WO2004077701A1 - Method and device for switching between active and auxiliary circuits for optical transmission - Google Patents

Method and device for switching between active and auxiliary circuits for optical transmission Download PDF

Info

Publication number
WO2004077701A1
WO2004077701A1 PCT/JP2003/002018 JP0302018W WO2004077701A1 WO 2004077701 A1 WO2004077701 A1 WO 2004077701A1 JP 0302018 W JP0302018 W JP 0302018W WO 2004077701 A1 WO2004077701 A1 WO 2004077701A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
line
switching
signal
wdm
Prior art date
Application number
PCT/JP2003/002018
Other languages
French (fr)
Japanese (ja)
Inventor
Michio Tanaka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/002018 priority Critical patent/WO2004077701A1/en
Publication of WO2004077701A1 publication Critical patent/WO2004077701A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures

Definitions

  • the present invention generally relates to a method and apparatus for switching between a working and protection line in optical transmission, and more particularly to a method for switching a working and protection line suitable for WDM in which a plurality of optical signals having different wavelengths are wavelength-division multiplexed.
  • the present invention relates to a switching method and a switching device. Background technology
  • optical amplifiers for amplifying optical signals or signal light have been put to practical use in order to enable long-distance transmission by compensating for losses in optical fibers. It is known in the art that the optical amplification medium is supplied with the signal light to be amplified, and the optical amplification medium is pumped so as to provide a gain band including the wavelength of the signal light. This is an optical amplifier composed of a bombing unit.
  • erupium-doped fiber amplifiers have been developed to amplify signal light in the 1.55- ⁇ m wavelength band with low loss using silica-based fibers.
  • the EDFA includes an erbium-doped fiber (EDF) as an optical amplification medium, and a pump light source for supplying a pump light having a predetermined wavelength to the EDF.
  • pump light having a wavelength of 0.98 / im band or 1.48 / 1m band, a gain band including a wavelength of 1.55 / m can be obtained.
  • Wavelength division multiplexing is a technology for increasing the transmission capacity of optical fibers.
  • WDM Wavelength division multiplexing
  • a plurality of optical carriers having different wavelengths are used.
  • Multiple optical signals obtained by independently modulating each optical carrier are wavelength-division multiplexed by an optical multiplexer, and the resulting WDM signal light is transmitted to an optical fiber transmission line.
  • the received WDM signal light is separated into individual optical signals by an optical demultiplexer, and based on each optical signal, Thus, the transmission data is reproduced. Therefore, by applying WDM, the transmission capacity of one optical fiber can be increased in accordance with the number of multiplexing.
  • one optical signal having a single wavelength was transmitted on one line, that is, one optical fiber transmission line.
  • a failure recovery function was provided to prepare the working line and the protection line, perform transmission and reception using the working line normally, and switch to the protection line when a failure occurs in the working line.
  • protection functions This switching operation is called active standby switching.
  • Such protection functions and active spare switching can be extended and applied to WDM systems as they are, but at present there is a problem that the form of application is not optimized. Disclosure of the invention
  • an object of the present invention is to provide a method and an apparatus for switching between a working channel and a protection channel suitable for WDM.
  • the compensating step includes delaying the WDM signal light transmitted by at least one of the working line and the protection line so that the optical path length difference becomes substantially zero.
  • the method comprises the steps of: measuring the intensity of the WDM signal light transmitted by the working line; and determining if the measured intensity does not reach a predetermined level. Switching the WDM signal light transmitted by the service line to the protection line.
  • the method further comprises the steps of: measuring the strength of the optical signal of the optical supervisory channel transmitted by the working line; and determining the strength of the optical signal when the measured strength does not reach a predetermined level. And a step of switching the transmitted WDM signal light to a protection line.
  • the method further comprises the steps of: measuring a quality of an optical signal of an optical supervisory channel transmitted by the working line; and, if the measured quality does not reach a predetermined level, using the working line. And a step of switching the transmitted WDM signal light to a protection line.
  • one of the working line and the protection line for transmitting WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths, and one of the plurality of optical signals As an optical monitoring channel, a means for supplying an optical monitoring signal including a parameter for measuring the optical path length difference between the working line and the protection line, and a means for compensating the optical path length difference on the receiving side based on the parameter
  • An apparatus comprising: BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 is a block diagram of a conventional single-wavelength working standby switching device
  • FIG. 2 is a block diagram of a conventional WDM working standby switching device
  • Fig. 3 is a block diagram of a conventional WDM active standby non-stop switching device due to delay
  • Fig. 4 is a block diagram of a conventional WDM active standby non-stop switching device using buffer memory
  • Fig. 5 is a block diagram of a conventional WDM active standby non-stop switching device due to optical delay
  • Fig. 6 is a block diagram showing an example of a point-to-point network configuration in a conventional WDM active standby switching device (during normal operation). );
  • Figure 7 is a block diagram showing an example of a point-to-point network configuration in a conventional WDM active protection switching device (when a single failure occurs);
  • Fig. 8 is a block diagram showing an example of a point-to-point network configuration in a conventional WDM active / standby switching device (when a double failure occurs);
  • Figure 9 is a block diagram to explain the switching configuration classification when switching with conventional single-wavelength signals;
  • Fig. 10 is a block diagram to explain the switching configuration and the classification of the device providing vendor when switching with the conventional single wavelength signal;
  • FIG. 11 is a block diagram showing an example of a point-to-point network configuration in a WDM active standby switching device to which the present invention is applied (during normal operation);
  • FIG. 12 is a block diagram showing an example of a point-to-point network configuration in a WDM active standby switching device to which the present invention is applied (when a single failure occurs);
  • FIG. 13 is a block diagram showing an example of a point-to-point network configuration in a WDM active standby switching device to which the present invention is applied (part 1 when a double failure occurs);
  • FIG. 14 is a block diagram showing an example of a point-to-point network configuration in the WDM active standby switching device to which the present invention is applied (part 2 when a double failure occurs);
  • FIG. 15 is a block diagram of the switching device at the transmission side according to the present invention.
  • FIG. 16 is a block diagram of a WDM active standby non-stop switching device using optical delay to which the present invention is applied;
  • FIG. 17 is a diagram showing an OSC signal frame format having optical delay control information
  • FIG. 18 is a block diagram of a WDM active spare non-stop switching device using a buffer memory to which the present invention is applied;
  • FIG. 19 is a diagram showing an OSC signal frame format having a buffer memory control information value.
  • one optical signal having a single wavelength was transmitted over one line, or one optical fiber transmission line.
  • a working line 1 and a protection line 2 are provided, and the transmitting node 1 0 and the E / O converters 1 1 1 1 and 1 1-2 respectively transmit the working lines 1 and Transmit the same signal to protection line 2.
  • the suffixes "1-1" and "1-2j" are added to distinguish between the working line 1 and the protection line 2, and may be abbreviated as far as possible.
  • the optical signal is converted into an electric signal by the OZE conversion unit 21 and the signal state is detected by the detection unit 24. If there is no abnormality in the signal, the switching unit 23 normally uses the signal. Select line 1. If there is an error in the signal, the switching unit 23 switches to the spare line 2 according to the command from the control unit 25.
  • the detector 24-E-1 detects a failure in the working line 1
  • the detector 24-E-1 notifies the controller 25-E of the detection of the failure.
  • the control unit 25-E controls the switching unit 23, selects the protection line 2 instead of the working line 1, and recovers from the failure by switching to the protection line 2.
  • the suffix “E” is used to mean that it is related to an electric signal, and is distinguished from “0” that is related to an optical signal in the present invention described later.
  • the working protection switching in WDM transmission is basically performed in the same manner as in the case of single wavelength transmission. That is, a detection unit 24 is provided for each wavelength, a fault is detected for each wavelength signal, and a signal of the wavelength at which the fault is detected is switched to the protection line 2.
  • the receiving node unit 20 converts the optical signal into an electric signal in the OZE conversion unit 21 and detects the failure in the detection unit 24. Switch the signal of wavelength 1 to protection line 2. Also, if a failure such as disconnection occurs in the working line 1, a failure occurs in all wavelength signals transmitted to the line, so that all wavelength signals are switched to the protection line 2.
  • Reference numerals 12-1 and 12-2 denote optical wavelength multiplexing units (optical multiplexers) for obtaining a WDM signal light by wavelength division multiplexing a plurality of optical signals, and reference numerals 22-1 and 22-2.
  • 2 is an optical wavelength demultiplexing unit (optical demultiplexer) for dividing WDM signal light into a plurality of original optical signals. Lexa).
  • each WDM signal of the working protection is transmitted from the working line 1 and the protection line 2 to the receiving node unit 20.
  • the working WDM signal is transmitted to the wavelength demultiplexing unit 22-1, and the backup WDM signal is transmitted to the wavelength demultiplexing unit 22-2, where it is separated into optical signals of each wavelength.
  • an optical signal of wavelength 1 is taken as an example.
  • This optical signal is converted into an electric signal by the OZE conversion unit 21 together with the working spare, and the signal state is detected by the detection units 24-E-1 and 24-E-2. The detected signal is notified to the control unit 251-1E.
  • the signal flowing through the protection line is given a constant or variable electrical delay by the delay unit 26_E.
  • the delay unit 26-E is controlled by the control unit 25-E.
  • Figure 4 uses a buffer memory 27-E instead of the delay unit 26-E.
  • the operation when buffer memory 27-E is used is basically the same as the delay method.
  • the working WDM signal light is transmitted to the wavelength demultiplexing unit 22-1, and the protection WDM signal light is transmitted to the wavelength demultiplexing unit 22-2, and separated into optical signals of each wavelength.
  • an optical signal of wavelength 1 is taken as an example.
  • the signal states of the working optical signal and the standby optical signal are detected by the respective detectors 24-O-1 and 24-O-2.
  • the detected signal is notified to the control unit 25-E.
  • the optical signal flowing through the protection line is given a constant or variable optical delay by the optical delay unit 26_O.
  • the optical delay unit 26-O is controlled by the control unit 25-E.
  • the switching to the protection line 2 is performed by the switching unit 23 to O by the command of the control unit 25-E. Since the protection line 2 is given a delay compared to the working line 1, there is no momentary interruption due to the switching operation, and switching can be performed without interruption.
  • the advantage of the method of performing instantaneous interruption switching without changing the optical signal is that since the electrical signal conversion processing is not performed, low-speed electrical circuit processing is not required and switching can be performed while maintaining the original high speed of the optical signal. can give.
  • the conventional method applies a switching method before WDM transmission to WDM transmission, and may not always be optimal. Also, no instantaneous interruption switching with WDM signals is not realized.
  • Fig. 6 to Fig. 8 show examples of the conventional network configuration between WDM active and standby switching points for each wavelength signal unit.
  • WDM devices see the transmitting node 10 and the receiving node 20 shown in Fig. 5 at points A, B, and C, respectively. It is assumed that four optical signals are multiplexed and transmitted to points B and C.
  • Optical signals of wavelengths 1 and 2 are transmitted between points A and B, and optical signals of wavelengths 3 and 4 are transmitted between points A and C.
  • a protection function is provided for optical signals of each wavelength, and switching between active and standby is performed for each wavelength.
  • the solid line is the working line
  • the dotted line is the protection line.
  • an optical signal passing through the line with a dash attached to the line is indicated by a dotted line, which means that the signal is disconnected due to the occurrence of a fault.
  • FIG. 7 shows a state in which the working WDM line 1 between points A and B in this network has a fault such as a broken fiber. At this time, the optical signals of all wavelengths are switched to the spare WDM line 2. By this switching, all signals are restored. Therefore, this network operates normally without being affected by the failure.
  • FIGS. 9 and 10 Other problems of switching in wavelength units are shown in FIGS. 9 and 10.
  • FIG. 9 is a diagram for simply explaining a conventional switching configuration in wavelength units.
  • Signal transmission / reception devices 18—1 to 18—4 are classified into four types of configurations.
  • the configuration related to the transmission / reception device 18-1 and 18-2 consists of four parts: a signal transmission / reception device, a switching unit, an O / E ⁇ wavelength conversion unit, and an optical wavelength multiplexing unit.
  • the protection function is switched. 'In the department.
  • the switching unit monitors the quality of the electrical signal of the O / E / O wavelength conversion unit, and normally selects the working line, and switches to the protection line if the working line deteriorates to a quality below the reference value due to a failure or the like. .
  • the configuration related to the transmission / reception device 18-3 is composed of three parts: a signal transmission / reception device, a ⁇ / ⁇ wavelength converter, and an optical wavelength multiplexing unit.
  • the protection function is in the signal transmission / reception device.
  • the signal transmitter / receiver monitors the quality of the electrical signal of the ⁇ / ⁇ wavelength converter, and normally selects the working line, and switches to the protection line if the working line is deteriorated to a level below the reference value due to a failure or the like.
  • the configuration related to the transmission / reception device 18-4 is composed of four parts: a signal transmission / reception device, an OZE / O wavelength conversion unit, a switching unit, and an optical wavelength multiplexing unit.
  • the protection function is provided in the switching unit.
  • the difference from the transmission / reception devices 18-1 and 18-2 is that the switching unit is located closer to the optical wavelength multiplexing unit than the O / E / O wavelength conversion unit.
  • the switching unit monitors the quality of the single-wavelength optical signal branched from the wavelength multiplexing unit, and normally selects the working line. If the working line is deteriorated to a quality below the reference value due to a failure or the like, it is switched to the protection line. Perform switching.
  • the ⁇ / ⁇ , ⁇ wavelength conversion unit and switching unit are combined as a single set from a single equipment vendor to the customer. Provided and it was possible to take into account the protection functions. For this reason, even if a signal transceiver without protection function is connected to each wavelength signal,
  • the wavelength conversion unit and the switching unit provided a protection function. Therefore, switching of the wavelength signal unit in the above configuration was not a problem.
  • the configuration related to the transceiver 191-1 is the same as the configuration related to the transceiver 18-1, but the signal transceiver is provided by a different device pendant. In this configuration, there is no problem because the protection function can be realized by the wavelength conversion unit and the switching unit.
  • the configuration related to the transmission / reception device 191-2 is the same as the configuration related to the transmission / reception device 18-2, but the signal transmission / reception device and the switching unit are provided by different device vendors. That is, the optical wavelength multiplexing unit and the wavelength conversion unit are provided by a device vendor, and the signal transmitting / receiving device and the switching unit are provided by another device ender.
  • the switching unit monitors the quality of the electrical signal of the OZEZO wavelength conversion unit and performs switching. Therefore, it is necessary that the switching unit can monitor the quality of the electrical signal of the wavelength conversion unit of another device vendor. This is a condition for realizing the function. Therefore, there is a problem that the protection function cannot be realized for equipment vendors who cannot monitor the quality.
  • the configuration related to the transmission / reception device 19-13 is the same as the configuration related to the transmission / reception device 18-3, and the signal transmission / reception device is provided by a different device vendor. In this configuration, there is no problem because the protection function can be realized by the signal transmitting / receiving device.
  • the configuration related to the transmission / reception device 19-14 is the same as the configuration related to the transmission / reception device 18-4, and the signal transmission / reception device and the O / E / O wavelength converter are provided by different device vendors.
  • the switching unit is provided by the same equipment vendor or a different pendant as the optical multiplexing unit. In this configuration, the protection unit monitors the quality of the single-wavelength optical signal branched from the wavelength division multiplexing unit and performs the switching. Therefore, the switching unit can monitor the quality of the optical signal of another device vendor. This is a condition for realizing the protection function. Therefore, there is a problem that the protection function cannot be realized in the case of a device pendant that cannot monitor the quality.
  • the configuration related to the transmitting / receiving device 1915 includes two parts, a signal transmitting / receiving device and an optical wavelength multiplexing unit.
  • the signal transmitting / receiving device does not have the protection function, and in this configuration, there is a problem that the protection function cannot be realized regardless of the device vendor that provides the signal transmitting / receiving device.
  • the conventional switching method generally performs processing after converting an optical signal of each wavelength into an electric signal. Since this electric signal processing requires low-speed electric circuit processing, the high-speed optical signal transmission is reduced. There was a problem of losing it.
  • the working standby switching operation time of the transmission device is about several tens of ms, and a momentary interruption for this switching operation time has occurred.
  • the instantaneous interruption caused data loss, and the quality of the service provided by the communication line service provider deteriorated.
  • a signal of several hundred Gbps to several Tbps is transmitted on one line, and data loss due to instantaneous interruption increases, which is a problem.
  • switching is performed with the wavelength-multiplexed optical signal (WDM signal) as it is, and all wavelengths are simultaneously switched from working to standby, so that only one line becomes the working line.
  • WDM signal wavelength-multiplexed optical signal
  • the OSC (light monitoring channel) detector that detects the light intensity level at the receiving node measures the OSC signal light intensity, and the OSC signal light intensity flowing through the working line reaches a certain level. Otherwise, the switching unit switches to the protection line according to the instruction from the detection unit.
  • the second method uses an optical spectrum analyzer for the optical signal detector, analyzes the optical SNR (optical signal-to-noise ratio), chromatic dispersion, and other qualities of the OSC signal.
  • the switching unit switches to the protection line according to the instruction of the detection unit.
  • the third method is to measure the signal light intensity of the WDM signal instead of the OSC, and when the signal level does not reach a certain level, the switching unit switches to the protection line according to the instruction of the detection unit.
  • optical signal processing can be performed without conversion to an electric signal, and high speed can be maintained.
  • the switching by the WDM signal can solve the problem of multiple failures caused by the switching in the wavelength unit illustrated in FIGS. 6 to 8 described above.
  • FIGS. 11 to 14 illustrate switching by the WDM signal.
  • the optical signals of wavelengths 1 and 2 are transmitted between points A and B, and the optical signals of wavelengths 3 and 4 are transmitted between points A and C.
  • the protection function is performed for each WDM signal, not for each wavelength.
  • the solid line is the working line
  • the dotted line is the protection line. If a signal is marked on the line and the wavelength signal passing through the line is indicated by a dotted line, it means that the signal has been interrupted due to the occurrence of a fault.
  • the transmission from point A to point B in Fig. 11 is as follows.
  • the optical signal of each wavelength is wavelength-division multiplexed by the optical wavelength multiplexing unit 12 and then branched into the working and standby WDM signal lights at the branching unit BS, and passed through the switching unit SS at point B.
  • the wavelength is demultiplexed by the optical wavelength demultiplexing unit 22 to return to an optical signal of each wavelength.
  • Points B-C operate in a similar manner.
  • Figure 12 shows a situation in which a failure such as a fiber disconnection has occurred in the working WDM line 1 between points A and B.
  • the data is transmitted to the protection WDM line 2 at the switching unit SS at the point B.
  • switching to the standby WDM line 2 is performed.
  • the optical signal of each wavelength is recovered from the failure.
  • Figure 14 shows a different double failure condition than Figure 13.
  • the working WDM line 1 at points A and B and the protection WDM line 2 at points B and C have failed simultaneously.
  • the WDM signal light passes through the protection WDM circuit 2 at points A and B and the working WDM circuit 1 at points B and C, and the optical signal of each wavelength is not affected by the failure.
  • a switching unit SS that performs switching on a WDM signal light unit basis is provided downstream of the optical wavelength multiplexing unit 12.
  • the number of switching units can be reduced to one.
  • N switching units are required for N wavelengths, but in the present invention, one switching unit SS is sufficient regardless of the number of wavelengths.
  • the simplification of the system becomes possible, which is advantageous in terms of the cost of the apparatus.
  • non-instantaneous switching is realized by providing a protection line with an optical delay compared to the working line, or storing a WDM signal in a WDM signal buffer memory, thereby reducing data loss due to an instantaneous interruption. It can be prevented (details will be described later).
  • the OSC optical monitoring channel
  • the OSC is a wavelength used for maintenance and control purposes in WDM transmission separately from the main signal transmission, and is mainly used for remote site alarm reporting, fault location notification, order wire function, etc. Used for The signal frame format of the OSC signal flowing through the OSC is determined independently by each vendor, and the regulations regarding the OSC are described in the international telecommunication standard ITU_TG.692. Next, some embodiments for realizing instantaneous interruption switching will be described.
  • optical signals of wavelength 1, wavelength 2,..., And wavelength n are input to the optical wavelength multiplexing unit 12 and wavelength division multiplexed.
  • the WDM signal light obtained thereby is transmitted to the optical branching unit 13 and branched to the working WDM line 1 and the protection WDM line 2.
  • the split WDM signal light is transmitted through the working line 1 and the protection line 2.
  • the optical path lengths from the transmitting node 10 to the receiving node 20 are different. Due to this optical path length difference, the WDM signal light simultaneously transmitted to the working node and the standby node at the transmitting node 10 arrives at the receiving node 20 with a time lag. The following method is used to eliminate the difference between the working and standby reception times.
  • the optical path length of each of the working and protection lines 1 and 2 is measured by the OSC signal having the optical path length adjustment information.
  • the transmitting node 10 transmits an OSC signal to the working node 1 and the protection channel 1 to the receiving node 20.
  • the OSC signal transmitted on the working line 1 is detected by the optical signal detection unit 24—O—1
  • the OSC signal transmitted on the protection line 2 is detected by the optical signal detection unit 24—O — Detect with 2.
  • the frame includes, for example, alarm control information, order wire information, fault information, optical delay control information, and optical path length adjustment information.
  • the optical path length adjustment information includes a transmission time when the OSC signal is transmitted from the transmitting node 10. After the OSC signal is detected by the optical signal detection unit of the receiving node unit 20, the optical path length adjustment information is read by the optical signal control unit 25-O.
  • the optical signal control unit 2510 has a timer in the circuit, receives the transmission time in the optical path length adjustment information, and compares it with the reception time. The transmission time from the transmission unit to the reception unit is determined by. The optical path length is calculated from this transmission time.
  • control unit 25-O calculates an optical path length difference based on the OSC signal received from the working line 1 and the OSC signal received from the protection line 2,
  • variable optical delay unit 26-1, and 26-2 which have an optical delay function that can arbitrarily adjust the delay time, adjusts the timing of the WDM signal light. By doing so, adjust so that the working and protection reception times are equal. By this adjustment, the switching unit 23 simultaneously receives the same signal from each of the working and the standby.
  • the switching unit 23 normally selects the current WDM signal light, and the selected WDM signal light is transmitted to the optical wavelength separation unit 22.
  • the WDM signal light is separated by the wavelength separation unit 22 into optical signals of wavelength 1, wavelength 2,..., And wavelength n.
  • switching is realized with the WDM signal light as it is, using the OSC signal light intensity, the WDM signal light intensity, and the OSC signal quality such as waveform, noise, and dispersion.
  • the procedure of the switching method based on the OSC signal light intensity will be described below.
  • the device on the receiving side has light-receiving allowance and cannot read light signals with weak light intensity that does not reach the light-receiving allowance. Therefore, in the present invention, the OSC signal light intensity is measured by the optical signal detection unit 24 -O, and when the OSC signal light intensity flowing through the working line does not reach a certain level, the optical signal detection unit 24 -O switches the optical signal control unit to the optical signal control unit. 25 51 The detection result is transmitted to O.
  • the control unit 25-O issues a switching instruction to the protection line 2 to the switching unit 23.
  • the switching unit 23 switches the WDM signal light flowing through the working line 1 to the protection line 2.
  • the optical signal detector 2 4 O measures the WDM signal light intensity, and if the intensity of the WDM signal light flowing through the working line 1 does not reach a certain level, the optical signal detector 24 1 O to the optical signal controller 25 1 O The detection result is transmitted to.
  • the control unit 25-10 issues a switching instruction to the protection line 2 to the switching unit 23.
  • the switching unit 23 switches the WDM signal light flowing through the working line 1 to the protection line 2.
  • the optical signal detector 24 with optical spectrum analyzer function analyzes the optical signal quality such as optical SNR (optical signal-to-noise ratio) and chromatic dispersion of the OSC signal flowing through the working protection line using O-O, and If the quality does not reach a certain level, the detection result is transmitted from the optical signal detector 24 -O to the optical signal controller 25 -O.
  • the control unit 25_0 issues a switching instruction to the protection line 2 to the switching unit 23.
  • the switching unit 23 switches the WDM signal light flowing through the working line 1 to the protection line 2.
  • the switching method using the OSC signal light intensity, the WDM signal light intensity, and the OSC signal quality individually has been described above.
  • As an application of the above method when two or more of the OSC signal light intensity, WDM signal light intensity, and OSC signal quality are analyzed simultaneously, and one or more of them does not reach a certain level
  • the method of switching the WDM signal light flowing through the working line 1 to the protection line 2 can be realized by basically the same procedure.
  • Fig. 16 shows a method that uses optical delay as one of the methods to realize instantaneous interruption switching.
  • the optical delay unit 26 6 _ 2 which gives a delay to the protection line 2, gives the protection line 2 a predetermined delay in comparison with the working line 1. For example, if it takes 50 ms to switch the working protection line, the optical delay unit 26-2 is provided with a delay of 50 ms in advance, enabling instantaneous interruption switching. I do.
  • variable optical delay module As another method using optical delay, a description will be given of instantaneous interruption switching by a variable optical delay module that can arbitrarily adjust the delay time.
  • a variable optical delay module is used as the optical delay unit 26-2 shown in Fig. 16.
  • the 0SC frame includes optical delay control information for delay control.
  • the delay time can be arbitrarily set by manipulating the value of the optical delay control information.
  • the optical delay unit 26-2 can adjust the delay time based on the obtained delay time.
  • Buffer memory capable of storing WDM signal light data for a fixed time 2 7 By combining the operation of the optical signal control unit 25-O with the protection line 2, the non-instantaneous interruption switching is realized by giving the fixed line memory time in advance to the protection line 2 compared to the working line 1.
  • the buffer memory time is set to 50 ms in advance, so that instantaneous interruption is switched.
  • variable WDM signal light buffer memory 27 As another method of using the buffer memory 27, a description will be given of instantaneous interruption switching using a variable WDM signal light buffer memory capable of arbitrarily adjusting the buffer memory time.
  • a variable WDM signal light buffer memory 27 is used as the buffer memory 27 shown in FIG.
  • FIG. 19 shows the OSC signal frame format in this case.
  • This OSC frame format has buffer memory control information for controlling the buffer memory 27.
  • the value of the buffer memory control information is operated by the optical signal control unit 25-O.
  • the delay time can be arbitrarily set by manipulating the buffer memory control information value.
  • the OSC signal having buffer memory time information in the buffer memory control information is supplied from the optical signal control unit 25-O to the buffer memory 27. Then, the buffer memory 27 adjusts the buffer memory time based on the OSC signal information.
  • a multiplexed optical signal (WDM signal light) is not converted into an electric signal as it is, and is used at high speed and without interruption. It is also possible to switch the protection line.
  • a stronger fault recovery (protection) function is realized with a simpler configuration than the conventional WDM device, it greatly contributes to the development of the field of optical fiber communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

A method comprising a step of providing an active circuit and an auxiliary circuit for respectively transmitting WDM signal lights generated by wavelength-division-multiplexing optical signals having different wavelengths, a step of assigning one of the optical signals as an optical monitoring channel, a step of allowing the optical monitoring channel to include a parameter for measuring the difference in optical path length between the active and auxiliary circuits, and a step of allowing the receiving side to compensate the optical length difference according to the parameter. The method enables high-speed switching between the active and auxiliary circuits of a wavelength-division multiplexing (WDM) transmission without converting the multiplexed optical signal (WDM signal light) into an electrical signal.

Description

光伝送における現用及び予備回線の切替方法及び装置 技 術 分 野  Method and apparatus for switching between working and protection lines in optical transmission
本発明は、 一般的に光伝送における現用及ぴ予備回線の切替方法及び装置に関 し、 更に詳しく は異なる波長を有する複数の光信号を波長分割多重する WDMに 適した現用及ぴ予備回線の切替方法及ぴ装置に関する。 背 景 技 術  The present invention generally relates to a method and apparatus for switching between a working and protection line in optical transmission, and more particularly to a method for switching a working and protection line suitable for WDM in which a plurality of optical signals having different wavelengths are wavelength-division multiplexed. The present invention relates to a switching method and a switching device. Background technology
近年、 低損失 (例えば 0. 2 d B/ k m) な石英系の光ファイバの製造技術及 ぴ使用技術が確立され、 光ファイバを伝送路とする光通信システムが実用化され ている。 また、 光ファイバにおける損失を補償して長距離の伝送を可能にするた めに、 光信号又は信号光を増幅するための光増幅器が実用に供されている。 従来知られているのは、 増幅されるべき信号光が供給される光増幅媒体と、 光 増幅媒体が信号光の波長を含む利得帯域を提供するよ うに光増幅媒体をボンピン グ (励起) するボンビングユニッ トとから構成される光増幅器である。  In recent years, techniques for manufacturing and using silica-based optical fibers with low loss (for example, 0.2 dB / km) have been established, and optical communication systems using optical fibers as transmission lines have been put into practical use. Optical amplifiers for amplifying optical signals or signal light have been put to practical use in order to enable long-distance transmission by compensating for losses in optical fibers. It is known in the art that the optical amplification medium is supplied with the signal light to be amplified, and the optical amplification medium is pumped so as to provide a gain band including the wavelength of the signal light. This is an optical amplifier composed of a bombing unit.
例えば、 石英系ファイバで損失が小さい波長 1 . 5 5 μ m帯の信号光を増幅す るために、 エルピウ.ム ドープファイバ増幅器 (E D F A) が開発されている。 E D F Aは、 光増幅媒体と してエルビウム ドープファイバ (E D F) と、 予め定め られた波長を有するポンプ光を E D Fに供給するためのポンプ光源とを備えてい る。 0. 9 8 /i m帯あるいは 1. 4 8 /1 m帯の波長を有するポンプ光を用いるこ とによって、 波長 1 . 5 5 / mを含む利得帯域が得られる。  For example, erupium-doped fiber amplifiers (EDFAs) have been developed to amplify signal light in the 1.55-μm wavelength band with low loss using silica-based fibers. The EDFA includes an erbium-doped fiber (EDF) as an optical amplification medium, and a pump light source for supplying a pump light having a predetermined wavelength to the EDF. By using pump light having a wavelength of 0.98 / im band or 1.48 / 1m band, a gain band including a wavelength of 1.55 / m can be obtained.
光ファイバによる伝送容量を増大させるための技術と して、 波長分割多重 (W DM) がある。 WDMが適用されるシステムにおいては、 異なる波長を有する複 数の光キャ リアが用いられる。 各光キャ リ アを独立に変調することによって得ら れた複数の光信号が光マルチプレクサによ り波長分割多重され、 その結果得られ た WDM信号光が光ファイバ伝送路に送出される。 受信側では、 受けた WDM信 号光が光デマルチプレクサによつて個々の光信号に分離され、 各光信号に基づい て伝送データが再生される。 従って、 W D Mを適用することによって、 多重数に 応じて 1本の光フアイパにおける伝送容量を増大させることができる。 Wavelength division multiplexing (WDM) is a technology for increasing the transmission capacity of optical fibers. In a system to which WDM is applied, a plurality of optical carriers having different wavelengths are used. Multiple optical signals obtained by independently modulating each optical carrier are wavelength-division multiplexed by an optical multiplexer, and the resulting WDM signal light is transmitted to an optical fiber transmission line. On the receiving side, the received WDM signal light is separated into individual optical signals by an optical demultiplexer, and based on each optical signal, Thus, the transmission data is reproduced. Therefore, by applying WDM, the transmission capacity of one optical fiber can be increased in accordance with the number of multiplexing.
ところで、 W D M伝送以前の光伝送では、 一回線つま り一本の光ファイバ伝送 路上で単一波長を持つ一つの光信号を伝送していた。 そして、 現用回線、 予備回 線それぞれを用意し、 通常は現用回線を用いて送受信を行い、 現用回線に障害が 発生した場合に予備回線に切り替える、 障害復旧機能が設けられていた。 こ う し た機能をプロテクショ ン機能と呼ぶ。 またこの切替動作を現用予備切替と呼ぶ。 このよ うなプロテクショ ン機能及び現用予備切替は、 そのまま W D Mシステム に拡大適用可能ではあるが、 現状ではその適用形態が最適化されていないという 問題がある。 発明の開示  By the way, in optical transmission before WDM transmission, one optical signal having a single wavelength was transmitted on one line, that is, one optical fiber transmission line. In addition, a failure recovery function was provided to prepare the working line and the protection line, perform transmission and reception using the working line normally, and switch to the protection line when a failure occurs in the working line. These functions are called protection functions. This switching operation is called active standby switching. Such protection functions and active spare switching can be extended and applied to WDM systems as they are, but at present there is a problem that the form of application is not optimized. Disclosure of the invention
よって、 本発明の目的は、 W D Mに適した現用及ぴ予備回線の切替方法及ぴ装 置を提供することである。  Therefore, an object of the present invention is to provide a method and an apparatus for switching between a working channel and a protection channel suitable for WDM.
本発明の他の目的は以下の説明から明らかになる。  Other objects of the present invention will become clear from the following description.
本発明による と、 異なる波長を有する複数の光信号を波長分割多重して得られ た W D M信号光を各々伝送する現用回線及ぴ予備回線を提供するステップと、 複 数の光信号のうちの一つを光監視チャネルと して割り 当てるステップと、 現用回 線及ぴ予備回線の光路長差を測定するためのパラメータを光監視チャネルに含ま せるステップと、 パラメータに基いて受信側で光路長差を補償するステップとを 備えた方法が提供される。  According to the present invention, providing a working line and a protection line for transmitting WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths, and providing one of the plurality of optical signals Assigning one of the two as an optical supervisory channel, including a parameter for measuring the optical path length difference between the working line and the protection line in the optical supervisory channel, and determining the optical path length difference on the receiving side based on the parameter. And compensating the following.
この方法による と、 波長分割多重 (W D M ) 伝送において、 多重化された光信 号 (W D M信号光) のまま電気信号に変換することなく、 高速で現用及ぴ予備回 線の切替を行う ことが可能となる。  According to this method, in wavelength division multiplexing (WDM) transmission, it is possible to quickly switch between the active and standby circuits without converting the multiplexed optical signal (WDM signal light) into an electrical signal. It becomes.
例えば、 補償するステップは、 前記光路長差が実質的に零になるように現用回 線及び予備回線の少なく ともいずれかによ り伝送される W D M信号光を遅延させ るステップを含む。  For example, the compensating step includes delaying the WDM signal light transmitted by at least one of the working line and the protection line so that the optical path length difference becomes substantially zero.
望ましく は、 この方法は、 現用回線によ り伝送される W D M信号光の強度を測 定するステップと、 測定された強度が予め定められたレベルに達しない場合に現 用回線により伝送される WDM信号光を予備回線に切替えるステップとを更に備 える。 Preferably, the method comprises the steps of: measuring the intensity of the WDM signal light transmitted by the working line; and determining if the measured intensity does not reach a predetermined level. Switching the WDM signal light transmitted by the service line to the protection line.
また、 望ましく は、 この方法は、 現用回線によ り伝送される光監視チャネルの 光信号の強度を測定するステツプと、 測定された強度が予め定められたレベルに 達しない場合に現用回線によ り伝送される WDM信号光を予備回線に切替えるス テツプとを更に備える。  Preferably, the method further comprises the steps of: measuring the strength of the optical signal of the optical supervisory channel transmitted by the working line; and determining the strength of the optical signal when the measured strength does not reach a predetermined level. And a step of switching the transmitted WDM signal light to a protection line.
また、 望ましく は、 この方法は、 現用回線によ り伝送される光監視チャネルの 光信号の品質を測定するステップと、 測定された品質が予め定められたレベルに 達しない場合に現用回線によ り伝送される WDM信号光を予備回線に切替えるス テツプとを更に備える。  Preferably, the method further comprises the steps of: measuring a quality of an optical signal of an optical supervisory channel transmitted by the working line; and, if the measured quality does not reach a predetermined level, using the working line. And a step of switching the transmitted WDM signal light to a protection line.
本発明の他の側面によると、 異なる波長を有する複数の光信号を波長分割多重 して得られた WDM信号光を各々伝送する現用回線及ぴ予備回線と、 複数の光信 号のう ちの一つを光監視チャネルと して、 現用回線及び予備回線の光路長差を測 定するためのパラメータを含む光監視信号を供給する手段と、 パラメータに基い て受信側で光路長差を補償する手段とを備えた装置が提供される。 図面の簡単な説明  According to another aspect of the present invention, one of the working line and the protection line for transmitting WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths, and one of the plurality of optical signals As an optical monitoring channel, a means for supplying an optical monitoring signal including a parameter for measuring the optical path length difference between the working line and the protection line, and a means for compensating the optical path length difference on the receiving side based on the parameter An apparatus comprising: BRIEF DESCRIPTION OF THE FIGURES
図 1 は従来の単一波長での現用予備切替装置のプロ ック図 ;  Figure 1 is a block diagram of a conventional single-wavelength working standby switching device;
図 2は従来の WDM現用予備切替装置のブロック図 ;  Figure 2 is a block diagram of a conventional WDM working standby switching device;
図 3は遅延による従来の WDM現用予備無瞬断切替装置のプロック図 ; 図 4はパッファメモリ による従来の WDM現用予備無瞬断切替装置のプロ ック 図 ;  Fig. 3 is a block diagram of a conventional WDM active standby non-stop switching device due to delay; Fig. 4 is a block diagram of a conventional WDM active standby non-stop switching device using buffer memory;
図 5は光遅延による従来の W DM現用予備無瞬断切替装置のプロ ック図 ; 図 6 は従来の WDM現用予備切替装置での地点間ネッ トワーク構成例を示すブ ロック図 (正常運用時) ;  Fig. 5 is a block diagram of a conventional WDM active standby non-stop switching device due to optical delay; Fig. 6 is a block diagram showing an example of a point-to-point network configuration in a conventional WDM active standby switching device (during normal operation). );
図 7は従来の WDM現用予備切替装置での地点間ネッ トワーク構成例を示すブ ロック図 (単一障害発生時) ;  Figure 7 is a block diagram showing an example of a point-to-point network configuration in a conventional WDM active protection switching device (when a single failure occurs);
図 8は従来の WDM現用予備切替装置での地点間ネッ トワーク構成例を示すブ ロック図 (二重障害発生時) ; 図 9は従来の単一波長信号での切替時の切替構成分類を説明するためのプロッ ク図 ; Fig. 8 is a block diagram showing an example of a point-to-point network configuration in a conventional WDM active / standby switching device (when a double failure occurs); Figure 9 is a block diagram to explain the switching configuration classification when switching with conventional single-wavelength signals;
図 1 0は従来の単一波長信号での切替時の切替構成と装置提供ベンダーの分類 を説明するためのブロック図 ;  Fig. 10 is a block diagram to explain the switching configuration and the classification of the device providing vendor when switching with the conventional single wavelength signal;
図 1 1 は本発明が適用される W D M現用予備切替装置での地点間ネッ トワーク 構成例を示すブロック図 (正常運用時) ;  FIG. 11 is a block diagram showing an example of a point-to-point network configuration in a WDM active standby switching device to which the present invention is applied (during normal operation);
図 1 2は本発明が適用される W D M現用予備切替装置での地点間ネッ トワーク 構成例を示すブロック図 (単一障害発生時) ;  FIG. 12 is a block diagram showing an example of a point-to-point network configuration in a WDM active standby switching device to which the present invention is applied (when a single failure occurs);
図 1 3は本発明が適用される W D M現用予備切替装置での地点間ネッ トワーク 構成例を示すブロ ック図 (二重障害発生時その 1 ) ;  FIG. 13 is a block diagram showing an example of a point-to-point network configuration in a WDM active standby switching device to which the present invention is applied (part 1 when a double failure occurs);
図 1 4は本発明が適用される W D M現用予備切替装置での地点間ネッ トワーク 構成例を示すブロック図 (二重障害発生時その 2 ) ;  FIG. 14 is a block diagram showing an example of a point-to-point network configuration in the WDM active standby switching device to which the present invention is applied (part 2 when a double failure occurs);
図 1 5は本発明による送信側での切替装置のプロック図 ;  FIG. 15 is a block diagram of the switching device at the transmission side according to the present invention;
図 1 6は本発明が適用される光遅延による W D M現用予備無瞬断切替装置のブ ロ ック図 ;  FIG. 16 is a block diagram of a WDM active standby non-stop switching device using optical delay to which the present invention is applied;
図 1 7は光遅延制御情報を有する O S C信号フ レームフォーマツ トを示す図 ; 図 1 8は本発明が適用されるバッファメモリによる W D M現用予備無瞬断切替 装置のブロ ック図 ; そして  FIG. 17 is a diagram showing an OSC signal frame format having optical delay control information; FIG. 18 is a block diagram of a WDM active spare non-stop switching device using a buffer memory to which the present invention is applied;
図 1 9はバッファメモ リ制御情報値を有する O S C信号フレームフォーマッ 卜 を示す図である。 発明を実施するための最良の形態  FIG. 19 is a diagram showing an OSC signal frame format having a buffer memory control information value. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して本発明の望ましい実施形態を詳細に説明する。 本発 明の実施形態を説明するのに先立ち、 本発明の有用性を理解する上で有用と思わ れる従来技術に関して説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to describing the embodiments of the present invention, a description will be given of a conventional technique which is considered useful for understanding the usefulness of the present invention.
W D M伝送以前の光伝送では、 一回線つま り一本の光ファイバ伝送路上に、 単 一波長を持つ一つの光信号を伝送していた。 そして、 現用回線及び予備回線を用 意し、 通常は現用回線を用いて送受信を行い、 現用回線に障害が発生した場合に 予備回線に切り替える、 障害復旧機能を設けていた。 こ う した機能をプロテクシ ヨ ン機能と呼ぴ、 また、 この切替動作を現用予備切替と呼ぶ。 In optical transmission before WDM transmission, one optical signal having a single wavelength was transmitted over one line, or one optical fiber transmission line. In addition, a provision was made for a working line and a protection line, and a failure recovery function was provided, which normally performs transmission and reception using the working line and switches to the protection line when a failure occurs in the working line. These functions are protected This switching operation is referred to as a “yone function”, and this switching operation is referred to as “active standby switching”.
具体的には、 図 1 に示すよ うに、 現用回線 1 と予備回線 2を設け、 送信側ノー ド部 1 0で E / O変換部 1 1 一 1及び 1 1 — 2からそれぞれ現用回線 1及び予備 回線 2に同じ信号を伝送する。 ここで、 添字 「一 1」 及ぴ 「一 2 j は現用回線 1 及び予備回線 2を区別するために付されており、 明瞭な限り において以下省略さ れることがある。  Specifically, as shown in FIG. 1, a working line 1 and a protection line 2 are provided, and the transmitting node 1 0 and the E / O converters 1 1 1 1 and 1 1-2 respectively transmit the working lines 1 and Transmit the same signal to protection line 2. Here, the suffixes "1-1" and "1-2j" are added to distinguish between the working line 1 and the protection line 2, and may be abbreviated as far as possible.
受信側ノー ド部 2 0では、 O Z E変換部 2 1で光信号を電気信号に変換し、 検 出部 2 4で信号の状態を検出し、 信号に異常がなければ切替部 2 3では通常現用 回線 1 を選択する。 信号に異常があれば制御部 2 5の指令によ り切替部 2 3が予 備回線 2へ切替を行う。  In the receiving node unit 20, the optical signal is converted into an electric signal by the OZE conversion unit 21 and the signal state is detected by the detection unit 24. If there is no abnormality in the signal, the switching unit 23 normally uses the signal. Select line 1. If there is an error in the signal, the switching unit 23 switches to the spare line 2 according to the command from the control unit 25.
例えば、 検出部 2 4— E— 1が現用回線 1 に障害を検出した場合、 検出部 2 4 — E— 1 は障害を検出したこ とを制御部 2 5— Eに伝達する。 これをも とに、 制 御部 2 5— Eは切替部 2 3を制御し、 現用回線 1 の代わり に予備回線 2 を選択し、 予備回線 2への切替によ り障害から復旧する。 ここで、 添字 「E」 は電気信号に 関連している という意味で使用されており、 後述の本発明における光信号に関連 している 「0」 と区別される。  For example, when the detector 24-E-1 detects a failure in the working line 1, the detector 24-E-1 notifies the controller 25-E of the detection of the failure. Based on this, the control unit 25-E controls the switching unit 23, selects the protection line 2 instead of the working line 1, and recovers from the failure by switching to the protection line 2. Here, the suffix “E” is used to mean that it is related to an electric signal, and is distinguished from “0” that is related to an optical signal in the present invention described later.
W D M伝送での現用予備切替は、 基本的には単一波長伝送の場合と同様の方法 で行われる。 即ち、 各波長毎に検出部 2 4を設け、 各波長信号単位で障害を検出 し、 障害を検出した波長の信号を予備回線 2に切替る。  The working protection switching in WDM transmission is basically performed in the same manner as in the case of single wavelength transmission. That is, a detection unit 24 is provided for each wavelength, a fault is detected for each wavelength signal, and a signal of the wavelength at which the fault is detected is switched to the protection line 2.
一つの現用回線 1 の単一波長にのみ障害が発生した場合 (送信回路の障害時な ど) は、 その波長の信号のみを予備回線 2に切替ることになる。  If a failure occurs only in a single wavelength of one working line 1 (for example, when a transmission circuit fails), only the signal of that wavelength is switched to the protection line 2.
例えば図 2において波長 1 の信号に障害が生じた場合、 受信側ノー ド部 2 0で は、 O Z E変換部 2 1で光信号を電気信号に変換し、 検出部 2 4,で障害を検出し、 波長 1 の信号を予備回線 2へ切替る。 また、 現用回線 1 に切断等の障害が発生し た場合は、 回線に伝送される全波長の信号に障害が発生するので、 全波長の信号 が予備回線 2へ切替られる。  For example, if a failure occurs in the signal of wavelength 1 in FIG. 2, the receiving node unit 20 converts the optical signal into an electric signal in the OZE conversion unit 21 and detects the failure in the detection unit 24. Switch the signal of wavelength 1 to protection line 2. Also, if a failure such as disconnection occurs in the working line 1, a failure occurs in all wavelength signals transmitted to the line, so that all wavelength signals are switched to the protection line 2.
尚、 符号 1 2— 1及ぴ 1 2— 2は複数の光信号を波長分割多重して W D M信号 光を得るための光波長多重部 (光マルチプレクサ) 、 符号 2 2— 1及ぴ 2 2— 2 は W D M信号光を元の複数の光信号に分けるための光波長分離部 (光デマルチプ レクサ) である。 Reference numerals 12-1 and 12-2 denote optical wavelength multiplexing units (optical multiplexers) for obtaining a WDM signal light by wavelength division multiplexing a plurality of optical signals, and reference numerals 22-1 and 22-2. 2 is an optical wavelength demultiplexing unit (optical demultiplexer) for dividing WDM signal light into a plurality of original optical signals. Lexa).
次に従来の無瞬断切替方法を説明する。 上記までに述べてきた通り、 光伝送で は切替によ り障害から自動的に復旧することが可能である。 しかし、 この切替動 作時に数十 ms程度の瞬断が生じる という問題があった。 そこで光伝送で無瞬断切 替を実現するため次のよ うな方法が考えられてきた。  Next, a conventional hitless switching method will be described. As described above, in optical transmission, it is possible to automatically recover from a failure by switching. However, there is a problem that a momentary interruption of about several tens of ms occurs during this switching operation. Therefore, the following methods have been considered to realize instantaneous switching in optical transmission.
( 1 ) 光信号を電気信号に変換後、 電気的遅延を利用する  (1) Use optical delay after converting optical signal to electrical signal
( 2 ) 光信号を電気信号に変換後、 バッファメモリ を利用する  (2) Use buffer memory after converting optical signals to electrical signals
( 3 ) 光遅延を利用する  (3) Use optical delay
これらの方法は W D M伝送でも同様に適応可能である。  These methods are equally applicable to WDM transmission.
W D M伝送の場合はそれぞれ以下の手順となる。 In the case of WDM transmission, the procedure is as follows.
( 1 ) 光波長多重前の単一波長光信号を電気信号に変換後、 電気的遅延を利用す る  (1) Convert single-wavelength optical signals before optical wavelength multiplexing to electrical signals and use electrical delay
( 2 ) 光波長多重前の単一波長光信号を電気信号に変換後、 バッファメモリ を利 用する  (2) Convert the single-wavelength optical signal before optical wavelength multiplexing into an electrical signal and use the buffer memory
( 3 ) 光波長多重前の単一波長光信号において光遅延を利用する  (3) Use optical delay in single wavelength optical signal before optical wavelength multiplexing
以下順を追って各方法を説明する。  Hereinafter, each method will be described in order.
先ず、 光波長多重前の単一波長光信号を電気信号に変換後、 電気的遅延を利用 する方法を説明する。 図 3において、 現用予備それぞれの W D M信号が現用回線 1及び予備回線 2から受信側ノー ド部 2 0に伝送される。 現用 W D M信号は波長 分離部 2 2— 1へ、 予備 W D M信号は波長分離部 2 2— 2へ伝送され、 各波長の 光信号に分離される。  First, a method of converting a single-wavelength optical signal before optical wavelength multiplexing into an electrical signal and then using an electrical delay will be described. In FIG. 3, each WDM signal of the working protection is transmitted from the working line 1 and the protection line 2 to the receiving node unit 20. The working WDM signal is transmitted to the wavelength demultiplexing unit 22-1, and the backup WDM signal is transmitted to the wavelength demultiplexing unit 22-2, where it is separated into optical signals of each wavelength.
ここで波長 1 の光信号を例と して見る。 この光信号は現用予備と もに O Z E変 換部 2 1で電気信号に変換され、 検出部 2 4 - E - 1及ぴ 2 4— E— 2 によ り信 号状態を検出される。 検出された信号は制御部 2 5一 Eへ通知される。  Here, an optical signal of wavelength 1 is taken as an example. This optical signal is converted into an electric signal by the OZE conversion unit 21 together with the working spare, and the signal state is detected by the detection units 24-E-1 and 24-E-2. The detected signal is notified to the control unit 251-1E.
ここで予備回線を流れる信号は遅延部 2 6 _ Eで一定又は可変の電気的遅延を 与えられる。 この遅延部 2 6 — Eは制御部 2 5— Eにより制御される。  Here, the signal flowing through the protection line is given a constant or variable electrical delay by the delay unit 26_E. The delay unit 26-E is controlled by the control unit 25-E.
現用回線 1 に障害が発生した場合、 制御部 2 5— Eの指令で切替部 2 3によ り 予備回線 2への切替が行われる。 予備回線 2では現用回線 1 に比べ遅延を与えら れているため、 切替動作による瞬断がなく無瞬断での切替が可能となる。 図 4は遅延部 2 6— Eの代わり にパッファメモリ 2 7 - Eを利用したものであ る。 バッファメモリ 2 7— Eを用いた場合の動作も基本的に遅延方法と同様であ る。 When a failure occurs in the working line 1, the switching to the protection line 2 is performed by the switching unit 23 by the command of the control unit 25-E. Since the protection line 2 has a delay compared to the working line 1, there is no momentary interruption due to the switching operation, and switching can be performed without interruption. Figure 4 uses a buffer memory 27-E instead of the delay unit 26-E. The operation when buffer memory 27-E is used is basically the same as the delay method.
次に光波長多重前の各波長の光信号を電気信号に変換せず、 光信号のままで無 瞬断切替する方法を述べる。  Next, a method is described in which the optical signal of each wavelength before optical wavelength multiplexing is not converted into an electrical signal, and instantaneous interruption switching is performed without changing the optical signal.
図 5の受信側ノ一ド部 2 0において、 現用 W D M信号光は波長分離部 2 2 — 1 へ、 予備 W D M信号光は波長分離部 2 2— 2へ伝送され、 各波長の光信号に分離 される。 ここで波長 1 の光信号を例と して見る。 この現用光信号と予備光信号は それぞれの検出部 2 4 — O— 1及ぴ 2 4 — O— 2によ り信号状態を検出される。 検出された信号は制御部 2 5— Eへ通知される。 ここで予備回線を流れる光信 号は光遅延部 2 6 _ Oで一定又は可変の光遅延を与えられる。 この光遅延部 2 6 一 Oは制御部 2 5— Eによ り制御される。  In the receiving node 20 of FIG. 5, the working WDM signal light is transmitted to the wavelength demultiplexing unit 22-1, and the protection WDM signal light is transmitted to the wavelength demultiplexing unit 22-2, and separated into optical signals of each wavelength. Is done. Here, an optical signal of wavelength 1 is taken as an example. The signal states of the working optical signal and the standby optical signal are detected by the respective detectors 24-O-1 and 24-O-2. The detected signal is notified to the control unit 25-E. Here, the optical signal flowing through the protection line is given a constant or variable optical delay by the optical delay unit 26_O. The optical delay unit 26-O is controlled by the control unit 25-E.
現用回線 1 に障害が発生した場合、 制御部 2 5 — Eの指令で切替部 2 3 — Oに よ り予備回線 2への切替が行われる。 予備回線 2では現用回線 1 に比べ遅延を与 えられているため、 切替動作による瞬断がなく無瞬断での切替が可能となる。 光信号のままで無瞬断切替を行う方法の利点と しては、 電気信号変換処理を行 わないため、 低速の電気回路処理が不要となり光信号本来の高速性を保ちつつ切 替できることがあげられる。  When a failure occurs in the working line 1, the switching to the protection line 2 is performed by the switching unit 23 to O by the command of the control unit 25-E. Since the protection line 2 is given a delay compared to the working line 1, there is no momentary interruption due to the switching operation, and switching can be performed without interruption. The advantage of the method of performing instantaneous interruption switching without changing the optical signal is that since the electrical signal conversion processing is not performed, low-speed electrical circuit processing is not required and switching can be performed while maintaining the original high speed of the optical signal. can give.
従来の方法は、 W D M伝送以前の切替方法を W D M伝送用に応用したものであ り、 必ずしも最適とはいえない場合がある。 また W D M信号での無瞬断切替は実 現されていない。  The conventional method applies a switching method before WDM transmission to WDM transmission, and may not always be optimal. Also, no instantaneous interruption switching with WDM signals is not realized.
従来の技術では各波長信号単位での切替が行われていた。 そのため波長信号ご とに通る回線が異なり、 ある波長が現用回線に別の波長が予備回線にそれぞれ同 時に通ってしま う という状態が生じた。 そのため両回線が同時に現用回線になつ てしまい障害管理上問題となることがあった。  In the conventional technique, switching is performed in units of each wavelength signal. As a result, the lines passing through each wavelength signal differed, and a situation occurred in which one wavelength passed through the working line and another through the protection line at the same time. As a result, both lines became the working line at the same time, which sometimes became a problem in fault management.
図 6〜図 8に従来の各波長信号単位での W D M現用予備切替地点間ネッ トヮ一 クの構成例をあげる。 ここでは、 地点 A、 B及び Cそれぞれに W D M装置 (図 5 に示される送信側ノ一ド部 1 0及び受信側ノ一ド部 2 0等参照) があり、 地点 A で波長 1〜4の 4波の光信号が多重されて地点 B及ぴ Cへ伝送されるものとする 波長 1及び 2の光信号は地点 A— B間を伝送され、 波長 3及び 4の光信号は地 点 A— C間を伝送される。 Fig. 6 to Fig. 8 show examples of the conventional network configuration between WDM active and standby switching points for each wavelength signal unit. Here, there are WDM devices (see the transmitting node 10 and the receiving node 20 shown in Fig. 5) at points A, B, and C, respectively. It is assumed that four optical signals are multiplexed and transmitted to points B and C. Optical signals of wavelengths 1 and 2 are transmitted between points A and B, and optical signals of wavelengths 3 and 4 are transmitted between points A and C.
各波長の光信号に関してプロテクシヨ ン機能があり、 現用予備の切替は各波長 単位で行われる。 図において実線部分は現用回線、 点線部分は予備回線とする。 以下、 回線にバッ印が付されており且つ回線中を通る光信号が点線で表されるも のは、 障害発生による信号断を意味する。  A protection function is provided for optical signals of each wavelength, and switching between active and standby is performed for each wavelength. In the figure, the solid line is the working line, and the dotted line is the protection line. In the following, an optical signal passing through the line with a dash attached to the line is indicated by a dotted line, which means that the signal is disconnected due to the occurrence of a fault.
図 7は、 このネッ トワークにおいて地点 A— B間の現用 W DM回線 1 にフアイ バ断等の障害が発生した状態を示す。 このとき全ての波長の光信号は予備 W DM 回線 2に切替が行われる。 この切替によ り全ての信号は障害復旧される。 このた め、 このネッ トワークは障害の影響を受けずに正常に動作する。  FIG. 7 shows a state in which the working WDM line 1 between points A and B in this network has a fault such as a broken fiber. At this time, the optical signals of all wavelengths are switched to the spare WDM line 2. By this switching, all signals are restored. Therefore, this network operates normally without being affected by the failure.
しかし、 図 8.に示すよ うに同時に地点 B— C間の予備 W DM回線 2にも障害力 S ' 発生した場合、 予備 WDM回線 2に伝送される波長 3及び 4の光信号は、 正常状 態である現用 WDM回線 1 に切り替わることができず地点 Cへ到達することなく 信号断となってしま う。  However, as shown in Fig. 8, if a fault S 'also occurs in the backup WDM line 2 between points B and C at the same time, the optical signals of wavelengths 3 and 4 transmitted to the backup WDM line 2 are in a normal state. It is not possible to switch to the working WDM circuit 1, which is in a state, and the signal is lost without reaching point C.
この他にも波長単位での切替の問題点を図 9及ぴ図 1 0にあげる。  Other problems of switching in wavelength units are shown in FIGS. 9 and 10.
図 9は従来の波長単位での切替の構成を簡単に説明するための図である。 信号送 受信装置 1 8— 1〜 1 8 — 4により 4種類の構成が分類されている。 FIG. 9 is a diagram for simply explaining a conventional switching configuration in wavelength units. Signal transmission / reception devices 18—1 to 18—4 are classified into four types of configurations.
送受信装置 1 8— 1及ぴ 1 8— 2に関連する構成は、 信号送受信装置、 切替部、 O/E Ζθ波長変換部及ぴ光波長多重部の 4つの部分から成り、 プロテクショ ン 機能は切替'部にある。 切替部は O/E/O波長変換部の電気信号の品質を監視し、 通常は現用回線を選ぴ、 現用回線が障害等で基準値以下の品質に劣化した場合は 予備回線に切替を行う。  The configuration related to the transmission / reception device 18-1 and 18-2 consists of four parts: a signal transmission / reception device, a switching unit, an O / E Ζθ wavelength conversion unit, and an optical wavelength multiplexing unit. The protection function is switched. 'In the department. The switching unit monitors the quality of the electrical signal of the O / E / O wavelength conversion unit, and normally selects the working line, and switches to the protection line if the working line deteriorates to a quality below the reference value due to a failure or the like. .
送受信装置 1 8— 3に関連する構成は、 信号送受信装置、 Ο/ΕΖΟ波長変換 部及ぴ光波長多重部の 3つの部分から成り、 プロテクショ ン機能は信号送受信装 置にある。 信号送受信装置は Ο/ΕΖΟ波長変換部の電気信号の品質を監視し、 通常は現用回線を選び、 現用回線が障害等で基準値以下の品質に劣化した場合は 予備回線に切替を行う。  The configuration related to the transmission / reception device 18-3 is composed of three parts: a signal transmission / reception device, a Ο / ΕΖΟ wavelength converter, and an optical wavelength multiplexing unit. The protection function is in the signal transmission / reception device. The signal transmitter / receiver monitors the quality of the electrical signal of the Ο / ΕΖΟ wavelength converter, and normally selects the working line, and switches to the protection line if the working line is deteriorated to a level below the reference value due to a failure or the like.
これに類似する構成と して、 信号送受信装置に ΟΖΕΖΟ波長変換部が含まれ るものもある。 この場合も切替の動作は上述と同様である。 送受信装置 1 8— 4に関連する構成は、 信号送受信装置、 OZE/O波長変換 部、 切替部及び光波長多重部の 4つの部分から成り、 プロテクショ ン機能は切替 部にある。 送受信装置 1 8— 1及ぴ 1 8— 2との違いと して、 切替部が O/E/ O波長変換部よ り光波長多重部に近い位置にある。 切替部は波長多重部から分岐 される単一波長の光信号の品質を監視し、 通常は現用回線を選ぴ、 現用回線が障 害等で基準値以下の品質に劣化した場合は予備回線に切替を行う。 As a configuration similar to this, there is also a signal transmission / reception device that includes a wavelength conversion unit. In this case, the switching operation is the same as described above. The configuration related to the transmission / reception device 18-4 is composed of four parts: a signal transmission / reception device, an OZE / O wavelength conversion unit, a switching unit, and an optical wavelength multiplexing unit. The protection function is provided in the switching unit. The difference from the transmission / reception devices 18-1 and 18-2 is that the switching unit is located closer to the optical wavelength multiplexing unit than the O / E / O wavelength conversion unit. The switching unit monitors the quality of the single-wavelength optical signal branched from the wavelength multiplexing unit, and normally selects the working line.If the working line is deteriorated to a quality below the reference value due to a failure or the like, it is switched to the protection line. Perform switching.
通常送受信装置 1 8— 1 , 1 8— 2及ぴ 1 8— 4の構成時は、 Ο/Ε,Ο波長 変換部と切替部は一組の組合せと して単一の装置ベンダーから顧客に提供されて おり、 プロテクショ ン機能を考慮することが可能であった。 このためプロテクシ ョン機能を持たない信号送受信装置が各波長信号 ίこ接続される場合でも  In the configuration of the normal transmission / reception device 18-1, 18-2 and 18-4, the Ο / Ε, Ο wavelength conversion unit and switching unit are combined as a single set from a single equipment vendor to the customer. Provided and it was possible to take into account the protection functions. For this reason, even if a signal transceiver without protection function is connected to each wavelength signal,
Ο波長変換部と切替部によつてプロテクショ ン機能を持たせることができた。 よ つて上記の構成での波長信号単位の切替は問題にならなかった。  (4) The wavelength conversion unit and the switching unit provided a protection function. Therefore, switching of the wavelength signal unit in the above configuration was not a problem.
しかし図 1 0に示すよ う に、 信号送受信装置、 切替部及び ΟΖΕ/0波長変換 部のいずれかと して他のベンダーのものを使用するとき、 プロテクショ ンが取れ ない構成となる場合が生じてしまう。 ここで、 斜線が施されている部分が他のベ ンダ一によつて提供されているものとする。  However, as shown in Fig. 10, when using a signal transmission / reception device, switching unit, or ΟΖΕ / 0 wavelength conversion unit from another vendor, the configuration may not be protected. I will. Here, it is assumed that the hatched portion is provided by another vendor.
送受信装置 1 9一 1に関連する構成は送受信装置 1 8— 1に関連する構成と同 じであるが、 信号送受信装置は異なる装置ペンダーが提供したものである。 この 構成の場合、 プロテクショ ン機能は ΟΖΕΖΟ波長変換部及ぴ切替部で実現でき るため問題はない。  The configuration related to the transceiver 191-1 is the same as the configuration related to the transceiver 18-1, but the signal transceiver is provided by a different device pendant. In this configuration, there is no problem because the protection function can be realized by the wavelength conversion unit and the switching unit.
送受信装置 1 9一 2に関連する構成は送受信装置 1 8— 2に関連する構成と同 じであるが、 信号送受信装置と切替部は異なる装置ベンダーが提供したものであ る。 つまり光波長多重部と ΟΖΕΖΟ波長変換部がある装置ベンダーから提供さ れ、 信号送受信装置と切替部は他の装置ペンダーから提供されるものである。 この構成の場合、 切替部は OZEZO波長変換部の電気信号の品質を監視し切替 を行うため、 切替部は他装置ベンダーの ΟΖΕΖΟ波長変換部の電気信号の品質 監視が可能であることがプロテクショ ン機能を実現できるための条件となる。 そ のため品質監視が不可能な装置ベンダーの場合プロテクショ ン機能を実現できな いという問題がある。 送受信装置 1 9一 3に関連する構成は送受信装置 1 8— 3に関連する構成と同 じであり、 信号送受信装置は異なる装置ベンダーが提供したものである。 この構 成の場合、 プロテクショ ン機能は信号送受信装置で実現できるため問題はない。 送受信装置 1 9一 4に関連する構成は送受信装置 1 8— 4に関連する構成と同 じであり、 信号送受信装置と O / E / O波長変換部は異なる装置ベンダーが提供 したものである。 切替部は光多重部と同じ装置ベンダーまたは異なるペンダーが 提供したものである。 この構成の場合、 プロテクショ ン機能は切替部が波長多重 部から分岐される単一波長光信号の品質を監視し切替を行うため、 切替部は他装 置ベンダーの光信号の品質監視が可能であることがプロテクショ ン機能を実現で きるための条件となる。 そのため品質監視が不可能な装置ペンダーの場合、 プロ テクショ ン機能を実現できないという問題がある。 The configuration related to the transmission / reception device 191-2 is the same as the configuration related to the transmission / reception device 18-2, but the signal transmission / reception device and the switching unit are provided by different device vendors. That is, the optical wavelength multiplexing unit and the wavelength conversion unit are provided by a device vendor, and the signal transmitting / receiving device and the switching unit are provided by another device ender. In this configuration, the switching unit monitors the quality of the electrical signal of the OZEZO wavelength conversion unit and performs switching. Therefore, it is necessary that the switching unit can monitor the quality of the electrical signal of the wavelength conversion unit of another device vendor. This is a condition for realizing the function. Therefore, there is a problem that the protection function cannot be realized for equipment vendors who cannot monitor the quality. The configuration related to the transmission / reception device 19-13 is the same as the configuration related to the transmission / reception device 18-3, and the signal transmission / reception device is provided by a different device vendor. In this configuration, there is no problem because the protection function can be realized by the signal transmitting / receiving device. The configuration related to the transmission / reception device 19-14 is the same as the configuration related to the transmission / reception device 18-4, and the signal transmission / reception device and the O / E / O wavelength converter are provided by different device vendors. The switching unit is provided by the same equipment vendor or a different pendant as the optical multiplexing unit. In this configuration, the protection unit monitors the quality of the single-wavelength optical signal branched from the wavelength division multiplexing unit and performs the switching. Therefore, the switching unit can monitor the quality of the optical signal of another device vendor. This is a condition for realizing the protection function. Therefore, there is a problem that the protection function cannot be realized in the case of a device pendant that cannot monitor the quality.
送受信装置 1 9一 5に関連する構成は、 信号送受信装置と光波長多重部の 2つ の部分から成る。 信号送受信装置はプロテクショ ン機能をもたない装置であり 、 この構成の場合、 信号送受信装置を提供する装置ベンダーに関わらずプロテクシ ョ ン機能を実現できないという問題がある。  The configuration related to the transmitting / receiving device 1915 includes two parts, a signal transmitting / receiving device and an optical wavelength multiplexing unit. The signal transmitting / receiving device does not have the protection function, and in this configuration, there is a problem that the protection function cannot be realized regardless of the device vendor that provides the signal transmitting / receiving device.
以上に見てきたよ うに波長単位での切替の場合、 切替の構成によってプロテク ショ ン機能を実現できるものとできないものにわかれてしま う。  As can be seen from the above, in the case of switching in wavelength units, there are two types of switching: those that can achieve the protection function and those that cannot.
また従来の切替方法は各波長の光信号を電気信号に変換した後に処理されてい るものが一般的であり、 この電気信号処理は低速の電気回路処理が必要なため光 信号伝送の高速性を失ってしま う問題があった。  In addition, the conventional switching method generally performs processing after converting an optical signal of each wavelength into an electric signal. Since this electric signal processing requires low-speed electric circuit processing, the high-speed optical signal transmission is reduced. There was a problem of losing it.
更に伝送装置の現用予備切替動作時間は数十 m s程度であり、 この切替動作時 間分の瞬断が生じていた。 この瞬断によ りデータ損失が生じ、 通信回線サービス 提供業者が提供するサービスの品質が落ちてしま う という問題があった。 特に W D Mでのサービスでは一回線で数百 G b p sから数 T b p s の信号が伝送される ため、 瞬断によるデータ損失も大きく なり問題となる。  Further, the working standby switching operation time of the transmission device is about several tens of ms, and a momentary interruption for this switching operation time has occurred. The instantaneous interruption caused data loss, and the quality of the service provided by the communication line service provider deteriorated. In particular, in the WDM service, a signal of several hundred Gbps to several Tbps is transmitted on one line, and data loss due to instantaneous interruption increases, which is a problem.
本発明では波長多重された光信号 (W D M信号) のままで切替を行い、 全ての 波長を現用から予備に一斉切替することで、 一回線のみが現用回線となる。  In the present invention, switching is performed with the wavelength-multiplexed optical signal (WDM signal) as it is, and all wavelengths are simultaneously switched from working to standby, so that only one line becomes the working line.
これによつて両回線が同時に現用回線になってしま う という問題が解決される。 This solves the problem that both lines simultaneously become the working lines.
W D M信号切替を実現するため、 光の特性を利用した以下の 3つの方法のいず れか、 あるいは 3つのうち 2つ以上を組み合わせた方法を用いる。 To realize WDM signal switching, one of the following three methods using optical characteristics Or a combination of two or more of the three.
1番目の方法は、 受信側ノー ド部で光強度レベルを検出する O S C (光監視チ ャネル) 検出部によ り O S C信号光強度を測り、 現用回線を流れる O S C信号光 強度が一定レベルに達しないときに、 検出部の指示により切替部が予備回線へ切 替を行う よう にする。  In the first method, the OSC (light monitoring channel) detector that detects the light intensity level at the receiving node measures the OSC signal light intensity, and the OSC signal light intensity flowing through the working line reaches a certain level. Otherwise, the switching unit switches to the protection line according to the instruction from the detection unit.
2番目の方法は、 光信号検出部に光スぺク トラムアナライザを使用し、 O S C 信号の光 S N R (光信号对ノイズ比) や波長分散等の品質を解析し、 一定レベル に達しないときに、 検出部の指示によ り切替部が予備回線へ切替を行う よう にす る。  The second method uses an optical spectrum analyzer for the optical signal detector, analyzes the optical SNR (optical signal-to-noise ratio), chromatic dispersion, and other qualities of the OSC signal. The switching unit switches to the protection line according to the instruction of the detection unit.
3番目の方法は、 O S Cではなく W D M信号の信号光強度を計り、 一定レベル に達しないときに、 検出部の指示によ り切替部が予備回線へ切替を行う よ う にす る。  The third method is to measure the signal light intensity of the WDM signal instead of the OSC, and when the signal level does not reach a certain level, the switching unit switches to the protection line according to the instruction of the detection unit.
このよ うな切替方法によ り、 電気信号への変換なしに光信号処理を行う こ とが でき、 高速性を保つことができる。  According to such a switching method, optical signal processing can be performed without conversion to an electric signal, and high speed can be maintained.
また、 W D M信号での切替によ り、 前述の図 6〜図 8に例示した波長単位での 切替で起こる多重障害への問題を解決することができる。  In addition, the switching by the WDM signal can solve the problem of multiple failures caused by the switching in the wavelength unit illustrated in FIGS. 6 to 8 described above.
図 1 1〜図 1 4に W D M信号での切替を例示する。 前述の例と同様に波長 1及 ぴ 2の光信号は地点 A— B間、 波長 3及ぴ 4の光信号は地点 A— C間を伝送され るものとする。 プロテクショ ン機能は各波長ではなく W D M信号単位で行われる。 図において実線部分は現用回線、 点線部分は予備回線とする。 回線にパッ印がつ いており且つ回線中を通る波長信号が点線で表されるものは障害発生による信号 断を意味する。  FIGS. 11 to 14 illustrate switching by the WDM signal. As in the above example, it is assumed that the optical signals of wavelengths 1 and 2 are transmitted between points A and B, and the optical signals of wavelengths 3 and 4 are transmitted between points A and C. The protection function is performed for each WDM signal, not for each wavelength. In the figure, the solid line is the working line, and the dotted line is the protection line. If a signal is marked on the line and the wavelength signal passing through the line is indicated by a dotted line, it means that the signal has been interrupted due to the occurrence of a fault.
図 1 1 において地点 Aから地点 Bへの伝送は次のとおり である。 地点 Aで各波 長の光信号は光波長多重部 1 2で波長分割多重された後、 分岐部 B Sで W D M信 号光の状態で現用と予備に分岐され、 地点 Bで切替部 S S 通過した後、 光波長 分離部 2 2で波長分離され各波長の光信号に戻る。 地点 B— Cも同様の動作をす る。  The transmission from point A to point B in Fig. 11 is as follows. At point A, the optical signal of each wavelength is wavelength-division multiplexed by the optical wavelength multiplexing unit 12 and then branched into the working and standby WDM signal lights at the branching unit BS, and passed through the switching unit SS at point B. After that, the wavelength is demultiplexed by the optical wavelength demultiplexing unit 22 to return to an optical signal of each wavelength. Points B-C operate in a similar manner.
図 1 2は、 地点 A— B間の現用 W D M回線 1 にフアイパ断等の障害が発生した状 態を示す。 この場合、 地点 Bの切替部 S Sにおいて、 予備 W D M回線 2に伝送さ W れている WDM信号光を選択することによって、 予備 WDM回線 2に切替が行わ れる。 この切替により各波長の光信号は障害復旧される。 Figure 12 shows a situation in which a failure such as a fiber disconnection has occurred in the working WDM line 1 between points A and B. In this case, the data is transmitted to the protection WDM line 2 at the switching unit SS at the point B. By selecting the WDM signal light that has been turned on, switching to the standby WDM line 2 is performed. By this switching, the optical signal of each wavelength is recovered from the failure.
次に図 1 3に示すように、 同時に地点 B— C間の現用 W DM回線 1 に障害が発 生した二重障害状態の動作を見る。 現用 WDM回線 1 に伝送される WDM信号光 は、 正常状態である予備 WDM回線 2に切り替わり、 波長 3及ぴ 4の光信号は信 号断となることなく地点 Cへ到達する。  Next, as shown in Fig. 13, the operation in the double failure state in which a failure has occurred in the working WDM circuit 1 between points B and C at the same time is seen. The WDM signal light transmitted to the working WDM line 1 is switched to the backup WDM line 2 in a normal state, and the optical signals of wavelengths 3 and 4 reach the point C without signal interruption.
図 1 4は図 1 3 とは異なる二重障害状態である。 地点 A— Bの現用 WDM回線 1 と地点 B— Cの予備 WDM回線 2で同時に障害が発生している。 このとき WD M信号光は地点 A— Bで予備 WDM回線 2、 地点 B— Cで現用 W DM回線 1 を通 り、 各波長の光信号も障害の影響を受けない。  Figure 14 shows a different double failure condition than Figure 13. The working WDM line 1 at points A and B and the protection WDM line 2 at points B and C have failed simultaneously. At this time, the WDM signal light passes through the protection WDM circuit 2 at points A and B and the working WDM circuit 1 at points B and C, and the optical signal of each wavelength is not affected by the failure.
以上の通り、 WDM信号光単位での切替では、 複数地点を結ぶ伝送路上で二つ の地点間の現用予備どちらか一方の回線が正常状態ならば、 二重障害を含む多重 同時障害発生時でも光信号を正常に伝送することが可能である。 これは多重障害 への耐障害性を持たない波長単位での切替に比較して利点となる。  As described above, in switching in units of WDM signal light, if one of the working protection lines between two points is normal on the transmission line connecting multiple points, even if multiple simultaneous failures including double failures occur, Optical signals can be transmitted normally. This is an advantage compared to switching in wavelength units that does not have fault tolerance to multiple faults.
前述の図 9及び図 1 0に例示した波長単位での切替で起こる、 異なる装置ベン ダ一の装置との接続でプロテクショ ン機能が実現できないという問題に対して、 W DM信号での切替の場合を図 2 0に示す。 ここでは、 光波長多重部 1 2の下流 側に WDM信号光単位で切替を行う切替部 S Sが設けられている。  For the problem that the protection function cannot be realized by connecting to a device from a different device vendor, which occurs when switching in wavelength units as shown in Figs. Is shown in FIG. Here, a switching unit SS that performs switching on a WDM signal light unit basis is provided downstream of the optical wavelength multiplexing unit 12.
WDM信号光での切替では、 切替の構成に関わらずプロテクショ ンが保証され る。 各波長の光信号に接続される装置は、 プロテクショ ン機能の有無や装置ベン ダ一に関わりなく、 自由に選んでもプロテクショ ン機能を実現することができる 波長增設時にも既存装置に関わり なく 自由に接続装置を選ぶことができる。  In switching with WDM signal light, protection is guaranteed regardless of the switching configuration. The equipment connected to the optical signal of each wavelength can realize the protection function even if it is freely selected, regardless of the presence or absence of the protection function and the equipment vendor.Freely regardless of the existing equipment when setting the wavelength You can choose the connection device.
WDM信号光での切替の構成では、 切替部の数を 1個に減らすことができる。 従来の切替構成の場合、 図 1 0に示されるように、 N個の波長数に対し切替部も N個必要であつたが、 本発明では波長数に関わらず切替部 S Sは 1個でよく 、 シ ステムの簡易化が可能となり装置の費用面でも利点となる。  In the switching configuration using WDM signal light, the number of switching units can be reduced to one. In the case of the conventional switching configuration, as shown in FIG. 10, N switching units are required for N wavelengths, but in the present invention, one switching unit SS is sufficient regardless of the number of wavelengths. However, the simplification of the system becomes possible, which is advantageous in terms of the cost of the apparatus.
更に本発明では、 予備回線に現用回線に比べ光遅延を持たせる、 又は WDM信 号パッファメモリに WDM信号を記憶させておく等によ り無瞬断切替を実現し、 瞬断によるデータ損失を防止することが可能となる (詳細は後述) 。 尚、 O S C (光監視チャネル) は、 WDM伝送において、 主信号伝送用とは別に 保守 · 制御目的と して使用される波長であり、 主にリモー トサイ 卜アラーム報告 障害位置の通知、 オーダワイヤ機能等に使用される。 O S Cを流れる O S C信号 の信号フレームフォーマツ トは各ベンダーが独自に決定するものであり 、 O S C に関する規定は国際電気通信規格 I T U _ T G . 6 9 2に記されている。 次に、 無瞬断切替を実現する幾つかの実施形態を説明する。 Further, in the present invention, non-instantaneous switching is realized by providing a protection line with an optical delay compared to the working line, or storing a WDM signal in a WDM signal buffer memory, thereby reducing data loss due to an instantaneous interruption. It can be prevented (details will be described later). The OSC (optical monitoring channel) is a wavelength used for maintenance and control purposes in WDM transmission separately from the main signal transmission, and is mainly used for remote site alarm reporting, fault location notification, order wire function, etc. Used for The signal frame format of the OSC signal flowing through the OSC is determined independently by each vendor, and the regulations regarding the OSC are described in the international telecommunication standard ITU_TG.692. Next, some embodiments for realizing instantaneous interruption switching will be described.
図 1 6において、 波長 1, 波長 2, · . · 、 波長 nの光信号が、 光波長多重部 1 2に入力し、 波長分割多重される。 それにより得られた WDM信号光が光分岐 部 1 3へ伝送され、 現用 WDM回線 1及び予備 WDM回線 2へ分岐される。 分岐 された WDM信号光は現用回線 1及び予備回線 2によ り伝送される。  In FIG. 16, optical signals of wavelength 1, wavelength 2,..., And wavelength n are input to the optical wavelength multiplexing unit 12 and wavelength division multiplexed. The WDM signal light obtained thereby is transmitted to the optical branching unit 13 and branched to the working WDM line 1 and the protection WDM line 2. The split WDM signal light is transmitted through the working line 1 and the protection line 2.
現用回線 1 と予備回線 2はそれぞれ別のルー トを通るため、 送信側ノ一ド部 1 0から受信側ノー ド部 2 0までの光路長が異なる。 この光路長差によ り送信側ノ ー ド部 1 0で現用及び予備に同時に送信された WDM信号光は、 受信側ノー ド部 2 0に時間的にずれて到着することになる。 この現用及び予備の受信時間のズレ を解消するために、 次の方法を採用している。  Since the working line 1 and the protection line 2 pass through different routes, the optical path lengths from the transmitting node 10 to the receiving node 20 are different. Due to this optical path length difference, the WDM signal light simultaneously transmitted to the working node and the standby node at the transmitting node 10 arrives at the receiving node 20 with a time lag. The following method is used to eliminate the difference between the working and standby reception times.
先ず、 現用及び予備回線 1及ぴ 2それぞれの光路長を光路長調整情報を持つ O S C信号によ り測定する。 具体的には、 図 1 6において、 先ず送信側ノー ド部 1 0は受信側ノ一ド部 2 0に向けて現用及ぴ予備回線 1及ぴ 2それぞれに O S C信 号を送信する。 受信側ノード部 2 0では、 現用回線 1 で伝送された O S C信号を 光信号検出部 2 4— O— 1で検出し、 予備回線 2で伝送された O S C信号を光信 号検出部 2 4— O— 2で検出する。  First, the optical path length of each of the working and protection lines 1 and 2 is measured by the OSC signal having the optical path length adjustment information. Specifically, in FIG. 16, first, the transmitting node 10 transmits an OSC signal to the working node 1 and the protection channel 1 to the receiving node 20. In the receiving node unit 20, the OSC signal transmitted on the working line 1 is detected by the optical signal detection unit 24—O—1, and the OSC signal transmitted on the protection line 2 is detected by the optical signal detection unit 24—O — Detect with 2.
ここで、 O S C信号のフレームフォーマッ トの例を図 1 7に示す。 当該フレー ムには、 例えば、 アラーム制御情報、 オーダワイヤ情報、 障害情報、 光遅延制御 情報及び光路長調整情報が含まれる。  Here, an example of the frame format of the OSC signal is shown in FIG. The frame includes, for example, alarm control information, order wire information, fault information, optical delay control information, and optical path length adjustment information.
フレームフォーマツ ト中の光路長調整情報の働きを説明する。 光路長調整情報 は、 O S C信号が送信側ノー ド部 1 0から送信される ときの送信タイムを含む。 受信側ノー ド部 2 0の光信号検出部で O S C信号が検出された後、 光信号制御部 2 5—Oで光路長調整情報が読み取られる。 光信号制御部 2 5一 Oは回路内にタ イマ一を有し、 光路長調整情報にある送信タイムを受け取り受信タイムとの比較 により送信部から受信部までの伝送時間を割り 出す。 この伝送時間から計算によ り光路長を割り 出す。 更に制御部 2 5— Oでは、 現用回線 1 から受信した O S C 信号と予備回線 2から受信した O S C信号に基き、 光路長差が計算される,。 次に、 この光路長差を参照して、 遅延時間を任意に調整可能な光遅延機能をも つ可変光遅延部 2 6— 1及ぴ 2 6 — 2 よって WDM信号光のタイ ミ ング調整を行 うことによ り、 現用及び予備の受信時間が等しく なるよ う に調整する。 この調整 によ り、 切替部 2 3は現用及ぴ予備それぞれから同時に同一信号を受信するよ う になる。 The function of the optical path length adjustment information in the frame format will be described. The optical path length adjustment information includes a transmission time when the OSC signal is transmitted from the transmitting node 10. After the OSC signal is detected by the optical signal detection unit of the receiving node unit 20, the optical path length adjustment information is read by the optical signal control unit 25-O. The optical signal control unit 2510 has a timer in the circuit, receives the transmission time in the optical path length adjustment information, and compares it with the reception time. The transmission time from the transmission unit to the reception unit is determined by. The optical path length is calculated from this transmission time. Further, the control unit 25-O calculates an optical path length difference based on the OSC signal received from the working line 1 and the OSC signal received from the protection line 2, Next, referring to this optical path length difference, the variable optical delay unit 26-1, and 26-2, which have an optical delay function that can arbitrarily adjust the delay time, adjusts the timing of the WDM signal light. By doing so, adjust so that the working and protection reception times are equal. By this adjustment, the switching unit 23 simultaneously receives the same signal from each of the working and the standby.
切替部 2 3は通常は現用の WDM信号光を選択しており、 選択された WDM信 号光は光波長分離部 2 2 伝送される。 波長分離部 2 2にて WDM信号光は波長 1, 波長 2, · · · 、 波長 nの各波長の光信号に分離される。  The switching unit 23 normally selects the current WDM signal light, and the selected WDM signal light is transmitted to the optical wavelength separation unit 22. The WDM signal light is separated by the wavelength separation unit 22 into optical signals of wavelength 1, wavelength 2,..., And wavelength n.
ここで現用及ぴ予備の切替について説明する。  Here, switching between the active and the standby will be described.
WDMにおける現用及ぴ予備の切替方法の従来技術は、 波長分割多重前の波長 ごとに電気レベルで行う ものと して既に説明した。  The conventional technique of switching between active and standby in WDM has already been described as being performed at the electrical level for each wavelength before wavelength division multiplexing.
本発明では、 O S C信号光強度、 WDM信号光強度、 更に波形、 ノイズ、 分散 等の O S C信号品質を用い、 W DM信号光のままで切替を実現する。  In the present invention, switching is realized with the WDM signal light as it is, using the OSC signal light intensity, the WDM signal light intensity, and the OSC signal quality such as waveform, noise, and dispersion.
先ず、 O S C信号光強度による切替方法の手順を以下に述べる。 受信側のデバ イスでは受光許容度があり この受光許容度に達しない微弱な光強度の光信号は 読み取りが行えない。 そこで本発明では光信号検出部 2 4— Oで O S C信号光強 度を測り、 現用回線を流れる O S C信号光強度が一定レベルに達しない場合、 光 信号検出部 2 4—Oから光信号制御部 2 5一 Oへ検出結果が伝えられる。 制御部 2 5— Oは切替部 2 3に予備回線 2への切替指示を出す。 切替部 2 3は現用回線 1 を流れる WDM信号光を予備回線 2に切替る。  First, the procedure of the switching method based on the OSC signal light intensity will be described below. The device on the receiving side has light-receiving allowance and cannot read light signals with weak light intensity that does not reach the light-receiving allowance. Therefore, in the present invention, the OSC signal light intensity is measured by the optical signal detection unit 24 -O, and when the OSC signal light intensity flowing through the working line does not reach a certain level, the optical signal detection unit 24 -O switches the optical signal control unit to the optical signal control unit. 25 51 The detection result is transmitted to O. The control unit 25-O issues a switching instruction to the protection line 2 to the switching unit 23. The switching unit 23 switches the WDM signal light flowing through the working line 1 to the protection line 2.
次に O S C信号ではなく W DM信号光強度での切替方法の手順を述べる。 光信 号検出部 2 4— Oで WDM信号光強度を測り、 現用回線 1 を流れる WDM信号光 強度が一定レベルに達しない場合、 光信号検出部 2 4一 Oから光信号制御部 2 5 一 Oへ検出結果が伝えられる。 制御部 2 5一 0は切替部 2 3に予備回線 2への切 替指示を出す。 切替部 2 3は現用回線 1 を流れる WDM信号光を予備回線 2に切 替る。 ' もう一つの方法と して、 光信号の品質を測定する光スぺク トラムアナライザ機 能を用いる切替方法の手順を以下に述べる。 光スぺク トラムアナライザ機能を有 する光信号検出部 2 4— Oで現用予備回線を流れる O S C信号の光 S N R (光信 号対ノイズ比) や波長分散等の光信号品質を解析し、 光信号品質が一定のレベル に達しない場合、 光信号検出部 2 4— Oから光信号制御部 2 5一 Oへ検出結果が 伝えられる。 制御部 2 5 _ 0は切替部 2 3 に予備回線 2への切替指示を出す。 切 替部 2 3は現用回線 1 を流れる W D M信号光を予備回線 2に切替る。 Next, the procedure of the switching method using the WDM signal light intensity instead of the OSC signal will be described. The optical signal detector 2 4—O measures the WDM signal light intensity, and if the intensity of the WDM signal light flowing through the working line 1 does not reach a certain level, the optical signal detector 24 1 O to the optical signal controller 25 1 O The detection result is transmitted to. The control unit 25-10 issues a switching instruction to the protection line 2 to the switching unit 23. The switching unit 23 switches the WDM signal light flowing through the working line 1 to the protection line 2. ' As another method, a procedure of a switching method using an optical spectrum analyzer function for measuring the quality of an optical signal is described below. The optical signal detector 24 with optical spectrum analyzer function analyzes the optical signal quality such as optical SNR (optical signal-to-noise ratio) and chromatic dispersion of the OSC signal flowing through the working protection line using O-O, and If the quality does not reach a certain level, the detection result is transmitted from the optical signal detector 24 -O to the optical signal controller 25 -O. The control unit 25_0 issues a switching instruction to the protection line 2 to the switching unit 23. The switching unit 23 switches the WDM signal light flowing through the working line 1 to the protection line 2.
以上に O S C信号光強度、 W D M信号光強度、 O S C信号品質をそれぞれ個別 に用いた切替方法を述べた。 上記の方法の応用と して O S C信号光強度、 W D M 信号光強度、 O S C信号品質のうち二つ以上の品質を同時に解析し、 そのう ちど れか一つ以上が一定のレベルに達しない場合、 現用回線 1 を流れる W D M信号光 を予備回線 2に切替する方法も基本的に同様の手順で実現できる。  The switching method using the OSC signal light intensity, the WDM signal light intensity, and the OSC signal quality individually has been described above. As an application of the above method, when two or more of the OSC signal light intensity, WDM signal light intensity, and OSC signal quality are analyzed simultaneously, and one or more of them does not reach a certain level The method of switching the WDM signal light flowing through the working line 1 to the protection line 2 can be realized by basically the same procedure.
以上の操作によ り W D M信号光の切替が可能になる。 しかし、 この切替時に瞬 断が生じ、 その結果、 データ損失が起きてしま う。 そこで以下に説明する方法に よって無瞬断切替を実現し、 データ損失のない切替を行う。  With the above operation, switching of the WDM signal light becomes possible. However, a short interruption occurs during this switch, which results in data loss. Therefore, instantaneous interruption switching is realized by the method described below, and switching without data loss is performed.
無瞬断切替を実現する方法の一つと して光遅延を利用するものを図 1 6によ り 説明する。 予備回線 2へ遅延を与える光遅延部 2 6 _ 2によ り、 予備回線 2に現 用回線 1 に比べ予め一定の遅延を持たせる。 例えば、 現用予備回線の切替に 5 0 m sの時間がかかる場合、 光遅延部 2 6— 2に予め 5 0 m s の遅延を持たせてお く ことによ り、 無瞬断の切替を可能とする。  Fig. 16 shows a method that uses optical delay as one of the methods to realize instantaneous interruption switching. The optical delay unit 26 6 _ 2, which gives a delay to the protection line 2, gives the protection line 2 a predetermined delay in comparison with the working line 1. For example, if it takes 50 ms to switch the working protection line, the optical delay unit 26-2 is provided with a delay of 50 ms in advance, enabling instantaneous interruption switching. I do.
光遅延を利用するも う一つの方法と して、 遅延時間を任意に調整可能な可変光 遅延モジュールによる無瞬断切替を説明する。 図 1 6 に示される光遅延部 2 6— 2 として可変光遅延モジュールを用いる  As another method using optical delay, a description will be given of instantaneous interruption switching by a variable optical delay module that can arbitrarily adjust the delay time. A variable optical delay module is used as the optical delay unit 26-2 shown in Fig. 16.
図 2によ り説明したよ うに、 0SCフレームには遅延制御用の光遅延制御情報が 含まれている。 光信号制御部 2 5—Oでは、 光遅延制御情報の値を操作すること により任意に遅延時間を設定することができる。 それによ り、 光遅延部 2 6— 2 は得られた遅延時間に基き遅延時間を調整することができる。  As described with reference to FIG. 2, the 0SC frame includes optical delay control information for delay control. In the optical signal control unit 25-O, the delay time can be arbitrarily set by manipulating the value of the optical delay control information. Thereby, the optical delay unit 26-2 can adjust the delay time based on the obtained delay time.
次に W D M信号光に関するパッファメモリ 2 7を利用する方法を図 1 8によ り説明する。 一定時間 W D M信号光のデータ記憶が可能なバッファメモリ 2 7 と光信号制御部 2 5— Oの動作の組み合わせによ り、 予備回線 2に現用回線 1 に比べ、 予め一定のバッファメモリ時間を持たせることによ り無瞬断切替を実 現する。 Next, a method of using the buffer memory 27 for the WDM signal light will be described with reference to FIG. Buffer memory capable of storing WDM signal light data for a fixed time 2 7 By combining the operation of the optical signal control unit 25-O with the protection line 2, the non-instantaneous interruption switching is realized by giving the fixed line memory time in advance to the protection line 2 compared to the working line 1.
例えば、 現用及ぴ予備回線 1及ぴ 2の切替に 5 0 m s の時間がかかる場合、 パ ッファメモリ時間を予め 5 0 m s に設定しておく ことによ り、 無瞬断の切替とな る。  For example, if it takes 50 ms to switch between the active and protection lines 1 and 2, the buffer memory time is set to 50 ms in advance, so that instantaneous interruption is switched.
ノ ッファメモリ 2 7を利用するもう一つの方法と して、 バッファメモリ時間を 任意に調整可能な可変 WDM信号光パッファメモリ による瞬断切替を説明する。 ここでは、 図 1 8に示されるバッファメモリ 2 7 と して可変 WDM信号光バッフ ァメモリ 2 7を用いる。  As another method of using the buffer memory 27, a description will be given of instantaneous interruption switching using a variable WDM signal light buffer memory capable of arbitrarily adjusting the buffer memory time. Here, a variable WDM signal light buffer memory 27 is used as the buffer memory 27 shown in FIG.
図 1 9はこの場合における O S C信号フレームフォーマッ トを表す。 この O S Cフレームフォーマツ 卜に、 ノ ッファメモリ 2 7の制御用にバッファメモリ制御 情報を持たせる。 このバッファメモリ制御情報の値は光信号制御部 2 5— Oによ つて操作される。  FIG. 19 shows the OSC signal frame format in this case. This OSC frame format has buffer memory control information for controlling the buffer memory 27. The value of the buffer memory control information is operated by the optical signal control unit 25-O.
光信号制御部 2 5 —0では、 バッファメモリ制御情報値を操作することによ り 、 任意に遅延時間を設定することができる。 バッファメモリ制御情報にパッファメ モリ時間情報を持つ O S C信号は光信号制御部 2 5— Oからバッファメモリ 2 7 へ供給される。 そして、 バッファメモリ 2 7は O S C信号情報に基づきパッファ メモリ時間を調整する。 産業上の利用可能性  In the optical signal control unit 25-0, the delay time can be arbitrarily set by manipulating the buffer memory control information value. The OSC signal having buffer memory time information in the buffer memory control information is supplied from the optical signal control unit 25-O to the buffer memory 27. Then, the buffer memory 27 adjusts the buffer memory time based on the OSC signal information. Industrial applicability
以上詳述したよ う に、 本発明による と、 波長分割多重 (WDM) 伝送において、 多重化された光信号 (WDM信号光) のまま電気信号に変換することなく、 高速 且つ無瞬断で現用及ぴ予備回線の切替を行う ことが可能となる。 また、 従来の W DM装置よ り簡易な構成でありながら、 よ り強い障害復旧 (プロテクショ ン) 機 能が実現されるので、 光ファイバ通信の分野の発展に寄与する ところが大きい。  As described above in detail, according to the present invention, in wavelength division multiplexing (WDM) transmission, a multiplexed optical signal (WDM signal light) is not converted into an electric signal as it is, and is used at high speed and without interruption. It is also possible to switch the protection line. In addition, since a stronger fault recovery (protection) function is realized with a simpler configuration than the conventional WDM device, it greatly contributes to the development of the field of optical fiber communication.

Claims

請 求 の 範 囲 The scope of the claims
1 . 異なる波長を有する複数の光信号を波長分割多重して得られた W D M信号 光を各々伝送する現用回線及ぴ予備回線を提供するステップと、 1. Providing a working line and a protection line for respectively transmitting WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths;
前記複数の光信号のう ちの一つを光監視チャネルと して割り 当てるステップと、 前記現用回線及ぴ予備回線の光路長差を測定するためのパラメータを前記光監 視チャネルに含ませるステップと、  Allocating one of the plurality of optical signals as an optical monitoring channel, and including a parameter for measuring an optical path length difference between the working line and the protection line in the optical monitoring channel. ,
前記パラメータに基いて受信側で前記光路長差を補償するステップとを備えた 方法。  Compensating the optical path difference at the receiving end based on the parameters.
2 . 前記補償するステップは、 前記光路長差が実質的に零になるよう に前記現 用回線及び予備回線の少なく ともいずれかによ り伝送される W D M信号光を遅延 させるステップを含む請求の範囲第 1項記載の方法。  2. The step of compensating includes a step of delaying a WDM signal light transmitted by at least one of the working line and the protection line so that the optical path length difference becomes substantially zero. The method of claim 1.
3 . 前記現用回線によ り伝送される W D M信号光の強度を測定するステップと、 前記測定された強度が予め定められたレベルに達しない場合に前記現用回線に よ り伝送される W D M信号光を前記予備回線に切替えるステップとを更に備えた 請求の範囲第 1項記載の方法。  3. A step of measuring the intensity of the WDM signal light transmitted by the working line, and the step of measuring the intensity of the WDM signal light transmitted by the working line when the measured intensity does not reach a predetermined level. Switching to the protection line. 4. The method according to claim 1, further comprising:
4 . 前記現用回線によ り伝送される光監視チャネルの光信号の強度を測定する ステップと、  4. measuring the optical signal strength of the optical supervisory channel transmitted by the working line;
前記測定された強度が予め定められたレベルに達しない場合に前記現用回線に よ り伝送される W D M信号光を前記予備回線に切替えるステップとを更に備えた 請求の範囲第 1項記載の方法。  2. The method according to claim 1, further comprising the step of: switching the WDM signal light transmitted by the working line to the protection line when the measured intensity does not reach a predetermined level.
5 . 前記現用回線によ り伝送される光監視チャネルの光信号の品質を測定する ステップと、  5. measuring the quality of the optical signal on the optical supervisory channel transmitted by the working line;
前記測定された品質が予め定められたレベルに達しない場合に前記現用回線に よ り伝送される W D M信号光を前記予備回線に切替えるステップとを更に備えた 請求の範囲第 1項記載の方法。  2. The method according to claim 1, further comprising the step of: switching the WDM signal light transmitted by the working line to the protection line when the measured quality does not reach a predetermined level.
6 . 前記遅延させるステップは、 前記現用回線から前記予備回線に切替えるの に要する時間だけ前記 W D M信号光を遅延させるステップを含む請求の範囲第 2 項記載の方法。 6. The method according to claim 2, wherein said delaying step includes a step of delaying said WDM signal light by a time required for switching from said working line to said protection line.
7 . 前記現用回線から前記予備回線に切替えるのに要する時間だけ前記 W D M 信号光をパッファメモリ に記憶させるステップを更に備えた請求の範囲第 2項記 載の方法。 7. The method according to claim 2, further comprising the step of storing the WDM signal light in a buffer memory for a time required for switching from the working line to the protection line.
8 . 異なる波長を有する複数の光信号を波長分割多重して得られた W D M信号 光を各々伝送する現用回線及ぴ予備回線と、  8. A working line and a protection line for transmitting WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths,
前記複数の光信号のうちの一つを光監視チャネルと して、 前記現用回線及ぴ予 備回線の光路長差を測定するためのパラメータを含む光監視信号を供給する手段 と、  Means for providing one of the plurality of optical signals as an optical supervisory channel and supplying an optical supervisory signal including a parameter for measuring an optical path length difference between the working line and the spare line;
前記パラメータに基いて受信側で前記光路長差を補償する手段とを備えた装置。 Means for compensating the optical path length difference on the receiving side based on the parameter.
9 . 前記補償する手段は、 前記光路長差が実質的に零になるよ う に前記現用回 線及び予備回線の少なく ともいずれかによ り伝送される W D M信号光を遅延させ る手段を含む請求の範囲第 8項記載の装置。 9. The means for compensating includes means for delaying the WDM signal light transmitted by at least one of the working line and the protection line so that the optical path length difference becomes substantially zero. 9. The device according to claim 8, wherein:
1 0 . 前記現用回線によ り伝送される W D M信号光の強度を測定する手段と、 前記測定された強度が予め定められたレベルに達しない場合に前記現用回線に よ り伝送される W D M信号光を前記予備回線に切替える手段とを更に備えた請求 の範囲第 8項記載の装置。  10. A means for measuring the intensity of the WDM signal light transmitted by the working line, and a WDM signal transmitted by the working line when the measured intensity does not reach a predetermined level. 9. The apparatus according to claim 8, further comprising: means for switching light to said protection line.
1 1 . 前記現用回線により伝送される光監視チャネルの光信号の強度を測定す る手段と、  11. A means for measuring the intensity of an optical signal of an optical supervisory channel transmitted by the working line;
前記測定された強度が予め定められたレベルに達しない場合に前記現用回線に より伝送される W D M信号光を前記予備回線に切替える手段とを更に備えた請求 の範囲第 8項記載の装置。  9. The apparatus according to claim 8, further comprising: means for switching the WDM signal light transmitted by the working line to the protection line when the measured intensity does not reach a predetermined level.
1 2 . 前記現用回線によ り伝送される光監視チャネルの光信号の品質を測定す る手段と、  12. A means for measuring the quality of an optical signal of an optical supervisory channel transmitted by the working line;
前記測定された品質が予め定められたレベルに達しない場合に前記現用回線に より伝送される W D M信号光を前記予備回線に切替える手段とを更に備えた請求 の範囲第 8項記載の装置。  9. The apparatus according to claim 8, further comprising: means for switching the WDM signal light transmitted by the working line to the protection line when the measured quality does not reach a predetermined level.
1 3 . 前記遅延させる手段は、 前記現用回線から前記予備回線に切替えるのに 要する時間だけ前記 W D M信号光を遅延させる手段を含む請求の範囲第 9項記載 の装置。 13. The apparatus according to claim 9, wherein said delaying means includes means for delaying said WDM signal light by a time required for switching from said working line to said protection line.
1 4. 前記現用回線から前記予備回線に切替えるのに要する時間だけ前記 WD M信号光を記憶させるパッファメモリ を更に備えた請求の範囲第 9項記載の装置。 10. The apparatus according to claim 9, further comprising a buffer memory for storing said WDM signal light for a time required for switching from said working line to said protection line.
PCT/JP2003/002018 2003-02-25 2003-02-25 Method and device for switching between active and auxiliary circuits for optical transmission WO2004077701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002018 WO2004077701A1 (en) 2003-02-25 2003-02-25 Method and device for switching between active and auxiliary circuits for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002018 WO2004077701A1 (en) 2003-02-25 2003-02-25 Method and device for switching between active and auxiliary circuits for optical transmission

Publications (1)

Publication Number Publication Date
WO2004077701A1 true WO2004077701A1 (en) 2004-09-10

Family

ID=32923061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002018 WO2004077701A1 (en) 2003-02-25 2003-02-25 Method and device for switching between active and auxiliary circuits for optical transmission

Country Status (1)

Country Link
WO (1) WO2004077701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093111B2 (en) * 2006-10-11 2012-12-05 日本電気株式会社 Optical transmission system and optical transmission control method
US20220321210A1 (en) * 2019-08-05 2022-10-06 Nippon Telegraph And Telephone Corporation Transmission apparatus and transmission method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248325A (en) * 1986-04-21 1987-10-29 Nippon Telegr & Teleph Corp <Ntt> Device and method for no hit switching of optical fiber
JPH08125636A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Method for wavelength multiplex protection and its transmitter
JPH11103268A (en) * 1997-09-25 1999-04-13 Nec Corp No hit change over system
JP2000151607A (en) * 1998-09-11 2000-05-30 Hitachi Ltd Ip packet communication device and optical network
JP2000286824A (en) * 1999-03-30 2000-10-13 Nec Corp Wavelength division multiplex communication system
JP2002141867A (en) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength-multiplexed optical signal transmitting device, wavelength-multiplexed optical signal receiving device and optical wavelength-multiplexed communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248325A (en) * 1986-04-21 1987-10-29 Nippon Telegr & Teleph Corp <Ntt> Device and method for no hit switching of optical fiber
JPH08125636A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Method for wavelength multiplex protection and its transmitter
JPH11103268A (en) * 1997-09-25 1999-04-13 Nec Corp No hit change over system
JP2000151607A (en) * 1998-09-11 2000-05-30 Hitachi Ltd Ip packet communication device and optical network
JP2000286824A (en) * 1999-03-30 2000-10-13 Nec Corp Wavelength division multiplex communication system
JP2002141867A (en) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength-multiplexed optical signal transmitting device, wavelength-multiplexed optical signal receiving device and optical wavelength-multiplexed communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093111B2 (en) * 2006-10-11 2012-12-05 日本電気株式会社 Optical transmission system and optical transmission control method
US20220321210A1 (en) * 2019-08-05 2022-10-06 Nippon Telegraph And Telephone Corporation Transmission apparatus and transmission method

Similar Documents

Publication Publication Date Title
JP3060994B2 (en) Output port switching device in N-WDM system
US10826601B2 (en) Optical switch with path continuity monitoring for optical protection switching
US6317231B1 (en) Optical monitoring apparatus and method for network provisioning and maintenance
US7302176B2 (en) Optical network
JP3013799B2 (en) Transmitter and receiver for WDM optical transmission
US7321729B2 (en) Optical ring network with selective signal regeneration and wavelength conversion
US7286758B2 (en) Method for switching transmission route, and optical transmission device
US8335428B2 (en) Method and system for protection switching
JP5195746B2 (en) Transmission line monitoring method and apparatus
US7424224B2 (en) Systems and methods for placing line terminating equipment of optical communication systems in customer points of presence
US8554070B2 (en) Optical transmission apparatus and optical attenuation amount control method
US8280244B2 (en) Optical ring network system
EP1004184B1 (en) Self-healing ring network and a method for fault detection and rectifying
JP5261164B2 (en) Optical transmission system
US20040096214A1 (en) Method and apparatus for using optical idler tones for performance monitoring in a WDM optical transmission system
US9391421B2 (en) Optical amplification apparatus, optical transmission apparatus, and optical transmission system
US7660529B2 (en) System and method for providing failure protection in optical networks
JP2001258084A (en) Optical cross connecting device
EP0936759A2 (en) Optical transmission system, end terminal and optical receiver
JP2000174701A (en) Optical switching circuit
WO2006117835A1 (en) Transmission system and optical transmission system
WO2004077701A1 (en) Method and device for switching between active and auxiliary circuits for optical transmission
JP2006186538A (en) Optical transmission apparatus and method of changing optical transmission line
JP2000332686A (en) Optical transmitter, optical transmission system and method therefor
JPH09266462A (en) Optical transmitter and transmission line monitor for optical transmission system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP