the reaction field spreads almost completely inside the separation wall 4 and the TiCl supply rate increases.
4  Four
可能になる。これを含めた種々の理由により、高純度の Ti粒が高能率に製造されるこ とは前述したとおりである。  Will be possible. As described above, high-purity Ti grains are produced with high efficiency for various reasons including this.
[0084] ここで、分離壁 4は、 TiClの還元に使用する前の Caを多く含む溶融 CaCl液と、使  [0084] Here, the separation wall 4 is made of a molten CaCl solution containing a large amount of Ca before being used for the reduction of TiCl,
4 2 用後の Caを殆ど含まない溶融 CaCl液との混合を阻止して、反応効率を高める。  4 2 Mixing with molten CaCl solution containing almost no Ca after use increases the reaction efficiency.
2  2
[0085] 一方、分離工程 7では、反応容器 1から溶融 CaCl液と共に抜き出された Ti粒が溶  On the other hand, in the separation step 7, the Ti particles extracted from the reaction vessel 1 together with the molten CaCl solution are dissolved.
2  2
融 CaCl液から分離される。具体的には、その Ti粒を圧縮して溶融 CaCl液を絞り取 Separated from molten CaCl solution. Specifically, the Ti particles are compressed to squeeze out the molten CaCl solution.
2 2 る。更に、 Ti粒を洗浄する。分離工程 7で得られた溶融 CaCl液は、反応容器 1から 2 2 Further, the Ti particles are washed. The molten CaCl solution obtained in separation step 7
2  2
抜き出された溶融 CaCl液と共に、電解工程 8へ送られる。  It is sent to the electrolysis step 8 together with the extracted molten CaCl solution.
2  2
[0086] 電解工程 8では、反応容器 1及び分離工程 7から導入された溶融 CaCl液が電気  [0086] In the electrolysis step 8, the molten CaCl solution introduced from the reaction vessel 1 and the separation step 7 is converted into electricity.
2 分解により Caと C1ガスに分離される。 Caは反応容器 1内へ戻される。ここで、 Caは C  2 Separation into Ca and C1 gas by decomposition. Ca is returned into the reaction vessel 1. Where Ca is C
2  2
aCl力 完全分離する必要はなぐ CaClと共に反応容器 1内へ戻されても問題ない aCl power No need for complete separation No problem if returned to reaction vessel 1 with CaCl
2 2 twenty two
。反応容器 1内では Caが溶解した CaClを使用するからである。この分離操作の容  . This is because CaCl in which Ca is dissolved is used in the reaction vessel 1. The contents of this separation operation
2  2
易さにより、 Caの電解製造コストが低減される。  The easiness reduces the electrolytic production cost of Ca.
[0087] 電解工程 8で発生した C1ガスは、塩ィ匕工程 9へ送られる。ここでは、 TiOが塩化処 [0087] The C1 gas generated in the electrolysis step 8 is sent to the salting step 9. Here, TiO
2 2 理されることにより、 TiClが製造される。また、炭素粉末を併用することにより、副生  2 2 process produces TiCl. Also, by using carbon powder together,
4  Four
する酸素が COの形で排出される。製造された TiClは、原料供給管 6により反応容  Oxygen is released in the form of CO. The produced TiCl is reacted in
2 4  twenty four
器 1内に導入される。このようにして、 CaClの循環により、還元剤である Ca及び C1 ガスがサイクルされる。即ち、実質的に TiO及び Cの補給だけで、金属 Tiが連続的 Introduced into vessel 1. In this way, the circulation of CaCl allows the reducing agents Ca and C1 The gas is cycled. In other words, metal Ti is continuously supplied only by replenishment of TiO and C.
2  2
に製造される。  It is manufactured in.
[0088] 図 2は第 1の製造方法の第 2実施形態を示す金属 Ti製造装置の構成図である。こ の第 1の製造方法の第 2実施形態は、還元剤供給管 2aを反応容器 1の下部に設け、 その下部から分離壁 4の内側へ Caを供給する点が、第 1実施形態と相違する。  FIG. 2 is a configuration diagram of a metal Ti manufacturing apparatus showing a second embodiment of the first manufacturing method. The second embodiment of the first manufacturing method differs from the first embodiment in that a reducing agent supply pipe 2a is provided at the lower part of the reaction vessel 1 and Ca is supplied from the lower part to the inside of the separation wall 4. I do.
[0089] この第 2実施形態では、還元剤である溶融 Ca液力 溶融 CaCl液との比重差により  [0089] In the second embodiment, the molten Ca liquid force as the reducing agent is determined by the specific gravity difference from the molten CaCl solution.
2  2
分離壁 4の内側を下から上へ浮上する。この浮上過程で Caが CaClに溶解するため  The inside of the separation wall 4 rises from bottom to top. Because Ca dissolves in CaCl during this floating process
2  2
、 Caの溶解効率が上がる。浮上した溶融 Caは、溶融 CaCl液の上に溜まり、下の溶  , Ca dissolution efficiency increases. The floated molten Ca accumulates on the molten CaCl solution and
2  2
融 CaCl液へ Caを溶解させる。  Dissolve Ca in molten CaCl solution.
2  2
[0090] 図 3は第 1の製造方法の第 3実施形態を示す金属 Ti製造装置の構成図である。こ の第 3実施形態では、原料供給管 6aの位置が異なる。即ち、第 1又は第 2実施形態 では、原料供給管 6が TiClを容器内中心部に供給する構成になっているが、第 3実  FIG. 3 is a configuration diagram of a metal Ti manufacturing apparatus showing a third embodiment of the first manufacturing method. In the third embodiment, the position of the raw material supply pipe 6a is different. That is, in the first or second embodiment, the raw material supply pipe 6 is configured to supply TiCl to the center of the container.
4  Four
施形態では、分離壁 4より内側の中心から偏った位置に TiClを供給する構成になつ  In the embodiment, the configuration is such that TiCl is supplied to a position deviated from the center inside the separation wall 4.
4  Four
ている。この構成によれば、分離壁 4の内側で TiClガスのガスリフトよる対流が溶融  ing. According to this configuration, the convection due to the gas lift of the TiCl gas is melted inside the separation wall 4.
4  Four
CaCl液に生じる。この CaClの対流により、 CaClへの Caの溶解が促進され、溶解 Occurs in CaCl solution. This convection of CaCl promotes the dissolution of Ca in CaCl,
2 2 2 2 2 2
効率が上がる。  Increases efficiency.
[0091] 2.第 2の製造方法について  [0091] 2. Regarding the second manufacturing method
図 4は第 2の製造方法の第 1実施形態を示す金属 Ti製造装置の構成図である。  FIG. 4 is a configuration diagram of a metal Ti manufacturing apparatus showing a first embodiment of the second manufacturing method.
[0092] 第 2の製造方法の第 1実施形態では、還元工程を行う反応容器 1と、電解工程を行 う電解槽 10とが使用される。反応容器 1は、溶融塩として Caが比較的多量に溶解し た Caリッチの溶融 CaClを保持する。 CaClは融点が約 780°Cであり、その溶融塩は  [0092] In the first embodiment of the second production method, a reaction vessel 1 for performing a reduction step and an electrolytic cell 10 for performing an electrolysis step are used. The reaction vessel 1 holds Ca-rich molten CaCl in which Ca is dissolved in a relatively large amount as a molten salt. CaCl has a melting point of about 780 ° C, and its molten salt is
2 2  twenty two
その融点以上に加熱されて 、る。  It is heated above its melting point.
[0093] 反応容器 1では、原料供給管 6を用いて反応容器 1内の溶融塩中にガス状の TiCl [0093] In the reaction vessel 1, the raw material supply pipe 6 is used to convert gaseous TiCl into molten salt in the reaction vessel 1.
4 が分散して注入され、これが溶融塩中の溶解 Caにより還元されて粒子状の金属 Tiが 生成される。生成された Ti粒は比重差により逐次、反応容器 1の底に溜まる。  4 is dispersed and injected, and this is reduced by dissolved Ca in the molten salt to form particulate metal Ti. The generated Ti particles sequentially accumulate at the bottom of the reaction vessel 1 due to a difference in specific gravity.
[0094] 反応容器 1の底に溜まった Ti粒は、その底に存在する溶融塩と共に、反応容器 1か ら抜き出され、 Ti分離工程 7に送られる。 Ti分離工程 7では、反応容器 1から溶融塩 と共に抜き出された Ti粒が溶融塩力 分離される。具体的には、その Ti粒を圧縮して 溶融塩を絞り取る。 Ti分離工程 7で得られた Ti粒は溶解され Tiインゴットとされる。 [0094] The Ti particles collected at the bottom of the reaction vessel 1 are extracted from the reaction vessel 1 together with the molten salt present at the bottom, and sent to the Ti separation step 7. In the Ti separation step 7, the Ti particles extracted together with the molten salt from the reaction vessel 1 are separated by molten salt. Specifically, compress the Ti grains Squeeze out the molten salt. The Ti particles obtained in the Ti separation step 7 are dissolved to form a Ti ingot.
[0095] 一方、 Ti分離工程 7で Ti粒力 分離された溶融塩は使用済みの溶融塩であり、 Ca が消費され、 Ca濃度が低下している。この溶融塩は、反応容器 1から電解槽 10へ送 られる。 [0095] On the other hand, the molten salt separated by Ti particle force in the Ti separation step 7 is a used molten salt, which consumes Ca and decreases the Ca concentration. The molten salt is sent from the reaction vessel 1 to the electrolytic cell 10.
[0096] 電解槽 10では、溶融塩である溶融 CaClが陽極 11と陰極 12の間で電気分解され  [0096] In the electrolytic cell 10, molten CaCl as a molten salt is electrolyzed between the anode 11 and the cathode 12.
2  2
、陽極 11の側で C1ガスが発生し、陰極 12の側で Caが生成される。ここで、陰極 12  Then, C1 gas is generated on the anode 11 side, and Ca is generated on the cathode 12 side. Where the cathode 12
2  2
は溶融 Ca合金電極 14であり、電解槽 10内の溶融塩に挿入される底面開放の耐熱 容器 13と、耐熱容器 13内に収容された溶融 Ca合金 14と、耐熱容器 13の天板部を 貫通して溶融 Ca合金 14に挿入された電極棒 15と、電解槽 10内の溶融塩を陽極側 と反陽極側とに仕切る隔壁 16とを具備している。  Is a molten Ca alloy electrode 14, which is a heat-resistant container 13 with an open bottom inserted into the molten salt in the electrolytic cell 10, a molten Ca alloy 14 contained in the heat-resistant container 13, and a top plate of the heat-resistant container 13. An electrode rod 15 penetrated and inserted into the molten Ca alloy 14 and a partition wall 16 for partitioning the molten salt in the electrolytic cell 10 into an anode side and an anti-anode side are provided.
[0097] 溶融 Ca合金 14は、ここでは溶融塩より比重が小さ!/、例えば Mg-Ca液などである。  [0097] The molten Ca alloy 14 has a lower specific gravity than the molten salt here, for example, an Mg-Ca liquid or the like.
耐熱性で且つ絶縁性の隔壁 16は、陰極 12の真下にあり、電解槽 10内の溶融塩を、 溶融 Ca合金 14と溶融塩の界面と共に陽極側と反陽極側に 2分割するべぐ上端部 が溶融 Ca合金 14に挿入され、下端部が電解槽 10の底板部に密着している。  The heat-resistant and insulating partition wall 16 is located directly below the cathode 12 and divides the molten salt in the electrolytic cell 10 into an anode side and an anti-anode side together with an interface between the molten Ca alloy 14 and the molten salt. The part is inserted into the molten Ca alloy 14, and the lower end is in close contact with the bottom plate of the electrolytic cell 10.
[0098] 反応容器 1から直接或いは Ti分離工程 7を介して電解槽 10へ送られてくる溶融塩 は、電解槽 10内の反陽極側に導入される。陽極側の溶融塩は、実質的に溶解 Caを 含まない溶融 CaClである。その陽極側の溶融塩は、陽極 11と陰極 12との間で電気  [0098] The molten salt sent from the reaction vessel 1 to the electrolytic cell 10 directly or via the Ti separation step 7 is introduced into the electrolytic cell 10 on the side opposite to the anode. The molten salt on the anode side is molten CaCl containing substantially no dissolved Ca. The molten salt on the anode side transfers electricity between anode 11 and cathode 12.
2  2
分解され、陽極 11の側で C1ガスを発生し、陰極 12の側で Caを生成する。陰極 12の  It is decomposed and generates C1 gas on the side of the anode 11 and generates Ca on the side of the cathode 12. Cathode 12
2  2
側で生成された Caは溶融 Ca合金 14に溶け込む。  The Ca generated on the side melts into the molten Ca alloy.
[0099] 一方、反陽極側の溶融塩は、反応容器 1から導入された使用済みの溶融塩であり、 溶解 Caが消費されているものの、未反応の溶解 Caを含んでいる。この溶融塩には、 溶融 Ca合金 14から Caが溶け出す。これにより、反応容器 1から導入された使用済み の溶融塩に溶解 Caが補充され、 Caリッチとなった溶融塩が還元剤供給管 2を通して 反応容器 1に導入され、 Ca還元による Ti粒の生成に循環使用される。  [0099] On the other hand, the molten salt on the anti-anode side is a used molten salt introduced from the reaction vessel 1, and although dissolved Ca is consumed, unreacted dissolved Ca is included. Ca melts out of the molten Ca alloy 14 into this molten salt. As a result, dissolved Ca is replenished to the used molten salt introduced from the reaction vessel 1, and the Ca-rich molten salt is introduced into the reaction vessel 1 through the reducing agent supply pipe 2 to generate Ti particles by Ca reduction. Used for circulation.
[0100] 他方、陽極 11の表面近傍で発生した C1ガスは塩ィ匕工程 9へ送られる。塩化工程 9  [0100] On the other hand, the C1 gas generated near the surface of the anode 11 is sent to the salting step 9. Chlorination process 9
2  2
では、 TiOが塩ィ匕処理されることにより、 Tiの原料である TiClが生成される。生成さ  Then, TiCl, which is a raw material of Ti, is generated by performing a salting treatment on TiO. Generated
2 4  twenty four
れた TiClは原料供給管 6により反応容器 1に導入され、 Ca還元による Ti粒の生成  TiCl is introduced into the reaction vessel 1 through the raw material supply pipe 6, and Ti particles are generated by Ca reduction.
4  Four
に循環使用される。 [0101] このように、第 2の製造方法の第 1実施形態では、溶融塩 (Caが溶解した溶融 CaCl )が還元工程 (反応容器 1)、分離工程 7及び電解工程 (電解槽 10)を循環し、還元Used for circulation. [0101] As described above, in the first embodiment of the second production method, the molten salt (molten CaCl 2 in which Ca is dissolved) is subjected to the reduction step (reaction vessel 1), the separation step 7, and the electrolysis step (electrolysis tank 10). Circulate and reduce
2 2
工程 (反応容器 1)で消費された Caが電解工程 (電解槽 10)で補充される操作を繰り 返すことにより、還元工程 (反応容器 1)で Ti製造が継続される。つまり、固体 Caの補 充も取り出しも行うことなぐ単に溶融塩中の Ca濃度を操作するだけで、 Ca還元によ る高品質な Ti粒が連続的に製造されるのである。  By repeating the operation of replenishing Ca consumed in the step (reaction vessel 1) in the electrolysis step (electrolysis tank 10), production of Ti is continued in the reduction step (reaction vessel 1). In other words, high-quality Ti grains are continuously produced by Ca reduction simply by manipulating the Ca concentration in the molten salt without performing supplementation and removal of solid Ca.
[0102] し力も、 Caの補充のために、未反応の溶解 Caを含む使用済みの溶融塩が電解ェ 程に導入されるが、その未反応の溶解 Caが、電解槽 10内の非電解領域である反陽 極側に導入され、電気分解に直接関与しないため、その溶解 Caによるバックリアクシ ヨンが防止される。従って、電解工程での電流効率が上がる。電解槽 10内の電解領 域である陽極側では、電気分解の進行に伴い溶融 CaClが消費される。これを補う [0102] In order to replenish Ca, the used molten salt containing unreacted dissolved Ca is introduced into the electrolysis step, and the unreacted dissolved Ca is removed from the non- Since it is introduced on the anti-anode side, which is the region, and is not directly involved in electrolysis, back reaction due to dissolved Ca is prevented. Therefore, the current efficiency in the electrolysis process increases. On the anode side, which is an electrolysis area in the electrolysis tank 10, molten CaCl is consumed as electrolysis proceeds. Make up for this
2  2
ために、実質的に溶解 Caを含まない溶融 CaClを外部力 補充する。或いは、その  For this purpose, molten CaCl containing substantially no dissolved Ca is externally supplemented. Or, that
2  2
補充とは別に又はその補充と共に使用済みの溶融塩を少量陽極側に導入する(図 4 に破線で示した経路による)。  A small amount of spent molten salt is introduced into the anode side separately from or together with the replenishment (according to the route shown by the broken line in FIG. 4).
[0103] なお、溶融塩の温度は、いずれの工程でも CaClの融点(約 780°C)より高い温度 [0103] The temperature of the molten salt is higher than the melting point of CaCl (about 780 ° C) in any process.
2  2
に管理されている。  Is managed.
[0104] 図 5は第 2の製造方法の第 2実施形態を示す金属 Ti製造装置の構成図である。  FIG. 5 is a configuration diagram of a metal Ti manufacturing apparatus showing a second embodiment of the second manufacturing method.
[0105] この第 2実施形態では、反応容器 1の構造が具体的に示されている。ここで使用さ れる反応容器 1は、鉄からなる円筒形状の密閉容器である。反応容器 1の天井部に は、還元剤である Caを供給する還元剤供給管 2が設けられている。反応容器 1の底 部は、生成 Ti粒の排出を促進するために下方に向かって漸次縮径されたテーパー 形状になっており、その下端中心部には、生成された Ti粒を排出する Ti排出管 3が 設けられている。 [0105] In the second embodiment, the structure of the reaction vessel 1 is specifically shown. The reaction vessel 1 used here is a cylindrical closed vessel made of iron. At the ceiling of the reaction vessel 1, a reducing agent supply pipe 2 for supplying Ca as a reducing agent is provided. The bottom of the reaction vessel 1 has a tapered shape whose diameter is gradually reduced downward in order to promote the discharge of the generated Ti particles. A discharge pipe 3 is provided.
[0106] 一方、反応容器 1の内側には、熱交翻を内蔵した円筒形状の分離壁 4が、直月同 部内面との間に所定の隙間をあけて配置されている。反応容器 1の上部には、容器 内の CaClを側方へ排出する溶融塩排出管 5が設けられており、下部には、 Tiの原  [0106] On the other hand, inside the reaction vessel 1, a cylindrical separation wall 4 containing heat exchange is arranged with a predetermined gap between the separation wall 4 and the inner surface of the same part. At the upper part of the reaction vessel 1, a molten salt discharge pipe 5 for discharging CaCl in the vessel to the side is provided.
2  2
料である TiClを供給する原料供給管 6が、容器内中心部に達するように分離壁 4を  The raw material supply pipe 6 for supplying the TiCl
4  Four
貫通して設けられている。 [0107] 操業では、反応容器 1内に、溶融塩として、例えば Caが溶解した溶融 CaCl液が It is provided through. [0107] In the operation, a molten CaCl solution in which Ca is dissolved, for example, as a molten salt is placed in the reaction vessel 1.
2 保持される。その液面は、溶融塩排出管 5より高く分離壁 4の上端より低いレベルに 設定される。  2 Retained. The liquid level is set to a level higher than the molten salt discharge pipe 5 and lower than the upper end of the separation wall 4.
[0108] そして、この状態で、原料供給管 6により、分離壁 4より内側の溶融 CaCl液に、 Ti  Then, in this state, the molten CaCl solution inside the separation wall 4
2  2
C1を含む金属塩ィ匕物として、 TiClのガスが供給される。これにより、分離壁 4より内 TiCl gas is supplied as a metal chloride containing C1. As a result, the inside of the separation wall 4
4 4 4 4
側で、溶融 CaCl液中の Caにより TiClが還元され、その溶融 CaCl液中に粒子状  The TiCl is reduced by Ca in the molten CaCl solution,
2 4 2  2 4 2
の金属 Tiが生成される。  Of metal Ti is produced.
[0109] 溶融 CaCl液中に供給された TiClのガスは、多数の気泡となってその溶融 CaCl  [0109] The TiCl gas supplied into the molten CaCl solution becomes a large number of bubbles, and the molten CaCl
2 4 2 液中を上昇し、溶融 CaCl液との攪拌を促進することにより、反応効率を高める。  The reaction efficiency is increased by ascending in the solution and promoting stirring with the molten CaCl solution.
2  2
[0110] 反応容器 1内の分離壁 4より内側の溶融 CaCl液中に生成された Ti粒は、その液  [0110] The Ti particles generated in the molten CaCl solution inside the separation wall 4 in the reaction vessel 1
2  2
中を沈降して容器内の底部に堆積する。堆積 Ti粒は、適宜 Ti排出管 3から溶融 CaC 1  Settles inside and accumulates on the bottom of the container. The deposited Ti particles are melted from the Ti discharge pipe 3
2液と共に下方に抜き出され、 Ti分離工程 7に送られる。  It is withdrawn with the two liquids and sent to the Ti separation step 7.
[0111] 分離壁 4より内側での還元反応により Caを消費された溶融 CaClは、分離壁 4の下  [0111] The molten CaCl that consumed Ca by the reduction reaction inside the separation wall 4
2  2
方を経由して分離壁 4の外側を上昇し、溶融塩排出管 5から排出される。排出された 溶融 CaCl液は電解工程 8へ送られる。  And rises outside the separation wall 4 via the other side and is discharged from the molten salt discharge pipe 5. The discharged molten CaCl solution is sent to the electrolysis step 8.
2  2
[0112] このようにして、反応容器 1内で金属 Tiが連続的に製造される。分離壁 4より内側で は、 Caが溶解した溶融 CaCl液を用い、その溶融 CaCl液中の Caにより還元反応を  [0112] In this way, metal Ti is continuously produced in reaction vessel 1. Inside the separation wall 4, a molten CaCl solution in which Ca is dissolved is used, and the reduction reaction is performed by Ca in the molten CaCl solution.
2 2  twenty two
行うため、反応場が分離壁 4より内側のほぼ全体に拡がり、 TiClの供給速度増大が  As a result, the reaction field spreads almost completely inside the separation wall 4 and the TiCl supply rate increases.
4  Four
可能になる。これを含めた種々の理由により、高純度の Ti粒が高能率に製造されるこ とは前述したとおりである。  Will be possible. As described above, high-purity Ti grains are produced with high efficiency for various reasons including this.
[0113] ここで、分離壁 4は、 TiClの還元に使用する前の Caを多く含む溶融 CaCl液と、使  [0113] Here, the separation wall 4 is made of a molten CaCl solution containing a large amount of Ca before being used for the reduction of TiCl,
4 2 用後の Caを殆ど含まない溶融 CaCl液との混合を阻止して、反応効率を高める。  4 2 Mixing with molten CaCl solution containing almost no Ca after use increases the reaction efficiency.
2  2
[0114] 一方、分離工程 7では、反応容器 1から溶融 CaCl液と共に抜き出された Ti粒が溶  On the other hand, in the separation step 7, Ti particles extracted from the reaction vessel 1 together with the molten CaCl solution are dissolved.
2  2
融 CaCl液から分離される。具体的には、その Ti粒を圧縮して溶融 CaCl液を絞り取 Separated from molten CaCl solution. Specifically, the Ti particles are compressed to squeeze out the molten CaCl solution.
2 2 る。分離工程 7で得られた溶融 CaCl液は、反応容器 1から抜き出された溶融 CaCl 2 2 The molten CaCl solution obtained in the separation step 7 is the molten CaCl
2 2 液と共に、電解工程 8へ送られる。  22 The solution is sent to the electrolysis step 8 together with the solution.
[0115] 電解工程 8では、前述したとおり、反応容器 1及び分離工程 7から導入された溶融 C aCl液力 溶融 Ca合金電極を陰極に用いた電気分解により Caと C1ガスに分離され る。 Caは還元剤供給管 2を通して反応容器 1内へ戻される。ここで、 Caは CaClから [0115] In the electrolysis step 8, as described above, the molten CaCl liquid introduced from the reaction vessel 1 and the separation step 7 is separated into Ca and C1 gas by electrolysis using the molten Ca alloy electrode as a cathode. The Ca is returned into the reaction vessel 1 through the reducing agent supply pipe 2. Where Ca is from CaCl
2 完全分離する必要はなぐ CaClと共に反応容器 1内へ戻されても問題ない。反応容  2 It is not necessary to completely separate. There is no problem if it is returned to the reaction vessel 1 together with CaCl. Reaction volume
2  2
器 1内では Caが溶解した CaClを使用するからである。この分離操作の容易さにより  This is because CaCl in which Ca is dissolved is used in the vessel 1. This ease of separation operation
2  2
、 Caの電解製造コストが低減される。  , Ca electrolytic production cost is reduced.
[0116] 電解工程 8で発生した C1ガスは塩ィ匕工程 9へ送られる。塩化工程 9では、 TiO力 S [0116] The C1 gas generated in the electrolysis step 8 is sent to the salting step 9. In the chlorination process 9, TiO
2 2 塩化処理されることにより、 TiClが製造される。また、炭素粉末を併用することにより  By performing the chlorination treatment, TiCl is produced. Also, by using carbon powder together
4  Four
、副生する酸素が COの形で排出される。製造された TiClは、原料供給管 6により  The by-product oxygen is emitted in the form of CO. The produced TiCl is supplied through the raw material supply pipe 6.
2 4  twenty four
反応容器 1内に導入される。このようにして、溶融 CaCl液の循環により、還元剤であ  It is introduced into the reaction vessel 1. In this way, the circulation of the molten CaCl
2  2
る Ca及び C1ガスがサイクルされる。即ち、実質的に TiO及び Cの補給だけで、金属  Ca and C1 gases are cycled. In other words, only by replenishment of TiO and C
2 2  twenty two
Tiが連続的に製造される。  Ti is produced continuously.
[0117] 図 6は第 2の製造方法の第 3実施形態を示す金属 Ti製造装置の構成図である。  FIG. 6 is a configuration diagram of a metal Ti manufacturing apparatus showing a third embodiment of the second manufacturing method.
[0118] この第 3実施形態では、第 2実施形態と比較して原料供給管 6aの位置が異なる。 [0118] In the third embodiment, the position of the raw material supply pipe 6a is different from that in the second embodiment.
即ち、第 2実施形態では、原料供給管 6が TiClを容器内中心部に供給する構成に  That is, in the second embodiment, the raw material supply pipe 6 supplies TiCl to the center of the container.
4  Four
なっているが、第 3実施形態では、分離壁 4より内側の中心力 偏った位置に TiClを  However, in the third embodiment, TiCl is placed at a position where the central force inside the separation wall 4 is biased.
4 供給する構成になっている。  4 It is configured to supply.
[0119] この構成によれば、分離壁 4の内側で TiClガスのガスリフトよる対流が溶融 CaCl [0119] According to this configuration, the convection due to the gas lift of TiCl gas is
4 2 液に生じる。この CaClの対流により、還元効率が上がる。  4 Produced in liquid 2. This convection of CaCl increases the reduction efficiency.
2  2
[0120] V、ずれの実施形態でも、混合溶融塩を用いて溶融塩の温度を下げることができるこ とは前述したとおりである。  [0120] As described above, the temperature of the molten salt can be reduced by using the mixed molten salt also in the embodiment of V and deviation.
[0121] 3.第 3の製造方法について  [0121] 3. Regarding the third manufacturing method
図 7は第 3の製造方法の第 1実施形態を示す金属 Ti製造装置の構成図である。  FIG. 7 is a configuration diagram of a metal Ti manufacturing apparatus showing a first embodiment of the third manufacturing method.
[0122] 第 3の製造方法の第 1実施形態では、還元反応による Ti生成工程を行う反応容器 1と、電気分解による Ca補充工程を行なう電解槽 10とが使用される。反応容器 1は、 溶融塩として Caが比較的多量に溶解した Caリッチの溶融 CaClを保持する。 CaCl  [0122] In the first embodiment of the third production method, a reaction vessel 1 for performing a Ti generation step by a reduction reaction and an electrolytic cell 10 for performing a Ca replenishment step by electrolysis are used. The reaction vessel 1 holds Ca-rich molten CaCl in which Ca is dissolved in a relatively large amount as a molten salt. CaCl
2 2 は融点が約 780°Cであり、その溶融塩はその融点以上に加熱されている。  22 has a melting point of about 780 ° C, and its molten salt is heated above its melting point.
[0123] 反応容器 1内は、耐熱性の隔壁 17により底部を除いて 2分割されており、一方は還 元室 18、他方は後述する溶融 Ca合金を溶融塩に接触させて溶融 Ca合金から溶融 塩中へ Caを溶解させる Ca補充室 19である。両室は反応容器 1内の下部で連通し、 溶融塩の自由な往来を保証する。 [0123] The inside of the reaction vessel 1 is divided into two parts except for a bottom part by a heat-resistant partition wall 17, one of which is a reduction chamber 18, and the other of which is a molten Ca alloy, which will be described later, is brought into contact with a molten salt to form a molten salt. This is the Ca replenishing chamber 19 where Ca is dissolved in the molten salt. Both chambers communicate at the lower part of the reaction vessel 1, Guarantee the free flow of molten salt.
[0124] 還元室 18では、反応容器 1内の溶融塩中にガス状の TiClが分散して注入される  [0124] In the reduction chamber 18, gaseous TiCl is dispersed and injected into the molten salt in the reaction vessel 1.
4  Four
ことにより、これが溶融塩中の溶解 Caにより還元され、粒子状の金属 Tiが生成される 。生成された Ti粒は比重差により逐次、還元室 18の底に溜まる。  As a result, this is reduced by dissolved Ca in the molten salt, and particulate metal Ti is generated. The generated Ti particles sequentially accumulate at the bottom of the reduction chamber 18 due to a difference in specific gravity.
[0125] 還元室 18の底に溜まる Ti粒は、その底に存在する溶融塩と共に、還元室 18から抜 き出され、 Ti分離工程 7に送られる。 Ti分離工程 7では、還元室 18から溶融塩と共に 抜き出された Ti粒が溶融塩力 分離される。具体的には、その Ti粒を圧縮して溶融 塩を絞り取る。 Ti分離工程 7で得られた Ti粒は溶解され Tiインゴットとされる。  [0125] The Ti particles collected at the bottom of the reduction chamber 18 are extracted from the reduction chamber 18 together with the molten salt present at the bottom, and sent to the Ti separation step 7. In the Ti separation step 7, the Ti particles extracted together with the molten salt from the reduction chamber 18 are separated by molten salt power. Specifically, the Ti particles are compressed to squeeze out the molten salt. The Ti particles obtained in the Ti separation step 7 are dissolved to form a Ti ingot.
[0126] 一方、 Ti分離工程 7で Ti粒力 分離された溶融塩は使用済みの溶融塩であり、 Ca が消費され、 Ca濃度が低下している。この溶融塩は前述の電解槽 10へ送られる。  [0126] On the other hand, the molten salt that has been subjected to Ti particle separation in the Ti separation step 7 is a used molten salt, Ca is consumed, and the Ca concentration is reduced. This molten salt is sent to the above-mentioned electrolytic cell 10.
[0127] 電解槽 10は、溶融塩である溶融 CaClを収容しており、該溶融 CaClを陽極 11と  [0127] The electrolytic cell 10 contains molten CaCl as a molten salt, and the molten CaCl is
2 2  twenty two
陰極 12で電気分解する。これにより、陽極 11の側では C1ガスが発生し、陰極 12の  Electrolyze at cathode 12. As a result, C1 gas is generated on the side of the anode 11 and
2  2
側では Caが生成される。  On the side, Ca is generated.
[0128] ここで、陰極 12は溶融 Ca合金電極であり、具体的には、電解槽 10内の溶融塩に 挿入される絶縁性で底面開放の耐熱容器 13と、耐熱容器 13内に収容された溶融 C a合金 14と、耐熱容器 13の天板部を貫通して溶融 Ca合金 14に挿入された電極棒 1 5とを具備している。この陰極 12の側で生成される Caは、耐熱容器 13内の溶融 Ca 合金 14に合金や固溶の形で取り込まれる。これにより、耐熱容器 13内の溶融 Ca合 金 14の Ca濃度が上昇する。  [0128] Here, the cathode 12 is a molten Ca alloy electrode. Specifically, the cathode 12 is an insulating heat-resistant container 13 that is inserted into the molten salt in the electrolytic bath 10 and has an open bottom, and is housed in the heat-resistant container 13. The molten Ca alloy 14 and the electrode rod 15 inserted through the top plate of the heat-resistant container 13 and inserted into the molten Ca alloy 14 are provided. The Ca generated on the side of the cathode 12 is taken into the molten Ca alloy 14 in the heat-resistant container 13 in the form of an alloy or solid solution. Thereby, the Ca concentration of the molten Ca alloy 14 in the heat-resistant container 13 increases.
[0129] 耐熱容器 13内の溶融 Ca合金 14の Ca濃度が所定濃度 (例えば 15%)になると、そ の高 Ca濃度の溶融 Ca合金 14を第 1の輸送管 20により反応容器 1内の Ca補充室 19 へ上方から注入する。  [0129] When the Ca concentration of the molten Ca alloy 14 in the heat-resistant container 13 reaches a predetermined concentration (for example, 15%), the molten Ca alloy 14 having the high Ca concentration is transferred to the Ca in the reaction container 1 by the first transport pipe 20. Inject into refill chamber 19 from above.
[0130] このとき、 Ca補充室 19内の溶融塩上には、前回に注入された溶融 Ca合金 14' が 浮上している。この溶融 Ca合金 14^ は注入時は高 Ca濃度であり、下方の溶融塩に Caを放出し溶解させることにより、低 Ca濃度 (例えば数%)になっている。そこで、耐 熱容器 13内から Ca補充室 19への高 Ca濃度の溶融 Ca合金 14の輸送と並行して、 Ca補充室 19の溶融塩上に浮上する使用済みの低 Ca濃度の溶融 Ca合金 14' を、 第 2の輸送管 21により耐熱容器 13内へ輸送する。 [0131] これにより、 Ca補充室 19内では、溶融 Ca合金 14から下方の溶融塩に Caの溶解補 充が続けられる。その結果、還元室 18での Ti粒の生成に伴って消費される Caが補 われ、その生成反応が継続される。 [0130] At this time, the molten Ca alloy 14 'injected previously floats on the molten salt in the Ca replenishing chamber 19. This molten Ca alloy 14 ^ has a high Ca concentration at the time of injection, and has a low Ca concentration (for example, several%) by releasing and dissolving Ca in a molten salt below. Therefore, in parallel with the transport of the molten Ca alloy 14 having a high Ca concentration from the inside of the heat-resistant container 13 to the Ca replenishing chamber 19, the used molten Ca alloy having a low Ca concentration that floats on the molten salt in the Ca replenishing chamber 19 14 ′ is transported into the heat-resistant container 13 by the second transport pipe 21. [0131] Thus, in the Ca replenishing chamber 19, the melting and replenishment of Ca from the molten Ca alloy 14 to the molten salt below is continued. As a result, Ca consumed in the production of Ti particles in the reduction chamber 18 is supplemented, and the production reaction is continued.
[0132] 一方、陽極 11の表面近傍で発生した C1ガスは塩ィ匕工程 9へ送られる。塩化工程 9  [0132] On the other hand, the C1 gas generated near the surface of the anode 11 is sent to the salting step 9. Chlorination process 9
2  2
では、 TiOと Cが塩化処理されることにより、 Tiの原料である TiClが生成され、この  In the, the chlorination of TiO and C produces TiCl, which is the raw material for Ti.
2 4 とき同時に COガスも排出される。生成された TiClは原料供給管 6により反応容器 1  At the same time, CO gas is also emitted. The generated TiCl is supplied to the reactor 1
2 4  twenty four
に導入され、 Ca還元による Ti粒の生成に循環使用される。  And recycled to produce Ti particles by Ca reduction.
[0133] このように、第 3の製造方法の第 1実施形態では、反応容器 1での Ca還元反応によ り溶融塩中の Caが消費されるが、その Caが電解槽 10での溶融塩の電気分解により 生成され、還元反応による Ti粒の生成に循環使用される。し力も、 Caの循環使用に あたって反応容器 1と電解槽 10の間で溶融塩を循環させる必要がない。電解槽 10 での陰極に溶融 Ca合金 14を用い、これを Caの移送媒体として利用して反応容器 1 と電解槽 10の間で往復させるだけで、反応容器 1内の溶融塩へ Caを供給し続けるこ とができ、 Ti製造が継続される。  As described above, in the first embodiment of the third production method, Ca in the molten salt is consumed by the Ca reduction reaction in the reaction vessel 1, and the Ca is melted in the electrolytic cell 10. It is produced by electrolysis of salt and is recycled to produce Ti particles by reduction. In addition, it is not necessary to circulate the molten salt between the reaction vessel 1 and the electrolytic cell 10 when circulating Ca. The molten Ca alloy 14 is used as the cathode in the electrolytic cell 10, and Ca is supplied to the molten salt in the reaction vessel 1 simply by reciprocating between the reaction vessel 1 and the electrolytic cell 10 using this as a Ca transfer medium. And Ti production continues.
[0134] これにより、固体 Caの補充も取り出しも行うことなぐまた大量の溶融塩を循環させ ることもなく、極めて簡単に、 Ca還元による高品質な Ti粒が連続的に製造される。な お、溶融塩の温度は、いずれの工程でも CaClの融点 (約 780°C)より高い温度 (例  [0134] Accordingly, high-quality Ti particles are continuously produced by Ca reduction extremely easily without replenishing or removing solid Ca and without circulating a large amount of molten salt. Note that the temperature of the molten salt is higher than the melting point of CaCl (about
2  2
え ί 800一 850°C)【こ管理されて!/、る。  E ί 800-850 ° C) [This is managed! /
[0135] 図 8は第 3の製造方法の第 2実施形態を示す金属 Ti製造装置の構成図である。こ の第 2実施形態は 1実施形態と比べて次の点が相違する。 FIG. 8 is a configuration diagram of a metal Ti manufacturing apparatus showing a second embodiment of the third manufacturing method. The second embodiment differs from the first embodiment in the following points.
[0136] 溶融塩として、 CaClと他の塩ィ匕物を混合した低融点の多元系溶融塩を用いる。 Ti [0136] As the molten salt, a multi-component molten salt having a low melting point obtained by mixing CaCl and another salted product is used. Ti
2  2
分離工程 7で Ti粒カゝら分離された溶融塩を電解槽 10へ導入する前に、その溶融塩 を Ca除去槽 22へ導入する。そして、溶融塩の融点を例えば 650°C程度とすれば、 反応容器 1では溶融塩の温度を 850°C程度に高めた高温操業を行う。一方、電解槽 10及び Ca除去槽 22では溶融塩の温度を 700°C程度に下げた低温操業を行う。  Before the molten salt separated from the Ti particles in the separation step 7 is introduced into the electrolytic cell 10, the molten salt is introduced into the Ca removing tank 22. If the melting point of the molten salt is, for example, about 650 ° C., the reaction vessel 1 performs a high-temperature operation in which the temperature of the molten salt is increased to about 850 ° C. On the other hand, in the electrolytic cell 10 and the Ca removing tank 22, low-temperature operation is performed with the temperature of the molten salt lowered to about 700 ° C.
[0137] 反応容器 1で高温操業 (高温還元)を行うことにより、 Caの反応性が上がり、溶融塩 にお 、て Caの含有比が低下したことによる反応性の低下を補うことが可能になる。一 方、電解槽 10及び Ca除去槽 22で低温操業を行うことにより、電解槽 10へ導入され る溶融塩中の未反応 Caが事前に除去され、未反応 Caによるバックリアクション及び これによる電流効率の低下が抑制される。 [0137] Performing high-temperature operation (high-temperature reduction) in the reaction vessel 1 increases the reactivity of Ca, and makes it possible to compensate for the decrease in reactivity caused by the decrease in the Ca content ratio in the molten salt. Become. On the other hand, the low-temperature operation in the electrolytic cell 10 and the Ca removal tank 22 Unreacted Ca in the molten salt is removed in advance, and back reaction due to unreacted Ca and a decrease in current efficiency due to this are suppressed.
[0138] 即ち、反応容器 1から Ti分離工程 7を介して電解槽 10へ送られてくる溶融塩は、使 用済みの溶融塩であり、溶解 Caが消費されてはいるものの、未反応の溶解 Caを含 んでいる。未反応の Caが電解工程に混入すると、陽極 11の側で発生する C1ガスと [0138] That is, the molten salt sent from the reaction vessel 1 to the electrolytic cell 10 through the Ti separation step 7 is used molten salt, and although dissolved Ca is consumed, unreacted Contains dissolved Ca. If unreacted Ca enters the electrolysis process, C1 gas generated on the anode 11 side
2 反応し、 CaClに戻る、いわゆるバックリアクションが起こり、これに電解電流が消費さ  2 Reacts and returns to CaCl, a so-called back reaction, which consumes electrolytic current.
2  2
れることにより電流効率が低下する。  Current efficiency is reduced.
[0139] Ca除去槽 22では、 Ti分離工程 7から導入される溶融塩 (未反応 Ca含有)が、反応 容器 1内の Ca補充室 19から電解槽 10内の耐熱容器 13内へ輸送される使用済みの 低 Ca濃度の溶融 Ca合金 14' の一部(図 9では、 Mgと表示)と混合される。これによ り、溶融塩中の未反応 Caが低 Ca濃度の溶融 Ca合金 14' に取り込まれ、未反応 Ca が除去されると共に、高 Ca濃度の溶融 Ca合金 14が生成される。  [0139] In the Ca removal tank 22, the molten salt (containing unreacted Ca) introduced from the Ti separation step 7 is transported from the Ca replenishment chamber 19 in the reaction vessel 1 to the heat-resistant vessel 13 in the electrolysis vessel 10. It is mixed with a part of the used low Ca concentration molten Ca alloy 14 '(indicated as Mg in Fig. 9). As a result, the unreacted Ca in the molten salt is taken into the molten Ca alloy 14 ′ having a low Ca concentration, the unreacted Ca is removed, and the molten Ca alloy 14 having a high Ca concentration is generated.
[0140] こうして未反応 Caが除去された溶融塩が電解槽 10へ導入されることにより、溶融塩 が無駄なく循環使用され、し力も、溶融塩中の未反応 Caによるバックリアクション及び これによる電流効率の低下が抑制される。 Ca除去槽 22で副生された高 Ca濃度の溶 融 Ca合金 14 (図 9では、 Mg— Caと表示)は、反応容器 1内の Ca補充室 19に導入さ れる。  [0140] By introducing the molten salt from which unreacted Ca has been removed in this way to the electrolytic cell 10, the molten salt is circulated and used without waste, and the force is also increased by the back reaction due to the unreacted Ca in the molten salt and the current caused by the back reaction. A decrease in efficiency is suppressed. The high Ca concentration molten Ca alloy 14 (indicated as Mg—Ca in FIG. 9) by-produced in the Ca removal tank 22 is introduced into the Ca replenishing chamber 19 in the reaction vessel 1.
[0141] 電解槽 10で低温操業を行うことにより、溶融塩における Caの溶解度が低下すると 共に、溶融塩の対流や拡散も抑制され、これらの点力ももバックリアクションが抑制さ れる。また、 Ca除去槽 22で低温換業を行うことにより、 Ca溶解度が低下して、 Ca^ 析出し、析出した Caが合金に吸収される。  [0141] By performing the low-temperature operation in the electrolytic cell 10, the solubility of Ca in the molten salt is reduced, the convection and diffusion of the molten salt are also suppressed, and the back reaction is also suppressed at these point forces. In addition, by performing low-temperature switching in the Ca removal tank 22, Ca solubility is reduced, Ca ^ precipitates, and the precipitated Ca is absorbed by the alloy.
[0142] このように、第 3の製造方法の第 2実施形態では反応容器 1と電解槽 10との間で溶 融塩に温度差を付与することにより、電気分解による Ca生成工程での電流効率を上 げることができる。  [0142] As described above, in the second embodiment of the third production method, by applying a temperature difference to the molten salt between the reaction vessel 1 and the electrolytic cell 10, the current in the Ca generation step by electrolysis is obtained. Efficiency can be increased.
[0143] 図 9は第 3の製造方法の第 3実施形態を示す金属 Ti製造装置の構成図である。こ の第 3実施形態は 1実施形態及び第 2実施形態と比べて次の点が相違する。  FIG. 9 is a configuration diagram of a metal Ti manufacturing apparatus showing a third embodiment of the third manufacturing method. The third embodiment differs from the first embodiment and the second embodiment in the following points.
[0144] 反応容器 1は電解槽を兼ねており、底が深い還元室 23と底が浅い電解室 24とから なる。陽極 11は電解室 24内の反還元室側に配置されており、陰極 12を構成する耐 熱容器 13は、還元室 23と電解室 24の境界部に両室に跨がって配置されている。そ して、反応容器 1内の溶融塩は、還元室 23と電解室 24の境界部に設けられた隔壁 1 6により、耐熱容器 13内の溶融 Ca合金 14と溶融塩との界面と共に、陽極側と反陽極 側に分離されている。換言すれば、陽極側は底が浅い電解室 24に対応し、反陽極 側は底が深い還元室 23に対応する。 [0144] The reaction vessel 1 also serves as an electrolytic cell, and includes a reduction chamber 23 having a deep bottom and an electrolysis chamber 24 having a shallow bottom. The anode 11 is disposed on the anti-reduction chamber side in the electrolysis chamber 24, The heat vessel 13 is disposed at a boundary between the reduction chamber 23 and the electrolysis chamber 24 so as to straddle both chambers. Then, the molten salt in the reaction vessel 1 is supplied to the anode 16 together with the interface between the molten Ca alloy 14 and the molten salt in the heat-resistant vessel 13 by a partition wall 16 provided at the boundary between the reduction chamber 23 and the electrolysis chamber 24. Side and anti-anode side. In other words, the anode side corresponds to the electrolysis chamber 24 having a shallow bottom, and the anti-anode side corresponds to the reduction chamber 23 having a deep bottom.
[0145] 操業では、反応容器 1内の反陽極側、即ち還元室 23で、 Tiの原料である TiClが [0145] In the operation, on the anti-anode side in the reaction vessel 1, that is, in the reduction chamber 23, TiCl which is a raw material of Ti is supplied.
4 溶融塩中に導入され、溶融塩中の Caにより還元されて Ti粒を生成する。一方、反応 容器 1内の陽極側、即ち電解室 24では、陽極 11と陰極 12とによる溶融塩の電気分 解により、 Caが生成する。生成した Caは耐熱容器 13内の溶融 Ca合金 14に取り込ま れる。溶融 Ca合金 14に取り込まれた Caは、反応容器 1内の反陽極側、即ち還元室 2 3で溶融塩中に放出され溶解する。これにより、 Ti粒の生成に伴って消費される Caが 補充される。  4 Introduced into the molten salt and reduced by Ca in the molten salt to produce Ti particles. On the other hand, on the anode side in the reaction vessel 1, that is, in the electrolysis chamber 24, Ca is generated by the electrolysis of the molten salt by the anode 11 and the cathode 12. The generated Ca is taken into the molten Ca alloy 14 in the heat-resistant container 13. The Ca taken into the molten Ca alloy 14 is released and melted into the molten salt on the anti-anode side in the reaction vessel 1, that is, in the reduction chamber 23. This replenishes the Ca consumed by the generation of Ti grains.
[0146] この第 3実施形態の特徴としては、第 1に、反応容器 1が電解槽を兼ねることにより 容器構造が簡単であることが挙げられる。第 2に、溶融 Ca合金 14の電解槽一反応容 器間の輸送が行なわれないので、操業効率が上がる。また、前記槽ー容器間の輸送 を行うための設備が不要となり、この点からも設備が簡略化される。ただし、還元領域 と電解領域で溶融塩に温度差を付与するのは困難である。  [0146] The feature of the third embodiment is, firstly, that the reactor structure is simple because the reaction container 1 also serves as an electrolytic cell. Second, the efficiency of operation is increased because the molten Ca alloy 14 is not transported between the electrolytic cell and the reaction vessel. In addition, equipment for carrying out the transportation between the tank and the container is not required, and the equipment is also simplified from this point. However, it is difficult to give a temperature difference to the molten salt in the reduction zone and the electrolysis zone.
[0147] なお、図示していないが、第 3の製造方法の第 3実施形態においても、電解室 24へ 導入する溶融塩中の Caを、第 2実施形態の場合と同様に事前に除去することができ る。 産業上の利用の可能性  [0147] Although not shown, also in the third embodiment of the third manufacturing method, Ca in the molten salt introduced into the electrolytic chamber 24 is removed in advance in the same manner as in the second embodiment. be able to. Industrial potential
[0148] 前記第 1一第 3の Ca還元による Ti又は Ti合金の製造方法は、 TiClを還元する方 [0148] The method for producing Ti or a Ti alloy by the first to third Ca reductions is a method for reducing TiCl.
4  Four
法であるので、高純度の金属 Ti又は Ti合金を製造できる。その還元剤に Caを使用し 、特に、 CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩  Since it is a method, high purity metal Ti or Ti alloy can be manufactured. Ca is used as the reducing agent, and in particular, the molten salt containing CaCl and in which Ca is dissolved is held in a reaction vessel,
2  2
中の Caに TiClを含む金属塩化物を反応させて溶融 CaCl液中に Ti粒又は Ti合金  Of Ti particles or Ti alloy in molten CaCl solution by reacting metal chloride containing TiCl with Ca
4 2  4 2
粒を生成させるので、 Tiの原料である TiClの供給速度を増大することができ、し力も  Since the grains are generated, the supply rate of TiCl, which is a raw material of Ti, can be increased, and the force is increased.
4  Four
、連続的な製法が可能である。更に、高価な金属 Caの補充、反応性が強く取り扱い が難 、Caを単独で取り扱う操作が不要である。 , A continuous production method is possible. Furthermore, replenishment of expensive metal Ca, handling with strong reactivity However, there is no need for an operation for handling Ca alone.
また、第 2の製造方法によれば、それに加えて、電解工程で問題になる未反応 Ca の混入による電流効率の低下を溶融 Ca合金電極の使用により効果的に抑制できる 。更に、第 3の製造方法によれば、電解工程で使用する溶融 Ca合金電極を Caの移 送媒体として利用するので、大が力りな溶融塩の循環も不要になる。  In addition, according to the second manufacturing method, a decrease in current efficiency due to mixing of unreacted Ca, which is a problem in the electrolysis step, can be effectively suppressed by using a molten Ca alloy electrode. Further, according to the third production method, the molten Ca alloy electrode used in the electrolysis step is used as a Ca transfer medium, so that a powerful circulation of the molten salt is not required.
従って、本発明の Ti又は Ti合金の製造方法は、高純度の金属 Tiを能率よく経済的 に製造する手段として有効に利用することができる。  Therefore, the method for producing Ti or Ti alloy of the present invention can be effectively used as a means for efficiently and economically producing high-purity metal Ti.

Claims

請求の範囲 The scope of the claims
[1] CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中の  [1] A molten salt containing CaCl and in which Ca is dissolved is held in a reaction vessel,
2  2
Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti粒又は Ti合金粒を生  Reaction of metal chloride containing TiCl with Ca to produce Ti grains or Ti alloy grains in the molten salt
4  Four
成させる還元工程と、  A reduction step to be performed;
前記溶融塩中に生成された Ti粒又は Ti合金粒を前記溶融塩から分離する分離ェ 程とを含む Ca還元による Ti又は Ti合金の製造方法。  A method for producing Ti or a Ti alloy by Ca reduction, comprising a separation step of separating Ti particles or Ti alloy particles generated in the molten salt from the molten salt.
[2] 前記 CaClを含む溶融塩力 CaCl及び NaClを含む溶融塩である請求項 1に記 [2] The molten salt containing CaCl according to claim 1, which is a molten salt containing CaCl and NaCl.
2 2  twenty two
載の Ca還元による Ti又は Ti合金の製造方法。  Production method of Ti or Ti alloy by reduction of Ca described above.
[3] 前記 TiClを含む金属塩化物が、 TiCl及び他の金属塩化物を含む混合ガスであ [3] The metal chloride containing TiCl is a mixed gas containing TiCl and another metal chloride.
4 4  4 4
る請求項 1に記載の Ca還元による Ti又は Ti合金の製造方法。  A method for producing Ti or a Ti alloy by Ca reduction according to claim 1.
[4] 反応容器内の溶融塩上に Caを含む溶融金属を保持することにより、その溶融金属 力 下方の溶融塩へ Caを供給する請求項 1に記載の Ca還元による Ti又は Ti合金の 製造方法。 [4] The production of Ti or a Ti alloy by Ca reduction according to claim 1, wherein the molten metal containing Ca is held on the molten salt in the reaction vessel to supply Ca to the molten salt below the molten metal force. Method.
[5] 前記 Caを含む溶融金属が、 Ca及び Mgを含む溶融金属である請求項 4に記載の 5. The method according to claim 4, wherein the molten metal containing Ca is a molten metal containing Ca and Mg.
Ca還元による Ti又は Ti合金の製造方法。 Production method of Ti or Ti alloy by Ca reduction.
[6] Ti又は Ti合金の生成に伴って副生する CaClを反応容器外へ抜き出す請求項 1 [6] The method according to claim 1, wherein CaCl by-produced with the production of Ti or Ti alloy is extracted out of the reaction vessel.
2  2
に記載の Ca還元による Ti又は Ti合金の製造方法。  2. A method for producing Ti or a Ti alloy by Ca reduction according to the item 1.
[7] 反応容器外へ抜き出された CaClを Caと C1とに電気分解する電解工程を含み、 [7] including an electrolysis step of electrolyzing CaCl extracted to the outside of the reaction vessel into Ca and C1,
2 2  twenty two
電解工程で生成された Caを反応容器内での Ti又は Ti合金の生成反応に使用する 請求項 6に記載の Ca還元による Ti又は Ti合金の製造方法。  7. The method for producing Ti or a Ti alloy by Ca reduction according to claim 6, wherein Ca generated in the electrolysis step is used for a reaction for producing Ti or a Ti alloy in the reaction vessel.
[8] Caによる還元反応を用いた Ti又は Ti合金の製造方法であって、 [8] A method for producing Ti or a Ti alloy using a reduction reaction with Ca,
CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中の The molten salt containing CaCl and dissolved Ca is held in the reaction vessel,
2 2
Caに TiClを含む金属塩化物を反応させて前記溶融塩中に Ti又は Ti合金を生成さ  The metal chloride containing TiCl is reacted with Ca to form Ti or Ti alloy in the molten salt.
4  Four
せる還元工程に対して、  The reduction process
前記 Ti又は Ti合金の生成に使用され前記反応容器カゝら抜き出された溶融塩を電 気分解し、前記溶融塩中に Caを生成補充して前記反応容器に戻す循環式の電解 工程を組み合わせ、  A circulating electrolysis step of electrolyzing the molten salt used for producing the Ti or Ti alloy and extracted from the reaction vessel, producing and replenishing Ca in the molten salt and returning the molten salt to the reaction vessel; Combination,
且つ前記電解工程にぉ ヽて、陰極に溶融 Ca合金カゝらなる合金電極を用いる Ca還 元による Ti又は Ti合金の製造方法。 In addition, in the electrolysis step, an alloy electrode made of a molten Ca alloy is used as a cathode. Original method of producing Ti or Ti alloy.
[9] 前記電解工程では、電解槽内の溶融塩、及び前記合金電極を構成する溶融 Ca合 金と前記溶融塩との界面を、隔壁により陽極側と反陽極側とに仕切り、 [9] In the electrolysis step, an interface between the molten salt in the electrolytic cell and the molten Ca alloy constituting the alloy electrode and the molten salt is partitioned into an anode side and an anti-anode side by a partition wall.
前記反応容器から供給される溶融塩を前記反陽極側へ導入する請求項 8に記載 の Ca還元による Ti又は Ti合金の製造方法。  9. The method for producing Ti or a Ti alloy by Ca reduction according to claim 8, wherein the molten salt supplied from the reaction vessel is introduced to the anti-anode side.
[10] 生成された Ti又は Ti合金を前記反応容器内又は反応容器外で溶融塩から分離す る Ti分離工程を含んでおり、 [10] including a Ti separation step of separating the generated Ti or Ti alloy from the molten salt inside or outside the reaction vessel,
Ti又は Ti合金の生成に使用された溶融塩を前記反応容器の外に抜き出す排出ェ 程では、溶融塩中に生成された Ti又は Ti合金を前記溶融塩と共に反応容器外へ抜 き出し、  In the discharging step of extracting the molten salt used for producing Ti or Ti alloy out of the reaction vessel, the Ti or Ti alloy produced in the molten salt is extracted out of the reaction vessel together with the molten salt,
前記 Ti分離工程では、反応容器外へ抜き出された溶融塩カゝら前記 Ti又は Ti合金 を分離し、  In the Ti separating step, the Ti or Ti alloy is separated from the molten salt drawn out of the reaction vessel,
前記電解工程では、前記 Ti又は Ti合金が分離除去された溶融塩を電気分解する 請求項 8に記載の Ca還元による Ti又は Ti合金の製造方法。  9. The method for producing Ti or Ti alloy by Ca reduction according to claim 8, wherein in the electrolysis step, the molten salt from which the Ti or Ti alloy has been separated and removed is electrolyzed.
[11] 前記還元工程では、 TiClを含む金属塩化物を溶融塩中に供給する請求項 1又は 11. The method according to claim 1, wherein in the reduction step, a metal chloride containing TiCl is supplied into the molten salt.
4  Four
8に記載の Ca還元による Ti又は Ti合金の製造方法。  8. The method for producing Ti or a Ti alloy by Ca reduction according to 8.
[12] Caによる還元反応を用いた Ti又は Ti合金の製造方法であって、 [12] A method for producing Ti or a Ti alloy using a reduction reaction with Ca,
CaClを含む溶融塩を、溶融 Ca合金を陰極に用いて電気分解することにより、前 The molten salt containing CaCl is electrolyzed using the molten Ca alloy as the cathode,
2 2
記溶融 Ca合金中の Ca分を増加させる、電気分解による Ca生成工程と、  A step of generating Ca by electrolysis, which increases the Ca content in the molten Ca alloy,
Ca生成工程により Caが増加した溶融 Ca合金を、 CaClを含む溶融塩に接触させ  The molten Ca alloy, whose Ca has been increased by the Ca generation process, is brought into contact with molten salt containing CaCl.
2  2
て、該溶融塩中に Caを溶解させる Ca補充工程と、  A Ca replenishing step of dissolving Ca in the molten salt,
Ca補充工程により Caが溶解した溶融塩に、 TiClを含む金属塩ィ匕物を供給して、  By supplying a metal salt containing TiCl to the molten salt in which Ca is dissolved by the Ca replenishing step,
4  Four
溶融塩中に Ti又は Ti合金を生成させる、還元反応による Ti生成工程とを含む Ca還 元による Ti又は Ti合金の製造方法。  A method for producing Ti or a Ti alloy by Ca reduction including a step of producing a Ti or a Ti alloy in a molten salt by a reduction reaction.
[13] 溶融塩中に生成した Ti又は Ti合金を溶融塩から分離する Ti分離工程を含む請求 項 12に記載の Ca還元による Ti又は Ti合金の製造方法。 13. The method for producing Ti or Ti alloy by Ca reduction according to claim 12, comprising a Ti separation step of separating Ti or Ti alloy produced in the molten salt from the molten salt.
[14] CaClを含む溶融塩を電解槽及び反応容器内に保持し、電解槽内で電解による C [14] The molten salt containing CaCl is held in the electrolytic cell and the reaction vessel,
2  2
a生成工程を行うと共に、電解槽から反応容器へ溶融 Ca合金を輸送して、反応容器 内で Ca補充工程及び Ti生成工程を行な ヽ、反応容器内で Caが消費された溶融 Ca 合金を電解槽へ逆送する請求項 12に記載の Ca還元による Ti又は Ti合金の製造方 法。 a Perform the production process and transport the molten Ca alloy from the electrolytic cell to the reaction The method for producing Ti or a Ti alloy by Ca reduction according to claim 12, wherein a Ca replenishing step and a Ti generating step are performed in the reactor, and the molten Ca alloy in which Ca has been consumed in the reaction vessel is sent back to the electrolytic cell. .
[15] 前記電解槽における溶融塩の温度を、前記反応容器における溶融塩の温度より低 くする請求項 14に記載の Ca還元による Ti又は Ti合金の製造方法。  15. The method for producing Ti or a Ti alloy by Ca reduction according to claim 14, wherein the temperature of the molten salt in the electrolytic cell is lower than the temperature of the molten salt in the reaction vessel.
[16] 電解槽を兼ねる反応容器内に CaClを含む溶融塩を保持して、溶融 Ca合金を陰 [16] The molten salt containing CaCl is held in a reaction vessel that also serves as an electrolytic
2  2
極に用いた電気分解を行うと共に、反応容器内の溶融塩、及び該溶融塩と溶融 Ca 合金の界面を、隔壁により陽極側と反陽極側に分離し、陽極側で Ca生成工程を行な Vヽ、反陽極側で Ca補充工程及び Ti生成工程を行う請求項 12に記載の Ca還元によ る Ti又は Ti合金の製造方法。  In addition to performing electrolysis using the electrodes, the molten salt in the reaction vessel and the interface between the molten salt and the molten Ca alloy are separated into an anode side and an anti-anode side by partition walls, and a Ca generation step is performed on the anode side. 13. The method for producing Ti or a Ti alloy by Ca reduction according to claim 12, wherein a Ca replenishing step and a Ti generating step are performed on the side opposite to the anode.
[17] 前記電解工程で生成する C1を TiOに反応させて TiClを生成する塩化工程 9を [17] The chlorination step 9 of reacting C1 generated in the electrolysis step with TiO to generate TiCl
2 2 4  2 2 4
含み、塩化工程 9で生成された TiClを反応容器内での Ti又は Ti合金の生成反応に  The TiCl produced in the chlorination process 9 is used for the Ti or Ti alloy formation reaction in the reaction vessel.
4  Four
使用する請求項 7、 8又は 12に記載の Ca還元による Ti又は Ti合金の製造方法。  13. The method for producing Ti or a Ti alloy by Ca reduction according to claim 7, 8 or 12.
[18] 生成した Ti又は Ti合金を溶融塩と共に前記反応容器の外へ抜き出して、槽外で前 記 Ti又は Ti合金を溶融塩力 分離する請求項 1又は 13に記載の Ca還元による Ti又 は Ti合金の製造方法。 [18] The Ti or Ti alloy by Ca reduction according to claim 1 or 13, wherein the generated Ti or Ti alloy is drawn out of the reaction vessel together with the molten salt, and the Ti or Ti alloy is separated by molten salt force outside the tank. Is the manufacturing method of Ti alloy.
[19] Ti分離工程で Ti又は Ti合金カゝら分離された溶融塩を、電気分解による Ca生成ェ 程及び Z又は還元反応による Ti生成工程に導入する請求項 13に記載の Ca還元に よる Ti又は Ti合金の製造方法。  [19] The method according to claim 13, wherein the molten salt separated from Ti or Ti alloy in the Ti separation step is introduced into a Ca generation step by electrolysis and a Z generation step by Z or Ti reduction reaction. Manufacturing method of Ti or Ti alloy.
[20] Ti分離工程で Ti又は Ti合金カゝら分離された溶融塩を、 Ti生成工程に使用して Ca が消費された溶融 Ca合金と反応させて、溶融塩中の未反応 Caにより溶融 Ca合金中 の Caを増加させ、その溶融 Ca合金を Ca補充工程に使用する請求項 13に記載の C a還元による Ti又は Ti合金の製造方法。  [20] The molten salt separated from Ti or Ti alloy in the Ti separation step is reacted with the molten Ca alloy in which Ca has been consumed in the Ti generation step, and is melted by unreacted Ca in the molten salt. 14. The method for producing Ti or a Ti alloy by reduction of Ca according to claim 13, wherein Ca in the Ca alloy is increased, and the molten Ca alloy is used in a Ca replenishing step.
[21] 前記 CaClを含む溶融塩は、 CaClの他に、 NaCl、 KC1、 LiCl及び CaFのうちの  [21] The molten salt containing CaCl is, in addition to CaCl, NaCl, KC1, LiCl and CaF
2 2 2 少なくとも 1種を含む多元系溶融塩である請求項 12に記載の Ca還元による Ti又は T i合金の製造方法。  13. The method for producing a Ti or Ti alloy by Ca reduction according to claim 12, which is a multi-component molten salt containing at least one of 222.
[22] 前記 TiClを含む金属塩ィ匕物は、 TiCl及び他の金属塩ィ匕物を含む混合物である  [22] The metal chloride containing TiCl is a mixture containing TiCl and another metal chloride.
4 4  4 4
請求項 12に記載の Ca還元による Ti又は Ti合金の製造方法。 生成する Ti又は Ti合金は平均粒径が 0. 5— 50 mの粒体である請求項 12に記 載の Ca還元による Ti又は Ti合金の製造方法。 A method for producing Ti or a Ti alloy by reducing Ca according to claim 12. 13. The method for producing Ti or Ti alloy according to claim 12, wherein the produced Ti or Ti alloy is a granule having an average particle size of 0.5 to 50 m.
PCT/JP2004/014734 2003-10-10 2004-10-06 METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca WO2005035806A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/575,224 US20070131057A1 (en) 2003-10-10 2004-10-06 Method for producing ti or ti alloy through reduction by ca
AU2004280401A AU2004280401C1 (en) 2003-10-10 2004-10-06 Method for producing Ti or Ti alloy through reduction by Ca
EP04792090A EP1683877A4 (en) 2003-10-10 2004-10-06 METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003352661 2003-10-10
JP2003-352661 2003-10-10
JP2004-044552 2004-02-20
JP2004044552A JP2005133196A (en) 2003-10-10 2004-02-20 METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP2004-074445 2004-03-16
JP2004074445A JP2005264181A (en) 2004-03-16 2004-03-16 METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM

Publications (1)

Publication Number Publication Date
WO2005035806A1 true WO2005035806A1 (en) 2005-04-21

Family

ID=34437599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014734 WO2005035806A1 (en) 2003-10-10 2004-10-06 METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca

Country Status (4)

Country Link
US (1) US20070131057A1 (en)
EP (1) EP1683877A4 (en)
AU (1) AU2004280401C1 (en)
WO (1) WO2005035806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034645A1 (en) * 2005-09-20 2007-03-29 Osaka Titanium Technologies Co., Ltd. PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193984B2 (en) * 2003-08-28 2008-12-10 株式会社大阪チタニウムテクノロジーズ Metal manufacturing equipment
JP5226700B2 (en) 2007-01-22 2013-07-03 マテリアルズ アンド エレクトロケミカル リサーチ コーポレイション Metallic thermal reduction of in situ generated titanium chloride
US9157730B2 (en) * 2012-10-26 2015-10-13 Applied Materials, Inc. PECVD process
CN104313645B (en) * 2014-10-28 2017-08-08 苏州萨伯工业设计有限公司 The preparation facilities and preparation technology of Mo-bearing granitoid material
EP3334847A4 (en) * 2015-08-14 2018-06-27 Coogee Titanium Pty Ltd Method for production of a composite material using excess oxidant
NO20220517A1 (en) * 2022-05-05 2023-11-06 Norsk Hydro As A process and apparatus for production of aluminium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487677A (en) * 1983-04-11 1984-12-11 Metals Production Research, Inc. Electrolytic recovery system for obtaining titanium metal from its ore
WO1986007097A1 (en) * 1985-05-27 1986-12-04 The University Of Melbourne Metal halide reduction with molten sodium/potassium alloy
JPS6447823A (en) * 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
WO1996004407A1 (en) * 1994-08-01 1996-02-15 Kroftt-Brakston International, Inc. Method of making metals and other elements
JP2001192748A (en) * 2000-01-07 2001-07-17 Nkk Corp Method and device for manufacturing metallic titanium
WO2003038456A2 (en) * 2001-11-01 2003-05-08 Kla-Tencor Technologies Corporation Tank probe for measuring surface conductance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals
US4105440A (en) * 1969-09-05 1978-08-08 Battelle Memorial Institute Process for reducing metal halides by reaction with calcium carbide
FR2582019B1 (en) * 1985-05-17 1987-06-26 Extramet Sa PROCESS FOR THE PRODUCTION OF METALS BY REDUCTION OF METAL SALTS, METALS OBTAINED THEREBY AND DEVICE FOR CARRYING OUT SAME
JPH042179Y2 (en) * 1987-09-16 1992-01-24
US6309595B1 (en) * 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487677A (en) * 1983-04-11 1984-12-11 Metals Production Research, Inc. Electrolytic recovery system for obtaining titanium metal from its ore
WO1986007097A1 (en) * 1985-05-27 1986-12-04 The University Of Melbourne Metal halide reduction with molten sodium/potassium alloy
JPS6447823A (en) * 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
WO1996004407A1 (en) * 1994-08-01 1996-02-15 Kroftt-Brakston International, Inc. Method of making metals and other elements
JP2001192748A (en) * 2000-01-07 2001-07-17 Nkk Corp Method and device for manufacturing metallic titanium
WO2003038456A2 (en) * 2001-11-01 2003-05-08 Kla-Tencor Technologies Corporation Tank probe for measuring surface conductance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTINEZ A.M. ET AL.: "A chemical and electrochemical study of titanium ions in the molten equimolar CaCl2 + NaCl mixture at 550°C", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 449, 1998, pages 67 - 80, XP002984225 *
See also references of EP1683877A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034645A1 (en) * 2005-09-20 2007-03-29 Osaka Titanium Technologies Co., Ltd. PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JP2007084847A (en) * 2005-09-20 2007-04-05 Sumitomo Titanium Corp METHOD AND DEVICE FOR PRODUCING Ti
EP1944383A1 (en) * 2005-09-20 2008-07-16 OSAKA Titanium Technologies Co., Ltd. PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
EP1944383A4 (en) * 2005-09-20 2009-12-02 Osaka Titanium Technologies Co PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR

Also Published As

Publication number Publication date
AU2004280401A1 (en) 2005-04-21
EP1683877A1 (en) 2006-07-26
EP1683877A4 (en) 2008-06-25
AU2004280401C1 (en) 2008-12-11
US20070131057A1 (en) 2007-06-14
AU2004280401B2 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
US20070187255A1 (en) Method for producing ti or ti alloy through reduction by ca
JP4395386B2 (en) Method for producing Ti or Ti alloy by circulating Ca source
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
EP1816221A1 (en) PROCESS FOR PRODUCING Ti THROUGH Ca REDUCTION AND APPARATUS THEREFOR
WO2006098199A1 (en) Method of high-melting-point metal separation and recovery
WO2005035806A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP4347089B2 (en) Method for producing Ti or Ti alloy by Ca reduction
JP2005068539A (en) Method and apparatus for producing metal
JP2007084847A (en) METHOD AND DEVICE FOR PRODUCING Ti
JP4510769B2 (en) Manufacturing method and apparatus for Ti or Ti alloy
JP2005133196A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
WO2007105616A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY WITH THESE
JP2005264181A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP4249685B2 (en) Method for producing Ti by Ca reduction
EP1876248A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
JP2009133010A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
JP2005068540A (en) METHOD AND APPARATUS FOR PRODUCING METAL THROUGH REDUCTION BY Ca
JP4227113B2 (en) Pull-up electrolysis method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007131057

Country of ref document: US

Ref document number: 10575224

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004792090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004280401

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004280401

Country of ref document: AU

Date of ref document: 20041006

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004280401

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004792090

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10575224

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004280401

Country of ref document: AU

Date of ref document: 20041006

Kind code of ref document: B