WO2004086644A1 - Spread code generation method, spread code generation device, and communication method - Google Patents

Spread code generation method, spread code generation device, and communication method Download PDF

Info

Publication number
WO2004086644A1
WO2004086644A1 PCT/JP2004/003924 JP2004003924W WO2004086644A1 WO 2004086644 A1 WO2004086644 A1 WO 2004086644A1 JP 2004003924 W JP2004003924 W JP 2004003924W WO 2004086644 A1 WO2004086644 A1 WO 2004086644A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
bits
code generation
shift
spreading code
Prior art date
Application number
PCT/JP2004/003924
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyasu Sano
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2004086644A1 publication Critical patent/WO2004086644A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation

Definitions

  • the present invention relates to a spreading code generation method for generating a user-specific spreading code used in a wireless communication system employing Code Division Multiple Access (CDMA), and particularly to a spreading method capable of reducing inter-code interference.
  • CDMA Code Division Multiple Access
  • the present invention relates to a spread code generation method for generating a code. Background art.
  • the transmitting-side communication device spreads the transmission data sequence into a wideband signal using a spreading code assigned to the user and transmits the signal. Then, the communication device on the receiving side reproduces the transmission data sequence by performing correlation detection using the same spreading code as the code used for spreading on the transmitting side. In this case, since the received signals of other users have different spreading codes, the signal power is reduced on average. In this way, in the case of the CDMA, all users share the same frequency band and time. Communication is performed, and each user is identified by a uniquely assigned spreading code. '
  • the condition of the spreading code is that the autocorrelation peak at the synchronization timing is sharp, the autocorrelation has a small absolute value at other time shifts, and the crosscorrelation between different codes has a small absolute correlation at all timings. It is required to be a value.
  • a spreading code having excellent correlation such as an M sequence, which is one of the PN sequences, is used (see Non-Patent Document 1).
  • Non-patent document 1 1.
  • the present invention has been made in view of the above, and provides a spread code generation method for generating a spread code capable of suppressing intersymbol interference, and a communication method using the spread code. It is aimed at. Disclosure of the invention
  • the spread code generation method includes a spread code generation method for generating a user-specific spread code used in a wireless communication system employing a code division multiple access system, comprising: A fixed basic sequence with excellent characteristics is cyclically shifted over a single or multiple bits, and a copy of the last bit or multiple bits from the last in the shifted sequence is converted to the sequence of the shifted sequence. A code generation step to be added to the beginning, wherein the shifted sequence is used as a next basic sequence, and the code generation step is repeatedly executed a predetermined number of times to generate a user-specific spreading code. And
  • a copy of the last (single or multiple) bits of each sequence is added to the beginning of the basic sequence and the sequence after the cyclic shift, thereby providing a delayed wave (multipath). Good correlation characteristics are obtained even when is present. Also, by generating a spread code by cyclically shifting the basic sequence, deterioration due to intersymbol interference is suppressed.
  • FIG. 1 is a diagram showing a configuration of a spreading code generation device used in a wireless communication system according to the present invention
  • FIG. 2 is a diagram showing an example of a configuration of a basic sequence generation unit
  • FIG. FIG. 4 is a diagram illustrating a spreading code generation method according to Embodiment 1
  • FIG. 4 is a diagram illustrating a correlation characteristic when a base station transmits data to a user to which a first spreading code is assigned.
  • FIG. 5 is a diagram showing correlation characteristics when the base station transmits data to three users to which the first to third spreading codes are individually assigned
  • FIG. 6 shows a delay wave
  • FIG. 7 is a diagram illustrating a case where (multipath) exists, FIG.
  • FIG. 7 is a diagram illustrating a spread code generation method according to the second embodiment
  • FIG. 8 is a diagram illustrating a spread code generation method according to the third embodiment.
  • FIG. 9 shows the configuration of a wireless communication system according to a fourth embodiment of the present invention.
  • FIG. 10 is a diagram showing a slot format according to the fourth embodiment
  • FIG. 11 is a diagram showing a correlation sequence obtained by the mobile station of Ch # l after despreading.
  • FIG. 12 is a diagram illustrating a configuration of a wireless communication system according to a fifth embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a slot format of the fifth embodiment.
  • FIG. 14 is a diagram showing a state of power versus time when a received signal is spread with a first spreading code.
  • FIG. 15 is a diagram showing a configuration of a sixth embodiment of the wireless communication system according to the present invention.
  • FIG. 16 is a diagram showing a plurality of carriers for transmitting signals. BEST MODE FOR
  • FIG. 1 is a diagram showing a configuration of a spread code generation device used in a wireless communication system (CDMA) according to the present invention.
  • Basic sequence generator that generates the basic M sequence 1, a sequence phase shift unit 2 that shifts the M sequence phase by a predetermined bit, a partial sequence addition unit 3 that adds a predetermined partial sequence to the beginning or end of the cyclically shifted sequence, and controls the bit shift amount. It comprises a shift control section 4 and an additional control section 5 for determining the size of the above-mentioned subsequence.
  • the condition of the spreading code used in the CDMA is that the autocorrelation peak at the synchronization timing is sharp, the autocorrelation has a small absolute value at other time shifts, and the cross-correlation between different codes is the same as before. It is required that the absolute value be small at the timing of.
  • FIG. 2 is a diagram showing an example of the configuration of the basic sequence generation unit 1.
  • an M sequence having excellent autocorrelation characteristics is adopted as a basic sequence of a spreading code.
  • the spreading code is not limited to this, and for example, an orthogonal Go 1d code based on a Go 1d sequence may be used.
  • FIG. 3 is a diagram showing a spread code generating method according to the first embodiment.
  • the M sequence generated by the basic sequence generation unit 1 in FIG. 2 is “00001 0 0 1 1 0 1 0 1 1 1”.
  • the shift amount control by the shift control unit 4 will be described in units of 1 bit, and the size of the additional part determined by the addition control unit 5 will be described as 1 bit.
  • the subsequence adding section 3 copies the last one bit of the basic sequence under the control of the addition control section 5 using the M sequence shown in FIG.
  • the first spreading code (16 bits) is generated by adding it to the beginning of the sequence (see Fig. 3).
  • the shift process by the sequence phase shift unit 2 is not performed.
  • the sequence phase shift unit 2 performs a cyclic shift of .1 bits on the basic sequence under the control of the shift control unit 4. Then, under the control of the addition control unit 5, the subsequence sequence addition unit 3 copies the last one bit of the sequence after the cyclic shift, adds it to the beginning of this sequence, and adds it to the second spreading code ( 16 bits) (See Fig. 3).
  • sequence phase shift section 2 performs a one-bit cyclic shift on the basic sequence under the control of shift control section 4 in the same procedure as described above. Then, under the control of the subsequence addition section 31 addition control section 5, the last one bit of the cyclically shifted sequence is copied, and it is added to the beginning of this sequence, and the third spreading code (16 bits) is added. Generate (see Fig. 3).
  • FIG. 4 is a diagram illustrating correlation characteristics when, for example, a base station transmits data to a user to which a first spreading code is assigned.
  • FIG. 5 is a diagram showing a correlation characteristic when data is transmitted to three users to which base stations ⁇ first to third spreading codes are individually assigned. ) transmission data S 1 to each user; represents a correlation characteristic when the S 2, 3 3 "0" "0""0", (b) the transmission data S 1 to each user; S 2, 3 3 represents the correlation characteristic when "0""1""0".
  • the Hirokag code generation apparatus adds a copy of the end (plural) bits of each sequence to the beginning of the basic sequence and the sequence after cyclic shift in the spread code generation process. I decided that. As a result, good correlation characteristics can be obtained even when a delayed wave (multipath) exists (see FIG. 6). Also, a spreading code is generated by cyclically shifting the basic sequence. As a result, deterioration due to intersymbol interference can be suppressed.
  • the shift amount is controlled by the shift control unit 4 in units of 1 bit, but the present invention is not limited to this, and the shift amount may be shifted in units of 2 bits or more.
  • the size of the additional portion determined by the additional control unit 5 is 1 bit, but is not limited thereto, and may be 2 bits or more as long as it is shorter than the sequence length of the basic sequence and the sequence after cyclic shift.
  • the configuration of the spread code generation device is the same as that of the first embodiment described above, and thus the same reference numerals are given and the description thereof will be omitted.
  • the basic sequence generator 1 As in the first embodiment, the M-sequence generation circuit in FIG. 2 is used. In the present embodiment, only operations different from those of the first embodiment described above will be described.
  • FIG. 7 is a diagram illustrating a spread code generation method according to the second embodiment.
  • the spreading code generation apparatus copies the first bit of the basic sequence under the control of the subsequence addition unit 3 and the addition control unit 5 using the M sequence shown in FIG.
  • the first spreading code (16 bits) is added to the tail (see Fig. 7).
  • the shift process by the sequence phase shift unit 2 is not performed.
  • sequence phase shift unit 2 performs a one-bit cyclic shift on the basic sequence under the control of the shift control unit 4. Then, under the control of the subsequence sequence addition unit 3 and the control unit 5, the first bit of the sequence after the cyclic shift is copied and added to the end of this sequence, and the second spreading code (16 Bit) (see Figure 7). Finally, in the spreading code generation apparatus, sequence phase shift section 2 performs a one-bit cyclic shift on the basic sequence under the control of shift control section 4 in the same procedure as described above.
  • the subsequence addition unit 3 copies the first bit of the sequence after the cyclic shift, attaches it to the end of this sequence, and adds a third spreading code (16 bits) (see Fig. 7).
  • the spreading code generation apparatus adds a copy of the head (multiple) bits of each sequence to the end of the basic sequence and the sequence after the cyclic shift in the spreading code generation process. I decided. As a result, good correlation characteristics can be obtained even when a delayed wave (multipath) is present. In addition, a spreading code is generated by cyclically shifting the basic sequence. Thus, deterioration due to intersymbol interference can be suppressed.
  • FIG. 8 is a diagram illustrating a spread code generation method according to the third embodiment.
  • the subsequence sequence adding section 3 copies the first bit of the basic sequence under the control of the addition control section 5 using the M sequence shown in FIG. Add to the end. Furthermore, the last one bit of the basic sequence is copied and added to the beginning of the basic sequence to generate the first spreading code (17 bits) '(see Fig. 8).
  • the shift processing by the sequence phase shift section 2 is not performed.
  • the sequence phase shift unit 2 performs a one-bit cyclic shift on the basic sequence under the control of the shift control unit 4. Then, under the control of the partial sequence addition section 31 ′ addition control section 5, the first bit of the sequence after the cyclic shift is copied, and it is added to the end of this sequence. Furthermore, the last one bit of the sequence after the cyclic shift is copied and added to the beginning of this sequence to generate a second spreading code (17 bits) (see Fig. 8).
  • sequence phase shift section 2 performs a one-bit cyclic shift on the basic sequence under the control of shift control section 4 in the same procedure as described above. Then, under the control of the addition control unit 5, the subsequence addition unit 3 copies the first bit of the sequence after the cyclic shift and adds it to the end of this sequence. Furthermore, copy the last 1 bit of the sequence after cyclic shift and add it to the beginning of this sequence. Then, a third spreading code (17 bits) is generated (see FIG. 8).
  • the spreading code generation apparatus sets the start and end of the base sequence and the sequence after the cyclic shift to copy and start the last bit of each sequence, respectively. We decided to add a copy of the bit. As a result, good correlation characteristics can be obtained even when a delayed wave (multipath) exists.
  • spreading codes are generated by cyclically shifting the basic sequence. As a result, deterioration due to intersymbol interference can be suppressed.
  • the size of the additional portion determined by the additional control unit 5 is made equal (.1 bit) before and after, but is not limited to this, and may be larger than the sequence length of each sequence. If it is short, it can be 2 bits or more. :
  • FIG. 9 is a diagram showing the configuration of a wireless communication system according to a fourth embodiment of the present invention. Specifically, (a) shows the configuration of a communication device (base station) on the transmission side, and (b) Represents the configuration of the communication device (mobile station) on the receiving side.
  • the base station according to the present embodiment uses the first to N-th spreading codes generated by the methods of Embodiments 1 to 3 to transmit data S x (t), S 2 (t),. .., 11 1-N, and a multiplexing unit 12 for multiplexing the spread signals.
  • the spread code generation apparatuses according to Embodiments 1 to 3 described above may be located inside the base station or outside the base station.
  • the mobile station of the present embodiment includes a despreading unit 21 for despreading with the user-specific spreading code, a correlation sequence calculating unit 22 for correlating with a given reference signal, and a known sequence.
  • An in-phase addition unit 23 for in-phase addition a square value calculation unit 24 for calculating a power value from the in-phase addition result, and a channel estimation unit 25 for calculating a channel estimation value using the in-phase addition result.
  • a delay unit 26 for adding a predetermined delay to the spread signal, a sampling unit 27 for sampling the despread signal after the delay, and a phase compensation unit 2 for compensating the phase of the sampling signal based on the channel estimation value 8 and a data determination unit 29 for determining a signal after phase compensation.
  • the communication method according to the present embodiment will be described.
  • the number of mobile stations At the base station, the number of mobile stations
  • Each of the spreading units (111-11-111N) according to the first to Nth spreading codes generated by the method according to the first to third embodiments uses known sequences # 1 to #N, Transmission data S 1
  • the multiplexing unit 12 multiplexes the spread signal and transmits the multiplexed signal over the wireless transmission.
  • each despreading unit 21 despreads the known sequence portion of the received signal in symbol units using the first to Nth spreading codes unique to the user, and obtains a desired correlation sequence. Is extracted.
  • FIG. 10 is a diagram showing a slot format according to the fourth embodiment.
  • the first to Nth spreading codes are assigned to each user (mobile station) (channels Ch i to N), and known sequences # 1 to #N are assigned to some of the slots. Has been introduced.
  • this known sequence bits having an arbitrary code are arranged in the channel direction at the same symbol time.
  • the amount of phase shift of the spreading code increases as the channel number (1 to N) increases.
  • a unique correlation sequence corresponding to the shift amount of the spreading code is obtained. That is, when the code multiplexing number is N, an N-bit correlation sequence is output.
  • FIG. 7 is a diagram showing a correlation sequence obtained after despreading by the mobile station of Ch # 1 in the case of.
  • the mobile station of Ch # 1 obtains a correlation sequence of "010001 1"
  • the mobile station of Ch # 2 obtains a correlation sequence of "10001 10”.
  • other mobile stations can obtain a correlation sequence that is cyclically shifted by 1 bit with the increase in channel number.
  • the case where the phase shift amount between adjacent channels is in units of 1 bit is not limited to this, and the shift may be performed in units of 2 bits or more. Also, the shift may be performed at unequal bit intervals.
  • the correlation sequence calculation unit 22 calculates a correlation between the despread signal and a predetermined reference signal of the same symbol for each received symbol, and Establish a period.
  • the in-phase addition unit 23 increases the correlation power by performing in-phase addition on the correlation sequences output from the correlation sequence calculation unit 22 over the number of symbols.
  • channel estimation section 25 performs channel estimation using the in-phase addition result.
  • in-phase addition is performed for the number of symbols in the known sequence. By doing so, slot position detection processing and synchronization establishment processing are performed.
  • the square value calculating section 24 calculates a power value (correlation value) from the in-phase addition result, and outputs the value to the sampling section 27.
  • the delay unit 26 adds a time corresponding to the processing time of the correlation sequence calculation unit 22, the in-phase addition unit 23, and the square value calculation unit 24 to the despread signal of the despreading unit 21, Make adjustments.
  • the sampling section 27 samples the despread signal after the delay adjustment based on the correlation value of the output of the square value calculation section 24.
  • the phase compensator 28 compensates the phase of the sampled despread signal based on the channel estimation value output from the channel estimation unit 25.
  • the data determination section 29 determines the signal after the phase compensation and outputs a data series of “0” or “1”. -.
  • the mobile station despreads the known sequence portion of the received signal using the user-specific spreading code generated and assigned by the method of Embodiments 1 to 3,
  • the synchronization establishment process and the channel estimation process were performed using the results.
  • slot positions can be detected with high accuracy, and channel estimation with high accuracy can be realized.
  • phase shift amount of the spreading code increases as the channel number (1 to N) increases
  • present invention is not limited to this, and the channel number (1 to N) increases.
  • the phase shift amount of the spreading code may be reduced.
  • FIG. 12 is a diagram showing a configuration of a wireless communication system according to a fifth embodiment of the present invention. Specifically, (a) shows the configuration of a communication device (base station) on the transmitting side, and (b) Represents the configuration of the communication device (mobile station) on the receiving side.
  • the base station according to the present embodiment includes a multiplier 13 for multiplying the spread signal of Ch # 1 by a predetermined gain (G). It is configured to include a despreading unit 31 that despreads the received signal of Ch # 1 with a common spreading code.
  • Ch # 1 is a dedicated channel of a known sequence, and all users share the first spreading code.
  • G predetermined gain
  • each spreading section (1 1-2-11-N) according to the number of mobile stations to be accommodated is transmitted using the second to Nth spreading codes generated by the method of Embodiments 1 to 3.
  • S 2 (t) to S N (t) are spread for each symbol.
  • the multiplexing unit 12 multiplexes all the spread signals and transmits the multiplexed signals on the radio transmission path. .
  • each despreading section 31 despreads the received signal in symbol units using a first spreading code provided to each user, and extracts a desired correlation sequence. . '
  • FIG. 13 is a diagram showing a slot format according to the fifth embodiment.
  • a known sequence (power amplification) spread with a first spreading code is assigned to channel Ch # l, and a second channel for each user (mobile station) is assigned to channel # 2 to #N.
  • Transmission data S 2 (t) to S N (t) spread with the Nth spreading code are assigned.
  • FIG. 14 is a diagram showing a state of power versus time when a received signal is spread with a first spreading code.
  • the signal after despreading has higher power than the signal of each user. Therefore, the power of the signal after the in-phase addition becomes larger than the signal of each user, and the correlation power value obtained by the square value calculation becomes the largest, so that the slot position detection processing and the synchronization establishment processing are performed with high accuracy. It can be performed.
  • the delay unit 26 adds a time corresponding to the processing time of the in-phase adder 23 and the square value calculator 24 to the received signal to adjust the delay.
  • the despreading unit 21 despreads the delay-adjusted received signal using a user-specific spreading code to extract a desired signal.
  • the sampling section 27 samples the despread signal based on the relative value of the output of the square value calculation section 24.
  • one of the spreading codes generated by the methods of Embodiments 1 to 3 is used as a spreading code common to each user, and the base station uses a spreading code common to each user.
  • the known sequence after spreading the known sequence using a code and amplifying the signal power is multiplexed with the spread signal of each user and transmitted, and the mobile station uses a common spreading code for each user.
  • the received signal is despread, and the synchronization establishment process and channel estimation process are performed using the result. Thereby, the same effect as in Embodiment 13 can be obtained, the slot position can be detected with high accuracy, and highly accurate channel estimation can be realized.
  • FIG. 15 is a diagram showing a configuration of a wireless communication system according to a sixth embodiment of the present invention.
  • FIG. 16 is a diagram showing a plurality of carriers for transmitting signals.
  • the configuration of the communication device on the transmission side of Embodiment 4 or 5 (the transmission data S u (t) to S 1N (t) shown in FIG. A configuration including a spreading unit 11 1 to ⁇ that spreads with a spreading code, and a spreading unit 1 L that spreads transmission data S M1 (1 :) to S MN (t) with first to N M th spreading codes.
  • the frequency selection unit The signal of the desired carrier selected by 41 is demodulated using the communication device on the receiving side according to the fourth or fifth embodiment.
  • the communication capacity is increased without increasing inter-code interference.
  • information for selecting a carrier is notified using a specific channel of a specific carrier in order to determine which carrier carries a signal to the own mobile station.
  • the spreading code generation method, the spreading code generation device, and the communication method according to the present invention are useful for a wireless communication system employing CDMA, and are particularly useful for generating a user-specific spreading code. Suitable for technology.

Abstract

A spread code generation method generates a spread code unique to a user and used in a radio communication system employing the CDMA (code division multiple access). A sequence phase shift section (2) cyclically shifts, by control of a shift control section (4), a predetermined basic sequence having an excellent self-correlation characteristic over a single or plural bits. Furthermore, a partial sequence addition section (3) adds, by control of an addition control section (5), a copy of the last one bit or a plurality of bits from the end of the sequence after the shifting to the head of the sequence after the shifting. After this, the sequence after the shifting is used as a basic sequence and processing of the sequence phase shift section (2) and the partial sequence addition section (3) is repeatedly executed by a predetermined number of times, thereby generating a spread code unique to the user.

Description

明 細 書 拡散符号生成方法、 拡散符号生成装置および通信方法 技術分野  Description Spreading code generation method, spreading code generation device, and communication method
この発明は、 C DMA (Code Division Multiple Access) を採用する無線通信 システムで用いられるユーザ固有の拡散符号を生成するための拡散符号生成方法 に関するものであり、 特に、 符号間干渉を低減可能な拡散符号を生成するための 拡散符号生成方法に関するものである。 背景技術 .  The present invention relates to a spreading code generation method for generating a user-specific spreading code used in a wireless communication system employing Code Division Multiple Access (CDMA), and particularly to a spreading method capable of reducing inter-code interference. The present invention relates to a spread code generation method for generating a code. Background art.
以下、 通信方式として C DMAを採用する従来の.無線通信システムについて説 明する。 送信側の通信装置では、 送信データ系列をユーザ固有に割り当てられた 拡散符号で広帯域の信号に拡散して伝送する。そして、 受信側の通信装置では、 送信側で拡散に用いた符号と同一の拡散符号を用いて相関検出を行うことにより、 送信データ系列を再生する。 この場合、 他ユーザの受信信号は、 拡散符号が異な るので、 平均的に信号電力が低減される、 このように、 C DMAでは、 全てのュ 一ザが同じ周波数帯域, 時間を共有して通信を行い、 各ユーザの識別は、 固有に 割り当てられた拡散符号によって行う。 '  The following describes a conventional wireless communication system that employs CDMA as the communication method. The transmitting-side communication device spreads the transmission data sequence into a wideband signal using a spreading code assigned to the user and transmits the signal. Then, the communication device on the receiving side reproduces the transmission data sequence by performing correlation detection using the same spreading code as the code used for spreading on the transmitting side. In this case, since the received signals of other users have different spreading codes, the signal power is reduced on average. In this way, in the case of the CDMA, all users share the same frequency band and time. Communication is performed, and each user is identified by a uniquely assigned spreading code. '
上記拡散符号の条件としては、同期タイミングにおける自己相関ピークが鋭く、 他の時間シフトにおいては絶対値の小さな自己相関になり、 また、 異なる符合間 では相互相関が全てのタイミングにおいて絶対ィ直の小さな値になることが要求さ れる。 このような拡散符号としては、 P N系列の 1つである M系列等の相関性に 優れた拡散符号が用いられている (非特許文献 1参照) 。  The condition of the spreading code is that the autocorrelation peak at the synchronization timing is sharp, the autocorrelation has a small absolute value at other time shifts, and the crosscorrelation between different codes has a small absolute correlation at all timings. It is required to be a value. As such a spreading code, a spreading code having excellent correlation, such as an M sequence, which is one of the PN sequences, is used (see Non-Patent Document 1).
非特許文献 1 .  Non-patent document 1.
科学技術出版社 横山光雄著 「スペクトル拡散通信システム」 (6. 3) しかしながら、 上記従来の無線通信システムにおいては、 全てのユーザが同じ 周波数帯域,'時間を共有して通信を行っているため、 他の拡散符号で拡散された 信号により符号間干渉が生じる。 そして、 ユーザ固有に割り当てられた拡散符号 が互いに相関を及ぼさないようにすること、 すなわち、 完全に直交化することは 困難である、 という問題があった。 また、 符号間干渉は、 雑音と同様に、 信号に 悪影響を与えるので、 受信信号の品質が劣化する、 という問題があった。 特に、 . 衛星通信の場合には、送信電力が限られているので、符号間の干渉電力の増大は、 伝送品質の劣化につながりやすい。 Science and Technology Publisher Mitsuo Yokoyama "Spread Spectrum Communication System" (6.3) However, in the above-mentioned conventional wireless communication system, all users share the same frequency band and time, and perform communication, so that a signal spread with another spreading code causes intersymbol interference. Then, there is a problem that it is difficult to prevent the spreading codes assigned to the user from correlating with each other, that is, it is difficult to completely orthogonalize. In addition, the inter-symbol interference has a problem that the quality of the received signal is degraded because it affects the signal similarly to the noise. In particular, in the case of satellite communication, since the transmission power is limited, an increase in the interference power between codes tends to lead to a deterioration in transmission quality.
本発明は、 上記に鑑みてなされたものであって、 符号間干渉を抑えることが可 能な拡散符号を生成するための拡散符号生成方法、 および当該拡散符号を利用し た通信方法を提供することを目的としている。 発明の開示  The present invention has been made in view of the above, and provides a spread code generation method for generating a spread code capable of suppressing intersymbol interference, and a communication method using the spread code. It is aimed at. Disclosure of the invention
-本発明にかかる拡散符号生成方法にあっては、 符号分割多重接続方式を採用す る無線通信システムで用いられるユーザ固有の拡散符号を生成するための拡散符 号生成方法であって、 自己相関特性にすぐれた ^定の基本系列を単一または複数 ビットにわたつて巡回シフトし、 当該シフト後の系列における最後尾の 1ビット または最後尾からの複数ビットのコピーを、 前記シフト後の系列の先頭に付加す る符号生成ステップ、 を含み、 前記シフト後の系列を次の基本系列として、 前記 符号生成ステップを所定回数にわたって操り返し実行することによって、 ユーザ 固有の拡散符号を生成することを特徴とする。  -The spread code generation method according to the present invention includes a spread code generation method for generating a user-specific spread code used in a wireless communication system employing a code division multiple access system, comprising: A fixed basic sequence with excellent characteristics is cyclically shifted over a single or multiple bits, and a copy of the last bit or multiple bits from the last in the shifted sequence is converted to the sequence of the shifted sequence. A code generation step to be added to the beginning, wherein the shifted sequence is used as a next basic sequence, and the code generation step is repeatedly executed a predetermined number of times to generate a user-specific spreading code. And
この発明によれば、 拡散符号の生成処理において、 基本系列および巡回シフト 後の系列の 頭に各系列の末尾 (単一または複数) ビットのコピーを付加するこ とにより、 遅延波 (マルチパス) が存在する場合であっても、 良好な相関特性を 得る。 また、 基本系列を巡回シフトして拡散符号を生成することにより、 符号間 干渉による劣化を抑える。 図面の簡単な説明 According to the present invention, in the process of generating a spreading code, a copy of the last (single or multiple) bits of each sequence is added to the beginning of the basic sequence and the sequence after the cyclic shift, thereby providing a delayed wave (multipath). Good correlation characteristics are obtained even when is present. Also, by generating a spread code by cyclically shifting the basic sequence, deterioration due to intersymbol interference is suppressed. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明にかかる無線通信システムで用いられる拡散符号生成装置の 構成を示す図であり、 第 2図は、 基本系列生成部の一構成例を示す図であり、 第 3図は、 実施の形態 1の拡散符号生成方法を示す図であり、 第 4図は、 基地局が 第 1の拡散符号が割り当てられたユーザに対してデータを送信した場合の相関特 性を示す図であり、 第 5図は、 基地局が第 1〜第 3の拡散符号が個別に割り当て られた 3ユーザに対してデータを送信した場合の相関特性を示す図であり、 第 6 図は、 遅延波 (マルチパス) が存在する場合を示す図であり、 第 7図は、 実施の 形態 2の拡散符号生成方法を示す図であり、 第 8図は、 実施の形態 3の拡散符号 生成方法を示す図で り、 第 9図は、 本発明にかかる無線通信システムの実施の 形態 4の構成を示す図であり、 第 1 0図は、 実施の形態 4のスロットフォーマツ トを示す図であり、 第 1 1図は、 C h # lの移動局が逆拡散後に得られる相関系 列を示す図であり、 第 1 2図は、 本発明にかかる無線通信システムの実施の形態 5の構成を示す図であり、 第 1 3図は、 実施の形態 5のスロットフォーマットを 示す図であり、 第 1 4図は、 受信信号を第 1の拡散符号で拡散した場合の電力対 時間の様子を示す図であり、 第 1 5図は、 本発明にかかる無線通信システムの実 施の形態 6の構成を示す図であり、 第- 1 6図は、 信号を伝送するための複数のキ ャリアを示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a configuration of a spreading code generation device used in a wireless communication system according to the present invention, FIG. 2 is a diagram showing an example of a configuration of a basic sequence generation unit, and FIG. FIG. 4 is a diagram illustrating a spreading code generation method according to Embodiment 1, and FIG. 4 is a diagram illustrating a correlation characteristic when a base station transmits data to a user to which a first spreading code is assigned. FIG. 5 is a diagram showing correlation characteristics when the base station transmits data to three users to which the first to third spreading codes are individually assigned, and FIG. 6 shows a delay wave FIG. 7 is a diagram illustrating a case where (multipath) exists, FIG. 7 is a diagram illustrating a spread code generation method according to the second embodiment, and FIG. 8 is a diagram illustrating a spread code generation method according to the third embodiment. FIG. 9 shows the configuration of a wireless communication system according to a fourth embodiment of the present invention. FIG. 10 is a diagram showing a slot format according to the fourth embodiment, and FIG. 11 is a diagram showing a correlation sequence obtained by the mobile station of Ch # l after despreading. FIG. 12 is a diagram illustrating a configuration of a wireless communication system according to a fifth embodiment of the present invention. FIG. 13 is a diagram illustrating a slot format of the fifth embodiment. FIG. 14 is a diagram showing a state of power versus time when a received signal is spread with a first spreading code. FIG. 15 is a diagram showing a configuration of a sixth embodiment of the wireless communication system according to the present invention. FIG. 16 is a diagram showing a plurality of carriers for transmitting signals. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発 にかかる拡散符号生成方法、 拡散符号生成装置、 および本発明 にかかる拡散符号生成方法 (または装置) で生成された拡散符号を利用した通信 方法の実施の形態を図面に基づいて詳細に説明する。 なお、 この実施の形態によ りこの発明が限定されるものではない。  Hereinafter, embodiments of a spread code generation method, a spread code generation device, and a communication method using a spread code generated by the spread code generation method (or device) according to the present invention will be described with reference to the drawings. This will be described in detail. The present invention is not limited by the embodiment.
実施の形態 1 . Embodiment 1
第 1図は、 本発明にかかる無線通信システム (C DMA) で用いられる拡散符 号生成装置の構成を示す図である。 基本となる M系列を生成する基本系列生成部 1と、 M系列 位相を所定ビットシフトする系列位相シフト部 2と、 巡回シフト 後の系列の先頭または最後尾に所定の部分系列を付加する部分系列付加部 3と、 上記ビットシフト量を制御するシフト制御部 4と、 上記分系列の大きさを決定す る付加制御部 5から構成される。 C DMAで用いる拡散符号の条件としては、 従 来同様、 同期タイミングにおける自己相関ピークが鋭く、 他の時間シフトにおい ては絶対値の小さな自己相関になり、 また、 異なる符合間では相互相関が全ての タイミングにおいて絶対値の小さな値になることが要求される。 FIG. 1 is a diagram showing a configuration of a spread code generation device used in a wireless communication system (CDMA) according to the present invention. Basic sequence generator that generates the basic M sequence 1, a sequence phase shift unit 2 that shifts the M sequence phase by a predetermined bit, a partial sequence addition unit 3 that adds a predetermined partial sequence to the beginning or end of the cyclically shifted sequence, and controls the bit shift amount. It comprises a shift control section 4 and an additional control section 5 for determining the size of the above-mentioned subsequence. As before, the condition of the spreading code used in the CDMA is that the autocorrelation peak at the synchronization timing is sharp, the autocorrelation has a small absolute value at other time shifts, and the cross-correlation between different codes is the same as before. It is required that the absolute value be small at the timing of.
また、 第 2図は、 上記基本系列生成部 1の一構成例を示す図である。 本実施の 形態では、 拡散符号の基本系列として、 自己相関特性にすぐれた M系列を採用す る。 なお、 拡散符号については、 これに限らず、 たとえば、 G o 1 d系列による 直交 G o 1 d符 等を用いることとしてもよい。  FIG. 2 is a diagram showing an example of the configuration of the basic sequence generation unit 1. In the present embodiment, an M sequence having excellent autocorrelation characteristics is adopted as a basic sequence of a spreading code. The spreading code is not limited to this, and for example, an orthogonal Go 1d code based on a Go 1d sequence may be used.
本実施の形態では、 たとえば、 データ送信側の通信装置である基地局が、 3ュ 一ザ (端末) に対してデータを送信する場合を想定して、 上記拡散符号生成装置 1 3つの拡散符号を生成する場合について説明する。, 第 3図は、 実施の形態 1 の拡散符号生成方法を示す図である。 なお、 第 2図の基本系列生成部 1で生成さ れる M系列は、 " 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 "となる。また、説明の便宜上、 シフト制御部 4によるシフト量の制御を 1ビット単位とし、 付加制御部 5により 決定する付加部分の大きさを 1ビットとして説明する。  In the present embodiment, for example, assuming that a base station, which is a communication device on the data transmitting side, transmits data to three users (terminals), the spreading code generator 1 Will be described. FIG. 3 is a diagram showing a spread code generating method according to the first embodiment. Note that the M sequence generated by the basic sequence generation unit 1 in FIG. 2 is “00001 0 0 1 1 0 1 0 1 1 1 1”. Further, for convenience of explanation, the shift amount control by the shift control unit 4 will be described in units of 1 bit, and the size of the additional part determined by the addition control unit 5 will be described as 1 bit.
まず、 拡散符号生成装置では、 上記第 2図による M系列を基本系列として、 部 分系列付加部 3が、 付加制御部 5の制御により、 基本系列の末尾 1ビットをコピ 一し、 それを基本系列の先頭に付加して、 第 1の拡散符号 (1 6ビット) を生成 'する (第 3図参照) 。 ここでは、 シフト制御部 4の制御により、 系列位相シフト 部 2によるシフト処理は行わない。  First, in the spreading code generator, the subsequence adding section 3 copies the last one bit of the basic sequence under the control of the addition control section 5 using the M sequence shown in FIG. The first spreading code (16 bits) is generated by adding it to the beginning of the sequence (see Fig. 3). Here, under the control of the shift control unit 4, the shift process by the sequence phase shift unit 2 is not performed.
つぎに、 拡散符'号生成装置では、 系列位相シフト部 2が、 シフト制御部 4の制 御により、 上記基本系列に対して.1ビットの巡回シフトを行う。 そして、 部分系 列付加部 3が、 付加制御部 5の制御により、 巡回シフト後の系列の末尾 1ビット をコピーし、 それをこの系列の先頭に付カ卩して、 第 2の拡散符号 ( 1 6ビット) を生成する (第 3図参照) 。 Next, in the spreading code generation apparatus, the sequence phase shift unit 2 performs a cyclic shift of .1 bits on the basic sequence under the control of the shift control unit 4. Then, under the control of the addition control unit 5, the subsequence sequence addition unit 3 copies the last one bit of the sequence after the cyclic shift, adds it to the beginning of this sequence, and adds it to the second spreading code ( 16 bits) (See Fig. 3).
最後に、拡散符号生成装置では、上記と同様の手順で、系列位相シフト部 2が、 シフト制御部 4の制御により、 上記基本系列に対して 1ビットの巡回シフトを行 う。 そして、 部分系列付加部 31 付加制御部 5の制御により、 巡回シフト後の 系列の末尾 1ビットをコピーし、 それをこの系列の先頭に付加して、 第 3の拡散 符号 (1 6ビット) を生成する (第 3図参照) 。  Finally, in the spreading code generation device, sequence phase shift section 2 performs a one-bit cyclic shift on the basic sequence under the control of shift control section 4 in the same procedure as described above. Then, under the control of the subsequence addition section 31 addition control section 5, the last one bit of the cyclically shifted sequence is copied, and it is added to the beginning of this sequence, and the third spreading code (16 bits) is added. Generate (see Fig. 3).
第 4図は、 たとえば、 基地局が、 第 1の拡散符号が割り当てられたユーザに対 してデータを送信した場合の相関特性を示す図である。 また、 第 5図は、 基地局 ヽ 第 1〜第 3の拡散符号が個別に割り当てられた 3ユーザに対してデータを送 信した場合の相関特性を示す図であり、 詳細には、 (a ) は各ユーザへの送信デ ータ S 1; S 2, 33が" 0 "" 0 "" 0 "の場合の相関特性を表し、 (b ) は各ユーザへの 送信データ S 1; S2, 33が" 0 "" 1 "" 0 "の場合の相関特性を表す。 FIG. 4 is a diagram illustrating correlation characteristics when, for example, a base station transmits data to a user to which a first spreading code is assigned. FIG. 5 is a diagram showing a correlation characteristic when data is transmitted to three users to which base stations ヽ first to third spreading codes are individually assigned. ) transmission data S 1 to each user; represents a correlation characteristic when the S 2, 3 3 "0" "0""0", (b) the transmission data S 1 to each user; S 2, 3 3 represents the correlation characteristic when "0""1""0".
このように、 本実施の形態においては、 拡舉符号生成装置が、 拡散符号の生成 処理において、'基本系列および巡回シフト後の系列の先頭に各系列の末尾 (複数 ) ビットのコピーを付加することとした。 これにより、'遅延波 (マルチパス) が 存在する場合 (第 6図参照) であっても、 良好な相関特性を得ることができる。 また、 基本系列を巡回シフトして拡散符号を生成することとした。 これにより、 符号間干渉による劣化を抑えることができる。  As described above, in the present embodiment, the Hirokag code generation apparatus adds a copy of the end (plural) bits of each sequence to the beginning of the basic sequence and the sequence after cyclic shift in the spread code generation process. I decided that. As a result, good correlation characteristics can be obtained even when a delayed wave (multipath) exists (see FIG. 6). Also, a spreading code is generated by cyclically shifting the basic sequence. As a result, deterioration due to intersymbol interference can be suppressed.
なお、 本実施の形態においては、 説明の便宜上、 シフト制御部 4によるシフト 量の制御を 1ビット単位としたが、 これに限らず、 2ビット以上単位にシフトす ることとしてもよい。 また、 付加制御部 5により決定する付加部分の大きさを 1 ビットとしたが、 これに限らず、 基本系列および巡回シフト後の系列の系列長よ りも短ければ 2ビット以上としてもよい。  In the present embodiment, for convenience of explanation, the shift amount is controlled by the shift control unit 4 in units of 1 bit, but the present invention is not limited to this, and the shift amount may be shifted in units of 2 bits or more. In addition, the size of the additional portion determined by the additional control unit 5 is 1 bit, but is not limited thereto, and may be 2 bits or more as long as it is shorter than the sequence length of the basic sequence and the sequence after cyclic shift.
実施の形態 2 . Embodiment 2
つぎに、 実施の形態 2の拡散符号生成方法を説明する。 なお、 拡散符号生成装 置の構成については、 先に説明した実施の形態 1の構成と同様であるため、 同一 の符号を付してその説明を省略する。 また、 基本系列生成部 1についても、 実施 の形態 1と同様、 第 2図の M系列発生回路を用いる。 なお、 本実施の形態では、 先に説明した実施の形態 1と異なる動作についてのみ説明する。 Next, a spread code generating method according to the second embodiment will be described. Note that the configuration of the spread code generation device is the same as that of the first embodiment described above, and thus the same reference numerals are given and the description thereof will be omitted. Also, for the basic sequence generator 1, As in the first embodiment, the M-sequence generation circuit in FIG. 2 is used. In the present embodiment, only operations different from those of the first embodiment described above will be described.
本実施の形態にぉレ、ても、 データ送信側の通信装置である基地局が、 3ユーザ (端末) に対してデータを送信する場合を想定して、 上記拡散符号生成装置が、 3つの拡散符号を生成する場合について説明する。 第 7図は、 実施の形態 2の拡 散符号生成方法を示す図である。  According to the present embodiment, assuming that a base station, which is a communication device on the data transmission side, transmits data to three users (terminals), A case where a spread code is generated will be described. FIG. 7 is a diagram illustrating a spread code generation method according to the second embodiment.
まず、 拡散符号生成装置では、 第 2図による M系列を基本系列として、 部分系 列付加部 3力 付加制御部 5の制御により、基本系列の先頭 1ビットをコピーし、 それを基本系列の最後尾に付加して、 第 1の拡散符号 (1 6ビット) を生成する (第 7図参照) 。 ここでは、 シフト制御部 4の制御により、 系列位相シフト部 2 によるシフト処理は行おない。  First, the spreading code generation apparatus copies the first bit of the basic sequence under the control of the subsequence addition unit 3 and the addition control unit 5 using the M sequence shown in FIG. The first spreading code (16 bits) is added to the tail (see Fig. 7). Here, under the control of the shift control unit 4, the shift process by the sequence phase shift unit 2 is not performed.
つぎに、 拡散符号生成装置では、 系列位相シフト部 2が、 シフト制御部 4の制 御により、 上記基本系列に対して 1ビットの巡回シフトを行う.。 そして、 部分系 列付加部 3力 付 制御部 5の制御により、 巡回シフト後の系列の先頭 1ビット をコピーし、 それをこの系列の最後尾に付加して、 第 2の拡散符号 (1 6ビット ) を生成する (第 7図参照) 。 . . 最後に、拡散符号生成装置では、上記と同様の手順で、系列位相シフト部 2が、 シフト制御部 4の制御により、 上記基本系列に対して 1ビットの巡回シフトを行 う。 そして、 部分系列付加部 3が、 付加制御部 5の制御により、 巡回シフト後の 系列の先頭 1ビットをコピーし、 それをこの系列の最後尾に付カ卩して、 第 3の拡 散符号 (1 6ビット) を生成する (第 7図参照) 。  Next, in the spreading code generation apparatus, the sequence phase shift unit 2 performs a one-bit cyclic shift on the basic sequence under the control of the shift control unit 4. Then, under the control of the subsequence sequence addition unit 3 and the control unit 5, the first bit of the sequence after the cyclic shift is copied and added to the end of this sequence, and the second spreading code (16 Bit) (see Figure 7). Finally, in the spreading code generation apparatus, sequence phase shift section 2 performs a one-bit cyclic shift on the basic sequence under the control of shift control section 4 in the same procedure as described above. Then, under the control of the addition control unit 5, the subsequence addition unit 3 copies the first bit of the sequence after the cyclic shift, attaches it to the end of this sequence, and adds a third spreading code (16 bits) (see Fig. 7).
このように、 本実施の形態においては、 拡散符号生成装置が、 拡散符号の生成 処理において、 基本系列および巡回シフト後の系列の最後尾に各系列の先頭 (複 数) ビットのコピーを付加することとした。 これにより、 遅延波 (マルチパス) · が存在する場合であっても、 良好な相関特性を得ることができる。 また、 基本系 列を巡回シフトして拡散符号を生成する.こととした。 これにより、 符号間干渉に よる劣化を抑えることができる。 実施の形態 3 . As described above, in the present embodiment, the spreading code generation apparatus adds a copy of the head (multiple) bits of each sequence to the end of the basic sequence and the sequence after the cyclic shift in the spreading code generation process. I decided. As a result, good correlation characteristics can be obtained even when a delayed wave (multipath) is present. In addition, a spreading code is generated by cyclically shifting the basic sequence. Thus, deterioration due to intersymbol interference can be suppressed. Embodiment 3.
つぎに、 実施の形態 3の拡散符号生成方法を説明する。 なお、 拡散符号生成装 置の構成については、 先に説明した実施の形態 1の構成と同様であるため、 同一 の符号を付してその説明を省略する。 また、 基本系列生成部 1についても、 実施 の形態 1と同様、 第 図の M系列発生回路を用いる。 なお、 本実施の形態では、 先に説明した実施の形態 1または 2と異なる動作についてのみ説明する。  Next, a spreading code generation method according to the third embodiment will be described. Note that the configuration of the spread code generation device is the same as that of the first embodiment described above, and thus the same reference numerals are given and the description thereof will be omitted. Also, basic sequence generation section 1 uses the M-sequence generation circuit of FIG. In the present embodiment, only operations different from those of the above-described first or second embodiment will be described.
本実施の形態においても、 データ送信側の通信装置である基地局が、 3ユーザ (端末) に対してデータを送信する場合を想定して、 上記拡散符号生成装置が、 3つの拡散符号 生成する場合について説明する。 第 8図は、 実施の形態 3の拡 散符号生成方法を示す図である。  Also in the present embodiment, on the assumption that a base station, which is a communication device on the data transmitting side, transmits data to three users (terminals), the spreading code generation device generates three spreading codes. The case will be described. FIG. 8 is a diagram illustrating a spread code generation method according to the third embodiment.
まず、 拡散符号生成装置では、 第 2図による M系列を基本系列として、 部分系 列付加部 3が、付加制御部 5の制御により、基本系列の先頭 1ビットをコピーし、 それを基本系列の最後尾に付加する。 さらに、 基本系列の最後尾 1ビットをコピ 一し、 それを基本系列の先頭に付カ卩して第 1の拡散符号 (1 7ビット) を生成す る '(第 8図参照) 。 ここでは、 シフト制御部 4'の制御により、 系列位相シフト部 2によるシフト処理は行わない。  First, in the spreading code generator, the subsequence sequence adding section 3 copies the first bit of the basic sequence under the control of the addition control section 5 using the M sequence shown in FIG. Add to the end. Furthermore, the last one bit of the basic sequence is copied and added to the beginning of the basic sequence to generate the first spreading code (17 bits) '(see Fig. 8). Here, under the control of the shift control section 4 ', the shift processing by the sequence phase shift section 2 is not performed.
つぎに、 拡散符号生成装置では、 系列位相シフト部 2が、 シフト制御部 4の制 御により、 上記基本系列に対して 1ビットの巡回シフトを行う。 そして、 部分系 列付加部 31 '付加制御部 5の制御により、 巡回シフト後の系列の先頭 1ビット をコピーし、 それをこの系列の最後尾に付加する。 さらに、 巡回シフト後の系列 の最後尾 1ビットをコピーし、 それをこの系列の先頭に付加して、 第 2の拡散符 号 (1 7ビット) を生成する (第 8図参照) 。  Next, in the spreading code generation device, the sequence phase shift unit 2 performs a one-bit cyclic shift on the basic sequence under the control of the shift control unit 4. Then, under the control of the partial sequence addition section 31 ′ addition control section 5, the first bit of the sequence after the cyclic shift is copied, and it is added to the end of this sequence. Furthermore, the last one bit of the sequence after the cyclic shift is copied and added to the beginning of this sequence to generate a second spreading code (17 bits) (see Fig. 8).
最後に、拡散符号生成装置では、上記と同様の手順で、系列位相シフト部 2が、 シフト制御部 4の制御により、 上記基本系列に対して 1ビットの巡回シフトを行 う。 そして、 部分系列付加部 3が、 付加制御部 5の制御により、 巡回シフト後の' 系列の先頭 1ビットをコピーし、 それをこの系列の最後尾に付加する。 さらに、 巡回シフト後の系列の最後尾 1ビットをコピーし、 それをこの系列の先頭に付加 して、 第 3の拡散符号 (1 7ビット) を生成する (第 8図参照) 。 Finally, in the spreading code generation device, sequence phase shift section 2 performs a one-bit cyclic shift on the basic sequence under the control of shift control section 4 in the same procedure as described above. Then, under the control of the addition control unit 5, the subsequence addition unit 3 copies the first bit of the sequence after the cyclic shift and adds it to the end of this sequence. Furthermore, copy the last 1 bit of the sequence after cyclic shift and add it to the beginning of this sequence. Then, a third spreading code (17 bits) is generated (see FIG. 8).
このように、 本実施の形態においては、 拡散符号生成装置が、 拡散符号の生成 処理において、 基本系列および巡回シフト後の系列の先頭と最後尾に、 それぞれ 各系列の最後尾ビットのコピーと先頭ビットのコピーを付加することとした。 こ れにより、 遅延波 (マルチパス) が存在する場合であっても、 良好な相関特性を 得ることができる。 また、 基本系列を巡回シフトして拡散符号を生成することと した。 これにより、 符号間干渉による劣化を抑えることができる。  As described above, in the present embodiment, in the spreading code generation process, the spreading code generation apparatus sets the start and end of the base sequence and the sequence after the cyclic shift to copy and start the last bit of each sequence, respectively. We decided to add a copy of the bit. As a result, good correlation characteristics can be obtained even when a delayed wave (multipath) exists. In addition, spreading codes are generated by cyclically shifting the basic sequence. As a result, deterioration due to intersymbol interference can be suppressed.
なお、 本実施の形態においては、 説明の便宜上、 付加制御部 5により決定する 付加部分の大きさを前後で均等 (.1ビット) にしたが、 これに限らず、 各系列の 系列長よりも短ければ 2ビット以上としてもよレ、。:  In this embodiment, for convenience of explanation, the size of the additional portion determined by the additional control unit 5 is made equal (.1 bit) before and after, but is not limited to this, and may be larger than the sequence length of each sequence. If it is short, it can be 2 bits or more. :
実施の形態 4 . Embodiment 4.
第 9図は、 本発明にかかる無線通信システムの実施の形態 4の構成を示す図で あり、 詳細には、 (a ) は送信側の通信装置 (基地局) の構成を表し、 (b ) は 受信側の通信装置 (移動局) の構成を表す。 本実施の形態の基地局は、 実施の形 態 1〜 3の方法により生成された第 1〜第 Nの拡散符号で、 それぞれ送信データ S x ( t ) , S 2 ( t ) , …, ( t ) を拡散する拡散部 1 1— 1, 1 1— 2, …, 1 1一 Nと、 拡散後の信号を多重化する多重化部 1 2と、 を備える。 なお、 先に 説明した実施の形態 1〜 3の拡散符号生成装置は、 基地局内または基地局外のど ちらにあってもよい。 また、 本実施の形態の移動局は、 ユーザ固有の上記拡散符 咅で逆拡散する逆拡散部 2 1と、 予め与えられている参照信号と相関をとる相関 系列算出部 2 2と、 既知系列を同相加算する同相加算部 2 3と、 同相加算結果か ら電力値を算出する 2乗値算出部 2 4と、 同相加算結果を用いてチャネル推定値 を算出するチャネル推定部 2 5と、 逆拡散後信号に所定の遅延を付加する遅延器 2 6と、 遅延付加後の逆拡散後信号をサンプリングするサンプリング部 2 7と、 チャネル推定値に基づいてサンプリング信号の位相を補償する位相補償部 2 8と、 位相補償後の信号を判定するデータ判定部 2 9と、 を備える。 FIG. 9 is a diagram showing the configuration of a wireless communication system according to a fourth embodiment of the present invention. Specifically, (a) shows the configuration of a communication device (base station) on the transmission side, and (b) Represents the configuration of the communication device (mobile station) on the receiving side. The base station according to the present embodiment uses the first to N-th spreading codes generated by the methods of Embodiments 1 to 3 to transmit data S x (t), S 2 (t),. .., 11 1-N, and a multiplexing unit 12 for multiplexing the spread signals. Note that the spread code generation apparatuses according to Embodiments 1 to 3 described above may be located inside the base station or outside the base station. Also, the mobile station of the present embodiment includes a despreading unit 21 for despreading with the user-specific spreading code, a correlation sequence calculating unit 22 for correlating with a given reference signal, and a known sequence. An in-phase addition unit 23 for in-phase addition, a square value calculation unit 24 for calculating a power value from the in-phase addition result, and a channel estimation unit 25 for calculating a channel estimation value using the in-phase addition result. A delay unit 26 for adding a predetermined delay to the spread signal, a sampling unit 27 for sampling the despread signal after the delay, and a phase compensation unit 2 for compensating the phase of the sampling signal based on the channel estimation value 8 and a data determination unit 29 for determining a signal after phase compensation.
ここで、 本実施の形態の通信方法を説明する。 基地局では、 収容する移動局数 に応じた各拡散部 ( 11一 1 ~ 1 1一 N) 、 実施の形態 1〜 3の方法により生 成された第 1〜第 Nの拡散符号を用いて、 既知系列 # 1〜#N, 送信データ S1 Here, the communication method according to the present embodiment will be described. At the base station, the number of mobile stations Each of the spreading units (111-11-111N) according to the first to Nth spreading codes generated by the method according to the first to third embodiments uses known sequences # 1 to #N, Transmission data S 1
(t) 〜SN (t) をシンボル毎に拡散する。 そして、 多重化部 12力 拡散後の 信号を多重化して無線伝送^上に送信する。 (t) to S N (t) are spread for each symbol. Then, the multiplexing unit 12 multiplexes the spread signal and transmits the multiplexed signal over the wireless transmission.
一方、 各移動局では、 まず、 それぞれの逆拡散部 21が、 ユーザ固有の上記第 1〜第 Nの拡散符号を用いて受信信号の既知系列部分をシンボル単位に逆拡散し、 所望の相関系列を抽出する。  On the other hand, in each mobile station, first, each despreading unit 21 despreads the known sequence portion of the received signal in symbol units using the first to Nth spreading codes unique to the user, and obtains a desired correlation sequence. Is extracted.
第 10図.は、 実施の形態 4のスロットフォーマットを示す図である。 本実施の 形態では、 ユーザ (移動局) 毎 (チャネル Ch i ~N) に、 上記第 1〜第 Nの拡 散符号が割り当てられ、 さらに、 スロット中の一部に既知系列 # 1〜#Nが揷入 されている。 この既知系列は、 同一のシンボル時間においてチャネル方向に任意 の符号を有するビットが配置されている。 また、 チャネル方向に注目した場合、 拡散符号の位相シフト量は、チャネル番号( 1〜N)の増加に応じて大きくなる。 たとえば、 各移動局が同一タイミングで固有の拡散符号を用いて逆拡散を行った 場合は、 拡散符号のシフト量に応じた固有の相関系列が得られる。 すなわち、 符 号多重数が Nの場合には、 Nビットの相関系列が出力される。  FIG. 10 is a diagram showing a slot format according to the fourth embodiment. In the present embodiment, the first to Nth spreading codes are assigned to each user (mobile station) (channels Ch i to N), and known sequences # 1 to #N are assigned to some of the slots. Has been introduced. In this known sequence, bits having an arbitrary code are arranged in the channel direction at the same symbol time. When focusing on the channel direction, the amount of phase shift of the spreading code increases as the channel number (1 to N) increases. For example, when each mobile station performs despreading using the unique spreading code at the same timing, a unique correlation sequence corresponding to the shift amount of the spreading code is obtained. That is, when the code multiplexing number is N, an N-bit correlation sequence is output.
第 1 1図は、 既知系列 (t) 〜S7 (t) が"。", "1", "0", "0", "0", " 1", "1" (N=7) の場合において、 Ch # 1の移動局が逆拡散後に得られる相 関系列を示す図である。 このように、 Ch# 1の移動局は、 "010001 1"ど いう相関系列が得られ、 図示はしていないが、 Ch # 2の移動局は、 "10001 10" という相関系列が得られ、 さらに、 その他の移動局は、 チャネル番号の増 カロとともに 1ビット巡回シフトした相関系列が得られる。 なお、 本実施の形態で は、 隣り合うチャネル間の位相シフト量が 1ビット単位の場合について記載して いるが、これに限らず、 2ビット以上単位でシフトすることとしてもよレ、。また、 不均等なビット間隔でシフトすることとしてもよい。 The first 1 figure known sequence (t) ~S 7 (t) is ".", "1", "0", "0", "0", "1", "1" (N = 7) FIG. 7 is a diagram showing a correlation sequence obtained after despreading by the mobile station of Ch # 1 in the case of. In this way, the mobile station of Ch # 1 obtains a correlation sequence of "010001 1", and although not shown, the mobile station of Ch # 2 obtains a correlation sequence of "10001 10". In addition, other mobile stations can obtain a correlation sequence that is cyclically shifted by 1 bit with the increase in channel number. In the present embodiment, the case where the phase shift amount between adjacent channels is in units of 1 bit is not limited to this, and the shift may be performed in units of 2 bits or more. Also, the shift may be performed at unequal bit intervals.
つぎに、 各移動局では、 相関系列算出部 22が、 受け取ったシンボル毎に逆拡 散後信号と予め規定された同一シンボルの参照信号との相関をとり、 シンボル同 期を確立する。'つぎに、 同相加算部 2 3が、 相関系列算出部 2 2が出力する相関 系列をシンボル数分にわたつて同相加算することによって、 相関電力を増大させ る。そして、チャネル推定部 2 5が、同相加算結果を用いてチャネル推定を行う。 このように、 本実施の形態では、 1シンボル内で符号多重数分の電力を加算して S/N (Signal to Noise ratio) を改善しながら、既知系列のシンボル数分にわ たって同相加算を行うことにより、 スロット位置の検出処理および同期確立処理 を行う。 Next, in each mobile station, the correlation sequence calculation unit 22 calculates a correlation between the despread signal and a predetermined reference signal of the same symbol for each received symbol, and Establish a period. 'Next, the in-phase addition unit 23 increases the correlation power by performing in-phase addition on the correlation sequences output from the correlation sequence calculation unit 22 over the number of symbols. Then, channel estimation section 25 performs channel estimation using the in-phase addition result. Thus, in the present embodiment, while adding power for the number of code multiplexes in one symbol to improve S / N (Signal to Noise ratio), in-phase addition is performed for the number of symbols in the known sequence. By doing so, slot position detection processing and synchronization establishment processing are performed.
また、 2乗値算出部 2 4では、 上記同相加算結果から電力値 (相関値) を算出 し、 その値をサンプリング部 2 7へ出力する。 遅延器 2 6では、 相関系列算出部 2 2, 同相加算部 2 3 , 2乗値算出部 2 4の処理時間に相当する時間を、 逆拡散 部 2 1の逆拡散後信号に付加し、 遅延調整を行う。 サンプリング部 2 7では、 2 乗値算出部 2 4出力の相関値に基づいて、 遅延調整後の逆拡散後信号をサンプリ ングする。 位相補償部 2 8では、 チヤネノレ推定部 2 5出力のチャネル推定値に基 づいて、 サンプリングされた逆拡散後信号の位相捕償を行う。 そして、 データ判 定部 2 9では、 位相補償後の信号を判定し、 " 0 "または" 1 "のデータ系列を出力 する。 - .  Further, the square value calculating section 24 calculates a power value (correlation value) from the in-phase addition result, and outputs the value to the sampling section 27. The delay unit 26 adds a time corresponding to the processing time of the correlation sequence calculation unit 22, the in-phase addition unit 23, and the square value calculation unit 24 to the despread signal of the despreading unit 21, Make adjustments. The sampling section 27 samples the despread signal after the delay adjustment based on the correlation value of the output of the square value calculation section 24. The phase compensator 28 compensates the phase of the sampled despread signal based on the channel estimation value output from the channel estimation unit 25. Then, the data determination section 29 determines the signal after the phase compensation and outputs a data series of “0” or “1”. -.
このように、 本'実施の形態においては、 移動局が、 実施の形態 1 〜 3の方法に より生成され割り当てられたユーザ固有の拡散符号を用いて受信信号の既知系列 部分を逆拡散し、 その結果を用いて同期確立処理およびチャネル推定処理を行う こととした。 これにより、 実施の形態 1 ~ 3と同様の効果が得られるとともに、 高精度にスロット位置を検出することができ、 さらに、 高精度なチャネル推定を も実現できる。 "  As described above, in the present embodiment, the mobile station despreads the known sequence portion of the received signal using the user-specific spreading code generated and assigned by the method of Embodiments 1 to 3, The synchronization establishment process and the channel estimation process were performed using the results. Thus, the same effects as in Embodiments 1 to 3 can be obtained, slot positions can be detected with high accuracy, and channel estimation with high accuracy can be realized. "
なお、 本実施の形態では、 拡散符号の位相シフト量がチャネル番号 (1 〜N) の増加に応じて大きくなる場合について記載したが、 これに限らず、 チャネル番 号 (1 〜N) の増加に応じて拡散符号の位相シフト量が小さくなるようにしても よい。  Although the case has been described with the present embodiment where the phase shift amount of the spreading code increases as the channel number (1 to N) increases, the present invention is not limited to this, and the channel number (1 to N) increases. , The phase shift amount of the spreading code may be reduced.
実施の形態 5 . - 第 12図は、 本発明にかかる無線通信システムの実施の形態 5の構成を示す図 であり、 詳細には、 (a) は送信側の通信装置 (基地局) の構成を表し、 (b) は受信側の通信装置 (移動局) の構成を表す。 本実施の形態の基地局は、 Ch# 1の拡散信号に対して予め定められたゲイン (G) を乗算するための乗算器 13 を含む構成とし、 本実施の形態の移動局は、 全ユーザ共通の拡散符号で C h # 1 の受信信号を逆拡散する逆拡散部 31を含む構成とする。 ここでは、 C h # 1を 既知系列の専用チャネルとし、 全ユーザが第 1の拡散符号を共有する。 なお。 本 実施の形態の基地局および移動局のその他の構成ついては、 先に説明した実施の 形態 4と基本的に同様であるため、 同一の符号を付してその説明を省略する。本 実施の形態では、先に説明した実施の形態 4と異なる.動作についてのみ説明する。 ここで、本実施の形態の通信方法を説明する。基地局では、拡散部 1 1—.1が、 実施の形態 1〜 3の方法により生成された第 1の拡散符号を用いて、既知系列 S1 (t) をシンボル毎に拡散する。 そして、 乗算器 13が、 拡散後の既知系列に対 して所定量のゲインを乗算する。 また、 収容する移動局数に応じた各拡散部 (1 1-2-11-N) 力 実施の形態 1〜 3の方法により生成された第 2〜第 Nの 拡散符号を用いて、 送信データ S2 (t) 〜SN (t) をシンボル毎に拡散する。 そして、 多重化部 12が、 すべての拡散後の信号を多重化して無線伝送路上に送 信する。 . Embodiment 5- FIG. 12 is a diagram showing a configuration of a wireless communication system according to a fifth embodiment of the present invention. Specifically, (a) shows the configuration of a communication device (base station) on the transmitting side, and (b) Represents the configuration of the communication device (mobile station) on the receiving side. The base station according to the present embodiment includes a multiplier 13 for multiplying the spread signal of Ch # 1 by a predetermined gain (G). It is configured to include a despreading unit 31 that despreads the received signal of Ch # 1 with a common spreading code. Here, Ch # 1 is a dedicated channel of a known sequence, and all users share the first spreading code. In addition. Other configurations of the base station and the mobile station according to the present embodiment are basically the same as those of the fourth embodiment described above, and thus the same reference numerals are given and the description thereof will be omitted. The present embodiment is different from Embodiment 4 described above. Only the operation will be described. Here, a communication method according to the present embodiment will be described. In the base station, spreading section 11... 1 spreads known sequence S 1 (t) for each symbol using the first spreading code generated by the method according to the first to third embodiments. Then, the multiplier 13 multiplies the spread known sequence by a predetermined amount of gain. Also, each spreading section (1 1-2-11-N) according to the number of mobile stations to be accommodated is transmitted using the second to Nth spreading codes generated by the method of Embodiments 1 to 3. S 2 (t) to S N (t) are spread for each symbol. Then, the multiplexing unit 12 multiplexes all the spread signals and transmits the multiplexed signals on the radio transmission path. .
一方、 各移動局では、 まず、 それぞれの逆拡散部 31が、 各ユーザ共通に与え られている第 1の拡散符号を用いて受信信号をシンボル単位に逆拡散し、 所望の 相関系列を抽出する。 '  On the other hand, in each mobile station, first, each despreading section 31 despreads the received signal in symbol units using a first spreading code provided to each user, and extracts a desired correlation sequence. . '
第 13図は、 実施の形態 5のスロットフォーマットを示す図である。 本実施の 形態では、 チャネル Ch# lに、 第 1の拡散符号で拡散された既知系列 (電力増 幅) が割り当てられ、 チヤネノレ Ch# 2〜#Nに、 ユーザ (移動局) 毎の第 2〜 第 Nの拡散符号で拡散された送信データ S2 (t) ~SN (t) が割り当てられて いる。 第 14図は、 受信信^を第 1の拡散符号で拡散した場合の電力対時間の様 子を示す図である。 このように、 受信信号を第 1の拡散符号で拡散すると、 抽出 される逆拡散後の信号は、各ユーザの信号よりも電力が大きくなる。したがって、 同相加算後の信号の電力が各ュ一ザの信号に比べて大きくなり、 2乗値算出によ る相関電力値が最も大きくなるため、 精度よくスロット位置の検出処理および同 期確立処理を行うことができる。 FIG. 13 is a diagram showing a slot format according to the fifth embodiment. In the present embodiment, a known sequence (power amplification) spread with a first spreading code is assigned to channel Ch # l, and a second channel for each user (mobile station) is assigned to channel # 2 to #N. Transmission data S 2 (t) to S N (t) spread with the Nth spreading code are assigned. FIG. 14 is a diagram showing a state of power versus time when a received signal is spread with a first spreading code. Thus, when the received signal is spread by the first spreading code, The signal after despreading has higher power than the signal of each user. Therefore, the power of the signal after the in-phase addition becomes larger than the signal of each user, and the correlation power value obtained by the square value calculation becomes the largest, so that the slot position detection processing and the synchronization establishment processing are performed with high accuracy. It can be performed.
また、 遅延器 2 6では、 同相加算部 2 3 , 2乗値算出部 2 4の処理時間に相当 する時間を、 受信信号に付加し、 遅延調整を行う。 逆拡散部 2 1では、 ユーザ固 有の拡散符号を用いて遅延調整後の受信信号を逆拡散し、所望の信号を抽出する。 サンプリング部 2 7では、 2乗値算出部 2 4出力の相閑値に基づいて、 逆拡散後 信号をサンプリングする。  In addition, the delay unit 26 adds a time corresponding to the processing time of the in-phase adder 23 and the square value calculator 24 to the received signal to adjust the delay. The despreading unit 21 despreads the delay-adjusted received signal using a user-specific spreading code to extract a desired signal. The sampling section 27 samples the despread signal based on the relative value of the output of the square value calculation section 24.
このように、 本実施の形態においては、 実施の形態 1 〜 3の方法により生成さ れた拡散符号のいずれか 1つを各ユーザ共通の拡散符号とし、 基地局が、 各ユー ザ共通の拡散符号を用いて既知系列を拡散し、 信号電力を増幅した拡散後の既知 系列を、 拡散後の各ユーザの信号とともに多重化して送信し、 移動局が、 各ユー ザ共通の拡散符号を用いて受信信号を逆拡散し、 その結果を用いて同期確立処理 およびチャネル推定処理を行うこととした。 これにより、 実施の形態 1 3と同 様の効果が得られるとともに、 高精度にスロット位置を検出することができ、 さ らに、 高精度なチャネル推定をも実現できる。  As described above, in the present embodiment, one of the spreading codes generated by the methods of Embodiments 1 to 3 is used as a spreading code common to each user, and the base station uses a spreading code common to each user. The known sequence after spreading the known sequence using a code and amplifying the signal power is multiplexed with the spread signal of each user and transmitted, and the mobile station uses a common spreading code for each user. The received signal is despread, and the synchronization establishment process and channel estimation process are performed using the result. Thereby, the same effect as in Embodiment 13 can be obtained, the slot position can be detected with high accuracy, and highly accurate channel estimation can be realized.
実施の形態 6 . Embodiment 6
第 1 5図は、 本発明にかかる無線通信システムの実施の形態 6の構成を示す図 である。 また、第 1 6図は、 信号を伝送するための複数のキャリアを示す図であ る。 本実施の形態では、 送信側の通信装置として、 実施の形態 4または 5の送信 側の通信装置の構成 (図示の、 送信データ S u ( t ) 〜 S 1N ( t ) を第 1〜第 の拡散符号で拡散する拡散部 1 1 1〜^^を備えた構成, 送信データ SM1 ( 1:) 〜 SMN ( t ) を第 1〜第 NMの拡散符号で拡散する拡散部 1 L— 1 〜NMを備え た構成、 に相当) をキヤリア数に応じて複数個備え、 周波数変換部 1 4一 1 〜M 1 各多重化部 1 2の出力信号の周波数を変換し、 多重化部 1 5が、 周波数変換 後の信号を多重化して出力する。 そして、 受信側の通信装置では、 周波数選択部 4 1が選択した所望のキャリアの信号を、 実施の形態 4または 5の受信側の通信 装置を用いて復調する。 FIG. 15 is a diagram showing a configuration of a wireless communication system according to a sixth embodiment of the present invention. FIG. 16 is a diagram showing a plurality of carriers for transmitting signals. In the present embodiment, as the communication device on the transmission side, the configuration of the communication device on the transmission side of Embodiment 4 or 5 (the transmission data S u (t) to S 1N (t) shown in FIG. A configuration including a spreading unit 11 1 to ^^ that spreads with a spreading code, and a spreading unit 1 L that spreads transmission data S M1 (1 :) to S MN (t) with first to N M th spreading codes. 1 configuration with to N M, comprises a plurality accordance considerable) to carrier number, it converts the frequency of the frequency converter 1 4 one 1 ~M 1 each multiplexer 1 and second output signals, multiplexer 15 multiplexes the frequency-converted signal and outputs the multiplexed signal. In the communication device on the receiving side, the frequency selection unit The signal of the desired carrier selected by 41 is demodulated using the communication device on the receiving side according to the fourth or fifth embodiment.
このように、 本実施の形態では、 複数のキャリアを利用することによって、 符 号間干渉を増加させることなく通信容量を増加させる。なお、本実施の形態では、 自移動局への信号がどのキャリアにのせられているかを判断するために、 特定の キヤリァの特定のチャネルを用いて、キヤリァを選択するための情報を通知する。 産業上の利用可能性  As described above, in the present embodiment, by using a plurality of carriers, the communication capacity is increased without increasing inter-code interference. In this embodiment, information for selecting a carrier is notified using a specific channel of a specific carrier in order to determine which carrier carries a signal to the own mobile station. Industrial applicability
以上のように、 本発明にかかる拡散符号生成方法、 拡散符号生成装置および通 信方法は、 C DMAを採用する無線通信システムに有用であり、 特に、 ュ ザ固 有の拡散符号を生成するための技術として適している。  As described above, the spreading code generation method, the spreading code generation device, and the communication method according to the present invention are useful for a wireless communication system employing CDMA, and are particularly useful for generating a user-specific spreading code. Suitable for technology.

Claims

請 求 の 範 囲 The scope of the claims
1 . 符号分割多重接続方式を採用する無線通信シズテムで用いられるユーザ固 有の拡散符号を生成するための拡散符号生成方法において、 1. In a spreading code generation method for generating a user-specific spreading code used in a wireless communication system employing a code division multiple access method,
自己相関特性にすぐれた所定の基本系列を単一または複数ビットにわたつて巡 回シフトし、 当該シフト後の系列における最後尾の 1ビットまたは最後尾からの 複数ビットのコピーを、前記シフト後の系列の先頭に付加する符号生成ステップ、 ' を含み、  A predetermined basic sequence having excellent autocorrelation characteristics is cyclically shifted over one or more bits, and a copy of the last one bit or a plurality of bits from the last in the shifted sequence is copied. A code generation step to add to the beginning of the sequence, '
前記シフト後の系列を の基本系列として、 前記符号生成ステップを所定回数 にわたつて繰り返し実行することによって、 ユーザ固有の拡散符号を生成するこ とを特徴とする拡散符号生成方法。 .  A spreading code generation method, characterized in that a user-specific spreading code is generated by repeatedly executing the code generation step a predetermined number of times using the shifted sequence as a basic sequence of. .
'2. 符号分割多重接続方式を採用する無線通信システムで用いられるユーザ固 有の拡散符号を生成するための拡散符号生成方法において、 '2. In a spreading code generation method for generating a user-specific spreading code used in a wireless communication system employing a code division multiple access scheme,
自己相関特性にすぐれた所定の基本系列を単一または複数ビットにわたって巡 回シフトし、 当該シフト後の系列における先頭の 1ビットまたは先頭からの複数 ビットのコピーを、 前記シフト'後の系列の最後尾に付加する符号生成ステップ、 を含み、 ,  A predetermined basic sequence having excellent auto-correlation characteristics is cyclically shifted over one or more bits, and a copy of one or more bits from the beginning of the shifted sequence is copied to the end of the sequence after the shift. A code generation step to be added to the tail,
前記シフト後の系列を次の基本系列として、 前記符号生成ステップを所定回数 にわたつて繰り返し実行することによって、 ユーザ固有の拡散符号を生成するこ とを特徴とする拡散符号生成方法。  A spreading code generation method, characterized in that a user-specific spreading code is generated by repeatedly executing the code generation step a predetermined number of times using the shifted sequence as a next basic sequence.
3 . 符号分割多重接続方式を採用する無線通信システムで用いられるユーザ固 有の拡散符号を生成するための拡散符号生成方法において、 3. In a spreading code generation method for generating a user-specific spreading code used in a wireless communication system employing a code division multiple access scheme,
自己相関特性にすぐれた所定の基本系列を単一または複数ビットにわたつて巡 回シフトし、 当該シフト後の系列における最後尾の 1ビットまたは最後尾からの 複数ビットのコピーを、 前記シフト後の系列の先頭に付カ卩し、 さらに、 前記シフ ト後の系列における先頭の 1ビットまたは先頭からの複数ビットのコピーを、 前 記シフト後の系列の最後尾に付加する符号生成ステップ、 を含み、 A predetermined basic sequence having excellent autocorrelation characteristics is cyclically shifted over one or more bits, and a copy of the last one bit or a plurality of bits from the last in the shifted sequence is copied. At the beginning of the series, A code generation step of adding a first bit or a copy of a plurality of bits from the beginning of the sequence after the shift to the end of the sequence after the shift,
.前記シフト後の系列を次の基本系列として、 前記符号生成ステップを所定回数 にわたつて繰り返し実行することによって、 ユーザ固有の拡散符号を生成するこ とを特徴とする拡散符号生成方法。  A spreading code generation method, characterized in that a user-specific spreading code is generated by repeatedly executing the code generation step a predetermined number of times using the shifted sequence as a next basic sequence.
4. 符号分割多重接続方式を採用する無線通信システムで用いられるユーザ固 有の拡散符号を生成する拡散符号生成装置において、 4. In a spread code generation device that generates a user-specific spread code used in a wireless communication system employing a code division multiple access scheme,
自己相関特性にすぐれた所定の基本系列を単一または複数ビットにわたつて巡 回シフトする系列位相シフト手段と、  Sequence phase shift means for cyclically shifting a predetermined basic sequence having excellent autocorrelation characteristics over single or multiple bits,
前記シフト後の系列の先頭または最後尾に前記シフト後の系列の一部 (部分系 列) を付加する部分系列付加手段と、  Subsequence adding means for adding a part (subsequence) of the shifted sequence to the beginning or end of the shifted sequence;
を備え、  With
前記シフト後の系列を基本系列として、 前記系列位相シフト手段および部分系 列付加手段における処理を所定回数にわたつて操り返し実行することによって、 ' ユーザ固有の拡散符号を生成することを特徴とする拡散符号生成装置。  Using the sequence after the shift as a basic sequence, the processing in the sequence phase shift means and the partial sequence addition means is repeatedly executed a predetermined number of times to generate a user-specific spreading code. Spreading code generator.
5 . 前記部分系列付加手段は、 前記シラト後の系列における最後尾の 1ビット または最後尾からの複数ビットのコピー (前記部分系列) を、 前記シフト後の系 列の先頭に付加することを特徴とする請求の範囲第 4項に記載の拡散符号生成装 5. The subsequence adding means adds a last one bit or a copy of a plurality of bits from the last (the subsequence) in the sequence after the silat to the beginning of the sequence after the shift. Spreading code generator according to claim 4
6 . 前記部分系列付加手段は、 前記シフト後の系列における先頭の 1ビットま たは先頭からの複数ビットのコピー (前記部分系列) を、 前記シフト後の系列の 最後尾に付加することを特徴とする請求の範囲第 4項に記載の拡散符号生成装置。 6. The subsequence adding means adds a first bit or a copy of a plurality of bits from the head (the subsequence) in the shifted sequence to the end of the shifted sequence. 5. The spread code generation device according to claim 4, wherein:
7 . 前記部分系列付加手段は、 当該シフト後の系列における最後尾の 1ビット または最後尾からの複数ビットのコピー (前記部分系列) を、 前記シフト後の系 列の先頭に付カ卩し、 さらに、 前記シフト後の系列における先頭の 1ビットまたは 先頭からの複数ビットのコピー (前記部分系列) を、 前記シフト後の系列の最後 尾に付加することを特徴とする請求の範囲第 4項に記載の拡散符号生成装置。 7. The subsequence adding means performs the last one bit in the shifted sequence. Alternatively, a copy of a plurality of bits from the end (the subsequence) is added to the beginning of the sequence after the shift, and a copy of the first one bit or a plurality of bits from the start in the sequence after the shift 5. The spread code generation device according to claim 4, wherein (the subsequence) is added to the end of the sequence after the shift.
8. 符号分割多重接続方式を採用する無線通信システムにおける基地局および 移動局間の通信方法において、 8. In a communication method between a base station and a mobile station in a wireless communication system employing a code division multiple access method,
自己相関特性にすぐれた所定の基本系列を単一または複数ビットにわたつて巡 回シフトし、 前記シフト後の系列の先頭または最後尾に前記シフト後の系列の一 部 (部分系列) を付加する符号生成処理、 を実行して第 1の拡散符号を生成し、 その後、 前記シフト後の系列を次の一基本系列として、 前記符号生成処理を所定回 数にわたって操り返し実行することによって、 ユーザ (移動局) 固有の第 2〜第 ' N (任意の整数) の拡散符号を生成する拡散符号生成ステップと、  A predetermined basic sequence having excellent autocorrelation characteristics is cyclically shifted over one or more bits, and a part (subsequence) of the shifted sequence is added to the beginning or end of the shifted sequence. A code generation process is performed to generate a first spread code. Thereafter, the code generation process is repeated and performed a predetermined number of times using the shifted sequence as a next basic sequence, thereby obtaining a user ( Mobile station) a spreading code generating step for generating unique second to 'N'th (arbitrary integer) spreading codes;
前記基地局が、 前記第 1〜第 Nの拡散符号を用いて、 収容する移動局数に応じ た第 1〜第 Nの既知系列および第 1〜第 Nの送信データをシンボル毎に拡散し、 当該拡散信号を多重化して送信する送信処理ステップと、  The base station uses the first to N-th spreading codes to spread the first to N-th known sequences and the first to N-th transmission data according to the number of accommodated mobile stations for each symbol, A transmission processing step of multiplexing and transmitting the spread signal,
前記各移動局が、 ユーザ固有に割り当てられた前記第 1〜第 Nの拡散符号を用 いて、 受信信号の既知系列部分をシンポル単位に逆拡散して所望の既知系列を抽 出し、 この抽出結果を用いて同期確立処理およびチャネル推定処理を行う受信処 理ステップと、  Each of the mobile stations extracts the desired known sequence by despreading the known sequence portion of the received signal in symbol units using the first to N-th spreading codes assigned to the user. A reception processing step of performing synchronization establishment processing and channel estimation processing using
を含むことを特徴とする通信方法。  A communication method comprising:
9 . 前記基地局では、 複数のキヤリァで前記送信処理ステップを実行し、 前記各移動局では、 利用するキャリアを選択後、 前記受信処理ステップを実行 することを特徴とする請求の範囲第 8項に記載の通信方法。 9. The base station according to claim 8, wherein the transmission processing step is executed by a plurality of carriers, and each of the mobile stations executes the reception processing step after selecting a carrier to be used. Communication method described in.
1 0 . 前記拡散符号生成ステップでは、 前記シフト後の系列における最後尾の 1ビットまたは最後尾からの複数ビットのコピー . (前記部分系列) を、 前記シフ ト後の系列の先頭に付加することを特徴とする請求の範囲第 8項に記載の通信方 法。 1 1 . 前記拡散符号生成ステップでは、 前記シフト後の系列における先頭の 1 ビットまたは先頭からの複数ビットのコピー (前記部分系列) を、 前記シフト ¾ の系列の最後尾に'付加することを特徴とする請求の範囲第 8項に記載の通信方法。 10. In the spreading code generation step, the last code in the shifted sequence is 9. The communication method according to claim 8, wherein one bit or a copy of a plurality of bits from the end is added to the beginning of the sequence after the shift. 11. The spreading code generation step is characterized in that a copy of the first one bit or a plurality of bits from the top (the subsequence) in the sequence after the shift (the subsequence) is added to the end of the sequence of the shift '. 9. The communication method according to claim 8, wherein:
1 2. 前記拡散符号生成ステップでは、 当該シフト後の系列における最後尾の 1ビットまたは最後尾からの複数ビットのコピー,(前記部分系列) を、 前記シフ ト後の系列の先頭に付カ卩し、 さらに、 前記シフト後の系列における先頭の 1ビッ トまたは先頭からの複数ビットのコピー (前記部分系列) を、 前記シフト後の系 列の最後尾に付加することを特徴とする請求の範囲第 8項に記載の通信方法。 1 3 . 符号分割多重接続方式を'採用する無線通信システムにおける基地局およ び移動局間の通信方法において、 1 2. In the spreading code generation step, a copy of one bit at the end or a plurality of bits from the end of the sequence after the shift (the subsequence) is added to the beginning of the sequence after the shift. And further adding a first bit or a copy of a plurality of bits from the head (the subsequence) in the sequence after the shift to the end of the sequence after the shift. Communication method according to clause 8. 13 3. In a communication method between a base station and a mobile station in a wireless communication system adopting the code division multiple access method,
自己相関特性にすぐれた所定の基本系列を単一または複数ビットにわたつて巡 回シフトし、 前記シフト後の系列の先頭または最後尾に前記シフト後の系列の一 部 (部分系列) を付加する符号生成処理、 を実行して第 1の拡散符号を生成し、 その後、 前記シフト後の系列を次の基本系列として、 前記符号生成処理を所定回 数にわたって操り返し実行することによって、 チヤネノレ数に応じた第 2〜第 N ( 任意の整数) の拡散符号を生成する拡散符号生成ステップと、  A predetermined basic sequence having excellent autocorrelation characteristics is cyclically shifted over one or more bits, and a part (subsequence) of the shifted sequence is added to the beginning or end of the shifted sequence. A code generation process is performed to generate a first spread code, and thereafter, the shifted sequence is used as a next basic sequence, and the code generation process is repeatedly performed a predetermined number of times to execute the code generation process. A second to Nth (arbitrary integer) spreading code generating step,
前記基地局が、 予め規定された専用チャネル用の特定の拡散符号を用いて既知 系列をシンボル毎に拡散し、 さらに、 残りの拡散符号を用いて、 収容する移動局 数に応じた第 1〜第 (N— 1 ) の送信データをシンボル毎に拡散し、 前記すベて の拡散信号を多重化して送信する送信処理ステップと、  The base station spreads a known sequence for each symbol using a specific spreading code for a dedicated channel defined in advance, and further uses the remaining spreading codes to generate first to fourth mobile stations corresponding to the number of mobile stations to be accommodated. A transmission processing step of spreading the (N-1) th transmission data for each symbol, multiplexing and transmitting all the spread signals,
•前記各移動局が、 前記専用チャネル用の前記特定の拡散符号を用いて、 受信信 号をシンボル単位に逆拡散して所望の既知系列を抽出し、 この抽出結果を用いて 同期確立処理およびチャネル推定処理を行う'受信処理ステツプと、 Each mobile station uses the specific spreading code for the dedicated channel to receive A reception process step of extracting a desired known sequence by despreading the signal in symbol units and performing synchronization establishment processing and channel estimation processing using the extraction result;
を含むことを特徴とする通信方法。  A communication method comprising:
5 1 4 . 前記基地局では、 複数のキャリアで前記送信処理ステップを実行し、 前記各移動局では、 利用するキャリアを選択後、 前記受信処理ステップを実行 することを特徴とする請求の範囲第 1 3項に記載の通信方法。 5 14. The base station, wherein the transmission processing step is performed on a plurality of carriers, and each of the mobile stations, after selecting a carrier to be used, executes the reception processing step. 13 Communication method described in 3.
1 5 . 前記拡散符号生成ステップでは、 前記シフト後の系列における最後尾の 10. 1ビットまたは最後尾からの複数ビ トのコピー (前記部分系列) を、 前記シフ ト後の系列の先頭に付加することを特徴とする請求の範囲第 1 3項に記載の通信 方法。 ' 15. In the spreading code generation step, the last 10.1 bits of the sequence after the shift or a copy of a plurality of bits from the last (the partial sequence) is added to the beginning of the sequence after the shift. The communication method according to claim 13, wherein the communication method is performed. '
1 6 . 前記拡散符号生成ステップでは、 前記シフト後の系列における先頭の 1 15 ビットまたは先頭からの複数ビットのコピー (前記部分系列) を、 前記シフト後 の系列の最後尾に付加することを特徴とする請求の範囲第 1 3項に記載の通信方 法。 16. In the spreading code generation step, a copy of the first 115 bits or a plurality of bits from the head (the subsequence) in the shifted sequence is added to the end of the shifted sequence. The communication method according to claim 13, wherein:
1 7 . 前記拡散符号生成ステップでは、 当該シフト後の系列における最後尾の 20 1ビットまたは最後尾からの複数ビットのコピー (前記部分系列) を、 前記シフ ト後の系列の先頭に付カ卩し、 さらに、 前記シフト後の系列における先頭の 1ビッ トまたは先頭からの複数ビットのコピー (前記部分系列) を、 前記シフト後の系 列の最後尾に付加することを特徴とする請求の範囲第 1 3項に記載の通信方法。 17. In the spread code generation step, a copy of the last 201 bits or a plurality of bits from the end (the subsequence) of the sequence after the shift is added to the beginning of the sequence after the shift. And further adding a first bit or a copy of a plurality of bits from the head (the subsequence) in the sequence after the shift to the end of the sequence after the shift. Communication method according to paragraph 13.
PCT/JP2004/003924 2003-03-27 2004-03-23 Spread code generation method, spread code generation device, and communication method WO2004086644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-088928 2003-03-27
JP2003088928A JP2004297593A (en) 2003-03-27 2003-03-27 Spreading code generation method, spreading code generator, and communication method

Publications (1)

Publication Number Publication Date
WO2004086644A1 true WO2004086644A1 (en) 2004-10-07

Family

ID=33095130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003924 WO2004086644A1 (en) 2003-03-27 2004-03-23 Spread code generation method, spread code generation device, and communication method

Country Status (2)

Country Link
JP (1) JP2004297593A (en)
WO (1) WO2004086644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484982B2 (en) 2007-06-15 2016-11-01 Optis Wireless Technology, Llc Base station apparatus and radio communication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001392A2 (en) * 2009-07-03 2011-01-06 Koninklijke Philips Electronics N.V. Method and system for asynchronous lamp identification
JP6324054B2 (en) * 2013-12-18 2018-05-16 三菱電機株式会社 Receiver

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307951A (en) * 1996-03-15 1997-11-28 Matsushita Electric Ind Co Ltd Spread spectrum communication equipment
JPH10145839A (en) * 1996-11-14 1998-05-29 N T T Ido Tsushinmo Kk Pilot channel transmitting method for cdma mobile communication system
JP2000354021A (en) * 1999-06-10 2000-12-19 Communication Research Laboratory Mpt Code division multiplex transmission system
JP2001077744A (en) * 1999-09-03 2001-03-23 Fujitsu Ltd Synchronous detection device, transmission and reception device, and interference removal device of mobile communication system
JP2001308823A (en) * 2000-04-20 2001-11-02 Communication Research Laboratory Code division multiple parallel radio communication system, transmitter, receiver, transmission method, receiving method and information recording medium
JP2001339364A (en) * 2000-05-25 2001-12-07 Communication Research Laboratory Cyclic extended code combination generator, transmitter, receiver, communication system, transmission method, reception method, and information recording medium
JP2003338775A (en) * 2002-05-20 2003-11-28 Communication Research Laboratory Code division multiplex transmission system, transmitter, receiver, transmitting method, receiving method, code generator, code generating method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307951A (en) * 1996-03-15 1997-11-28 Matsushita Electric Ind Co Ltd Spread spectrum communication equipment
JPH10145839A (en) * 1996-11-14 1998-05-29 N T T Ido Tsushinmo Kk Pilot channel transmitting method for cdma mobile communication system
JP2000354021A (en) * 1999-06-10 2000-12-19 Communication Research Laboratory Mpt Code division multiplex transmission system
JP2001077744A (en) * 1999-09-03 2001-03-23 Fujitsu Ltd Synchronous detection device, transmission and reception device, and interference removal device of mobile communication system
JP2001308823A (en) * 2000-04-20 2001-11-02 Communication Research Laboratory Code division multiple parallel radio communication system, transmitter, receiver, transmission method, receiving method and information recording medium
JP2001339364A (en) * 2000-05-25 2001-12-07 Communication Research Laboratory Cyclic extended code combination generator, transmitter, receiver, communication system, transmission method, reception method, and information recording medium
JP2003338775A (en) * 2002-05-20 2003-11-28 Communication Research Laboratory Code division multiplex transmission system, transmitter, receiver, transmitting method, receiving method, code generator, code generating method and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARADA HIROSHI, FUJISE MASAYUKI: "Junkai kakucho junkai shift-gata fugo o mocjiita fugo bunkatsu taju denso hoshiki no koksokuka ni kansuru-kento", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU, vol. 100, no. 81, 26 May 2000 (2000-05-26), XP002982535 *
HARADA HIROSHI: "Spectrum kakusan o mocjiita kosoku multi media musen tsushin ni taisuru shorai tenbo to gijutsu kadai-tsushin soken ni okeru kenkyu kaihatsu jirei ni motoduite-", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU, vol. 98, no. 452, 10 December 1998 (1998-12-10), XP002982534 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484982B2 (en) 2007-06-15 2016-11-01 Optis Wireless Technology, Llc Base station apparatus and radio communication method
CN103546228B (en) * 2007-06-15 2017-08-08 光学无线技术有限责任公司 Radio communication device, response signal diffusion method and integrated circuit
US10200083B2 (en) 2007-06-15 2019-02-05 Optis Wireless Technology, Llc Base station apparatus and radio communication method
US10958303B2 (en) 2007-06-15 2021-03-23 Optis Wireless Technology, Llc Spreading a response signal using a first set of orthogonal sequences and a reference signal using a second set of shorter orthogonal sequences
RU2763957C2 (en) * 2007-06-15 2022-01-11 Оптис Вайрлесс Текнолоджи, ЛЛК Wireless communication device and method for extending response signal

Also Published As

Publication number Publication date
JP2004297593A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
RU2447578C1 (en) Method and apparatus for processing primary and secondary synchronisation signals for wireless communication
JP3483991B2 (en) Spread code generator for code division multiple access communication, code division multiple access communication system, and spread code generation method for code division multiple access communication
JP4230111B2 (en) Communication method and apparatus based on orthogonal Hadamard reference sequence with selected correlation characteristics
KR100726050B1 (en) Method and apparatus for efficient synchronization in spread spectrum communications
US7957361B2 (en) Transmitter, transmitting method, receiver, and receiving method for MC-CDMA communication system
AU740833B2 (en) Pilot symbols
RU2462818C1 (en) Method to send pilot signal, basic station, mobile station and cellular communication system, where such method is applied
JP4813496B2 (en) Transmitter, OFDM communication system, and transmission method
US20070041348A1 (en) Transmitting/receiving apparatus and method for cell search in a broadband wireless communications system
JP2001230703A (en) Preamble detector for cdma receiver
US20090219882A1 (en) Cell search method, forward link frame transmission method, apparatus using the same and forward link frame structure
US20050135230A1 (en) Apparatus and method for processing ranging channel in orthogonal frequency division multiple access system
JP2005204321A (en) Design method of uplink pilot signal in multiple carrier code division multiple access system
KR100611170B1 (en) Reception device and method of reception timing detection
JP2009296637A (en) Signal synchronous acquisition in one-to-0ne spread spectrum communication
KR101181976B1 (en) Apparatus for acquired preamble sequence
KR20070061692A (en) Apparatus and method for frequency offset estimation in ofdma system
JP2007525101A (en) Method and apparatus for performing frequency robust detection of secondary synchronization channel for wideband code division multiple access
US6618430B1 (en) Methods and apparatus for receiving N-chip resistant codes
JP3120792B2 (en) Spread spectrum communication method and spread spectrum communication apparatus
KR100465315B1 (en) System for spreading/inverse spreading of Multicarrier-Code Division Multiple Access and method thereof
WO2004086644A1 (en) Spread code generation method, spread code generation device, and communication method
JP5290006B2 (en) Transmission device, reception device, and communication device
KR101302462B1 (en) Apparatus and method for detecting cell id in mobile communication system
KR100716722B1 (en) Apparatus and method for ultra wideband communication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP