WO2005032243A1 - Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization - Google Patents

Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization Download PDF

Info

Publication number
WO2005032243A1
WO2005032243A1 PCT/JP2004/014560 JP2004014560W WO2005032243A1 WO 2005032243 A1 WO2005032243 A1 WO 2005032243A1 JP 2004014560 W JP2004014560 W JP 2004014560W WO 2005032243 A1 WO2005032243 A1 WO 2005032243A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
water
tank
gas
purification
Prior art date
Application number
PCT/JP2004/014560
Other languages
French (fr)
Japanese (ja)
Inventor
Kaneo Chiba
Masayoshi Takahashi
Original Assignee
Reo Laboratory Co., Ltd.
National Institute Of Advanced Industrial Science And Technology (Aist)
Shizukuishi Suisan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reo Laboratory Co., Ltd., National Institute Of Advanced Industrial Science And Technology (Aist), Shizukuishi Suisan Co., Ltd. filed Critical Reo Laboratory Co., Ltd.
Publication of WO2005032243A1 publication Critical patent/WO2005032243A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps

Definitions

  • An object of the present invention is to sterilize and purify water and the like for use in raising fish and shellfish, and to supply oxygen to provide safe and secure foods.
  • the sterilization method using ultraviolet light there is a problem that a portion where the ultraviolet light is blocked by a floating substance or the like is difficult to sterilize.
  • the sterilization method using chlorine has many problems such as freshness and color of fish and shellfish, chemical odor, etc., and it is necessary to reduce the concentration of chlorine at the breeding level, which makes it difficult to sterilize completely.
  • carcinogenic substances such as are generated.
  • the diameter of bubbles of ozone gas bubbles is 1-3 mm ⁇ due to the diffuser and ejector methods, and the buoyancy is large. Good. Therefore, the residence time in water is short, the surface area is small relative to the volume, and the contact area with water is small, so the efficiency of dissolving ozone gas in water is low, and high concentration ozone gas is required. In addition, the amount of exhausted ozone is large, and there is a problem that much energy, time, and cost are required, such as equipment for treating exhausted ozone. Disclosure of the invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the diameter of the ozone gas bubbles and to utilize the crushing phenomenon of the micro ozone gas bubbles discovered by the inventor. Another object of the present invention is to provide a sterilization / purification / animal sterilization system that performs sterilization / purification of water and does not use chemicals with low capacity and high efficiency.
  • An object of the present invention is to provide a water purification / sterilization system that mixes raw water with ozone gas to obtain a gas-liquid mixed raw water containing microzone gas bubbles, purifies and sterilizes the raw water, and injects and diffuses the gas-liquid mixed raw water into a breeding tank.
  • a sterilizing and breeding facility consisting of a breeding tank with multiple layers of punched plates formed at the bottom, and cultivating water as circulating water to circulate the cultivating water in the culturing tank, and mixing the circulating water with ozone gas. This is achieved by having a circulating purification and sterilization system that performs purification and sterilization and press-injects micro ozone-containing circulating water into the breeding tank under high pressure.
  • the raw water taken by the water intake pump is supplied to the primary reaction tank, and the ozone gas generated from the first ozone generator and the raw water are mixed by the first gas-liquid stirring / mixing device.
  • a second gas-liquid stirring and mixing device together with the ozone gas generated from the first ozone generator, the gas-liquid mixed raw water and the cultivation water in the breeding tank.
  • Mixed with gas-liquid mixed water containing micro ozone gas bubbles and, by means of injecting and diffusing the gas-liquid mixed water into the middle part, or sterilizing and raising facilities consist of a raising tank, and a plurality of punching plates are formed in a multilayer structure at the bottom of the raising tank.
  • the circulation purifying and sterilizing system circulates in the circulating water tank to take up the cultivating water as circulating water to circulate the cultivating water in the cultivation tank.
  • a means for draining water, sending circulating water to the second reaction tank through a filtration tank with a circulating pump, and mixing ozone gas generated from a second ozone generator and circulating water with a third gas-liquid stirring and mixing device to produce micro ozone A means for sending circulating water containing micro ozone bubbles to the reaction receiving tank as circulating water containing bubbles, and a high-pressure press-in of the circulating water containing micro ozone bubbles in the reaction receiving tank into the lower part by a pressure pump.
  • the circulating water containing micro ozone bubbles injected by high-pressure injection into the lower part by means or in the lower part passes through a punching plate located at the upper part of the lower part and enters the middle part, and in the middle part, the vortex Is generated, the collapse of micro ozone gas bubbles is accelerated, and the gas-liquid mixed water is injected and diffused from the intake purification and sterilization system, and the micro ozone gas bubbles contained in the gas-liquid mixed water are oxidized and decomposed, and located at the top of the middle layer.
  • a diffuser that feeds the pressurized air sent from the blower into the breeding tank.
  • the upper layer is provided with an air diffuser.
  • the pressure when the second gas-liquid mixed water is injected under high pressure into the lower part of the multi-layered punching plate provided with the pressurizing pump at the bottom of the breeding tank is not less than 0.3 MPa.
  • This punching plate is more effectively achieved by having a three-layer structure composed of three punching plates.
  • FIG. 1 is a schematic diagram for explaining the overall configuration of a pressurized multilayer micro-ozone sterilization / purification / animal sterilization system.
  • Fig. 2 is a plan view of the breeding tank.
  • FIG. 3 is a diagram showing the measurement of the overnight potential of microbubbles in distilled water.
  • FIG. 4 is a diagram showing a mechanism of charging of microbubbles in water.
  • FIG. 5 is a diagram showing the relationship between the time required for a microbubble to shrink and disappear and the bubble diameter of the microbubble.
  • FIG. 6 is a diagram showing the rise in the potential over time as the microbubbles shrink. The description of the code
  • FIG. 1 is a schematic diagram illustrating the overall configuration of a pressurized multilayer micro-ozone sterilization / purification / animal sterilization system of the present embodiment.
  • This pressurized multi-layer micro ozone sterilization / purification / animal sterilization system comprises an intake water purification / sterilization system 2, a sterilization / breeding facility 3, and a circulation purification / sterilization system 4.
  • the water intake purification and sterilization system 2 is a system for purifying and sterilizing the raw water that has been withdrawn.
  • the intake water purification and sterilization system 2 includes an intake pipe 21 that takes in raw water, an intake pump 22 that sends the raw water that has been taken to the primary reaction tank 23, and a first ozone generator 24 that generates ozone.
  • the first gas-liquid agitating and mixing device 25a for mixing the ozone gas generated from the first ozone generator 24 with the raw water in the primary reaction tank 23
  • a gas-liquid mixing tank 26 for mixing the cultivation water
  • a second gas-liquid mixing and mixing device 2 for mixing the gas-liquid mixture mixed in the gas-liquid mixing tank 26 with the ozone gas generated from the ozone generator 24. 5b.
  • the gas-liquid mixing tank 26 is connected to the breeding tank 31, and is configured so that the breeding water flows out into the gas-liquid mixing tank 26 in an appropriate amount.
  • the gas-liquid mixing tank 26 and the middle part 33 are connected by a gas-liquid mixture injection pipe 27, and press-fit and diffuse into the middle part 33 in the breeding tank 31.
  • the middle layer part 33 is a middle layer of a space between the punching plates, in which a plurality of punching plates provided at the bottom of the breeding tank 31 are formed in a multilayer shape.
  • raw water means freshwater and seawater.
  • Raw water passes through an intake pipe 21 and an appropriate amount of raw water is sent to a primary reaction tank 23 by a water pump 22.
  • the ozone gas generated from the first ozone generator 24 is pumped to the first gas-liquid stirring and mixing device 25a.
  • the pressure-fed ozone gas is mixed and stirred with raw water by the first gas-liquid stirring / mixing device 25a, instantaneously becomes micro ozone gas bubbles, and gas-liquid condensed and mixed to form gas-liquid mixed water.
  • Microorganisms and harmful substances contained in the raw water withdrawn here are sterilized and decomposed by oxidative decomposition of micro ozone gas bubbles, and the raw water withdrawn is sterilized and purified.
  • This gas-liquid mixed water is sent to the gas-liquid mixing tank 26 and mixed with the cultivation water in the breeding tank 31, and the ozone gas generated from the first ozone generator 24 is mixed with the second gas-liquid stirring and mixing apparatus 25. b, and mix and stir the ozone gas, the gas-liquid mixed water, and the cultivation water in the breeding tank 3 1 using the second gas-liquid stirring device 25 b, and the primary reaction tank 2
  • a gas-liquid mixed water containing micro ozone gas bubbles with a higher concentration than the state of the gas-liquid mixed water in step 3 is generated.
  • the gas-liquid mixed water containing the high-concentration micro ozone gas bubbles is injected and diffused into the middle layer 33.
  • the sterilizing and raising facility 3 is a facility for sterilizing, purifying, and preventing eutrophication of livestock water in the raising tank 31.
  • FIG. 2 is a plan view of the rearing tank 31.
  • FIG. The upper punching plate 37 in FIG. 2 is only partially shown to make it easier to see the state of the air diffuser 39 and the like, and is actually connected to the entire rearing tank 31.
  • An upper punching plate 37 is provided on the air diffuser 39, and the punching plate is connected to the whole of the rearing tank 31.
  • Sterilization and aquaculture facility 3 has a breeding tank 31 and a multi-layered punching plate at the bottom in the cultivation tank 31.From the bottom, the lower part punching plate 35, the middle part punching plate 36, and the upper part A punching plate 37 is formed. Further, there is a space between each punching plate, and a lower layer 32, a middle layer 33, and an upper layer 34 are formed in order from the bottom of the breeding tank 31.
  • the upper layer 34 is provided with an air diffuser 39 for diffusing the air sent from the blower 38 into the breeding tank 31.
  • the multilayer structure of the punching plate at the bottom in the breeding tank 31 may be any number of layers, but a three-layer structure is preferable. By using a three-layer structure, it is possible to efficiently crush the circulating water containing micro ozone gas bubbles sent from the circulating purification / sterilization system 4 described later, and to efficiently sterilize and purify the cultivation water in the breeding tank 31. be able to.
  • the lower layer 32 is connected to a circulating water injection pipe 49 containing micro-ozone gas bubbles in the circulation purification / sterilization system 4, and circulated water containing micro-ozone gas bubbles is sent.
  • the circulating water containing the micro ozone gas bubbles passes through the lower layer punching plate 35 to promote the collapse of the micro ozone gas bubbles. Advance.
  • crushing refers to a phenomenon in which microbubbles floating in a liquid gradually disappear due to the spontaneous dissolution of the gas contained in the microbubbles, and eventually disappear. This is a phenomenon discovered through intensive studies by the author. Hereinafter, the collapse of the microbubbles will be described.
  • microbubbles in distilled water have a potential of about ⁇ 30 to 15 OmV regardless of the bubble diameter of the bubbles. Therefore, for example, in water, as shown in Fig. 4, an anion such as OH- surrounds the bubble surface, and a cation such as H + (H 30 + ) surrounds the bubble. It has a structure.
  • microbubbles have a larger specific surface area than ordinary bubbles, and the internal pressure is high because surface tension acts effectively. It is theorized that the internal pressure at which microbubbles disappear can reach thousands of atmospheres.
  • microbubbles have a slower rise rate than ordinary bubbles, and have excellent gas dissolving power (natural dissolution).
  • ordinary bubbles when ordinary bubbles are generated in water, they rise in the liquid surface direction and the bubbles burst at the liquid surface, whereas microbubbles rise at a slower rate than ordinary bubbles.
  • the bubble diameter of the bubbles gradually decreases and eventually disappears.
  • Figure 5 shows the measurement of the bubble diameter time before the microbubbles shrink and eventually disappear. The smaller the bubble diameter of the microbubbles, the shorter the time from the shrinkage of the microbubbles to disappearance due to spontaneous dissolution.
  • the maximum driving force for dissolving gas is the self-compression effect due to the action of surface tension.
  • Young — Lap1ace The rise in pressure inside the microbubble relative to the environmental pressure is theoretically estimated by the equation Young — Lap1ace.
  • ⁇ ⁇ 4 ⁇ / D
  • ⁇ ⁇ is the degree of pressure rise
  • is surface tension
  • D is bubble diameter.
  • a microbubble with a diameter of 10 causes a pressure increase of about 0.3 atm, and a pressure of 1 / m increases a pressure of about 3 atm.
  • the gas dissolves in water according to Henry's Law, so the gas in the self-pressurized bubbles effectively dissolves in the surrounding water.
  • the shrinkage of bubbles due to the spontaneous dissolution of microbubbles is accompanied by a decrease in the surface area of the gas-liquid interface.
  • the surface area of this gas-liquid interface decreases at an accelerated rate as small bubbles are formed.
  • the rate of decrease in the surface area of the gas-liquid interface is slow, the charge density at the gas-liquid interface changes under almost equilibrium conditions.
  • the bubble diameter becomes 10 or less, the dissipation of the charge does not catch up with the reduction rate, and it is observed as a rise in the potential over time due to the deviation from the equilibrium.
  • the decrease in the surface area of the gas-liquid interface due to spontaneous dissolution Because it is not abrupt, the value of the charge density is about several times that at equilibrium even before it disappears.
  • the surface area at the gas-liquid interface decreases very rapidly, and the charge deviates from equilibrium with little dissipation. As a result, a region having an extremely high charge density is formed. If the microbubbles with a bubble diameter of 20 ⁇ 01 are crushed to less than 0.5, the charge density will be more than 100 times the equilibrium.
  • the extremely high-density charge formed by crushing is extremely unstable due to non-equilibrium conditions, and returns to a stable state by a phenomenon different from simple dissipation.
  • a very steep potential gradient is formed between the bubble interface and the surroundings during the crushing process, and the re-equilibrium of the charge condition is realized with the movement of electrons due to discharge and the like.
  • the circulating water containing micro ozone gas bubbles sent to the lower layer 32 is caused to pass through the lower layer punching plate 35 to generate compression, expansion and swirl, thereby promoting the collapse of the micro bubbles. It can be done.
  • the middle part 33 is connected to a gas-liquid mixed water injection pipe 27, and the gas-liquid mixed water is injected and diffused into the breeding tank 31 from the gas-liquid mixed water injection pipe 27.
  • the micro ozone gas bubbles generated from the lower section 32 through the lower section punching plate 35 are turned into ultra-fine bubbles by crushing, and are injected and diffused from the gas-liquid mixed water injection pipe 27.
  • the micro-ozone gas is mixed with the mixed gas-liquid mixed water, oxidatively decomposed, and passes through the middle part punching plate 36.
  • An air diffuser 39 connected to the blower 38 is installed in the upper layer section 34, and the air diffuser 39 converts the air sent from the blower 38 in a pressurized state into the upper layer section 34. Send to 3-4.
  • the air pressurized by the blower 38 and the air diffuser 39 is sent for circulation aeration as a measure of eutrophication in the breeding tank 31.
  • the oxygen concentration in 1 rises, which also helps to improve water quality.
  • By setting the pressure of the pressurized air to 0.3 MPa or more, it is possible to efficiently circulate and aerate the culture tank 31. This air mixes with the ozone gas bubbles in the microphone opening that has passed through the middle part punching plate 36 and passes through the upper part punching plate 37.
  • micro ozone gas bubbles and the pressurized air that have passed through the upper punching plate 37 are compressed and expanded when passing through the punching plate, and the pressurized air is diffused throughout the rearing tank 31 to generate micro ozone gas bubbles. Crushing The air is accelerated and rides on the diffusion flow of the pressurized air, causing collapse of the ozone gas at the mouth of the breeding tank 31 as a whole. Thereby, the sterilization-purification action in the breeding tank 31 is performed as a whole.
  • the pressurized air also prevents eutrophication in the breeding tank 31.
  • the circulation purification / sterilization system 4 is a system for purifying and sterilizing the culture water when circulating the culture water.
  • the circulation purification / sterilization system 4 takes in the cultivation water in the breeding tank 31 as circulating water and stores it in the circulating water tank 41, and an appropriate amount of circulating water into the filtration tank 43 and the secondary reaction tank 44.
  • the circulating water tank 41 is connected to the cultivation tank 31 to take in the cultivation water as circulating water, and is formed so as to flow out to the circulating water tank 41 when the cultivation water in the cultivation tank 31 reaches a certain amount. ing.
  • the ozone gas generated from the second ozone generator 45 is sent to the third gas-liquid stirring / mixing device 46 under pressure.
  • the ozone gas is mixed and stirred with the circulating water to form ozone gas bubbles at the microphone opening, and is also gas-liquid condensed and mixed to form circulating water containing micro ozone gas bubbles.
  • microorganisms and harmful substances contained in the circulating water are sterilized and decomposed by oxidative decomposition of micro ozone gas bubbles, and the circulating water is sterilized and purified.
  • the circulating water sterilized and purified in the secondary reaction tank 44 is sent to the reaction receiving tank 47.
  • the circulating water containing micro ozone gas bubbles sent from the reaction receiving tank 47 is fed by a pressurized pump through the circulating water injection pipe 49 containing ozone gas bubbles with microphone opening connected to the lower part 32 of the breeding tank 31. It is pressurized into the lower part 32 of the tank 31.
  • the pressure at which the circulating water containing micro ozone gas bubbles is extruded by the pressurizing pump 48 is not particularly limited.However, when the pressure is 0.3 MPa or more, the circulating water containing micro ozone gas bubbles can be injected under high pressure into the lower part 32. When the circulating water containing micro ozone gas bubbles passes through the lower part punching plate 35, compression, expansion and eddy flow are generated, and a crush phenomenon can be caused efficiently.
  • the fine ozone bubbles diffused into the breeding tank 31 by the gas-liquid stirring and mixing device will be described with reference to a specific example in comparison with a conventional example.
  • a feature of the present invention is to use ultra-fine ozone bubbles and to crush them.
  • the comparison with the conventional method can be evaluated based on the amount of free radical species and reactive oxygen species that have a bactericidal effect.
  • the advantage of using microbubbles is comparable in their ability to dissolve ozone in water.
  • the gas dissolving capacity of ordinary bubbles with a diameter of 1 mm and ultra-fine bubbles with a diameter of 10 m the latter has a dissolution efficiency twice as high as that of the former.
  • the specific surface area is inversely proportional to the diameter
  • the other is that the self-compressing effect of the bubbles is also inversely proportional to the diameter.
  • the ascent rate is extremely different.
  • the present invention shows a bactericidal effect of 400 million times. Under real conditions, there is no impediment to the shrinkage of air bubbles and the occurrence of crushing, but in any case, it is possible to exhibit an enormous sterilization effect. Another advantage is that microbubbles of 10 zm or less are easily taken into the body of fish and shellfish, so that they can easily act on sterilization of the body. In particular, when a PSA-type device is used to generate ozone, the oxygen concentration is very high, so that the respiratory circulation of fish and shellfish is promoted, and micro ozone gas bubbles are more easily taken into the body. The difference is obvious.
  • micro-ozone gas bubbles are supplied by the gas-liquid stirring and mixing device, and by crushing the bubbles, it is possible to sterilize fish and shellfish with low energy and in a short time.
  • the first ozone generator 2 and the second ozone generator 45 may be combined into one, and ozone may be generated in the intake water purification / sterilization system 2 and the circulation purification / sterilization system 4, respectively.
  • the invention's effect The pressurized multi-layer micro ozone sterilization / purification / animal sterilization system of the present invention reduces the particle size of the ozone gas bubbles and crushes them so that sterilization and purification can be performed smoothly, and the breeding conditions are low energy, safe and safe. It is safe and stable. Further, the activity and freshness retention of fish and shellfish are improved. Industrial applicability
  • sterilization and purification can be performed smoothly by reducing the size of ozone gas bubbles and crushing them. It is now possible to efficiently sterilize and purify water used for aquaculture and supply oxygen. As a result, foodstuffs such as fish and shellfish can be stably provided.
  • Patent Document 1

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

It is intended to provide harmless and safe food materials, etc. by sterilizing and purifying water, etc. to be employed in farming fishes and supplying oxygen. A pressurized and multilayered micro ozone system for sterilization, purification and farming sterilization characterized by having a water-intake, purification and sterilization system wherein raw water is taken and then mixed with ozone gas to give a raw gas/liquid mixture containing micro ozone gas bubbles, the raw water is purified and sterilized and the raw gas/liquid mixture is pressed into a farming tank and diffused therein; a sterilized farming apparatus comprising the farming tank having punched plates provided in a multilayered structure on the bottom; and a circulatory purification and sterilization system wherein the farming water is introduced as circulating water to thereby circulate the farming water in the farming tank, the circulating water is mixed with ozone gas so as to purify and sterilize the same, and then the circulating water containing micro ozone is pressed into the farming tank under elevated pressure.

Description

加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システム Multi-layer pressurized micro ozone sterilization · Purification · Livestock sterilization system
技術分野 Technical field
この発明は、 魚介類等の畜養に利用する水等の殺菌と浄化及び酸素の 供給をし、 安全かつ安心な食材等の提供を目的とする。  An object of the present invention is to sterilize and purify water and the like for use in raising fish and shellfish, and to supply oxygen to provide safe and secure foods.
 Light
1 i田  1 i field
背景技術 Background art
 book
従来、 一般的な水の殺菌方法としては、 紫外線照射や塩素殺菌等がよ く用いており、 魚介類の養殖、 畜養水等の殺菌、 浄化および廃水処理方 法には、 散気管方式、 ェゼクタ一方式等を用いている。 散気管方式、 ェ ゼクター方式により、 オゾンガスを水中に溶解させて殺菌浄化を行う場 合、 1〜 3 πιπι φのオゾンガスの気泡の大きさで散気管から圧入、 或は オゾンガス気泡を長時間拡散させていた。 従来技術として、 例えば、 特 許文献 1では、 微小気泡によって生物の生理活性が促進されることによ り新陳代謝機能が高められ、 その結果として魚介類等の成長が促進され るといったものを提案している。 しかし、 微小気泡を用いて殺菌 · 浄化 することに関しては、 開示も示唆もされていない。  Conventionally, ultraviolet irradiation and chlorine sterilization have been often used as common methods of sterilizing water, and the methods of cultivating fish and shellfish, sterilizing livestock water, purifying, and treating wastewater include diffuser tubes and ejectors. On the other hand, an equation or the like is used. When disinfecting and purifying ozone gas by dissolving ozone gas in water by a diffuser or ejector method, press in from the diffuser with the size of 1 to 3 πιπιφ ozone gas bubbles or diffuse the ozone gas bubbles for a long time. I was As a conventional technology, for example, Patent Document 1 proposes that microbubbles enhance the metabolic function by promoting the biological activity of organisms, thereby promoting the growth of fish and shellfish. ing. However, there is no disclosure or suggestion of sterilization and purification using microbubbles.
紫外線による殺菌法では、 浮遊物等により紫外線が遮断された部分が 殺菌されにくいという,問題があった。 塩素による殺菌法では、 魚介類の 鮮度や色合い、 薬品臭等の問題が多く、 畜養レベルの塩素濃库を低く し なければならないため、 殺菌が完全にされ難いという問題があり、 また トリ八ロメタン等の発ガン性物質が発生するという問題もあった。  In the sterilization method using ultraviolet light, there is a problem that a portion where the ultraviolet light is blocked by a floating substance or the like is difficult to sterilize. The sterilization method using chlorine has many problems such as freshness and color of fish and shellfish, chemical odor, etc., and it is necessary to reduce the concentration of chlorine at the breeding level, which makes it difficult to sterilize completely. There is also a problem that carcinogenic substances such as are generated.
オゾンガスを水中へ溶解させる場合において、 散気管方式、 ェゼクタ —方式によるオゾンガスの気泡の球径は 1〜 3 m m φと大きく浮力も大 きい。 そのため水中での滞留時間が短く、 また容積に対し表面積が小さ く、 水との接触面積が小さいために水中へのオゾンガスの溶解効率が低 く、 高濃度のオゾンガスが必要となる。 また、 排オゾンの量も多く、 排 オゾンの処理の設備等多くのエネルギー、 時間そしてコストが必要であ るという問題があった。 発明の開示 When dissolving ozone gas in water, the diameter of bubbles of ozone gas bubbles is 1-3 mm φ due to the diffuser and ejector methods, and the buoyancy is large. Good. Therefore, the residence time in water is short, the surface area is small relative to the volume, and the contact area with water is small, so the efficiency of dissolving ozone gas in water is low, and high concentration ozone gas is required. In addition, the amount of exhausted ozone is large, and there is a problem that much energy, time, and cost are required, such as equipment for treating exhausted ozone. Disclosure of the invention
本発明では、 上記の問題点を鑑みてなされたものであり、 本発明の目 的は、 オゾンガスの気泡の球径を小さくし、 発明者が発見したマイクロ オゾンガス気泡の圧壊現象を利用することによって、 水の殺菌 ·浄化を 行い、 低容量で高効率の薬品を使用しない殺菌 ·浄化 ·畜養殺菌システ ムを提供することにある。  The present invention has been made in view of the above problems, and an object of the present invention is to reduce the diameter of the ozone gas bubbles and to utilize the crushing phenomenon of the micro ozone gas bubbles discovered by the inventor. Another object of the present invention is to provide a sterilization / purification / animal sterilization system that performs sterilization / purification of water and does not use chemicals with low capacity and high efficiency.
本発明の目的は、 取水した原水とオゾンガスを混合させマイクロォゾ ンガス気泡を含む気液混合原水とし、 原水を浄化 ·殺菌し、 畜養槽内へ 気液混合原水を圧入拡散させる取水浄化殺菌システムと、 底部に複数の パンチング板が多層状に形成されている畜養槽からなる殺菌畜養施設と、 畜養槽内の畜養水を循環させるために畜養水を循環水として取り入れ、 循環水をオゾンガスと混合させ、 浄化 ·殺菌を行い、 畜養槽へマイクロ オゾン含有循環水を高圧圧入させる循環浄化殺菌システムとを有するこ とによって達成される。  SUMMARY OF THE INVENTION An object of the present invention is to provide a water purification / sterilization system that mixes raw water with ozone gas to obtain a gas-liquid mixed raw water containing microzone gas bubbles, purifies and sterilizes the raw water, and injects and diffuses the gas-liquid mixed raw water into a breeding tank. A sterilizing and breeding facility consisting of a breeding tank with multiple layers of punched plates formed at the bottom, and cultivating water as circulating water to circulate the cultivating water in the culturing tank, and mixing the circulating water with ozone gas. This is achieved by having a circulating purification and sterilization system that performs purification and sterilization and press-injects micro ozone-containing circulating water into the breeding tank under high pressure.
また、 本発明は取水浄化殺菌システムは、 取水ポンプにより取水され た原水を 1次反応槽へ供給し、 第 1オゾン発生器から発生したオゾンガ スと原水を第 1気液攪拌混合装置により混合してマイクロオゾンガス気 泡を含む気液混合原水とする手段と、 第 1オゾン発生器から発生したォ ゾンガスと気液混合原水と畜養槽内に有する畜養水と共に、 第 2気液攪 拌混合装置により混合してマイクロオゾンガス気泡を含む気液混合水と し、 中層部へ気液混合水を圧入拡散させる手段によって、 或は殺菌畜養 施設は、 畜養槽からなり、 畜養槽の底部には複数のパンチング板が多層 状に形成しており、 複数のパンチング板の間に下層部と、 中層部と上層 部の空間を有することによって、 或は循環浄化殺菌システムは、 畜養槽 内の畜養水を循環させるために畜養水を循環水として取り入れるために 循環水槽に循環水を流出させ、循環水を循環ポンプで濾過処理槽を通じ、 第 2反応槽へ送る手段と、 第 2オゾン発生器から発生したオゾンガスと 循環水を第 3気液攪拌混合装置により混合しマイクロオゾン気泡含有循 環水とし、 マイクロオゾン気泡含有循環水を反応受槽へ送る手段と、 反 応受槽内のマイクロオゾン気泡含有循環水を加圧ポンプにより下層部に 高圧圧入させる手段によって、 或は下層部において、 高圧圧入されて注 入されたマイクロオゾン気泡含有循環水は、 下層部の上部に位置するパ ンチング板を通過し中層部へ入るステップと、 中層部では、 渦流が発生 し、 マイクロオゾンガス気泡の圧壊が促進され、 取水浄化殺菌システム から気液混合水が圧入拡散され、 気液混合水中に含まれるマイクロォゾ ンガス気泡の酸化分解が行われ、 中層部の上部に位置するパンチング板 を通過し上層部へ入るステップと、 上層部には、 ブロワ一から送られて くる加圧された空気を畜養槽内へ送る散気装置が設置されており、 空気 が上層部の上に位置するパンチング板を通過する際、 畜養槽全体で渦流 が発生し、 マイクロオゾンガス気泡と共に、 畜養槽内全体に拡散される ステツプにより、 畜養槽全体でマイクロオゾンガス気泡の圧壊が起り、 畜養水の浄化 ·殺菌 · 富栄養化の防止を行うことによってより効果的に 達成される。 Further, in the present invention, in the water purification / sterilization system, the raw water taken by the water intake pump is supplied to the primary reaction tank, and the ozone gas generated from the first ozone generator and the raw water are mixed by the first gas-liquid stirring / mixing device. And a second gas-liquid stirring and mixing device together with the ozone gas generated from the first ozone generator, the gas-liquid mixed raw water and the cultivation water in the breeding tank. Mixed with gas-liquid mixed water containing micro ozone gas bubbles And, by means of injecting and diffusing the gas-liquid mixed water into the middle part, or sterilizing and raising facilities consist of a raising tank, and a plurality of punching plates are formed in a multilayer structure at the bottom of the raising tank. By having a lower layer, a middle layer and an upper layer space between the plates, or the circulation purifying and sterilizing system circulates in the circulating water tank to take up the cultivating water as circulating water to circulate the cultivating water in the cultivation tank. A means for draining water, sending circulating water to the second reaction tank through a filtration tank with a circulating pump, and mixing ozone gas generated from a second ozone generator and circulating water with a third gas-liquid stirring and mixing device to produce micro ozone A means for sending circulating water containing micro ozone bubbles to the reaction receiving tank as circulating water containing bubbles, and a high-pressure press-in of the circulating water containing micro ozone bubbles in the reaction receiving tank into the lower part by a pressure pump. The circulating water containing micro ozone bubbles injected by high-pressure injection into the lower part by means or in the lower part passes through a punching plate located at the upper part of the lower part and enters the middle part, and in the middle part, the vortex Is generated, the collapse of micro ozone gas bubbles is accelerated, and the gas-liquid mixed water is injected and diffused from the intake purification and sterilization system, and the micro ozone gas bubbles contained in the gas-liquid mixed water are oxidized and decomposed, and located at the top of the middle layer. And a diffuser that feeds the pressurized air sent from the blower into the breeding tank. The upper layer is provided with an air diffuser. When passing through the punching plate located above, a vortex is generated in the entire breeding tank, and is diffused throughout the breeding tank together with the micro ozone gas bubbles. The collapse of micro ozone gas bubbles occurs as a whole, and this is more effectively achieved by purifying, sterilizing, and preventing eutrophication of livestock water.
また、 本発明は加圧ポンプが畜養槽の底部に設けられた多層構造のパ ンチング板の下層部に第 2気液混合水を高圧圧入させる際の圧力は 0 . 3 M P a以上であることによって、 或は畜養槽の底部に設けられた複数 のパンチング板はパンチング板が 3枚からなる三層構造であることによ つてより効果的に達成される。 図面の簡単な説明 Further, according to the present invention, the pressure when the second gas-liquid mixed water is injected under high pressure into the lower part of the multi-layered punching plate provided with the pressurizing pump at the bottom of the breeding tank is not less than 0.3 MPa. Depending on the number of This punching plate is more effectively achieved by having a three-layer structure composed of three punching plates. Brief Description of Drawings
第 1図 加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システムの全 体構成を説明するための概略図である。 FIG. 1 is a schematic diagram for explaining the overall configuration of a pressurized multilayer micro-ozone sterilization / purification / animal sterilization system.
第 2図 畜養槽内の平面図である。 Fig. 2 is a plan view of the breeding tank.
第 3図 蒸留水中において、微小気泡のゼ一夕電位を測定した図である。 第 4図 水中での微小気泡の帯電のメカニズムを表わした図である。 第 5図 微小気泡が縮小し消滅するまでの時間と微小気泡の気泡径の関 係を表わした図である。 FIG. 3 is a diagram showing the measurement of the overnight potential of microbubbles in distilled water. FIG. 4 is a diagram showing a mechanism of charging of microbubbles in water. FIG. 5 is a diagram showing the relationship between the time required for a microbubble to shrink and disappear and the bubble diameter of the microbubble.
第 6図 微小気泡の縮小に伴うゼ一夕電位の上昇を表わした図である。 符号の該 Ϊ明 FIG. 6 is a diagram showing the rise in the potential over time as the microbubbles shrink. The description of the code
2 取水浄化殺菌システム  2 Intake purification / sterilization system
2 1 取水管  2 1 Intake pipe
2 2 取水ポンプ  2 2 Intake pump
2 3 1次反応槽  2 3 Primary reaction tank
2 4 第 1オゾン発生装置  2 4 First ozone generator
2 5 a 第 1気液攪拌混合装置  25a First gas-liquid stirring and mixing device
2 5 b 第 2気液攪拌混合装置  2 5 b 2nd gas-liquid stirring and mixing device
2 6 気液混合槽  2 6 Gas-liquid mixing tank
2 7 気液混合水注入管  2 7 Gas-liquid mixed water injection pipe
3 殺菌畜養施設  3 Sterilization facilities
3 1 畜養槽  3 1 Livestock tank
3 2 下層部 3 3 中層部 3 2 Lower layer 3 3 Middle class
3 4 上層部  3 4 Upper level
3 5 下層部パンチング板  3 5 Lower layer punching plate
3 6 中層部パンチング板  3 6 Middle part punched plate
3 7 上層部パンチング板  3 7 Upper punching plate
3 8 ブロワ一  3 8 Blower
3 9 散気装置  3 9 Air diffuser
4 循環浄化殺菌システム  4 Circulation purification and sterilization system
4 1 循環水槽  4 1 Circulating water tank
4 2 循環水ポンプ  4 2 Circulating water pump
4 3 濾過処理槽  4 3 Filtration tank
4 4 2次反応槽  4 4 Secondary reaction tank
4 5 第 2オゾン発生装置  4 5 Second ozone generator
4 6 第 3気液攪拌混合装置  4 6 3rd gas-liquid stirring and mixing device
4 7 反応受槽  4 7 Reaction tank
4 8 加圧ポンプ  4 8 Pressure pump
4 9 マイクロオゾンガス気泡含有循環水注入管 発明を実施するための最良の形態  4 9 Circulating water injection pipe containing micro ozone gas bubbles BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施形態を図面に基づき説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
第 1図は、 本実施形態の加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養 殺菌システムの全体構成を説明する概略図である。 この加圧多層式マイ クロオゾン殺菌 ·浄化 ·畜養殺菌システムは、 取水浄化殺菌システム 2 と殺菌畜養施設 3と循環浄化殺菌システム 4とからなっている。  FIG. 1 is a schematic diagram illustrating the overall configuration of a pressurized multilayer micro-ozone sterilization / purification / animal sterilization system of the present embodiment. This pressurized multi-layer micro ozone sterilization / purification / animal sterilization system comprises an intake water purification / sterilization system 2, a sterilization / breeding facility 3, and a circulation purification / sterilization system 4.
取水浄化殺菌システム 2は、 取水した原水を浄化 .殺菌するためのシ ステムである。 取水浄化殺菌システム 2は、 原水を取水する取水管 2 1 と、 取水した 原水を 1次反応槽 2 3へ送るための取水ポンプ 2 2と、 オゾンを発生さ せる第 1オゾン発生装置 2 4と、 第 1オゾン発生装置 2 4から発生した オゾンガスと 1次反応槽 2 3にある原水を混合させる第 1気液攪拌混合 装置 2 5 aと、 マイクロオゾンガス気泡と混合した原水と畜養槽 3 1内 の畜養水を混合させる気液混合槽 2 6と、 気液混合槽 2 6で混合された 気液混合液とオゾン発生器 2 4から発生したオゾンガスを混合させる第 2気液攙拌混合装置 2 5 bとからなる。 気液混合槽 2 6は畜養槽 3 1 と 接続されており、 畜養水が適当量気液混合槽 2 6内に流出するように形 成されている。 気液混合槽 2 6と中層部 3 3は、 気液混合液注入管 2 7 により接続され、 畜養槽 3 1内の中層部 3 3へ圧入拡散させる。 中層部 3 3とは、 畜養槽 3 1の底部に設けられた複数のパンチング板が多層状 に複数枚形成されており、 そのパンチング板の間の空間の中層を示して いる。 ここで、 原水とは淡水、 海水のことをいう。 The water intake purification and sterilization system 2 is a system for purifying and sterilizing the raw water that has been withdrawn. The intake water purification and sterilization system 2 includes an intake pipe 21 that takes in raw water, an intake pump 22 that sends the raw water that has been taken to the primary reaction tank 23, and a first ozone generator 24 that generates ozone. The first gas-liquid agitating and mixing device 25a for mixing the ozone gas generated from the first ozone generator 24 with the raw water in the primary reaction tank 23 A gas-liquid mixing tank 26 for mixing the cultivation water, and a second gas-liquid mixing and mixing device 2 for mixing the gas-liquid mixture mixed in the gas-liquid mixing tank 26 with the ozone gas generated from the ozone generator 24. 5b. The gas-liquid mixing tank 26 is connected to the breeding tank 31, and is configured so that the breeding water flows out into the gas-liquid mixing tank 26 in an appropriate amount. The gas-liquid mixing tank 26 and the middle part 33 are connected by a gas-liquid mixture injection pipe 27, and press-fit and diffuse into the middle part 33 in the breeding tank 31. The middle layer part 33 is a middle layer of a space between the punching plates, in which a plurality of punching plates provided at the bottom of the breeding tank 31 are formed in a multilayer shape. Here, raw water means freshwater and seawater.
原水は取水管 2 1を通り、 適当量の原水を取水ポンプ 2 2により 1次 反応槽 2 3へと送られる。  Raw water passes through an intake pipe 21 and an appropriate amount of raw water is sent to a primary reaction tank 23 by a water pump 22.
第 1オゾン発生装置 2 4より発生したオゾンガスは、 第 1気液攪拌混 合装置 2 5 aに圧送される。 圧送されたオゾンガスは、 第 1気液攪拌混 合装置 2 5 aにより原水と混合攪拌されて瞬時にマイクロオゾンガス気 泡となると共に、 気液凝縮混合され、 気液混合水となる。 ここで取水さ れた原水に含まれる微生物や有害物質をマイクロオゾンガス気泡の酸化 分解で殺菌 ·分解し、 取水された原水は殺菌 ·浄化される。  The ozone gas generated from the first ozone generator 24 is pumped to the first gas-liquid stirring and mixing device 25a. The pressure-fed ozone gas is mixed and stirred with raw water by the first gas-liquid stirring / mixing device 25a, instantaneously becomes micro ozone gas bubbles, and gas-liquid condensed and mixed to form gas-liquid mixed water. Microorganisms and harmful substances contained in the raw water withdrawn here are sterilized and decomposed by oxidative decomposition of micro ozone gas bubbles, and the raw water withdrawn is sterilized and purified.
この気液混合水を気液混合槽 2 6へ送り、 畜養槽 3 1内の畜養水と混 合させ、 第 1オゾン発生装置 2 4より発生したオゾンガスを第 2気液攪 拌混合装置 2 5 bに圧送し、 オゾンガスと気液混合水と畜養槽 3 1内の 畜養水とを第 2気液攪拌装置 2 5 bを用いて混合攪拌し、 1次反応槽 2 3で気液混合水とした状態よりも高濃度のマイクロオゾンガス気泡を含 む気液混合水を生成させる。 この高濃度のマイクロオゾンガス気泡を含 む気液混合水を中層部 3 3へ圧入拡散する。 This gas-liquid mixed water is sent to the gas-liquid mixing tank 26 and mixed with the cultivation water in the breeding tank 31, and the ozone gas generated from the first ozone generator 24 is mixed with the second gas-liquid stirring and mixing apparatus 25. b, and mix and stir the ozone gas, the gas-liquid mixed water, and the cultivation water in the breeding tank 3 1 using the second gas-liquid stirring device 25 b, and the primary reaction tank 2 A gas-liquid mixed water containing micro ozone gas bubbles with a higher concentration than the state of the gas-liquid mixed water in step 3 is generated. The gas-liquid mixed water containing the high-concentration micro ozone gas bubbles is injected and diffused into the middle layer 33.
殺菌畜養施設 3は、 畜養槽 3 1内の畜用水を殺菌、 浄化,富栄養化の 防止を行なうための施設である。  The sterilizing and raising facility 3 is a facility for sterilizing, purifying, and preventing eutrophication of livestock water in the raising tank 31.
第 2図は畜養槽 3 1内の平面図である。 なお、 第 2図の上層部パンチ ング板 3 7は散気装置 3 9等の様子を見やすくするために一部のみ記載 しており、 実際には畜養槽 3 1内全体に接続されている。 散気装置 3 9 上に上層部パンチング板 3 7が設置されており、 畜養槽 3 1内全体にパ ンチング板が接続されている。  FIG. 2 is a plan view of the rearing tank 31. FIG. The upper punching plate 37 in FIG. 2 is only partially shown to make it easier to see the state of the air diffuser 39 and the like, and is actually connected to the entire rearing tank 31. An upper punching plate 37 is provided on the air diffuser 39, and the punching plate is connected to the whole of the rearing tank 31.
殺菌畜養施設 3は、 畜養槽 3 1 と、 畜養槽 3 1内の底部にはパンチン グ板が多層状に形成され、 下から下層部パンチング板 3 5、 中層部パン チング板 3 6、 上層部パンチング板 3 7が形成されている。 また、 それ ぞれのパンチング板の間には空間を有しており、 畜養槽 3 1の底部から 順に下層部 3 2、 中層部 3 3、 上層部 3 4が形成されている。 上層部 3 4にはブロワ一 3 8から送られる空気を畜養槽 3 1内に拡散させるため の散気装置 3 9が設置されている。  Sterilization and aquaculture facility 3 has a breeding tank 31 and a multi-layered punching plate at the bottom in the cultivation tank 31.From the bottom, the lower part punching plate 35, the middle part punching plate 36, and the upper part A punching plate 37 is formed. Further, there is a space between each punching plate, and a lower layer 32, a middle layer 33, and an upper layer 34 are formed in order from the bottom of the breeding tank 31. The upper layer 34 is provided with an air diffuser 39 for diffusing the air sent from the blower 38 into the breeding tank 31.
畜養槽 3 1内の底部に有するパンチング板の多層構造は何層であって もよいが、 三層構造が好ましい。 三層構造にすることにより、 後述する 循環浄化殺菌システム 4から送られてくるマイクロオゾンガス気泡含有 循環水を効率よく圧壊させることができ、 畜養槽 3 1内の畜養水を効率 よく殺菌,浄化することができる。  The multilayer structure of the punching plate at the bottom in the breeding tank 31 may be any number of layers, but a three-layer structure is preferable. By using a three-layer structure, it is possible to efficiently crush the circulating water containing micro ozone gas bubbles sent from the circulating purification / sterilization system 4 described later, and to efficiently sterilize and purify the cultivation water in the breeding tank 31. be able to.
下層部 3 2は循環浄化殺菌システム 4内のマイクロオゾンガス気泡含 有循環水注入管 4 9と接続され、 マイクロオゾンガス気泡含有循環水が 送られる。 このマイクロオゾンガス気泡含有循環水は下層部パンチング 板 3 5を通過することにより、 マイクロオゾンガス気泡の圧壊現象を促 進させる。 The lower layer 32 is connected to a circulating water injection pipe 49 containing micro-ozone gas bubbles in the circulation purification / sterilization system 4, and circulated water containing micro-ozone gas bubbles is sent. The circulating water containing the micro ozone gas bubbles passes through the lower layer punching plate 35 to promote the collapse of the micro ozone gas bubbles. Advance.
ここで、 圧壊とは、 液体中に浮遊する微小気泡 (マイクロバブル) が 微小気泡中に含まれる気体の自然溶解により徐々に縮小し、 やがて消滅 する過程において、 消滅時の現象をいい、 発明者の鋭意研究により発見 された現象である。 以下、 微小気泡の圧壊について説明する。  Here, crushing refers to a phenomenon in which microbubbles floating in a liquid gradually disappear due to the spontaneous dissolution of the gas contained in the microbubbles, and eventually disappear. This is a phenomenon discovered through intensive studies by the author. Hereinafter, the collapse of the microbubbles will be described.
微小気泡の物理的性質として、 第 3図に示すように、 蒸留水中での微 小気泡は、 気泡の気泡径に関係なく— 3 0 〜一 5 O m V程度の電位を有 している。 このため、 例えば水の中では第 4図に示すように気泡表面に O H—等の陰イオンが取り囲んでおり、 その周囲に H + ( H 3 0 +) 等の 陽イオンが覆っているような構造をとつている。 As shown in Fig. 3, as the physical properties of microbubbles, microbubbles in distilled water have a potential of about −30 to 15 OmV regardless of the bubble diameter of the bubbles. Therefore, for example, in water, as shown in Fig. 4, an anion such as OH- surrounds the bubble surface, and a cation such as H + (H 30 + ) surrounds the bubble. It has a structure.
また、 微小気泡は通常の気泡よりも比表面積が大きく、 表面張力が効 果的に作用するため内圧が高い。 なお、 微小気泡が消滅する時の内圧は、 数千気圧にも達するということが学説で定着している。  In addition, microbubbles have a larger specific surface area than ordinary bubbles, and the internal pressure is high because surface tension acts effectively. It is theorized that the internal pressure at which microbubbles disappear can reach thousands of atmospheres.
微小気泡は通常の気泡に比べて上昇速度が緩慢であり、 気体の溶解能 力 (自然溶解) が優れていることが知られている。 すなわち、 通常の気 泡が水中で発生した場合、 液面方向へ上昇し、 液面で気泡が破裂するの に対し、 微小気泡は通常の気泡よりもゆっく りとした速度で上昇し、 さ らに溶解能力が優れていることから、 徐々に気泡の気泡径が縮小し、 や がて消滅する。 第 5図は微小気泡が縮小し、 やがて消滅するまでの気泡 径の時間を測定したものである。 微小気泡の気泡径が小さいほど自然溶 解によって微小気泡が縮小してから消滅するまでの時間が短くなる。 微 小気泡において、 気体を溶解させるための最大の駆動力は表面張力の作 用による自己圧縮効果である。 環境圧に対しての微小気泡内部の圧力上 昇は理論的に Y o u n g— L a p 1 a c eの式により推測される。  It is known that microbubbles have a slower rise rate than ordinary bubbles, and have excellent gas dissolving power (natural dissolution). In other words, when ordinary bubbles are generated in water, they rise in the liquid surface direction and the bubbles burst at the liquid surface, whereas microbubbles rise at a slower rate than ordinary bubbles. Furthermore, because of their excellent dissolving ability, the bubble diameter of the bubbles gradually decreases and eventually disappears. Figure 5 shows the measurement of the bubble diameter time before the microbubbles shrink and eventually disappear. The smaller the bubble diameter of the microbubbles, the shorter the time from the shrinkage of the microbubbles to disappearance due to spontaneous dissolution. In microbubbles, the maximum driving force for dissolving gas is the self-compression effect due to the action of surface tension. The rise in pressure inside the microbubble relative to the environmental pressure is theoretically estimated by the equation Young — Lap1ace.
(数 1 )  (Number 1)
Δ Ρ = 4 σ/ D ここで、 Δ Ρは圧力上昇の程度であり、 σは表面張力、 Dは気泡直径 である。 室温での蒸留水の場合、 直径 1 0 の微小気泡で約 0 . 3気 圧、 直径 1 / mでは、 約 3気圧の圧力上昇となる。 気体はヘンリーの法 則に従って水に溶解するため、 自己加圧された気泡内の気体は効果的に 周囲の水に溶解していく。 Δ Ρ = 4 σ / D Here, Δ で is the degree of pressure rise, σ is surface tension, and D is bubble diameter. In the case of distilled water at room temperature, a microbubble with a diameter of 10 causes a pressure increase of about 0.3 atm, and a pressure of 1 / m increases a pressure of about 3 atm. The gas dissolves in water according to Henry's Law, so the gas in the self-pressurized bubbles effectively dissolves in the surrounding water.
これに対して微小気泡を放電、 超音波、 渦流等の物理的刺激を与える ことで、 微小気泡が自然溶解によって縮小する速度が上昇するため、 微 小気泡が断熱圧縮され、 やがて微小気泡は消滅する (圧壊)。 このとき、 微小気泡は断熱圧縮していたことから、微小気泡が消滅する時に超高温、 超高圧の極限反応場が形成される。  On the other hand, by applying physical stimuli such as discharge, ultrasonic waves, and eddy currents to the microbubbles, the speed at which the microbubbles shrink by spontaneous dissolution increases, so that the microbubbles are adiabatically compressed and eventually disappear. Yes (crush). At this time, since the microbubbles were adiabatically compressed, an extremely high temperature and ultrahigh pressure limit reaction field is formed when the microbubbles disappear.
上述したように、 水中に存在している気泡はマイナスに帯電している が、 気液界面には P H等の環境条件に応じて飽和した電荷が存在してお り、 微小気泡のゼータ電位により観測することができる。 この電荷は水 中の電解質イオン等によってもたらされるのではなく、 水自体の持って いる構造的な要因に基づいている。 すなわち、 気液界面における水素結 合ネッ トワーク構造がパルク中での構造と異なることに起因した〇H - や H +の界面吸着による電荷の発生による。 この構造の形成は熱分子運 動を抑制する作用も併せ持つため、 電荷密度の増減が生じた場合に平衡 条件に戻るまでに数秒程度の時間を要する。  As described above, bubbles existing in water are negatively charged, but saturated charges exist at the gas-liquid interface according to the environmental conditions such as PH, and the zeta potential of the microbubbles Can be observed. This charge is not caused by electrolyte ions in the water, but is based on structural factors of the water itself. In other words, charge generation is caused by interfacial adsorption of ΔH − and H + due to the difference in the structure of the hydrogen-bonded network at the gas-liquid interface from the structure in the pulp. Since the formation of this structure also has the effect of suppressing thermal molecular motion, it takes several seconds to return to equilibrium conditions when the charge density increases or decreases.
微小気泡の自然溶解による気泡の縮小は、 気液界面の表面積の減少を 伴う。 この気液界面の表面積は第 5図に示すように小さな気泡になるほ ど加速度的に減少する。 気液界面の表面積の減少速度が遅い場合におい ては、 気液界面の電荷密度はほぼ平衡を保った条件で推移する。 しかし、 第 6図に示すように気泡径が 1 0 以下になると電荷の散逸が縮小速 度に追いつかなくなり、 平衡からの逸脱に伴うゼ一夕電位の上昇として 観測される。 ただし、 自然溶解による気液界面の表面積の減少はさほど 急激でないため、 消滅寸前においても電荷密度の値は平衡時の数倍程度 にとどまる。 The shrinkage of bubbles due to the spontaneous dissolution of microbubbles is accompanied by a decrease in the surface area of the gas-liquid interface. As shown in Fig. 5, the surface area of this gas-liquid interface decreases at an accelerated rate as small bubbles are formed. When the rate of decrease in the surface area of the gas-liquid interface is slow, the charge density at the gas-liquid interface changes under almost equilibrium conditions. However, as shown in Fig. 6, when the bubble diameter becomes 10 or less, the dissipation of the charge does not catch up with the reduction rate, and it is observed as a rise in the potential over time due to the deviation from the equilibrium. However, the decrease in the surface area of the gas-liquid interface due to spontaneous dissolution Because it is not abrupt, the value of the charge density is about several times that at equilibrium even before it disappears.
これに対して、 本発明における微小気泡の圧壊時には、 気液界面の表 面積の減少速度が非常に大きく、 電荷は殆ど散逸することなく平衡から 逸脱する。 その結果、 極めて電荷密度の高い領域が形成される。 気泡径 2 0 ^ 01の微小気泡が0 . 5 以下にまで圧壊された場合、 電荷密度 は平衡時の 1 0 0 0倍以上に至る。  On the other hand, when the microbubbles in the present invention are crushed, the surface area at the gas-liquid interface decreases very rapidly, and the charge deviates from equilibrium with little dissipation. As a result, a region having an extremely high charge density is formed. If the microbubbles with a bubble diameter of 20 ^ 01 are crushed to less than 0.5, the charge density will be more than 100 times the equilibrium.
圧壊により形成された極めて高密度な電荷は非平衡条件であるため, 極めて不安定であり、 単純な散逸とは異なる現象で安定な状態へと復帰 する。 すなわち、 圧壊過程にある気泡界面と周囲との間に極めて急激な 電位勾配が形成され、 放電などによる電子の移動に伴い、 電荷条件の再 平衡が実現される。  The extremely high-density charge formed by crushing is extremely unstable due to non-equilibrium conditions, and returns to a stable state by a phenomenon different from simple dissipation. In other words, a very steep potential gradient is formed between the bubble interface and the surroundings during the crushing process, and the re-equilibrium of the charge condition is realized with the movement of electrons due to discharge and the like.
これは極めて高密度なエネルギー場の形成を意味しており、 水中で行 つた場合、 周囲の水分子の分解によるフリ一ラジカル種の形成を伴う。 また、 電荷の担い手が Ο Η ·や H +であるため、 放電による電荷の中和に 伴って、 · 〇Ηや · Ηというフリーラジカル種の生成がなされる。  This means the formation of an extremely high-density energy field, which, when carried out in water, involves the formation of free radical species due to the decomposition of surrounding water molecules. In addition, since the charge carrier is Ο Η and H +, free radical species such as 〇Η and Η are generated as the charge is neutralized by discharging.
このフリーラジカル種は反応性が非常に高いため、 溶液中に溶解もし くは浮遊している様々な化合物と反応し、 溶液中の化合物を組成変化ま たは分解する。 また、 圧壊時に超高温、 超高圧状態の極限反応場が形成 されるため、 従来には不可能とされてきた、 細菌類、 ウィルス類等の微 生物を分解、 死滅させることも可能となり、 フエノール等の芳香族を含 む化合物も分解できる。 圧壊することにより分解することができる物質 としては、 ほぼ全ての有機化合物、 F e S 0 4、 C u N〇3、 A g N O 3 M n O 2のような無機化合物、 ダイォキシン類、 P C B、 フロン、 細菌 類、 ウィルス類等が挙げられる。 Because these free radical species are so reactive, they react with various compounds that are dissolved or suspended in solution, changing the composition or decomposing the compounds in solution. In addition, since an extremely high temperature and ultra high pressure state reaction field is formed during crushing, it is possible to degrade and kill microbes such as bacteria and viruses, which were previously impossible. And other compounds containing aromatics. The substance can be decomposed by crushing, almost all organic compounds, F e S 0 4, C u N_〇 3, A an inorganic compound such as g NO 3 M n O 2, dioxins, PCB, CFCs, bacteria, viruses, and the like.
微小気泡は通常の気泡よりもゆっく りとした速度で上昇するため、 微 小気泡が消滅する前に例えば渦流を起こす等の刺激を微小気泡に与える ことにより、 縮小速度を早めることができ、 圧壊現象を促進させること ができる。 これにより、 畜養水の殺菌 ·浄化がより効果的に行われる。 本発明では、 下層部 3 2に送られたマイクロオゾンガス気泡含有循環 水が下層部パンチング板 3 5を通過させることにより、 圧縮、 膨張およ び渦流を生じさせることにより、 微小気泡の圧壊を促進させることがで きる。 Since microbubbles rise at a slower rate than ordinary bubbles, By giving a stimulus to the microbubbles, for example, causing a vortex before the small bubbles disappear, the reduction speed can be increased and the crushing phenomenon can be promoted. As a result, sterilization and purification of livestock water can be performed more effectively. In the present invention, the circulating water containing micro ozone gas bubbles sent to the lower layer 32 is caused to pass through the lower layer punching plate 35 to generate compression, expansion and swirl, thereby promoting the collapse of the micro bubbles. It can be done.
中層部 3 3は、 気液混合水注入管 2 7と接続しており、 気液混合水は 気液混合水注入管 2 7から畜養槽 3 1内へ圧入拡散される。  The middle part 33 is connected to a gas-liquid mixed water injection pipe 27, and the gas-liquid mixed water is injected and diffused into the breeding tank 31 from the gas-liquid mixed water injection pipe 27.
中層部 3 3内では、 下層部 3 2から下層部パンチング板 3 5を通過し て発生してきたマイクロオゾンガス気泡が圧壊により超微細気泡となつ ており、気液混合水注入管 2 7から圧入拡散された気液混合水と混ざり、 マイクロオゾンガスの酸化分解が行われると共に、 中層部パンチング板 3 6を通過する。  In the middle section 33, the micro ozone gas bubbles generated from the lower section 32 through the lower section punching plate 35 are turned into ultra-fine bubbles by crushing, and are injected and diffused from the gas-liquid mixed water injection pipe 27. The micro-ozone gas is mixed with the mixed gas-liquid mixed water, oxidatively decomposed, and passes through the middle part punching plate 36.
上層部 3 4にはブロワ一 3 8と接続された散気装置 3 9が設置されて おり、 散気装置 3 9はブロワ一 3 8から加圧された状態で送られてきた 空気を上層部 3 4に送る。 ブロワ一 3 8と散気装置 3 9により加圧した 空気を送るのは、 畜養槽 3 1内の富栄養化対策として循環曝気させるた めであり、 また空気中に含まれる酸素により、 畜養槽 3 1内の酸素濃度 が上昇し、 水質改善にも役立つ。 この加圧された空気の圧力は 0 . 3 M P a以上にすることにより、 効率よく畜養槽 3 1内を循環曝気すること ができる。 この空気は、 中層部パンチング板 3 6を通過してきたマイク 口オゾンガス気泡と混合し、 上層部パンチング板 3 7を通過する。  An air diffuser 39 connected to the blower 38 is installed in the upper layer section 34, and the air diffuser 39 converts the air sent from the blower 38 in a pressurized state into the upper layer section 34. Send to 3-4. The air pressurized by the blower 38 and the air diffuser 39 is sent for circulation aeration as a measure of eutrophication in the breeding tank 31. The oxygen concentration in 1 rises, which also helps to improve water quality. By setting the pressure of the pressurized air to 0.3 MPa or more, it is possible to efficiently circulate and aerate the culture tank 31. This air mixes with the ozone gas bubbles in the microphone opening that has passed through the middle part punching plate 36 and passes through the upper part punching plate 37.
上層部パンチング板 3 7を通過したマイクロオゾンガス気泡と加圧し た空気はパンチング板を通過する際の圧縮膨張作用により、 加圧した空 気は畜養槽 3 1内全体に拡散され、 マイクロオゾンガス気泡の圧壊は更 に加速され、 加圧した空気の拡散の流れに乗り、 畜養槽 3 1内全体でマ イク口オゾンガスの圧壊が起る。 これにより、 畜養槽 3 1内の殺菌 -浄 化作用が全体的に行われる。 また、 加圧された空気により、 畜養槽 3 1 内の富栄養化も防止される。 The micro ozone gas bubbles and the pressurized air that have passed through the upper punching plate 37 are compressed and expanded when passing through the punching plate, and the pressurized air is diffused throughout the rearing tank 31 to generate micro ozone gas bubbles. Crushing The air is accelerated and rides on the diffusion flow of the pressurized air, causing collapse of the ozone gas at the mouth of the breeding tank 31 as a whole. Thereby, the sterilization-purification action in the breeding tank 31 is performed as a whole. The pressurized air also prevents eutrophication in the breeding tank 31.
循環浄化殺菌システム 4は、 畜養水を循環させる場合、 前記畜養水を 浄化、 殺菌するためのシステムである。  The circulation purification / sterilization system 4 is a system for purifying and sterilizing the culture water when circulating the culture water.
循環浄化殺菌システム 4は、 畜養槽 3 1内の畜養水を循環水として取 り入れ、 貯蔵する循環水槽 4 1 と、 適当量の循環水を濾過処理槽 4 3、 2次反応槽 4 4へ送る循環水ポンプ 4 2と、 オゾンを発生させる第 2ォ ゾン発生装置 4 5と、 第 2オゾン発生装置 4 5から発生したオゾンガス と 2次反応槽 4 4にある循環水を混合させる第 3気液攪拌混合装置 4 6 と、 マイク口オゾンガス気泡を含有した循環水を貯蔵する反応受槽 4 7 と、 マイクロオゾンガス気泡含有循環水を畜養槽 3 1内へ加圧して送る ための加圧ポンプ 4 8とからなる。  The circulation purification / sterilization system 4 takes in the cultivation water in the breeding tank 31 as circulating water and stores it in the circulating water tank 41, and an appropriate amount of circulating water into the filtration tank 43 and the secondary reaction tank 44. A circulating water pump 42, a second ozone generator 45 for generating ozone, and a third gas for mixing ozone gas generated from the second ozone generator 45 with circulating water in the secondary reaction tank 44. Liquid agitating / mixing device 4 6, reaction receiving tank 4 7 for storing circulating water containing ozone gas bubbles in microphone opening, and pressurizing pump 4 8 for pressurizing and sending circulating water containing micro ozone gas bubbles into culture tank 3 1 Consists of
循環水槽 4 1は、 畜養水を循環水として取り入れるために畜養槽 3 1 と接続されており、 畜養槽 3 1内の畜養水が一定量に達すると循環水槽 4 1に流出するように形成されている。  The circulating water tank 41 is connected to the cultivation tank 31 to take in the cultivation water as circulating water, and is formed so as to flow out to the circulating water tank 41 when the cultivation water in the cultivation tank 31 reaches a certain amount. ing.
循環水槽 4 1に流出した循環水は循環水ポンプ 4 2により、 適当量を 濾過処理槽 4 3へ送られ、 濾過処理槽 4 3で、 循環水中に含まれていた ゴミ等を除去し、 2次反応槽 4 4へ送られる。  An appropriate amount of the circulating water flowing into the circulating water tank 41 is sent to the filtration tank 43 by the circulating water pump 42, and the filtration tank 43 removes trash etc. contained in the circulating water. It is sent to the next reaction tank 4 4.
第 2オゾン発生装置 4 5より発生したオゾンガスは、 第 3気液攪拌混 合装置 4 6に圧送される。 オゾンガスは循環水と混合攪拌されてマイク 口オゾンガス気泡となると共に、 気液凝縮混合され、 マイクロオゾンガ ス気泡含有循環水となる。 ここで循環水に含まれる微生物や有害物質を マイクロオゾンガス気泡の酸化分解で殺菌 ·分解し、 循環水は殺菌 ·浄 化される。 2次反応槽 4 4で殺菌'浄化された循環水は反応受槽 4 7へ送られる。 一定量のマイクロオゾンガス気泡含有循環水が貯蔵されると加圧ポンプ 4 8へ送られる。 反応受槽 4 7から送られたマイクロオゾンガス気泡含 有循環水は加圧ポンプにより、 畜養槽 3 1内の下層部 3 2に接続された マイク口オゾンガス気泡含有循環水注入管 4 9を通り、 畜養槽 3 1内の 下層部 3 2へ高圧圧入される。 加圧ポンプ 4 8のマイクロオゾンガス気 泡含有循環水を押し出す圧力は特に限定されないが、 0 . 3 M P a以上 の圧力のときがマイクロオゾンガス気泡含有循環水を下層部 3 2へ高圧 圧入することができ、 下層部パンチング板 3 5をマイクロオゾンガス気 泡含有循環水が通過する際、 圧縮、 膨張および渦流を生じさせ、 効率よ く圧壊現象を起こすことができる。 The ozone gas generated from the second ozone generator 45 is sent to the third gas-liquid stirring / mixing device 46 under pressure. The ozone gas is mixed and stirred with the circulating water to form ozone gas bubbles at the microphone opening, and is also gas-liquid condensed and mixed to form circulating water containing micro ozone gas bubbles. Here, microorganisms and harmful substances contained in the circulating water are sterilized and decomposed by oxidative decomposition of micro ozone gas bubbles, and the circulating water is sterilized and purified. The circulating water sterilized and purified in the secondary reaction tank 44 is sent to the reaction receiving tank 47. When a certain amount of circulating water containing micro ozone gas bubbles is stored, it is sent to the pressure pump 48. The circulating water containing micro ozone gas bubbles sent from the reaction receiving tank 47 is fed by a pressurized pump through the circulating water injection pipe 49 containing ozone gas bubbles with microphone opening connected to the lower part 32 of the breeding tank 31. It is pressurized into the lower part 32 of the tank 31. The pressure at which the circulating water containing micro ozone gas bubbles is extruded by the pressurizing pump 48 is not particularly limited.However, when the pressure is 0.3 MPa or more, the circulating water containing micro ozone gas bubbles can be injected under high pressure into the lower part 32. When the circulating water containing micro ozone gas bubbles passes through the lower part punching plate 35, compression, expansion and eddy flow are generated, and a crush phenomenon can be caused efficiently.
気液攪拌混合装置により、 畜養槽 3 1内へ拡散される微細なオゾン気 泡について、 従来例と対比した具体例により説明する。  The fine ozone bubbles diffused into the breeding tank 31 by the gas-liquid stirring and mixing device will be described with reference to a specific example in comparison with a conventional example.
本発明の特徴は、 超微細なオゾン気泡を利用することと、 これを圧壊 させることである。 従来法との効果の比較に関しては、 殺菌効果をもた らすフリーラジカル種や活性酸素種の量に基づいて評価できる。 まず、 微小気泡を利用することの利点であるが、 これは水に対するオゾンの溶 解能力において比較可能である。 直径が 1 m mの通常気泡と 1 0 mの 超微小気泡のガス溶解能力を比較した場合に、 後者は前者の 2 0 0 0 0 0 0 0倍の溶解効率を持つ。 その理由は 3つあり、 一つは比表面積が直 径に反比例して作用すること、 もう一つは気泡の自己圧縮効果が同じく 直径に反比例することである。 3つ目としては、 上昇速度が極端に異な る点が挙げられる。小さな気泡はストークスの方式にほぼ基づいており、 1 mmの気泡が 1分間に約 6 m上昇するのに対して 1 0 mの気泡はわ ずか 3 m m程度しか上昇しない。 これら 3つの要因を単純に掛け合わせ た場合に、 2 0 0 0 0 0 0 0倍の溶解効率の差が求まる。 次に、 圧壊に よるフリーラジカル種の発生量であるが、 予備的な試験によりオゾンが 単純に作用する場合に比べて約 2 0倍の効果を持つことを確認している。 これは K I溶液の反応によるヨウ素析出量により評価したものであり、 ォゾンの単純作用に比べてマイクロオゾンガス気泡の圧壊を起こさせた 条件では、 約 2 0倍の速度で反応が進行している。 以上の 2点を単純に 掛け合わせることにより従来法と効果を比較すると、 本発明は実に 4億 倍の殺菌効果を発揮することになる。 現実の条件においては、 気泡の収 縮や圧壊の発生に対する阻害要因も皆無ではないが、 いずれにしても桁 違いの殺菌効果を発揮することが可能である。 また、 他の利点として 1 0 z m以下の微小気泡は魚介類の体内に容易に取り込まれるため、 体内 の殺菌にも容易に作用することが上げられる。 特にオゾンの発生に P S A方式の装置を利用した場合には酸素濃度が非常に高いので、 魚介類の 呼吸循環が促進され、 より容易にマイクロオゾンガス気泡が体内に取り 込まれることになり、 効果の違いは歴然としたものとなる。 A feature of the present invention is to use ultra-fine ozone bubbles and to crush them. The comparison with the conventional method can be evaluated based on the amount of free radical species and reactive oxygen species that have a bactericidal effect. First, the advantage of using microbubbles is comparable in their ability to dissolve ozone in water. When comparing the gas dissolving capacity of ordinary bubbles with a diameter of 1 mm and ultra-fine bubbles with a diameter of 10 m, the latter has a dissolution efficiency twice as high as that of the former. There are three reasons: one is that the specific surface area is inversely proportional to the diameter, and the other is that the self-compressing effect of the bubbles is also inversely proportional to the diameter. Thirdly, the ascent rate is extremely different. Small bubbles are largely based on the Stokes method, where a 1 mm bubble rises about 6 m per minute, while a 10 m bubble rises only about 3 mm. When these three factors are simply multiplied, a difference of 20000 times the dissolution efficiency is obtained. Next, to crush Preliminary tests have confirmed that ozone has an effect about 20 times that of the case where ozone simply acts. This was evaluated based on the amount of iodine deposited by the reaction of the KI solution. Under the condition where the micro ozone gas bubbles were crushed as compared with the simple action of ozone, the reaction proceeded at a speed of about 20 times. When the effect is compared with the conventional method by simply multiplying the above two points, the present invention shows a bactericidal effect of 400 million times. Under real conditions, there is no impediment to the shrinkage of air bubbles and the occurrence of crushing, but in any case, it is possible to exhibit an incredible sterilization effect. Another advantage is that microbubbles of 10 zm or less are easily taken into the body of fish and shellfish, so that they can easily act on sterilization of the body. In particular, when a PSA-type device is used to generate ozone, the oxygen concentration is very high, so that the respiratory circulation of fish and shellfish is promoted, and micro ozone gas bubbles are more easily taken into the body. The difference is obvious.
上記のように、 気液攪拌混合装置により、 マイクロオゾンガス気泡を 供給すると共に、 これを圧壊させることにより、 低エネルギーかつ短時 間で魚介類の殺菌が可能となる。  As described above, micro-ozone gas bubbles are supplied by the gas-liquid stirring and mixing device, and by crushing the bubbles, it is possible to sterilize fish and shellfish with low energy and in a short time.
また、 残留オゾンガスは泡沫分離と共に酸化還元コントロールにより 厳密に調整される。  In addition, residual ozone gas is strictly adjusted by redox control together with foam separation.
以上本発明の実施形態について説明したが、 これは本発明の一実施の 形態であり、 本発明がこれに限定される趣旨のものではない。 また、 第 1オゾン発生装置 2 と第 2オゾン発生装置 4 5は一つにまとめて、 ォ ゾンをそれぞれ取水浄化殺菌システム 2と循環浄化殺菌システム 4に発 生させてもよい。 発明の効果 本発明の加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システムに より、 オゾンガス気泡の粒径を小さくし、 圧壊させることにより、 無菌 化と浄化がスムーズに行なえ、 畜養条件を低エネルギーで安全かつ安心 で安定的に畜養できる。さらに魚介類の活性および鮮度保持が良くなる。 産業上の利用可能性 Although the embodiment of the present invention has been described above, this is an embodiment of the present invention, and is not intended to limit the present invention. Further, the first ozone generator 2 and the second ozone generator 45 may be combined into one, and ozone may be generated in the intake water purification / sterilization system 2 and the circulation purification / sterilization system 4, respectively. The invention's effect The pressurized multi-layer micro ozone sterilization / purification / animal sterilization system of the present invention reduces the particle size of the ozone gas bubbles and crushes them so that sterilization and purification can be performed smoothly, and the breeding conditions are low energy, safe and safe. It is safe and stable. Further, the activity and freshness retention of fish and shellfish are improved. Industrial applicability
本発明の加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システムに よれば、 オゾンガス気泡の粒径を小さくし、 圧壊させることにより、 無 菌化と浄化がスムーズに行なえ、 魚介類等の畜養 (養殖) に利用する水 等の殺菌と浄化および酸素の供給を効率的に行うことができるようにな つた。 これにより、 安定して魚介類等の食材を提供することができるよ うになつた。  According to the multi-layer pressurized micro ozone sterilization / purification / animal sterilization system of the present invention, sterilization and purification can be performed smoothly by reducing the size of ozone gas bubbles and crushing them. It is now possible to efficiently sterilize and purify water used for aquaculture and supply oxygen. As a result, foodstuffs such as fish and shellfish can be stably provided.
<参考文献一覧 > <List of references>
特許文献 1 : Patent Document 1:
特開 2 0 0 2— 1 4 3 8 8 5号公報 Japanese Patent Application Laid-Open No. 2000-142 4885

Claims

請 求 の 範 囲 The scope of the claims
1 . 取水した原水とオゾンガスを混合させマイク口オゾンガス気泡を 含む気液混合原水とし、 前記原水を浄化 ·殺菌し、 畜養槽内へ前記気液 混合原水を圧入拡散させる取水浄化殺菌システムと、 底部に複数のパン チング板が多層状に形成されている前記畜養槽からなる殺菌畜養施設と、 前記畜養槽内の畜養水を循環させるために前記畜養水を循環水として取 り入れ、 前記循環水をオゾンガスと混合させ、 浄化 ·殺菌を行い、 前記 畜養槽へマイクロオゾン含有循環水を高圧圧入させる循環浄ィ匕殺菌シス テムとを有することを特徴とする加圧多層式マイクロオゾン殺菌 * 浄 化 ·畜養殺菌システム。  1. A water-purification and sterilization system that mixes the raw water with ozone gas to form a gas-liquid mixed raw water containing ozone gas bubbles at the microphone opening, purifies and sterilizes the raw water, and injects and diffuses the gas-liquid mixed raw water into the breeding tank. A sterilizing and breeding facility comprising the breeding tank in which a plurality of punching plates are formed in a multi-layered form, and taking in the cultivating water as circulating water to circulate the cultivating water in the culturing tank; Pressurized multi-layer micro-ozone sterilization * purification characterized by having a circulating purification sterilization system for mixing and mixing ozone gas with ozone gas to purify and sterilize, and pressurizing the micro ozone-containing circulating water into the breeding tank under high pressure. · Livestock sterilization system.
2 . 前記畜養槽の底部に設けられた複数のパンチング板はパンチング 板が 3枚からなる三層構造である請求の範囲第 1項に記載の加圧多層式 マイクロオゾン殺菌 ·浄化 ·畜養殺菌システム。 2. The pressurized multi-layer micro ozone sterilization / purification / animal sterilization system according to claim 1, wherein the plurality of punching plates provided at the bottom of the culture tank have a three-layer structure including three punching plates. .
3 . 前記取水浄化殺菌システムは、 取水ポンプにより取水された原水 を 1次反応槽へ供給し、 第 1オゾン発生装置から発生したオゾンガスと 前記原水を第 1気液攪拌混合装置により混合して前記マイクロオゾンガ ス気泡を含む気液混合原水とする手段と、 前記第 1オゾン発生装置から 発生したオゾンガスと前記気液混合原水と前記畜養槽内に有する畜養水 と共に、 第 2気液攪拌混合装置により混合して前記マイクロオゾンガス 気泡を含む気液混合水とし、 前記中層部へ前記気液混合水を圧入拡散さ せる手段とからなる請求の範囲第 1項に記載の加圧多層式マイクロォゾ ン殺菌 ·浄化 · 畜養殺菌システム。 3. The water purification / sterilization system supplies raw water taken by a water intake pump to a primary reaction tank, and mixes ozone gas generated from a first ozone generator with the raw water by a first gas-liquid stirring / mixing device. A second gas-liquid stirring / mixing device together with means for producing gas-liquid mixed raw water containing micro ozone gas bubbles, and ozone gas generated from the first ozone generator, the gas-liquid mixed raw water, and cultivation water in the breeding tank; 2. The pressurized multi-layer microzone sterilizer according to claim 1, further comprising: means for mixing said gas and liquid into a gas-liquid mixture containing air bubbles, and for injecting and diffusing said gas-liquid mixture into said middle layer. · Purification · Livestock sterilization system.
4 . 前記殺菌畜養施設は、 前記畜養槽からなり、 前記畜養槽の底部に は複数のパンチング板が多層状に形成しており、 前記複数のパンチング 板の間に下層部と、 中層部と上層部との空間を有する請求の範囲第 1項 に記載の加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システム。 4. The sterilizing and breeding facility comprises the breeding tank, and is provided at the bottom of the culturing tank. The pressurized multi-layer micro-ozone sterilizer according to claim 1, wherein a plurality of punched plates are formed in a multilayer shape, and a space between a lower layer, a middle layer, and an upper layer is provided between the plurality of punched plates. · Purification · Livestock sterilization system.
5 . 前記畜養槽の底部に設けられた複数のパンチング板はパンチング 板が 3枚からなる三層構造である請求の範囲第 4項に記載の加圧多層式 マイクロオゾン殺菌 ·浄化 ·畜養殺菌システム。 5. The pressurized multi-layer micro ozone sterilization / purification / animal sterilization system according to claim 4, wherein the plurality of punching plates provided at the bottom of the culture tank have a three-layer structure including three punching plates. .
6 . 前記循環浄化殺菌システムは、 前記畜養槽内の前記畜養水を循環 させるために前記畜養水を循環水として取り入れるために循環水槽に前 記循環水を流出させ、 前記循環水を循環ポンプで濾過処理槽を通じ、 第 2反応槽へ送る手段と、 第 2オゾン発生装置から発生したオゾンガスと 前記循環水を第 3気液攪拌混合装置により混合しマイクロオゾン気泡含 有循環水とし、 前記マイクロオゾン気泡含有循環水を反応受槽へ送る手 段と、 前記反応受槽内の前記マイクロオゾン気泡含有循環水を加圧ボン プにより前記下層部に高圧圧入させる手段とからなる請求の範囲第 1項 に記載の加圧多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システム。 6. The circulation purification / sterilization system comprises: discharging the circulating water to a circulating water tank to circulate the cultivating water in the cultivation tank to circulate the cultivating water therein; and circulating the circulating water by a circulating pump. Means for sending to the second reaction tank through the filtration tank, ozone gas generated from the second ozone generator and the circulating water are mixed by a third gas-liquid stirring and mixing apparatus to obtain micro ozone bubble-containing circulating water, and the micro ozone 2. The method according to claim 1, further comprising: means for sending the circulating water containing bubbles to the reaction receiving tank; and means for press-injecting the circulating water containing micro-ozone bubbles in the reaction receiving tank into the lower layer part with a high pressure pump. Pressurized multi-layer micro-ozone sterilization · purification · livestock sterilization system as described.
7 . 前記加圧ポンプが前記畜養槽の底部に設けられた多層構造のパン チング板の下層部に前記マイクロオゾン気泡含有循環水を高圧圧入させ る際の圧力は 0 . 3 M P a以上である請求の範囲第 6項に記載の加圧多 層式マイクロオゾン殺菌 · 浄化 ·畜養殺菌システム。 7. The pressure at which the pressurizing pump presses the circulating water containing micro ozone bubbles into the lower part of the multilayered panning plate provided at the bottom of the breeding tank at a high pressure is 0.3 MPa or more. 7. The pressurized multi-layer micro ozone sterilization / purification / animal sterilization system according to claim 6.
8 . 前記下層部において、 高圧圧入されて注入された前記マイクロォ ゾン気泡含有循環水は、 前記下層部の上部に位置するパンチング板を通 過し中層部へ入るステップと、 前記中層部では、 渦流が発生し、 前記マ ィクロオゾンガス気泡の圧壊が促進され、 前記胶水浄化殺菌システムか ら前記気液混合水が圧入拡散され、 前記気液混合水中に含まれるマイク 口オゾンガス気泡の酸化分解が行われると共に、 前記中層部の上部に位 置するパンチング板を通過し上層部へ入るステソプと、 8. In the lower part, the micro-zone-containing circulating water injected and injected at a high pressure passes through a punching plate located at an upper part of the lower part and enters a middle part. Occurs, and the The crushing of the micro ozone gas bubbles is promoted, the gas-liquid mixed water is injected and diffused from the water purification / sterilization system, and the microphone ozone gas bubbles contained in the gas-liquid mixed water are oxidized and decomposed. Stepping through the punching plate located at the top of the
前記上層部には、 ブロワ一から送られてくる加 BEされた空気を前記畜養 槽内へ送る散気装置が設置されており、 前記空気が前記上層部の上に位 置するパンチング板を通過する際、 前記畜養槽会体で渦流が発生し、 前 記マイクロオゾンガス気泡と共に、 前記畜養槽 |¾全体に拡散されるステ ップとにより、 前記畜養槽全体で前記マイク口 ゾンガス気泡の圧壊が 起り、 前記畜養水の浄化 ·殺菌 ·富栄養化の防 ihを行う請求の範囲第 4 項に記載の加圧多層式マイクロオゾン殺菌 ·浄ィ匕 · 畜養殺菌システム。 A diffuser is installed in the upper layer to send the added air sent from the blower into the rearing tank, and the air passes through a punching plate located above the upper layer. In this case, a vortex is generated in the cultivation tank body, and the micro-ozone gas bubbles are diffused throughout the cultivation tank | 槽 together with the micro ozone gas bubbles. 5. The pressurized multi-layer micro ozone sterilization / purification / animalization sterilization system according to claim 4, wherein the system performs ih purification, sterilization, and eutrophication prevention.
9 . 前記畜養槽の底部に設けられた複数のパンチング板はパンチング 板が 3枚からなる三層構造である請求の範囲第 8 項に記載の加圧多層式 マイクロオゾン殺菌 · 浄化 ·畜養殺菌システム。 9. The pressurized multilayer micro ozone sterilization / purification / animal sterilization system according to claim 8, wherein the plurality of punching plates provided at the bottom of the culture tank have a three-layer structure including three punching plates. .
1 0 . 前記加圧ポンプが前記畜養槽の底部に言殳けられた多層構造のパ ンチング板の下層部に前記マイクロオゾン気泡含有循環水を高圧圧入さ せる際の圧力は 0 . 3 M P a以上である請求の乾囲第 8項に記載の加圧 多層式マイクロオゾン殺菌 ·浄化 ·畜養殺菌システム。 10. The pressure at which the pressurizing pump presses the circulating water containing micro-ozone bubbles into the lower part of the multi-layered punching plate, which is located at the bottom of the culture tank, at a high pressure of 0.3 MPa. 9. The pressurized multi-layer micro ozone sterilization / purification / animal sterilization system according to claim 8, which is the above.
PCT/JP2004/014560 2003-10-06 2004-09-28 Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization WO2005032243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-347498 2003-10-06
JP2003347498A JP3645250B2 (en) 2003-10-06 2003-10-06 Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system

Publications (1)

Publication Number Publication Date
WO2005032243A1 true WO2005032243A1 (en) 2005-04-14

Family

ID=34419584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014560 WO2005032243A1 (en) 2003-10-06 2004-09-28 Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization

Country Status (2)

Country Link
JP (1) JP3645250B2 (en)
WO (1) WO2005032243A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055352A (en) * 2006-08-31 2008-03-13 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for maintaining fine bubble of ozone gas in water, and ballast water treatment method
JP5294370B2 (en) * 2006-10-13 2013-09-18 独立行政法人産業技術総合研究所 Method for producing water containing reactive species and water containing reactive species
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
AU2007349224B2 (en) 2006-10-25 2014-04-03 Revalesio Corporation Methods of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
JP4870174B2 (en) * 2009-01-19 2012-02-08 シャープ株式会社 Water treatment apparatus and water treatment method
AU2011225328B2 (en) * 2010-03-08 2016-11-17 Ligaric Co., Ltd. Extraction method using microbubbles and extracting liquid
JP5782628B2 (en) * 2010-11-19 2015-09-24 株式会社Reo研究所 Wastewater treatment method
JP5854502B2 (en) * 2011-11-21 2016-02-09 株式会社アクルス Ozone sterilizer
JP7106089B2 (en) * 2017-09-22 2022-07-26 トスレック株式会社 Microbubble sterilization system and method for sterilizing seafood, beverages and foods
KR102485128B1 (en) * 2020-09-25 2023-01-06 유한회사 대진 sea water supply system for aquaculture farm of land base

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP2000000447A (en) * 1997-12-30 2000-01-07 Hirobumi Onari Swirling type fine bubble generator
JP2002011335A (en) * 2000-06-30 2002-01-15 Tashizen Techno Works:Kk Fine bubble supply apparatus
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble
JP2003500031A (en) * 1999-05-25 2003-01-07 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード How to improve conditions in closed-circuit fish farming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP2000000447A (en) * 1997-12-30 2000-01-07 Hirobumi Onari Swirling type fine bubble generator
JP2003500031A (en) * 1999-05-25 2003-01-07 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード How to improve conditions in closed-circuit fish farming
JP2002011335A (en) * 2000-06-30 2002-01-15 Tashizen Techno Works:Kk Fine bubble supply apparatus
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9511333B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9004743B2 (en) 2006-10-25 2015-04-14 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9272000B2 (en) 2009-04-27 2016-03-01 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy

Also Published As

Publication number Publication date
JP2005110552A (en) 2005-04-28
JP3645250B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
WO2005032243A1 (en) Pressurized and multilayered micro ozone sytesm for sterilization, purification and farming sterilization
JP4378543B2 (en) How to crush microbubbles
JP4059506B2 (en) Ozone water and method for producing the same
US7641798B2 (en) Waste water treatment method and waste water treatment apparatus
CA2356976C (en) Water treatment process and apparatus
JP6762467B2 (en) Aeration device
CA2344174A1 (en) Method and apparatus for continuous or intermittent supply of ozonated water
JP2007125554A (en) Apparatus and method for treating liquid medium
US6503403B2 (en) Gas-liquid contact apparatus
KR101171854B1 (en) Apparatus for generating micro bubble
JP3326500B2 (en) Processing equipment for processing objects containing microorganisms
KR101824240B1 (en) High-density micro-bubble generating device
Kaushik et al. Microbubble technology: emerging field for water treatment
JP5701648B2 (en) Water treatment equipment
JP2009066467A (en) Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof
JP7406265B2 (en) wastewater treatment equipment
JP2002361239A (en) Treating device for objective body containing microorganism
US20140050801A1 (en) Gas dissolving apparatus
KR20110004001A (en) Circulation type sanitary water purification system using physical and chemical characteristics of nano bubbles and method thereof
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
KR100491865B1 (en) Advanced method of water treatment of septic tank and so on
JP7450898B2 (en) Wastewater treatment equipment and wastewater treatment method
JP2019135043A (en) Wastewater treatment apparatus and wastewater treatment method
JP2006334529A (en) Sludge treatment method
JP2017192914A (en) Raw water treatment device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase