WO2004080301A1 - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
WO2004080301A1
WO2004080301A1 PCT/JP2004/002849 JP2004002849W WO2004080301A1 WO 2004080301 A1 WO2004080301 A1 WO 2004080301A1 JP 2004002849 W JP2004002849 W JP 2004002849W WO 2004080301 A1 WO2004080301 A1 WO 2004080301A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
magnetic resonance
navigator
resonance imaging
imaging apparatus
Prior art date
Application number
PCT/JP2004/002849
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Goto
Tetsuhiko Takahashi
Masahiro Takizawa
Yumiko Yatsui
Hisako Nagao
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2005503502A priority Critical patent/JPWO2004080301A1/en
Publication of WO2004080301A1 publication Critical patent/WO2004080301A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5676Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter, referred to as MRI) apparatus for imaging a subject using nuclear magnetic resonance, and more particularly to a technique for suppressing body motion artifacts.
  • MRI magnetic resonance imaging
  • MRI applies a high-frequency magnetic field of the resonance frequency of the nuclear spin to be imaged to a subject placed in a static magnetic field, and measures the nuclear magnetic resonance signal generated by the application. This is a device that obtains a tomographic image.
  • the data acquired in the subsequent imaging sequence is used for image reconstruction. Use as data.
  • the direction of displacement of body motion is not considered. Disclosure of the invention
  • An object of the present invention is to provide a body motion arch by a subject's respiratory movements irrespective of the respiratory phase.
  • the objective is to realize an MRI device that can suppress facts.
  • the present invention is configured as follows.
  • a magnetic resonance imaging apparatus comprises: a means for acquiring an echo signal required for image reconstruction to obtain an image of a subject based on a predetermined imaging sequence; and information on periodic body motion of the subject.
  • a navigator echo measurement unit that acquires a nuclear magnetic resonance signal including a navigator echo, an allowable range setting unit that sets an allowable range of displacement of a predetermined part based on the periodic body movement of the subject, and the navigator echo from the navigator echo.
  • a body movement determining unit that calculates a displacement of the predetermined portion and determines whether the displacement is within the allowable range; and a unit that obtains the image, wherein the displacement of the predetermined portion is within the allowable range.
  • Image reconstruction is performed using the echo signals acquired at times.
  • the body motion determining unit calculates a displacement direction of the predetermined portion from two or more navigator echoes measured at time intervals, and calculates a displacement direction of the predetermined portion and a displacement direction of the predetermined portion.
  • Imaging timing determining means for determining a timing for acquiring an echo signal necessary for the image reconstruction based on the
  • the navigator echo measuring means acquires the two or more navigator echoes within one cardiac cycle of the subject.
  • the navigator echo measurement means acquires one or more of the two or more navigators in the one cardiac cycle before an acquisition period of an image reconstruction echo signal. Then, the other one or more are acquired after the acquisition period of the image reconstruction echo signal.
  • the navigator echo measuring means acquires one or more navigator echoes per one cardiac cycle.
  • a body motion prediction function creating means for creating a body motion prediction function representing the periodic body motion using three or more navigator echoes, Calculates the displacement and displacement direction of the predetermined portion at a desired time by fitting the displacement of the predetermined portion obtained from the two or more navigator echoes to the body motion prediction function.
  • the body movement determining means is The allowable range is adjusted according to the variation in the displacement of the fixed part.
  • the allowable range setting means includes means for setting the acquisition timing of the two or more navigator echoes and the allowable range.
  • the imaging timing determining means is configured such that the displacement of the predetermined portion obtained by the body motion determining means is within the allowable range and the direction of the displacement is the same. At this time, the imaging timing is determined so as to acquire the image reconstruction echo signal.
  • the imaging timing determining means is configured to obtain the image reconstruction echo signal acquisition time from the two or more navigator echo acquisition times and the body motion prediction function. And the acquisition period.
  • the measurement of the navigator echo is repeated until the imaging timing determination means can determine the acquisition start time and the acquisition period of the image reconstruction echo signal.
  • the body motion prediction function uses at least a displacement obtained from a navigator echo over a quarter cycle of the body motion of the subject, Created every time.
  • the body motion prediction function creating means updates the body motion prediction function using navigator echoes sequentially acquired for body motion determination.
  • one or more navigator echoes are provided during a period from the end of the acquisition period of the image reconstruction echo signal to the start of acquisition of the next image reconstruction echo signal. And updates the body motion prediction function using the navigator echo.
  • the means for creating a body motion prediction function includes a period for acquiring the navigator echo and a period for a navigator echo used for updating the body motion prediction function. There is a means to specify on the body motion prediction function.
  • the body movement of the subject is a respiratory movement.
  • the body movement determining means determines one of the displacement directions as an expiration period and the other of the displacement directions as an inspiration period.
  • the body movement judging means is based on a first derivative or a difference of the displacement of the predetermined portion calculated from the two or more navigator echoes. The displacement direction of the predetermined part is calculated.
  • the imaging sequence is continued without acquiring an echo signal during a period other than the acquisition period of the image reconstruction echo signal.
  • the time interval between the two navigator echoes is about 100 ms, and the detection accuracy of the displacement is 0.7 mm to 0.8 mm. Resolution.
  • FIG. 1 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
  • FIG. 2 is a diagram illustrating an example of the imaging method according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the effect of the imaging method according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing another example of the imaging method according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing another example of the imaging method according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a procedure of an imaging method according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating creation of a body motion prediction function by the imaging method shown in FIG.
  • FIG. 8 is a view for explaining the main measurement in the imaging method shown in FIG.
  • FIG. 9 is a diagram for explaining function fitting (second fitting).
  • FIG. 10 is a diagram illustrating an example of an imaging method according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing another example of the imaging method according to the second embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an imaging method to which the second aspect of the present invention is applied.
  • FIG. 13 is a diagram for explaining the application of the present invention to the imaging method shown in FIG.
  • FIG. 14 is a diagram illustrating an example of a UI for specifying a navigator echo acquisition timing.
  • FIG. 1 is an overall schematic configuration diagram of an MRI apparatus to which the present invention is applied.
  • the MRI apparatus includes a magnet 102 for generating a static magnetic field in a space into which the subject 101 is inserted, a gradient magnetic field coil 103 for generating a gradient magnetic field in this space, and a An RF coil 104 that generates a high-frequency magnetic field in the imaging region, a nuclear magnetic resonance signal generated by the subject 101.
  • An RF probe 10'5 that detects the (MR) signal, and a subject 1 in the static magnetic field space And a bed 1 1 2 for inserting 0 1.
  • the gradient magnetic field coil 103 is composed of gradient magnetic field coils in three directions (X, Y, ⁇ ) orthogonal to each other, and generates a gradient magnetic field in response to a signal from the gradient magnetic field power supply 109. Depending on how these gradient magnetic fields are applied, the imaging section of the subject can be determined, and positional information can be added to the MR signal.
  • the RF coil 104 generates a high-frequency magnetic field in accordance with a signal from the RF transmitter 110.
  • the signal of the RF probe 105 is detected by the signal detection unit 106, processed by the signal processing unit 107, and converted into an image signal.
  • the image is displayed on the display unit 108.
  • the gradient magnetic field power supply 109, the RF transmitter 110, and the signal detector 106 are controlled by the controller 111.
  • the time chart of the control operation is generally called a pulse sequence, and various pulse sequences (imaging sequences) determined by an imaging method are stored in advance in a storage unit (not shown) of the control unit 111 as a program.
  • the control unit 111 includes an input device (user interface: uI) for selecting an imaging sequence and inputting imaging parameters and the like, in addition to the storage unit.
  • a sequence for generating and acquiring a navigator echo every day as a body motion monitor is executed independently of the imaging sequence or in combination with the selected imaging sequence. can do.
  • a navigator sequence is a technique that locally excites a site of interest (such as the diaphragm) to be monitored using a high-frequency magnetic field and a selective gradient magnetic field, and outputs an echo (navigator echo) without a phase encoding gradient magnetic field from this local excitation region. Get This is the sequence to be performed.
  • the navigator sequence can be appropriately executed by the user in accordance with the selection of the imaging sequence, but is executed by the control unit 111 as a predetermined sequence combined with the imaging sequence.
  • the signal processing unit 107 calculates the displacement of the target region based on the navigator echo acquired by the navigator sequence in addition to the above-described operations such as image reconstruction and determines the displacement direction. Then, based on the result, the timing of data acquisition in the imaging sequence is determined.
  • FIGS. 2, 4 and 5 are diagrams showing examples of an imaging method using the MRI apparatus according to the first embodiment of the present invention, wherein 202 is a cardiac cycle, and 203 is a body movement. , 209 indicates a sequence, 210 indicates data, and below that indicates a data processing procedure.
  • the displacement of a predetermined portion of the subject at each time is calculated, and whether the respiratory motion at that time is in the expiratory period is calculated. Judgment is performed during the breathing period. Image data is acquired when the displacement is within the specified range and is either the expiration period or the inspiration period.
  • the two navigator sequences 207 and 208 are successively executed prior to the main measurement 209. Navigator In the following main measurement sequence 209, it is determined whether or not to acquire data using the two navigator echoes acquired by the evening sequence 207 and 208.
  • a projection image is created by performing a one-dimensional Fourier transform on the navigator echo in the frequency encoding direction (steps 212, 216), and from this projection image, a region of interest (for example, a diaphragm or the like) to be monitored is determined.
  • the displacements 204 and 205 are obtained (steps 21 and 21).
  • the displacement is detected from the signal intensity profile of each projected image by the edge (in the case of the diaphragm, the part where the signal intensity changes suddenly in the lung (low signal) and liver (high signal)). Is used.
  • the direction of the displacement is determined (step 214). Specifically, the first derivative of these displacements 204 and 205 with respect to time is obtained. Alternatively, simply, the difference between the two displacements 204 and 205 may be obtained, thereby determining whether the inclination is positive or negative. If the inclination between the two displacements is positive, the expiration period is determined, and if the inclination is negative, the inspiration period is determined (step 2 15).
  • the diaphragm When the respiratory movement of the diaphragm was actually monitored using a navigator echo, it was found that the diaphragm was moving at a rate of 0.6 to 0.7 mm in 100 ms. Therefore, when the napige-evening-sequences 207 and 208 are executed at an interval of about 100 ms, the detection accuracy requires a resolution of 0.7 to 0.8 mm. If the distance between the navigator sequences 207 and 208 is increased, the resolution may be reduced accordingly.
  • the gate window 211 can be set, for example, by imaging the signal of the target region obtained by the navigator echo and inputting an appropriate range from the input device of the control unit 111 based on the position. .
  • both displacements 204 and 205 are within 211 during the expiration period, or both displacements during the inspiration period This measurement data is acquired only under one of the conditions when 204 and 205 are inside the gate window 211.
  • both the expiratory and inspiratory periods can be performed simultaneously during one cycle, or the expiratory and inspiratory phases can be performed during multiple cycles.
  • the navigator sequence 207, 208 and the main measurement sequence 209 as described above are repeated for each cardiac cycle to acquire the data required for one image (step 21). 9).
  • the respiratory fluctuation 203 is performing cyclical movement, if the displacement and the respiratory phase (expiratory or inspiratory phase) immediately before the start of this measurement sequence 2009 are the same, the repetition for each cardiac cycle Even when the main measurement sequence 209 is executed, the displacement becomes the same every time, and the influence of the displacement due to the respiratory movement, that is, an image with reduced body movement artifact can be obtained.
  • the position change width 3 1 1 for each cardiac cycle is as shown in the lower part of the figure. That is, in the time phase in which the elapsed time from the acquisition of the navigator echo is short, the position change width 3 1 1 in each cardiac cycle can be small, but if the elapsed time from the acquisition of the navigator echo is long, The position change width 3 1 1 increases, and the effect of suppressing the respiratory movement artifact cannot be obtained.
  • FIG. 4 shows a second embodiment.
  • 402 and 403 indicate a cardiac cycle
  • 404 indicates body movement
  • 415 indicates a main measurement sequence
  • 416 indicates data.
  • the navigator echo is acquired twice consecutively before the start of the main measurement in each cardiac cycle, but in the embodiment shown in FIG. 4, it is acquired once before and after the main measurement.
  • the navigator sequence 410 is executed prior to the main measurement sequence 415.
  • the navigator sequence obtained by the navigator sequence 410 is subjected to a one-dimensional Fourier transform in the frequency encoding direction to create a projection image (step 420), and the displacement 405 of the target region is obtained (step 4).
  • the main measurement sequence 4 15 is executed to obtain the main measurement data 4 16 (step 4 2 2).
  • the second navigator sequence 4 11 1 is executed, and the acquired navigator evening echo is reconstructed (step 4 23), and the displacement 4 06 is obtained (step 4 2 4).
  • Step 4 2 5 Take the first derivative or difference between the two obtained displacements 4 0 5 and 4 0 6 (Step 4 2 5), determine whether the slope of the respiratory movement waveform 4 0 4 is positive or negative, and during the expiration period It is determined whether or not there is an inspiration period (steps 4 and 26).
  • step 427 it is determined whether or not the displacements 405 and 406 obtained from the two echoes every night are within the gate window 419 (step 427).
  • the main measurement data acquired when either of the conditions during the breath period and when the displacements 4 0 5 and 4 0 6 are within the gate window 4 19 are used for image reconstruction (step 4 2 8).
  • the main measurement data 4 16 in the cardiac cycle 40 2 which is determined to be the expiration period and the displacements 4 0 5 and 4 0 6 are within the gate window 4 19 are image-reconstructed.
  • the measurement data 418 is not used for image reconstruction in the cardiac cycle 403 determined to be in the inspiration period from the two displacements 407 and 408 used.
  • this example shows the case where the displacement 408 is outside the gate window 419. Not used for reconstruction.
  • the main measurement data 4 16 is used for image reconstruction in the cardiac cycle 402 which is determined as the inspiration period and the displacements 4 05 and 4 06 are both within the gate window 4 19, Even if the displacement 408 is within the gate window 411 during the expiration period, the measurement data 418 is not used for image reconstruction.
  • both the expiration period and the inspiration period are simultaneously performed during one cycle, or during a plurality of cycles.
  • FIG. 4 shows an example in which the processing is performed in the order of 4 2 5 ⁇ 4 2 6 ⁇ 4 2 7; however, the processing for determining the expiration period and the inspiration period and whether the displacement is within the gate window.
  • the order of the determination may be exchanged. That is, the processing may proceed in the order of 427 ⁇ 425 ⁇ 426.
  • the respiratory motion 404 is a periodic motion, if the displacement measured before and after the main measurement and the respiratory period are known, the respiratory motion displacement during the main measurement sequence can be estimated, and data is acquired with the same displacement every time. It is possible.
  • FIG. 5 shows a third embodiment.
  • 5 0 2 and 5 0 3 indicate a cardiac cycle.
  • 5 0 4 indicates body motion
  • 5 1 2 and 5 1 4 indicate a sequence
  • 5 1 3 and 5 1 5 indicate data.
  • one navigator echo is acquired twice in each cardiac cycle, but in the example shown in FIG. 5, only one echo is acquired before the main measurement.
  • the navigator sequence 509 is executed prior to the main measurement.
  • the displacement 505 of the target part at that time is obtained in the same manner as in the first and second embodiments (steps 516, 5). 1 7).
  • the main measurement data 513 is acquired (step 518), and the process proceeds to the next cardiac cycle 503.
  • the Navigator overnight sequence 510 is executed, the echo is reconstructed (step 519), and the displacement 506 is obtained. (Step 520).
  • the first derivative or difference is obtained between the two, and the slope of the respiratory movement waveform 504 is calculated. Determine whether it is positive or negative (step 5 2 1) and determine whether it is in expiration or inspiration (step 5 5 2 2)
  • step 523 it is determined whether or not the displacements 505 and 506 are within the gate window 516 (step 523), and based on the determination results of steps 522 and 523, the expiration period is determined. And when the displacements 505 and 506 are within the gate window 516, or during the inspiration phase and when the displacements 505 and 506 are within the gate window 516.
  • the main measurement data 5 13 is used for image reconstruction under any one of the conditions (step 5 2 4).
  • the displacement 506 detected in the second cardiac cycle 503 and the navigation of the next cardiac cycle the displacement 507 obtained in the evening sequence
  • the expiration period or the inspiration period It is determined whether or not the measurement data is within the gate window, and whether or not the acquisition of the main measurement data is used for image reconstruction.
  • the second heart is determined because the slope of the respiration waveform 504 is opposite and the displacement 507 is outside the gate window 516.
  • the main measurement sequence 514 of the cycle 503 is not used for image reconstruction. Unlike the case shown in the figure, when the data is acquired only during the inspiration period and the displacement is within the gate window, the inclination is reversed and one of the displacements is outside the gate window. In the case of, do not use the main measurement sequence data during that period for image reconstruction.
  • both the expiration period and the inspiration period are simultaneously performed during one cycle, or during a plurality of cycles.
  • the order of the processing of determining the expiration period and the inspiration period and the determination of whether or not the displacement is within the gate window may be exchanged. That is, the processing may proceed in the order of 5 2 3 ⁇ 5 2 1 ⁇ 5 2 2.
  • the respiratory movement 504 is a cyclic movement
  • the displacement and the respiratory period are known, the respiration during the main measurement sequence 5 12
  • the dynamic displacement can also be estimated, and data can be acquired with the same displacement every time.
  • there are no respiratory motion artifacts, and images of many cardiac phases can be acquired.
  • the navigator sequence is executed before and after, and the displacement and the direction of the displacement are calculated from the navigator echo obtained thereby, and based on the result, whether the main measurement data is acquired or not is used for image reconstruction. judge.
  • the navigator sequence is executed before and after, and the displacement and the direction of the displacement are calculated from the navigator echo obtained thereby, and based on the result, whether the main measurement data is acquired or not is used for image reconstruction. judge.
  • the configuration of the MRI apparatus is the same as that of the MRI apparatus according to the first embodiment, but in the second embodiment, the signal processing system and the control unit perform a function approximating the body motion in question. (Body motion prediction function) is stored in advance.
  • the body motion prediction function is created for each subject, for example, by executing the navigator sequence at least for one cycle of the body motion prior to the main measurement and using the displacement obtained from the navigator echo obtained by the navigator sequence.
  • the signal processing system and the control unit are provided with a navigator overnight sequence as a pre-measurement, and are provided with a function fitting function using a navigator echo.
  • FIG. 6 is a flowchart showing the procedure of the imaging method.
  • This imaging method involves the steps of creating a body motion prediction function for each subject, obtaining the time and interval for acquiring the main measurement data (steps 61 to 65), and the procedure for the main measurement. (Steps 606 to 616),
  • FIG. 7 is a diagram illustrating steps 601 to 605, and FIG. It is a figure explaining 06-616.
  • the navigator sequence 701 is executed continuously over at least one period 702 of the body motion to acquire a plurality of navigator echoes (step 601).
  • a projection image is created by performing a one-dimensional Fourier transform of the navigator echo in the frequency encoding direction, and the displacement of a target part (for example, a diaphragm) to be monitored from the projection image is determined by the acquisition time of the navigator echo. Ask every time (Step 602).
  • a method such as detecting an edge from a signal intensity profile of each projection image can be used.
  • the time displacement of the displacement obtained in step 602, that is, the respiratory cycle is approximated by a polynomial function (first fitting, step 603).
  • the function that approximates the respiratory cycle (body motion prediction function) can be calculated using, for example, a method such as the least squares method.
  • a method such as the least squares method.
  • it is a polynomial including periodic functions such as sin and cos.
  • a function f as shown in the following equation (1), the following equation (2), or the following equation (3) can be used.
  • n is an integer starting from 1
  • t is an elapsed time from a desired reference time
  • a, b, c, d, e, and f are coefficients.
  • Figure 7 shows the body movement displacements 704, 70 detected in steps 601 to 603 above.
  • the time and the interval during which the body motion displacement predicted by the body motion prediction function is within the specified range 703 are obtained (step 604).
  • the time may be counted as 0 when the first navigator sequence acquisition is performed, or the first navigator sequence may be started in synchronization with the electrocardiogram (or pulse wave) R wave, and the R wave detection may be started.
  • the time may be counted as 0.
  • the first derivative of the body motion prediction function within the designated range 703 is obtained, and it is determined whether the value is positive or negative (step 605). Thereby, the expiration period and the inspiration period of respiration are determined.
  • the period 714 is an inspiratory period with a negative differential value
  • the period 715 is an expiratory period with a positive differential value.
  • the start time 712, 713 of the period and the intervals 714, 715 of the period are stored, respectively.
  • the time count in this case is based on the first acquisition of the navigator echo or the detection of the R wave.
  • the period 714 or the period 715 is the time when the main measurement data is obtained.
  • this measurement includes navigator sequences 801 and 803 and main measurement sequences 811 and 813.
  • navigator sequences 801 and 803 First, at least two navigator sequences 801 and 803 Run and get two or more navigator echoes (step 607).
  • a method of performing the second fitting during the main measurement is as follows.
  • the displacement P 1 of the target part obtained by executing the napige-interter sequence is substituted into a function 720.
  • the time determined there is T1, T1, and cannot be uniquely determined.
  • the displacement P2 of the target part obtained by executing the next Navigator overnight sequence is substituted into the function to obtain the time T2, T2 'And give the condition that the time corresponding to ⁇ 1 is later than the time corresponding to ⁇ 2.
  • T2 'And give the condition that the time corresponding to ⁇ 1 is later than the time corresponding to ⁇ 2.
  • the second fitting can use two displacements, but in reality, the respiratory amplitude is not exactly the same every cycle, so to give a certain width, as shown in the figure, It is preferable to execute the navigator overnight sequence several times to perform the second fitting.
  • the start time and acquisition time of main measurement data acquisition are estimated based on the position (step 610).
  • the displacements 82, 80 obtained by executing the navigator sequence 801, 803, 805, 807 four times are shown.
  • Steps (Step 6 07) to estimation are repeated (Step 6 11). If the time dT until the start of actual measurement data acquisition and the data acquisition time can be estimated, this measurement sequence is executed until that time elapses, but the blanking period 812 where no data is acquired (step 6 12), and then acquire the main measurement data during the acquisition time estimated in advance (step 6 13). Then, it is determined whether it is within the estimated acquisition time (step 614), and if it is within the estimated acquisition time, the process returns to step 613. If the estimated acquisition time is out of the estimated acquisition time in step 6 14, the process proceeds to step 6 15 to end the data acquisition.In step 6 16, it is determined whether or not the imaging is completed. Return to step 6 1 2.
  • the main measurement data is repeatedly acquired for a predetermined time after each respiratory cycle T, and the main measurement is performed whenever the body motion is within the specified range 703 Day evening can be obtained.
  • Performing the main measurement sequence between the acquisition of the main measurement data and the acquisition of the next main measurement data but not acquiring the data improves the image quality, for example, in the free precession steady state measurement. can do.
  • the acquisition start time and the acquisition time of the main measurement data are estimated by performing the second fitting of the displacement obtained from the navigator echo to the approximate function of the respiratory cycle obtained in advance.
  • the body motion is within the specified range in each of the expiration period and the inspiration period.
  • FIGS. 10 and 11 show an embodiment in which a navigator sequence is performed using a period between main measurement (the blanking period in the embodiment of FIG. 8).
  • obtaining a body motion prediction function that approximates the respiratory cycle from navigator overnight echoes acquired by the navigator sequence is the same as in the above embodiment. Also, in this measurement, it is the same as acquiring multiple Napige echoes every night to determine the start of acquisition of this measurement data
  • the navigator sequence 91, 90 3 is repeated several times using the waiting time between the acquisition of the main measurement data and the acquisition of the next main measurement data. Execute.
  • the navigator echoes 902 and 904 obtained by this navigator sequence are used for detecting the body motion position at that time, and are used for updating the body motion prediction function created by the previous measurement.
  • the displacement 902 detected from the navigator connector 901 is fitted (second fitting) to the body motion prediction function 900 present at that time (step 915), and the measurement data is obtained.
  • the data acquisition start time and the data acquisition time interval are estimated (step 916). If necessary, set the blanking period 9 12 before obtaining the main measurement data 9 1 1.
  • a new body motion prediction function is calculated using the detected displacement 902 (step 917). Since the displacement 9 02 obtained by the Navigator overnight sequence 9 0 1 is part of the respiratory cycle, a new body motion prediction function is calculated using the previous motion estimation function and a part of this displacement. .
  • the previous body motion prediction function is updated with the new body motion prediction function, and this is used for estimating the acquisition start time and data acquisition time of the next main measurement 9 13.
  • the displacement 9 04 detected from the navigator sequence of the navigator sequence 9 03 executed after the main measurement 9 11 1 is fitted to the body motion prediction function updated by the displacement 9 0 2 (the second fitting, Step 9 18), estimate and start the data acquisition start time and acquisition time of the main measurement 9 13 (step 9 19).
  • the start of data acquisition and the data acquisition time of the actual measurement are estimated using the navigator echo acquired before the actual measurement, and the measurement is performed while updating the body motion prediction function used thereafter.
  • the navigator one-by-one sequence is executed using the time to wait for the acquisition of the main measurement data, and the body motion prediction function is sequentially updated. Even if the period changes, it is possible to correct the data acquisition time lag.
  • the execution of the navigator sequence between the acquisition of the main measurement data and the acquisition of the next main measurement data is the same as the embodiment of FIG.
  • a fixed second fitting section is set in advance, and the number of navigator echoes for performing the second fitting is sequentially added or updated.
  • the second fitting section can be set in advance at that time.
  • the second fitting is performed based on the displacement detected in section 1 0 1 1 to estimate the time of data acquisition of main measurement 1 0 1 2, and in the next section 1 0 1 2, it is included in section 1 0 1 1 Using the navigator echo to be obtained and the newly obtained navigator echo, a second fitting is performed to estimate the data acquisition time of the main measurement 102 2.
  • the second fitting is sequentially performed using a part of the navigator echo included in the previous section and the newly obtained navigator echo.
  • the interval of the second fitting section is shorter than the respiratory cycle, and the second fitting section overlaps each other. Therefore, as time passes, for example, the second fitting section 1 After estimating the data acquisition time of main measurement 1 0 2 3 in 0 1 3, the same data acquisition time of main measurement 1 0 2 3 will be estimated in the next second fitting section 1 0 1 4 . In this case, based on the fitting results performed at a time close to the main measurement 1023, the main measurement 1023 Get data.
  • the estimation result of the acquisition time of the main measurement data can be made more accurate by sequentially updating the navigator echo used for the second fitting.
  • the second fitting is performed using the navigator echo measured between the main measurement and the body motion prediction function is sequentially updated (first fitting). As a result, even if the respiratory cycle changes, it is possible to correct the data acquisition time lag.
  • a body motion prediction function that approximates the body motion cycle is created prior to the main measurement, and the body motion prediction function and the The time at which the actual measurement data is acquired and the data acquisition time are estimated from the navigator echo acquired at this time, so that the deviation between the actual displacement and the predicted displacement at the time of the actual measurement can be reduced. This makes it possible to reliably predict body motion artifacts.
  • the fitting result can be made more reliable, and the body motion prediction function is updated using the navigator sequence result. By doing so, even when the body movement period changes, the main measurement data can be acquired when the displacement is always within the specified range without any deviation.
  • FIG. 12 is a diagram illustrating a body motion waveform when the position of the subject moves. As shown in the figure, because the subject moved from time t1 to t2, the waveform was deformed and the measurement site was out of the body movement range 1201 originally intended to be measured, and the initial specified range was maintained. Effective data cannot be obtained by capturing images.
  • Such a body motion waveform is calculated by, for example, a body motion prediction function including a first-order term as in the above equation (2) or a weighted sum of a body motion cycle as in the above equation (3) and a periodic function having a longer cycle. It can be approximated by the body motion prediction function represented, and as shown in Fig. 13, the imaging position and the specified range (gate window) are updated in accordance with the change in the waveform due to this first-order term or long-term term (1201). -Changed from 1202 to 1203) By doing so, the main measurement data can be acquired when the measurement site is within the specified range. Also, the gate window can be updated without using the body motion prediction function.
  • the average value of the position is measured every breathing cycle (405, 406, 407, 408,... In the example of FIG. 4), and the gate window is changed as shown in FIG. 13 based on the change in the average value.
  • the gate window may be set directly on a screen having a UI as shown in FIG. 14 described later.
  • the update of the imaging position can be realized by the interactive scan control (ISC) technology that changes the imaging position in real time.
  • ISC interactive scan control
  • FIG. 14 shows an embodiment of a UI for designating the timing of acquiring the navigation data in the MRI apparatus of the present invention.
  • Fig. 14 shows an example of a screen displayed as a UI. If R waves 1401, 1402 obtained from an electrocardiograph, a body motion prediction function 1403, and a gate window gate window 1404 are displayed, In addition, a menu 1405 for specifying the acquisition timing of the navigator echo is displayed.
  • the menu 1405 for example, it is possible to specify before or after the main measurement, and also to specify the number of navigator echoes. For example, if you select “Head l” in the menu, one navigator echo will be acquired before the main measurement sequence, and if “Head 2” is selected, two navigator echoes will be obtained before the main measurement sequence. To be chosen. When “Head & T ai 1” is selected, acquisition of one navigator echo before and after the main measurement sequence is selected.
  • the specification of the navigator sequence execution timing is, for example, a point displayed on the body motion prediction function 1443.
  • the specified content is displayed as a schematic figure. In the example shown in the figure, it is displayed that the execution of the two-time navigator one-time sequence 1406 has been designated before the main measurement sequence 1407.
  • the UI is not limited to the one shown in the figure, but as described above, the R wave, the body motion prediction function, the napige overnight sequence and the main measurement sequence are displayed, and the napige pattern is displayed.
  • the timing to acquire the echo signal for image reconstruction is determined from the displacement and displacement direction of the subject obtained using the echo signal, the movement within the body movement range specified by a small number of navigator echo signals is determined. Acquisition of an echo signal for image reconstruction can be realized.
  • body motion artifacts can be reliably suppressed.
  • the main measurement time can be prevented from being compressed in ECG-gated imaging, etc., and images with more cardiac phases can be acquired. can do.
  • the expiration period and the inspiration period in the respiratory cycle can be identified by determining the displacement direction and determining the imaging timing according to whether the displacement direction is positive or negative. Each of these images can be captured.
  • a body motion prediction function that approximates the body motion cycle can be obtained in advance, and the main measurement data can be obtained more reliably by using this body motion prediction function.
  • the periodicity of the body motion prediction function it is possible to estimate the time at which the measurement data should be acquired and the interval at which the measurement data is acquired. -Based on the estimation of the time at which this measurement data should be acquired and the intervals at which it should be acquired, execute the navigation sequence for the rest of the time. If the navigator sequence is executed, the navigator echo obtained from the navigator sequence can be used to update the navigator used for displacement calculation—update the echo signal and update the body motion prediction function. It can be carried out. As a result, it is possible to more accurately estimate the imaging timing using the body motion prediction function, and it is possible to minimize the deviation when there is a change in body motion.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physiology (AREA)
  • Power Engineering (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

It is possible to effectively control biological movement artifact with a small number of navigator echo acquisitions. A biological movement artifact suppression image is created by distinguishing the exhalation period from the inhalation period of a sample person (101). From at least two navigator echoes (207, 208) measured at a time interval, a displacement and a displacement direction of the sample person (101) at the navigator echo acquisition time are obtained. The timing to acquire the main measurement echo is decided from the displacement and the displacement direction. The displacement direction can be calculated from the primary differentiation of the displacement. Moreover, by obtaining a biological movement prediction function approximating the biological movement cycle before a measurement, it is possible to judge the displacement and the displacement direction by fitting and estimate the main measurement echo acquisition time and interval.

Description

明細書 磁気共鳴イメージング装置 技術分野  Description Magnetic resonance imaging equipment Technical field
本発明は、 核磁気共鳴を利用して被検体を撮像する磁気共鳴イメージング (以 下、 MR Iという) 装置に関し、 特に体動アーチファクトを抑制する技術に関す る。 背景技術  The present invention relates to a magnetic resonance imaging (hereinafter, referred to as MRI) apparatus for imaging a subject using nuclear magnetic resonance, and more particularly to a technique for suppressing body motion artifacts. Background art
MR Iは、 静磁場中に配置された被検体に、 撮影対象である原子核スピンの共 鳴周波数の高周波磁場を印加し、 それによつて発生する核磁気共鳴信号を計測す ることによって被検体の断層像を得る装置である。  MRI applies a high-frequency magnetic field of the resonance frequency of the nuclear spin to be imaged to a subject placed in a static magnetic field, and measures the nuclear magnetic resonance signal generated by the application. This is a device that obtains a tomographic image.
この MR Iでは、 1枚の MR画像を作成する間に被検体が動くと、 画像に大き なアーチファクトが生じ、 画質を劣化させる。 体動アーチファクトの原因として、 重要なものが被検体の呼吸による体動アーチファクトである。  In this MRI, if the subject moves while creating one MR image, large artifacts will occur in the image, degrading the image quality. An important cause of body motion artifacts is body motion artifacts caused by the subject's respiration.
呼吸動による体動アーチファクトを除去する方法の一つに、 付加的なエコーで あるナビゲーターエコーを用いて呼吸動をモニターする方法があり、 このような ナピゲ一夕一エコーを用いて呼吸動アーチファクトを除去する技術を心臓撮影に 適応した撮影方法が提案されている (文献、 " avigator Echoes in Cardiac Mag net ic Resonance, Journal of Cardiovascular Magnetic Resonance" (3) , 183- 193(2001))。  One method of removing body motion artifacts due to respiratory movements is to monitor respiratory movements using an additional echo, a navigator echo. An imaging method that adapts the removal technique to cardiac imaging has been proposed (literature, "avigator Echoes in Cardiac Magnetic Resonance, Journal of Cardiovascular Magnetic Resonance" (3), 183-193 (2001)).
この文献では、 ナビゲーターエコーから求めた呼吸による体動位置 (変位) が、 予め指定された所定の範囲内であるときには、 それに続いて実行される撮像シー ケンスにおいて取得したデータを画像再構成用のデータとして用いる。 しかし、 体動の変位方向については考慮されていない。 発明の開示  In this document, when the body motion position (displacement) due to respiration obtained from the navigator echo is within a predetermined range specified in advance, the data acquired in the subsequent imaging sequence is used for image reconstruction. Use as data. However, the direction of displacement of body motion is not considered. Disclosure of the invention
本発明の目的は、 呼吸動の時相に依らずに、 被検体の呼吸動による体動アーチ ファクトを抑制可能な MR I装置を実現することである。 An object of the present invention is to provide a body motion arch by a subject's respiratory movements irrespective of the respiratory phase. The objective is to realize an MRI device that can suppress facts.
上記目的を達成するため、 本発明は次のように、 構成される。  In order to achieve the above object, the present invention is configured as follows.
( 1 ) 本発明の磁気共鳴イメージング装置は、 所定の撮像シーケンスに基づき、 画像再構成に必要なエコー信号を取得して被検体の画像を得る手段と、 前記被検 体の周期的体動情報を含む核磁気共鳴信号をナビゲーターエコーとして取得する ナビゲーターエコー計測手段と、 前記被検体の周期的体動に基づく所定部位の変 位の許容範囲を設定する許容範囲設定手段と、 前記ナビゲーターエコーから前記 所定部位の変位を算出して該変位が前記許容範囲内にあるか否かを判定する体動 判定手段とを備え、 前記画像を得る手段は、 前記所定部位の変位が前記許容範囲 内にあるときに取得されたエコー信号を用いて画像再構成を行う。  (1) A magnetic resonance imaging apparatus according to the present invention comprises: a means for acquiring an echo signal required for image reconstruction to obtain an image of a subject based on a predetermined imaging sequence; and information on periodic body motion of the subject. A navigator echo measurement unit that acquires a nuclear magnetic resonance signal including a navigator echo, an allowable range setting unit that sets an allowable range of displacement of a predetermined part based on the periodic body movement of the subject, and the navigator echo from the navigator echo. A body movement determining unit that calculates a displacement of the predetermined portion and determines whether the displacement is within the allowable range; and a unit that obtains the image, wherein the displacement of the predetermined portion is within the allowable range. Image reconstruction is performed using the echo signals acquired at times.
そして、 この磁気共鳴イメージング装置において、 前記体動判定手段は、 時間 間隔を置いて計測した 2以上のナビゲーターエコーから、 前記所定部位の変位方 向を算出し、 前記所定部位の変位及び変位方向に基づいて、 前記画像再構成に必 要なエコー信号を取得するタイミングを決定する撮像タイミング決定手段を備え る  In the magnetic resonance imaging apparatus, the body motion determining unit calculates a displacement direction of the predetermined portion from two or more navigator echoes measured at time intervals, and calculates a displacement direction of the predetermined portion and a displacement direction of the predetermined portion. Imaging timing determining means for determining a timing for acquiring an echo signal necessary for the image reconstruction based on the
( 2 ) 好ましくは、 上記 (1 ) において、 前記ナビゲーターエコー計測手段は、 前記被検体の一心周期内に前記 2以上のナビゲーターエコーを取得する。  (2) Preferably, in the above (1), the navigator echo measuring means acquires the two or more navigator echoes within one cardiac cycle of the subject.
( 3 ) また、 好ましくは、 上記 ( 2 ) において、 前記ナビゲーターエコー計測 手段は、 前記一心周期内の前記 2以上のナビゲーターの内、 1以上を画像再構成 用エコー信号の取得期間の前に取得し、 他の 1以上を該画像再構成用エコー信号 の取得期間の後に取得する。  (3) Also, preferably, in the above (2), the navigator echo measurement means acquires one or more of the two or more navigators in the one cardiac cycle before an acquisition period of an image reconstruction echo signal. Then, the other one or more are acquired after the acquisition period of the image reconstruction echo signal.
( 4 ) また、 好ましくは、 上記 ( 1 ) において、 前記ナビゲーターエコー計測 手段は、 一心周期毎に 1以上のナビゲーターエコーを取得する。  (4) In addition, preferably, in the above (1), the navigator echo measuring means acquires one or more navigator echoes per one cardiac cycle.
( 5 ) また、 好ましくは、 上記 ( 1 ) において、 3以上のナビゲーターエコー を用いて前記周期的体動を表す体動予測関数を作成する体動予測関数作成手段を 備え、 前記体動判定手段は、 前記 2以上のナビゲーターエコーから求めた前記所 定部位の変位を前記体動予測関数にフィッティングして、 所望の時刻における前 記所定部位の変位及び変位方向を算出する。  (5) Also, preferably, in the above (1), further comprising a body motion prediction function creating means for creating a body motion prediction function representing the periodic body motion using three or more navigator echoes, Calculates the displacement and displacement direction of the predetermined portion at a desired time by fitting the displacement of the predetermined portion obtained from the two or more navigator echoes to the body motion prediction function.
( 6 ) また、 好ましくは、 上記 (1 ) において、 前記体動判定手段は、 前記所 定部位の変位の変動に対応して前記許容範囲を調整する。 (6) Further, preferably, in the above (1), the body movement determining means is The allowable range is adjusted according to the variation in the displacement of the fixed part.
(7) また、 好ましくは、 上記 (1) において、 前記許容範囲設定手段は、 前 記 2以上のナビゲーターエコーの取得タイミングと前記許容範囲を設定する手段 を備える。  (7) Preferably, in the above (1), the allowable range setting means includes means for setting the acquisition timing of the two or more navigator echoes and the allowable range.
(8) また、 好ましくは、 上記 (1) において、 前記撮像タイミング決定手段 は、 前記体動判定手段によって求められた前記所定部位の変位が前記許容範囲内 であって且つ前記変位方向が同一方向のときに、 前記画像再構成用エコー信号の 取得を行うように撮像タイミングを決定する。  (8) Also, preferably, in the above (1), the imaging timing determining means is configured such that the displacement of the predetermined portion obtained by the body motion determining means is within the allowable range and the direction of the displacement is the same. At this time, the imaging timing is determined so as to acquire the image reconstruction echo signal.
(9) また、 好ましくは、 上記 (5) において、 前記撮像タイミング決定手段 は、 前記 2以上のナビゲーターエコーの取得時刻及び前記体動予測関数から、 前 記画像再構成用エコー信号の取得開始時刻及び取得期間を決定する。  (9) Also, preferably, in the above (5), the imaging timing determining means is configured to obtain the image reconstruction echo signal acquisition time from the two or more navigator echo acquisition times and the body motion prediction function. And the acquisition period.
(10) また、 好ましくは、 上記 (9) において、 前記撮像タイミング決定手 段が、 前記画像再構成用エコー信号の取得開始時刻及び取得期間を決定できるま で、 前記ナビゲーターエコーの計測を繰り返す。  (10) Preferably, in (9) above, the measurement of the navigator echo is repeated until the imaging timing determination means can determine the acquisition start time and the acquisition period of the image reconstruction echo signal.
(1 1) また、 好ましくは、 上記 (5) において、 前記体動予測関数は、 少な くとも、 被検体の体動の 1/4周期に渡るナビゲーターエコーから求めた変位を 用いて、 被検体毎に作成される。  (11) In addition, preferably, in the above (5), the body motion prediction function uses at least a displacement obtained from a navigator echo over a quarter cycle of the body motion of the subject, Created every time.
(12) また、 好ましくは、 上記 (5) において、 前記体動予測関数作成手段 は、 体動決定のために逐次取得されるナビゲーターエコーを用いて前記体動予測 関数を更新する。  (12) Also, preferably, in the above (5), the body motion prediction function creating means updates the body motion prediction function using navigator echoes sequentially acquired for body motion determination.
(13) また、 好ましくは、 上記 (12) において、 前記画像再構成用エコー 信号の取得期間終了時から次の前記画像再構成用エコー信号の取得開始時までの 間に、 1以上のナビゲーターエコーを取得し、 該ナビゲーターエコーを用いて前 記体動予測関数を更新する。  (13) Also, preferably, in the above (12), one or more navigator echoes are provided during a period from the end of the acquisition period of the image reconstruction echo signal to the start of acquisition of the next image reconstruction echo signal. And updates the body motion prediction function using the navigator echo.
(14) また、 好ましくは、 上記 (13) において、 前記体動予測関数作成手 段は、 前記ナビゲーターエコーを取得する期間と、 該体動予測関数の更新に使用 するナビゲーターエコーの期間をそれぞれ前記体動予測関数上で指定する手段を 備える。  (14) Also, preferably, in the above (13), the means for creating a body motion prediction function includes a period for acquiring the navigator echo and a period for a navigator echo used for updating the body motion prediction function. There is a means to specify on the body motion prediction function.
(15) また、 好ましくは、 上記 (2) において、 前記被検体の体動が呼吸動 の場合に、 前記体動判定手段は、 一方の前記変位方向を呼息期とし、 他方の前記 変位方向を吸息期と判定する。 (15) Also, preferably, in the above (2), the body movement of the subject is a respiratory movement. In this case, the body movement determining means determines one of the displacement directions as an expiration period and the other of the displacement directions as an inspiration period.
( 1 6 ) また、 好ましくは、 上記 (1 ) 乃至 (4 ) において、 前記体動判定手 段は、 前記 2以上のナビゲーターエコーから算出した前記所定部位の変位の一次 微分又は差分に基づいて、 該所定部位の変位方向を算出する。  (16) Also, preferably, in any of the above (1) to (4), the body movement judging means is based on a first derivative or a difference of the displacement of the predetermined portion calculated from the two or more navigator echoes. The displacement direction of the predetermined part is calculated.
( 1 7 ) また、 好ましくは、 上記 (1 ) において、 前記画像再構成用ェコ一信 号の取得期間以外はエコー信号の取得を行わずに前記撮像シーケンスを継続する。  (17) Preferably, in the above (1), the imaging sequence is continued without acquiring an echo signal during a period other than the acquisition period of the image reconstruction echo signal.
( 1 8 ) また、 好ましくは、 上記 (1 ) において、 2つのナビゲーターエコー の互いの時間間隔は、 約 1 0 0 m sであり、 変位の検出精度は、 0 . 7 mm〜 0 . 8 mmの分解能である。 図面の簡単な説明  (18) Preferably, in the above (1), the time interval between the two navigator echoes is about 100 ms, and the detection accuracy of the displacement is 0.7 mm to 0.8 mm. Resolution. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明が適用される M R I装置の全体概要を示す図である。  FIG. 1 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
図 2は、 本発明の第 1の態様による撮像方法の一例を示す図である。  FIG. 2 is a diagram illustrating an example of the imaging method according to the first embodiment of the present invention.
図 3は、 本発明の第 1の態様による撮像方法の効果を説明する図である。  FIG. 3 is a diagram illustrating the effect of the imaging method according to the first embodiment of the present invention.
図 4は、 本発明の第 1の態様による撮像方法の他の例を示す図である。  FIG. 4 is a diagram showing another example of the imaging method according to the first embodiment of the present invention.
図 5は、 本発明の第 1の態様による撮像方法の他の例を示す図である。  FIG. 5 is a diagram showing another example of the imaging method according to the first embodiment of the present invention.
図 6は 本発明の第 2の態様による撮像方法の手順を示す図である。  FIG. 6 is a diagram showing a procedure of an imaging method according to the second embodiment of the present invention.
図 7は、 図 6に示す撮像方法による体動予測関数の作成を説明する図である。 図 8は、 図 6に示す撮像方法における本計測を説明する図である。  FIG. 7 is a diagram illustrating creation of a body motion prediction function by the imaging method shown in FIG. FIG. 8 is a view for explaining the main measurement in the imaging method shown in FIG.
図 9は、 関数フィッティング (第 2のフィッティング) を説明する図である。 図 1 0は、 本発明の第 2の態様による撮像方法の一例を示す図である。  FIG. 9 is a diagram for explaining function fitting (second fitting). FIG. 10 is a diagram illustrating an example of an imaging method according to the second embodiment of the present invention.
図 1 1は、 本発明の第 2の態様による撮像方法の他の例を示す図である。  FIG. 11 is a diagram showing another example of the imaging method according to the second embodiment of the present invention.
図 1 2は、 本発明の第 2の態様が適用される撮像方法を示す図である。  FIG. 12 is a diagram illustrating an imaging method to which the second aspect of the present invention is applied.
図 1 3は、 図 1 2に示す撮像方法への本発明の適用を説明する図である。  FIG. 13 is a diagram for explaining the application of the present invention to the imaging method shown in FIG.
図 1 4は、 ナビゲーターエコー取得タイミングを指定するための U Iの一例を 示す図である。 発明を実施するための最良の形態 以下、 本発明の M R I装置の実施形態を、 図面を参照して説明する。 FIG. 14 is a diagram illustrating an example of a UI for specifying a navigator echo acquisition timing. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the MRI apparatus of the present invention will be described with reference to the drawings.
図 1は、 本発明が適用される MR I装置の全体概略構成図である。 この MR I 装置は、 被検体 1 0 1が挿入される空間に静磁場を発生する磁石 1 0 2と、 この 空間に傾斜磁場を発生する傾斜磁場コイル 1 0 3と、 被検体 1 0 1の撮像領域に 高周波磁場を発生する R Fコイル 1 0 4と、 被検体 1 0 1が発生する核磁気共鳴 信号. (M R) 信号を検出する R Fプローブ 1 0 '5と、 静磁場空間に被検体 1 0 1 を挿入するためのべッド 1 1 2とを備えている。  FIG. 1 is an overall schematic configuration diagram of an MRI apparatus to which the present invention is applied. The MRI apparatus includes a magnet 102 for generating a static magnetic field in a space into which the subject 101 is inserted, a gradient magnetic field coil 103 for generating a gradient magnetic field in this space, and a An RF coil 104 that generates a high-frequency magnetic field in the imaging region, a nuclear magnetic resonance signal generated by the subject 101. An RF probe 10'5 that detects the (MR) signal, and a subject 1 in the static magnetic field space And a bed 1 1 2 for inserting 0 1.
傾斜磁場コイル 1 0 3は、 互いに直交する 3方向 (X, Y, Ζ ) の傾斜磁場コ ィルで構成され、 傾斜磁場電源 1 0 9からの信号に応じてそれぞれ傾斜磁場を発 生する。 これら傾斜磁場の印加の仕方によって、 被検体の撮像断面を決定し、 ま た M R信号に位置情報を付与することができる。  The gradient magnetic field coil 103 is composed of gradient magnetic field coils in three directions (X, Y, Ζ) orthogonal to each other, and generates a gradient magnetic field in response to a signal from the gradient magnetic field power supply 109. Depending on how these gradient magnetic fields are applied, the imaging section of the subject can be determined, and positional information can be added to the MR signal.
R Fコイル 1 0 4は、 R F送信部 1 1 0の信号に応じて高周波磁場を発生する。 R Fプローブ 1 0 5の信号は、 信号検出部 1 0 6で検出され、 信号処理部 1 0 7 で信号処理され、 画像信号に変換される。 また、 画像は、 表示部 1 0 8で表示さ れる。  The RF coil 104 generates a high-frequency magnetic field in accordance with a signal from the RF transmitter 110. The signal of the RF probe 105 is detected by the signal detection unit 106, processed by the signal processing unit 107, and converted into an image signal. The image is displayed on the display unit 108.
傾斜磁場電源 1 0 9、 R F送信部 1 1 0、 信号検出部 1 0 6は制御部 1 1 1に より制御される。 制御動作のタイムチャートは一般にパルスシーケンスと呼ばれ、 撮像方法によって決まる種々のパルスシーケンス (撮像シーケンス) が予めプロ グラムとして、 制御部 1 1 1が有する記憶部 (図示せず) に格納されている。 制御部 1 1 1には、 このような記憶部のほか、 撮像シーケンスの選択や撮像パ ラメータ等の入力のための入力装置 (ユーザーインタ—フェイス: u I ) が備え られている。  The gradient magnetic field power supply 109, the RF transmitter 110, and the signal detector 106 are controlled by the controller 111. The time chart of the control operation is generally called a pulse sequence, and various pulse sequences (imaging sequences) determined by an imaging method are stored in advance in a storage unit (not shown) of the control unit 111 as a program. . The control unit 111 includes an input device (user interface: uI) for selecting an imaging sequence and inputting imaging parameters and the like, in addition to the storage unit.
本発明の M R I装置では、 体動モニターとしてのナビゲ一夕一エコーを発生し、 取得するためのシーケンス (ナビゲーターシーケンス) を、 撮像シーケンスとは 独立して或いは選択された撮像シーケンスとを組み合わせて実行することができ る。  In the MRI apparatus of the present invention, a sequence (navigator sequence) for generating and acquiring a navigator echo every day as a body motion monitor is executed independently of the imaging sequence or in combination with the selected imaging sequence. can do.
ナビゲーターシーケンスとは、 モニターしたい着目部位 (例えば横隔膜など) を高周波磁場及び選択傾斜磁場を用いて局所的に励起し、 この局所的な励起領域 から位相エンコード傾斜磁場を付加しないエコー (ナビゲーターエコー) を取得 するシーケンスである。 A navigator sequence is a technique that locally excites a site of interest (such as the diaphragm) to be monitored using a high-frequency magnetic field and a selective gradient magnetic field, and outputs an echo (navigator echo) without a phase encoding gradient magnetic field from this local excitation region. Get This is the sequence to be performed.
ナビゲーターシーケンスは、 例えば、 撮像シーケンスの選択に合わせて、 ユー ザ一が適宜実行することも可能であるが、 撮像シーケンスと組み合わせた所定の シーケンスとして制御部 1 1 1により実行される。  For example, the navigator sequence can be appropriately executed by the user in accordance with the selection of the imaging sequence, but is executed by the control unit 111 as a predetermined sequence combined with the imaging sequence.
信号処理部 1 0 7 (制御部 1 1 1 ) は、 上述した画像再構成等の演算のほか、 ナビゲーターシーケンスにより取得したナビゲーターエコーをもとに着目部位の 変位を算出するとともに、 変位方向を判断し、 その結果に基づき、 撮像シーゲン スにおけるデータ取得のタイミングを決定する。  The signal processing unit 107 (control unit 111) calculates the displacement of the target region based on the navigator echo acquired by the navigator sequence in addition to the above-described operations such as image reconstruction and determines the displacement direction. Then, based on the result, the timing of data acquisition in the imaging sequence is determined.
次に、 上記構成の M R I装置を用いた呼吸動アーチファクト抑制を心電同期撮 像に適用した例を説明する。  Next, an example in which respiratory motion artifact suppression using the MRI apparatus having the above configuration is applied to electrocardiographic synchronized imaging will be described.
図 2、 図 4及び図 5は、 それぞれ本発明の第 1の態様による M R I装置を用い た撮像方法の実施例を示す図で、 図中、 2 0 2は心周期、 2 0 3は体動、 2 0 9 はシーケンス、 2 1 0はデータを示し、 その下にはデータの処理手順を示してい る。  FIGS. 2, 4 and 5 are diagrams showing examples of an imaging method using the MRI apparatus according to the first embodiment of the present invention, wherein 202 is a cardiac cycle, and 203 is a body movement. , 209 indicates a sequence, 210 indicates data, and below that indicates a data processing procedure.
この第 1の態様においては、 異なる時刻に取得した複数のナビゲーターエコー をもとに、 各時刻における被検体の所定部位の変位を算出すると共に、 そのとき の呼吸動が呼息期であるか吸息期であるかを判定し.. 変位が指定された範囲であ つて且つ呼息期又は吸息期のいずれか一方であるときに画像用データを取得する。 まず、 第 1の実施例として図 2の撮像方法を説明する。  In the first embodiment, based on a plurality of navigator echoes acquired at different times, the displacement of a predetermined portion of the subject at each time is calculated, and whether the respiratory motion at that time is in the expiratory period is calculated. Judgment is performed during the breathing period. Image data is acquired when the displacement is within the specified range and is either the expiration period or the inspiration period. First, the imaging method of FIG. 2 will be described as a first embodiment.
心電波 2 0 1を検出後、 ディレイタイム 2 0 6の経過後、 本計測 2 0 9に先行 して 2つのナビゲーターシーケンス 2 0 7、 2 0 8を続けて実行する。 ナビゲー 夕一シーケンス 2 0 7、 2 0 8によって取得された 2つのナビゲーターエコーを 用いて、 続く本計測シーケンス 2 0 9において、 データを取得するか否かを判断 する。  After the detection of the heart radio wave 201 and the elapse of the delay time 206, the two navigator sequences 207 and 208 are successively executed prior to the main measurement 209. Navigator In the following main measurement sequence 209, it is determined whether or not to acquire data using the two navigator echoes acquired by the evening sequence 207 and 208.
このため、 まず、 ナビゲーターエコーを周波数エンコード方向に 1次元フーリ ェ変換して投影像を作成し (ステップ 2 1 2、 2 1 6 )、 この投影像からモニタ一 する着目部位 (例えば横隔膜など) の変位 2 0 4、 2 0 5を求める (ステップ 2 1 3 , 2 1 7 )。 変位の検出方法は各投影像自身の信号強度プロファイルからエツ ジ (横隔膜の場合であれば、 肺 (低信号)と肝 (高信号)で信号強度が急変する部分) を検出する手段などを用いる。 For this reason, first, a projection image is created by performing a one-dimensional Fourier transform on the navigator echo in the frequency encoding direction (steps 212, 216), and from this projection image, a region of interest (for example, a diaphragm or the like) to be monitored is determined. The displacements 204 and 205 are obtained (steps 21 and 21). The displacement is detected from the signal intensity profile of each projected image by the edge (in the case of the diaphragm, the part where the signal intensity changes suddenly in the lung (low signal) and liver (high signal)). Is used.
次に、 これら変位 2 0 4 , 2 0 5を用いて、 変位の方向 (二つの変位間の傾 き) を求める (ステップ 2 1 4 )。 具体的には、 これら変位 2 0 4、 2 0 5の時間 に対する 1次微分を求める。 或いは単純に、 二つの変位 2 0 4、 2 0 5の差分を 取ってもよく、 これにより、 傾きが正か負かを判断する。 そして、 二つの変位間 の傾きが正であれば呼息期、 負であれば吸息期と判断する (ステップ 2 1 5 )。  Next, using these displacements 204 and 205, the direction of the displacement (inclination between the two displacements) is determined (step 214). Specifically, the first derivative of these displacements 204 and 205 with respect to time is obtained. Alternatively, simply, the difference between the two displacements 204 and 205 may be obtained, thereby determining whether the inclination is positive or negative. If the inclination between the two displacements is positive, the expiration period is determined, and if the inclination is negative, the inspiration period is determined (step 2 15).
2つのナビゲーターエコーから呼息期又は吸息期を判定する場合、 2つのナビ ゲ一夕一シーケンスの時間間隔は変位の検出精度に応じて適宜設定することが望 ましい。  When determining the expiration or inspiration period from two navigator echoes, it is desirable to set the time interval between the two navigator overnight sequences appropriately according to the displacement detection accuracy.
実際にナビゲーターエコーを用いて横隔膜の呼吸動をモニタ一したところ、 1 0 0 m sで 0 . 6〜0 . 7 mmの割合で動いていることが分かった。 従って、 ナ ピゲ—夕—シーケンス 2 0 7と 2 0 8を 1 0 0 m s程度の間隔で実行する場合、 検出精度は 0 . 7〜0 . 8 mmの分解能が必要となる。 ナビゲーターシーケンス 2 0 7と 2 0 8の間隔を広げれば、 分解能もそれに応じて低くしてもよい。  When the respiratory movement of the diaphragm was actually monitored using a navigator echo, it was found that the diaphragm was moving at a rate of 0.6 to 0.7 mm in 100 ms. Therefore, when the napige-evening-sequences 207 and 208 are executed at an interval of about 100 ms, the detection accuracy requires a resolution of 0.7 to 0.8 mm. If the distance between the navigator sequences 207 and 208 is increased, the resolution may be reduced accordingly.
次に、 2つの時刻における変位 2 0 4、 2 0 5が、 それぞれ予め設定した一定 の範囲 (ゲートウィンドウ 2 1 1 ) 内にあるか否かを判定する (ステップ 2 1 8 )。 ゲートウィンドウ 2 1 1は、 例えばナビゲーターエコーにより得られた着目 部位の信号を画像化し その位置を基準として、 適当な範囲を制御部 1 1 1の入 力装置から入力することにより設定することができる。  Next, it is determined whether or not the displacements 204 and 205 at the two times are within predetermined ranges (gate windows 211), respectively (step 218). The gate window 211 can be set, for example, by imaging the signal of the target region obtained by the navigator echo and inputting an appropriate range from the input device of the control unit 111 based on the position. .
ステップ 2 1 5及びステップ 2 1 8の判定結果より、 好ましくは、 呼息期で且 っ両変位 2 0 4、 2 0 5が 2 1 1内であるとき、 または、 吸息期で且つ両変位 2 0 4、 2 0 5がゲートウィンドウ 2 1 1内であるときの何れか一方の条件でのみ 本計測データを取得する。  From the judgment results of Steps 2 15 and 2 18, it is preferable that both displacements 204 and 205 are within 211 during the expiration period, or both displacements during the inspiration period This measurement data is acquired only under one of the conditions when 204 and 205 are inside the gate window 211.
ただし、 変位 2 0 4、 2 0 5がゲートウィンドウ 2 1 1内であることを条件に、 一周期間で呼息期と吸息期を両方同時、 または複数周期間で呼息期と吸息期とを 混合して本計測デ一夕を取得することにより、 全体の撮像時間を短縮することも 可能である。  However, provided that the displacements 204 and 205 are within the gate window 211, both the expiratory and inspiratory periods can be performed simultaneously during one cycle, or the expiratory and inspiratory phases can be performed during multiple cycles. By mixing the above and obtaining the main measurement data, it is possible to shorten the entire imaging time.
以上のようなナビゲーターシーケンス 2 0 7、 2 0 8と本計測シーケンス 2 0 9を、 心周期毎に繰り返し 1枚の画像に必要なデータを取得する (ステップ 2 1 9 )。 The navigator sequence 207, 208 and the main measurement sequence 209 as described above are repeated for each cardiac cycle to acquire the data required for one image (step 21). 9).
呼吸変動 2 0 3は周期運動をしているので、 本計測シーケンス 2 0 9開始直前 の変位および呼吸期 (呼息期または吸息期) が同じであれば、 心周期毎の繰り返 しにおいて本計測シーケンス 2 0 9実行時も毎回同変位となり、 呼吸動による位 置ずれの影響、 すなわち、 体動アーチファクトの低減された画像を取得すること ができる。  Since the respiratory fluctuation 203 is performing cyclical movement, if the displacement and the respiratory phase (expiratory or inspiratory phase) immediately before the start of this measurement sequence 2009 are the same, the repetition for each cardiac cycle Even when the main measurement sequence 209 is executed, the displacement becomes the same every time, and the influence of the displacement due to the respiratory movement, that is, an image with reduced body movement artifact can be obtained.
この様子を図 3に示す。 図中、 図 2と同じ要素は同一符号で示した。 また、 3 0 1 , 3 0 2は異なる一心周期における体動である。 一つの心周期で検出した変 位 2 0 3と他の心周期で検出した変位がそれぞれ指定範囲にあれば、 その向きが 同じなので、 変位はほぼ同様に変化し (位置変化幅 3 1 0は少なく)、 心時相毎に みると位置ずれは一定範囲内に保たれる。  This is shown in Figure 3. In the figure, the same elements as those in FIG. 2 are denoted by the same reference numerals. Further, 301 and 302 are body motions in different one-heart cycles. If the displacement 2 0 3 detected in one cardiac cycle and the displacement detected in the other cardiac cycle are within the specified ranges, their directions are the same, so the displacement changes almost the same (the position change width 3 10 In each cardiac phase, the displacement is kept within a certain range.
一方、 変位の方向を考慮しない場合は、 仮に一つの心周期では、 変位 2 0 3後 にマイナスの方向に位置が変化し (3 0 1 )、 他の心周期ではプラスの方向に位置 が変化した ( 3 0 3 ) とすると、 心周期毎の位置変化幅 3 1 1は図中下方に示し たようになる。 すなわち、 ナビゲーターエコー取得からの経過時間が短い時相で は、 心周期毎の位置変化幅 3 1 1が小さくてすむが、 ナビゲーターェコ一取得か らの経過時間が長くなると、 心周期毎の位置変化幅 3 1 1が増大し、 呼吸動ァー チファク卜の抑制効果を得ることができない。  On the other hand, if the direction of displacement is not taken into account, the position changes in the negative direction after displacement 203 in one cardiac cycle (301), and changes in the positive direction in other cardiac cycles. Assuming (3 0 3), the position change width 3 1 1 for each cardiac cycle is as shown in the lower part of the figure. That is, in the time phase in which the elapsed time from the acquisition of the navigator echo is short, the position change width 3 1 1 in each cardiac cycle can be small, but if the elapsed time from the acquisition of the navigator echo is long, The position change width 3 1 1 increases, and the effect of suppressing the respiratory movement artifact cannot be obtained.
上記のように変位の方向を考慮した結果、 各心時相において、 一様に体動ァー チファクトの抑制された画像を得ることができる。 このような効果に加えて、 ナ ピゲ一ターシーケンスは一心拍につき 2回しか実行されないので、 従来技術に比 ベナビゲ一夕一シーケンスによるデッドタイムが低減し、 多くの心時相の画像取 得が可能となる。  As a result of considering the direction of displacement as described above, it is possible to obtain an image in which body motion artifacts are uniformly suppressed in each cardiac phase. In addition to this effect, since the napige sequence is executed only twice per heartbeat, the dead time of the Benavige sequence is reduced compared to the conventional technology, and images of many cardiac phases can be acquired. It becomes possible.
第 2の実施例を図 4に示す。 図中、 4 0 2、 4 0 3は心周期、 4 0 4は体動、 4 1 5は本計測シーケンス、 4 1 6はデータを示す。 図 2に示す実施例では各心 周期の本計測開始前に 2回続けてナビゲーターエコーを取得したが、 図 4に示す 実施例では本計測前後に 1回ずつ取得する。 心電波 4 0 1を検出後、 ディレイ夕 ィム 4 0 9が経過した後、 本計測シーケンス 4 1 5に先行してナビゲーターシ一 ケンス 4 1 0を実行する。 ナビゲーターシーケンス 4 1 0によって取得されたナビゲーターェコ一は周波 数エンコード方向に.1次元フーリエ変換され投影像が作成され (ステップ 4 2 0 )、 着目部位の変位 4 0 5が求められる (ステップ 4 2 1 )。 続いて、 本計測シ —ケンス 4 1 5を実行して本計測データ 4 1 6を取得する(ステップ 4 2 2 )。 そ の後、 2つ目のナビゲーターシーケンス 4 1 1が実行され、 取得されたナビゲー 夕一エコーを再構成し (ステップ 4 2 3 )、 変位 4 0 6が求められる (ステップ 4 2 4 )。 FIG. 4 shows a second embodiment. In the figure, 402 and 403 indicate a cardiac cycle, 404 indicates body movement, 415 indicates a main measurement sequence, and 416 indicates data. In the embodiment shown in FIG. 2, the navigator echo is acquired twice consecutively before the start of the main measurement in each cardiac cycle, but in the embodiment shown in FIG. 4, it is acquired once before and after the main measurement. After the heartbeat signal 410 is detected and the delay timer 409 has elapsed, the navigator sequence 410 is executed prior to the main measurement sequence 415. The navigator sequence obtained by the navigator sequence 410 is subjected to a one-dimensional Fourier transform in the frequency encoding direction to create a projection image (step 420), and the displacement 405 of the target region is obtained (step 4). twenty one ). Subsequently, the main measurement sequence 4 15 is executed to obtain the main measurement data 4 16 (step 4 2 2). After that, the second navigator sequence 4 11 1 is executed, and the acquired navigator evening echo is reconstructed (step 4 23), and the displacement 4 06 is obtained (step 4 2 4).
取得されられた 2つの変位 4 0 5と 4 0 6の間で一次微分もしくは差分をとり (ステップ 4 2 5 )、 呼吸動波形 4 0 4の傾きが正か負かを求め、 呼息期にあるか 吸息期にあるかの判断を行う (ステップ 4 2 6 )。  Take the first derivative or difference between the two obtained displacements 4 0 5 and 4 0 6 (Step 4 2 5), determine whether the slope of the respiratory movement waveform 4 0 4 is positive or negative, and during the expiration period It is determined whether or not there is an inspiration period (steps 4 and 26).
次に、 2つのナビゲ一夕一エコーから求めた変位 4 0 5、 4 0 6がゲートウイ ンドウ 4 1 9内にあるか否かを判定する (ステップ 4 2 7 )。 上記 2つの判定ステ ップ 4 2 6、 4 2 7の判定結果より、 呼息期で且つ変位 4 0 5、 4 0 6がいずれ もゲ一トウインドウ 4 1 9内にあるとき、 または、 吸息期で且つ変位 4 0 5、 4 0 6がいずれもゲートウィンドウ 4 1 9内にあるときの何れか一方の条件を満た すときに取得された本計測データを画像再構成に使用する (ステップ 4 2 8 )。 図示する例では、 呼息期と判定され且つ変位 4 0 5、 4 0 6がいずれもゲート ウィンドウ 4 1 9内である心周期 4 0 2で本計測デ一夕 4 1 6を画像再構成に使 用し、 2つの変位 4 0 7と 4 0 8から吸息期であると判定された心周期 4 0 3で は本計測データ 4 1 8を画像再構成に使用しない。  Next, it is determined whether or not the displacements 405 and 406 obtained from the two echoes every night are within the gate window 419 (step 427). According to the judgment results of the above two judgment steps 4 26 and 4 27, when the expiration period and the displacements 4 0 5 and 4 0 6 are both within the gate window 4 19, or The main measurement data acquired when either of the conditions during the breath period and when the displacements 4 0 5 and 4 0 6 are within the gate window 4 19 are used for image reconstruction (step 4 2 8). In the example shown in the figure, the main measurement data 4 16 in the cardiac cycle 40 2 which is determined to be the expiration period and the displacements 4 0 5 and 4 0 6 are within the gate window 4 19 are image-reconstructed. The measurement data 418 is not used for image reconstruction in the cardiac cycle 403 determined to be in the inspiration period from the two displacements 407 and 408 used.
しかも、 この例では変位 4 0 8がゲートウィンドウ 4 1 9の外にある場合を示 しているが、 ゲートウィンドウ内であっても吸息期であるので本計測デ一夕 4 1 8を画像再構成には使用しない。  In addition, this example shows the case where the displacement 408 is outside the gate window 419. Not used for reconstruction.
なお、 吸息期と判定され且つ変位 4 0 5 , 4 0 6がいずれもゲートウィンドウ 4 1 9内である心周期 4 0 2で本計測データ 4 1 6を画像再構成に使用する場合 も、 変位 4 0 8がゲートウィンドウ 4 1 9内であっても呼息期であるときは、 本 計測デ一夕 4 1 8を画像再構成には使用しない。  In addition, when the main measurement data 4 16 is used for image reconstruction in the cardiac cycle 402 which is determined as the inspiration period and the displacements 4 05 and 4 06 are both within the gate window 4 19, Even if the displacement 408 is within the gate window 411 during the expiration period, the measurement data 418 is not used for image reconstruction.
また、 本実施例においても、 変位 4 0 5、 4 0 6がゲートウィンドウ 4 1 9内 であることを条件に、 一周期間で呼息期と吸息期を両方同時、 または複数周期間 で呼息期と吸息期を混合して本計測データを画像再構成に使用することにより、 全体の撮像時間を短縮することも可能である。 Also in the present embodiment, on the condition that the displacements 405 and 406 are within the gate window 419, both the expiration period and the inspiration period are simultaneously performed during one cycle, or during a plurality of cycles. By mixing the expiration period and the inspiration period and using this measurement data for image reconstruction, it is possible to shorten the entire imaging time.
また、 図 4では、 4 2 5→4 2 6→4 2 7の順で処理が行われる例を示したが、 呼息期と吸息期の判定処理と変位がゲートウインドウ内に有るか否かの判定の順 序を交換しても良い。 即ち、 4 2 7→4 2 5→4 2 6の順序で処理を進めても良 い。  Also, FIG. 4 shows an example in which the processing is performed in the order of 4 2 5 → 4 2 6 → 4 2 7; however, the processing for determining the expiration period and the inspiration period and whether the displacement is within the gate window. The order of the determination may be exchanged. That is, the processing may proceed in the order of 427 → 425 → 426.
このように、 第 2の実施例においても、 第 1の実施例と同様に、 呼吸動アーチ ファクトが無く多くの心時相の画像取得が可能となる。 また、 呼吸動 4 0 4は周 期運動をしていることから、 本計測前後で測定した変位および呼吸期が分かれば 本計測シーケンスの間の呼吸動変位も推測でき、 毎回同変位でデータ取得可能で ある。  Thus, also in the second embodiment, similar to the first embodiment, it is possible to obtain images of many cardiac phases without respiratory motion artifacts. In addition, since the respiratory motion 404 is a periodic motion, if the displacement measured before and after the main measurement and the respiratory period are known, the respiratory motion displacement during the main measurement sequence can be estimated, and data is acquired with the same displacement every time. It is possible.
さらに、 本実施例では、 本計測シーケンスの前後の変位を計測しているので、 ゲートウインドウ内での本計測データの取得をより確実にできる。  Further, in the present embodiment, since the displacement before and after the main measurement sequence is measured, acquisition of the main measurement data within the gate window can be more reliably performed.
第 3の実施例を図 5に示す。 5 0 2、 5 0 3は心周期.. 5 0 4は体動、 5 1 2、 5 1 4はシーケンス、 5 1 3、 5 1 5はデータを示す。 第 1及び第 2の実施例で は各心周期に 2回ナビゲーダ一エコーを取得したが、 図 5に示す例では本計測前 に 1回のみ取得する。 最初の心周期 5 0 2で心電波 5 0 1を検出後、 ディレイ夕 ィム 5 0 8が経過した後、 本計測に先行してナビゲーターシーケンス 5 0 9を実 行する。  FIG. 5 shows a third embodiment. 5 0 2 and 5 0 3 indicate a cardiac cycle. 5 0 4 indicates body motion, 5 1 2 and 5 1 4 indicate a sequence, 5 1 3 and 5 1 5 indicate data. In the first and second embodiments, one navigator echo is acquired twice in each cardiac cycle, but in the example shown in FIG. 5, only one echo is acquired before the main measurement. After detecting the heart radio wave 501 in the first cardiac cycle 502, and after the elapse of the delay time 508, the navigator sequence 509 is executed prior to the main measurement.
ナビゲーターシーケンス 5 0 9によって取得されたナビゲ一タ一エコーから、 その時点における着目部位の変位 5 0 5が求められることは第 1及び第 2の実施 例と同様である (ステップ 5 1 6、 5 1 7 )。 ナビゲーターシーケンス 5 0 9に続 いて本計測シーケンス 5 1 2が実行された後、 本計測データ 5 1 3が取得され(ス テツプ 5 1 8 )、 次の心周期 5 0 3に進む。 次の心周期 5 0 3においても同様にデ ィレイタイム 5 0 8の後、 ナビゲ一夕一シーケンス 5 1 0が実行され、 エコーは 再構成され (ステップ 5 1 9 )、 変位 5 0 6が得られる (ステップ 5 2 0 )。  From the navigator echo acquired by the navigator sequence 509, the displacement 505 of the target part at that time is obtained in the same manner as in the first and second embodiments (steps 516, 5). 1 7). After execution of the main measurement sequence 512 following the navigator sequence 509, the main measurement data 513 is acquired (step 518), and the process proceeds to the next cardiac cycle 503. Similarly, after the delay time 508 in the next cardiac cycle 503, the Navigator overnight sequence 510 is executed, the echo is reconstructed (step 519), and the displacement 506 is obtained. (Step 520).
心周期 5 0 2で得られた変位 5 0 5と心周期 5 0 3で得られた変位 5 0 6を用 いて両者の間で一次微分もしくは差分をとり、 呼吸動波形 5 0 4の傾きが正か負 かを求め (ステップ 5 2 1 )、 呼息期にあるか吸息期にあるかの判断を行う (ステ ップ 5 2 2 ) Using the displacement 505 obtained in the cardiac cycle 502 and the displacement 506 obtained in the cardiac cycle 503, the first derivative or difference is obtained between the two, and the slope of the respiratory movement waveform 504 is calculated. Determine whether it is positive or negative (step 5 2 1) and determine whether it is in expiration or inspiration (step 5 5 2 2)
次に、 変位 5 0 5、 5 0 6がゲートウィンドウ 5 1 6内にあるか否かを判定し (ステップ 5 2 3 )、 これらステップ 5 2 2、 5 2 3の判定結果より、 呼息期で且 つ変位 5 0 5、 5 0 6がゲ一トウインドウ 5 1 6内にあるとき、 又は、 吸息期で 且つ変位 5 0 5 , 5 0 6がゲートウィンドウ 5 1 6内にあるときの何れか一方の 条件で本計測データ 5 1 3を画像再構成に使用する (ステップ 5 2 4 )。  Next, it is determined whether or not the displacements 505 and 506 are within the gate window 516 (step 523), and based on the determination results of steps 522 and 523, the expiration period is determined. And when the displacements 505 and 506 are within the gate window 516, or during the inspiration phase and when the displacements 505 and 506 are within the gate window 516. The main measurement data 5 13 is used for image reconstruction under any one of the conditions (step 5 2 4).
以降、 同様に、 第 2心周期 5 0 3で検出した変位 5 0 6と次の心周期のナビゲ —夕一シーケンスにより得られた変位 5 0 7を用いて、 呼息期か吸息期かの判定、 ゲートウインドウ内か否かの判定を行い、 本計測データの取得を画像再構成に使 用するか否かを判断する。  Thereafter, similarly, using the displacement 506 detected in the second cardiac cycle 503 and the navigation of the next cardiac cycle — the displacement 507 obtained in the evening sequence, the expiration period or the inspiration period It is determined whether or not the measurement data is within the gate window, and whether or not the acquisition of the main measurement data is used for image reconstruction.
ここで、 変位 5 0 6と 5 0 7のような場合は、 呼吸波形 5 0 4の傾きが逆で尚 且つ変位 5 0 7がゲ一卜ウィンドウ 5 1 6の外にあることから第 2心周期 5 0 3 の本計測シーケンス 5 1 4の本計測データ 5 1 5は画像再構成に使用しない。 図 示する場合とは異なり、 吸息期であり、 かつ、 変位がゲートウィンドウ内にある ときのみ、 デー夕を取得する場合も同様に、 傾きが逆でかつ、 一方の変位がゲー トウインドウ外にあるときは、 その間の本計測シーケンスデータを画像再構成に 使用しない。  Here, in the case of displacements 506 and 507, the second heart is determined because the slope of the respiration waveform 504 is opposite and the displacement 507 is outside the gate window 516. The main measurement sequence 514 of the cycle 503 is not used for image reconstruction. Unlike the case shown in the figure, when the data is acquired only during the inspiration period and the displacement is within the gate window, the inclination is reversed and one of the displacements is outside the gate window. In the case of, do not use the main measurement sequence data during that period for image reconstruction.
なお、 この実施例でも、 変位 5 0 5 , 5 0 6がゲ一トウインドウ 5 1 6内であ ることを条件に、 一周期間で呼息期と吸息期を両方同時、 又は複数周期間で呼息 期と吸息期とを混合して本計測データを画像再構成に使用することにより、 全体 の撮像時間を短縮することも可能である。 また、 図 4の場合と同様に、 呼息期と 吸息期の判定処理と変位がゲートウインドウ内に有るか否かの判定の順序を交換 しても良い。 即ち、 5 2 3→5 2 1→5 2 2の順序で処理を進めても良い。  Also in this embodiment, on the condition that the displacements 505 and 506 are within the gate window 516, both the expiration period and the inspiration period are simultaneously performed during one cycle, or during a plurality of cycles. By mixing the expiration period and the inspiration period and using this measurement data for image reconstruction, it is possible to shorten the entire imaging time. Further, as in the case of FIG. 4, the order of the processing of determining the expiration period and the inspiration period and the determination of whether or not the displacement is within the gate window may be exchanged. That is, the processing may proceed in the order of 5 2 3 → 5 2 1 → 5 2 2.
この実施例においても、 前述の実施例の場合と同様に、 呼吸動 5 0 4は周期運 動をしていることから、 変位及び呼吸期が分かれば、 本計測シーケンス 5 1 2の 間の呼吸動変位も推測でき、 毎回同変位でデータ取得可能である。 また、 実施例 1、 2と同様に、 呼吸動アーチファクトが無く、 多くの心時相の画像取得が可能 となる。  Also in this embodiment, as in the case of the above-described embodiment, since the respiratory movement 504 is a cyclic movement, if the displacement and the respiratory period are known, the respiration during the main measurement sequence 5 12 The dynamic displacement can also be estimated, and data can be acquired with the same displacement every time. Further, as in the first and second embodiments, there are no respiratory motion artifacts, and images of many cardiac phases can be acquired.
以上、 説明したように、 本発明の第 1の態様によれば、 本計測シーケンスの前 或いは前後にナビゲーターシーケンスを実行し、 それによつて得たナビゲーター エコーから変位と変位の方向を算出し、 その結果によって本計測データを取得す るか否か又は画像再構成に使用するか否かを判定する。 これにより、 単に変位の みを用いる場合に比べ本計測データ間の位置ずれを低減し、 体動アーチファクト の抑制された画像を得ることができる。 As described above, according to the first aspect of the present invention, before the present measurement sequence Alternatively, the navigator sequence is executed before and after, and the displacement and the direction of the displacement are calculated from the navigator echo obtained thereby, and based on the result, whether the main measurement data is acquired or not is used for image reconstruction. judge. As a result, it is possible to reduce the displacement between the main measurement data and obtain an image in which the body motion artifact is suppressed, as compared with a case where only the displacement is simply used.
また、 変位の方向を検出することにより、 呼吸周期の呼息期であるか吸息期で あるかを判定できるので、 これらの一方のみのデータであって且つ指定された範 囲内の変位にある本計測データを用いて画像を再構成することができる。  Also, by detecting the direction of the displacement, it is possible to determine whether it is the expiration period or the inspiration period of the respiratory cycle, so that only one of these data and the displacement within the specified range is obtained. An image can be reconstructed using the main measurement data.
さらに、 一心周期内で複数の心時相の画像データを取得する場合、 心時相毎に ナビゲーターシーケンスを実行する必要がないので、 計測できる心時相数を多く することができる。  Furthermore, when acquiring image data of a plurality of cardiac phases within one cardiac cycle, it is not necessary to execute the navigator sequence for each cardiac phase, so that the number of measurable cardiac phases can be increased.
次に、 本発明の第 2の態様による M R I装置を用いた撮像方法を説明する。 こ の第 2の態様においても、 M R I装置の構成は、 第 1の態様による M R I装置と 同様であるが、 第 2の態様では信号処理系及び制御部が、 問題とする体動を近似 する関数 (体動予測関数) を予め格納することが特徴である。  Next, an imaging method using the MRI device according to the second embodiment of the present invention will be described. Also in the second embodiment, the configuration of the MRI apparatus is the same as that of the MRI apparatus according to the first embodiment, but in the second embodiment, the signal processing system and the control unit perform a function approximating the body motion in question. (Body motion prediction function) is stored in advance.
体動予測関数は、 例えば本計測に先立って、 少なくとも体動の一周期にわたつ てナビゲーターシーケンスを実行し、 ナビゲーターシーケンスによって得られた ナビゲーターエコーから求めた変位を用いて被検体毎に作成することができる (第 1のフィッティング)。  The body motion prediction function is created for each subject, for example, by executing the navigator sequence at least for one cycle of the body motion prior to the main measurement and using the displacement obtained from the navigator echo obtained by the navigator sequence. Can be (first fitting).
本計測に際しては、 ナピゲ一夕一ェコ一を取得すると共に、 ナビゲーターェコ 一から求めた変位を体動予測関数でフィッティングし (第 2のフィッティング)、 本計測データを取得するか否かを判定する。 このため、 信号処理系及び制御部は、 前計測としてのナビゲ一夕一シーケンスを備え、 ナビゲーターエコーを用いた関 数フィッティング機能を備えている。  At the time of this measurement, we acquire the Napige one night and one, and fit the displacement obtained from the navigator one with the body motion prediction function (second fitting) to determine whether to acquire this measurement data. judge. For this reason, the signal processing system and the control unit are provided with a navigator overnight sequence as a pre-measurement, and are provided with a function fitting function using a navigator echo.
第 2の態様による M R I装置を用いた撮像方法の一実施例を図 6〜図 8に示す。 図 6は撮像方法の手順を示すフローチャートである。 この撮像方法は、 被検体毎 に体動予測関数を作成し、 本計測データを取得する時間と間隔を求めるまでの手 順 (ステップ 6 0 1〜6 0 5 ) と、 本計測のための手順 (ステップ 6 0 6〜6 1 6 ) とを含み、 図 7はステップ 6 0 1〜6 0 5を説明する図、 図 8はステップ 6 06〜 616を説明する図である。 One embodiment of an imaging method using an MRI apparatus according to the second embodiment is shown in FIGS. FIG. 6 is a flowchart showing the procedure of the imaging method. This imaging method involves the steps of creating a body motion prediction function for each subject, obtaining the time and interval for acquiring the main measurement data (steps 61 to 65), and the procedure for the main measurement. (Steps 606 to 616), FIG. 7 is a diagram illustrating steps 601 to 605, and FIG. It is a figure explaining 06-616.
まず、 体動の少なくとも一周期 702にわたつて連続してナビゲーターシ一ケ ンス 701を実行し、 複数のナビゲーターエコーを取得する (ステップ 601)。 ナビゲーターエコーを周波数エンコード方向に 1次元フーリエ変換して投影像を 作成し、 この投影像からモニターする着目部位 (例えば横隔膜など) の変位 70 4、 705、 706 · · ·を、 ナビゲーターエコーの取得時刻毎に求める (ステ ップ 602 )。  First, the navigator sequence 701 is executed continuously over at least one period 702 of the body motion to acquire a plurality of navigator echoes (step 601). A projection image is created by performing a one-dimensional Fourier transform of the navigator echo in the frequency encoding direction, and the displacement of a target part (for example, a diaphragm) to be monitored from the projection image is determined by the acquisition time of the navigator echo. Ask every time (Step 602).
位置の検出方法は、 各投影像の信号強度プロファイルからエッジを検出するな どの手法を用いることができる。 ステップ 602で求めた変位の時間変位、 即ち 呼吸周期を多項関数で近似する (第 1のフィッティング、 ステップ 603)。 呼吸 周期を近似する関数 (体動予測関数) は、 例えば最小二乗法などの手法を用いて 算出することができる。 例えば、 s i n、 c o sなどの周期関数を含む多項式で ある。 また、 ドリフト成分を反映した 1次項または体動周期より長い周期を持つ 周期関数を含むことが望ましい。 具体的には、 次式 (1) 或いは、 次式 (2) 或 いは、 次式 (3) に示すような関数 f を用いることができる。  As the position detection method, a method such as detecting an edge from a signal intensity profile of each projection image can be used. The time displacement of the displacement obtained in step 602, that is, the respiratory cycle is approximated by a polynomial function (first fitting, step 603). The function that approximates the respiratory cycle (body motion prediction function) can be calculated using, for example, a method such as the least squares method. For example, it is a polynomial including periodic functions such as sin and cos. In addition, it is desirable to include a periodic function that has a period longer than the first-order term or body motion period that reflects the drift component. Specifically, a function f as shown in the following equation (1), the following equation (2), or the following equation (3) can be used.
f =∑ f n (t) =a * s i n (b t + c) +d (1)  f = ∑ f n (t) = a * s in (b t + c) + d (1)
f = a * s i n (b t + c) +d t + e (2)  f = a * s i n (b t + c) + d t + e (2)
f = a - s i n ( t + c) + d * s i n (e t +f) (3)  f = a-s i n (t + c) + d * s i n (e t + f) (3)
ここで、 nは 1から始まる整数、 tは所望の基準時間からの経過時間、 a、 b、 c、 d、 e、 f は係数である。 '  Here, n is an integer starting from 1, t is an elapsed time from a desired reference time, and a, b, c, d, e, and f are coefficients. '
図 7に上記ステップ 601〜603で検出された体動変位 704、 70  Figure 7 shows the body movement displacements 704, 70 detected in steps 601 to 603 above.
5 · · · 71 1と体動予測関数 720とを示す。 呼吸の一周期 702が約 4秒で、 ナビゲーターシーケンス 701を 200ms毎に実行すると、 一周期に 20個の ナビゲ一夕一ェコ一を取得することができる。 5 · · · 71 1 and the body motion prediction function 720 are shown. If one cycle of breathing 702 is about 4 seconds, and the navigator sequence 701 is executed every 200 ms, 20 navigators can be acquired in one cycle.
このように、 体動予測関数が決定したならば、 体動予測関数で予測される体動 変位が指定範囲 703である時間及びその間隔を求める (ステップ 604)。 時間 は、 例えば、 第 1回目のナビゲーターシーケンス取得時を 0としてカウントして もよいし、 1回目のナビゲーターシーケンスを心電 (或いは脈波) の R波に同期 して開始し、 R波検知のときを 0としてカウントしてもよい。 次に、 指定範囲 703内にある体動予測関数の一次微分を求め、 その値が正で あるか負であるかを判定する (ステップ 605)。 これにより、 呼吸の呼息期と吸 息期とを判定する。 When the body motion prediction function is determined in this way, the time and the interval during which the body motion displacement predicted by the body motion prediction function is within the specified range 703 are obtained (step 604). For example, the time may be counted as 0 when the first navigator sequence acquisition is performed, or the first navigator sequence may be started in synchronization with the electrocardiogram (or pulse wave) R wave, and the R wave detection may be started. The time may be counted as 0. Next, the first derivative of the body motion prediction function within the designated range 703 is obtained, and it is determined whether the value is positive or negative (step 605). Thereby, the expiration period and the inspiration period of respiration are determined.
図 7の例では、 期間 714は微分値が負の吸息期、 期間 715は微分値が正の 呼息期である。 これら呼息期と吸息期とについて、 それぞれ、 期間の開始時 71 2, 713及び期間の間隔 714, 715が記憶される。 この場合の時間のカウ ントは前述の通り、 1回目のナビゲーターエコー取得時或いは R波検知時を基準 とする。 期間 714又は期間 715が本計測データの取得時となる。  In the example of FIG. 7, the period 714 is an inspiratory period with a negative differential value, and the period 715 is an expiratory period with a positive differential value. For the expiration period and the inspiration period, the start time 712, 713 of the period and the intervals 714, 715 of the period are stored, respectively. As described above, the time count in this case is based on the first acquisition of the navigator echo or the detection of the R wave. The period 714 or the period 715 is the time when the main measurement data is obtained.
次に、 本計測を開始する (ステップ 606)。 本計測は、 図 8 (b) に示すよう に、 ナビゲーターシーケンス 801、 803 · · ·と本計測シーケンス 811、 813 · · ·とを含み、 まず少なくとも 2回のナビゲーターシーケンス 801、 803 · · ·を実行し、 2以上のナビゲーターエコーを取得する (ステップ 60 7)。  Next, the main measurement is started (step 606). As shown in Fig. 8 (b), this measurement includes navigator sequences 801 and 803 and main measurement sequences 811 and 813.First, at least two navigator sequences 801 and 803 Run and get two or more navigator echoes (step 607).
これらナビゲーターエコーを再構成し、 取得時における目的部位の変位 802、 804 · · ·を検出する (ステップ 608)。 この変位 802、 804 · · ·を予 め求めた体動予測関数 720 (図 8 (a)) にフィッティングする (第 2のフイツ ティング、 ステップ 609)。  These navigator echoes are reconstructed, and displacements 802, 804 of the target part at the time of acquisition are detected (step 608). The displacements 802, 804 · · · · are fitted to the body motion prediction function 720 (Fig. 8 (a)) (second fitting, step 609).
体動予測関数 720が 例えば、 図 9に示すような関数である場合、 本計測中 に第 2のフィッティングを行う方法は次のようになる。  When the body motion prediction function 720 is, for example, a function as shown in FIG. 9, a method of performing the second fitting during the main measurement is as follows.
ナピゲ一ターシーケンスを実行して得られた目的部位の変位 P 1を関数 720 に代入する。 そこで求まる時間は T 1、 T 1, であり、 一意に決定できないが、 次のナビゲ一夕一シーケンスを実行して得られた目的部位の変位 P 2を関数に代 入して時間 T2、 T2' を求め、 Ρ 1に対応する時間が Ρ 2に対応する時間より 遅くなるという条件を与える。 これにより、 時間 Τ 2 ' の変位にフィットしてい ると判断する。 .  The displacement P 1 of the target part obtained by executing the napige-interter sequence is substituted into a function 720. The time determined there is T1, T1, and cannot be uniquely determined. However, the displacement P2 of the target part obtained by executing the next Navigator overnight sequence is substituted into the function to obtain the time T2, T2 'And give the condition that the time corresponding to Ρ1 is later than the time corresponding to Ρ2. Thus, it is determined that the displacement fits the displacement at time Τ2 '. .
このように、 第 2のフィッティングは、 2つの変位を用いることができるが、 現実には呼吸振幅は、 周期毎に全く同一にはならないので、 ある程度幅をもたせ るために、 図示するように、 数回ナビゲ一夕一シーケンスを実行し、 第 2のフィ ッティングを行うことが好ましい。 第 2のフィッティングによって、 ナビゲーターエコー取得時の呼吸周期におけ る位置が確定したならば、 それをもとに本計測データ取得の開始時刻及び取得時 間を推定する (ステップ 6 1 0 )。 図 8に示す例では、 4回のナビゲーターシ一ケ ンス 8 0 1、 8 0 3、 8 0 5、 8 0 7の実行によって得られた変位 8 0 2、 8 0Thus, the second fitting can use two displacements, but in reality, the respiratory amplitude is not exactly the same every cycle, so to give a certain width, as shown in the figure, It is preferable to execute the navigator overnight sequence several times to perform the second fitting. When the position in the respiratory cycle at the time of navigator echo acquisition is determined by the second fitting, the start time and acquisition time of main measurement data acquisition are estimated based on the position (step 610). In the example shown in FIG. 8, the displacements 82, 80 obtained by executing the navigator sequence 801, 803, 805, 807 four times are shown.
4、 8 0 6、 8 0 7を体動予測関数 7 2 0にフィッティングすることによって、 最後のナビゲ一夕一エコー 8 0 7取得時 (P t ) から本計測シーケンスを開始す るまでの時間 d Tとデ一夕取得時間を推定することができる。 By fitting 4, 806 and 807 to the body motion prediction function 720, the time from when the last Navigator overnight echo 807 was obtained (P t) to the start of the main measurement sequence d T and de overnight acquisition time can be estimated.
ナビゲーターエコー数が少ない或いは呼吸周期の不規則な乱れなどによって時 間 d Tとデ一夕取得時間が推定できない場合には、 ナビゲ一夕一エコーの取得 If the number of navigator echoes is too small or the respiratory cycle is irregularly disturbed, etc.
(ステップ 6 0 7 ) から推定までを繰り返す (ステップ 6 1 1 )。 本計測データ取 得を開始するまでの時間 d Tとデータ取得時間が推定できたならば、 その時間が 経過するまで本計測シーケンスは実行するがデータは取得しない空打ち期間 8 1 2とし (ステップ 6 1 2 )、 その後、 予め推定された取得時間の間、 本計測データ を取得する (ステップ 6 1 3 )。 そして、 予め推定された取得時間内であるかを判 定し (ステップ 6 1 4 )、 推定取得時間内であれば、 ステップ 6 1 3に戻る。 ステ ップ 6 1 4で推定取得時間外になっていれば、 ステップ 6 1 5に進み、 データ取 得終了とし、 ステップ 6 1 6にて撮像終了か否かを判断し、 終了でなければ、 ス テツフ 6 1 2に戻る。 Steps (Step 6 07) to estimation are repeated (Step 6 11). If the time dT until the start of actual measurement data acquisition and the data acquisition time can be estimated, this measurement sequence is executed until that time elapses, but the blanking period 812 where no data is acquired (step 6 12), and then acquire the main measurement data during the acquisition time estimated in advance (step 6 13). Then, it is determined whether it is within the estimated acquisition time (step 614), and if it is within the estimated acquisition time, the process returns to step 613. If the estimated acquisition time is out of the estimated acquisition time in step 6 14, the process proceeds to step 6 15 to end the data acquisition.In step 6 16, it is determined whether or not the imaging is completed. Return to step 6 1 2.
呼吸周期の変動がなく、 ほぼ一定であるとすると、 それ以降、 呼吸周期 T毎に 本計測データの取得を所定時間繰り返すことにより、 常に体動が指定範囲 7 0 3 内であるときに本計測デー夕を取得することができる。  Assuming that the respiratory cycle does not fluctuate and is almost constant, the main measurement data is repeatedly acquired for a predetermined time after each respiratory cycle T, and the main measurement is performed whenever the body motion is within the specified range 703 Day evening can be obtained.
本計測デー夕取得と次の本計測デ一夕取得との間は本計測シーケンスは実行す るがデータは取得しない空打ちをすることにより、 例えば自由歳差運動定常状態 の計測において画質を向上することができる。  Performing the main measurement sequence between the acquisition of the main measurement data and the acquisition of the next main measurement data but not acquiring the data improves the image quality, for example, in the free precession steady state measurement. can do.
このように、 本実施例によれば、 ナビゲーターエコーから得た変位を、 予め求 めた呼吸周期の近似関数に第 2のフィッティングを行うことにより本計測データ の取得開始時及び取得時間を推定するようにしたので、 呼息期及び吸息期のそれ ぞれについて体動が指定範囲内であるときの画像を取得することができる。  As described above, according to the present embodiment, the acquisition start time and the acquisition time of the main measurement data are estimated by performing the second fitting of the displacement obtained from the navigator echo to the approximate function of the respiratory cycle obtained in advance. Thus, it is possible to acquire images when the body motion is within the specified range in each of the expiration period and the inspiration period.
また、 ナピゲ一ターシーケンスを本計測シーケンス中に実行する必要がないの で撮像時間の短縮を図ることができ、 心電同期撮影の場合には、 より多くの心時 相のデータを取得することができる。 Also, there is no need to execute the napige In this case, it is possible to shorten the imaging time, and in the case of ECG-gated imaging, more cardiac phase data can be acquired.
上記実施例は、 さらに呼吸周期の不規則な変動や段階的な変化などに対応した 変更が可能である。 そのような変更例として、 本計測と本計測との間の期間 (図 8の実施例では空打ち期間) を利用してナビゲーターシーケンスを行う実施例を 図 1 0及び図 1 1に示す。  The above embodiment can be further modified in response to irregular or stepwise changes in the respiratory cycle. As an example of such a change, FIGS. 10 and 11 show an embodiment in which a navigator sequence is performed using a period between main measurement (the blanking period in the embodiment of FIG. 8).
これらの実施例でも、 本計測に先立って、 ナビゲーターシーケンスで取得した ナビゲ一夕一エコーから呼吸周期を近似する体動予測関数を求めることは上記実 施例と同じである。 また、 本計測において、 本計測データ取得開始時を決定する ために複数のナピゲ一夕一エコーを取得することも同様である  Also in these embodiments, prior to the main measurement, obtaining a body motion prediction function that approximates the respiratory cycle from navigator overnight echoes acquired by the navigator sequence is the same as in the above embodiment. Also, in this measurement, it is the same as acquiring multiple Napige echoes every night to determine the start of acquisition of this measurement data
しかし、 図 1 0に示す実施例では、 本計測デー夕取得から次の本計測デー夕取 得までの間の待ち時間を利用して、 ナビゲーターシーケンス 9 0 1、 9 0 3を複 数回、 実行する。 このナビゲーターシーケンスで得られたナビゲーターエコー 9 0 2、 9 0 4はその時点における体動位置の検出に用いられるとともに、 前計測 によって作成された体動予測関数の更新に利用される。  However, in the embodiment shown in FIG. 10, the navigator sequence 91, 90 3 is repeated several times using the waiting time between the acquisition of the main measurement data and the acquisition of the next main measurement data. Execute. The navigator echoes 902 and 904 obtained by this navigator sequence are used for detecting the body motion position at that time, and are used for updating the body motion prediction function created by the previous measurement.
即ち、 まずこれらナビゲーターェコ一 9 0 1から検出した変位 9 0 2をその際 存在する体動予測関数 9 0 0にフィッティング (第 2のフィッティング) して (ステップ 9 1 5 ) , 本計測データの取得開始時とデ一タ取得時間間隔を推定する (ステップ 9 1 6 )。 必要に応じて本計測デ一夕取得 9 1 1に先立って空打ち期間 9 1 2を設定する。 一方、 検出した変位 9 0 2を用いて新たな体動予測関数を算 出する (ステップ 9 1 7 )。 ナビゲ一夕一シーケンス 9 0 1により得られる変位 9 0 2は呼吸周期の一部であるので、 従前の体動予測関数とこの一部の変位とを用 いて新たな体動予測関数を算出する。 新たな体動予測関数で従前の体動予測関数 を更新し、 これを次の回の本計測 9 1 3のデータ取得開始時と取得時間の推定に 用いる。  That is, first, the displacement 902 detected from the navigator connector 901 is fitted (second fitting) to the body motion prediction function 900 present at that time (step 915), and the measurement data is obtained. The data acquisition start time and the data acquisition time interval are estimated (step 916). If necessary, set the blanking period 9 12 before obtaining the main measurement data 9 1 1. On the other hand, a new body motion prediction function is calculated using the detected displacement 902 (step 917). Since the displacement 9 02 obtained by the Navigator overnight sequence 9 0 1 is part of the respiratory cycle, a new body motion prediction function is calculated using the previous motion estimation function and a part of this displacement. . The previous body motion prediction function is updated with the new body motion prediction function, and this is used for estimating the acquisition start time and data acquisition time of the next main measurement 9 13.
本計測 9 1 1後に実行されたナビゲーターシーケンス 9 0 3のナビゲーターェ コ一から検出された変位 9 0 4を、 変位 9 0 2によって更新された体動予測関数 にフィッティングし (第 2のフィッティング、 ステップ 9 1 8 )、 本計測 9 1 3の データ取得開始時と取得時間を推定し、 実行する (ステップ 9 1 9 )。 以後、 同様に本計測前に取得したナビゲーターエコーでその本計測のデータ取 得開始時とデータ取得時間を推定するとともに、 それ以後に用いる体動予測関数 を更新しながら計測を行う。 The displacement 9 04 detected from the navigator sequence of the navigator sequence 9 03 executed after the main measurement 9 11 1 is fitted to the body motion prediction function updated by the displacement 9 0 2 (the second fitting, Step 9 18), estimate and start the data acquisition start time and acquisition time of the main measurement 9 13 (step 9 19). After that, the start of data acquisition and the data acquisition time of the actual measurement are estimated using the navigator echo acquired before the actual measurement, and the measurement is performed while updating the body motion prediction function used thereafter.
このように、 本実施例では、 本計測データ取得を待つ時間を利用してナビゲ一 夕一シーケンスを実行し、 逐次体動予測関数を更新するので、 一時的に呼吸周期 が乱れた場合や呼吸周期が変化した場合にも、 データ取得時間のずれを補正する ことができる。  As described above, in this embodiment, the navigator one-by-one sequence is executed using the time to wait for the acquisition of the main measurement data, and the body motion prediction function is sequentially updated. Even if the period changes, it is possible to correct the data acquisition time lag.
図 1 1に示す実施例でも、 本計測データの取得と次の本計測デ一夕取得との間 でナビゲーターシーケンスを実行することは図 1 0の実施例と同じである。 但し、 この実施例では、 一定の第 2のフィッティング区間をあらかじめ設定しておき、 第 2のフイツティングを行うナビゲーターエコーの数を逐次追加或いは更新する。 第 2のフィッティングを行う一定の区間を設定することで、 定期的に本計測時 間推定のための第 2のフィッティングを行うことが可能となり、 より実際に近い 本計測時間推定ができる。  Also in the embodiment shown in FIG. 11, the execution of the navigator sequence between the acquisition of the main measurement data and the acquisition of the next main measurement data is the same as the embodiment of FIG. However, in this embodiment, a fixed second fitting section is set in advance, and the number of navigator echoes for performing the second fitting is sequentially added or updated. By setting a certain section in which the second fitting is performed, it is possible to perform the second fitting for the main measurement time estimation periodically, and it is possible to estimate the actual measurement time closer to the actual one.
また、 先に実行された本計測時間の推定によって、 本計測以外の時間を予測で きれば、 その時間に第 2のフィッティング区間をあらかじめ設定しておくことも 可能である。  If the time other than the actual measurement can be predicted by the estimation of the actual measurement time previously executed, the second fitting section can be set in advance at that time.
即ち、 区間 1 0 1 1で検出された変位に基づき第 2のフィッティングを行って 本計測 1 0 2 1のデータ取得時を推定し、 次の区間 1 0 1 2では区間 1 0 1 1に 含まれるナビゲーターエコーと新たに得られたナビゲーターエコーを用いて、 第 2のフイツティングを行って本計測 1 0 2 2のデータ取得時を推定する。  In other words, the second fitting is performed based on the displacement detected in section 1 0 1 1 to estimate the time of data acquisition of main measurement 1 0 1 2, and in the next section 1 0 1 2, it is included in section 1 0 1 1 Using the navigator echo to be obtained and the newly obtained navigator echo, a second fitting is performed to estimate the data acquisition time of the main measurement 102 2.
以下、 同様に、 順次、 前の区間に含まれるナビゲーターエコーの一部と新たに 得られたナビゲーターエコーとを用いて第 2のフィッティングを行う。  Hereinafter, similarly, the second fitting is sequentially performed using a part of the navigator echo included in the previous section and the newly obtained navigator echo.
この場合、 第 2のフィッティング区間の間隔は、 呼吸周期よりも短く、 しかも 第 2のフィッティング区間は、 それぞれオーバ一ラップしているため、 時間の経 過に伴い、 例えば、 第 2のフィッティング区間 1 0 1 3で本計測 1 0 2 3のデー 夕取得時間を推定した後に、 次の第 2のフィッティング区間 1 0 1 4でも同じ本 計測 1 0 2 3のデータ取得時間が推定されることになる。 この場合には、 本計測 1 0 2 3に近い時間に実行されたフィッティング結果に基づき本計測 1 0 2 3お ける ータ取得を行う。 In this case, the interval of the second fitting section is shorter than the respiratory cycle, and the second fitting section overlaps each other. Therefore, as time passes, for example, the second fitting section 1 After estimating the data acquisition time of main measurement 1 0 2 3 in 0 1 3, the same data acquisition time of main measurement 1 0 2 3 will be estimated in the next second fitting section 1 0 1 4 . In this case, based on the fitting results performed at a time close to the main measurement 1023, the main measurement 1023 Get data.
このように、 本実施例によれば、 第 2のフィッティングに用いるナビゲーター エコーを逐次更新していくことにより、 本計測データの取得時間の推定結果をよ り正確にすることができる。  As described above, according to the present embodiment, the estimation result of the acquisition time of the main measurement data can be made more accurate by sequentially updating the navigator echo used for the second fitting.
なお、 本実施例においても、 図 1 0の実施例と同様に、 フィッティングに用い るナビゲーターエコーを用いて体動予測関数を更新 (第 1のフィッティング) し ていくことが好ましい。  In this embodiment, as in the embodiment of FIG. 10, it is preferable to update the body motion prediction function using the navigator echo used for fitting (first fitting).
即ち、 本計測と本計測との間に計測したナビゲーターエコーを用いて第 2のフ イツティングを行うとともに、 体動予測関数を逐次更新 (第 1のフイツティン グ) する。 これにより、 呼吸周期が変化した場合にも、 データ取得時間のずれを 補正することができる。  That is, the second fitting is performed using the navigator echo measured between the main measurement and the body motion prediction function is sequentially updated (first fitting). As a result, even if the respiratory cycle changes, it is possible to correct the data acquisition time lag.
以上説明したように、 本発明の第 2の態様による M R I装置によれば、 本計測 に先立って体動周期を近似する体動予測関数を作成し、 この体動予測関数と本計 測に付随して取得したナビゲーターエコーとから本計測データを取得する時刻及 びデ—夕取得時間を推測するようにしたので、 本計測時における実際の変位と予 測した変位とのずれを小さくすることができ、 体動のアーチファクトを確実に予 測することができる。  As described above, according to the MRI apparatus according to the second embodiment of the present invention, a body motion prediction function that approximates the body motion cycle is created prior to the main measurement, and the body motion prediction function and the The time at which the actual measurement data is acquired and the data acquisition time are estimated from the navigator echo acquired at this time, so that the deviation between the actual displacement and the predicted displacement at the time of the actual measurement can be reduced. This makes it possible to reliably predict body motion artifacts.
特に、 呼息期と吸息期とを確実に識別して、 それぞれの画像を取得することが できる。 また、 心電同期撮像のように、 一心周期内の複数の心時相について画像 を得る場合に、 各時相の計測毎にナビゲーターシーケンスを実行する必要がない ので、 実質的な計測時間を増加することができ、 これにより計測時間の短縮或い は心時相数の増加を図ることができる。  In particular, it is possible to reliably identify the expiration period and the inspiration period and acquire the respective images. Also, when acquiring images for multiple cardiac phases within one cardiac cycle, such as ECG-gated imaging, there is no need to execute the navigator sequence for each measurement of each phase, thus substantially increasing the measurement time. This can shorten the measurement time or increase the number of cardiac phases.
さらに、 本計測と本計測との間の待ち時間を利用してナビゲーターシーケンス を実行することにより、 フィッティング結果をより確実にすることができ、 また そのナビゲーターシーケンス結果を用いて体動予測関数を更新することにより、 体動周期が変化した場合でも、 ずれが発生することなく常に変位が指定範囲にあ るときに本計測デー夕を取得することができる。  Furthermore, by executing the navigator sequence using the waiting time between the main measurement and the main measurement, the fitting result can be made more reliable, and the body motion prediction function is updated using the navigator sequence result. By doing so, even when the body movement period changes, the main measurement data can be acquired when the displacement is always within the specified range without any deviation.
また、 各実施例において、 体動予測関数として式 (2 ) のような一次項を含む 体動予測関数を用いた場合には、 一時的な被検体位置の変化にも対応することが できる。 In each embodiment, when a body motion prediction function including a first-order term such as equation (2) is used as the body motion prediction function, it is possible to cope with a temporary change in the position of the subject. it can.
図 12は、 被検体の位置が動いた場合の体動波形を表した図である。 図示する ように、 時刻 t 1から t 2で被検体が動いたために、 波形が変形し、 計測部位は 本来計測しょうとする体動範囲 1201から外れてしまっていて、 初期の指定範 囲のまま撮像したのでは、 有効なデータを得ることができない。  FIG. 12 is a diagram illustrating a body motion waveform when the position of the subject moves. As shown in the figure, because the subject moved from time t1 to t2, the waveform was deformed and the measurement site was out of the body movement range 1201 originally intended to be measured, and the initial specified range was maintained. Effective data cannot be obtained by capturing images.
このような体動波形は、 例えば前記 (2) 式の様な一次項を含む体動予測関数 又は前記 (3) 式の様な体動周期とそれより長い周期を持つ周期関数の重み付け 和によって表される体動予測関数によって近似することができ、 図 13に示すよ うに、 この一次項又は長周期項による波形の変化に合わせて撮像位置及び指定範 囲 (ゲートウインドウ) を更新する (1201— 1202→1203と変更) こ とにより、 計測部位が指定範囲内にあるときに本計測デー夕の取得を行うことが できる。 また、 ゲートウィンドウの更新は、 体動予測関数を用いずに行なうこと も可能である。 例えば、 1呼吸周期毎(図 4の例の場合 405、 406、 407、 408 · · ·)に位置の平均値を計測し、 平均値の変化からゲートウインドウを図 13のように変化させる。 あるいは、 後述する図 14の様な U Iを持つ画面上で 直接ゲートウインドウを設定してもよい。  Such a body motion waveform is calculated by, for example, a body motion prediction function including a first-order term as in the above equation (2) or a weighted sum of a body motion cycle as in the above equation (3) and a periodic function having a longer cycle. It can be approximated by the body motion prediction function represented, and as shown in Fig. 13, the imaging position and the specified range (gate window) are updated in accordance with the change in the waveform due to this first-order term or long-term term (1201). -Changed from 1202 to 1203) By doing so, the main measurement data can be acquired when the measurement site is within the specified range. Also, the gate window can be updated without using the body motion prediction function. For example, the average value of the position is measured every breathing cycle (405, 406, 407, 408,... In the example of FIG. 4), and the gate window is changed as shown in FIG. 13 based on the change in the average value. Alternatively, the gate window may be set directly on a screen having a UI as shown in FIG. 14 described later.
なお、 撮像位置の更新は、 リアルタイムで撮像位置を変化させるインタラクテ イブスキャンコントロール (I SC) 技術により実現できる。  The update of the imaging position can be realized by the interactive scan control (ISC) technology that changes the imaging position in real time.
本発明の MR I装置において、 ナビゲ一夕一ェコ一を取得するタイミング指定 するための U Iの実施形態を図 14に示す。 図 14は U Iとして表示される画面 の一例を示すものであり、 心電計から得られた R波 1401、 1402、 体動予 測関数 1403、 ゲートウィンドウゲ一トウインドウ 1404が表示されるとと もに、 ナビゲーターエコーの取得タイミングを指定するためのメニュー 1405 が表示される。  FIG. 14 shows an embodiment of a UI for designating the timing of acquiring the navigation data in the MRI apparatus of the present invention. Fig. 14 shows an example of a screen displayed as a UI.If R waves 1401, 1402 obtained from an electrocardiograph, a body motion prediction function 1403, and a gate window gate window 1404 are displayed, In addition, a menu 1405 for specifying the acquisition timing of the navigator echo is displayed.
メニュー 1405では、 例えば、 本計測の前か、 本計測の前後かを指定するこ とができるとともに、 ナビゲーターエコーの数を指定することができる。 例えば、 メニューで 「He ad l」 を選択すると本計測シーケンスの前で 1つのナビゲー 夕一エコーを取得し、 「He ad 2」 を選択すると、 本計測シーケンスの前で 2つ のナビゲーターエコーを取得することが選択される。 また、 「H e a d &T a i 1」 を選択すると本計測シーケンスの前後でそれぞれ 1つのナビゲーターエコーを取得することが選択される。 In the menu 1405, for example, it is possible to specify before or after the main measurement, and also to specify the number of navigator echoes. For example, if you select “Head l” in the menu, one navigator echo will be acquired before the main measurement sequence, and if “Head 2” is selected, two navigator echoes will be obtained before the main measurement sequence. To be chosen. When “Head & T ai 1” is selected, acquisition of one navigator echo before and after the main measurement sequence is selected.
また、 ナビゲーターシーケンスの実行タイミングの指定は、 例えば、 体動予測 関数 1 4 0 3上に表示された点を指定する。 指定の内容は、 模式的な図形として 表示される。 図示する例では、 本計測シーケンス 1 4 0 7の前に 2回のナビゲ一 夕一シーケンス 1 4 0 6の実行が指定されたことが表示されている。  The specification of the navigator sequence execution timing is, for example, a point displayed on the body motion prediction function 1443. The specified content is displayed as a schematic figure. In the example shown in the figure, it is displayed that the execution of the two-time navigator one-time sequence 1406 has been designated before the main measurement sequence 1407.
U Iは図示するものに限定されないが、 このように、 R波、 体動予測関数、 ナ ピゲ一夕一シーケンス及び本計測シーケンスを表示すると共に、 ナピゲ一タ——ン The UI is not limited to the one shown in the figure, but as described above, the R wave, the body motion prediction function, the napige overnight sequence and the main measurement sequence are displayed, and the napige pattern is displayed.
—ゲンスの数、 実行のタイミングを画面上で指定可能にすることにより、 本発明 の実行を容易にすることができる。 産業上の利用可能性 —By making it possible to specify the number of glances and the timing of execution on the screen, the execution of the present invention can be facilitated. Industrial applicability
本発明の M R Γ装置によれば、 時間間隔を置いて計測した 2以上のナビゲ一夕 According to the MR apparatus of the present invention, two or more navigator
—エコー信号を用いて求めた被検体の変位及び変位方向から、 画像再構成用のェ コ一信号を取得するタイミングを決定するので、 少ないナビゲーターェコ一信号 で指定する体動範囲内での画像再構成用エコー信号の取得を実現できる。 —Since the timing to acquire the echo signal for image reconstruction is determined from the displacement and displacement direction of the subject obtained using the echo signal, the movement within the body movement range specified by a small number of navigator echo signals is determined. Acquisition of an echo signal for image reconstruction can be realized.
これにより、 確実に体動アーチファクトを抑制することができる。 また、 ナビ ゲ一夕—シーケンスに要する時間を低減することができるので、 心電同期撮像な どにおいて本計測時間が圧縮されるのを防止するとともに、 より多くの心時相数 の画像を取得することができる。  Thus, body motion artifacts can be reliably suppressed. In addition, since the time required for the navigation-sequence sequence can be reduced, the main measurement time can be prevented from being compressed in ECG-gated imaging, etc., and images with more cardiac phases can be acquired. can do.
また、 本発明によれば、 変位方向を求め、 変位方向が正又は負であるかに応じ て撮像夕イミングを決定することにより、 呼吸周期における呼息期及び吸息期を 識別することができ、 これらの画像をそれぞれ撮像することができる。  Further, according to the present invention, the expiration period and the inspiration period in the respiratory cycle can be identified by determining the displacement direction and determining the imaging timing according to whether the displacement direction is positive or negative. Each of these images can be captured.
さらに、 本発明によれば、 体動周期を近似する体動予測関数を予め求めておく ことができ、 この体動予測関数を用いることにより、 より確実に本計測データを, 取得することができる。 また、 体動予測関数の周期性を利用して、 本計測データ を取得すべき時刻、 取得する間隔を推定することができる。 - また、 本計測データを取得すべき時刻、 取得する間隔の推定に基づき、 それ以 外の時間をナビゲー夕一シーケンスの実行ゃデ一夕は取得しない撮像シ一ケンス (空打ち) の実行に当てることができ、 ナビゲーターシーケンスを実行した場合 は、 それで得られたナビゲーターエコーを用いて、 変位算出に用いるナビゲ一夕 —エコー信号の更新や体動予測関数の更新を行うことができる。 これにより、 体 動予測関数を用いた撮像タイミングの推定をより正確にすることができ、 また体 動の変化があった場合のずれを最小にすることができる。 Furthermore, according to the present invention, a body motion prediction function that approximates the body motion cycle can be obtained in advance, and the main measurement data can be obtained more reliably by using this body motion prediction function. . Also, by using the periodicity of the body motion prediction function, it is possible to estimate the time at which the measurement data should be acquired and the interval at which the measurement data is acquired. -Based on the estimation of the time at which this measurement data should be acquired and the intervals at which it should be acquired, execute the navigation sequence for the rest of the time. If the navigator sequence is executed, the navigator echo obtained from the navigator sequence can be used to update the navigator used for displacement calculation—update the echo signal and update the body motion prediction function. It can be carried out. As a result, it is possible to more accurately estimate the imaging timing using the body motion prediction function, and it is possible to minimize the deviation when there is a change in body motion.

Claims

請求の範囲 The scope of the claims
1. 所定の撮像シーケンスに基づき、 画像再構成に必要なエコー信号を取得し て被検体 (101) の画像を得る手段と、 1. means for acquiring an echo signal necessary for image reconstruction based on a predetermined imaging sequence to obtain an image of the subject (101);
前記被検体の周期的体動情報を含む核磁気共鳴信号をナビゲーターエコー ( 2 07、 208、 410、 509) として取得するナビゲーターェコ一計測手段 (105、 106) と、  Navigator echo measuring means (105, 106) for acquiring a nuclear magnetic resonance signal including periodic body motion information of the subject as a navigator echo (207, 208, 410, 509);
前記被検体の周期的体動に基づく所定部位の変位の許容範囲を設定する許容範 囲設定手段 (108、 11 1) と、  Allowable range setting means (108, 111) for setting an allowable range of displacement of a predetermined portion based on the periodic body movement of the subject;
前記ナビゲーターエコーから前記所定部位の変位を算出して該変位が前記許容 範囲内にあるか否かを判定する体動判定手段 (107) とを備え、  Body movement determining means (107) for calculating a displacement of the predetermined portion from the navigator echo and determining whether the displacement is within the allowable range.
前記画像を得る手段は、 前記所定部位の変位が前記許容範囲内にあるときに取 得されたエコー信号を用いて画像再構成を行う磁気共鳴イメージング装置におい て、  Means for obtaining the image, in a magnetic resonance imaging apparatus for performing image reconstruction using an echo signal obtained when the displacement of the predetermined portion is within the allowable range,
前記体動判定手段は、 時間間隔を置いて計測した 2以上のナビゲ一夕一エコー から、 前記所定部位の変位方向を算出し、  The body movement determining means calculates a displacement direction of the predetermined portion from two or more echoes of the navigator measured at intervals of time,
前記所定部位の変位及び変位方向に基づいて、 前記画像再構成に必要なエコー 信号を取得するタイミングを決定する撮像タイミング決定手段 (111) を備え たことを特徴とする磁気共鳴ィメ一ジング装置。  A magnetic resonance imaging apparatus comprising: an imaging timing determination unit (111) that determines a timing of acquiring an echo signal necessary for the image reconstruction based on the displacement and the displacement direction of the predetermined portion. .
2. 請求項 1記載の磁気共鳴イメージング装置において、 前記ナビゲ一夕一ェ コ一計測手段は、 前記被検体の一心周期内に前記 2以上のナビゲーターエコーを 取得することを特徴とする磁気共鳴ィメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the navigator / echo / echo / measurement unit acquires the two or more navigator echoes within one cardiac cycle of the subject. apparatus.
3. 請求項 2記載の磁気共鳴イメージング装置において、 前記ナビゲ一ターェ コー計測手段は、 前記一心周期内の前記 2以上のナビゲーターの内、 1以上を画 像再構成用エコー信号の取得期間の前に取得し、 他の 1以上を該画像再構成用ェ コー信号の取得期間の後に取得することを特徴とする磁気共鳴イメージング装置。 3. The magnetic resonance imaging apparatus according to claim 2, wherein the navigator / recorder is configured to determine at least one of the two or more navigators in the one cardiac cycle before an acquisition period of an image reconstruction echo signal. A magnetic resonance imaging apparatus comprising: acquiring at least one other image after an acquisition period of the image reconstruction echo signal.
4. 請求項 1記載の磁気共鳴イメージング装置において、 前記ナビゲ一夕一ェ コー計測手段は、 一心周期毎に 1以上のナビゲーターエコーを取得することを特 徴とする磁気共鳴ィメ一ジング装置。 4. The magnetic resonance imaging apparatus according to claim 1, wherein said navigator one-time-one-measurement unit acquires one or more navigator echoes per one cardiac cycle.
5 . 請求項 1項記載の磁気共鳴イメージング装置において、 3以上のナビゲー ターエコーを用いて前記周期的体動を表す体動予測関数を作成する体動予測関数 作成手段 (1 0 7、 1 1 1 ) を備え、 前記体動判定手段は、 前記 2以上のナビゲ —夕一エコーから求めた前記所定部位の変位を前記体動予測関数にフィッティン グして、 所望の時刻における前記所定部位の変位及び変位方向を算出することを 特徴とする磁気共鳴ィメ一ジング装置。 5. The magnetic resonance imaging apparatus according to claim 1, wherein a body motion prediction function generating means for generating a body motion prediction function representing the periodic body motion using three or more navigator echoes. The body motion determining means fits the displacement of the predetermined portion obtained from the two or more navigator-evening echoes to the body motion prediction function, and calculates the displacement and the displacement of the predetermined portion at a desired time. A magnetic resonance imaging apparatus for calculating a displacement direction.
6 . 請求項 1記載の磁気共鳴イメージング装置において、 前記体動判定手段は、 前記所定部位の変位の変動に対応して前記許容範囲を調整することを特徴とする 磁気共鳴ィメージング装置。 6. The magnetic resonance imaging apparatus according to claim 1, wherein the body movement determining unit adjusts the allowable range according to a change in displacement of the predetermined part.
7 . 請求項 1記載の磁気共鳴イメージング装置において、 前記許容範囲設定手 段は、 前記 2以上のナビゲーターエコーの取得タイミングと前記許容範囲を設定 する手段を備えたことを特徴とする磁気共鳴ィメージング装置。 7. The magnetic resonance imaging apparatus according to claim 1, wherein the allowable range setting means includes means for setting the acquisition timing of the two or more navigator echoes and the allowable range. .
8 . 請求項 1記載の磁気共鳴ィメ一ジング装置において、 前記撮像タイミング 決定手段は、 前記体動判定手段によって求められた前記所定部位の変位が前記許 容範囲内であって且つ前記変位方向が同一方向のときに、 前記画像再構成用ェコ —信号の取得を行うように撮像タイミングを決定することを特徴とする磁気共鳴 イメージング装置。 8. The magnetic resonance imaging apparatus according to claim 1, wherein the imaging timing determination unit is configured to determine that the displacement of the predetermined part determined by the body motion determination unit is within the allowable range and the displacement direction. A magnetic resonance imaging apparatus characterized in that the imaging timing is determined so that the image reconstruction echo signal is obtained when are in the same direction.
9 . 請求項 5記載の磁気共鳴イメージング装置において、 前記撮像タイミング 決定手段は、 前記 2以上のナビゲーターエコーの取得時刻及び前記体動予測関数 から、 前記画像再構成用エコー信号の取得開始時刻及び取得期間を決定すること を特徴とする磁気共鳴ィメージング装置。 9. The magnetic resonance imaging apparatus according to claim 5, wherein the imaging timing determination unit obtains the acquisition start time and acquisition of the echo signal for image reconstruction from the acquisition time of the two or more navigator echoes and the body motion prediction function. A magnetic resonance imaging apparatus characterized by determining a period.
1 0 . 請求項 9記載の磁気共鳴イメージング装置において、 前記撮像タイミン グ決定手段が、 前記画像再構成用エコー信号の取得開始時刻及び取得期間を決定 できるまで、 前記ナビゲーターエコーの計測を繰り返すことを特徴とする磁気共 鳴イメージング装置。 10. The magnetic resonance imaging apparatus according to claim 9, wherein the imaging timing determination unit repeats the measurement of the navigator echo until the acquisition start time and the acquisition period of the image reconstruction echo signal can be determined. Magnetic resonance imaging device.
1 1 . 請求項 5記載の磁気共鳴イメージング装置において、 前記体動予測関数 は、 少なくとも、 被検体の体動の 1 / 4周期に渡るナピゲ一夕一エコーから求め た変位を用いて、 被検体毎に作成されることを特徴とする磁気共鳴ィメージング 装置。 11. The magnetic resonance imaging apparatus according to claim 5, wherein the body motion prediction function is at least a displacement obtained from one echo of Napige over one-fourth cycle of the body motion of the subject. A magnetic resonance imaging apparatus characterized in that the magnetic resonance imaging apparatus is created every time.
1 2 . 請求項 5記載の磁気共鳴イメージング装置において、 前記体動予測関数 作成手段は、 体動決定のために逐次取得されるナビゲ一夕一エコーを用いて前記 体動予測関数を更新することを特徴とする磁気共鳴イメージング装置。 12. The magnetic resonance imaging apparatus according to claim 5, wherein the body motion prediction function creating means updates the body motion prediction function using navigating one-by-one echoes sequentially acquired for body motion determination. A magnetic resonance imaging apparatus comprising:
1 3 . 請求項 1 2記載の磁気共鳴イメージング装置において、 前記画像再構成 用ェコ一信号の取得期間終了時から次の前記画像再構成用エコー信号の取得開始 時までの間に、 1以上のナビゲーターェコ一を取得し、 該ナビゲーターエコーを 用いて前記体動予測関数を更新することを特徴とする磁気共鳴ィメ一ジング装置。 13. The magnetic resonance imaging apparatus according to claim 12, wherein at least 1 or more is set between the end of the acquisition period of the image reconstruction echo signal and the start of acquisition of the next image reconstruction echo signal. A magnetic resonance imaging apparatus comprising: acquiring a navigator echo of (1); and updating the body motion prediction function using the navigator echo.
1 4 . 請求項 1 3記載の磁気共鳴イメージング装置において、 前記体動予測関 数作成手段は、 前記ナビゲーターエコーを取得する期間と、 該体動予測関数の更 新に使用するナビゲ一夕一エコーの期間をそれぞれ前記体動予測関数上で指定す る手段を備えたことを特徴とする磁気共鳴ィメージング装置。 14. The magnetic resonance imaging apparatus according to claim 13, wherein the body motion prediction function creating means includes a period during which the navigator echo is acquired, and a navigator overnight echo used for updating the body motion prediction function. A means for designating each of the periods on the body motion prediction function.
1 5 . 請求項 2記載の磁気共鳴イメージング装置において、 前記被検体の体動 が呼吸動の場合に、 前記体動判定手段は、 一方の前記変位方向を呼息期とし、 他 方の前記変位方向を P及息期と判定することを特徴とする磁気共鳴ィメ一ジング装 置。 15. The magnetic resonance imaging apparatus according to claim 2, wherein when the body motion of the subject is a respiratory motion, the body motion determination means sets one of the displacement directions as an expiration period and the other of the displacement directions. A magnetic resonance imaging apparatus characterized in that the direction is determined to be P breath period.
1 6 . 請求項 1乃至 4の内いずれか一項記載の磁気共鳴イメージング装置にお いて、 前記体動判定手段は、 前記 2以上のナビゲ一夕一エコーから算出した前記 所定部位の変位の一次微分又は差分に基づいて、 該所定部位の変位方向を算出す ることを特徴とする磁気共鳴ィメ一ジング装置。 16. The magnetic resonance imaging apparatus according to any one of claims 1 to 4, wherein the body movement determination unit is configured to calculate a primary displacement of the predetermined portion calculated from the two or more navigating overnight echoes. A magnetic resonance imaging apparatus for calculating a displacement direction of the predetermined portion based on a differentiation or a difference.
1 7 . 請求項 1記載の磁気共鳴イメージング装置において、 前記画像再構成用 エコー信号の取得期間以外はエコー信号の取得を行わずに前記撮像シーケンスを 継続することを特徴とする磁気共鳴イメージング装置。 17. The magnetic resonance imaging apparatus according to claim 1, wherein the imaging sequence is continued without acquiring an echo signal during a period other than an acquisition period of the echo signal for image reconstruction.
1 8 . 請求項 1記載の磁気共鳴イメージング装置において、 2つのナピゲ一夕 —ェコ一の互いの時間間隔は、 約 1 0 0 m sであり、 変位の検出精度は、 0 . 7 mm〜 0 . 8 mmの分解能であることを特徴とする磁気共鳴イメージング装置。 18. The magnetic resonance imaging apparatus according to claim 1, wherein a time interval between the two napiges is about 100 ms, and a displacement detection accuracy is 0.7 mm to 0 mm. A magnetic resonance imaging apparatus having a resolution of 8 mm.
PCT/JP2004/002849 2003-03-14 2004-03-05 Magnetic resonance imaging device WO2004080301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503502A JPWO2004080301A1 (en) 2003-03-14 2004-03-05 Magnetic resonance imaging system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003069543 2003-03-14
JP2003-69543 2003-03-14
JP2003-390704 2003-11-20
JP2003390704 2003-11-20

Publications (1)

Publication Number Publication Date
WO2004080301A1 true WO2004080301A1 (en) 2004-09-23

Family

ID=32992974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002849 WO2004080301A1 (en) 2003-03-14 2004-03-05 Magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JPWO2004080301A1 (en)
WO (1) WO2004080301A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026076A (en) * 2004-07-15 2006-02-02 Hitachi Medical Corp Magnetic resonance imaging device
JP2006198407A (en) * 2005-01-18 2006-08-03 Siemens Corporate Res Inc Method and system for compensation of motion in magnetic resonance (mr) imaging
JP2007111188A (en) * 2005-10-19 2007-05-10 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging system
JP2007229443A (en) * 2006-02-06 2007-09-13 Toshiba Corp Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
JP2008154887A (en) * 2006-12-26 2008-07-10 Ge Medical Systems Global Technology Co Llc Mri apparatus
US7570050B2 (en) 2006-01-11 2009-08-04 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and method
JP2009240669A (en) * 2008-03-31 2009-10-22 Toshiba Corp Magnetic resonance imaging apparatus and scanning-condition setting method
JP2010279543A (en) * 2009-06-04 2010-12-16 Toshiba Corp Magnetic resonance imaging apparatus
US7877129B2 (en) 2001-09-13 2011-01-25 Hitachi Medical Corporation Magnetic resonance imaging apparatus and RF reception coil apparatus
JP2011177209A (en) * 2010-02-26 2011-09-15 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
JP2011177245A (en) * 2010-02-26 2011-09-15 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
JP2012183431A (en) * 2006-02-06 2012-09-27 Toshiba Corp Magnetic resonance imaging device
JP2013132333A (en) * 2011-12-26 2013-07-08 Ge Medical Systems Global Technology Co Llc Magnetic resonance apparatus and program
JP2013163131A (en) * 2007-07-11 2013-08-22 Toshiba Corp Magnetic resonance imaging apparatus
US9042959B2 (en) 2007-07-11 2015-05-26 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2015521880A (en) * 2012-06-27 2015-08-03 コーニンクレッカ フィリップス エヌ ヴェ Motion parameter estimation
JP2016538928A (en) * 2013-12-02 2016-12-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Real-time adaptive physiological synchronization and gating for steady-state MR sequences
KR101759083B1 (en) 2015-09-10 2017-07-18 삼성전자주식회사 Magnetic resonance imaging apparatus and method to acquire magnetic resonance image
WO2019130675A1 (en) * 2017-12-26 2019-07-04 株式会社日立製作所 Magnetic resonance imaging device
CN110604549A (en) * 2019-09-23 2019-12-24 上海联影医疗科技有限公司 Image acquisition method, apparatus, device and medium for magnetic resonance scanner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154130A (en) * 1991-12-06 1993-06-22 Hitachi Ltd Body motion artifact eliminating method
JPH08215174A (en) * 1994-12-21 1996-08-27 Siemens Ag Phase correction method of core resonance signal
JP2001204712A (en) * 1999-12-14 2001-07-31 General Electric Co <Ge> Method for measuring breathing displacement and velocity using navigator magnetic resonance imaging echo signal
JP2002301043A (en) * 2001-04-05 2002-10-15 Ge Medical Systems Global Technology Co Llc Phase compensation method and mri apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154130A (en) * 1991-12-06 1993-06-22 Hitachi Ltd Body motion artifact eliminating method
JPH08215174A (en) * 1994-12-21 1996-08-27 Siemens Ag Phase correction method of core resonance signal
JP2001204712A (en) * 1999-12-14 2001-07-31 General Electric Co <Ge> Method for measuring breathing displacement and velocity using navigator magnetic resonance imaging echo signal
JP2002301043A (en) * 2001-04-05 2002-10-15 Ge Medical Systems Global Technology Co Llc Phase compensation method and mri apparatus

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877129B2 (en) 2001-09-13 2011-01-25 Hitachi Medical Corporation Magnetic resonance imaging apparatus and RF reception coil apparatus
JP2006026076A (en) * 2004-07-15 2006-02-02 Hitachi Medical Corp Magnetic resonance imaging device
JP4558397B2 (en) * 2004-07-15 2010-10-06 株式会社日立メディコ Magnetic resonance imaging system
JP2006198407A (en) * 2005-01-18 2006-08-03 Siemens Corporate Res Inc Method and system for compensation of motion in magnetic resonance (mr) imaging
JP2007111188A (en) * 2005-10-19 2007-05-10 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging system
JP4639136B2 (en) * 2005-10-19 2011-02-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance imaging system
US8143888B2 (en) 2006-01-11 2012-03-27 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and method
US7570050B2 (en) 2006-01-11 2009-08-04 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and method
JP2012183431A (en) * 2006-02-06 2012-09-27 Toshiba Corp Magnetic resonance imaging device
JP2007229443A (en) * 2006-02-06 2007-09-13 Toshiba Corp Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
JP2008154887A (en) * 2006-12-26 2008-07-10 Ge Medical Systems Global Technology Co Llc Mri apparatus
JP2013163131A (en) * 2007-07-11 2013-08-22 Toshiba Corp Magnetic resonance imaging apparatus
US9042959B2 (en) 2007-07-11 2015-05-26 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9232908B2 (en) 2008-03-31 2016-01-12 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and scanning-condition setting method
JP2009240669A (en) * 2008-03-31 2009-10-22 Toshiba Corp Magnetic resonance imaging apparatus and scanning-condition setting method
US8842895B2 (en) 2008-03-31 2014-09-23 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and scanning-condition setting method
JP2010279543A (en) * 2009-06-04 2010-12-16 Toshiba Corp Magnetic resonance imaging apparatus
JP2011177209A (en) * 2010-02-26 2011-09-15 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
JP2011177245A (en) * 2010-02-26 2011-09-15 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
JP2013132333A (en) * 2011-12-26 2013-07-08 Ge Medical Systems Global Technology Co Llc Magnetic resonance apparatus and program
JP2015521880A (en) * 2012-06-27 2015-08-03 コーニンクレッカ フィリップス エヌ ヴェ Motion parameter estimation
JP2016538928A (en) * 2013-12-02 2016-12-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Real-time adaptive physiological synchronization and gating for steady-state MR sequences
KR101759083B1 (en) 2015-09-10 2017-07-18 삼성전자주식회사 Magnetic resonance imaging apparatus and method to acquire magnetic resonance image
WO2019130675A1 (en) * 2017-12-26 2019-07-04 株式会社日立製作所 Magnetic resonance imaging device
JP2019111261A (en) * 2017-12-26 2019-07-11 株式会社日立製作所 Magnetic resonance imaging apparatus
JP7115847B2 (en) 2017-12-26 2022-08-09 富士フイルムヘルスケア株式会社 Magnetic resonance imaging system
US11766188B2 (en) 2017-12-26 2023-09-26 Fujifilm Healthcare Corporation Magnetic resonance imaging device
CN110604549A (en) * 2019-09-23 2019-12-24 上海联影医疗科技有限公司 Image acquisition method, apparatus, device and medium for magnetic resonance scanner
CN110604549B (en) * 2019-09-23 2022-06-24 上海联影医疗科技股份有限公司 Image acquisition method, apparatus, device and medium for magnetic resonance scanner

Also Published As

Publication number Publication date
JPWO2004080301A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2004080301A1 (en) Magnetic resonance imaging device
JP4807825B2 (en) Magnetic resonance imaging system
JP4889482B2 (en) Image data collection control method, image data collection device, and control device for image data collection device
US8352013B2 (en) Method and system for motion compensation in magnetic resonance (MR) imaging
US7432710B2 (en) Apparatus and method for reducing image artifact
EP2628016B1 (en) Mr data acquisition using physiological monitoring
US9532728B2 (en) Magnetic resonance imaging apparatus
JP2007229443A (en) Magnetic resonance imaging device, and imaging condition setting method for magnetic resonance imaging device
US9176210B2 (en) Magnetic resonance imaging apparatus
WO2006046639A1 (en) Nuclear magnetic resonance imaging device
JP6008839B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP4789244B2 (en) Magnetic resonance imaging system
US20150157277A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2010075573A (en) Magnetic resonance imaging instrument
JP2006320527A (en) Magnetic resonance imaging system
JP3993799B2 (en) Magnetic resonance imaging system
GB2478403A (en) Compensating for respiratory motion in MRI using navigator pulses and a motion model
JP4133348B2 (en) Inspection device using nuclear magnetic resonance
JP4558397B2 (en) Magnetic resonance imaging system
JP6133926B2 (en) Dynamic imaging using variable contrast
JP2005040416A (en) Magnetic resonance imaging apparatus
JP2641486B2 (en) NMR imaging equipment
JP6827813B2 (en) Medical diagnostic imaging equipment
US11766188B2 (en) Magnetic resonance imaging device
CN102565736B (en) Determine that layer is about the method for the position at the position of relatively its motion and magnetic resonance equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503502

Country of ref document: JP

122 Ep: pct application non-entry in european phase