WO2005034522A1 - Projection system having a secured optical engine comprising a supplementary image source - Google Patents

Projection system having a secured optical engine comprising a supplementary image source Download PDF

Info

Publication number
WO2005034522A1
WO2005034522A1 PCT/EP2004/052431 EP2004052431W WO2005034522A1 WO 2005034522 A1 WO2005034522 A1 WO 2005034522A1 EP 2004052431 W EP2004052431 W EP 2004052431W WO 2005034522 A1 WO2005034522 A1 WO 2005034522A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
spectrum
emitting
imager
light source
Prior art date
Application number
PCT/EP2004/052431
Other languages
French (fr)
Inventor
Lilian Lacoste
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2005034522A1 publication Critical patent/WO2005034522A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the field of the invention is that of projection systems, in particular with optical valves, and more particularly secure systems having a high resistance to breakdowns. 5
  • direct vision displays of the flat screen type are generally used, for example with liquid crystal matrices.
  • the presentation of information by means of several large displays has certain drawbacks. These are essentially: • Resistance to breakdowns. When a screen is down, the total area for presenting information decreases. This problem is all the more important as the number of initial screens is low. However, for some aeronautical applications, the presentation is made on only 4 main screens.
  • Figure 1 shows a device of this type. It includes: • A source of color images 1 also called an optical engine providing a color image of small size (typically a few centimeters on the side) and at high resolution (typically a few million pixels). • A projection screen 11 placed before the eyes 12 of the user. • A projection optic 10 which focuses the image supplied by the optical engine on the projection screen 11 and thus presents the user with an enlarged final image. The propagation of the beams is represented by dotted lines in FIG. 1.
  • the optical engine consists of three sources of monochrome primary images each generating one of the three components of the initial color image. These image sources include a primary imager and an associated light source. Imagers are also called micro-displays in Anglo-Saxon terminology.
  • Primary imagers operate by modulating the light from the associated colored light source.
  • the superimposition of the three images from the primary image sources by a mixing device forms the initial color image.
  • Imagers can operate either by reflection or by transmission.
  • the imagers operating by reflection are in particular imagers of the LCOS type (acronym for Liquid Crystal On Silicon) or DMD (acronym for Digital Mirror Device) or DLP (acronym for Digital Light Projector).
  • Imagers operating by transmission are also called optical valves.
  • the optical valves are, for example, liquid crystal arrays. Each optical valve is then lit by a monochrome light source.
  • the diagram in FIG. 2 shows a color imager operating from optical valves.
  • a mixing cube 2 comprising two semi-reflecting plates 21 and 22 perpendicular to one another makes it possible to mix the three optical beams 61, 62 and 63 coming from the optical valves 31, 32 and 33 to reconstitute the color image.
  • This system has several advantages. From a single color optical engine, it is of course possible, by modifying the optical parameters of the projection system, to change the magnification of the system and consequently the size of the final image. The size of the system can easily be adapted to different configurations of dashboards. In addition, by placing several display devices side by side, it is possible to perform a panoramic display without image cuts.
  • the object of the invention is to improve the security of a system with several redundant projectors from a single projector with a single color optical engine comprising an additional image source or backup source capable of compensating for the failure. from one of the three sources of monochrome primary images.
  • the additional image source includes an imager of the same type as that of the primary imagers and a light source capable of emitting in a selectable spectrum. This source can thus substantially emit any one of the three spectra of the 3 light sources of the primary displays.
  • a specific mixer optical unit allows the four images from the four image sources to be mixed.
  • the subject of the invention is an optical engine for a device for projecting color images comprising a first imager lit by a first light source emitting in a first spectrum, a second imager lit by a second light source emitting in a second spectrum, a third imager illuminated by a third light source emitting in a third spectrum and an optical mixer, the images of the three imagers through the optical mixer being perfectly combined so as to form a single color image, characterized in that said optical motor also comprises at least a fourth imager illuminated by a fourth light source emitting in a spectrum adjustable by control means, the image of said fourth imager through the optical mixer also being perfectly merged with the images of the first, of the second and third imager so that in case of pan of one of the three imagers or their associated light source, the fourth imager can replace it without altering the quality of the final color image.
  • Figure 1 represents a general view of a motorized projection device optics
  • Figure 2 shows an optical engine with 3 optical valves according to the prior art
  • Figure 3 shows a first embodiment of the optical engine according to the invention
  • Figure 4 shows a second embodiment of the optical engine according to the invention
  • Figure 5 shows an exploded view of the optical mixer according to this second embodiment
  • Figure 6 shows a first embodiment of the lighting in the case where the imagers are optical valves
  • Figure 7 shows a second embodiment of the lighting of the optical valves
  • Figure 8 shows the electronic control architecture of an optical engine according to the invention.
  • FIG. 3 represents a sectional view of a first embodiment of the optical engine according to the invention.
  • Image source imagers are light valves.
  • the optical engine then includes: • 4 identical optical valves 31, 32, 33 and 34 operating by transmission; • 4 light sources 41, 42, 43 and 44. Each source is associated with an optical valve.
  • the optical valve-light source association constitutes a primary image source.
  • the first optical valve 31 is lit by the first light source 41 emitting in a first spectrum
  • the second optical valve 32 is lit by the second light source 42 emitting in a second spectrum
  • the third optical valve 33 is lit by the third light source 43 emitting in a third spectrum.
  • the fourth optical valve serving as an emergency valve 34 is illuminated by the fourth light source 44 emitting in an adjustable spectrum by control means; • 1 mixing optical unit 2 monobloc composed of 5 elementary prisms with flat faces as shown in figure 3. 3 prisms are identical roof prisms, the other two are prisms whose section is a rectangular trapezoid as shown in figure 3 Certain faces of the prisms are treated so that once assembled, the mixer unit comprises 3 semi-reflecting plates 21, 22 and 23 arranged as shown in FIG. 3. The first plate 21 transmits the first and the second spectrum and reflects the third spectrum, the second plate 22 reflects the first spectrum and transmits the second and the third spectrum. The third semi-reflecting plate 23 does not have to have special photometric properties.
  • the emission level of each of the light sources so that after crossing this third plate, the colorimetry of the image is respected.
  • This arrangement makes it possible to optimize the transmissions of the colored light beams 61, 62 and 63 coming from the light sources and circulating through the mixer block.
  • the beam 61 coming from the light source 41 is first of all perfectly transmitted by the semi-reflecting plate 21 then reflected by the semi-reflecting plates 22 and 23.
  • this arrangement of the mixer unit can also be adapted to other types of displays operating either by reflection or by transmission.
  • the geometry of the mixer block and the arrangement of the semi-reflecting plates and the optical valves is such that the four images of the optical valves through the mixer block are perfectly combined.
  • the primary image sources consisting of the optical valves 31, 32 and 33 associated with the light sources 41, 42 and 43 provide the modulated light beams 61, 62 and 63 which after reflection and transmission through the mixer block form the initial colored image.
  • the optical valve 34 as well as its light source 44 are switched off.
  • the optical valve 34 and the light source 44 are activated.
  • the video information dedicated to the disconnected optical valve is sent to said optical valve 34 and the light source 44 is controlled to emit the spectrum of the disconnected light source.
  • the optical valve 34 completely replaces the failed optical valve.
  • FIG. 4 represents a perspective view of a second embodiment of the device according to the invention.
  • the optical engine also includes: • 4 identical optical valves 31, 32, 33 and 34 operating by transmission; • 4 light sources 41, 42, 43 and 44.
  • Each source is associated with an optical valve.
  • the combination of optical valve and light source constitutes a primary image source; • 1 optical mixer 2 monobloc cube-shaped composed of 8 elementary prisms with flat faces.
  • the structure of the prisms and their arrangement is indicated in the exploded view of FIG. 4. Certain faces of the prisms are treated so that once assembled, the mixing unit comprises 3 semi-reflecting blades 21, 22 and 23.
  • the first blade 21 transmits the first and the second spectrum and reflects the third spectrum
  • the second plate 22 reflects the first spectrum and transmits the second and the third spectrum.
  • the first semi-reflecting strip 21 is arranged perpendicular to a first face of said cube and along one of the diagonals of said face
  • the second semi-reflecting strip 22 is also arranged perpendicular to said first face and along the second diagonal of said face
  • the third semi-reflecting plate 23 being arranged perpendicular to a second face perpendicular to the first face and along one of the diagonals of said second face.
  • this arrangement of the mixer unit can also be adapted to other types of imagers operating either by reflection or by transmission.
  • Other arrangements of the mixer block are possible.
  • the first semi-reflecting plate can reflect the first spectrum and transmit at least the second spectrum
  • the second plate can transmit the third spectrum and reflect the first and the second spectrum.
  • the optical valves are liquid crystal, the transmitted light is naturally polarized. It is then possible to improve the photometric yields of the semi-reflecting plates by using suitable polarizing treatments making it possible to optimize the reflection and the transmission of the polarized beams. It is also possible to mix the beams using discrete optical components such as semi-reflecting plates with flat and parallel faces.
  • FIG. 6 illustrates a first embodiment.
  • a single white light source 40 is positioned in front of a set of optical separators 51 and 52 and of mirrors 53 making it possible to create the colored light sources 41, 42 and 43.
  • the spectral width of the light source 40 is wide enough to cover the three spectra needed to light the imagers.
  • the separator 51 of the figure transmits a first spectrum and reflects the other two
  • the separator 52 transmits one of the two spectra reflected by the separator 51 and reflects the other.
  • shutters 71, 72 and 73 placed in front of each of the three light beams constituting the light sources make it possible to suppress the beam corresponding to the imager inoperative so as to remove any stray light in the colorful picture.
  • These shutters can be mechanical shutters (diaphragms, movable shutters, etc.) or electro-optical shutters (optical valves).
  • the white source must be particularly robust to avoid total loss of lighting. Its robustness can be increased by choosing long-life sources (fluorescent tubes also called CCFL: Cold Cathode Fluorescent Lamp) or by multiplying the primary sources constituting the white source, for example in the case of arc lamps whose duration of life is lower.
  • CCFL Cold Cathode Fluorescent Lamp
  • FIG. 7 illustrates a second embodiment of the light sources.
  • Three independent light sources emitting in three different spectral bands are then used.
  • Light emitting diodes emitting in the visible can be used as primary sources. This produces compact and highly reliable light sources. In Indeed, not only do the light-emitting diodes have a long lifespan, but, moreover, it is possible to produce each source from a plurality of diodes, the loss of a diode having only limited consequences.
  • the additional light source 44 must be capable of emitting in the 3 spectral bands. It is possible to perform this function simply by using three types of light-emitting diodes or three fluorescent tubes emitting in three visible spectral bands.
  • the 3 primary imagers consisting of optical valves 31, 32 and 33 and of light sources 41, 42 and 43 constituting the imager are controlled by a data bus 82 via cards. interface 83.
  • the management of the optical engine can be carried out according to the control architecture described in FIG. 8. This includes: • The 4 imagers 31, 32, 33 and 34 illuminated by light sources 41, 42, 43 and 44. The first three sources
  • Each imager associated with a light source constitutes a primary image source; • The 4 four identical 83 interface cards used to drive the 4 primary image sources; • A control module 84; • A data bus 82 serving the 4 interface cards 83; • A control bus 81 connected to the control module 84 and to the interface cards 83.
  • the control module periodically checks, via the control bus 81, the proper functioning of the imagers 31, 32 and 33 and of the light sources 41, 42 and 43. If their operation is correct, then the imager 34 and the light source 44 are not activated. If one of the 3 optical imagers 31, 32 or 33 or one of the 3 light sources 41, 42 or
  • 35 43 is detected defective by the control module, then all of the corresponding image source is disconnected, the backup image source consisting of the imager 34 and the lighting source 44 is activated, the image dedicated to the disconnected imager is then sent by the data bus on the imager 34 and the light source 44 is controlled to emit light in the spectral band corresponding to the disconnected light source so that the backup image source completely replaces the primary image source broken down without alteration of the final image.

Abstract

The invention concerns image projection systems having an optical engine and, in particular, secured systems that are highly resistant to malfunctions. Traditionally, projection systems have a color optical engine (1) having 3 sources of monochrome primary images. The aim of the invention is to realize a projector having a secured color optical engine comprising a supplementary image source (34, 44) or standby source capable of compensating for the malfunction of one of three monochrome primary image sources. The supplementary image source simply comprises an imager (34) of the same type as the imagers of the primary image sources and a light source (44) capable of emitting in a selectable spectral band. An optical mixing unit (2) provided in the shape of a cube having three semireflecting edges (21, 22, 23) makes it possible to mix the four images originating from the four image sources. The advantages of this arrangement are numerous. A high reliability of the optical engine is obtained without loss in quality of the image while involving only a marginal increase in costs, bulkiness and complexity.

Description

SYSTÈME DE PROJECTION A MOTEUR OPTIQUE SÉCURISÉ COMPRENANT UNE SOURCE D ' IMAGES SUPPLÉMENTAIREPROJECTION SYSTEM WITH SECURE OPTICAL MOTOR COMPRISING AN ADDITIONAL SOURCE OF IMAGES
Le domaine de l'invention est celui des systèmes de projection notamment à valves optiques, et plus particulièrement des systèmes sécurisés ayant une grande résistance aux pannes. 5 Pour réaliser des présentations d'informations, on utilise généralement des visualisations à vision directe de type écrans plats, par exemple à matrices à cristaux liquides. Pour certaines applications, notamment pour les présentations d'informations sur planches de bord 10 d'aéronefs, la présentation d'informations au moyens de plusieurs grandes visualisations présente certains inconvénients. Ce sont essentiellement : • La résistance aux pannes. Lorsqu'un écran est en panne, la surface totale de présentation d'informations diminue. Ce problème est d'autant plus important que le nombre d'écrans initial est faible. Or, pour 15 certaines applications aéronautiques, la présentation se fait sur seulement 4 écrans principaux. On peut, bien entendu, reconfigurer les écrans encore fonctionnels pour limiter la perte d'informations mais toujours au prix d'une ergonomie de présentation dégradée, surtout si l'écran en panne est placé devant le pilote. Dans ce cas, la disponibilité de l'information peut en être 20 affectée. • L'adaptabilité. En fonction du porteur, les dimensions et l'ergonomie de la planche de bord varient. La taille , la forme et la résolution des écrans doivent alors être adaptées, or il n'est pas possible d'adapter les tailles d'écrans sans étudier et développer de nouvelles matrices et de 25 nouvelles boîtes à lumière, ce qui nécessitent des coûts et des délais de développement considérables. • L'ergonomie. Chaque écran possède un cadre mécanique nécessaire pour loger les circuits de commande des visualisations de type matriciel, ce qui limite nécessairement la surface disponible pour afficher des 30 informations. Aussi, depuis quelques années, d'autres dispositifs de visualisation ont été développés. Il s'agit de dispositifs de projection d'images. La figure 1 représente un dispositif de ce type. Il comprend : • Une source d'images couleur 1 encore appelée moteur optique fournissant une image couleur de petite taille (typiquement de quelques centimètres de coté) et à haute résolution (typiquement quelques millions de pixels). • Un écran de projection 11 placé devant les yeux 12 de l'utilisateur. • Une optique de projection 10 qui focalise l'image fournie par le moteur optique sur l'écran de projection 11 et présente ainsi à l'utilisateur une image finale agrandie. La propagation des faisceaux est représentée en traits pointillés sur la figure 1. Généralement, le moteur optique est constitué de trois sources d'images primaires monochromes générant chacun une des trois composantes de l'image couleur initiale. Ces sources d'images comprennent un imageur primaire et une source de lumière associée. Les imageurs sont encore appelés micro-displays en terminologie anglo-saxonne. Les imageurs primaires fonctionnent par modulation de la lumière issue de la source de lumière colorée associée. La superposition des trois images provenant des sources d'images primaires par un dispositif mélangeur forme l'image couleur initiale. Les imageurs peuvent fonctionner soit par réflexion, soit par transmission. Les imageurs fonctionnant par réflexion sont notamment des imageurs de type LCOS (acronyme anglo-saxon pour Liquid Crystal On Silicon) ou DMD (acronyme anglo-saxon pour Digital Mirror Device) ou DLP (acronyme anglo-saxon pour Digital Light Projector). Les imageurs fonctionnant par transmission sont encore appelés valves optiques. Les valves optiques sont, par exemple, des matrices à cristaux liquide. Chaque valve optique est alors éclairée par une source de lumière monochrome. Le schéma de la figure 2 montre un imageur couleur fonctionnant à partir de valves optiques. Il comprend trois valves optiques 31, 32 et 33 éclairées par des sources de lumière 41 , 42 et 43 émettant dans des bandes spectrales différentes, typiquement dans le bleu, le vert et le rouge. Un cube mélangeur 2 comportant deux lames semi-réfléchissantes 21 et 22 perpendiculaires entre elles permet de mélanger les trois faisceaux optiques 61 , 62 et 63 provenant des valves optiques 31 , 32 et 33 pour reconstituer l'image couleur. Ce système a plusieurs avantages. A partir d'un moteur optique couleur unique, il est bien entendu possible, en modifiant les paramètres optiques du système de projection, de changer le grandissement du système et par conséquent la taille de l'image finale. L'encombrement du système peut facilement être adapté aux différentes configurations de planches de bord. De plus, en plaçant plusieurs dispositifs de visualisation côte à côte, il est possible de réaliser une visualisation panoramique sans coupures d'images. Il est également possible de bâtir une architecture sécurisée de système de visualisation à partir de dispositifs de projection primaires. Pour sécuriser le système de visualisation, on sépare alors la zone d'affichage en zones indépendantes (screen tiling) associées à un ou plusieurs dispositifs de projection primaires redondants. Le brevet américain 6 497 486 décrit un système de ce type comportant au moins deux dispositifs de projection. Comme il est montré sur la figure 1 de ce brevet, une optique de grandissement spécifique placée devant l'un des imageurs couleur permet de doubler la taille de l'image issue dudit projecteur en cas de panne du second projecteur. L'utilisateur conserve ainsi une image de taille constante en cas de panne. Bien entendu, la résolution de l'image est divisée par deux et ce système nécessite au moins deux projecteurs pour être opérationnel. L'objet de l'invention est d'améliorer la sécurisation d'un système à plusieurs projecteurs redondants à partir d'un seul projecteur à moteur optique couleur unique comportant une source d'images supplémentaire ou source de secours capable de suppléer à la panne d'une des trois sources d'images primaires monochromes. La source d'images supplémentaire comprend un imageur du même type que celui des imageurs primaires et une source de lumière capable d'émettre dans un spectre sélectionnable. Cette source peut ainsi sensiblement émettre l'un quelconque des trois spectres des 3 sources de lumière des afficheurs primaires. Un bloc optique mélangeur spécifique permet de mélanger les quatre images provenant des quatre sources d'images. Plus précisément, l'invention a pour objet un moteur optique pour dispositif de projection d'images en couleur comportant un premier imageur éclairé par une première source de lumière émettant dans un premier spectre, un second imageur éclairé par une seconde source de lumière émettant dans un second spectre, un troisième imageur éclairé par une troisième source de lumière émettant dans un troisième spectre et un mélangeur optique, les images des trois imageurs à travers le mélangeur optique étant parfaitement confondues de façon à former une image couleur unique, caractérisé en ce que ledit moteur optique comporte également au moins un quatrième imageur éclairé par une quatrième source de lumière émettant dans un spectre réglable par des moyens de commande, l'image dudit quatrième imageur à travers le mélangeur optique étant également parfaitement confondue avec les images du premier, du second et du troisième imageur de sorte que, en cas de panne d'un des trois imageurs ou de leur source de lumière associée, le quatrième imageur puisse le remplacer sans altérer la qualité de l'image couleur finale.The field of the invention is that of projection systems, in particular with optical valves, and more particularly secure systems having a high resistance to breakdowns. 5 To make presentations of information, direct vision displays of the flat screen type are generally used, for example with liquid crystal matrices. For certain applications, in particular for the presentation of information on aircraft dashboards 10, the presentation of information by means of several large displays has certain drawbacks. These are essentially: • Resistance to breakdowns. When a screen is down, the total area for presenting information decreases. This problem is all the more important as the number of initial screens is low. However, for some aeronautical applications, the presentation is made on only 4 main screens. We can, of course, reconfigure the screens that are still functional to limit the loss of information, but always at the cost of degraded presentation ergonomics, especially if the broken screen is placed in front of the pilot. In this case, the availability of information may be affected. • Adaptability. Depending on the carrier, the dimensions and ergonomics of the dashboard vary. The size, shape and resolution of the screens must then be adapted, but it is not possible to adapt the screen sizes without studying and developing new arrays and new light boxes, which require costs. and considerable development times. • Ergonomics. Each screen has a mechanical frame necessary for housing the control circuits of the matrix type displays, which necessarily limits the area available for displaying information. Also, in recent years, other display devices have been developed. These are image projection devices. Figure 1 shows a device of this type. It includes: • A source of color images 1 also called an optical engine providing a color image of small size (typically a few centimeters on the side) and at high resolution (typically a few million pixels). • A projection screen 11 placed before the eyes 12 of the user. • A projection optic 10 which focuses the image supplied by the optical engine on the projection screen 11 and thus presents the user with an enlarged final image. The propagation of the beams is represented by dotted lines in FIG. 1. Generally, the optical engine consists of three sources of monochrome primary images each generating one of the three components of the initial color image. These image sources include a primary imager and an associated light source. Imagers are also called micro-displays in Anglo-Saxon terminology. Primary imagers operate by modulating the light from the associated colored light source. The superimposition of the three images from the primary image sources by a mixing device forms the initial color image. Imagers can operate either by reflection or by transmission. The imagers operating by reflection are in particular imagers of the LCOS type (acronym for Liquid Crystal On Silicon) or DMD (acronym for Digital Mirror Device) or DLP (acronym for Digital Light Projector). Imagers operating by transmission are also called optical valves. The optical valves are, for example, liquid crystal arrays. Each optical valve is then lit by a monochrome light source. The diagram in FIG. 2 shows a color imager operating from optical valves. It includes three optical valves 31, 32 and 33 illuminated by light sources 41, 42 and 43 emitting in different spectral bands, typically in blue, green and the red. A mixing cube 2 comprising two semi-reflecting plates 21 and 22 perpendicular to one another makes it possible to mix the three optical beams 61, 62 and 63 coming from the optical valves 31, 32 and 33 to reconstitute the color image. This system has several advantages. From a single color optical engine, it is of course possible, by modifying the optical parameters of the projection system, to change the magnification of the system and consequently the size of the final image. The size of the system can easily be adapted to different configurations of dashboards. In addition, by placing several display devices side by side, it is possible to perform a panoramic display without image cuts. It is also possible to build a secure visualization system architecture from primary projection devices. To secure the display system, the display area is then separated into independent areas (screen tiling) associated with one or more redundant primary projection devices. US Patent 6,497,486 describes a system of this type comprising at least two projection devices. As shown in FIG. 1 of this patent, a specific magnification lens placed in front of one of the color imagers makes it possible to double the size of the image coming from said projector in the event of failure of the second projector. The user thus keeps an image of constant size in the event of a breakdown. Of course, the resolution of the image is halved and this system requires at least two projectors to be operational. The object of the invention is to improve the security of a system with several redundant projectors from a single projector with a single color optical engine comprising an additional image source or backup source capable of compensating for the failure. from one of the three sources of monochrome primary images. The additional image source includes an imager of the same type as that of the primary imagers and a light source capable of emitting in a selectable spectrum. This source can thus substantially emit any one of the three spectra of the 3 light sources of the primary displays. A specific mixer optical unit allows the four images from the four image sources to be mixed. More specifically, the subject of the invention is an optical engine for a device for projecting color images comprising a first imager lit by a first light source emitting in a first spectrum, a second imager lit by a second light source emitting in a second spectrum, a third imager illuminated by a third light source emitting in a third spectrum and an optical mixer, the images of the three imagers through the optical mixer being perfectly combined so as to form a single color image, characterized in that said optical motor also comprises at least a fourth imager illuminated by a fourth light source emitting in a spectrum adjustable by control means, the image of said fourth imager through the optical mixer also being perfectly merged with the images of the first, of the second and third imager so that in case of pan of one of the three imagers or their associated light source, the fourth imager can replace it without altering the quality of the final color image.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : • La figure 1 représente une vue générale d'un dispositif de projection à moteur optique ; • La figure 2 représente un moteur optique à 3 valves optiques selon l'art antérieur ; • La figure 3 représente un premier mode de réalisation du moteur optique selon l'invention ; • La figure 4 représente un second mode de réalisation du moteur optique selon l'invention ; • La figure 5 représente une vue éclatée du mélangeur optique selon ce second mode de réalisation ; • La figure 6 représente un premier mode de réalisation de l'éclairage dans le cas où les imageurs sont des valves optiques ; • La figure 7 représente un second mode de réalisation de l'éclairage des valves optiques ; • La figure 8 représente l'architecture électronique de commande d'un moteur optique selon l'invention.The invention will be better understood and other advantages will appear on reading the description which follows given without limitation and thanks to the appended figures among which: • Figure 1 represents a general view of a motorized projection device optics; • Figure 2 shows an optical engine with 3 optical valves according to the prior art; • Figure 3 shows a first embodiment of the optical engine according to the invention; • Figure 4 shows a second embodiment of the optical engine according to the invention; • Figure 5 shows an exploded view of the optical mixer according to this second embodiment; • Figure 6 shows a first embodiment of the lighting in the case where the imagers are optical valves; • Figure 7 shows a second embodiment of the lighting of the optical valves; • Figure 8 shows the electronic control architecture of an optical engine according to the invention.
La figure 3 représente une vue en coupe d'un premier mode de réalisation du moteur optique selon l'invention. Les imageurs des sources d'images sont des valves optiques. Le moteur optique comprend alors : • 4 valves optiques identiques 31, 32, 33 et 34 fonctionnant par transmission ; • 4 sources de lumière 41, 42, 43 et 44. Chaque source est associée à une valve optique. L'association valve optique -source de lumière constitue une source d'images primaire. Ainsi, la première valve optique 31 est éclairée par la première source de lumière 41 émettant dans un premier spectre, la seconde valve optique 32 est éclairée par la seconde source de lumière 42 émettant dans un second spectre, la troisième valve optique 33 est éclairée par la troisième source de lumière 43 émettant dans un troisième spectre. La quatrième valve optique servant de valve de secours 34 est éclairée par la quatrième source de lumière 44 émettant dans un spectre réglable par des moyens de commande ; • 1 bloc optique mélangeur 2 monobloc composé de 5 prismes élémentaires à faces planes comme indiqué sur la figure 3. 3 prismes sont des prismes en toit identiques, les deux autres sont des prismes dont la section est un trapèze rectangle comme montré sur la figure 3. Certaines faces des prismes sont traitées de sorte qu'une fois assemblé, le bloc mélangeur comporte 3 lames semi-réfléchissantes 21, 22 et 23 disposées comme indiqué selon la figure 3. La première lame 21 transmet le premier et le second spectre et réfléchit le troisième spectre, la seconde lame 22 réfléchit le premier spectre et transmet le second et le troisième spectre. Il n'est pas nécessaire que la troisième lame semi-réfléchissante 23 ait des propriétés photométriques particulières. En effet, il est toujours possible de régler le niveau d'émission de chacune des sources de lumière pour qu'après traversée de cette troisième lame, la colorimétrie de l'image soit respectée. Cette disposition permet d'optimiser les transmissions des faisceaux de lumière colorés 61, 62 et 63 venant des sources de lumière et circulant à travers le bloc mélangeur. Ainsi, par exemple, le faisceau 61 venant de la source de lumière 41 est d'abord parfaitement transmis par la lame semi-réfléchissante 21 puis réfléchi par les lames semi-réfléchissantes 22 et 23. Bien entendu, cette disposition du bloc mélangeur peut également s'adapter à d'autres types d'afficheurs fonctionnant soit par réflexion soit par transmission. La géométrie du bloc mélangeur et la disposition des lames semi- réfléchissantes et des valves optiques est telle que les quatre images des valves optiques à travers le bloc mélangeur sont parfaitement confondues. En fonctionnement normal, les sources d'images primaires constituées des valves optiques 31 , 32 et 33 associées aux sources de lumière 41, 42 et 43 fournissent les faisceaux de lumière modulés 61, 62 et 63 qui après réflexion et transmission à travers le bloc mélangeur forment l'image colorée initiale. Dans ces conditions, la valve optique 34 ainsi que sa source de lumière 44 sont éteintes. En cas de panne simple, soit d'une valve optique 31, 32 ou 33, soit d'une source de lumière 41, 42 ou 43, la valve optique et la source de lumière correspondante sont mises hors tension. Dans ce cas, la valve optique 34 et la source de lumière 44 sont activées. Les informations vidéo dédiées à la valve optique déconnectée sont envoyées à ladite valve optique 34 et la source de lumière 44 est commandée pour émettre le spectre de la source de lumière déconnectée. Ainsi, la valve optique 34 se substitue totalement à la valve optique en panne. La qualité optique et la résolution de l'image finale sont parfaitement maintenues. La panne de la valve optique de secours 34 ou de sa source de lumière d'éclairage est hautement improbable dans la mesure où celles-ci ne sont activées qu'en cas de panne des sources d'images primaires. Par conséquent, ces composants sont destinés à ne fonctionner que des durées limitées. Par ailleurs, la panne de la source d'images de secours n'a pas de conséquences immédiates en mode fonctionnement normal et peut être détectée à l'initialisation du dispositif de projection par un simple test intégré. Le fonctionnement du moteur optique tel qu'il vient d'être décrit peut s'appliquer à tous types d'imageurs fonctionnant aussi bien par réflexion que par transmission. La figure 4 représente une vue en perspective d'un second mode de réalisation du dispositif selon l'invention. Le moteur optique comprend également : • 4 valves optiques identiques 31, 32, 33 et 34 fonctionnant par transmission ; • 4 sources de lumière 41, 42, 43 et 44. Chaque source est associée à une valve optique. L'association valve optique-source de lumière constitue une source d'images primaire ; • 1 bloc optique mélangeur 2 monobloc en forme de cube composé de 8 prismes élémentaires à faces planes. La structure des prismes et leur agencement est indiqué sur la vue éclatée de la figure 4. Certaines faces des prismes sont traitées de sorte qu'une fois assemblé, le bloc mélangeur comporte 3 lames semi-réfléchissantes 21 , 22 et 23. La première lame 21 transmet le premier et le second spectre et réfléchit le troisième spectre, la seconde lame 22 réfléchit le premier spectre et transmet le second et le troisième spectre. La première lame semi-réfléchissante 21 est disposée perpendiculairement à une première face dudit cube et selon une des diagonales de ladite face, la seconde lame semi-réfléchissante 22 est disposée également perpendiculairement à ladite première face et selon la seconde diagonale de ladite face, la troisième lame semi-réfléchissante 23 étant disposée perpendiculairement à une seconde face perpendiculaire à la première face et selon l'une des diagonales de ladite seconde face. Cette disposition permet d'optimiser les transmissions des faisceaux de lumière colorés 61, 62 et 63 venant des sources de lumière et circulant à travers le cube mélangeur. La géométrie du bloc mélangeur et la disposition des lames semi-réfléchissantes et des valves optiques est telle que les quatre images des valves optiques à travers le bloc mélangeur sont parfaitement confondues. Cette solution présente l'avantage d'une grande compacité et d'une grande robustesse. Bien entendu, cette disposition du bloc mélangeur peut également s'adapter à d'autres types d'imageurs fonctionnant soit par réflexion soit par transmission. D'autres agencements du bloc mélangeur sont possibles. A titre d'exemple, la première lame semi-réfléchissante peut réfléchir le premier spectre et transmettre au moins le second spectre, la seconde lame peut transmettre le troisième spectre et réfléchir le premier et le second spectre. Lorsque les valves optiques sont à cristaux liquides, la lumière transmise est naturellement polarisée. Il est alors possible d'améliorer les rendements photométriques des lames semi-réfléchissantes en utilisant des traitements polarisants adaptés permettant d'optimiser la réflexion et la transmission des faisceaux polarisés. Il est également possible de réaliser le mélange des faisceaux au moyen de composants optiques discrets comme des lames semi- réfléchissantes à faces planes et parallèles. II existe différents modes de réalisation de l'éclairage des imageurs optiques formant l'image colorée initiale. La figure 6 illustre un premier mode de réalisation. Une source de lumière blanche unique 40 est positionnée devant un ensemble de séparateurs optiques 51 et 52 et de miroirs 53 permettant de créer les sources de lumière colorées 41, 42 et 43. La largeur spectrale de la source de lumière 40 est suffisamment large pour couvrir les trois spectres nécessaires à l'éclairage des imageurs. A titre d'exemple, le séparateur 51 de la figure transmet un premier spectre et réfléchit les deux autres, le séparateur 52 transmet un des deux spectres réfléchis par le séparateur 51 et réfléchit l'autre. En cas de panne d'un des imageurs, des obturateurs 71, 72 et 73 placés devant chacun des trois faisceaux de lumière constituant les sources de lumière permettent de supprimer le faisceau correspondant à l'imageur en panne de façon à supprimer toute lumière parasite dans l'image colorée. Ces obturateurs peuvent être des obturateurs mécaniques (diaphragmes, volets mobiles,...) ou électro-optiques (valves optiques). La source blanche doit être particulièrement robuste pour éviter toute perte totale de l'éclairage. On peut augmenter sa robustesse en choisissant des sources à grande durée de vie (tubes fluorescents encore appelés CCFL : Cold Cathode Fluorescent Lamp) ou en multipliant les sources primaires constituant la source blanche, par exemple dans le cas de lampes à arc dont la durée de vie est plus faible. La figure 7 illustre un second mode de réalisation des sources de lumière. On utilise alors trois sources de lumière indépendantes émettant dans trois bandes spectrales différentes. On peut utiliser comme sources primaires des diodes électroluminescentes émettant dans le visible. On réalise ainsi des sources d' éclairage compactes et de grande fiabilité. En effet, non seulement les diodes électroluminescentes possèdent une grande durée de vie, mais, de plus, il est possible de réaliser chaque source à partir d'une pluralité de diodes, la perte d'une diode n'ayant plus que des conséquences limitées. La source de lumière 44 supplémentaire doit être capable d'émettre dans les 3 bandes spectrales. IL est possible de réaliser simplement cette fonction en utilisant trois types de diodes électroluminescentes ou trois tubes fluorescents émettant dans trois bandes spectrales du visible.FIG. 3 represents a sectional view of a first embodiment of the optical engine according to the invention. Image source imagers are light valves. The optical engine then includes: • 4 identical optical valves 31, 32, 33 and 34 operating by transmission; • 4 light sources 41, 42, 43 and 44. Each source is associated with an optical valve. The optical valve-light source association constitutes a primary image source. Thus, the first optical valve 31 is lit by the first light source 41 emitting in a first spectrum, the second optical valve 32 is lit by the second light source 42 emitting in a second spectrum, the third optical valve 33 is lit by the third light source 43 emitting in a third spectrum. The fourth optical valve serving as an emergency valve 34 is illuminated by the fourth light source 44 emitting in an adjustable spectrum by control means; • 1 mixing optical unit 2 monobloc composed of 5 elementary prisms with flat faces as shown in figure 3. 3 prisms are identical roof prisms, the other two are prisms whose section is a rectangular trapezoid as shown in figure 3 Certain faces of the prisms are treated so that once assembled, the mixer unit comprises 3 semi-reflecting plates 21, 22 and 23 arranged as shown in FIG. 3. The first plate 21 transmits the first and the second spectrum and reflects the third spectrum, the second plate 22 reflects the first spectrum and transmits the second and the third spectrum. The third semi-reflecting plate 23 does not have to have special photometric properties. Indeed, it is always possible to adjust the emission level of each of the light sources so that after crossing this third plate, the colorimetry of the image is respected. This arrangement makes it possible to optimize the transmissions of the colored light beams 61, 62 and 63 coming from the light sources and circulating through the mixer block. Thus, for example, the beam 61 coming from the light source 41 is first of all perfectly transmitted by the semi-reflecting plate 21 then reflected by the semi-reflecting plates 22 and 23. Of course, this arrangement of the mixer unit can also be adapted to other types of displays operating either by reflection or by transmission. The geometry of the mixer block and the arrangement of the semi-reflecting plates and the optical valves is such that the four images of the optical valves through the mixer block are perfectly combined. In normal operation, the primary image sources consisting of the optical valves 31, 32 and 33 associated with the light sources 41, 42 and 43 provide the modulated light beams 61, 62 and 63 which after reflection and transmission through the mixer block form the initial colored image. Under these conditions, the optical valve 34 as well as its light source 44 are switched off. In the event of a simple failure, either of an optical valve 31, 32 or 33, or of a light source 41, 42 or 43, the optical valve and the corresponding light source are switched off. In this case, the optical valve 34 and the light source 44 are activated. The video information dedicated to the disconnected optical valve is sent to said optical valve 34 and the light source 44 is controlled to emit the spectrum of the disconnected light source. Thus, the optical valve 34 completely replaces the failed optical valve. Optical quality and resolution of the final image are perfectly maintained. Failure of the backup optical valve 34 or its illuminating light source is highly improbable since these are only activated in the event of failure of the primary image sources. Therefore, these components are intended to operate only for limited periods of time. Furthermore, the failure of the backup image source has no immediate consequences in normal operating mode and can be detected on initialization of the projection device by a simple integrated test. The operation of the optical engine as just described can be applied to all types of imagers operating both by reflection and by transmission. FIG. 4 represents a perspective view of a second embodiment of the device according to the invention. The optical engine also includes: • 4 identical optical valves 31, 32, 33 and 34 operating by transmission; • 4 light sources 41, 42, 43 and 44. Each source is associated with an optical valve. The combination of optical valve and light source constitutes a primary image source; • 1 optical mixer 2 monobloc cube-shaped composed of 8 elementary prisms with flat faces. The structure of the prisms and their arrangement is indicated in the exploded view of FIG. 4. Certain faces of the prisms are treated so that once assembled, the mixing unit comprises 3 semi-reflecting blades 21, 22 and 23. The first blade 21 transmits the first and the second spectrum and reflects the third spectrum, the second plate 22 reflects the first spectrum and transmits the second and the third spectrum. The first semi-reflecting strip 21 is arranged perpendicular to a first face of said cube and along one of the diagonals of said face, the second semi-reflecting strip 22 is also arranged perpendicular to said first face and along the second diagonal of said face, the third semi-reflecting plate 23 being arranged perpendicular to a second face perpendicular to the first face and along one of the diagonals of said second face. This arrangement makes it possible to optimize the transmissions of the colored light beams 61, 62 and 63 coming from the light sources and circulating through the mixing cube. The geometry of the mixer block and the arrangement of the semi-reflecting plates and the optical valves is such that the four images of the optical valves through the mixer block are perfectly combined. This solution has the advantage of great compactness and great robustness. Of course, this arrangement of the mixer unit can also be adapted to other types of imagers operating either by reflection or by transmission. Other arrangements of the mixer block are possible. For example, the first semi-reflecting plate can reflect the first spectrum and transmit at least the second spectrum, the second plate can transmit the third spectrum and reflect the first and the second spectrum. When the optical valves are liquid crystal, the transmitted light is naturally polarized. It is then possible to improve the photometric yields of the semi-reflecting plates by using suitable polarizing treatments making it possible to optimize the reflection and the transmission of the polarized beams. It is also possible to mix the beams using discrete optical components such as semi-reflecting plates with flat and parallel faces. There are different embodiments of the lighting of the optical imagers forming the initial colored image. FIG. 6 illustrates a first embodiment. A single white light source 40 is positioned in front of a set of optical separators 51 and 52 and of mirrors 53 making it possible to create the colored light sources 41, 42 and 43. The spectral width of the light source 40 is wide enough to cover the three spectra needed to light the imagers. For example, the separator 51 of the figure transmits a first spectrum and reflects the other two, the separator 52 transmits one of the two spectra reflected by the separator 51 and reflects the other. In the event of one of the imagers failing, shutters 71, 72 and 73 placed in front of each of the three light beams constituting the light sources make it possible to suppress the beam corresponding to the imager inoperative so as to remove any stray light in the colorful picture. These shutters can be mechanical shutters (diaphragms, movable shutters, etc.) or electro-optical shutters (optical valves). The white source must be particularly robust to avoid total loss of lighting. Its robustness can be increased by choosing long-life sources (fluorescent tubes also called CCFL: Cold Cathode Fluorescent Lamp) or by multiplying the primary sources constituting the white source, for example in the case of arc lamps whose duration of life is lower. FIG. 7 illustrates a second embodiment of the light sources. Three independent light sources emitting in three different spectral bands are then used. Light emitting diodes emitting in the visible can be used as primary sources. This produces compact and highly reliable light sources. In Indeed, not only do the light-emitting diodes have a long lifespan, but, moreover, it is possible to produce each source from a plurality of diodes, the loss of a diode having only limited consequences. The additional light source 44 must be capable of emitting in the 3 spectral bands. It is possible to perform this function simply by using three types of light-emitting diodes or three fluorescent tubes emitting in three visible spectral bands.
10 Dans un dispositif de visualisation non sécurisé, les 3 imageurs primaires constituées des valves optiques 31 , 32 et 33 et des sources d'éclairage 41, 42 et 43 constituant l'imageur sont commandées par un bus de données 82 via des cartes d'interface 83. 15 Dans un dispositif de visualisation sécurisé selon l'invention, la gestion du moteur optique peut être réalisé selon l'architecture de commande décrite en figure 8. Celle-ci comprend : • Les 4 imageurs 31 , 32, 33 et 34 éclairées par les sources d'éclairage 41, 42, 43 et 44. Les trois premières sourcesIn a non-secure viewing device, the 3 primary imagers consisting of optical valves 31, 32 and 33 and of light sources 41, 42 and 43 constituting the imager are controlled by a data bus 82 via cards. interface 83. 15 In a secure display device according to the invention, the management of the optical engine can be carried out according to the control architecture described in FIG. 8. This includes: • The 4 imagers 31, 32, 33 and 34 illuminated by light sources 41, 42, 43 and 44. The first three sources
20 d'éclairage sont monochromes et la quatrième source d'éclairage 44 est susceptible d'émettre dans une bande spectrale réglable. Chaque imageur associé à une source de lumière constitue une source d'images primaire ; • Les 4 quatre cartes d'interface 83 identiques servant à piloter 25 les 4 source d'images primaires ; • Un module de contrôle 84 ; • Un bus de données 82 desservant les 4 cartes d'interface 83 ; • Un bus de contrôle 81 relié au module de contrôle 84 et aux cartes d'interface 83.20 lighting are monochrome and the fourth lighting source 44 is capable of emitting in an adjustable spectral band. Each imager associated with a light source constitutes a primary image source; • The 4 four identical 83 interface cards used to drive the 4 primary image sources; • A control module 84; • A data bus 82 serving the 4 interface cards 83; • A control bus 81 connected to the control module 84 and to the interface cards 83.
30 Le module de contrôle vérifie périodiquement, par l'intermédiaire du bus de contrôle 81 , le bon fonctionnement des imageurs 31 , 32 et 33 et des sources d'éclairage 41 , 42 et 43. Si leur fonctionnement est correct, alors l'imageur 34 et la source d'éclairage 44 ne sont pas activées. Si un des 3 imageurs optiques 31 , 32 ou 33 ou une des 3 sources d'éclairage 41 , 42 ouThe control module periodically checks, via the control bus 81, the proper functioning of the imagers 31, 32 and 33 and of the light sources 41, 42 and 43. If their operation is correct, then the imager 34 and the light source 44 are not activated. If one of the 3 optical imagers 31, 32 or 33 or one of the 3 light sources 41, 42 or
35 43 est détectée défectueuse par le module de contrôle, alors l'ensemble de la source d'images correspondant est déconnecté, la source d'images de secours constituée de l' imageur 34 et de la source d'éclairage 44 est activé, l'image dédiée à l'imageur déconnecté est alors envoyée par le bus de données sur l'imageur 34 et la source d'éclairage 44 est commandée pour émettre la lumière dans la bande spectrale correspondant à la source d'éclairage déconnectée de façon que la source d'images de secours se substitue complètement à la source d'images primaire en panne sans altérations de l'image finale. 35 43 is detected defective by the control module, then all of the corresponding image source is disconnected, the backup image source consisting of the imager 34 and the lighting source 44 is activated, the image dedicated to the disconnected imager is then sent by the data bus on the imager 34 and the light source 44 is controlled to emit light in the spectral band corresponding to the disconnected light source so that the backup image source completely replaces the primary image source broken down without alteration of the final image.

Claims

REVENDICATIONS
1. Moteur optique (1) pour dispositif de projection d'images en couleur comportant un premier imageur (31) éclairé par une première source de lumière (41) émettant dans un premier spectre, un second imageur (32) éclairé par une seconde source de lumière (42) émettant dans un second spectre, un troisième imageur (33) éclairé par une troisième source de lumière (43) émettant dans un troisième spectre et un mélangeur optique (2), les images des trois imageurs à travers le mélangeur optique étant parfaitement confondues de façon à former une image couleur unique, caractérisé en ce que ledit moteur optique comporte également au moins un quatrième imageur (34) éclairé par une quatrième source de lumière (44) émettant dans un spectre réglable par des moyens de commande, l'image dudit quatrième imageur à travers le mélangeur optique (2) étant également parfaitement confondue avec les images du premier, du second et du troisième imageur de sorte que, en cas de panne d'un des trois imageurs ou de leur source de lumière associée, le quatrième imageur puisse le remplacer sans altérer la qualité de l'image couleur finale, le mélangeur ayant sensiblement la forme d'un cube comportant trois lames semi- réfléchissantes (21, 22, 23), la première lame semi-réfléchissante (21) étant disposée perpendiculairement à une première face dudit cube et selon une des diagonales de ladite face, la seconde lame semi-réfléchissante (22) étant disposée également perpendiculairement à ladite première face et selon la seconde diagonale de ladite face, la troisième lame (23) semi-réfléchissante étant disposée perpendiculairement à une seconde face perpendiculaire à la première face et selon l'une des diagonales de ladite seconde face. 1. Optical motor (1) for color image projection device comprising a first imager (31) illuminated by a first light source (41) emitting in a first spectrum, a second imager (32) illuminated by a second source of light (42) emitting in a second spectrum, a third imager (33) illuminated by a third light source (43) emitting in a third spectrum and an optical mixer (2), the images of the three imagers through the optical mixer being perfectly combined so as to form a single color image, characterized in that said optical motor also comprises at least a fourth imager (34) illuminated by a fourth light source (44) emitting in a spectrum adjustable by control means, the image of said fourth imager through the optical mixer (2) also being perfectly merged with the images of the first, second and third imagers so that, in the event failure of one of the three imagers or their associated light source, the fourth imager can replace it without altering the quality of the final color image, the mixer having substantially the shape of a cube comprising three semi-reflecting plates ( 21, 22, 23), the first semi-reflecting strip (21) being arranged perpendicular to a first face of said cube and along one of the diagonals of said face, the second semi-reflecting strip (22) being also arranged perpendicular to said first face and along the second diagonal of said face, the third semi-reflecting strip (23) being arranged perpendicular to a second face perpendicular to the first face and along one of the diagonals of said second face.
2. Moteur optique (1) selon la revendication 1 , caractérisé en ce que au moins une des lames semi-réfléchissantes (21 , 22, 23) a des coefficients de réflexion et de transmission dépendant de la polarisation de la lumière. 2. Optical motor (1) according to claim 1, characterized in that at least one of the semi-reflecting plates (21, 22, 23) has coefficients of reflection and transmission depending on the polarization of the light.
3 Moteur optique (1) selon l'une des revendications précédentes, caractérisé en ce que la première, la seconde et la troisième source de lumière (41, 42, 43) sont issues d'une source unique (40) émettant sur un spectre large dit blanc et comportant des moyens de séparation spectrale (51 , 52) permettant de générer les trois sources et des obturateurs (71 , 72, 73) permettant d'éteindre chacune des trois sources (41 , 42, 43) de façon indépendante.3 optical motor (1) according to one of the preceding claims, characterized in that the first, the second and the third light source (41, 42, 43) come from a single source (40) emitting on a spectrum wide said white and comprising spectral separation means (51, 52) making it possible to generate the three sources and shutters (71, 72, 73) making it possible to extinguish each of the three sources (41, 42, 43) independently.
4. Moteur optique (1) selon l'une des revendications 1 à 3, caractérisé en ce que la quatrième source de lumière (44) est constituée de trois types de sources de lumière visibles, le premier type émettant dans un premier spectre, le second type émettant dans un second spectre visible différent du premier spectre et le troisième type émettant dans un troisième spectre visible différent du premier et du second spectre.4. Optical engine (1) according to one of claims 1 to 3, characterized in that the fourth light source (44) consists of three types of visible light sources, the first type emitting in a first spectrum, the second type emitting in a second visible spectrum different from the first spectrum and the third type emitting in a third visible spectrum different from the first and second spectrum.
5. Moteur optique (1) selon l'une des revendications 1 à 4, caractérisé en ce que au moins une des quatre sources de lumière (41 , 42, 43, 44) est constituée de diodes électroluminescentes visibles. 5. Optical motor (1) according to one of claims 1 to 4, characterized in that at least one of the four light sources (41, 42, 43, 44) consists of visible light-emitting diodes.
6. Moteur optique (1) selon l'une des revendications 1 à 4, caractérisé en ce que au moins une des quatre sources de lumière (41 , 42, 43, 44) est constituée de tubes fluorescents émettant dans le visible.6. Optical engine (1) according to one of claims 1 to 4, characterized in that at least one of the four light sources (41, 42, 43, 44) consists of fluorescent tubes emitting in the visible.
7. Moteur optique (1) selon l'une des revendications précédentes, caractérisé en ce que les imageurs sont des valves optiques à matrices à cristaux liquides.7. Optical motor (1) according to one of the preceding claims, characterized in that the imagers are optical valves with liquid crystal matrices.
8. Moteur optique (1) selon l'une des revendications 1 à 6, caractérisé en ce que les imageurs sont de type LCOS (acronyme anglo- saxon pour Liquid Crystal On Silicon) ou DMD (acronyme anglo-saxon pour Digital Mirror Device) ou DLP (acronyme anglo-saxon pour Digital Light Projector).8. Optical motor (1) according to one of claims 1 to 6, characterized in that the imagers are of the LCOS (English acronym for Liquid Crystal On Silicon) or DMD (English acronym for Digital Mirror Device) type. or DLP (acronym for Digital Light Projector).
9. Dispositif de visualisation comportant au moins un moteur optique (1) selon l'une des revendications précédentes, caractérisé en ce que ledit dispositif comporte un bus électronique de contrôle (81) et un module électronique de contrôle (84), ledit module comportant des moyens permettant de déterminer la défaillance d'une des trois premiers imageurs optiques (31, 32, 33) ou d'une des trois premières sources de lumière associées (41, 42, 43) et des moyens permettant d'activer la quatrième source de lumière (44) et le quatrième imageur (34) de façon qu'ils remplacent la source d'image colorée défaillante. 9. Display device comprising at least one optical motor (1) according to one of the preceding claims, characterized in that that said device comprises an electronic control bus (81) and an electronic control module (84), said module comprising means making it possible to determine the failure of one of the first three optical imagers (31, 32, 33) or of one of the first three associated light sources (41, 42, 43) and means for activating the fourth light source (44) and the fourth imager (34) so that they replace the faulty colored image source .
PCT/EP2004/052431 2003-10-07 2004-10-04 Projection system having a secured optical engine comprising a supplementary image source WO2005034522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311728A FR2860602B1 (en) 2003-10-07 2003-10-07 SECURE OPTICAL MOTOR PROJECTION SYSTEM
FR0311728 2003-10-07

Publications (1)

Publication Number Publication Date
WO2005034522A1 true WO2005034522A1 (en) 2005-04-14

Family

ID=34307492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052431 WO2005034522A1 (en) 2003-10-07 2004-10-04 Projection system having a secured optical engine comprising a supplementary image source

Country Status (2)

Country Link
FR (1) FR2860602B1 (en)
WO (1) WO2005034522A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500693B1 (en) * 2011-03-16 2017-06-14 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Redundant back projection display system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127322A (en) * 1975-12-05 1978-11-28 Hughes Aircraft Company High brightness full color image light valve projection system
US6497486B1 (en) * 1999-05-12 2002-12-24 Rockwell Collins Fail operational optical design for tiled projection cockpit displays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127322A (en) * 1975-12-05 1978-11-28 Hughes Aircraft Company High brightness full color image light valve projection system
US6497486B1 (en) * 1999-05-12 2002-12-24 Rockwell Collins Fail operational optical design for tiled projection cockpit displays

Also Published As

Publication number Publication date
FR2860602B1 (en) 2005-12-30
FR2860602A1 (en) 2005-04-08

Similar Documents

Publication Publication Date Title
EP1763962B1 (en) Large screen digital image projector
KR101405026B1 (en) High dynamic range projection system
KR100481400B1 (en) Image display apparatus
US7997737B2 (en) Projection display device, and speckle reduction element
US7364302B2 (en) Projection display system using multiple light sources and polarizing element for using with same
US7572013B2 (en) Projection display
EP1565006A2 (en) High performance projection system with two reflective liquid crystal display panels
KR20100017383A (en) Display apparatus, method and light source
EP1279282B1 (en) Methods and systems for low loss separation and combination of light
JPH08292411A (en) Device for projecting image formed by light source
EP1623258B1 (en) Image projection system with imager provided with a colour wheel having a plurality of sub-sets of coloured segments, and corresponding projection appliance
JP2000221595A (en) Solid lighting source for projection type display
US20040145704A1 (en) Chiral laser projection display apparatus and method
EP0383646A1 (en) High-definition colour display device
JPH10274810A (en) Projection type picture display device
US20060092390A1 (en) Projector
JP2003066369A (en) Image display device, controlling method for image display device and image processing system
US7570404B2 (en) Multi-state optical switch and combiner for use in a light engine and image presentation device using the same
FR2732783A1 (en) COMPACT BACK PROJECTION DEVICE
FR2959023A1 (en) ASSEMBLY MULTI-PROJECTOR VISUALIZATION SYSTEM
EP2963493B1 (en) Image projection device
US20020054423A1 (en) Projection type display apparatus
JP2001075174A (en) Picture display device
WO2005034522A1 (en) Projection system having a secured optical engine comprising a supplementary image source
US7008064B2 (en) Two panel optical engine for projection applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase