WO2004082297A1 - Stereoscopic image display device - Google Patents

Stereoscopic image display device Download PDF

Info

Publication number
WO2004082297A1
WO2004082297A1 PCT/JP2003/002863 JP0302863W WO2004082297A1 WO 2004082297 A1 WO2004082297 A1 WO 2004082297A1 JP 0302863 W JP0302863 W JP 0302863W WO 2004082297 A1 WO2004082297 A1 WO 2004082297A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eye
stereoscopic
information
video
Prior art date
Application number
PCT/JP2003/002863
Other languages
French (fr)
Japanese (ja)
Inventor
Seijiro Tomita
Original Assignee
Seijiro Tomita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seijiro Tomita filed Critical Seijiro Tomita
Priority to JP2004569333A priority Critical patent/JPWO2004082297A1/en
Priority to AU2003221346A priority patent/AU2003221346A1/en
Priority to PCT/JP2003/002863 priority patent/WO2004082297A1/en
Publication of WO2004082297A1 publication Critical patent/WO2004082297A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources

Definitions

  • the present invention relates to a stereoscopic video display device, and more particularly to a stereoscopic video display device capable of changing a stereoscopic degree according to a display screen size when shooting conditions of a stereoscopic image are different.
  • the positional relationship between the stereoscopic image display device and the observer is not always constant, and the observer is not always at the position intended by the content creator, and the observer is shifted from the predetermined observation position of the stereoscopic image device. In this case, a correct stereoscopic image cannot be observed. For this reason, when producing stereoscopic video content, the screen size (display or screen size) to be finally displayed is assumed, and the cross-point of the stereoscopic camera for shooting and the amount of parallax in computer graphics are adjusted. However, once the content has been produced, the stereoscopic effect changes when the screen size of the stereoscopic video display device changes, so it was necessary to recreate the stereoscopic video according to the screen size. Also, when creating a 3D image using CG (Computer Graphics), rendering had to be redone.
  • CG Computer Graphics
  • an object of the present invention is to provide a stereoscopic video display device that can automatically obtain a stereoscopic video with a natural pop-out amount even when video generation conditions and video reproduction conditions are different.
  • the invention according to claim 1 is a stereoscopic video display device that displays different video images to the left and right eyes of an observer to display a stereoscopically visible video, and a stereoscopic video signal including a left-eye video and a right-eye video.
  • a three-dimensional video signal generation circuit for generating a three-dimensional video signal, a display means for displaying a three-dimensional video image, and a drive circuit for driving the display means.
  • Information acquisition means for acquiring image information relating to the stereoscopically visible image, and display device information relating to a display area of the display means; and the left eye image and the right eye image based on the image information and the display device information.
  • the stereoscopic video display device is characterized in that the driving circuit displays a stereoscopic video on the display means based on a stereoscopic video signal output from the stereoscopic video signal generation circuit. According to the present invention, it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the stereoscopic image display device is adjusted.
  • an observer position detecting unit that acquires observation position information regarding a positional relationship between the display screen and the observer
  • a storage unit configured to store display screen size information relating to a display screen size and the observation position information as information relating to a display area of the display unit, wherein the information acquisition unit includes the display screen size information and the observation position from the storage unit. And information.
  • the present invention it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the screen size of the display is adjusted even if the display is replaced.
  • the invention according to claim 3 is characterized in that the observer position detecting means is arranged integrally with the stereoscopic video display device itself.
  • the observer position detecting means there is no need to separately install the observer position detecting means in addition to the main body of the stereoscopic video display device.
  • the invention according to claim 4 is characterized in that the observer position detecting means is arranged at a position distant from the main body of the three-dimensional image display device.
  • an observer position detection means can be arrange
  • the invention according to claim 5 is characterized in that the observer position detecting means includes an ultrasonic transmitter and an ultrasonic receiver.
  • ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of the observer by other means which uses an ultrasonic wave for the observer position detection means, and can perform accurate detection. It can be carried out.
  • the invention according to claim 6 is the stereoscopic video signal generation circuit according to claims 1 to 5, wherein the information acquiring means is configured to reproduce the stereoscopic video defined in association with the stereoscopic video. Acquisition of suitable screen size information on a suitable screen size and suitable position information on a position up to a display screen suitable for an observer at the time of playback as the video information, and display screen information on a screen size of the stereoscopic video display device. Acquiring the size information and the observation position information as the display device information, and the offset setting unit is configured to perform the offset setting based on the optimal screen size information, the adaptive viewing distance information, the display screen size information, and the observation position information. The offset of the left-eye image and the right-eye image is set to adjust the stereoscopic effect of the displayed image.
  • the present invention even if the screen size of the stereoscopic video display device changes or the viewing distance of the observer changes due to the information related to the reproduction of the stereoscopic video defined in association with the stereoscopic video, these changes occur. It is possible to obtain a stereoscopic image adjusted to the optimal stereoscopic degree (depth amount) corresponding to the image.
  • the invention according to claim 7 is the stereoscopic image display device according to claims 1 to 5, wherein the information acquisition unit is configured to determine an optical axis of a left-eye image camera and a right-eye image defined in association with a stereoscopic image. Camera distance information on the distance from the optical axis of the camera for camera, and cross point information on the distance to the intersection between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera as the video information.
  • the offset setting means sets an offset between a left-eye image and a right-eye image based on the camera distance information and the cross point information, and adjusts a three-dimensional effect of an image displayed on the display means.
  • the present invention it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the screen size is adjusted by using the cross-point information recorded when the stereoscopic image is recorded.
  • the invention according to claim 8 is the stereoscopic video display device according to any one of claims 1 to 7, further comprising an input means for allowing a viewer to input information regarding a stereoscopic effect, wherein the offset is provided.
  • the image setting means sets an offset between a left-eye image and a right-eye image based on the information input to the input means, and sets an image displayed on the display means. The stereoscopic effect of the image is adjusted.
  • the present invention it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the viewer's preference.
  • the invention according to claim 9 is the stereoscopic image display device according to any one of claims 1 to 8, wherein the left-eye image frame memory that stores the left-eye image and the right-eye image are displayed.
  • the offset of the left and right eye images can be set with a simple circuit.
  • An invention according to claim 10 is the stereoscopic video signal generation circuit according to any one of claims 1 to 9, wherein: a stereoscopic video frame memory that stores a stereoscopic video; and the left-eye video frame.
  • ADVANTAGE OF THE INVENTION According to this invention, it can synthesize
  • the invention according to claim 11 is the stereoscopic image display device according to any one of claims 1 to 10, wherein a horizontal phase between the left-eye image and the right-eye image is advanced or delayed. The offset between the left-eye image and the right-eye image is set.
  • the invention described in claim 12 is any one of claims 1 to 11
  • an offset between the left-eye video and the right-eye video is set, an area where information is missing at left and right edges of the left-eye video and the right-eye video is a missing area.
  • One or both of the neighboring left-eye image and right-eye image are enlarged and displayed in the horizontal and vertical directions.
  • the present invention even when the left and right eye images are shifted, it is possible to display a stereoscopic image without a sense of incongruity without missing the screen.
  • the invention according to claim 13 is the stereoscopic image display device according to any one of claims 1 to 5, wherein the display unit includes: an image display unit configured to display an image using transmitted light; and a light source. And a light source device comprising an LED array in which white LEDs or RGB LEDs are integrally arranged, and the offset setting means sets the white LEDs or RGB LEDs of the LED array based on the offset. It is equipped with LED control means for controlling lighting.
  • a white LED or an RGB LED which consumes little power and has a fast on / off switching speed, is used as a light source, so that the light source can be freely turned on by controlling the LED control means. Electric power can be reduced.
  • the invention according to claim 14 is the stereoscopic image display device according to claim 13, wherein the LED control means of the offset setting means is configured to display an observation image of the observer based on the observer position information. Lighting control of the white LED or the RGB LED so as to maintain the above.
  • an appropriate image can be displayed even if the observer moves and the observer is located at a plurality of different positions.
  • the light according to claim 15 is the stereoscopic image display according to claim 13, wherein each of the LED arrays provided above and below the light source device has a right-eye image display unit and a left-eye image display. It is characterized in that it forms a part.
  • display control of a stereoscopic image can be performed with a high degree of freedom by controlling light emission of the right-eye image display unit and the left-eye image display unit of the LED array by the LED control unit.
  • FIG. 1 is a block diagram showing a configuration of a stereoscopic video display device according to one embodiment of the present invention.
  • FIG. 2 is a block diagram showing a display control circuit of the stereoscopic video display device shown in FIG.
  • FIG. 3 is a diagram showing how a viewer sees a stereoscopic image.
  • FIG. 4 is a diagram showing how a viewer sees a stereoscopic image.
  • FIG. 5 is a diagram showing how a viewer sees a stereoscopic image.
  • FIG. 6 is a diagram illustrating how a viewer sees a stereoscopic image.
  • FIG. 7 is a view showing how a viewer sees a stereoscopic image.
  • FIG. 8 is a diagram showing a configuration of the display means.
  • FIG. 9 is an exploded perspective view showing a detailed configuration of the display device.
  • FIG. 10 is a diagram showing a display state of the liquid crystal of the display device.
  • FIG. 11 is a diagram illustrating the polarization direction of the checkerboard of the display device.
  • FIG. 12 is a diagram showing a state in which an appropriate image is displayed to observers at different positions.
  • FIG. 13 is a diagram showing a configuration of a stereoscopic video display device according to another embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of a stereoscopic video display device according to still another embodiment of the present invention.
  • FIG. 1 to 13 show an example of a configuration of a stereoscopic video display device according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of the stereoscopic video display device according to the present embodiment
  • FIG. 2 is a block diagram showing a display control circuit of the stereoscopic video display device shown in FIG. 1
  • FIGS. 6 and 7 show the appearance position of the stereoscopic image
  • FIG. 8 shows the configuration of the display means
  • FIG. 9 shows details of the display device.
  • FIG. 10 is a diagram showing the display state of the liquid crystal of the display device
  • FIG. 9 is a diagram showing the polarization direction of the checkerboard of the display device
  • FIG. Appropriate for the observer It It is a figure showing the state where an image is displayed.
  • the stereoscopic video display device 1 includes a display control circuit 100 and a display unit 121 formed of, for example, a liquid crystal display device.
  • the display control circuit 100 includes a stereoscopic video signal generating circuit 101 for generating a stereoscopic video signal composed of a left-eye video and a right-eye video, and a driving circuit 1002 for driving the display means 121.
  • the stereoscopic video signal generation circuit 101 includes video information related to the stereoscopically visible video, that is, a size of a display image assumed at the time of production, a position of an observer, and cross-point information.
  • Image information acquiring means 10 3 for acquiring the information of the display area of the display means, ie, the image size actually displayed, and the information acquiring means 10 4 of acquiring the position information of the observer with respect to the display device.
  • An offset value for shifting and displaying the left-eye image and the right-eye image based on the image information and the display device information is set to be the same for an observer for image information and display information under different conditions.
  • the stereoscopic video signal generation circuit 101 includes, as data recorded at the time of shooting, left-eye video 10, right-eye video 11, and a cross-point at the time of shooting.
  • Distance (CP information) 13 is input.
  • the left-eye image 10 is shot by the left-eye camera
  • the right-eye image 11 is shot by the right-eye camera arranged side by side with the left-eye camera.
  • the left-eye camera and the right-eye camera are arranged at an angle from the position where the optical axes are parallel so that their optical axes intersect with each other, and a point where the optical axes intersect exists on the imaging target surface.
  • Cross point (CP) is input.
  • the shooting device measures the distance to the CP when shooting stereoscopic images by laser distance measurement, the inclination between the left-eye camera and the right-eye camera, and a cross-point data input device that the photographer inputs. 2 is provided, and when shooting a 3D image, information on the distance to the CP is recorded along with the 3D image as CP information.
  • the distance between the left-eye camera and the right-eye camera (interocular distance) is also recorded as CP information.
  • This interocular distance information corresponds to the distance between the human eyes, and is generally selected between 63 mm and 68 mm.
  • the left-eye video 1 ⁇ input to the stereoscopic video signal generation circuit is digitized by the AD converter 20 and recorded in the left-eye video frame memory 30.
  • the input right-eye video 11 is digitized by the AD converter 21 and recorded in the right-eye video frame memory 31.
  • the AD converters 20 and 21 are supplied with a feedback signal 22 for AD conversion from the switching control unit 41.
  • the left-eye video and right-eye video digitized and recorded in the frame memories 30 and 31 are input to the signal switch 40.
  • the signal switch 40 records the combined stereoscopic video in the composite frame memory 50 by switching and reading the left-eye video and the right-eye video, and generates a composite stereoscopic video signal.
  • the signal switch 40 is a switch (semiconductor switching element) that operates according to a timing signal specified by the switching control section 41.
  • the stereoscopic video signal generation circuit of the present embodiment generates a composite stereoscopic video signal in which the left-eye video 10 and the right-eye I-video 11 are synthesized for each horizontal line from the left-eye video 10 and the right-eye video 11 I do. That is, in the case of the interlaced system, an image is displayed every other scanning line, so that the signal switching unit 40 uses the signal switching unit 40 for each field (for example, NTSC type vertical synchronization timing of 16.6833.3 m). The video signal to be written to the composite frame memory 50 is changed every second). On the other hand, in the case of the non-interlace method, since the scanning lines are displayed in order, the left-eye image and the right-eye image are displayed every other scanning line. The video signal to be written to the composite frame memory 50 is switched at the horizontal synchronization timing of 63.55.555 ⁇ sec).
  • the timing at which the right-eye video data for writing to the composite frame memory 50 is read from the right-eye video frame memory 31 is controlled by the read timing control unit 32.
  • the read timing control unit 32 receives the CP information 13, the timing signal of the signal switch 40 from the switching control unit 41, the screen size information, and the stereoscopic degree adjustment signal.
  • the read timing control unit 32 calculates the timing of reading from the right-eye video frame memory 31 from the information, generates a clock for reading data from the right-eye video frame memory 31, and generates the right-eye video. By reading out later (or earlier) from the correct timing, proper Adjust the timing of giving the amount of parallax that gives a bodily sensation.
  • the timing of reading the right-eye signal from the right-eye video frame memory 31 is controlled with respect to the timing of reading the left-eye signal based on the CP information 13 and the screen size information, so that the stereoscopic effect is optimized. It is read out.
  • the switching control section 41 controls the signal switch 40, and outputs a horizontal synchronizing signal 71, a vertical synchronizing signal 72, a dot synchronizing signal 73 and a left / right signal input from the synchronizing signal generator 70.
  • the operation of the signal switch 40 is controlled based on the reference signal 74. That is, as described above, the signal switch 40 is switched at what timing to set the timing of writing the video data to the composite frame memory 50 in order to generate a composite stereoscopic video signal.
  • the synchronizing signal generator 70 generates a horizontal synchronizing signal 71 and a vertical synchronizing signal 72 based on a video synchronizing signal 82 input from outside of the stereoscopic video signal generating circuit (for example, a display controller). Further, a dot synchronization signal 73 is generated based on a dot sampling link signal 83 input from the outside. Further, a left and right reference signal 74 is generated based on the video synchronization signal 82. When displaying and transmitting a stereoscopic video signal using a general video signal such as a video signal, the left and right reference signals 74 are used to identify whether the video signal is for a left video or a right video. This signal is input to the switching control unit 41 and output to the outside of the stereoscopic video signal generation circuit. ⁇
  • the DA converter 60 converts the digitized video signal into an analog signal and outputs it as a composite stereoscopic video signal.
  • the stereoscopic video signal supplied to the above-described stereoscopic video signal generation circuit is captured by a stereoscopic video photographing apparatus having a pair of left and right cameras (lens and image element) while simultaneously recording the left and right images.
  • the distance between the elements (interocular distance) and the distance to the intersection (cross point) between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera are determined by It is recorded by a stereoscopic video photographing device having a function of recording as event information. That is, the three-dimensional image capturing apparatus records data relating to a three-dimensional effect together with a three-dimensional image.
  • the stereoscopic video signal supplied to the above-described stereoscopic video signal generation circuit is converted into a left-right image together with the left-right video image using a stereoscopic video production device having a function of producing a pair of right and left images by computer graphic (CG). It is generated by a stereoscopic video production device equipped with a function that records the distance between the camera and the optical cross point of the left and right images (the point where the left and right eyes intersect) as cross point information. That is, the three-dimensional image production apparatus generates and records data relating to the three-dimensional effect together with the three-dimensional CG image.
  • FIGS. 3 to 5 are diagrams illustrating the adjustment of the stereoscopic degree by changing the relative positions of the left and right images according to the embodiment of the present invention.
  • FIG. 3 shows a case where the right-eye image and the left-eye image are at the positions at the time of shooting.
  • the original stereoscopic image 300 is composed of a left-eye image 301 and a right-eye image 302.
  • the position of the left-eye image 301 and the position of the right-eye image 302 are the same as those at the time of shooting, and the relative positions of the left and right images are correctly reproduced. Therefore, cross point 303 is located at the time of shooting (original cross point).
  • Figure 4 shows a state where the right-eye image is displayed shifted to the right.
  • the stereoscopic image 310 is composed of a left-eye image 311 and a right-eye image 312. If the right-eye image read timing is delayed with respect to the left-eye image read timing (the right-eye signal phase is delayed), and an offset is set to shift the right-eye image to the right with respect to the left-eye image, and displayed.
  • the line of sight looking at the left-eye image with the left eye and the line of sight looking at the right-eye image with the right eye intersect on the far side of the display screen, and the cross point 3 13 moves farther than the shooting position. Therefore, the degree of projection is weaker than in the original stereoscopic image, the sense of depth is emphasized, and the image is farther away from the whole.
  • Figure 5 shows a state where the right-eye image is displayed shifted to the left.
  • the stereoscopic image 320 is composed of a left-eye image 3221 and a right-eye image 3222.
  • the right-eye image is read earlier than the left-eye image is read (the phase of the right-eye signal is advanced)
  • the right-eye image is shifted to the left with respect to the left-eye image.
  • the right eye with the right eye The line of sight intersects the line of sight of the image on the near side of the display screen, and the cross point 3 2 3 is closer to the position at the time of shooting. Therefore, the degree of protrusion is emphasized, the sense of depth is reduced, and the image is closer to the front than the original stereoscopic image.
  • the offset from the display screen can be obtained.
  • a natural three-dimensional image can be displayed without causing a region in which no image is displayed (a region displayed in black) due to lack of the reproduced image.
  • FIG. 6 shows the relationship between the amount of parallax of the original stereoscopic video and the appearance position of the stereoscopic image.
  • the right-eye image and the left-eye image are in a positional relationship at the time of shooting as shown in FIG.
  • the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be viewed and the observer) is displayed on the display screen as Ld
  • the viewing distance the distance between the observer and the display screen
  • Fig. 7 shows the relationship between the amount of parallax of the left and right eye images and the stereoscopic image appearance position when an offset is given to the left and right eye images.
  • the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be seen and the observer) is L d
  • the viewing distance (the distance between the observer and the display screen) is L s
  • the offset of the left and right eye images is X o
  • the left eye image and the right eye image displayed on the display screen Assuming that the amount of parallax between is XI and the interocular distance is de (approximately 65 mm), the above parameters are expressed by equation (2) shown in Fig. 7.
  • L d obtained by equation (1) shown in FIG. 6 is substituted into equation (2).
  • the offset Xo of the left and right eye images is obtained.
  • the display means 122 is composed of a display device using liquid crystal, and as shown in FIGS. 8 and 9, a right-eye polarization filter section 6 a whose polarization direction is orthogonal to the left and right of the light emitting surface of the flat light source 5. And a left-eye polarization filter section 6b.
  • a light emitting element and a polarizing filter it is sufficient to irradiate light of different polarizations from different positions.For example, two light emitting elements that generate light of different polarizations are provided and different polarizations are provided. The light may be applied to the Fresnel lens 3 from different positions.
  • reference numeral 3 denotes a Fresnel lens, and each light that has passed through each of the filter portions 6a and 6b is irradiated on the liquid crystal display element 2 as parallel light by the Fresnel lens 3.
  • the display panel 2a of the liquid crystal display element 2 displays the pixels (L, R) constituting the first and second images viewed stereoscopically as shown in FIG. They are arranged so as to form a checkered pattern that is arranged alternately.
  • Polarizing panels 2b and 2c are attached to both sides of the display panel on the light source side and on the observer side, respectively.
  • the liquid crystal display panel 2 has a liquid crystal that is oriented by being twisted at a predetermined angle (for example, 90 degrees) between two transparent plates (for example, a glass plate).
  • a predetermined angle for example, 90 degrees
  • the liquid crystal display panel is emitted with the polarization of the incident light shifted by 90 degrees when no voltage is applied to the liquid crystal.
  • the liquid crystal is untwisted, and the incident light is emitted with the same polarization.
  • a checkered filter 7 is attached to the light source side of the display panel 2.
  • the light that has passed through the right polarizing filter part a and the light that has passed through the left polarizing filter part b of the polarizing filter 6 enter the Fresnel lens 3 at different angles, The light is refracted by the Fresnel lens 3 and is radiated from the liquid crystal display panel 2 through different paths.
  • the polarization axis of the light transmitted through the right polarization filter unit a is rotated by 90 degrees to be equal to the polarization of the light transmitted through the left polarization filter unit b.
  • the region 7b where the half-wavelength plate 72 is not provided transmits light having the same polarization as that of the polarizing plate 2b that has passed through the left polarizing filter portion b.
  • the region 7a where the half-wavelength plate 72 is provided becomes equal to the polarization axis of the polarizing plate 2b when the light whose polarization axis is orthogonal to that of the polarizing plate 21 that has passed through the right-side polarization filter portion a. And emit light.
  • the repetition of the polarization characteristic of the ⁇ -pine filter 7 is transmitted at the same pitch as the display unit of the liquid crystal display panel 2 for each display unit (ie, the horizontal horizontal line and the vertical vertical line of the display unit).
  • the polarization of the light to be emitted is different.
  • the polarization characteristics of the fine retardation plate corresponding to each display unit in the scanning direction and the sub-scanning direction of the liquid crystal display panel 2 become different, and the direction of light emitted from each adjacent pixel is different.
  • the light emitted from the checkered filter 7 has the same polarization as the light transmitted through the left polarizing filter part b, and enters the polarizing plate 2 b provided on the light source side of the liquid crystal display panel 2.
  • the polarizing plate 2b functions as a second polarizing plate, and has a polarization characteristic of transmitting the same polarized light as the light transmitted through the pine filter 7. That is, the light transmitted through the left polarizing filter portion b of the polarizing filter 6 transmits through the second polarizing plate 2c, and the light transmitted through the right polarizing filter portion a of the polarizing filter 6 has its polarization axis rotated 90 degrees.
  • the polarizing plate 2c functions as a first polarizing plate, and has a polarization characteristic of transmitting light having a polarization 90 degrees different from that of the polarizing plate 21.
  • the left and right images are displayed so as to form a checkerboard pattern in a plane, and the filters are also arranged on the plane in a checkerboard pattern.
  • the stereoscopic video signal generation circuit 101 generates a synthetic stereoscopic video signal from the input stereoscopic video signal, and outputs the generated synthetic stereoscopic video signal via the driving circuit 102 to display means.
  • Supply 1 2 1 Display size information relating to the size of the displayable area of the display element provided in the display means 121 is output from the display means 122.
  • This screen size information is set for each display means, and is information on the number of dots in the vertical and horizontal directions and the size of the display area stored in a storage unit (memory) provided in the display means. Further, the display means 122 outputs viewing distance information relating to the distance at which the observer views the image displayed on the display means 122. This viewing distance information may be determined according to the size of the display area, or an observer position detecting means 122 for detecting an observer is provided on the display means 122, and observation is performed on the display means 122. The positional relationship between the user 90 and the display means 122 is measured to obtain positional information.
  • the screen size information and viewing distance position information output from the display means 121 are input to the display information acquisition means 104 and converted into data in a format required by the stereoscopic video signal generation circuit 101. Then, it is supplied to the stereoscopic video signal generation circuit 101.
  • the stereoscopic video signal generation circuit 101 receives a stereoscopic degree adjustment signal from the input unit 105, and according to the stereoscopicity instructed by the viewer to the input unit 105, the left and right eye images are formed. The image is offset and displayed, and the stereoscopic degree of the stereoscopic image displayed on the display means 121 can be changed.
  • the left-eye video reaching the viewer's left eye and the right-eye video reaching the right eye are alternately displayed in a checkerboard pattern on the display means 122. Then, the stereoscopic video signal generation circuit 101 controls to delay or advance the timing of reading the right-eye video from the right-eye frame memory 31 to delay or advance the horizontal phase of the left-eye video and the right-eye video, and Adjust the binocular disparity by setting the amount of offset (offset) between the image and the right-eye image to adjust the stereoscopic effect.
  • FIGS. 13 and 14 show another embodiment of the present invention, in which the light source 5 of the liquid crystal display device is changed.
  • a plurality of white LEDs 201 are arranged side by side in a horizontal direction, and two rows of LED arrays 2 3 1L and 2 3 1R serving as left and right light sources and image display means (liquid crystal display) Plate) 2 32 and a Fresnel lens 2 14 acting as a convex lens and two polarizing elements 2 6 6 which form polarization directions perpendicular to each other and correspond to the LED arrays 2 3 1 L and 2 3 1 R.
  • the LED array 211 is controlled to be turned on and off by LED control means 2.13 provided in the display control circuit 100.
  • LED control means 2.13 provided in the display control circuit 100.
  • the LED that emits light is represented by “up”, and the LED that does not emit light is represented by “ ⁇ ”.
  • the displacement d1 of the image display device (light source device 230 for the image display device) of the observer 90 from the optical axis O and the distance d2 from the image display means 232 are measured.
  • An observer position judging means 2 3 4 for emitting a measurement signal is provided.
  • the observer position determination means 2 3 4 may use an ultrasonic method, an infrared method, or any other means. it can.
  • the LED control means 233 controls the lighting locations 235, 236 of the white LED 1 of the LED array 231 based on the above-mentioned measurement signal, and the LED array 233.
  • the light emission position of 1 can be quickly moved (shown by arrow D) to a position corresponding to the movement of the observer 90 (shown by arrow d), and a natural stereoscopic image is always provided to the observer 90. Can be displayed.
  • control of the light source device for the image display device does not involve any mechanical operation, it can be made high-speed, high-precision, and highly durable. It can be simple.
  • the number of observers and the position of each observer with respect to the image display device are measured by the position judging means 34 and output as a position signal, and the LED array 23 1 is turned on by the LED control means 23 3 If controlled, an appropriate stereoscopic image can be displayed to observers at a plurality of different positions.
  • the LED array 351 of the light source 5 is configured in two stages of an upper stage 351U and a lower stage 351D.
  • the left and right portions corresponding to the upper portion 35 1 U and the lower portion 35 1 D are located at positions corresponding to the white LEDs 301 of the upper portion 35 1 U and the lower portion 35 1 D, respectively.
  • the polarizing filters 3 5 4 are arranged.
  • This polarizing filter includes polarizing filters 354U and 354D through which light from the upper section 351U and the lower section 351D of the LED array 351 passes.
  • the polarization filters 354U and 354D are composed of polarization filters whose polarization directions are orthogonal to each other.
  • the LED control means 353 controls the blinking of each LED array 351U and 351D.
  • the position of the observer 90 is determined by the above-described observer position detecting means 122, and the upper and lower LED arrays 354U and 354D emit light at the light-emitting portions 373, and the observer 90 receives a three-dimensional image. Display an image. At this time, the light emitting point is moved using the observer position detecting means 122 shown in the above embodiment so that a stereoscopic image corresponding to the position of the observer 90 can be displayed.
  • there are multiple observers for example, two observers 90, 91. I do.
  • the LED control means 3 53 3 obtains a signal from the observer position detecting means 1 2 2 and sets two light emitting areas 3 7 3 and 3 7 4 on the two LED arrays 35 1. The lighting control of these light emitting regions is alternately performed at high speed.
  • the distance between the LEDs for displaying the left and right is increased, and the interference of light from each LED is reduced. Reduced crosstalk between left and right images.
  • the above-described three-dimensional image display device is applicable to various three-dimensional display devices such as a mobile phone, a three-dimensional television receiver, and a three-dimensional projector. Further, the present invention can be applied to a three-dimensional movie theater, a moving image reproducing device for reproducing three-dimensional images distributed via the Internet, a standing game machine, and a simulator for an airplane or a vehicle.
  • the observer position detecting means can be arranged at an appropriate position for detecting the position of the observer, and the position of the observer can be accurately detected.
  • the ultrasonic wave is used for the observer position detecting means, and is less susceptible to the influence of ambient noise and the like as compared to the detection of the observer by other means. Accurate detection can be performed.
  • the information acquisition means includes: adaptive screen size information relating to a screen size suitable for reproducing the stereoscopic video defined in association with the stereoscopic video; and Acquiring suitable position information on a position up to a suitable display screen as the image information, acquiring display screen size information on a surface size of the stereoscopic image display device, and observation position information as the display device information;
  • the offset setting means is configured to set an offset between a left-eye image and a right-eye image based on the optimum screen size information, the adaptive viewing distance information, the display screen size information, and the observation position information, and display the image.
  • the stereoscopic effect of the 3D image display device is adjusted according to the information on the 3D image playback defined in association with the 3D image. Even if the image changes or the viewing distance of the observer changes, a stereoscopic image adjusted to the optimal stereoscopic degree (depth amount) corresponding to these changes can be obtained.
  • the information acquisition means is a camera distance that is determined in relation to the stereoscopic image and that is related to the distance between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera.
  • Information, and cross-point information about the distance to the intersection of the optical axis of the left-eye video camera and the optical axis of the right-eye video camera is obtained as the video information
  • the offset setting means includes the camera distance information and the The offset of the left-eye image and the right-eye image is set based on the cross-point information, and the stereoscopic effect of the image displayed on the display means is adjusted.
  • the optimal stereoscopic degree (depth amount) corresponding to the screen size is adjusted.
  • the offset setting means includes a left-eye image and a right-eye image based on the information input to the input means.
  • a left-eye video frame memory for storing a left-eye video
  • a right-eye video frame memory for storing the right-eye video.
  • Timing control means for controlling the timing of reading video data from the video frame memory and / or the right-eye video frame memory, wherein the timing control means is provided from one of the left-eye video frame memory and the right-eye video frame memory
  • the offset between the left-eye image and the right-eye image is set by making the timing of reading the video data earlier or later than the timing of reading the video data from the other frame memory. Video offset can be set.
  • a stereoscopic video frame memory for storing a stereoscopic video, left-eye video data read from the left-eye video frame memory, and read from the right-eye video frame memory
  • Signal switching means for switching between the right-eye video data and the 3D video frame memory. It is possible to compose a video with an image offset set and store it in the frame memory.
  • the display means includes an image display means for displaying an image by transmitted light and a light source device, and the light source device is an LED in which white LEDs or RGB LEDs are integrally arranged.
  • the offset setting means is provided with an LED control means for controlling the white LED or the RGB LED of this LED array based on the offset, so that the free light source can be controlled by the LED control means. Lighting can be performed, and power consumption can be reduced.
  • the LED control means of the offset setting means controls the lighting of the white LED or the RGB LED based on the observer position information so as to maintain the observer's observation image. Therefore, even if the observer moves, and even if the observer is at a plurality of different positions, an appropriate image can be displayed.
  • each LED array provided above and below the light source device forms a right-eye image display portion and a left-eye image display portion
  • the right-eye LED array By controlling the light emission of the image display unit and the left-eye image display unit by the LED control means, the display control of the stereoscopic image can be performed with a high degree of freedom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A stereoscopic image display device capable of obtaining a stereoscopic image having a natural protrusion amount even when the image generation condition and the image reproduction condition are different. The device includes a stereoscopic image signal generation circuit for generating a stereoscopic image signal, display means for displaying a stereoscopic image, and a drive circuit for driving the display means. The stereoscopic image signal generation circuit has information acquisition means for acquiring image information on an image which can be viewed stereoscopically and display device information on a display area of the display means, and offset setting means for setting an offset value for displaying a left eye image and a right eye image which are shifted from each other and causing the display means to display a stereoscopic image signal giving a viewer a uniform stereoscopic feeling for image information and display information of different conditions.

Description

明 細 書  Specification
立体映像表示装置  3D image display device
技術分野  Technical field
本発明は立体映像表示装置に係り、 特に立体画像の撮影条件が異なる場合や、 表示画面サイズに応じて立体度を変化させることができる立体映像表示装置に関 する。  The present invention relates to a stereoscopic video display device, and more particularly to a stereoscopic video display device capable of changing a stereoscopic degree according to a display screen size when shooting conditions of a stereoscopic image are different.
技術背景  Technology background
従来、 立体映像を撮影する場合には、 二つの撮影部を備え、 第 1撮影部によつ て右目映像を、 第 2撮像部によって左目映像を撮影している。 このとき、 第 1撮 像部の光軸と第 2撮像部の光軸とを撮影対象面上で交差させ収束点であるクロス ポイント (コンパージエンスポイント) C Pを形成して、 立体映像を撮影してい る。 そして、 撮影対象面から撮影装置までの距離 (すなわち、 C Pまでの距離) を測定する技術が種々提案されている。  Conventionally, when capturing a stereoscopic image, two image capturing units are provided, and a right image is captured by a first image capturing unit and a left eye image is captured by a second image capturing unit. At this time, the optical axis of the first imaging unit and the optical axis of the second imaging unit intersect on the imaging target surface to form a cross point (compensation point) CP, which is a convergence point, to capture a stereoscopic image. are doing. Various techniques have been proposed for measuring the distance from the imaging target surface to the imaging device (that is, the distance to the CP).
しかし、 特開 2 0 0 1— 2 3 1 0 5 5号公報に記載の発明技術では、 立体映像 を撮影する際に C Pまでの距離を測定しても、 C Pまでの距離 (C P情報) が立 体映像と同時に記録されることはなかった。また、 C P情報が記録されていても、 立体映像が再生されるときに、 C P情報が立体感の基準となる信号として活用さ れることはなかった。  However, according to the invention technology described in Japanese Patent Application Laid-Open No. 2000-213510, even when the distance to the CP is measured when capturing a stereoscopic image, the distance to the CP (CP information) is not sufficient. It was not recorded at the same time as the stereoscopic video. Even when CP information was recorded, the CP information was not used as a signal as a reference for a stereoscopic effect when a stereoscopic video was reproduced.
特に、 同一のコンテンツを画面サイズの異なる表示装置で再生すると、 左右映 像の視差量が異なることから、 画面サイズによって画面からの飛び出し量が変化 して、 自然な立体映像を得ることができない問題がある。 すなわち、 大型アミュ —ズメント施設を対象とした立体映像コンテンツは、 そのコンテンツが上映され る大きな画面サイズを想定して制作されているため、 同じスク リーンサイズを有 する劇場や装置でなければ正しい立体感が得られず、 画面サイズが大きいと立体 感が強すぎて不快感を与えたりするほか、 画面サイズが小さいと立体感が少なく 物足りなかった。  In particular, when the same content is played back on display devices with different screen sizes, the amount of parallax between the left and right images differs, and the amount of projection from the screen changes depending on the screen size. There is. In other words, stereoscopic video content intended for large-scale amusement facilities is produced assuming a large screen size on which the content is screened. Therefore, unless the theater or device has the same screen size, the correct stereoscopic video content is used. When the screen size was too large, the three-dimensional effect was too strong to give an unpleasant feeling. In addition, when the screen size was small, the three-dimensional effect was small and unsatisfactory.
また、 このようなコンテンツは、 様々な場面の継ぎ合わせであるから、 各場面 の撮影条件、 撮影部のレンズの焦点距離、 2つの撮影部の間隔などが統一されて いるとは限らないから、 単純にこのような場面をつなぎ合わせると、 一つのコン テンッで異なる立体感が表示され、 視聴者に違和感や身体的不快感を与えること となった。 Also, since such content is a splice of various scenes, the shooting conditions of each scene, the focal length of the lens of the shooting unit, the interval between the two shooting units, etc. are not necessarily the same, Simply joining these scenes together gives A different three-dimensional effect was displayed on the screen, giving the viewer a sense of discomfort and physical discomfort.
更に、 立体映像表示装置と観察者との位置関係は必ずしも一定ではなく、 コン テンッ制作者が意図した位置に観察者がいるとは限らず、 観察者が立体画像装置 の所定観察位置からずれた場合正しい立体画像を観察することができない。 このため、 立体映像コンテンツを制作する場合、 最終的に表示する画面サイズ (ディスプレイやスクリーンのサイズ) を想定し、 撮影用立体カメラのクロスポ イントゃ、 コンピュータグラフィ ックの視差量を調整して制作するが、 一度制作 されたコンテンツは、 立体映像表示装置の画面サイズが変わると立体感が異なつ てしまうことから、 画面サイズに応じて立体映像を再度制作する必要があった。 また、 C G ( Computer Graphics) で立体映像を作成する場合は、 レンダリ ング をやり直す必要があった。  Furthermore, the positional relationship between the stereoscopic image display device and the observer is not always constant, and the observer is not always at the position intended by the content creator, and the observer is shifted from the predetermined observation position of the stereoscopic image device. In this case, a correct stereoscopic image cannot be observed. For this reason, when producing stereoscopic video content, the screen size (display or screen size) to be finally displayed is assumed, and the cross-point of the stereoscopic camera for shooting and the amount of parallax in computer graphics are adjusted. However, once the content has been produced, the stereoscopic effect changes when the screen size of the stereoscopic video display device changes, so it was necessary to recreate the stereoscopic video according to the screen size. Also, when creating a 3D image using CG (Computer Graphics), rendering had to be redone.
このように従来は、 一度制作されたコンテンツで決定された視差量を再生時に 調整する方法がないため、視聴する位置と画面との間の距離によって、視聴者が、 立体感を調整せざるを得なかった。  As described above, conventionally, there is no method for adjusting the amount of parallax determined in the content once produced at the time of reproduction, so that the viewer has to adjust the stereoscopic effect depending on the distance between the viewing position and the screen. I didn't get it.
また、 立体映像を放送する場合、 不特定多数の視聴者と多様な画面サイズを持 つ立体映像表示装置に自動的に対応させて立体映像の立体感を自動的に調整する 方法がなく、 不特定多数に対する立体映像の放送が困難である。 立体映像が世の 中に普及するためには、 画面サイズに応じて立体感を自動的に調整する技術が不 可欠である。  In addition, when broadcasting stereoscopic video, there is no way to automatically adjust the stereoscopic effect of stereoscopic video by automatically supporting an unspecified number of viewers and a stereoscopic video display device having various screen sizes. It is difficult to broadcast a stereoscopic video to a specific majority. In order for stereoscopic images to spread throughout the world, technology that automatically adjusts the stereoscopic effect according to the screen size is indispensable.
そこで、 本発明は、 映像生成条件や、 映像再現条件が異なる場合でも、 自然な 飛び出し量の立体映像を自動的に得ることができる立体映像表示装置を提供する ことを目的とする。  Therefore, an object of the present invention is to provide a stereoscopic video display device that can automatically obtain a stereoscopic video with a natural pop-out amount even when video generation conditions and video reproduction conditions are different.
発明の開示  Disclosure of the invention
本発明において、 前記課題を解決するための手段は以下の通りである。  In the present invention, means for solving the above problems are as follows.
請求の範囲 1に記載の発明は、 観察者の左右眼に異なる映像を表示して立体視 可能な映像を表示する立体映像表示装置であって、 左目映像と右目映像とからな る立体映像信号を生成する立体映像信号生成回路と、 立体映像を表示する表示手 段と、前記表示手段を駆動する駆動回路とを備え、前記立体映像信号生成回路は、 前記立体視可能な映像に関する映像情報、 及び、 前記表示手段の表示領域に関す る表示装置情報を取得する情報取得手段と、 前記映像情報及び前記表示装置情報 に基づいて前記左目映像と前記右目映像とをずらして表示するためのオフセッ ト 値を設定して、 異なる条件の映像情報、 表示情報に対して観察者に同一の立体感 を与える立体画像信号前記表示手段に表示させるオフセッ ト手段を備え、 前記駆 動回路は、 前記立体映像信号生成回路から出力された立体映像信号に基づいて、 前記表示手段に立体映像を表示することを特徴とする立体映像表示装置である。 本発明によれば、 立体映像表示装置に対応した最適な立体度 (奥行き量) を調 整した立体映像を得ることができる。 The invention according to claim 1 is a stereoscopic video display device that displays different video images to the left and right eyes of an observer to display a stereoscopically visible video, and a stereoscopic video signal including a left-eye video and a right-eye video. A three-dimensional video signal generation circuit for generating a three-dimensional video signal, a display means for displaying a three-dimensional video image, and a drive circuit for driving the display means. Information acquisition means for acquiring image information relating to the stereoscopically visible image, and display device information relating to a display area of the display means; and the left eye image and the right eye image based on the image information and the display device information. And an offset value for setting an offset value for displaying the image information in a different manner, and providing a stereoscopic image signal that gives the observer the same stereoscopic effect to video information and display information under different conditions. The stereoscopic video display device is characterized in that the driving circuit displays a stereoscopic video on the display means based on a stereoscopic video signal output from the stereoscopic video signal generation circuit. According to the present invention, it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the stereoscopic image display device is adjusted.
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の立体映像表示装置にお いて、 表示画面と観察者との位置関係に関する観察位置情報を取得する観察者位 置検出手段と、 前記表示手段の表示領域に関する情報として表示画面サイズに関 する表示画面サイズ情報及び前記観察位置情報を記憶する記憶手段を備え、 前記 情報取得手段は、 前記記憶手段から前記表示画面サイズ情報と観察位置情報とを 取得することを特徴とする。  According to a second aspect of the present invention, in the stereoscopic image display device according to the first aspect, an observer position detecting unit that acquires observation position information regarding a positional relationship between the display screen and the observer, A storage unit configured to store display screen size information relating to a display screen size and the observation position information as information relating to a display area of the display unit, wherein the information acquisition unit includes the display screen size information and the observation position from the storage unit. And information.
本発明によれば表示器を交換しても、 表示器の画面サイズに対応した最適な立 体度 (奥行き量) を調整した立体映像を得ることができる。  According to the present invention, it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the screen size of the display is adjusted even if the display is replaced.
請求の範囲 3に記載の発明は、 前記観察者位置検出手段が立体映像表示装置本 体に一体的に配置されたことを特徴とする。  The invention according to claim 3 is characterized in that the observer position detecting means is arranged integrally with the stereoscopic video display device itself.
本発明によれば、 観察者位置検出手段を立体映像表示装置本体の他に別途設置 する必要がない。  According to the present invention, there is no need to separately install the observer position detecting means in addition to the main body of the stereoscopic video display device.
請求の範囲 4に記載の発明は、 前記観察者位置検出手段が、 立体映像表示装置 本体と離れた位置に配置されたことを特徴とする。  The invention according to claim 4 is characterized in that the observer position detecting means is arranged at a position distant from the main body of the three-dimensional image display device.
本発明によれば、 観察者位置検出手段を観察者の位置を検出するために適切な 個所に配置でき、 観察者の位置を正確に検出することができる。  ADVANTAGE OF THE INVENTION According to this invention, an observer position detection means can be arrange | positioned in a suitable place in order to detect the position of an observer, and the position of an observer can be detected correctly.
請求の範囲 5に記載の発明は、 前記観察者位置検出手段が超音波発信器及び超 音波受信器を備えたことを特徴とする。  The invention according to claim 5 is characterized in that the observer position detecting means includes an ultrasonic transmitter and an ultrasonic receiver.
本発明によれば、 観察者位置検出手段に超音波を使用している、 他の手段によ る観察者の検出などに比べて周囲の雑音などの影響を受けにく く、 正確な検出を 行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, it is hard to be influenced by surrounding noise etc. compared with the detection of the observer by other means which uses an ultrasonic wave for the observer position detection means, and can perform accurate detection. It can be carried out.
請求の範囲 6に記載の発明は、 請求の範囲 1乃至請求の範囲 5に記載の立体映 像信号生成回路において、 前記情報取得手段は、 立体映像に関連づけて定められ た該立体映像の再生に適する画面サイズに関する適合画面サイズ情報、 及び、 再 生時に観察者が見るのに適する表示画面までの位置に関する適合位置情報を前記 映像情報として取得し、 前記立体映像表示装置の画面サイズに関する表示画面サ ィズ情報、 及び観察位置情報を前記表示装置情報として取得し、 前記オフセッ ト 設定手段は、 前記最適画面サイズ情報、 前記適合視距離情報、 前記表示画面サイ ズ情報、 前記観察位置情報に基づいて左目映像と右目映像とのオフセッ トを設定 して、 表示される映像の立体感を調整することを特徴とする。  The invention according to claim 6 is the stereoscopic video signal generation circuit according to claims 1 to 5, wherein the information acquiring means is configured to reproduce the stereoscopic video defined in association with the stereoscopic video. Acquisition of suitable screen size information on a suitable screen size and suitable position information on a position up to a display screen suitable for an observer at the time of playback as the video information, and display screen information on a screen size of the stereoscopic video display device. Acquiring the size information and the observation position information as the display device information, and the offset setting unit is configured to perform the offset setting based on the optimal screen size information, the adaptive viewing distance information, the display screen size information, and the observation position information. The offset of the left-eye image and the right-eye image is set to adjust the stereoscopic effect of the displayed image.
本発明によれば、 立体映像に関連付けて定められた立体映像の再生に関する情 報によって、 立体映像表示装置の画面サイズが変化しても、 観察者の視距離が変 化しても、 これらの変化に対応した最適な立体度 (奥行き量) に調整された立体 映像を得ることができる。  According to the present invention, even if the screen size of the stereoscopic video display device changes or the viewing distance of the observer changes due to the information related to the reproduction of the stereoscopic video defined in association with the stereoscopic video, these changes occur. It is possible to obtain a stereoscopic image adjusted to the optimal stereoscopic degree (depth amount) corresponding to the image.
請求の範囲 7に記載の発明は、 請求の範囲 1乃至 5に記載の立体映像表示装置 において、 前記情報取得手段は、 立体映像に関連づけて定められた、 左目映像用 カメラの光軸と右目映像用カメラの光軸との間の距離に関するカメラ距離情報、 及ぴ、 左目映像用カメラの光軸と右目映像用カメラの光軸との交差点までの距離 に関するクロスポイント情報を前記映像情報として取得し、 前記オフセッ ト設定 手段は、 前記カメラ距離情報及び前記クロスポイント情報に基づいて左目映像と 右目映像とのオフセッ トを設定して、 前記表示手段に表示される映像の立体感を 調整することを特徴とする。  The invention according to claim 7 is the stereoscopic image display device according to claims 1 to 5, wherein the information acquisition unit is configured to determine an optical axis of a left-eye image camera and a right-eye image defined in association with a stereoscopic image. Camera distance information on the distance from the optical axis of the camera for camera, and cross point information on the distance to the intersection between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera as the video information. The offset setting means sets an offset between a left-eye image and a right-eye image based on the camera distance information and the cross point information, and adjusts a three-dimensional effect of an image displayed on the display means. Features.
本発明によれば、 立体映像の記録時に共に記録されたクロスポイント情報によ つて、 画面サイズに対応した最適立体度 (奥行き量) を調整した立体映像を得る ことができる。  According to the present invention, it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the screen size is adjusted by using the cross-point information recorded when the stereoscopic image is recorded.
請求の範囲 8に記載の発明は、 請求の範囲 1乃至請求の範囲 7のいずれかに記 載の立体映像表示装置において、 視聴者が立体感に関する情報を入力する入力手 段を備え、 前記オフセッ ト設定手段は、 前記入力手段に入力された情報に基づい て左目映像と右目映像とのオフセッ トを設定して、 前記表示手段に表示される映 像の立体感を調整することを特徴とする。 The invention according to claim 8 is the stereoscopic video display device according to any one of claims 1 to 7, further comprising an input means for allowing a viewer to input information regarding a stereoscopic effect, wherein the offset is provided. The image setting means sets an offset between a left-eye image and a right-eye image based on the information input to the input means, and sets an image displayed on the display means. The stereoscopic effect of the image is adjusted.
本発明によれば、 観察者の好みに合わせて立体度 (奥行き量) を調整した立体 映像を得ることができる。  According to the present invention, it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the viewer's preference.
請求の範囲 9に記載の発明は、 請求の範囲 1乃至請求の範囲 8のいずれかに記 載の立体映像表示装置において、 前記左目映像を記憶する左目映像用フレームメ モリ と、 前記右目映像を記憶する右目映像用フレームメモリ とを備え、 前記オフ セッ ト設定手段は、 前記左目映像用フレームメモリ及び/又は右目映像用フレー ムメモリから映像データを読み出すタイミングを制御するタイミング制御手段を 備え、 前記タイミング制御手段は、 前記左目映像用フレームメモリ と前記右目映 像用フレームメモリ との一方から映像データを読み出すタイミングを、 他方のフ レームメモリから映像データを読み出すタイミングと比較して早める又は遅らせ ることによって前記左目映像と前記右目映像とのオフセッ トを設定することを特 徴とする。  The invention according to claim 9 is the stereoscopic image display device according to any one of claims 1 to 8, wherein the left-eye image frame memory that stores the left-eye image and the right-eye image are displayed. A right-eye video frame memory for storing; the offset setting means comprises timing control means for controlling timing of reading video data from the left-eye video frame memory and / or the right-eye video frame memory; and The control means may advance or delay the timing of reading the video data from one of the left-eye video frame memory and the right-eye video frame memory as compared with the timing of reading the video data from the other frame memory. Offset between the left eye image and the right eye image is set.
本発明によれば、 簡単な回路で左右目映像のオフセッ トを設定することができ る。  According to the present invention, the offset of the left and right eye images can be set with a simple circuit.
請求の範囲 1 0に記載の発明は、 請求の範囲 1乃至請求の範囲 9のいずれかに 記載の立体映像信号生成回路において、 立体映像を記憶する立体映像用フレーム メモリ と、 前記左目映像用フレームメモリから読み出された左目映像データと前 記右目映像用フレームメモリから読み出された右目映像データとを切り替えて立 体映像用フレームメモリに入力する信号切換手段と、を備えることを特徴とする。 本発明によれば、 左右目映像のオフセッ トが設定された映像を合成してフレー ムメモリ に記憶することができる。 . 請求の範囲 1 1に記載の発明は、 請求の範囲 1乃至請求の範囲 1 0のいずれか に記載の立体映像表示装置において、 前記左目映像と前記右目映像との水平位相 を進める又は遅らせることによって、 前記左目映像と前記右目映像とのオフセッ トを設定することを特徴とする。  An invention according to claim 10 is the stereoscopic video signal generation circuit according to any one of claims 1 to 9, wherein: a stereoscopic video frame memory that stores a stereoscopic video; and the left-eye video frame. Signal switching means for switching between left-eye video data read from the memory and right-eye video data read from the right-eye video frame memory and inputting the same to the stereoscopic video frame memory. . ADVANTAGE OF THE INVENTION According to this invention, it can synthesize | combine the image in which the offset of the left-right image was set, and store it in a frame memory. The invention according to claim 11 is the stereoscopic image display device according to any one of claims 1 to 10, wherein a horizontal phase between the left-eye image and the right-eye image is advanced or delayed. The offset between the left-eye image and the right-eye image is set.
本発明によれば、 左右目映像のオフセッ トの設定を容易に制御することができ る。  According to the present invention, it is possible to easily control the setting of the offset of the left and right eye images.
請求の範囲 1 2に記載の発明は、 請求の範囲 1乃至請求の範囲 1 1のいずれか に記載の立体映像表示装置において、 前記左目映像と前記右目映像とのオフセッ トを設定した際に、 前記左目映像と前記右目映像との左右縁部において情報が欠 落した領域に、 当該欠落領域近傍の前記左目映像と前記右目映像との一方又は双 方を水平及び垂直方向に拡大して表示することを特徴とする。 The invention described in claim 12 is any one of claims 1 to 11 In the stereoscopic video display device according to (1), when an offset between the left-eye video and the right-eye video is set, an area where information is missing at left and right edges of the left-eye video and the right-eye video is a missing area. One or both of the neighboring left-eye image and right-eye image are enlarged and displayed in the horizontal and vertical directions.
本発明によれば、 左右目映像をずらして表示した場合にも画面が欠けることの なく違和感のない立体画像を表示をすることができる。  According to the present invention, even when the left and right eye images are shifted, it is possible to display a stereoscopic image without a sense of incongruity without missing the screen.
請求の範囲 1 3に記載の発明は、 請求の範囲 1乃至請求の範囲 5のいずれかに 記載の立体映像表示装置において、 前記表示手段は、 透過光で画像を表示する画 像表示手段と光源装置と、 を備え、 光源装置は、 白色 L E Dまたは R G Bの L E Dを一体に配列した L E Dアレイで構成され、 前記オフセッ ト設定手段はこの L E Dアレイの白色 L E D又は R G Bの L E Dを前記オフセッ トに基づいて点灯制 御する L E D制御手段を備えたことを特徴とする。  The invention according to claim 13 is the stereoscopic image display device according to any one of claims 1 to 5, wherein the display unit includes: an image display unit configured to display an image using transmitted light; and a light source. And a light source device comprising an LED array in which white LEDs or RGB LEDs are integrally arranged, and the offset setting means sets the white LEDs or RGB LEDs of the LED array based on the offset. It is equipped with LED control means for controlling lighting.
本発明によれば、 光源として消費電力が少なくオンオフのスィツチング速度が 早い白色 L E D又は R G Bの L E Dを使用しているので、 L E D制御手段の制御 により 自由な光源の点灯を行うことができる他、 消費電力を少ないものとするこ とができる。  According to the present invention, a white LED or an RGB LED, which consumes little power and has a fast on / off switching speed, is used as a light source, so that the light source can be freely turned on by controlling the LED control means. Electric power can be reduced.
請求の範囲 1 4に記載の発明は、 請求の範囲 1 3に記載の立体映像表示装置に おいて、オフセッ ト設定手段の L E D制御手段は前記観察者位置情報に基づいて、 観察者の観察画像を維持するよう前記白色 L E D又は R G Bの L E Dを点灯制御 することを特徴とする。  The invention according to claim 14 is the stereoscopic image display device according to claim 13, wherein the LED control means of the offset setting means is configured to display an observation image of the observer based on the observer position information. Lighting control of the white LED or the RGB LED so as to maintain the above.
本発明によれば、 観察者が移動しても、 また観察者が複数の異なる位置にいて も適切な画像を表示することができる。  ADVANTAGE OF THE INVENTION According to this invention, an appropriate image can be displayed even if the observer moves and the observer is located at a plurality of different positions.
請求の範囲 1 5に記載の明は、請求の範囲 1 3に記載の立体映像表示において、 装置前記光源装置の上下に設けられた各 L E Dアレイは右目用画像表示用部と左 目用画像表示用部をなすことを特徴とする。  The light according to claim 15 is the stereoscopic image display according to claim 13, wherein each of the LED arrays provided above and below the light source device has a right-eye image display unit and a left-eye image display. It is characterized in that it forms a part.
本発明によれば、 L E Dアレイの右目用画像表示用部と左目用画像表示用部を L E D制御手段で発光制御することにより立体画像の表示制御を高い自由度で行 うことができる。  According to the present invention, display control of a stereoscopic image can be performed with a high degree of freedom by controlling light emission of the right-eye image display unit and the left-eye image display unit of the LED array by the LED control unit.
図面の簡単な説明 図 1は、 本発明の実施の一形態例に係る立体映像表示装置の構成を示すプロッ ク図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a block diagram showing a configuration of a stereoscopic video display device according to one embodiment of the present invention.
図 2は、 図 1に示した立体映像表示装置の表示制御回路を示すプロック図であ る。  FIG. 2 is a block diagram showing a display control circuit of the stereoscopic video display device shown in FIG.
図 3は、 観察者の立体像の見え方を示す図である。  FIG. 3 is a diagram showing how a viewer sees a stereoscopic image.
図 4は、 観察者の立体像の見え方を示す図である。  FIG. 4 is a diagram showing how a viewer sees a stereoscopic image.
図 5は、 観察者の立体像の見え方を示す図である。  FIG. 5 is a diagram showing how a viewer sees a stereoscopic image.
図 6は、 観察者の立体像の見え方を示す図である。  FIG. 6 is a diagram illustrating how a viewer sees a stereoscopic image.
図 7は、 観察者の立体像の見え方を示す図である。  FIG. 7 is a view showing how a viewer sees a stereoscopic image.
図 8は、 表示手段の構成を示す図である。  FIG. 8 is a diagram showing a configuration of the display means.
図 9は、 表示装置の詳細な構成を示す分解斜視図である。  FIG. 9 is an exploded perspective view showing a detailed configuration of the display device.
図 1 0は、 表示装置の液晶の表示状態を示す図である。  FIG. 10 is a diagram showing a display state of the liquid crystal of the display device.
図 1 1は、 表示装置の市松状板の偏光方向を示す図である。  FIG. 11 is a diagram illustrating the polarization direction of the checkerboard of the display device.
図 1 2は、 異なる位置の観察者に適正な画像を表示している状態を示す図であ る。  FIG. 12 is a diagram showing a state in which an appropriate image is displayed to observers at different positions.
図 1 3は、 本発明の他の実施の形態例に係る立体映像表示装置の構成を示す図 である。  FIG. 13 is a diagram showing a configuration of a stereoscopic video display device according to another embodiment of the present invention.
図 1 4は、 本発明のさらに他の実施の形態に係る立体映像表示装置の構成を示 す図である。  FIG. 14 is a diagram showing a configuration of a stereoscopic video display device according to still another embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1乃至図 1 3は、 本発明の実施の一形態例に係る立体映像表示装置の一構成 例を示すものである。  1 to 13 show an example of a configuration of a stereoscopic video display device according to an embodiment of the present invention.
図 1は、 本形態例に係る立体映像表示装置の構成を示すプロック図を、 図 2は 図 1に示した立体映像表示装置の表示制御回路を示すブロック図を、 図 3乃至図 5は観察者の立体像の見え方を示す図を、 図 6およぴ図 7は立体像の出現位置を 説明する図を、 図 8は表示手段の構成を示す図を、 図 9は表示装置の詳細な構成 を示す分解斜視図を、 図 1 0は表示装置の液晶の表示状態を示す図を、 図 9は表 示装置の市松状板の偏光方向を示す図を、 図 1 1は異なる位置の観察者に適正な 画像を表示している状態を示す図である。 FIG. 1 is a block diagram showing a configuration of the stereoscopic video display device according to the present embodiment, FIG. 2 is a block diagram showing a display control circuit of the stereoscopic video display device shown in FIG. 1, and FIGS. 6 and 7 show the appearance position of the stereoscopic image, FIG. 8 shows the configuration of the display means, and FIG. 9 shows details of the display device. FIG. 10 is a diagram showing the display state of the liquid crystal of the display device, FIG. 9 is a diagram showing the polarization direction of the checkerboard of the display device, and FIG. Appropriate for the observer It is a figure showing the state where an image is displayed.
即ち、 本発明の実施の形態に係る立体映像表示装置 1は、 図 1に示すように、 表示制御回路 1 0 0と、 例えば液晶表示装置からなる表示手段 1 2 1 と、 を備え てなる。  That is, as shown in FIG. 1, the stereoscopic video display device 1 according to the embodiment of the present invention includes a display control circuit 100 and a display unit 121 formed of, for example, a liquid crystal display device.
本形態例において上記表示制御回路 1 0 0は、 左目映像と右目映像とからなる 立体映像信号を生成する立体映像信号生成回路 1 0 1 と、 表示手段 1 2 1を駆動 する駆動回路 1 0 2と、 を備えてなり、 立体映像信号生成回路 1 0 1は、 前記立 体視可能な映像に関する映像情報、 即ち制作時において想定される表示画像のサ ィズ、観察者の位置、クロスポイント情報を取得する映像情報取得手段 1 0 3 と、 表示手段の表示領域に関する表示装置情報、 即ち実際に表示される画像サイズ、 観察者の表示装置に対する位置情報を取得する情報取得手段 1 0 4と、 前記映像 情報及び前記表示装置情報に基づいて前記左目映像と前記右目映像とをずらして 表示するためのオフセッ ト値を設定して、 異なる条件の映像情報、 表示情報に対 して観察者に同一の立体感を与える立体画像信号を前記表示手段 1 2 1に表示さ せるオフセッ ト設定手段 1 0 6 と、 を備えている。  In the present embodiment, the display control circuit 100 includes a stereoscopic video signal generating circuit 101 for generating a stereoscopic video signal composed of a left-eye video and a right-eye video, and a driving circuit 1002 for driving the display means 121. The stereoscopic video signal generation circuit 101 includes video information related to the stereoscopically visible video, that is, a size of a display image assumed at the time of production, a position of an observer, and cross-point information. Image information acquiring means 10 3 for acquiring the information of the display area of the display means, ie, the image size actually displayed, and the information acquiring means 10 4 of acquiring the position information of the observer with respect to the display device. An offset value for shifting and displaying the left-eye image and the right-eye image based on the image information and the display device information is set to be the same for an observer for image information and display information under different conditions. of And an offset setting means 106 for displaying a stereoscopic image signal giving a stereoscopic effect on the display means 121.
本実施の形態例に係る立体映像信号生成回路 1 0 1には、 図 2に示すように、 撮影時に記録されたデータとして、 左目映像 1 0、 右目映像 1 1、 撮影時のクロ スポイン トまでの距離 (C P情報) 1 3が入力される。 この左目映像 1 0は左目 用カメラによって、 右目映像 1 1は左目用カメラに並べて配置された右目用カメ ラによって撮影されている。 また、 左目用カメラと右目用カメラとは、 互いの光 軸が交差するように光軸が平行となる位置より傾けて配置されており、 この光軸 が交わる点が撮影対象面上に存在するクロスポイント (C P ) である。  As shown in FIG. 2, the stereoscopic video signal generation circuit 101 according to the present embodiment includes, as data recorded at the time of shooting, left-eye video 10, right-eye video 11, and a cross-point at the time of shooting. Distance (CP information) 13 is input. The left-eye image 10 is shot by the left-eye camera, and the right-eye image 11 is shot by the right-eye camera arranged side by side with the left-eye camera. Further, the left-eye camera and the right-eye camera are arranged at an angle from the position where the optical axes are parallel so that their optical axes intersect with each other, and a point where the optical axes intersect exists on the imaging target surface. Cross point (CP).
また、撮影装置には、立体映像の撮影時には C Pまでの距離を、 レーザ測距や、 左目用カメラと右目用カメラとの傾きによって測定したり、 撮影者が入力するク ロスボイントデータ入力装置 1 2が備わっており、 立体映像の撮影時には C Pま での距離の情報は C P情報として立体映像とともに記録されている。 また、 左目 用カメラと右目用カメラとの間の距離 (眼間距離) も C P情報として記録されて いる。 この眼間距離情報は、 人間の目の間の距離に相当し、 一般的には、 6 3 m mから 6 8 m mの間で選択されるものである。 立体映像信号生成回路に入力された左目映像 1 ◦は、 A Dコンバータ 2 0によ つてデジタル化されて、 左目映像用フレームメモリ 3 0に記録される。 同様に、 入力された右目映像 1 1は A Dコンバータ 2 1によってデジタル化されて、 右目 映像用フレームメモリ 3 1に記録される。 また、 A Dコンバータ 2 0、 2 1には 切換制御部 4 1から A D変換のためのク口ック信号 2 2が入力されている。 デジタル化されてフレームメモリ 3 0、 3 1に記録された左目映像及び右目映 像は信号切換器 4 0に入力される。 信号切換器 4 0は、 左目映像と右目映像とを 切り替えて読み出すことによって、 合成立体映像を合成フレ一ムメモリ 5 0に記 録して、 合成立体映像信号を生成する。 この信号切換器 4 0は、 切換制御部 4 1 から指示されたタイミング信号によって動作するスィツチ (半導体スィツチング 素子) である。 In addition, the shooting device measures the distance to the CP when shooting stereoscopic images by laser distance measurement, the inclination between the left-eye camera and the right-eye camera, and a cross-point data input device that the photographer inputs. 2 is provided, and when shooting a 3D image, information on the distance to the CP is recorded along with the 3D image as CP information. The distance between the left-eye camera and the right-eye camera (interocular distance) is also recorded as CP information. This interocular distance information corresponds to the distance between the human eyes, and is generally selected between 63 mm and 68 mm. The left-eye video 1 ◦ input to the stereoscopic video signal generation circuit is digitized by the AD converter 20 and recorded in the left-eye video frame memory 30. Similarly, the input right-eye video 11 is digitized by the AD converter 21 and recorded in the right-eye video frame memory 31. In addition, the AD converters 20 and 21 are supplied with a feedback signal 22 for AD conversion from the switching control unit 41. The left-eye video and right-eye video digitized and recorded in the frame memories 30 and 31 are input to the signal switch 40. The signal switch 40 records the combined stereoscopic video in the composite frame memory 50 by switching and reading the left-eye video and the right-eye video, and generates a composite stereoscopic video signal. The signal switch 40 is a switch (semiconductor switching element) that operates according to a timing signal specified by the switching control section 41.
本実施の形態の立体映像信号生成回路では、 左目映像 1 0と右目映像 1 1 とか ら、 左目映像 1 0と右目 I映像 1 1 とが 1水平ライン毎に合成された合成立体映像 信号を生成する。 すなわち、 インターレース方式の場合は、 走査線一本おきに映 像が表示されるので、 信号切換器 4 0によってフィールド毎 (例えば、 N T S C 方式の垂直同期タイ ミングである 1 6 . 6 8 3 3 m秒毎) に合成フレームメモリ 5 0に書き込む映像信号を切り替える。一方、ノンィンターレ一ス方式の場合は、 走査線を順に表示するので左目映像と右目映像とを走査線 1 ラインおきに表示す るために、 信号切換器 4 0によって走査線毎 (例えば、 N T S C方式の水平同期 タイミングである 6 3 . 5 5 5 5 μ秒毎) に合成フレームメモリ 5 0に書き込む 映像信号を切り替える。  The stereoscopic video signal generation circuit of the present embodiment generates a composite stereoscopic video signal in which the left-eye video 10 and the right-eye I-video 11 are synthesized for each horizontal line from the left-eye video 10 and the right-eye video 11 I do. That is, in the case of the interlaced system, an image is displayed every other scanning line, so that the signal switching unit 40 uses the signal switching unit 40 for each field (for example, NTSC type vertical synchronization timing of 16.6833.3 m). The video signal to be written to the composite frame memory 50 is changed every second). On the other hand, in the case of the non-interlace method, since the scanning lines are displayed in order, the left-eye image and the right-eye image are displayed every other scanning line. The video signal to be written to the composite frame memory 50 is switched at the horizontal synchronization timing of 63.55.555 μsec).
この合成フレームメモリ 5 0に書き込むための右目映像データを右目映像用フ レームメモリ 3 1から読み出すタイミングは、 読み出しタイミング制御部 3 2に よって制御されている。 読み出しタイ ミング制御部 3 2には、 C P情報 1 3、 切 換制御部 4 1からの信号切換器 4 0のタイミング信号、 画面サイズ情報及び立体 度調整信号が入力される。 読み出しタイミング制御部 3 2では、 これらの情報か ら右目映像用フレームメモリ 3 1から読み出すタイ ミングを算出し、 右目映像用 フレームメモリ 3 1からのデータの読み出しクロックを発生して、 右目用映像を 正規のタイミングから遅れて (又は、 早めて) 読み出すことによって、 適切な立 体感が得られる視差量を与えるタイミングを調整する。 すなわち、 右目映像用フ レームメモリ 3 1からの右目信号の読み出しタイミングを、 C P情報 1 3及び画 面サイズ情報によって、 左目信号の読み出しタイミングに対して制御して、 立体 感が最適になるタイミングで読み出されるようにしている。 The timing at which the right-eye video data for writing to the composite frame memory 50 is read from the right-eye video frame memory 31 is controlled by the read timing control unit 32. The read timing control unit 32 receives the CP information 13, the timing signal of the signal switch 40 from the switching control unit 41, the screen size information, and the stereoscopic degree adjustment signal. The read timing control unit 32 calculates the timing of reading from the right-eye video frame memory 31 from the information, generates a clock for reading data from the right-eye video frame memory 31, and generates the right-eye video. By reading out later (or earlier) from the correct timing, proper Adjust the timing of giving the amount of parallax that gives a bodily sensation. That is, the timing of reading the right-eye signal from the right-eye video frame memory 31 is controlled with respect to the timing of reading the left-eye signal based on the CP information 13 and the screen size information, so that the stereoscopic effect is optimized. It is read out.
切換制御部 4 1は、 信号切換器 4 0を制御するもので、 同期信号発生器 7 0か ら入力される水平同期信号 7 1、 垂直同期信号 7 2、 ドッ ト同期信号 7 3及び左 右基準信号 7 4に基づいて信号切換器 4 0の動作を制御する。 すなわち、'前述し たように、 どのようなタイミングで信号切換器 4 0を切り替えて、 合成立体映像 信号を生成するために映像データの合成フレームメモリ 5 0への書き込みタイミ ングを設定する。  The switching control section 41 controls the signal switch 40, and outputs a horizontal synchronizing signal 71, a vertical synchronizing signal 72, a dot synchronizing signal 73 and a left / right signal input from the synchronizing signal generator 70. The operation of the signal switch 40 is controlled based on the reference signal 74. That is, as described above, the signal switch 40 is switched at what timing to set the timing of writing the video data to the composite frame memory 50 in order to generate a composite stereoscopic video signal.
同期信号発生部 7 0は、 立体映像信号生成回路の外部 (例えば、 ディスプレイ コントローラ) から入力された映像同期信号 8 2に基づいて水平同期信号 7 1及 び垂直同期信号 7 2を生成する。 また、 外部から入力されたドッ トサンプリンク' 信号 8 3に基づいてドッ ト同期信号 7 3を生成する。 また、 映像同期信号 8 2に 基づいて左右基準信号 7 4を生成する。 この左右基準信号 7 4は、 ビデオ信号な どの一般的な映像信号を用いて立体映像信号を表示、 伝送する場合、 映像信号が 左の映像のものか、 右の映像のものかを識別するための信号であり、 切換制御部 4 1に入力される他、 立体映像信号生成回路の外部に対して出力される。 · The synchronizing signal generator 70 generates a horizontal synchronizing signal 71 and a vertical synchronizing signal 72 based on a video synchronizing signal 82 input from outside of the stereoscopic video signal generating circuit (for example, a display controller). Further, a dot synchronization signal 73 is generated based on a dot sampling link signal 83 input from the outside. Further, a left and right reference signal 74 is generated based on the video synchronization signal 82. When displaying and transmitting a stereoscopic video signal using a general video signal such as a video signal, the left and right reference signals 74 are used to identify whether the video signal is for a left video or a right video. This signal is input to the switching control unit 41 and output to the outside of the stereoscopic video signal generation circuit. ·
D Aコンバータ 6 0は、デジタル化された映像信号をアナログ信号に変換して、 合成立体映像信号として出力する。 The DA converter 60 converts the digitized video signal into an analog signal and outputs it as a composite stereoscopic video signal.
なお、 前述した実施の形態では、 C P情報 1 3及ぴ画面サイズ情報によって、 右 1=1映像データの読み出しタイミングを制御して適切な立体感が得られるように したが、 C Pまでの距離が無限大である (C P情報 1 3がない) 場合でも画面サ ィズ情報に応じて、 右目映像データの読み出しタイミングを制御して、 視差量を 調整することができる。  In the above-described embodiment, the right 1 = 1 video data read timing is controlled based on the CP information 13 and the screen size information so that an appropriate stereoscopic effect can be obtained. Even in the case of infinity (there is no CP information 13), the parallax amount can be adjusted by controlling the read timing of the right eye video data according to the screen size information.
また、 前述した立体映像信号生成回路に供給される立体映像信号は、 左右一対 のカメラ (レンズ及ぴ搌像素子) を有した立体映像撮影装置を用いて、 左右の映 像記録と同時に左右撮像素子の間隔 (眼間距離) 及び左目映像用カメラの光軸と 右目映像用カメラの光軸との交差点 (クロスポイント) までの距離をクロスボイ ント情報と して記録する機能を備えた立体映像撮影装置によって記録される。 す なわち、 該立体映像撮影装置は、 立体映像と共に立体感に関するデータを記録し ている。 In addition, the stereoscopic video signal supplied to the above-described stereoscopic video signal generation circuit is captured by a stereoscopic video photographing apparatus having a pair of left and right cameras (lens and image element) while simultaneously recording the left and right images. The distance between the elements (interocular distance) and the distance to the intersection (cross point) between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera are determined by It is recorded by a stereoscopic video photographing device having a function of recording as event information. That is, the three-dimensional image capturing apparatus records data relating to a three-dimensional effect together with a three-dimensional image.
さらに、 前述した立体映像信号生成回路に供給される立体映像信号を、 左右一 対映像をコンピュータグラフィック (C G ) で制作する機能を有する立体映像制 作装置を用いて、 左右の映像記録と共に左右眼間距離と左右映像の光学上のクロ スポイント (左右視線の交差する点) までの距離をクロスポイント情報として記 録する機能を備えた立体映像制作装置によって生成される。 すなわち、 該立体映 制作装置は、 立体 C G映像と共に立体感に関するデータを生成し記録している。 図 3から図 5は、 本発明の実施の形態における、 左右映像の相対位置の変化によ る立体度の調整を説明する図である。  Further, the stereoscopic video signal supplied to the above-described stereoscopic video signal generation circuit is converted into a left-right image together with the left-right video image using a stereoscopic video production device having a function of producing a pair of right and left images by computer graphic (CG). It is generated by a stereoscopic video production device equipped with a function that records the distance between the camera and the optical cross point of the left and right images (the point where the left and right eyes intersect) as cross point information. That is, the three-dimensional image production apparatus generates and records data relating to the three-dimensional effect together with the three-dimensional CG image. FIGS. 3 to 5 are diagrams illustrating the adjustment of the stereoscopic degree by changing the relative positions of the left and right images according to the embodiment of the present invention.
図 3は、 右目映像と左目映像とが撮影時の位置にある場合を示す。  FIG. 3 shows a case where the right-eye image and the left-eye image are at the positions at the time of shooting.
ォリジナル立体映像 3 0 0は、 左目映像 3 0 1 と右目映像 3 0 2とによつて構 成されている。 この状態では、 左目映像 3 0 1 と右目映像 3 0 2との位置は撮影 時と等しい位置にあり、 左右映像の相対位置が正しく再現されている。 よって、 クロスポイント 3 0 3は撮影時 (オリジナルクロスポイント) の位置にある。 図 4は、 右目映像を右側にずらして表示した状態を示す。  The original stereoscopic image 300 is composed of a left-eye image 301 and a right-eye image 302. In this state, the position of the left-eye image 301 and the position of the right-eye image 302 are the same as those at the time of shooting, and the relative positions of the left and right images are correctly reproduced. Therefore, cross point 303 is located at the time of shooting (original cross point). Figure 4 shows a state where the right-eye image is displayed shifted to the right.
立体映像 3 1 0は、 左目映像 3 1 1 と右目映像 3 1 2とによって構成されてい る。 左目映像の読み込みタイミングに対して、 右目映像の読み込みタイミングを 遅く して (右目信号の位相を遅らせて)、左目映像に対して右目映像を右側にずら すオフセッ トを設定して表示した場合、 左目で左目映像を見た視線と、 右目で右 目映像を見た視線とは表示画面の奥側で交差して、 クロスポイント 3 1 3が撮影 時の位置より遠方に移動する。 よって、 オリジナル立体映像よりも、 飛び出し度 が弱まり、 奥行き感が強調され、 全体に遠方に遠ざかった映像となる。  The stereoscopic image 310 is composed of a left-eye image 311 and a right-eye image 312. If the right-eye image read timing is delayed with respect to the left-eye image read timing (the right-eye signal phase is delayed), and an offset is set to shift the right-eye image to the right with respect to the left-eye image, and displayed. The line of sight looking at the left-eye image with the left eye and the line of sight looking at the right-eye image with the right eye intersect on the far side of the display screen, and the cross point 3 13 moves farther than the shooting position. Therefore, the degree of projection is weaker than in the original stereoscopic image, the sense of depth is emphasized, and the image is farther away from the whole.
図 5は、 右目映像を左側にずらして表示した状態を示す。  Figure 5 shows a state where the right-eye image is displayed shifted to the left.
立体映像 3 2 0は、 左目映像 3 2 1 と右目映像 3 2 2とによって構成されてい る。 左目映像の読み込みタイミングに対して、 右目映像の読み込みタイミングを 早く して (右目信号の位相を進めて)、左目映像に対して右目映像を左側にずらす オフセッ トを設定して表示した場合、 左目で左目映像を見た視線と、 右目で右目 映像を見た視線とは表示画面の手前側で交差して、 クロスポイント 3 2 3が撮影 時の位置より手前となる。 よって、 オリジナル立体映像よりも、 飛び出し度が強 調され、 奥行き感が弱まり、 全体に手前に近づいた映像となる。 The stereoscopic image 320 is composed of a left-eye image 3221 and a right-eye image 3222. When the right-eye image is read earlier than the left-eye image is read (the phase of the right-eye signal is advanced), the right-eye image is shifted to the left with respect to the left-eye image. And the right eye with the right eye The line of sight intersects the line of sight of the image on the near side of the display screen, and the cross point 3 2 3 is closer to the position at the time of shooting. Therefore, the degree of protrusion is emphasized, the sense of depth is reduced, and the image is closer to the front than the original stereoscopic image.
なお、 オフセッ トを設定して左眼映像と右眼映像とを表示したときに、 左右眼 映像の左右端部の各々一方が欠けるが、 この映像が不足する領域の近傍の映像を 横方向に拡大して表示するとよい。 このとき、 表示画面の縦横比 (ァスぺク ト比) に基づいて、 映像を縦方向にも拡大して表示する。 具体的には、 4に示すオフセ ッ ト状態では、 右眼映像の左端が欠けるが、 右眼映像の左端の映像を表示画面の 左端部まで伸長して右眼映像を表示する。また、図 5に示すオフセッ ト状態では、 右眼映像の右端が欠けるが、 右眼映像の右端の映像を表示画面の右端部まで伸長 して右眼映像を表示する。 これらのオフセッ トした映像の側部を伸長するととも に、 表示画面のアスペク ト比で側部の映像を縦方向にも伸長して、 映像を拡大し て表示することによって、 表示画面からオフセッ トした映像が欠落して、 何も映 像が表示されない領域 (黒色に表示される領域) を生じさせることがなく、 自然 な立体映像を表示することができる。  When an offset is set to display the left-eye image and the right-eye image, one of the left and right ends of the left- and right-eye images is missing. It is good to enlarge and display. At this time, the image is enlarged and displayed in the vertical direction based on the aspect ratio of the display screen (aspect ratio). Specifically, in the offset state shown in 4, the left end of the right-eye image is lacking, but the left-end image of the right-eye image is extended to the left end of the display screen to display the right-eye image. In the offset state shown in Fig. 5, the right end of the right eye image is missing, but the right end image of the right eye image is extended to the right end of the display screen to display the right eye image. By extending the sides of these offset images and extending the side images vertically in the aspect ratio of the display screen to enlarge and display the images, the offset from the display screen can be obtained. A natural three-dimensional image can be displayed without causing a region in which no image is displayed (a region displayed in black) due to lack of the reproduced image.
次に、 左右眼映像のオフセッ ト量の算出について説明する。  Next, the calculation of the offset amount of the left and right eye images will be described.
図 6は、 オリジナル立体映像の視差量と立体像出現位置との関係を示す。 オリ ジナル立体映像 3 0 0においては、 図 3に示すように右目映像と左目映像とが撮 影時の位置関係にある。 このとき、 立体像出現位置 (立体像の見える位置と観察 者との間の距離) を L d、 視距離 (観察者と表示画面との間の距離) を L s、 表 示画面上に表示される左眼映像と右眼映像との視差量を X 1、眼間距離を d e (約 6 5 m m ) とすると、 上記パラメ一タは図 6に示す式 ( 1 ) によって表される。 そして、 立体像出現位置 L dは、 この式を解く ことによって、 視差量 X Iの関数 として求めることができる。 ここで X Iは、 表示画面の大きさによって (表示画 面サイズに比例して) 変化する。  FIG. 6 shows the relationship between the amount of parallax of the original stereoscopic video and the appearance position of the stereoscopic image. In the original stereoscopic image 300, the right-eye image and the left-eye image are in a positional relationship at the time of shooting as shown in FIG. At this time, the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be viewed and the observer) is displayed on the display screen as Ld, the viewing distance (the distance between the observer and the display screen) as Ls. Assuming that the amount of parallax between the left-eye image and the right-eye image to be performed is X1 and the interocular distance is de (approximately 65 mm), the above parameters are expressed by equation (1) shown in FIG. Then, the stereoscopic image appearance position L d can be obtained as a function of the amount of parallax XI by solving this equation. Here, XI changes depending on the size of the display screen (in proportion to the display screen size).
図 7は、 左右眼画像にオフセッ トを与えた場合の左右眼映像の視差量と立体像 出現位置との関係を示す。 このとき、 立体像出現位置 (立体像の見える位置と観 察者との間の距離) を L d、 視距離 (観察者と表示画面との間の距離) を L s、 左右眼映像のオフセッ ト量を X o、 表示画面上に表示される左眼映像と右眼映像 との視差量を X I、 眼間距離を d e (約 6 5 m m) とすると、 上記パラメータは 図 7に示す式 (2 ) によって表される。 そして、 オリジナル映像と同じ立体像出 現位置 L dを得るために、 図 6に示す式 ( 1 ) によって求めた L dを式 ( 2 ) に 代入する。 そして、 左右眼映像のオフセッ ト量 X oを求める。 Fig. 7 shows the relationship between the amount of parallax of the left and right eye images and the stereoscopic image appearance position when an offset is given to the left and right eye images. At this time, the appearance position of the stereoscopic image (the distance between the position where the stereoscopic image can be seen and the observer) is L d, the viewing distance (the distance between the observer and the display screen) is L s, and the offset of the left and right eye images is X o, the left eye image and the right eye image displayed on the display screen Assuming that the amount of parallax between is XI and the interocular distance is de (approximately 65 mm), the above parameters are expressed by equation (2) shown in Fig. 7. Then, in order to obtain the same stereoscopic image appearance position L d as that of the original video, L d obtained by equation (1) shown in FIG. 6 is substituted into equation (2). Then, the offset Xo of the left and right eye images is obtained.
図 8乃至図 1 2は、 本実施の形態の立体映像表示装置を示す構成図である。 表示手段 1 2 1は液晶を用いた表示装置によって構成されており、 図 8及び図 9に示すように、 平面光源 5の発光面左右に偏光方向が直交する右眼用偏光フィ ルタ部 6 a と、 左眼用偏光フィルタ部 6 bとを配置している。 なお、 発光素子と 偏光フィルタを用いなくても、 異なる偏光の光を異なる位置から照射するように 構成すればよく、 例えば、 異なる偏光の光を発生する発光素子を二つ設けて、 異 なる偏光の光を異なる位置からフレネルレンズ 3に照射するように構成してもよ い。  8 to 12 are configuration diagrams showing the stereoscopic video display device of the present embodiment. The display means 122 is composed of a display device using liquid crystal, and as shown in FIGS. 8 and 9, a right-eye polarization filter section 6 a whose polarization direction is orthogonal to the left and right of the light emitting surface of the flat light source 5. And a left-eye polarization filter section 6b. It should be noted that, without using a light emitting element and a polarizing filter, it is sufficient to irradiate light of different polarizations from different positions.For example, two light emitting elements that generate light of different polarizations are provided and different polarizations are provided. The light may be applied to the Fresnel lens 3 from different positions.
また、 本実施形態例において 3はフレネルレンズであり、 各フィルタ部 6 a , 6 bを通過した各光は、 このフレネルレンズ 3で平行光として液晶表示素子 2に 照射される。 そして、 本実施形態例では液晶表示素子 2の表示パネル 2 aは、 図 1 0に示すように、 立体視される第一及び第二の画像を構成する画素 (L、 R ) を平面的に交互に配置される市松模様をなすように配置するものとしている。 そ して、この表示パネルの光源側及ぴ観察者側の両面にはそれぞれ偏光パネル 2 b, 2 cが貼付されている。  In the present embodiment, reference numeral 3 denotes a Fresnel lens, and each light that has passed through each of the filter portions 6a and 6b is irradiated on the liquid crystal display element 2 as parallel light by the Fresnel lens 3. In the present embodiment, the display panel 2a of the liquid crystal display element 2 displays the pixels (L, R) constituting the first and second images viewed stereoscopically as shown in FIG. They are arranged so as to form a checkered pattern that is arranged alternately. Polarizing panels 2b and 2c are attached to both sides of the display panel on the light source side and on the observer side, respectively.
本実施形態例において、 上記液晶表示パネル 2は、 2枚の透明板(例えば、 ガラ ス板)の間に所定の角度(例えば 9 0度)ねじれて配向された液晶が配置されてお り、 例えば、 T F T型の液晶表示パネルを構成している。 液晶表示パネルに入射 した光は、 液晶に電圧が加わっていない状態では、 入射光の偏光が 9 0度ずらし て出射される。 一方、 液晶に電圧が加わっている状態では、 液晶のねじれが解け るので、 入射光はそのままの偏光で出射される。  In the present embodiment, the liquid crystal display panel 2 has a liquid crystal that is oriented by being twisted at a predetermined angle (for example, 90 degrees) between two transparent plates (for example, a glass plate). For example, it constitutes a TFT type liquid crystal display panel. The light incident on the liquid crystal display panel is emitted with the polarization of the incident light shifted by 90 degrees when no voltage is applied to the liquid crystal. On the other hand, when a voltage is applied to the liquid crystal, the liquid crystal is untwisted, and the incident light is emitted with the same polarization.
そして、 本実施形態例では、 表示パネル 2の光源側に市松状フィルタ 7が貼付 されている。  In the present embodiment, a checkered filter 7 is attached to the light source side of the display panel 2.
即ち、 偏光フィルタ 6を透過した光はフレネルレンズ 3に照射され、 フレネル レンズ 3では光源 5から拡散するように放射された光の光路を略平行になり市松 状フィルタを透過して、 液晶表示パネル 2に照射される。 That is, the light transmitted through the polarizing filter 6 is applied to the Fresnel lens 3, and the Fresnel lens 3 makes the optical paths of the light radiated so as to be diffused from the light source 5 become almost parallel, and The light is transmitted to the liquid crystal display panel 2 through the filter.
このとき、 市松状フィルタ 7から照射される光は、 上下方向に広がることがな いように出射され、 液晶表示パネル 2に照射される。 すなわち、 市松状フィルタ 7の特定の領域を透過した光が、 液晶表示パネル 2の特定表示単位の部分を透過 するようになつている  At this time, the light emitted from the checkered filter 7 is emitted so as not to spread in the vertical direction, and is emitted to the liquid crystal display panel 2. That is, light transmitted through a specific area of the checkered filter 7 is transmitted through a specific display unit of the liquid crystal display panel 2.
また、 液晶表示パネルに照射される光のうち、 偏光フィルタ 6の右側偏光フィ ルタ部 aを通過した光と左側偏光フィルタ部 bを通過した光とは、 異なる角度で フレネルレンズ 3に入射し、 フレネルレンズ 3で屈折して左右異なる経路で液晶 表示パネル 2から放射される。  Also, of the light applied to the liquid crystal display panel, the light that has passed through the right polarizing filter part a and the light that has passed through the left polarizing filter part b of the polarizing filter 6 enter the Fresnel lens 3 at different angles, The light is refracted by the Fresnel lens 3 and is radiated from the liquid crystal display panel 2 through different paths.
市松状フィルタ 7は、 透過する光の位相を変える領域が、 図 9 ( 1 ) に示すよ うに微細な間隔の市松状模様で繰り返して配置されている。 具体的には、 図 1 1 ( 2 ) に示すように光透過性の基材 1 7 1に、 微細な幅の 1 / 2波長板 1 7 2が 設けられた領域 7 a と、 1 / 2波長板 1 7 2の幅と同一の微細な間隔で、 1 / 2 波長板 1 7 2が設けられていない領域 7 b とが微細な間隔で繰り返して設けられ た列が位相をずらして設けられている。 なお、 この 1 / 2波長板は光源側に設け ても、 表示パネル側に設けても差し支えない。  The checkerboard filter 7 has regions in which the phase of transmitted light is changed repeatedly arranged in a checkerboard pattern at fine intervals as shown in FIG. 9 (1). Specifically, as shown in FIG. 11 (2), a region 7a in which a 1 / 2-wavelength plate 172 having a fine width is provided on a light-transmitting substrate 171, and 1/2 A row in which the half-wave plate 172 is not provided with the region 7b where the half-wave plate 172 is not provided at the same fine interval as the width of the wave plate 17 ing. The half-wave plate may be provided on the light source side or on the display panel side.
このよ うな構成により、 設けられた 1 / 2波長板 1 7 2によって透過する光の 位相を変える領域 7 a と、 1 / 2波長板 1 7 2が設けられていないために透過す る光の位相を変えない領域 7 b とが微細な間隔の市松模様として規則的に設けら れているものである。 1 / 2波長板は、 透過する光の位相を変化させる位相差板 として機能する。 1 Z 2波長板 1 7 2は、 その光学軸を偏光フィルタ 6の右側偏 光フィルタ部 aを透過する光の偏光軸と 4 5度傾けて配置して、 右側偏光フィル タ部 aを透過した光の偏光軸を 9 0度回転させて出射する。 すなわち、 右側偏光 フィルタ部 aを透過した光の偏光軸を 9 0度回転させて、 左側偏光フィルタ部 b を透過する光の偏光と等しくする。 また、 1 / 2波長板 7 2が設けられていない 領域 7 b は、 左側偏光フィルタ部 b を通過した偏光板 2 b と同一の偏光を有する 光を透過する。 さらに、 1 / 2波長板 7 2が設けられた領域 7 a は、 右側偏光フ ィルタ部 aを通過した偏光板 2 1 と偏光軸が直交した光を、 偏光板 2 bの偏光軸 と等しくなるように回転させて出射する。 この巿松状フィルタ 7の偏光特性の繰り返しは、 液晶表示パネル 2の表示単位 と同一のピッチとして、表示単位毎(すなわち、表示単位の横方向の水平ライン及 び縦方向の垂直ライン)に透過する光の偏光が異なるようにする。 これにより、液 晶表示パネル 2の走査方向と副走査方向の表示単位毎に対応する微細位相差板の 偏光特性が異なるようになって、 隣り合う画素毎に出射する光の方向が異なる。 なお、 本発明では、 市松状フィルタ 7の偏光特性の繰り返しは、 液晶表示パネ ル 2の表示単位のピッチの整数倍のピッチとして、 市松状フィルタ 7の偏光特性 が複数の表示単位毎(すなわち、複数の表示単位の毎)に変わるようにしてもよい。 このように、 微細位相差板の偏光特性の繰り返し毎に異なる光を液晶表示パネル 2の表示素子に照射する必要があるため、 市松状フィルタ 7を透過して液晶表示 パネル 2に照射される光は、 上下方向の拡散を抑制したものである必要がある。 すなわち、 市松状フィルタ 7の光の位相を変化させる領域 7 aは、 偏光フィル タ 6の右側偏光フィルタ部 aを透過した光を、 左側偏光フィルタ部 bを透過した 光の偏光と等しく して透過する。 また、 市松状フィルタ 7の光の位相を変化させ- ない領域 7 bは、 偏光フィルタ 6の左側偏光フィルタ部 bを透過した光をそのま ま透過する。 そして市松状フィルタ 7を出射した光は、 左側偏光フィルタ部 bを 透過した光と同じ偏光を有して、 液晶表示パネル 2の光源側に設けられた偏光板 2 bに入射する。 With such a configuration, the region 7a that changes the phase of light transmitted by the provided 1/2 wavelength plate 172 and the light transmitted by the absence of the 1/2 wavelength plate 172 are provided. The region 7 b where the phase is not changed is regularly provided as a checkered pattern with a fine interval. The half-wave plate functions as a phase difference plate that changes the phase of transmitted light. The 1 Z 2 wavelength plate 1 72 has its optic axis inclined by 45 degrees with respect to the polarization axis of the light passing through the right polarizing filter section a of the polarizing filter 6, and has passed through the right polarizing filter section a. The light is emitted by rotating the polarization axis of the light by 90 degrees. That is, the polarization axis of the light transmitted through the right polarization filter unit a is rotated by 90 degrees to be equal to the polarization of the light transmitted through the left polarization filter unit b. The region 7b where the half-wavelength plate 72 is not provided transmits light having the same polarization as that of the polarizing plate 2b that has passed through the left polarizing filter portion b. Further, the region 7a where the half-wavelength plate 72 is provided becomes equal to the polarization axis of the polarizing plate 2b when the light whose polarization axis is orthogonal to that of the polarizing plate 21 that has passed through the right-side polarization filter portion a. And emit light. The repetition of the polarization characteristic of the 巿 -pine filter 7 is transmitted at the same pitch as the display unit of the liquid crystal display panel 2 for each display unit (ie, the horizontal horizontal line and the vertical vertical line of the display unit). The polarization of the light to be emitted is different. As a result, the polarization characteristics of the fine retardation plate corresponding to each display unit in the scanning direction and the sub-scanning direction of the liquid crystal display panel 2 become different, and the direction of light emitted from each adjacent pixel is different. In the present invention, the repetition of the polarization characteristic of the checkered filter 7 is performed by setting the polarization characteristic of the checkered filter 7 to a plurality of display units (ie, a pitch that is an integral multiple of the pitch of the display unit of the liquid crystal display panel 2). (For each of a plurality of display units). As described above, it is necessary to irradiate the display element of the liquid crystal display panel 2 with different light every time the polarization characteristic of the fine retardation plate is repeated. Must be one that suppresses vertical diffusion. That is, the area 7a of the checkered filter 7, which changes the phase of light, transmits the light transmitted through the right-side polarization filter section a of the polarization filter 6 while making it equal to the polarization of the light transmitted through the left-side polarization filter section b. I do. The region 7 b of the checkered filter 7 in which the phase of the light is not changed transmits the light transmitted through the left-side polarization filter part b of the polarization filter 6 as it is. Then, the light emitted from the checkered filter 7 has the same polarization as the light transmitted through the left polarizing filter part b, and enters the polarizing plate 2 b provided on the light source side of the liquid crystal display panel 2.
偏光板 2 bは第 2偏光板として機能し、 巿松状フィルタ 7を透過した光と同一 の偏光の光を透過する偏光特性を有する。 すなわち、 偏光フィルタ 6の左側偏光 フィルタ部 bを透過した光は第 2偏光板 2 cを透過し、 偏光フィルタ 6の右側偏 光フィルタ部 aを透過した光は偏光軸を 9 0度回転させられて第 2偏光板 2 bを 透過する。 また、 偏光板 2 cは第 1偏光板と して機能し、 偏光板 2 1 と 9 0度異 なる偏光の光を透過する偏光特性を有する。  The polarizing plate 2b functions as a second polarizing plate, and has a polarization characteristic of transmitting the same polarized light as the light transmitted through the pine filter 7. That is, the light transmitted through the left polarizing filter portion b of the polarizing filter 6 transmits through the second polarizing plate 2c, and the light transmitted through the right polarizing filter portion a of the polarizing filter 6 has its polarization axis rotated 90 degrees. Through the second polarizing plate 2b. Further, the polarizing plate 2c functions as a first polarizing plate, and has a polarization characteristic of transmitting light having a polarization 90 degrees different from that of the polarizing plate 21.
このような市松状フィルタ 7、 巿松状フィルタ 7、 偏光板 2 b、 液晶パネル 2 a及び偏光板 2 cを組み合わせて画像表示装置を構成する。  An image display device is configured by combining such a checkered filter 7, a checkered filter 7, a polarizing plate 2b, a liquid crystal panel 2a, and a polarizing plate 2c.
従って、 本形態例に係る立体映像表示装置 1によれば、 左右の画像が平面的に 市松模様をなすように表示され、 各画像がフィルタも市松模様で平面上に配置さ れているから、 水平解像度と垂直解像度を低下させることなく立体画像を表示で さる。 Therefore, according to the stereoscopic image display device 1 according to the present embodiment, the left and right images are displayed so as to form a checkerboard pattern in a plane, and the filters are also arranged on the plane in a checkerboard pattern. Display 3D images without reducing the horizontal and vertical resolutions Monkey
立体映像信号生成回路 1 0 1は、 前述したように、 入力された立体映像信号か ら合成立体映像信号を生成し、 生成した合成立体映像信号を駆動回路 1 0 2を介 して、 表示手段 1 2 1に供給する。 表示手段 1 2 1からは、 表示手段 1 2 1に備 えられた表示素子の表示可能領域の大きさに関する画面サイズ情報が出力されて いる。  As described above, the stereoscopic video signal generation circuit 101 generates a synthetic stereoscopic video signal from the input stereoscopic video signal, and outputs the generated synthetic stereoscopic video signal via the driving circuit 102 to display means. Supply 1 2 1 Display size information relating to the size of the displayable area of the display element provided in the display means 121 is output from the display means 122.
この画面サイズ情報は表示手段毎に設定されており、 表示手段に備えられた記 憶部 (メモリ) に記憶された縦横のドッ ト数、 表示領域の大きさの情報である。 また、 表示手段 1 2 1からは、 表示手段 1 2 1に表示された映像を観察者が視 聴する距離に関する視距離情報が出力されている。 この視距離情報は表示領域の 大きさに対応して定めてもよいし、 表示手段 1 2 1に観察者を検出する観察者位 置検出手段 1 2 2を設け、 表示手段 1 2 1で観察者 9 0と表示手段 1 2 1 との位 置関係を測定して、 位置離情報を得るようにしている。  This screen size information is set for each display means, and is information on the number of dots in the vertical and horizontal directions and the size of the display area stored in a storage unit (memory) provided in the display means. Further, the display means 122 outputs viewing distance information relating to the distance at which the observer views the image displayed on the display means 122. This viewing distance information may be determined according to the size of the display area, or an observer position detecting means 122 for detecting an observer is provided on the display means 122, and observation is performed on the display means 122. The positional relationship between the user 90 and the display means 122 is measured to obtain positional information.
表示手段 1 2 1から出力された画面サイズ情報及ぴ視距位置情報は、 表示情報 取得手段 1 0 4に入力され、 立体映像信号生成回路 1 0 1が必要とする形式のデ ータに変換されて、 立体映像信号生成回路 1 0 1に供給される。  The screen size information and viewing distance position information output from the display means 121 are input to the display information acquisition means 104 and converted into data in a format required by the stereoscopic video signal generation circuit 101. Then, it is supplied to the stereoscopic video signal generation circuit 101.
映像情報取得手段 1 0 3は、 表示制御回路 1 0 0に入力された立体映像信号か ら、 該立体映像の再生に適する画面サイズに関する適合画面サイズ情報、 再生時 に観察者が見るのに適する表示画面までの距離に関する適合視距離情報、 左目映 像用カメラの光軸と右目映像用カメラの光軸との間の距離に関するカメラ距離情 報、 及び、 左目映像用カメラの光軸と右目映像用カメラの光軸との交差点までの 距離に関するクロスポイント情報を抽出して、 立体映像信号生成回路 1 0 1が必 要とする形式のデータに変換して、 これらの情報を立体映像信号生成回路 1 0 1 に供給する。  The video information acquisition means 103 is adapted from the stereoscopic video signal input to the display control circuit 100, to suitable screen size information relating to a screen size suitable for reproduction of the stereoscopic video, suitable for an observer to see during reproduction. Compatible viewing distance information on the distance to the display screen, camera distance information on the distance between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera, and the optical axis of the left-eye video camera and the right-eye video The cross-point information on the distance to the intersection with the optical axis of the camera is extracted and converted into data in the format required by the stereoscopic video signal generation circuit 101, and this information is converted into a stereoscopic video signal generation circuit. Feed to 101.
また、 立体映像信号生成回路 1 0 1には、 入力部 1 0 5から立体度調整信号が 入力されており、 視聴者が入力部 1 0 5に指示した立体度に応じて、 左右目映像 をオフセッ トして表示し、 表示手段 1 2 1に表示される立体映像の立体度が変更 できるようになつている。  In addition, the stereoscopic video signal generation circuit 101 receives a stereoscopic degree adjustment signal from the input unit 105, and according to the stereoscopicity instructed by the viewer to the input unit 105, the left and right eye images are formed. The image is offset and displayed, and the stereoscopic degree of the stereoscopic image displayed on the display means 121 can be changed.
手動入力部 1 0 5は、 視聴者による操作されるスィッチ、 可変抵抗等であり、 観察者の嗜好により操作され、 表示制御回路の動作条件を変えるもので、 前述し た画面サイズ切換信号を出力し、 該画面サイズ切換信号を表示情報取得手段 1 0 4に供給する。 また、 前述した立体度調整信号を出力し、 該立体度調整信号を立 体映像信号生成回路 1 0 1に供給して、 観察者の好みに応じた立体感が得られる 視差量を調整する。 The manual input unit 105 is a switch operated by a viewer, a variable resistor, or the like. It is operated according to the observer's preference and changes the operating conditions of the display control circuit. The above-mentioned screen size switching signal is output, and the screen size switching signal is supplied to the display information acquiring means 104. Also, the stereoscopic degree adjustment signal described above is output, and the stereoscopic degree adjustment signal is supplied to the stereoscopic video signal generation circuit 101 to adjust the amount of parallax for obtaining a stereoscopic effect according to the preference of the observer.
視聴者の左目に到達する左目映像と右目に到達する右目映像とは、 表示手段 1 2 1の市松模様状に交互に表示される。 そして、 立体映像信号生成回路 1 0 1に よって、 右目フレームメモリ 3 1から右目映像を読み出すタイミングを遅らせる 又は早める制御をして、左目映像と右目映像との水平位相を遅らせて又は早めて、 左目映像と右目映像とのずらし量 (オフセッ ト) を設定して、 両眼視差を調整す ることによって、 立体度を調整する。  The left-eye video reaching the viewer's left eye and the right-eye video reaching the right eye are alternately displayed in a checkerboard pattern on the display means 122. Then, the stereoscopic video signal generation circuit 101 controls to delay or advance the timing of reading the right-eye video from the right-eye frame memory 31 to delay or advance the horizontal phase of the left-eye video and the right-eye video, and Adjust the binocular disparity by setting the amount of offset (offset) between the image and the right-eye image to adjust the stereoscopic effect.
以下に観察者の位置が変動した場合について説明する。  Hereinafter, a case where the position of the observer changes will be described.
まず、図 1 0に示すように、観察者位置検出手段 1 2 2で位置情報を検出する。 次に、 この情報を表示情報獲得手段 1 0 4で獲得し、 オフセッ ト手段設定手段 1 0 5でオフセッ ト量を算出して、 観察者の距離及ぴ、 左右位置に対応させ、 正 常に見えるよう、 駆動回路 1 0 2で表示手段 1 0 2を駆動する。  First, as shown in FIG. 10, position information is detected by the observer position detecting means 122. Next, this information is obtained by the display information obtaining means 104, the offset amount is calculated by the offset means setting means 105, and is correlated with the observer's distance and left and right positions, so that it can be seen normally. As described above, the display means 102 is driven by the drive circuit 102.
図 1 3及ぴ図 1 4は、 本発明に係る他の実施の形態例を示しており、 液晶表示 装置の光源 5を変更した例である。 図 1 3に示した例では、 複数の白色 L E D 2 0 1を複数水平方向に併設し、 左右の光源をなす 2列の L E Dアレイ 2 3 1 L , 2 3 1 Rと画像表示手段 (液晶表示板) 2 3 2と、 凸レンズの作用をなすフレネ ルレンズ 2 1 4と互いに直角の偏光方向をなし前記 L E Dアレイ 2 3 1 L , 2 3 1 Rに対応する 2つの偏光素子 2 6 6備える。  FIGS. 13 and 14 show another embodiment of the present invention, in which the light source 5 of the liquid crystal display device is changed. In the example shown in Fig. 13, a plurality of white LEDs 201 are arranged side by side in a horizontal direction, and two rows of LED arrays 2 3 1L and 2 3 1R serving as left and right light sources and image display means (liquid crystal display) Plate) 2 32 and a Fresnel lens 2 14 acting as a convex lens and two polarizing elements 2 6 6 which form polarization directions perpendicular to each other and correspond to the LED arrays 2 3 1 L and 2 3 1 R.
L E Dアレイ 2 1 1は、 表示制御回路 1 0 0に設けられた L E D制御手段 2. 1 3によって点灯及ぴ点滅制御される。 図 1 1では、 発光している L E Dを 「攀」 発光していない L E Dを 「〇」 で表している。  The LED array 211 is controlled to be turned on and off by LED control means 2.13 provided in the display control circuit 100. In FIG. 11, the LED that emits light is represented by “up”, and the LED that does not emit light is represented by “〇”.
本形態例では、 観察者 9 0の画像表示装置 (画像表示装置用光源装置 2 3 0 ) の光軸 Oからの変位量 d 1及び画像表示手段 2 3 2からの距離 d 2を測定して測 定信号を発する観察者位置判定手段 2 3 4を備える。 本形態例において、 観察者 位置判定手段 2 3 4は超音波方式、 赤外線方式その他任意の手段を用いることが できる。 In the present embodiment, the displacement d1 of the image display device (light source device 230 for the image display device) of the observer 90 from the optical axis O and the distance d2 from the image display means 232 are measured. An observer position judging means 2 3 4 for emitting a measurement signal is provided. In this embodiment, the observer position determination means 2 3 4 may use an ultrasonic method, an infrared method, or any other means. it can.
L ED制御手段 2 3 3は、 上記測定信号に基づいて、 L EDアレイ 2 3 1の白 色 L E D 1の点灯個所 2 3 5, 2 3 6を点灯させるよう制御し、 L EDア レイ 2 3 1の発光位置を観察者 9 0の移動 (矢印 dで示した) に対応させた位置に高速 に移動させる (矢印 Dに示した) ことができ、 観察者 9 0に常に自然な立体画像 を表示することができる。  The LED control means 233 controls the lighting locations 235, 236 of the white LED 1 of the LED array 231 based on the above-mentioned measurement signal, and the LED array 233. The light emission position of 1 can be quickly moved (shown by arrow D) to a position corresponding to the movement of the observer 90 (shown by arrow d), and a natural stereoscopic image is always provided to the observer 90. Can be displayed.
この際、画像表示装置用光源装置の制御には、機械的動作は伴わないから高速、 高精度で、 高い耐久性を持つものとすることができる他、 サーボ制御等の制御機 構の構成を簡単なものとすることができる。  At this time, since the control of the light source device for the image display device does not involve any mechanical operation, it can be made high-speed, high-precision, and highly durable. It can be simple.
なお、 位置判定手段 3 4により観察者の数、 及びそれぞれの観察者の画像表示 装置に対する位置を測定し位置信号として出力するものとし、 L ED制御手段 2 3 3で LEDアレイ 2 3 1を点灯制御すれば複数の異なる位置にいる観察者に適 切な立体画像を表示することができる。  The number of observers and the position of each observer with respect to the image display device are measured by the position judging means 34 and output as a position signal, and the LED array 23 1 is turned on by the LED control means 23 3 If controlled, an appropriate stereoscopic image can be displayed to observers at a plurality of different positions.
図 1 4に示した例では、 光源 5の L EDア レイ 3 5 1を、 上段部 3 5 1 U、 下 段部 3 5 1 Dの 2段に構成したものである。 また、 本形態例では、 上段部 3 5 1 U、 下段部 3 5 1 Dの各白色 LED 3 0 1に対応する位置に、 上段部 3 5 1 U、 下段部 3 5 1 Dに対応する左右の偏光フィルタ 3 5 4を配置している。 この偏光 フィルタは、 前記 L EDアレイ 3 5 1の上段部 3 5 1 U、 下段部 3 5 1 Dからの 光が透過する偏光フィルタ 3 54 U, 3 5 4 Dを備えている。 また、 この偏光フ ィルタ 3 5 4 U , 3 5 4 Dは互いに偏光方向が直交する偏光フィルタからなつて いる。  In the example shown in FIG. 14, the LED array 351 of the light source 5 is configured in two stages of an upper stage 351U and a lower stage 351D. In the present embodiment, the left and right portions corresponding to the upper portion 35 1 U and the lower portion 35 1 D are located at positions corresponding to the white LEDs 301 of the upper portion 35 1 U and the lower portion 35 1 D, respectively. The polarizing filters 3 5 4 are arranged. This polarizing filter includes polarizing filters 354U and 354D through which light from the upper section 351U and the lower section 351D of the LED array 351 passes. Further, the polarization filters 354U and 354D are composed of polarization filters whose polarization directions are orthogonal to each other.
L E D制御手段 3 5 3は、 各 L EDアレイ 3 5 1 U、 3 5 1 Dの点滅制御を行 ラ。  The LED control means 353 controls the blinking of each LED array 351U and 351D.
まず、 観察者 9 0がー人の場合について説明する。  First, the case where the observer 90 is a human will be described.
観察者 9 0の位置を上述した観察者位置検出手段 1 2 2で判定して、 上下の L EDアレイ 3 54 U、 3 54 Dの発光個所 3 7 3を発光させ、 観察者 9 0に立体 画像を表示する。 この際、 上記形態例で示した観察者位置検出手段 1 2 2を用い て観察者 9 0の位置に応じた立体画像が表示できるよう発光個所を移動させる。 次に、 複数の観察者たとえば二人の観察者 9 0, 9 1がいた場合について説明 する。 このときには、 L E D制御手段 3 5 3は、 観察者位置検出手段 1 2 2から 信号を得て、 2つの L E Dアレイ 3 5 1上に 2つの発光領域 3 7 3 , 3 7 4を設 定して、 これらの発光領域を高速で交互に点灯制御する。 The position of the observer 90 is determined by the above-described observer position detecting means 122, and the upper and lower LED arrays 354U and 354D emit light at the light-emitting portions 373, and the observer 90 receives a three-dimensional image. Display an image. At this time, the light emitting point is moved using the observer position detecting means 122 shown in the above embodiment so that a stereoscopic image corresponding to the position of the observer 90 can be displayed. Next, we explain the case where there are multiple observers, for example, two observers 90, 91. I do. At this time, the LED control means 3 53 3 obtains a signal from the observer position detecting means 1 2 2 and sets two light emitting areas 3 7 3 and 3 7 4 on the two LED arrays 35 1. The lighting control of these light emitting regions is alternately performed at high speed.
従って、 この際これらの発光領域 3 7 3 , 3 7 4以外の L E D 1は発光せず、 ある時点では発光領域 3 7 3 , 3 7 4のいずれか一方が発光する  Therefore, at this time, the LED 1 other than the light emitting regions 37 3 and 37 4 does not emit light, and at some point, one of the light emitting regions 37 3 and 37 4 emits light.
このようにして画像表示手段 5 2の同期信号やプランキング期間は、 白色 L E 1をオフ状態とする点滅制御で行うことにより、 不要な残像や干渉を除去できる と共に、 消費電力が少なくすることができる他、 平面画像表示装置において少な いし E Dを用い、 フレネルレンズと相まって限られた光源で広い視野角の画像を 得ることができる。  In this way, by controlling the synchronization signal and the blanking period of the image display means 52 by the blinking control of turning off the white LE 1, unnecessary afterimages and interference can be removed, and the power consumption can be reduced. In addition to this, it is possible to obtain an image with a wide viewing angle with a limited light source by using a small number of EDs in a flat image display device and using a Fresnel lens.
本形態例によれば、 左右用 L E Dを上下に分けて分離配置しているので、 左右 を表示する L E Dの間隔が大きくなり、 各 L E Dからの光の干渉が少なくなるた め立体画像に悪影響となる左右画像のクロス トークが少なくなる。  According to the present embodiment, since the left and right LEDs are separated and arranged vertically, the distance between the LEDs for displaying the left and right is increased, and the interference of light from each LED is reduced. Reduced crosstalk between left and right images.
なお、 前述した立体映像表示装置は、 携帯電話機、 立体テレビ受像器、 立体プ ロジェクタ等の様々な立体ディスプレイ装置に適用可能である。 また、 立体映画 館や、 インターネッ トによって配信された立体映像を再生する動画再生装置、 立 体ゲーム機、 航空機や車両等のシミユレ一ターにも適用することができる。  The above-described three-dimensional image display device is applicable to various three-dimensional display devices such as a mobile phone, a three-dimensional television receiver, and a three-dimensional projector. Further, the present invention can be applied to a three-dimensional movie theater, a moving image reproducing device for reproducing three-dimensional images distributed via the Internet, a standing game machine, and a simulator for an airplane or a vehicle.
産業上の利用可能性  Industrial applicability
以上説明したように、 本発明に係る立体映像表示装置によれば、 以下の優れた 効果を奏する。  As described above, according to the stereoscopic video display device of the present invention, the following excellent effects can be obtained.
請求の範囲 1に記載の発明によれば、 観察者の左右眼に異なる映像を表示して 立体視可能な映像を表示する立体映像表示装置であって、 左目映像と右目映像と からなる立体映像信号を生成する立体映像信号生成回路と、 立体映像を表示する 表示手段と、 前記表示手段を駆動する駆動回路とを備え、 前記立体映像信号生成 回路は、 前記立体視可能な映像に関する映像情報、 及び、 前記表示手段の表示領 域に関する表示装置情報を取得する情報取得手段と、 前記映像情報及び前記表示 装置情報に基づいて前記左目映像と前記右目映像とをずらして表示するためのォ フセッ ト値を設定して、 異なる条件の映像情報、 表示情報に対して観察者に同一 の立体感を与える立体画像信号前記表示手段に表示させるオフセッ ト設定手段と、 を備えて構成されているので、 上記駆動回路が、 前記立体映像信号生成回路から 出力された立体映像信号に基づいて、 前記表示手段に立体映像を表示するので、 立体映像表示装置に対応した最適な立体度 (奥行き量) を調整した立体映像を得 ることができる。 According to the invention described in claim 1, there is provided a stereoscopic video display device for displaying different video images to the left and right eyes of an observer and displaying a stereoscopically visible video image, wherein the stereoscopic video image includes a left-eye video image and a right-eye video image A stereoscopic video signal generating circuit that generates a signal; a display unit that displays a stereoscopic video; and a driving circuit that drives the display unit. The stereoscopic video signal generating circuit includes: And information acquisition means for acquiring display device information relating to a display area of the display means; and offset for displaying the left-eye image and the right-eye image shifted based on the video information and the display device information. Offset setting means for setting a value to display on the display means a stereoscopic image signal which gives the same stereoscopic effect to the observer with respect to video information and display information under different conditions; Since the driving circuit displays a three-dimensional image on the display means based on the three-dimensional image signal output from the three-dimensional image signal generation circuit, the driving circuit is optimal for a three-dimensional image display device. It is possible to obtain a stereoscopic image with an adjusted stereoscopic degree (depth amount).
請求の範囲 2に記載の発明によれば、 表示画面と観察者との位置関係に関する 観察位置情報を取得する観察者位置検出手段と、 前記表示手段の表示領域に関す る情報として表示画面サイズに関する表示画面サイズ情報及び前記観察位置情報 を記憶する記憶手段を備え、 前記情報取得手段は、 前記記憶手段から前記表示画 面サイズ情報と観察位置情報とを取得するので、 表示器を交換しても、 表示器の 画面サイズに対応した最適な立体度 (奥行き量) を調整した立体映像を得ること ができる。  According to the invention set forth in claim 2, observer position detecting means for acquiring observation position information relating to a positional relationship between a display screen and an observer, and information relating to a display screen size as information relating to a display area of the display means. A storage unit for storing display screen size information and the observation position information, wherein the information acquisition unit acquires the display screen size information and the observation position information from the storage unit. In addition, it is possible to obtain a stereoscopic image with the optimal stereoscopic degree (depth) adjusted to the screen size of the display.
請求の範囲 3に記載の発明によれば、 観察者位置検出手段は立体映像表示装置 本体に一体的に配置されているから、 観察者位置検出手段を立体映像表示装置本 体の他に別途設置する必要がない。  According to the third aspect of the present invention, since the observer position detecting means is disposed integrally with the main body of the stereoscopic video display device, the observer position detecting means is separately installed in addition to the main body of the stereoscopic video display device. No need to do.
請求の範囲 4に記載の発明によれば、 観察者位置検出手段を観察者の位置を検 出するために適切な個所に配置でき、 観察者の位置を正確に検出することができ る。  According to the invention set forth in claim 4, the observer position detecting means can be arranged at an appropriate position for detecting the position of the observer, and the position of the observer can be accurately detected.
請求の範囲 5に記載の発明によれば、 観察者位置検出手段に超音波を使用して いる、 他の手段による観察者の検出などに比べて周囲の雑音などの影響を受けに く く、 正確な検出を行うことができる。  According to the invention set forth in claim 5, the ultrasonic wave is used for the observer position detecting means, and is less susceptible to the influence of ambient noise and the like as compared to the detection of the observer by other means. Accurate detection can be performed.
請求の範囲 6に記載の発明によれば、 情報取得手段は、 立体映像に関連づけて 定められた該立体映像の再生に適する画面サイズに関する適合画面サイズ情報、 及び、 再生時に観察者が見るのに適する表示画面までの位置に関する適合位置情 報を前記映像情報と して取得し、 前記立体映像表示装置の面面サイズに関する表 示画面サイズ情報、 及び観察位置情報を前記表示装置情報として取得し、 前記ォ フセッ ト設定手段は、 前記最適画面サイズ情報、 前記適合視距離情報、 前記表示 画面サイズ情報、 前記観察位置情報に基づいて左目映像と右目映像とのオフセッ トを設定して表示される映像の立体感を調整するので、 立体映像に関連付けて定 められた立体映像の再生に関する情報によって、 立体映像表示装置の画面サイズ が変化しても、 また、 観察者の視距離が変化しても、 これらの変化に対応した最 適な立体度 (奥行き量) に調整された立体映像を得ることができる。 According to the invention as set forth in claim 6, the information acquisition means includes: adaptive screen size information relating to a screen size suitable for reproducing the stereoscopic video defined in association with the stereoscopic video; and Acquiring suitable position information on a position up to a suitable display screen as the image information, acquiring display screen size information on a surface size of the stereoscopic image display device, and observation position information as the display device information; The offset setting means is configured to set an offset between a left-eye image and a right-eye image based on the optimum screen size information, the adaptive viewing distance information, the display screen size information, and the observation position information, and display the image. The stereoscopic effect of the 3D image display device is adjusted according to the information on the 3D image playback defined in association with the 3D image. Even if the image changes or the viewing distance of the observer changes, a stereoscopic image adjusted to the optimal stereoscopic degree (depth amount) corresponding to these changes can be obtained.
請求の範囲 7に記載の発明によれば、 情報取得手段は、 立体映像に関連づけて 定められた、 左目映像用カメラの光軸と右目映像用カメラの光軸との間の距離に 関するカメラ距離情報、 及び、 左目映像用カメラの光軸と右目映像用カメラの光 軸との交差点までの距離に関するクロスボイント情報を前記映像情報として取得 し、 前記オフセッ ト設定手段は、 前記カメラ距離情報及び前記クロスポイント情 報に基づいて左目映像と右目映像とのオフセッ トを設定して、 前記表示手段に表 示される映像の立体感を調整するので、 立体映像の記録時に共に記録されたク口 スボイント情報によって、 画面サイズに対応した最適立体度 (奥行き量) を調整 した立体映像を得ることができる。  According to the invention set forth in claim 7, the information acquisition means is a camera distance that is determined in relation to the stereoscopic image and that is related to the distance between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera. Information, and cross-point information about the distance to the intersection of the optical axis of the left-eye video camera and the optical axis of the right-eye video camera is obtained as the video information, and the offset setting means includes the camera distance information and the The offset of the left-eye image and the right-eye image is set based on the cross-point information, and the stereoscopic effect of the image displayed on the display means is adjusted. Thus, it is possible to obtain a stereoscopic image in which the optimal stereoscopic degree (depth amount) corresponding to the screen size is adjusted.
請求の範囲 8に記載の発明によれば、 視聴者が立体感に関する情報を入力する 入力手段を備え、 前記オフセッ ト設定手段は、 前記入力手段に入力された情報に 基づいて左目映像と右目映像とのオフセッ トを設定して、 前記表示手段に表示さ れる映像の立体感を調整するので、 観察者の好みに合わせて立体度 (奥行き量) を調整した立体映像を得ることができる。  According to the invention as set forth in claim 8, further comprising: input means for allowing a viewer to input information relating to a three-dimensional effect, the offset setting means includes a left-eye image and a right-eye image based on the information input to the input means. By setting the offset with respect to the stereoscopic effect of the image displayed on the display means, it is possible to obtain a stereoscopic image in which the stereoscopic degree (depth amount) is adjusted according to the preference of the observer.
請求の範囲 9に記載の発明によれば、 左目映像を記憶する左目映像用フレーム メモリ と、 前記右目映像を記億する右目映像用フレームメモリ とを備え、 前記ォ フセッ ト設定手段は、 前記左目映像用フレームメモリ及ぴ 又は右目映像用フレ ームメモリから映像データを読み出すタイミングを制御するタイミング制御手段 を備え、 前記タイミング制御手段は、 前記左目映像用フレームメモリ と前記右目 映像用フレームメモリ との一方から映像データを読み出すタイミングを、 他方の フレームメモリから映像データを読み出すタイミングと比較して早める又は遅ら せることによって前記左目映像と前記右目映像とのオフセッ トを設定するので、 簡単な回路で左右目映像のオフセッ トを設定することができる。  According to the invention as set forth in claim 9, there is provided a left-eye video frame memory for storing a left-eye video, and a right-eye video frame memory for storing the right-eye video. Timing control means for controlling the timing of reading video data from the video frame memory and / or the right-eye video frame memory, wherein the timing control means is provided from one of the left-eye video frame memory and the right-eye video frame memory The offset between the left-eye image and the right-eye image is set by making the timing of reading the video data earlier or later than the timing of reading the video data from the other frame memory. Video offset can be set.
請求の範囲 1 0に記載の発明によれば、 立体映像を記憶する立体映像用フレー ムメモリ と、 前記左目映像用フレームメモリから読み出された左目映像データと 前記右目映像用フレームメモリから読み出された右目映像データとを切り替えて 立体映像用フレームメモリ に入力する信号切換手段と、 を備えるので、 左右目映 像のオフセッ トが設定された映像を合成してフレームメモリに記憶することがで きる。 According to the invention described in claim 10, a stereoscopic video frame memory for storing a stereoscopic video, left-eye video data read from the left-eye video frame memory, and read from the right-eye video frame memory Signal switching means for switching between the right-eye video data and the 3D video frame memory. It is possible to compose a video with an image offset set and store it in the frame memory.
請求の範囲 1 1に記載の発明によれば、 左目映像と右目映像との水平位相を進 め、 又は遅らせることによって、 前記左目映像と前記右目映像とのオフセッ トを 設定するので、 左右目映像のオフセッ トの設定を容易に制御することができる。 請求の範囲 1 2に記載の発明によれば、 左目映像と右目映像とのオフセッ トを 設定した際に、 前記左目映像と前記右目映像との左右縁部において情報が欠落し た領域に、 当該欠落領域近傍の前記左目映像と前記右目映像との一方又は双方を 水平及び垂直方向に拡大して表示するので、 左右目映像をずらして表示した場合 にも画面が欠けることのない違和感のない表示をすることができる。  According to the invention described in claim 11, the offset between the left-eye image and the right-eye image is set by advancing or delaying the horizontal phase between the left-eye image and the right-eye image, so that the left-right image The offset setting can be easily controlled. According to the invention as set forth in claim 12, when an offset between the left-eye image and the right-eye image is set, an area where information is missing at the left and right edges of the left-eye image and the right-eye image is set to One or both of the left-eye image and the right-eye image in the vicinity of the missing area are enlarged and displayed in the horizontal and vertical directions. Can be.
請求の範囲 1 3に記載の発明によれば、 表示手段は、 透過光で画像を表示する 画像表示手段と光源装置とを備え、 光源装置は、 白色 L E Dまたは R G Bの L E Dを一体に配列した L E Dアレイで構成され、 前記オフセッ ト設定手段はこの L E Dアレイの白色 L E D又は R G Bの L E Dを前記オフセッ トに基づいて点灯制 御する L E D制御手段を備えたので、 L E D制御手段の制御により 自由な光源の 点灯を行うことができる他、 消費電力を少ないものとすることができる。  According to the invention described in claim 13, the display means includes an image display means for displaying an image by transmitted light and a light source device, and the light source device is an LED in which white LEDs or RGB LEDs are integrally arranged. The offset setting means is provided with an LED control means for controlling the white LED or the RGB LED of this LED array based on the offset, so that the free light source can be controlled by the LED control means. Lighting can be performed, and power consumption can be reduced.
請求の範囲 1 4に記載の発明によれば、 オフセッ ト設定手段の L E D制御手段 は前記観察者位置情報に基づいて、 観察者の観察画像を維持するよう前記白色 L E D又は R G Bの L E Dを点灯制御するから観察者が移動したとしても、 また観 察者が複数の異なる位置にいても適切な画像を表示することができる。  According to the invention set forth in claim 14, the LED control means of the offset setting means controls the lighting of the white LED or the RGB LED based on the observer position information so as to maintain the observer's observation image. Therefore, even if the observer moves, and even if the observer is at a plurality of different positions, an appropriate image can be displayed.
請求の範囲 1 5に記載の発明によれば、 装置前記光源装置の上下に設けられた 各 L E Dアレイは右目用画像表示用部と左目用画像表示用部をなすことから、 L E Dアレイの右目用画像表示用部と左目用画像表示用部を L E D制御手段で発光 制御することにより立体画像の表示制御を高い自由度で行うことができる。  According to the invention as set forth in claim 15, since each LED array provided above and below the light source device forms a right-eye image display portion and a left-eye image display portion, the right-eye LED array By controlling the light emission of the image display unit and the left-eye image display unit by the LED control means, the display control of the stereoscopic image can be performed with a high degree of freedom.

Claims

請求の範囲 The scope of the claims
1 . 観察者の左右眼に異なる映像を表示して立体視可能な映像を表示する立体映 像表示装置であって、  1. A stereoscopic image display device for displaying different images to the left and right eyes of an observer to display a stereoscopically visible image,
左目映像と右目映像とからなる立体映像信号を生成する立体映像信号生成回路 と、立体映像を表示する表示手段と、前記表示手段を駆動する駆動回路とを備え、 前記立体映像信号生成回路は、  A stereoscopic video signal generating circuit for generating a stereoscopic video signal composed of a left-eye video and a right-eye video, display means for displaying a stereoscopic video, and a driving circuit for driving the display means, wherein the stereoscopic video signal generating circuit comprises:
前記立体視可能な映像に関する映像情報を取得する映像情報取得手段、 及び、 前記表示手段の表示領域に関する表示装置情報を取得する表示情報取得手段と、 前記映像情報及び前記表示装置情報に基づいて前記左目映像と前記右目映像と をずらして表示するためのオフセッ ト値を設定して、 異なる条件の映像情報、 表 示情報に対して観察者に同一の立体感を与える立体画像信号前記表示手段に表示 させるオフセッ ト設定手段と、 を備え、  A video information acquisition unit that acquires video information about the stereoscopically visible video; and a display information acquisition unit that acquires display device information about a display area of the display unit. An offset value for displaying the left-eye image and the right-eye image shifted from each other is set, and a stereoscopic image signal that gives the same stereoscopic effect to an observer for image information and display information under different conditions is provided to the display means. And offset setting means for displaying.
前記駆動回路は、 前記立体映像信号生成回路から出力された立体映像信号に基 づいて、前記表示手段に立体映像を表示することを特徴とする立体映像表示装置。 The stereoscopic video display device, wherein the driving circuit displays a stereoscopic video on the display unit based on a stereoscopic video signal output from the stereoscopic video signal generation circuit.
2 . 表示画面と観察者との位置関係に関する観察位置情報を取得する観察者位置 検出手段を備え、 2. An observer position detecting means for acquiring observation position information on a positional relationship between the display screen and the observer is provided.
前記表示情報取得手段は表示手段の表示領域に関する情報として表示画面サイ ズに関する表示画面サイズ情報及び前記観察位置情報とを取得することを特徴と する請求の範囲 1に記載の立体映像表示装置。  2. The stereoscopic image display device according to claim 1, wherein the display information acquisition unit acquires display screen size information on a display screen size and the observation position information as information on a display area of the display unit.
3 . 前記観察者位置検出手段は立体映像表示装置本体に一体的に配置されたこと を特徴とする請求の範囲 2に記載の立体映像表示装置。  3. The three-dimensional image display device according to claim 2, wherein the observer position detection means is integrally disposed on a three-dimensional image display device main body.
4 . 前記観察者位置検出手段は立体映像表示装置本体と離れた位置に配置された ことを特徴とする請求の範囲 2に記載の立体映像表示装置。  4. The stereoscopic video display device according to claim 2, wherein the observer position detecting means is arranged at a position separated from the stereoscopic video display device main body.
5 . 前記観察者位置検出手段は超音波発信器及び超音波受信器を備えたことを特 徴とする請求の範囲 3又は請求の範囲 4のいずれかに記載の立体映像表示装置。  5. The stereoscopic image display device according to claim 3, wherein the observer position detecting means includes an ultrasonic transmitter and an ultrasonic receiver.
6 . 前記情報取得手段は、 6. The information acquiring means is:
立体映像に関連づけて定められた該立体映像の再生に適する画面サイズに関す る適合画面サイズ情報、 及び、 再生時に観察者が見るのに適する表示画面までの 位置に関する適合位置情報を前記映像情報として取得し、 前記立体映像表示装置の画面サイズに関する表示画面サイズ情報、 Applicable screen size information relating to a screen size suitable for reproduction of the stereoscopic video defined in relation to the stereoscopic video, and conformance position information relating to a position up to a display screen suitable for an observer at the time of reproduction as the video information. Acquired, Display screen size information regarding the screen size of the stereoscopic video display device,
及び観察位置情報を前記表示装置情報として取得し、 And obtain observation position information as the display device information,
前記オフセッ ト設定手段は、 前記最適画面サイズ情報、 前記適合視距離情報、 前記表示画面サイズ情報、 前記観察位置情報に基づいて左目映像と右目映像との オフセッ トを設定して、 表示される映像の立体感を調整することを特徴とする請 求の範囲 1乃至請求の範囲 5のいずれかに記載の立体映像信号生成回路を備えた 立体映像表示装置。  The offset setting means sets an offset between a left-eye image and a right-eye image based on the optimum screen size information, the adaptive viewing distance information, the display screen size information, and the observation position information, and displays an image to be displayed. A stereoscopic video display device comprising the stereoscopic video signal generating circuit according to any one of claims 1 to 5, wherein the stereoscopic effect is adjusted.
7 . 前記情報取得手段は、 立体映像に関連づけて定められた、 左目映像用カメラ の光軸と右目映像用カメラの光軸との間の距離に関するカメラ距離情報、 及び、 左目映像用カメラの光軸と右目映像用カメラの光軸との交差点までの距離に関す るクロスポイント情報を前記映像情報として取得し、  7. The information obtaining means includes: camera distance information regarding a distance between the optical axis of the left-eye video camera and the optical axis of the right-eye video camera, which is defined in association with the stereoscopic video; Acquiring cross-point information relating to the distance between the axis and the optical axis of the right-eye video camera as the video information,
前記オフセッ ト設定手段は、 前記カメラ距離情報及び前記クロスポイント情報 に基づいて左目映像と右目映像とのオフセッ トを設定して、 前記表示手段に表示 される映像の立体感を調整することを特徴とする請求の範囲 1乃至請求の範囲 5 のいずれかに記載の立体映像表示装置。  The offset setting means sets an offset between a left-eye image and a right-eye image based on the camera distance information and the cross-point information, and adjusts a three-dimensional effect of an image displayed on the display means. The stereoscopic image display device according to any one of claims 1 to 5, wherein
8 . 視聴者が立体感に関する情報を入力する入力手段を備え、  8. Equipped with an input means for the viewer to input information about the three-dimensional effect,
前記オフセッ ト設定手段は、 前記入力手段に入力された情報に基づいて左目映 像と右目映像とのオフセッ トを設定して、 前記表示手段に表示される映像の立体 感を調整することを特徴とする請求の範囲 1乃至請求の範囲 7のいずれかに記載 の立体映像表示装置。  The offset setting unit sets an offset between a left-eye image and a right-eye image based on information input to the input unit, and adjusts a three-dimensional effect of an image displayed on the display unit. The stereoscopic video display device according to any one of claims 1 to 7, wherein:
9 . 前記左目映像を記憶する左目映像用フレームメモリ と、 前記右目映像を記憶 する右目映像用フレームメモリ と、 を備え、  9. A left-eye video frame memory for storing the left-eye video, and a right-eye video frame memory for storing the right-eye video,
前記オフセッ ト設定手段は、 前記左目映像用フレームメモリ及び/又は右目映 像用フレームメモリから映像データを読み出すタイミングを制御するタイミング 制御手段を備え、  The offset setting means includes timing control means for controlling timing of reading video data from the left-eye video frame memory and / or the right-eye video frame memory,
前記タイミング制御手段は、 前記左目映像用フレームメモリ と前記右目映像用 フレームメモリ との一方から映像データを読み出すタイミングを、 他方のフレー ムメモリから映像データを読み出すタイミングと比較して早める又は遅らせるこ とによって前記左目映像と前記右目映像とのオフセッ トを設定することを特徴と する請求の範囲 1乃至請求の範囲 8のいずれかに記載の立体映像表示装置。 The timing control means may advance or delay the timing of reading video data from one of the left-eye video frame memory and the right-eye video frame memory as compared to the timing of reading video data from the other frame memory. Setting an offset between the left-eye image and the right-eye image. The stereoscopic video display device according to any one of claims 1 to 8.
1 0. 立体映像を記憶する立体映像用フレームメモリ と、 1 0. A 3D image frame memory for storing 3D images,
前記左目映像用フレームメモリから読み出された左目映像データと前記右目映 像用フレームメモリから読み出された右目映像データとを切り替えて立体映像用 フレームメモリに入力する信号切換手段と、 を備えることを特徴とする請求の範 囲 1乃至請求の範囲 9のいずれかに記載の立体映像表示装置。  Signal switching means for switching between left-eye video data read from the left-eye video frame memory and right-eye video data read from the right-eye video frame memory and inputting the data to the stereoscopic video frame memory. The stereoscopic video display device according to any one of claims 1 to 9, characterized in that:
1 1. 前記左目映像と前記右目映像との水平位相を進める又は遅らせることによ つて、 前記左目映像と前記右目映像とのオフセッ トを設定することを特徴とする 請求の範囲 1乃至請求の範囲 1 0のいずれかに記載の立体映像表示装置。  1 1. An offset between the left-eye image and the right-eye image is set by advancing or delaying a horizontal phase between the left-eye image and the right-eye image. 10. The stereoscopic video display device according to any one of 10.
1 2. 前記左目映像と前記右目映像とのオフセッ トを設定した際に、 前記左目映 像と前記右目映像との左右縁部において情報が欠落した領域に、 当該欠落領域近 傍の前記左目映像と前記右目映像との一方又は双方を水平及び垂直方向に拡大し て表示することを特徴とする請求の範囲 1乃至請求の範囲 1 1のいずれかに記載 の立体映像表示装置。  1 2. When an offset between the left-eye image and the right-eye image is set, the left-eye image near the missing area is located in an area where information is missing at the left and right edges of the left-eye image and the right-eye image. The stereoscopic image display device according to any one of claims 1 to 11, wherein one or both of the right-eye image and the right-eye image are enlarged and displayed in horizontal and vertical directions.
1 3. 前記表示手段は、 透過光で画像を表示する画像表示手段と、 光源装置と、 を備え、  1 3. The display means comprises: an image display means for displaying an image with transmitted light; and a light source device.
光源装置は、 白色 L E Dまたは RGBの LEDを一体に配列した L E Dアレイ で構成され、 '  The light source device is composed of an LED array in which white LEDs or RGB LEDs are integrated.
前記オフセッ 1、設定手段はこの L EDアレイの白色 L E D又は RGBの L ED を前記オフセッとに基づいて点灯制御する L ED制御手段を備えたことを特徴と する請求の範囲 1乃至請求の範囲 7のいずれかに記載の立体映像表示装置。  The offset 1, the setting means includes an LED control means for controlling lighting of a white LED or RGB LED of the LED array based on the offset. The stereoscopic video display device according to any one of the above.
1 4.オフセッ ト設定手段の LED制御手段は、前記観察者位置情報に基づいて、 観察者の観察画像を維持するよう前記白色 L ED又は RG Bの L EDを点灯制御 することを特徴とする請求の範囲 1 3に記載の画像表示装置用光源装置。  1 4.The LED control means of the offset setting means controls lighting of the white LED or RGB LED based on the observer position information so as to maintain an image observed by the observer. 14. The light source device for an image display device according to claim 13.
1 5. 前記光源装置の上下に設けられた各 L EDアレイは、 右目用画像表示用部 と左目用画像表示用部をなすことを特徴とする請求の範囲 1 3に記載の立体映像 表示装置。  15. The stereoscopic image display device according to claim 13, wherein each of the LED arrays provided above and below the light source device forms a right-eye image display unit and a left-eye image display unit. .
PCT/JP2003/002863 2003-03-11 2003-03-11 Stereoscopic image display device WO2004082297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004569333A JPWO2004082297A1 (en) 2003-03-11 2003-03-11 3D image display device
AU2003221346A AU2003221346A1 (en) 2003-03-11 2003-03-11 Stereoscopic image display device
PCT/JP2003/002863 WO2004082297A1 (en) 2003-03-11 2003-03-11 Stereoscopic image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002863 WO2004082297A1 (en) 2003-03-11 2003-03-11 Stereoscopic image display device

Publications (1)

Publication Number Publication Date
WO2004082297A1 true WO2004082297A1 (en) 2004-09-23

Family

ID=32983435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002863 WO2004082297A1 (en) 2003-03-11 2003-03-11 Stereoscopic image display device

Country Status (3)

Country Link
JP (1) JPWO2004082297A1 (en)
AU (1) AU2003221346A1 (en)
WO (1) WO2004082297A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262157A (en) * 2007-03-20 2008-10-30 Epson Imaging Devices Corp Dual image display device
JP2009210840A (en) * 2008-03-05 2009-09-17 Fujifilm Corp Stereoscopic image display device and method, and program
WO2009157198A1 (en) 2008-06-26 2009-12-30 パナソニック株式会社 Recording medium, reproducing device, recording device, reproducing method, recording method, and program
JP2010183154A (en) * 2009-02-03 2010-08-19 Casio Hitachi Mobile Communications Co Ltd Terminal unit and program
JP2010206774A (en) * 2009-02-05 2010-09-16 Fujifilm Corp Three-dimensional image output device and method
JP2011211657A (en) * 2010-03-30 2011-10-20 Toshiba Corp Electronic apparatus and image output method
JP2012505586A (en) * 2008-10-10 2012-03-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for processing disparity information contained in a signal
WO2012157540A1 (en) * 2011-05-19 2012-11-22 ソニー株式会社 Image processing apparatus, image processing method, and program
JP2013258705A (en) * 2013-06-26 2013-12-26 Nec Casio Mobile Communications Ltd Terminal device and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239951A (en) * 1994-02-25 1995-09-12 Sanyo Electric Co Ltd Stereoscopic image generating method
JPH09121370A (en) * 1995-08-24 1997-05-06 Matsushita Electric Ind Co Ltd Stereoscopic television device
JP2000069505A (en) * 1998-08-25 2000-03-03 Terumo Corp Stereoscopic image display device
JP2002232913A (en) * 2001-01-31 2002-08-16 Canon Inc Double eye camera and stereoscopic vision image viewing system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978392B2 (en) * 2002-11-28 2007-09-19 誠次郎 富田 3D image signal generation circuit and 3D image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239951A (en) * 1994-02-25 1995-09-12 Sanyo Electric Co Ltd Stereoscopic image generating method
JPH09121370A (en) * 1995-08-24 1997-05-06 Matsushita Electric Ind Co Ltd Stereoscopic television device
JP2000069505A (en) * 1998-08-25 2000-03-03 Terumo Corp Stereoscopic image display device
JP2002232913A (en) * 2001-01-31 2002-08-16 Canon Inc Double eye camera and stereoscopic vision image viewing system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262157A (en) * 2007-03-20 2008-10-30 Epson Imaging Devices Corp Dual image display device
JP4586845B2 (en) * 2007-03-20 2010-11-24 エプソンイメージングデバイス株式会社 Two-screen display device
JP2009210840A (en) * 2008-03-05 2009-09-17 Fujifilm Corp Stereoscopic image display device and method, and program
US8629870B2 (en) 2008-03-05 2014-01-14 Fujifilm Corporation Apparatus, method, and program for displaying stereoscopic images
JP4657313B2 (en) * 2008-03-05 2011-03-23 富士フイルム株式会社 Stereoscopic image display apparatus and method, and program
US8208008B2 (en) 2008-03-05 2012-06-26 Fujifilm Corporation Apparatus, method, and program for displaying stereoscopic images
WO2009157198A1 (en) 2008-06-26 2009-12-30 パナソニック株式会社 Recording medium, reproducing device, recording device, reproducing method, recording method, and program
US8509593B2 (en) 2008-06-26 2013-08-13 Panasonic Corporation Recording medium, playback apparatus, recording apparatus, playback method, recording method, and program
US8265453B2 (en) 2008-06-26 2012-09-11 Panasonic Corporation Recording medium, playback apparatus, recording apparatus, playback method, recording method, and program
JP2012505586A (en) * 2008-10-10 2012-03-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for processing disparity information contained in a signal
JP2010183154A (en) * 2009-02-03 2010-08-19 Casio Hitachi Mobile Communications Co Ltd Terminal unit and program
US8120606B2 (en) 2009-02-05 2012-02-21 Fujifilm Corporation Three-dimensional image output device and three-dimensional image output method
JP4737573B2 (en) * 2009-02-05 2011-08-03 富士フイルム株式会社 3D image output apparatus and method
JP2010206774A (en) * 2009-02-05 2010-09-16 Fujifilm Corp Three-dimensional image output device and method
CN102308590B (en) * 2009-02-05 2014-04-16 富士胶片株式会社 Three-dimensional image output device and three-dimensional image output method
JP2011211657A (en) * 2010-03-30 2011-10-20 Toshiba Corp Electronic apparatus and image output method
US8957950B2 (en) 2010-03-30 2015-02-17 Kabushiki Kaisha Toshiba Electronic apparatus and image output method
WO2012157540A1 (en) * 2011-05-19 2012-11-22 ソニー株式会社 Image processing apparatus, image processing method, and program
CN103518372A (en) * 2011-05-19 2014-01-15 索尼公司 Image processing apparatus, image processing method, and program
CN103518372B (en) * 2011-05-19 2015-12-02 索尼公司 Image processing apparatus, image processing method and program
US9710955B2 (en) 2011-05-19 2017-07-18 Sony Corporation Image processing device, image processing method, and program for correcting depth image based on positional information
JP2013258705A (en) * 2013-06-26 2013-12-26 Nec Casio Mobile Communications Ltd Terminal device and program

Also Published As

Publication number Publication date
JPWO2004082297A1 (en) 2006-06-15
AU2003221346A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JPWO2004084560A1 (en) 3D image display system
JP3978392B2 (en) 3D image signal generation circuit and 3D image display device
US20060203085A1 (en) There dimensional image signal producing circuit and three-dimensional image display apparatus
EP1706778B1 (en) Three-dimensional display device with optical path length adjuster
US6252707B1 (en) Systems for three-dimensional viewing and projection
TWI387316B (en) Stereoscopic image displaying apparatus and stereoscopic image displaying method
JP3581745B2 (en) 3D image display device
US20120140028A1 (en) Steroscopic image display
US20060012676A1 (en) Stereoscopic image display
JPH08237691A (en) Observer tracking type automatic three-dimensional display device and observer tracking method
US20020030888A1 (en) Systems for three-dimensional viewing and projection
US20070146845A1 (en) Three-dimensional image reproducing apparatus and method
Liou et al. Low crosstalk multi-view tracking 3-D display of synchro-signal LED scanning backlight system
EP0877967B1 (en) Systems for three-dimensional viewing and projection
WO2004082297A1 (en) Stereoscopic image display device
JP2009098326A (en) Three-dimensional image forming apparatus
GB2570903A (en) Projection array light field display
JPWO2004084559A1 (en) Video display device for vehicle
JP2005157033A (en) Stereoscopic display device
Pastoor 3D Displays
JPWO2004046788A1 (en) Light source device for image display device
US20130128014A1 (en) System for stereoscopically viewing motion pictures
US11595628B2 (en) Projection system and method for three-dimensional images
JP2004144873A (en) Picture display device and picture display method
JPH08331598A (en) Stereoscopic video display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004569333

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase