WO2004069868A1 - Complex of telomere protein with guanine-quadruplex dna - Google Patents

Complex of telomere protein with guanine-quadruplex dna Download PDF

Info

Publication number
WO2004069868A1
WO2004069868A1 PCT/JP2004/001220 JP2004001220W WO2004069868A1 WO 2004069868 A1 WO2004069868 A1 WO 2004069868A1 JP 2004001220 W JP2004001220 W JP 2004001220W WO 2004069868 A1 WO2004069868 A1 WO 2004069868A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
dbd
quadruplex
seq
guanine
Prior art date
Application number
PCT/JP2004/001220
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshifumi Nishimura
Original Assignee
City Of Yokohama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City Of Yokohama filed Critical City Of Yokohama
Publication of WO2004069868A1 publication Critical patent/WO2004069868A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/15Nucleic acids forming more than 2 strands, e.g. TFOs
    • C12N2310/151Nucleic acids forming more than 2 strands, e.g. TFOs more than 3 strands, e.g. tetrads, H-DNA

Definitions

  • the present invention relates to a complex of a telomere protein and a DNA having a guanine quadruplex (hereinafter, referred to as “G-quadruplex”) structure. More specifically, the present invention relates to a telomere protein TRF1 or TRF2. G—Relates to a complex with DNA that has a quadruple helix structure.
  • telomere end of the chromosome consists of a telomere DNA sequence rich in guanine bases and is important to protect cells from external adverse effects and destruction. If this telomere cannot be maintained, it will eventually lead to cell death (apoptos is), so it is thought that this phenomenon can be applied to cancer treatment.
  • telomere DNA can form a quadruple helix consisting of four strands [ Figure 1], which may be involved in the structure of the telomere end.
  • Figure 1 G-quadruplex DNA structures have been created by in experiments with telomere sequences of several species, and X-ray structure analysis and NMR structure analysis have been performed. Many of the G-quadruplex DNAs whose structures have been analyzed are those whose structures themselves are energetically stable.
  • G-quadruplex DNA formed by a telomere DNA sequence consisting of guanine (G) and thymine (T) Many helical DNA structures have been reported.
  • G-quadruplex DNA is formed by the cations of alkaline earth metals such as K + and Na +.
  • alkaline earth metals such as K + and Na +.
  • T-TA 1 oop An adenine residue in each TTA-bridged trinucleotide loop (T-TA 1 oop) is inserted back between two residues of thymine.
  • DNA and a telomere protein having a G-quadruplex form a complex.
  • the telomere DNA of mammalian, including human, vertebrates has a double-stranded TTAGGG repeat region ending in a 3 'single-stranded overhang (3'-overhang), which contains a telomeric repeat sequence binding factor (TRFl), which is a telomere repeat-binding agent (RFactor), specifically binds to RF2 as a homodimer [ Figures 1 and 2].
  • RF1 binds to telomere binding proteins, Tankyrase and TIN2, and regulates telomere length.
  • telomere end is regulated by various telomere-binding proteins as well as by tetramerase [Fig. 2].
  • telomere elongation occurs when hTF1 loses binding activity.
  • MRF2 loses its binding activity, the telomere becomes unstable and induces ATM (ataxia telangiectasia mutated) / p53 activity, leading to cell death (apoptos is).
  • RF2 binds to the telomere terminus and protects telomere DNA from monitoring DNA repair mechanisms.
  • the functions of these proteins in vivo are mainly that hTRF1 has a function to negatively regulate telomerase activity, and hTRF2 has a function related to telomere maintenance and protection.
  • hTRFl has been observed to have the activity of folding double-stranded telomeric DNA in hTRF1, and hTRF2 is located between the double-stranded repeat sequence of the double-stranded throw-reference structure called the t-loop structure and the single-stranded protruding end. It has been observed that it is selectively located at the joint site of. At least six molecules of TTAGGG-3 'overhang are indispensable for maintaining at least the t_loop structure [Figure 3]. Telomere DNA is susceptible to external influences because it is located at the end of the chromosome. For this reason, it has long been predicted that telomeres may form a structure at the end in order to protect the telomere end.
  • the t-loop structure formed by RF2 is a typical example [Fig. 3].
  • the formation of the t_loop is to protect the telomere end, and if it is not formed, it is thought that telomere end damage, telomere protruding end deletion, telomere fusion, etc. will occur, resulting in loss of telomere function. ing.
  • hTRFl and MF2 both have a homodimer-forming dimerization domain (TRF Homology Domain: TRFH) in the center, and a DNA-binding domain (specifically recognizing double-stranded telomeric DNA at the C-terminus).
  • TRFH homodimer-forming dimerization domain
  • DBD PA-Ending Domain
  • the telomeric proteins RF1-DBD and RF2-MD have significant homology to the nuclear proto-oncogene product Myb proteins R1, R2, and R3.
  • the three-dimensional structure of this protein consists of three helixes, where the hydrophobic amino acids present are almost completely conserved. These proteins have been shown to interact with DNA by the DNA binding domain alone, and the amino acid sequence homology between hTRF DBD and RF2-DBD is about 58%.
  • An object of the present invention is to analyze the interaction between DNA having a G-quadruplex structure and the telomeric protein TRF1 or TRF2. Disclosure of the invention
  • the gist of the present invention is as follows.
  • TRF 1 or TRF 2 telomere protein or its DNA binding region A telomere protein fragment comprising:
  • a complex formed with guanine, a DNA having a quadruple helix structure A complex formed with guanine, a DNA having a quadruple helix structure.
  • telomere protein or a telomere protein fragment containing the DNA binding region thereof is selected from the group consisting of the following proteins (A) to (D) and protein fragments.
  • TRF 1 represented by the amino acid sequence of SEQ ID NO: 6
  • TRF 2 represented by the amino acid sequence of SEQ ID NO: 8.
  • TRF1 a TRF1 fragment containing the DNA binding region of TRF1, represented by the amino acid sequence of SEQ ID NO: 5 (however, the first methionine residue may be deleted)
  • the telomere protein or a telomere protein fragment containing the DNA binding region thereof is TRF1 or a TRF1 fragment containing the DNA binding region thereof, and the DNA having a guanine quadruplex structure is an antiparallel guanine fragment.
  • the complex according to any one of (1) to (4), which has a quadruple helix structure.
  • the telomere protein or a telomere protein fragment containing the DNA binding region thereof is TRF2 or a TRF2 fragment containing the DNA binding region thereof, and the DNA having the guanine quadruple helix structure is composed of parallel guanine DNA.
  • the complex according to any one of (1) to (4), which has a quadruple helix structure.
  • TRF2 fragment containing a DNA binding region of TRF2 represented by the sequence consisting of the amino acid sequence of SEQ ID NO: 7, and a guanine quadruple helix having the nucleotide sequence of SEQ ID NO: 1 Complex with DNA
  • TRF2 A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and DNA having the nucleotide sequence of SEQ ID NO: 2 and having a guanine quadruplex structure
  • guanine quadruplex refers to a structure in which four guanines (G) are stabilized by forming hydrogen bonds on a plane (see FIG. 1). (See reference).
  • a quaternary helix in a parallel chain (G in a parallel chain—quadruplex helix) means that the chains of each of the four guanines (G) are all in the same direction (Dl, (See F2 and A4) This is because when the plane of four guanines (G) forming hydrogen bonds is viewed from above, the sugar monophosphate skeleton is located on this plane. Come or come down is the same.
  • the direction of the chain is the direction from the 5 'side to the 3' side of the sugar.
  • “An antiparallel guanine quadruplex” refers to a G—quadruplex other than the parallel strand G—quadruplex (Al in FIG. 5). , Bl, Cl, A2, B2, C2, D2, E2, B4, C4 and D4).
  • the present invention relates to a DNA having a base sequence of any one of SEQ ID NOs: 1, 2, 3, 4, 13, 14, 15, and 16 and capable of forming a guanine-quadruplex structure (hereinafter referred to as “the present invention”). DNA ”).
  • the DNA of the present invention may be composed of any number of strands such as single strand, double strand, triple strand, quadruple strand and the like.
  • the DNA of the present invention may be a natural DNA or a modified nucleic acid.
  • Modified nucleic acids include those having a triester bond (PS Miller, et al., Biochemistry, 16, 1988-1996 (1977)) and those having a methylphosphonate bond (PS Miller, et al., Biochemistry, 18, 5134). -5143 (1979)), those with phosphorothioate bonds (F. Eckstein, et al., Biochemistry, 22, 4546-4550 (1983)), those with phosphorodithioate bonds (J. Neielsen , et al., Tetrahedron Lett., 29, 2911-2914 (1988); WK-D. Brill, et al., J. Am. Chem.
  • the DNA of the present invention can be prepared as follows. First, a single-stranded DNA (hereinafter referred to as “ssDNA”) having any one of the nucleotide sequences of SEQ ID NOs: 1, 2, 3, 4, 13, 14, 15 or 16 is synthesized by a known method. For example, synthesis is performed using a commercially available DNA synthesizer. Next, a buffer containing a cation (eg, NaCl, KCl, etc.) is added, and the ssDNA is heated at 80 to 95 ° C for 5 to 20 minutes and cooled to room temperature. After heating at 50 to 70 for 10 to 30 minutes and cooling to room temperature, G-quadruplex DNA is produced.
  • a containing a cation eg, NaCl, KCl, etc.
  • Whether a DNA has a G-quadruplex structure can be confirmed by taking a circular dichroism (hereinafter sometimes referred to as “CD”) spectrum. Can be.
  • CD circular dichroism
  • a positive maximum wavelength appears at 265 nm and a negative maximum wavelength at 245 nm
  • DNA has an antiparallel G-quadruplex structure.
  • a positive maximum wavelength appears at 295 nm and a negative maximum wavelength appears at 265 nm.
  • the present invention provides a method for forming a telomere protein fragment containing either a TRF1 or TRF2 or a telomere protein fragment containing the DNA binding region thereof and a DNA having a guanine quadruplex structure in the presence of a cation.
  • a complex is provided.
  • the DNA forming the complex of the present invention may be composed of any number of chains such as a single strand, a double strand, a triple strand, and a quadruple strand.
  • the DNA forming the complex of the present invention may be a natural DNA or a modified nucleic acid.
  • Modified nucleic acids include those having a triester bond (PS Miller, et al., Biochemistry, 16, 1988-1996 (1977)) and those having a methylphosphonate bond (PS Miller, et al., Biochemistry, 18, 5134). -5143 (1979)), with phosphorothioate linkage (F. Eckstein, et al., Biochemistry, 22, 4546-4550 (1983)) with phosphorodithioate linkage (J. Neielsen, et al. , Tetrahedron Lett., 29, 2911-2914 (1988); W. ⁇ .-D. Brill, et al., J.
  • TRF1 and TRF2 forming the complex of the present invention may be derived from any animal such as mammals (eg, human, mouse, monkey, etc.), birds, and the like.
  • TRF1, TRF2 and their fragments that form the complex of the present invention may be wild-type or mutant.
  • the wild-type TRF1 include those having the amino acid sequence of SEQ ID NO: 6.
  • the sequence One having the amino acid sequence of No. 5 can be exemplified.
  • the wild-type TRF2 include those having the amino acid sequence of SEQ ID NO: 8.
  • fragments of wild-type TRF2 include those having the amino acid sequence of SEQ ID NO: 7.
  • a mutant of TRF1, TRF2 or a fragment thereof comprises an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any of the amino acid sequences of SEQ ID NOS: 5 to 8,
  • peptides or proteins having the biological activity of TRF1, TRF2 or a fragment thereof can be exemplified.
  • DNA having a guanine quadruplex structure can be prepared by the method described above.
  • the telomere protein of either TRF 1 or TRF 2 or a telomere protein fragment containing the DNA binding region thereof can be prepared by a known genetic engineering technique.
  • a DNA encoding a telomere protein of either TRF 1 or TRF 2 or a telomere protein fragment containing the DNA binding region thereof is prepared by a known method, or obtained from a preservation institution, and this DNA is obtained. After amplification with primers, incorporate into plasmid and express in host cells.
  • the expressed telomere protein or a telomere protein fragment containing the DNA binding region thereof is purified by a known method.
  • the guanine quadruplex structure of the DNA preserves the telomere protein fragment obtained in this manner or the telomere protein fragment containing the DNA binding region and the DNA having the guanine quadruplex structure.
  • the complex of the present invention is formed by mixing under dripping conditions (for example, in a buffer used when preparing DNA having a guanine quadruplex structure). Complex formation can be confirmed using a Biacore (Biamolecular Interaction Analysis Core technology) device (Biacore).
  • the telomere protein or the telomere protein fragment containing the DNA binding region is immobilized on the sensor chip, and then the telomere protein is ligated on the sensor chip.
  • the above-mentioned protein or a fragment thereof may be contacted with DNA having a guanine-quadruplex structure.
  • the DNA having the guanine quadruplex structure is immobilized on a sensor chip, and then the DNA is telomerized on the sensor chip.
  • the protein or a telomere protein fragment containing the DNA binding region thereof may be contacted.
  • K D values are 1 0 4 or less, preferably 1 0 5 below, if more preferably 1 0 6 or less, protein D NA is the specific binding, ie, the composite It can be said that it forms a body.
  • Figure 1 shows a G-quadruplex]) NA structure (G-Quadruplex, G-Quartet).
  • M + represents a monovalent cation (eg, Li + , K +, Na +, N3 ⁇ 4 +, etc.). Divalent cations such as Ca 2+ and Mg 2+ may be involved in the stabilization of the structure.
  • the configuration of Guanine bases differs depending on the monovalent cation (M +) in the solution that coordinates to form the structure, and is roughly classified into a parallel (paral lel) structure and an antiparallel (anti-paral lel) structure. You. These structural differences can be distinguished by the absorption of the CD spectrum [ Figure 10].
  • Figure 2 shows a telomere control model in mammals.
  • Tankyrase and TIN2 bind to hTRFl and regulate telomere length.
  • Map 1 controls telomere length by localizing to telomere via image 2.
  • Figure 3 shows the mechanism of mammalian telomere DNA.
  • telomeres are located at the ends of linear chromosomes, and at the 3 'end there are double-stranded TTAGGG repeats ending in single-stranded overhangs. It has been suggested that a t-loop structure is formed to maintain and protect telomere terminal function.
  • FIG. 4 shows a functional map of the telomere protein and an amino acid sequence comparison. .
  • telomeric proteins are homozygous in the center as both functional domains.
  • There is a dimer formation domain (TRF homology domain) that forms a mer, and a DNA-binding domain (PolyA-finding Domain: DBD) that specifically recognizes double-stranded DNA is present at the C-terminus.
  • DBD DNA-binding Domain
  • the major difference between the two is that they have an acidic domain and a basic domain at the N-terminus, respectively.
  • the function of this part is unknown, and loss of the basic domain of TRF2 inactivates telomere function, leading to cell death.
  • telomeric proteins MRF1 and RF2 have great homology to the nuclear proto-oncogene product Myb protein R1, R2, and R3.
  • the dimensional structure has three helices, and the hydrophobic amino acids are almost completely conserved.
  • the homology between the humic acid sequences of hTRF1-DBD and hTRF2-DBD is about 58%.
  • FIG. 5 shows various G-quadruplex structures.
  • FIG. 6 shows a flow and an electrophoretic diagram of the purification method of the telomeric proteins hTRF1-DBD and MF2-DBD.
  • hTRF l-DBD amino acids 371-439 (SEQ ID NO: 5) having a methionine residue (Met) at the N-terminus; 70aa) in an E. coli BL2 UDE3) strain (Novagen) transformed with pET13a into which an expression portion was inserted It was expressed in large quantities.
  • hTRF2-DBD amino acids 437-500aa (SEQ ID NO: 7) having a Met residue at the N-terminus; 64aa) is abundant in the zo / 'BL21 (DE3) strain [Novagen] into which pET23b containing the expressed portion has been introduced. was expressed.
  • the protein was eluted with an ultrasonic crusher, and single-band telomere proteins could be isolated by cellulose phosphate column (P11) chromatography and gel filtration chromatography.
  • FIG. 7 shows the N-terminal His-tag fusion + 10 aa extension.
  • FIG. 8 shows the amino acid sequence of the His-tag fused hTRF2-DBD.
  • FIG. 9 shows the final stage of His-tag fusion RF2-DBD.
  • Figure 10 shows parallel G-quadruplex DNA and anti-parallel G-quadruplex DNA by CD spectrum using trl2 +: 5'-TTAGGGTTAGGG-3' (SEQ ID NO: 1), which is the minimum recognition sequence for telomere protein. Shows discrimination from heavy helical DNA.
  • Fig. 11 shows the ⁇ R spectrum (one-dimensional spectrum) of trl2-, trl2 +, tr8 +, and trl2 +.
  • Fig. 12 shows the NMR spectrum of the complex formed by trl2 + and TRF2-DBD. 1 shows an NMR spectrum (one-dimensional spectrum) of a complex formed by.
  • FIG. 13 shows an NMR spectrum (two-dimensional spectrum) of a complex formed by trl2 + and TRF DBD.
  • FIG. 14 shows an NMR spectrum (two-dimensional spectrum) of a complex formed by trl2 + and TRF2-DBD.
  • FIG. 15 shows the prediction of the interaction site between trl2 + and TRF2-DBD.
  • telomere protein Only the DNA-binding domains (iiTRF1-DBD and RF2-DBD) at the C-terminus of the telomere protein were respectively expressed from the Escherichia coli large expression system [Fig. 4].
  • hTRFl-DBD was obtained by extracting the pET13a plasmid from the RcoH ⁇ (DE3) LysS strain for expression and transforming it into E. coli BL21 (DE3) strain to express it in large quantities.
  • RF2-DBD was also expressed in large amounts in the ⁇ / .BL2UDE3) strain into which the expression plasmid pET23b was introduced.
  • the protein was eluted with an ultrasonic crusher, and the target protein was isolated by cellulose phosphate column chromatography and gel filtration chromatography.
  • LB medium (10 ml) was prepared in each of two clean test tubes, and sterilized by an autoclave (SANLS MLS-300, T0MY ES-315) [120 ° C, 15 to 20 minutes]. After cooling the medium to below 40-60 ° C in the Clean Bench, aseptically add the antibiotics 50 / ig / ml kana machine and 25 g / ml chloramphenicol, and add 1-8 (TC deep An R coli BL21 (DE3) pLysS strain (Novagen, Inc.) transformed with pET13a into which a portion coding for the sequence of the DNA binding domain of hTRFl stored in a DNA polymerase (Asahi Life Science ULT790-3J-A30) was inserted.
  • test tube was shaken 37 ° C 12 hours or more in the air bath bath. Thereafter, absorbance at a wavelength of 600nm with absorption spectrometer (Beckman Co. DU640) (0. D 600) is At the point of 1.0 or more, the medium containing E. coli was collected and collected by centrifugation (5000 X g, 2 minutes) in a 1.5 ml eppen. Only the pellet (Escherichia coli) containing the hTRF1-DBD was recovered.
  • E. coli was transformed by resting on ice for about 2 minutes. To this was added about 500 S0C medium, which had been pre-warmed and thawed at 37 ° C, and incubated for 1 hour or more in a thermostat at 37 ° C. The Escherichia coli grown in the S0C medium was then inoculated on an LB plate (kanamycin, chloramphenicol-resistant) previously warmed at 37 ° C., and kept at 37 for 24 hours until colony formation.
  • LB plate kanamycin, chloramphenicol-resistant
  • the plasmid pET13a expressing hTRFl-DBD was transformed by 1).
  • LB medium about 20-30 ml of LB medium was prepared in a clean 300 ml Erlenmeyer flask, and sterilized by an autoclave [120 ° C, 15-20 minutes].
  • the medium was cooled to 40-6 (TC or lower) in the Clean Bench, and then the antibiotics 50 g / ml Kanamashi: and 25 g / ml chloramphenicol were added aseptically.
  • Created first from the display A colimi (DE3) strain (Novagen) transformed with hTRF DBD expression plasmid PET 13a was inoculated in an appropriate amount.
  • the Erlenmeyer flask was shaken in an air bath at 37 ° C for 12 hours or more. After that, when the OD 6Q () at a wavelength of 600 nm reached 1.0 or more with an absorptiometer, all the medium containing E. coli was transferred to main culture.
  • a 3 L LB medium was prepared in a jar fermenter (AC-D-3, manufactured by Iwashiya ADM) for mass cultivation of Escherichia coli, and sterilized in an autoclave. After sterilization, the antibiotic 50 / g / ml kana machine and 25 g / ml chloramphenicol are added aseptically, and a few drops of decanol, a surfactant that serves as an antifoaming agent, are added at a temperature of 37 ° C. Incubated at 2 L / min air at 200 rpm. After inoculation of E.
  • the hTRF DBD is eluted with an ultrasonic crusher, and gel filtration chromatography using cellulose phosphate column chromatography and HPLC (High performance liquid chromatography) [HiLoad TM 26/60 Superdex TM 30 prep. grade] and Phenyl Sepharose column [HiLoad TM 26/10 Phenyl Sepharose High Performance] obtained by hydrophobic chromatography.
  • HPLC High performance liquid chromatography
  • Ion-exchange chromatography is a method of separating molecules using the difference in electrostatic properties of molecules. Proteins have a pi (isoelectric point) where the sum of the charges is zero, and behaves as an anion at higher pH and as a cation at lower pH. Using this property, it is a method of purifying by binding or eluting to an ion exchange resin.
  • the sample was washed once with an equilibration buffer. After the completion of the washing, the sample was eluted using a linear gradient method with a NaCl concentration gradient of 300 mM to 1100 ni. The eluate was collected in a fraction tube at a rate of 80 drops / tube (about 4 ml) using a fraction collector. At this time, the elution rate of the sample was set at about 50 ml / h. '
  • a sample after application, a sample after washing (wash), and a fraction sample were flowed by Tricine SDS electrophoresis, and a sample showing hTRFl-DBD band was collected.
  • the sample collected in the fraction tube was centriprep [Amicon Centriprep3: 15 ml, molecular weight cut off 3000], Centricon [Amicon Centr icon3: volume 2 ml, molecular weight cut off 3000].
  • Glycerol was previously attached to the filter as a preservative, so it was washed with MilliQ before use. It was concentrated by centrifugation (4 ° C, 8000 X g).
  • the concentrated sample was purified by gel filtration (HiLoadTM26 / 60 SuperdexTM30 prep grade) by HPLC (High performance liquid chromatography) (50 mM potassium phosphate buffer [ ⁇ 8.5], 1 M Ml).
  • HPLC High performance liquid chromatography
  • the hTRF l-DBD was eluted with Flow lml / min for 150 minutes.
  • the target protein was recovered from the eluted sample by Tricine SDS electrophoresis.
  • HTRFl-DBD was confirmed to be isolated by Tricine SDS electrophoresis.
  • the sample was concentrated with CentriBrep 'Centricon, lyophilized in a state where the sample was dissolved in a 50 mM potassium phosphate buffer [pH 7.0], 100 mM NaCl buffer, and stored at 120 ° C.
  • LB medium about 20 to 30 ml of LB medium was prepared in a clean 300 ml Erlenmeyer flask, and sterilized by an autoclave [120 ° C, 15 to 20 minutes]. After the medium was cooled to 40 to 60 ° C or lower in the Clean Bench, 100 g / ml ampicillin, an antibiotic, was aseptically added thereto. Further, an ⁇ -coli BL21 (DE3) strain transformed with the RF2-DBD expression plasmid pET23b previously prepared from a deep freezer at 180 ° C was inoculated in an appropriate amount. The Erlenmeyer flask was shaken in an air bath at 37 "C for 12 hours or more. Then, when the OD at a wavelength of 600 nm reached 1.0 or more with an absorptiometer, the entire culture containing E. coli was fully cultured. Moved to
  • Three liters of LB medium was prepared in a jar ferment for large-scale cultivation of Escherichia coli, and sterilized in an autoclave. After sterilization, aseptically add 100 zg / ml ampicillin as an antibiotic, and add 2-3 drops of surfactant Adekinol, a defoaming agent, at a temperature of 37 ° C and air at 2 L / min. The plate was incubated at 200 rpm. After inoculation of pre-cultured E. coli, the cells were cultured at a temperature of 37 ° C, at an air rate of 5 L / min, and at a rotation speed of 800 to 1000 rpm. 0.
  • Adekinol a defoaming agent
  • D MQ wavelength 600nm has IPTG was added to express induce WRF2-DBD down to a temperature 20 ° about C at 0.6 to 0.7 absorbance meter. Thereafter, when the OD 6QD reached the plateau, E. coli was recovered using an E. coli recovery buffer (50 potassium phosphate buffer [pH 7.0], 100 mM NaCl, ImMEDTA). For recovery, E. coli was recovered by centrifugation at 9000-12000 X g for 20 minutes in a centrifuge at 4 ° C, and the wet weight was measured to estimate the expression level. saved.
  • E. coli recovery buffer 50 potassium phosphate buffer [pH 7.0], 100 mM NaCl, ImMEDTA
  • TRF2-DBD Expression of TRF2-DBD was confirmed by Tricine SDS electrophoresis.
  • MRF2-DBD was eluted with an ultrasonic crusher and obtained by cellulose phosphate column chromatography, gel filtration chromatography using HPLC, and hydrophobic chromatography on a Phenyl Sepharose column.
  • the supernatant collected in 2) was applied to a column filled with a cellulose phosphate resin (P11).
  • the resin subjected to the ion exchange was packed in a dedicated column, and was replaced with the equilibration buffer overnight.
  • the sample supernatant was applied, and after all the samples were applied, the sample was washed once with an equilibration buffer.
  • the sample was eluted using a linear gradient method with a NaCl concentration gradient of 300 mM to 1100 mM.
  • the eluate was collected in a fraction tube at a rate of 80 drops / tube (about 4 ml) using a fraction collector. At this time, the elution rate of the sample was set at about 50 ffll / h.
  • a sample after application, a sample after washing (wash), and a fraction sample were flowed by Tricine SDS electrophoresis, and a sample in which an RF2-DBD band was observed was collected.
  • the sample collected in the fraction tube was centriprep [Cenriprep3 by Amicon: capacity 15 ml, molecular weight cut-off 3000], Centricon [Centricon3 by Amicon: capacity 2 ml, molecular weight cut-off 3000] ].
  • Glycerol was pre-attached to the filter as a preservative, so it was washed with MilliQ before use. It was concentrated by centrifugation (4 ° C, 8000 X g).
  • the concentrated sample was purified by HPLC and gel filtration chromatography (50 phosphate buffer solution [pH 7.0], 1M NaCl). h-DBD was dissolved at a flow rate of 2 ml / min for 70 to 75 minutes. The elution was confirmed by Tricine SDS electrophoresis. 6) Final sample adjustment
  • Tricine SDS electrophoresis confirmed that hTRF2-DBD was isolated.
  • the sample was concentrated with CentriBrep and Centricon, lyophilized with the sample dissolved in a 50 mM potassium phosphate buffer [pH 7.0], 100 mM NaCl buffer, and stored at 120 ° C.
  • telomere concentration was determined using ultraviolet absorption.
  • the molarity was determined according to Lambert-Beer's law.
  • the protein detects the absorption by the side chains of Y (tyrosine) and W (tritophan) at 280 nm. This absorption depends on the content of Y and W. Determine the molar extinction coefficient £ 2 .
  • Escherichia coli has a characteristic viscosity, which makes it difficult to handle and has a problem with the amount recovered.
  • the expression level was low, probably because the cells themselves were old.
  • the amount of plasmid that can be recovered is reduced unless the pellet is sufficiently dissolved in the cell lysis solution.
  • the amount of plasmid recovered was increased by allowing time for the neutralization reaction with the neutralization solution.
  • the amount of recovered plasmid was reduced unless it was thoroughly inactivated with a 40% isopropanol / 4.2M guanidine hydrochloride solution.
  • Transformation reactions were performed with accurate timing. Transformation was relatively smooth.
  • HTRFl-DBD could be isolated by increasing the number of gel filtration chromatography, decreasing the elution rate, or performing hydrophobic chromatography.
  • E. coll BL21 (DE3) The amount of hTRFl-DBD expression in the coli BL21 (DE3) strain was significantly greater than in the pLysS strain, resulting in an increase in the final recovery.
  • RF2-DBD The expression level of RF2-DBD was much higher than that of hTRF-DBD. Therefore, during electrophoresis, the concentration was so high that it was diluted several hundred times and applied. MRF2-DBD was completely isolated by cation exchange chromatography and gel filtration chromatography using a cellulose phosphate column.
  • a Wizard Plus Minipreps DNA Purification system kit (Promega) was used. To the pellet from which the medium has been removed using sterile water in advance, add ⁇ 1 ⁇ 06111 ⁇ 8115 61 ⁇ 1011 solution 400 1 of the reagent, and react with the DNA / RNA degrading enzyme. To dissolve the cell membrane. The eluted nucleic acid, protein, impurities, etc. in E. coli were separated by adding 800 1 Neutralization solution. This was centrifuged at IOOOOXg, and only the pET13a plasmid was eluted using a mini-column containing only the supernatant containing nucleic acids. At this time, since the E. coli strain was End A + strain, the enzyme was inactivated by adding 2 ml of a 40% isopropanol / 42M guanidine hydrochloride solution.
  • the ssDNA used as a primer for the target restriction enzyme site was purchased from Vex. Primers were designed to add an NdeI-BamHI site for the N-terminal His-tag. As a condition for primer design, the DNA encoding RF2-DBD should be placed 10 amino acids from the N-terminal His-tag, and the denaturation temperatures (Tm values) of 5'-primer and 3'-primer are almost the same. A 30 to 40 base sequence DNA was used.
  • the denaturation temperature (Tm value) of 5'-primer and 3'-primer should be set so that the His-tag comes to the 9 amino acid extension from the DNA encoding hTRF2-DBD to the C-terminus.
  • Tm value denaturation temperature
  • restriction enzyme site amplified in (3) was treated with Nde I and BamHI.
  • restriction enzyme activity buffer H buffer (500 mM Tris-HCl, pH 7.5, 100 mM MgCl 2 , 10 mM Dithiothreitol, 1 M NaCl) was used. The reaction was allowed to occur overnight (over 10 hours) in a thermostat at 37 ° C.
  • PET28a [NdeI-BamHI] [Fig. 7] was treated with a restriction enzyme as a vector for expression of hTRF2-DBD for N-terminal His-tag.
  • pET21a for expression of hTRF2-DBD for C-terminal His-tag, pET21a [NdeI_BamHI] [FIG. 8] was used as a vector for restriction enzyme treatment. Both were purchased from Promega.
  • Hbuffer 500 mM Tris_HCl, pH 7.5, 100 mM gCl 2 , 10 mM Dithiothreitol, 1 M NaCl was used as the restriction enzyme activity buffer. The reaction was allowed to occur overnight (over 10 hours) in a thermostat at 37 ° C.
  • each insert and vector were subjected to 2% agarose electrophoresis to recover the target DNA (100 V, ⁇ .
  • ethidium bromide staining for staining with an ultraviolet illuminator. Detected.
  • insert vector: mix at a ratio of 7 to 10: 1, add an equal volume of ligation reaction solution (manufactured by Toyobo Co., Ltd.), and heat at 16 ° C. Incubated for over 1 hour.
  • the Escherichia coli grown in the S0C medium was then inoculated on an LB plate (containing 50 g / ml kanamycin) that had been previously warmed at 37 ° C and left overnight at 37 ° C until colonies formed. .
  • the C-terminal His-tag-fused hTRF2-DBD expression plasmid pET21a was also transformed into BL2 codonPlus (DE3) _RIL strain.
  • the LB plate used was supplemented with 100 g / ml 7 ampicillin.
  • E. coli BL21 (DE3) strain _RIL (Novagen) transformed with the N-terminal His-tag fusion tiTRF2-DBD expression plasmid pET28a was prepared from a deep freezer at -80 ° C. .
  • the test tube was shaken in an air bath at 37 ° C for 12 hours or more. After that, when the 0.D fraction at a wavelength of 600 nm reached L0 or more with an absorptiometer, all of the medium containing E. coli was transferred to main culture.
  • LB medium 400ml of LB medium was prepared in a clean 1L Erlenmeyer flask and sterilized in an autoclave [121 ° C, 15-20 minutes]. After sterilization, 50 g / ml kanamycin, an antibiotic, was aseptically added, and a drop of the surfactant Adekinol, a defoaming agent, was added to the plate and incubated at 37 ° C. After inoculation of pre-cultured E. coli, the cells were shake-cultured at a temperature of 37 ° C.
  • His-tag fusion RF2-DBD is eluted with an ultrasonic crusher, and gel filtration chromatography using cellulose phosphate column chromatography and HPLC [HiLoad TM 26/60 Superdex TM 30 prep grade] was obtained. '
  • the resin stored at 4 ° C as stock was packed in a special column, and was replaced overnight with an equilibration buffer (50 mM potassium phosphate buffer [pH 7.4], ⁇ NaCl, ImM EDTA).
  • an equilibration buffer 50 mM potassium phosphate buffer [pH 7.4], ⁇ NaCl, ImM EDTA.
  • the supernatant collected in (2) was applied to a column filled with cellulose phosphate resin (P11), and all samples were applied and washed once with an equilibration buffer. After washing, the sample was eluted by the step-by-step method using NaCl concentrations of 200, 300, 400, 500, and 600. Each sample was collected in a 50 ml conical tube.
  • the sample collected in the fraction tube was centriprep [Amkon Centr iprep3: volume 15 ml, molecular weight cut off 3000], Centricon [Amicon Centricon3: volume 2 ml, molecular weight cut off 3000] It was carried out using. Glycerol was pre-attached to the filter as a preservative, so it was washed with MilliQ before use. It was concentrated by centrifugation (4, 8000 X g).
  • the concentrated sample was purified by gel filtration (HiLoadTM26 / 60 SuperdexTM30 prep grade) chromatography (10 mM HOPES buffer [pH 7.4], 100 mM NaCl, lmM EDTA).
  • the N-terminal His-tag fusion RF2-DBD was eluted at a flow rate of 2 ml / min for 100 minutes [Fig. 9].
  • LB medium about 10 ml of LB medium was prepared in a clean test tube, and sterilized by autoclave [120 ⁇ , 15 to 20 minutes]. After the medium was cooled to 40-60 t: or less in Clean Benc, the antibiotic 100 / ig / ml ampicillin was aseptically added thereto. Further, the plasmid pET21a, which generated the C-terminal His-tag fusion hTRF2-DBD previously prepared from a deep freezer at 180 ° C., was transformed: 'BL21 (DE3) strain-RIL was inoculated in an appropriate amount. Air this test tube Shake in a bath at 37 ° C for 12 hours or more. After that, when the 0.6D of 0.6D at 600 nm reached 1.0 or more with an absorptiometer, all of the medium containing E. coli was transferred to main culture.
  • LB medium 400ml of LB medium was prepared in a clean 1L Erlenmeyer flask and sterilized by autoclaving [12TC, 15-20 minutes]. After sterilization, 100 / g / ml ampicillin, an antibiotic, was added aseptically beforehand, and a drop of the surfactant Adekinol, a defoaming agent, was added, followed by incubation at 37 ° C. After inoculation of pre-cultured E. coli, the cells were shake-cultured at a temperature of 37 ° C. Photometer 0. D 6M wavelength 600nm is 0.5 at 6-0.
  • the C-terminal His-tag fusion RF2-DBD was eluted with an ultrasonic crusher, and the cellulose phosphate column chromatography and HPLC were used. Obtained by gel filtration chromatography.
  • the resin stored at 4 ° C as stock was packed in a special column, and was replaced overnight with an equilibration buffer (50 potassium phosphate buffer [PH7.0], lOOmM NaCl, ImM EDTA).
  • an equilibration buffer 50 potassium phosphate buffer [PH7.0], lOOmM NaCl, ImM EDTA.
  • the supernatant collected in (2) was applied to a column filled with cellulose phosphate resin (P11), and all samples were applied and washed once with an equilibration buffer. After the washing was completed, the sample was eluted by a step-by-step method using a buffer solution having a NaCl concentration of 200, 300, 400, 500, or 600 mM. Each sample was collected in a 50 ml conical tube.
  • a sample after application, a sample after washing (wash), and a fraction sample were flowed by Tricine SDS electrophoresis, and a sample in which a C-terminal His-1ag-fused hTRF2-DBD band was observed was collected.
  • G-quadruplex DNA has a different structure depending on the buffer in which DM is dissolved, and therefore, there has been a problem that it has to be unified to measure the interaction. A CD measurement was made to confirm this easily.
  • G-quadruplex DNA was prepared by annealing again for 15 minutes. Adjustment of K + buffer (10 HEPES [pH 7.4], 100 mM KC1) to create G-quadruplex DNA with parallel structure, annealing did. In addition, in order to prepare antiparallel G-quadruplex DNA, Na + buffer solution (lOmMHEPES [pH7.4], lOOmM NaCl) was prepared and annealed. The pH was adjusted using a base (KOH, NaOH) adjusted to the cation of each buffer solution.
  • the formed G-quadruplex DNA forms tr12 +, which has the minimum recognition base sequence of double-stranded telomere DNA, and tr24 +, TT-Aloop, which is twice the sequence, to measure the interaction with Biacore. Tr8 +, which cannot be used, and tr22 +, whose structure is already known, were used.
  • the measurement was performed using a measuring instrument J-720 manufactured by JASCO Corporation, and the CD spectrum was measured using a program for baseline measurement and standard measurement.
  • the measurement conditions are: set temperature 25 ° C (298K), measurement wavelength 190 to 320 (displayed as 220 to 32011111), resolution 0. lnm, wavelength sweep speed 20nm / min, integration frequency 4 times, response lsec, bandwidth L0nm Sensitivity was set to 50mdeg.
  • the protein side of the 6XHis-tag fused hTRF2-DBD was immobilized.
  • This principle like the principle of Ni column chromatography purification, utilizes the principle that the NTA on the chip acts as a chelating agent and the His-tag fusion protein specifically binds via Ni.
  • the His-tag fusion protein was replaced with running buf fer from the purification buffer and used for the immobilization procedure. At the time of application, manual injection was used.
  • the analyte concentration depends on the molecular weight of the analyte and the strength of the affinity, so it is better to adjust it appropriately.However, since the interaction between protein and G-quadruplex DNA is weak, the lOOuM Was adjusted with Running buffer.
  • NTA chip was selected by immobilizing the protein side. The chips were stored at 4 ° C using the infiltration method.
  • the operation Prime was performed three times. After replacement with HBS-EP buffer and stabilization, substitution with Eluent buf fer was performed and stabilized. Then, Ni buf fer of about 500 M was applied at a flow rate of 20 1 / min to chelate the Ni on the NAT on the sensor chip and allowed to stand until it stabilized. After stabilization, a His-tag fusion protein RF2-DBD having 6 bases Histine was applied and immobilized on the sensor chip. At this time, an appropriate amount was immobilized using a manual injection. The protein was allowed to stabilize as an interaction measurement baseline, and protein-DNA interaction was measured. G-quadruplex DNA whose structure was previously determined by CD measurement was applied as an analyte.
  • Regeneration solution His-tag fusion protein regeneration buffer
  • Dispensor Buf fer Buffer for removing unwanted metal ions and stabilizing the sensor chip For antiparallel G-quadruplex DNA
  • the interaction could be measured by Biacore with the His-tag fusion protein immobilized.
  • the immobilized RF2-DBD was a 6 x His-tag fusion protein with an extra 10 amino acid residues added to the N-terminus and the opposite C-terminus, and there was no difference in the interaction using either. .
  • the plasmid was recovered from Escherichia coli expressing MRF2-DBD, but the recovered amount was less than expected. For this reason, primers to which the insert restriction enzyme site of MRF2-DBD was added were purchased from Vex and amplified by the PCR method. The temperature conditions at that time were adjusted according to the denaturation temperature of the used primer. The amplified restriction enzyme sites could be treated with Nde I and BamHI. Similarly, pET28a [Nde I -BamH I] for expression of hTRF2-DBD for N-terminal His-tag, and pET21a [Nde I -BamH I for expression of ⁇ 2-fraction for C-terminal His-tag I] was used as a vector for restriction enzyme treatment.
  • the target band was recovered by 2% agarose electrophoresis and subjected to gel digestion. Staining was carried out with ethidium mouth-mide staining using an ultraviolet illuminator. These were subjected to a ligation reaction, and both were able to be transformed into R coli BL21-codonPlus (DE3) -RIL strain.
  • N-terminal His-tag-fused hTRF2-DBD and C-terminal His-tag-fused hTF2-DBD were simultaneously used in separate LB media.
  • the addition of IPTG and the culture at a reduced temperature of 25 promoted the solubilization of the fusion protein.
  • His-tag fused RF2-DBD was eluted by sonication and purified using cellulose phosphate column chromatography and gel filtration chromatography. At this time, the eluted salt concentration in the cellulose phosphate columnography was increased to about 400 ffiM by fusing His-tag to the protein.
  • the recovered protein has no problem in solubility even if it is handled at room temperature.
  • N-terminal His-tag fusion in 400 ml culture The MRF2-DBD was about 450 / iM / lml, and the C-terminal His-tag fused hTRF2-DBD was about 200 200 / 1 ⁇ 1.
  • the ⁇ -terminal His-tag fusion protein expressed more than the C-terminal His-tag fusion protein and could be recovered.
  • the structure formed differs depending on the buffer in which the DNA is dissolved, so the structure was confirmed by CD measurement.
  • the purchased ssDNA was gently cooled to room temperature at 94 ° C for 10 minutes, and then reannealed at 60 ° C for 15 minutes to produce G-quadruplex DNA.
  • the annealing of the G-quadruplex DNA structure in this experiment was uniformly performed at this temperature.
  • the formed G-quadruplex DNA was measured using a measuring instrument J-720 manufactured by JASCO Corporation.
  • G-quadruplex DNA from human telomere sequence 1 formed parallel G-quadruplex DNA in the presence of K +, while formed antiparallel G-quadruplex DNA in the presence of Na +.
  • Fig. 10 2 Stabilization of the formed structure depending on the concentration of the monovalent cation-containing salt used in the ring, and 3 Low temperature after the ring The structure formed by aging under a certain time is stabilized, and the concentration of ssDNA at the time of cycling determines the structure formed, which is particularly the case with long telomere DNA sequences. -What was often observed after ringing, and finally, the antiparallel structure was destabilized by the coexistence of the divalent cations Ca 2+ and Mg 2+. Is there any property such as no change or other phenomenon seen as a result of the CD spectrum? Found was.
  • a CD spectrum was taken in advance to confirm that the G-quadruplex DNA structure was not disrupted by running buf fer, and used as an applied sample after confirmation.
  • the protein side of the 6XHis-tag fusion RF2-DBD was immobilized by manual injection.
  • the baseline was easily stabilized by the time of analysis application.
  • the baseline after addition of the analyte became unstable with each measurement, and this problem was solved by lowering the flow rate of Biacore.
  • the concentration of the added analyte is predicted from the molecular weight of the analyte and the strength of the analyte, and the interaction of protein-G-quadruplex DNA is experimental. Since it was found that the measurement was weak, the measurement was performed in units of / M. As a result, we were able to measure the interaction that led to the value.
  • HTRF2-DBD from K D values obtained are parallel G than antiparallel G- quadruplex helix DNA of sstrl2 + - it was found to strongly interact with quadruple helix DNA.
  • sstr24 + interacts more strongly with antiparallel G-quadruplex DNA than sstr22 + antiparallel G-quadruplex DNA.
  • This sstr24 + antiparallel G-quadruplex DNA structure was observed to interact strongly with hTRF DBD. Therefore, for hTRFHDBD, the dissociation constant (K D ) could be derived using the SA chip [Table 3].
  • K D dissociation constant
  • the SA chip was used for Biacore measurement.
  • Telomere DNA at the telomere end of eukaryotes can form a quadruplex consisting of four strands in /, [ Figure 1], which is thought to be involved in the structure of the telomere end. .
  • Figure 1 a quadruplex DNA structure
  • G-quadruplex DNA structures have been created by telomere sequences of several species, and X-ray structure analysis and NMR structure analysis have been performed.
  • the G-quadruplex DNA structure has been studied as a different field from the t-loop structure, which is considered to be another telomeric terminal structure.
  • the human telomere sequence is a repeat sequence of TTAGGG and contains adenine (A), there have been few reports on this G-quadruplex DNA structure.
  • T-T-A loop An adenine residue in each TTA-bridged trinucleotide loop (T-T-A loop) is inserted back between two residues of thymine.
  • T-T-A loop An adenine residue in each TTA-bridged trinucleotide loop (T-T-A loop) is inserted back between two residues of thymine.
  • T-T-A loop An adenine residue in each TTA-bridged trinucleotide loop
  • hTRF2-DBD the parallel G-quadruplex DNA interacted with the telomeric protein, hTRF2-DBD.
  • this G-quadruplex DNA structure has the same ssDNA sequence as that reported in the paper: 5'-TAGGGTTAGGGT-3 '(SEQ ID NO: 18).
  • sstr22 + (5'-AGGGTTAGGGTTAGGGTTAGGG-3 ') (SEQ ID NO: 3) two bases less than sstr24 + and sstr26 + (5'-TTAGGGTTAGGGTTAGGGTTAGGGTT-3' ) (SEQ ID NO: 16) was used.
  • sstr26 + showed a CD spectrum having the largest amount of parallel structures.
  • sstr22 + forms the most abundant anti-parallel structure upon annealing in the presence of Na +, and the structure seems to form a very stable structure.
  • the previously reported sstr22 + antiparallel G-quadruplex DNA may have been structurally analyzed by bandits R regardless of its length.
  • G- formed by the length of telomere DNA The structure of the quadruplex DNA was found to be restricted. In other words, it was considered that the parallel structure was difficult to be formed depending on the length of the telomeric 7 DNA, and that once formed, the structure was easily dissociated and easily unraveled. On the other hand, it was found that the antiparallel structure is always easy to form and that the structure itself is stable.
  • the antiparallel structure has been extensively studied in human telomeric DNA sequences, and its structure and properties are known.
  • telomere DNA is in the nucleus, and in its environment there are naturally divalent metal cations in addition to Na + and K +. Research papers on this have been reported.
  • the telomere sequence used was that of yeast, but it was reported that Ca 2+ and Mg 2+ stabilize parallel G-quadruplex DNA and revert from antiparallel to parallel. . Therefore, in this study, the buffer containing Ca 2+ and the buffer containing Mg 2+ were prepared and annealed. However, the human telomeric sequence did not show such noticeable CD spectral changes, but only destabilized the reverse-parallel G-quadruplex DNA structure.
  • G-quadruplex helix DNA was biotinylated and immobilized on the SA chip.However, this is the only method that consists of biotinylated ssDNA alone, so it is not clear whether G-quadruplex helix DNA forms a parallel structure. Yes, and suggested that the portion recognized by the protein may be impaired by immobilization. Therefore, we considered fixing telomere protein as a countermeasure.
  • the method used in this study created a His-tag fusion protein expression system, purified it, and immobilized the protein via Ni using an NTA chip.
  • the construction of this expression system was relatively smooth. However, there was one problem during the experiment, and the concentration of hTRF2-DBD after restriction enzyme treatment could not be recovered as expected. Therefore, primers were purchased and amplified by the PCR method. As a result, the RF2-DBD portion could be recovered, and the His-tag-fused hTRF2-DBD expression system could be easily constructed.
  • Each DNA which was lyophilized and sent in a single-stranded state, was dissolved in 50 mM KPB (pH 6.8) and 20 mM 75 mM KC1 solution, then placed in a microtube, covered with parafilm, and completely sealed.
  • the freeze-dried DNA was dissolved in 50 mM NaPB (pH 6.8) and 75 niM NaCl solution in 20 O in the sample in the buffer using Na + to examine the K + dependency.
  • the pH of the sample was adjusted to H.800 with NaOH and HC1 using a pH meter (PHM93, manufactured by RADIOMETER) for NMR measurement.
  • the absorbance of the sample was measured using UV. Absorbance was measured at a wavelength of 260 nm.
  • G-Quadrupl ex forms a special structure
  • 8 M Urea was added to the sample for concentration test, and the sample was completely boiled by boiling to conduct the concentration test.
  • the oligoparameter calculated by the sequence was used (see: ttp: // genset. bioweb. ne. jp /).
  • concentration of the sample was determined by substituting into the following equation.
  • the concentration of DNA was approximately 5.05 mM.
  • the extinction coefficient is 28.48 and the molecular weight is 2464.7.
  • the concentration of DNA was about 9.7 mM.
  • the extinction coefficient is 31.83 and the molecular weight is 3534.36.
  • the concentration of DNA was approximately 7.9 mM.
  • Unlabeled ⁇ 15 N-labeled hTRF2 DNA binding domain (hereinafter DBD) was used as prepared in Example 1.
  • Unlabeled and unlabeled RFD DBDs used in the comparison of interaction were also prepared in Example 1.
  • Buffer exchange to each buffer using a microdialyzer to exchange each protein for the target solvent 50 mM KPB (pH 6.8), 75 mM KC1 solution or 50 mM NaPB (pH 6.8), 75 mM NaCl solution) was done.
  • the pH of the sample was adjusted to pH 6.800 with NaOH and HC1 using a pH meter (PHM93, manufactured by RADIOMETER) for NMR measurement.
  • the absorbance of the sample was measured using UV. Absorbance was measured at a wavelength of 280 nm. The concentration of the sample was determined by substituting into the following equation.
  • the molecular extinction coefficient is 24.68.
  • the concentration of unlabeled hTRFl-DBD is about 0.8 mM
  • about 15 N-labeled hTRFl-DBD is about 1.7
  • about unlabeled MRF2-DBD is about 4.8
  • about 15 N-labeled hTRF2-DBD is 7.OmM Met.
  • Linearly polarized light consists of left circularly polarized light and right circularly polarized light.
  • Circular dichroism is a phenomenon that occurs when left and right circularly polarized light interact differently with optically active molecules.
  • the structure of DNA has several electronic transitions in the far ultraviolet wavelength region from 200 nM to 320 nm, which vary depending on the state of the DNA.
  • the CD spectrum observed in this wavelength range differs depending on the structure of single-stranded DNA, double-stranded DNA, and G-quadruplex.
  • CD is frequently used to study the secondary structure of proteins and nucleic acids because of its sensitivity in distinguishing different primary structures.
  • the advantages of secondary structure studies with CDs are their ease and the ability to measure at low concentrations.
  • the measurement is performed with a solution having a concentration similar to or lower than that of a normal UV absorption spectrum, and the measurement time is relatively short. Since the CD measurement refers to the average properties of the entire molecule, its accuracy is not as good as X-ray structure analysis or NMR measurement spectroscopy, but its characteristics have established a firm position in the three-dimensional structure studies of proteins and nucleic acids. are doing.
  • the waveforms that have been established as characteristic of the G-Quartet structure to date are that the Ant i-Paral le l structure has a positive maximum at 295 nm, the waveform has a negative maximum at 265 nm, and the Paral le i structure The waveform has a positive maximum at 265 nm and a negative maximum at 245 ⁇ .
  • the sample used for the measurement is a sample used for the measurement.
  • the measurement was performed using a measuring instrument manufactured by JASCO Corporation; Model ⁇ -720, and the attached standard measurement program was used. Measurement conditions were a square quartz cell (1 band), measurement temperature 293K, measurement wavelength 220-320nm, resolution 0. lnni, wavelength sweep speed 20mn / min, number of integrations 4 times, response lsec, band width 1.0 bold. The sensitivity was set to lOmdeg.
  • DNA 1: 0, 1: 0.25, 1: 0.5, 1: 0.75, 1: 1, 1: 1.25, 1: 1.5,
  • the unlabeled protein is mixed with the unlabeled DNA at a constant DNA concentration to observe the change in the DNA signal, and in the one-dimensional measurement, the protein concentration is constant to observe the protein signal change.
  • the experiment was performed by mixing unlabeled DNA with 15 N-labeled protein. Temperature 293K
  • C signals can be observed in, "3 ⁇ 4 of ⁇ / CT- HSQC by comparing the range of., 2" ,, 2 WC CT-HSQC of signals Classification has come out.
  • HCCCH-C0SY, HCCCCH-COSY, and HCCCCCH-COSY could be classified in the same way.
  • the signal was classified for HCNCH. Since this measurement can observations correlation with 6 / 8H bases, it was possible to classify the signal as compared to the 'H / 13 C CT-HSQC .
  • HCN signals were classified.
  • the HCN signal on the / 3-D-report side shows a correlation between ⁇ ⁇ and 1 / 9N of the base, and the signal can be classified by comparing with 'H / 13 C CT-HSQC.
  • a correlation of 6 / 8H of the base and 1 / 9N of the base was observed, and the signal was classified by comparing with 1 / 9N of the base of the HCN signal on the 3_D-report side.
  • the 6 / 8H (X-axis side) bases were classified by comparing / 8 / CT-HSQC, where the correlation between 6 / 8H and C was observed, and then by ⁇ / CT-HSQC of the DNA's own residue.
  • Eta gamma of the self residues, ⁇ 2 ,, 2 .., 3 ⁇ 4 ,, ⁇ 4. was classified in comparison with Eta 5 ,,. of Eta signal.
  • structurally similar residues were determined by identifying which residues were observed other than the own residue. As a result, most of the signals could be identified, and it was possible to identify which signal belongs to which residue by performing sequential assignment.
  • residue assignment could be performed for 'H / 13 C CT-HSQC HCCH-COSY, HCCCH-COSY, HCGCCH-COSY, HCCCCCH-COSY. In addition, the assignment was performed for CH 3 on the thymine residue / CT-HSQC.
  • the buffer containing K and Na also showed the characteristic waveform of Paralel G-auadruple.
  • trl2 + in the presence of K + forms a Paral lel G-auadruple structure
  • trl2 + forms an Ant i-Parallel G-Quadruplex structure in the presence of only Na + .
  • trl2 + forming the Paral lel G-Quadruplex structure is referred to as trl2 +
  • trl2 + forming the Ant i-Paral lel G-Quadrulex structure is referred to as trl2 + (ant i).
  • the trl2- spectrum is a characteristically sharp signal when unstructured, and No signal around 10 12 ppm characteristic of imino protons was observed.
  • the spectra of trl2 + trl2 + (ant i) and tr8 + were characteristically broad signals when the structure was adopted, and the imino proton of guanine was also observed.
  • HTRF2- DBD trl2- 2D spectrum> No signal change was observed even when trl2- was added to MF2-DBD.
  • hTRF DBJ hTRF2-DBD
  • hTRF2-DBD has very high homology, and although their structures are almost the same, only hTRF2-DBD is known to interact with trl2 +. Although this is not clear, we believe that it may be due to slight differences in amino acid sequence and structure.
  • a G-quadruplex DNA capable of forming a complex with a telomere protein (TRF1, TRF2) has been provided. Further, according to the present invention, a complex of a telomere protein (TRF1, TRF2) and a G-quadruplex DNA is provided. Since telomeres are thought to be involved in the control of aging and canceration, use the DNA and complex of the present invention to analyze the mechanisms of aging and canceration and to design drugs such as anticancer drugs. Is possible. Sequence listing free text
  • SEQ ID NO: 1 shows the nucleotide sequence of trl2 +
  • SEQ ID NO: 2 shows the nucleotide sequence of tr13 +.
  • SEQ ID NO: 3 shows the nucleotide sequence of tr22 +.
  • SEQ ID NO: 4 shows the nucleotide sequence of tr24 +.
  • SEQ ID NO: 5 shows the amino acid sequence of TRF1-DBD.
  • SEQ ID NO: 6 shows the full length amino acid sequence of TRF1.
  • SEQ ID NO: 7 shows the amino acid sequence of TRF2-DBD.
  • SEQ ID NO: 8 shows the full length amino acid sequence of TRF2.
  • SEQ ID NO: 9 shows the nucleotide sequence of 5 'primer for N-terminal His-tag.
  • SEQ ID NO: 10 shows the nucleotide sequence of a 3 ′ primer for N-terminal His-tag.
  • SEQ ID NO: 11 shows the base sequence of the 5 'primer for C-terminal His-tag.
  • SEQ ID NO: 12 shows the nucleotide sequence of the 3 ′ primer for C-terminal His-tag.
  • SEQ ID NO: 13 shows the nucleotide sequence of tr8 +.
  • SEQ ID NO: 14 shows the nucleotide sequence of 5′-G-trl2 +.
  • SEQ ID NO: 15 shows the nucleotide sequence of 5, -C-trl3 +.
  • SEQ ID NO: 16 shows the nucleotide sequence of tr26 +.
  • SEQ ID NO: 17 shows the nucleotide sequence of 5, -C-trl7 +.
  • SEQ ID NO: 18 shows the nucleotide sequence of ssDNA reported in Nature's paper.
  • SEQ ID NO: 19 shows the nucleotide sequence of trl2-.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is intended to provide a complex which is formed by a telomere protein TRF1 or TRF2 or a telomere protein fragment containing the DNA-binding domain thereof and a DNA having the guanine-quadruplex structure in the presence of a cation. Also, it is intended to provide a DNA capable of having the guanine-quadruplex structure. Use of the above-described DNA and complex makes it possible to analyze the mechanisms of aging and canceration and design drugs such as carcinostatic agents.

Description

テロメァタンパク質とグァニン一四重らせん D N Aとの複合体 技術分野 Complex of telomere protein and guanine quadruplex helix DNA
本発明は、 テロメァタンパク質とグァニン一四重らせん (以下、 「G—四重らせん」 という)構造をとる D NAとの複合体に関し、 より詳細には、 テロメァタンパク質 T R F 1又は T R F 2と G—四重らせん構造をとる D NAとの複合体に関する。  The present invention relates to a complex of a telomere protein and a DNA having a guanine quadruplex (hereinafter, referred to as “G-quadruplex”) structure. More specifically, the present invention relates to a telomere protein TRF1 or TRF2. G—Relates to a complex with DNA that has a quadruple helix structure.
 Light
背景技術 Background art
染色体のテロメァ末端は、グァニン塩基に富む書テロメァ DNA配列からなり、外部から の悪影響や破壊から細胞を守るのに重要である。このテロメァが維持できなくなると最 終的に細胞死(apoptos is)に至ることから、 この現象は癌の治療法に応用することがで きると考えられている。  The telomere end of the chromosome consists of a telomere DNA sequence rich in guanine bases and is important to protect cells from external adverse effects and destruction. If this telomere cannot be maintained, it will eventually lead to cell death (apoptos is), so it is thought that this phenomenon can be applied to cancer treatment.
最近の研究からテロメァ DNAは、 4本の鎖からなる四重らせん構造を作ることができ [図 1]、 これがテロメァ末端の構造に関わっていると考えられる。 そして、 これまでに いくつかの種のテロメァ配列で in 実験により G-四重らせん DNA構造が作成され、 X線構造解析や NMR構造解析されている。構造解析された G-四重らせん DNAは、 いずれ もその構造自体がエネルギー的に安定であるものが多く、特にグァニン(G)とチミン(T) からなるテロメァ DNA配列で形成した G -四重らせん DNA構造が多く報告されている。 それらの構造は、構造形成する際に一価の金属陽イオンが必要であり、 K+や Na+などの アル力リ金属'アルカリ土類金属類の陽イオンで G-四重らせん DNAが形成される [図 1]。 ヒトのテロメァ配列は TTAGGGのリピート配列であり、アデニン (A)を含むため、 この G -四重らせん DNA構造に関しては、 これまでにあまり報告されていない。数少ない構造 解析されたヒトの G-四重らせん DNA構造は、 NMR構造解析によるものが多く、それらは すべて ant i-paral lel (逆平行)といわれる Na+を配位した G-四重らせん DNAである。 こ れは G- r ichな鎖がお互いに逆平行になったものである。 Recent studies suggest that telomere DNA can form a quadruple helix consisting of four strands [Figure 1], which may be involved in the structure of the telomere end. So far, G-quadruplex DNA structures have been created by in experiments with telomere sequences of several species, and X-ray structure analysis and NMR structure analysis have been performed. Many of the G-quadruplex DNAs whose structures have been analyzed are those whose structures themselves are energetically stable. In particular, G-quadruplex DNA formed by a telomere DNA sequence consisting of guanine (G) and thymine (T) Many helical DNA structures have been reported. These structures require monovalent metal cations to form the structure, and G-quadruplex DNA is formed by the cations of alkaline earth metals such as K + and Na +. [Fig. 1]. Since the human telomere sequence is a repeat sequence of TTAGGG and contains adenine (A), there have been few reports on the G-quadruplex DNA structure. Few structures Analyzed human G-quadruplex DNA structures are often based on NMR structure analysis, all of which are G-quadruplex DNAs coordinated with Na +, called anti-paral lel (antiparallel). is there. This is a group of G-rich chains antiparallel to each other.
さらに去年、 ヒトのテロメァ配列で初めて既に報告されている G -四重 せん DNA構 造とは根本的に異なった paral lel (平行) G-四重らせん DNA構造が報告された [Nature, Vol. 417, pp. 876 - 880]。 この構造は、 4つの連続したヒトテロメァ DNAリピート配列を 使って、 細胞内濃度に近い Γ濃度で成長させた四重鎖の結晶構造であり、 K+は結晶構 造内に認められる。 この分子内四重鎖における DNA の折りたたみおよび外観は、 先の Na+を含む G-四重らせん DNA構造とは根本的に異なっている。 4本の DNA鎖はいずれも 平行関係にあり、これらを架橋している 3つのトリヌクレオチドループが四重鎖コアの 外側にプロペラ状に配置されている。各 TTA架橋トリヌクレオチドループ (T- T-A 1 oop) 内のアデニン残基は、 内側に戻って 2残基のチミン間に挿入されている。 Furthermore, last year, a paral lel (parallel) G-quadruplex DNA structure was reported that is fundamentally different from the G-quadruplex DNA structure already reported for the first time in human telomere sequences [Nature, Vol. 417, pp. 876-880]. This structure is a quadruplex crystal structure grown at a concentration close to the intracellular concentration using four consecutive human telomeric DNA repeat sequences, and K + is found in the crystal structure. Folding and appearance of DNA in the intramolecular quadruplex is fundamentally different from the G- quadruplex helical DNA structure containing a previous Na +. All four DNA strands are in a parallel relationship, and three trinucleotide loops bridging them are arranged like propellers outside the quadruplex core. An adenine residue in each TTA-bridged trinucleotide loop (T-TA 1 oop) is inserted back between two residues of thymine.
しかしながら、 G -四重らせん構造をとる D N Aとテロメァタンパク質とが複合体を形 成することはこれまでに知られていなかった。  However, it has not been known that DNA and a telomere protein having a G-quadruplex form a complex.
ヒトを含む哺乳類'脊椎動物のテロメァ DNAは、 3 ' の一本鎖突出末端(3 ' -overhang) で終わる二本鎖 TTAGGG繰り返し領域を持っており、 そこにはテロメアリピート塩基配 列結合因子(telomere Repeat-binding £actor)であるテロメァタンパク質 hTRFl と RF2がホモダイマーとして特異的に結合する [図 1, 2]。 RF1は、 テロメァ結合タン パク質である Tankyraseおよび TIN2が結合し、テロメァ長の調節を行っている。また、 hRaplは、 hTRF2を介してテロメァに局在してテロメァ長の調節を行うことが示唆され ているが、 これ以外の機能に関してはいまだ詳細に分かっていない。 このようにテロメ ァ末端はテ口メラーゼだけでなく、さまざまなテロメァ結合夕ンパク質によつて制御さ れている [図 2]。  The telomere DNA of mammalian, including human, vertebrates has a double-stranded TTAGGG repeat region ending in a 3 'single-stranded overhang (3'-overhang), which contains a telomeric repeat sequence binding factor ( The telomere protein hTRFl, which is a telomere repeat-binding agent (RFactor), specifically binds to RF2 as a homodimer [Figures 1 and 2]. RF1 binds to telomere binding proteins, Tankyrase and TIN2, and regulates telomere length. In addition, it has been suggested that hRapl localizes to telomeres via hTRF2 and regulates telomere length, but other functions have not yet been elucidated. In this way, the telomere end is regulated by various telomere-binding proteins as well as by tetramerase [Fig. 2].
これまでの研究からテロメラーゼ活性のある細胞内では、 hT Flが結合活性を失うと テロメァの伸長が観察されている。 また、 MRF2が結合活性を失うとテロメァが不安定 化して、 ATM (血管拡張性失調症変異: ataxia telangiectas ia mutated) /p53 活性を誘 導し、 細胞死(apoptos is)を招く。 つまり、 RF2はテロメァ末端に結合し、 DNA修復機 構の監視からテロメァ DNAを保護している。このように、これらのタンパク質の in vivo での機能は主に、 hTRFlがテロメラーゼの活性を負に制御する機能を持ち、 hTRF2がテ ロメァ維持や保護に関わる機能を持っている。 また、 in では hTRFl に二本鎖テ ロメァ DNAを折り曲げる活性が観察されており、 hTRF2は t- loop構造と呼ばれる二本 鎖の投げ繙構造の二本鎖繰り返し配列と一本鎖突出末端の間の接合部位に選択的に位 置していることが観察されている。 そして、 少なくとも t_loop構造維持には最低 6つ の分子の TTAGGG- 3 ' 突出が必要不可欠である [図 3]。 テロメァ DNAは、染色体末端にあるため外部からの影響を受けやすい。そのためテロ メァ末端を保護する目的で以前からテロメァは、末端で構造を形成しているのではない かと予測されてきた。 RF2により形成される t- loop構造はその代表的な例である [図 3]。 t_loop の形成はテロメァ末端の保護するためのものであって、 これが形成されな いと、 テロメァ末端の損傷、 テロメァ突出末端の欠損、 テロメァ融合などが生じ、 テロ メァ機能の損失してしまうと考えられている。 この t_loop構造形成に関してモデルを 報告している論文もあるが、 実際にこれを証明したものはまだない。 Previous studies have shown that in cells with telomerase activity, telomere elongation occurs when hTF1 loses binding activity. When MRF2 loses its binding activity, the telomere becomes unstable and induces ATM (ataxia telangiectasia mutated) / p53 activity, leading to cell death (apoptos is). Thus, RF2 binds to the telomere terminus and protects telomere DNA from monitoring DNA repair mechanisms. As described above, the functions of these proteins in vivo are mainly that hTRF1 has a function to negatively regulate telomerase activity, and hTRF2 has a function related to telomere maintenance and protection. In addition, hTRFl has been observed to have the activity of folding double-stranded telomeric DNA in hTRF1, and hTRF2 is located between the double-stranded repeat sequence of the double-stranded throw-reference structure called the t-loop structure and the single-stranded protruding end. It has been observed that it is selectively located at the joint site of. At least six molecules of TTAGGG-3 'overhang are indispensable for maintaining at least the t_loop structure [Figure 3]. Telomere DNA is susceptible to external influences because it is located at the end of the chromosome. For this reason, it has long been predicted that telomeres may form a structure at the end in order to protect the telomere end. The t-loop structure formed by RF2 is a typical example [Fig. 3]. The formation of the t_loop is to protect the telomere end, and if it is not formed, it is thought that telomere end damage, telomere protruding end deletion, telomere fusion, etc. will occur, resulting in loss of telomere function. ing. Some papers have reported a model on the formation of this t_loop structure, but no actual proof has been found yet.
hTRFl と M F2 は、 両方とも中央にはホモダイマ一を形成する二量体形成ドメイン (TRF Homology Domain: TRFH)があり、 C末端には二本鎖テロメァ DNAを特異的に認識 する DNA結合ドメイン (PA- Ending Domain: DBD)が存在する [図 4]。 両者の大きな違 いは N末端にそれぞれ酸性ドメインと塩基性ドメインを持つことである。この領域のも つ機能はよく分かっていないが、 hTRF2はこの塩基性ドメインのみ失うとテロメァ DNA との結合能が低下し、 テロメァ機能が不活性化することで細胞死を招く。 DNA結合ドメ インのァミノ酸配列を比較するとテロメァタンパク質 RF 1-DBDおよび RF2-MDは、 核内の原ガン遺伝子産物である Mybタンパク質の Rl, R2, R3と大きな相同性を持ってい る。 このタンパク質の三次元構造は、三つのひヘリックスから形成されており、 そこに 存在する疎水性アミノ酸がほぼ完全に保存されている。 これらのタンパク質は、 DNA結 合ドメイン単体で DNAと相互作用することが分かっており、 hTRF卜 DBDと RF2- DBDの アミン酸配列相同性は約 58%である。  hTRFl and MF2 both have a homodimer-forming dimerization domain (TRF Homology Domain: TRFH) in the center, and a DNA-binding domain (specifically recognizing double-stranded telomeric DNA at the C-terminus). PA-Ending Domain (DBD) exists [Figure 4]. The major difference is that they have an acidic domain and a basic domain at the N-terminus, respectively. Although the function of this region is not well understood, hTRF2 loses only its basic domain, reducing its ability to bind to telomere DNA and inactivating telomere function, leading to cell death. Comparing the amino acid sequences of the DNA-binding domains, the telomeric proteins RF1-DBD and RF2-MD have significant homology to the nuclear proto-oncogene product Myb proteins R1, R2, and R3. The three-dimensional structure of this protein consists of three helixes, where the hydrophobic amino acids present are almost completely conserved. These proteins have been shown to interact with DNA by the DNA binding domain alone, and the amino acid sequence homology between hTRF DBD and RF2-DBD is about 58%.
本発明は、 G-四重らせん構造をとる D NAとテロメァタンパク質 T R F 1又は T R F 2との相互作用を解析することを目的とする。 発明の開示  An object of the present invention is to analyze the interaction between DNA having a G-quadruplex structure and the telomeric protein TRF1 or TRF2. Disclosure of the invention
本発明者は、上記課題を解決すべく鋭意努力した結果、 G—四重らせん構造をとる D NAとテロメァ結合タンパク質 T R F 1又は T R F 2とが複合体を形成することを見 出し、 本発明を完成させるに至った。  As a result of intensive efforts to solve the above problems, the present inventors have found that DNA having a G-quadruplex structure and a telomere binding protein TRF1 or TRF2 form a complex. It was completed.
本発明の要旨は以下の通りである。  The gist of the present invention is as follows.
( 1 ) 陽イオンの存在下で、 ,  (1) In the presence of cations,
T R F 1若しくは T R F 2のいずれかのテロメァタンパク質又はその D N A結合領域 を含むテロメァタンパク質断片と、 Either TRF 1 or TRF 2 telomere protein or its DNA binding region A telomere protein fragment comprising:
グァニン一四重らせん構造をとる DN Aとが形成する複合体。 A complex formed with guanine, a DNA having a quadruple helix structure.
(2) 陽イオンが、 ナトリウムイオンまたはカリウムイオンである (1) 記載の複合 体。  (2) The complex according to (1), wherein the cation is a sodium ion or a potassium ion.
(3) テロメァタンパク質又はその DNA結合領域を含むテロメァタンパク質断片が 、 下記の (A) 〜 (D) のタンパク質及びタンパク質断片から成る群より選択される ( 1) 記載の複合体。  (3) The complex according to (1), wherein the telomere protein or a telomere protein fragment containing the DNA binding region thereof is selected from the group consisting of the following proteins (A) to (D) and protein fragments.
(A) 配列番号 6のアミノ酸配列で表される TRF 1  (A) TRF 1 represented by the amino acid sequence of SEQ ID NO: 6
(B) 配列番号 8のアミノ酸配列で表される TRF 2  (B) TRF 2 represented by the amino acid sequence of SEQ ID NO: 8.
(C)配列番号 5のアミノ酸配列(但し、 第 1番目のメチォニン残基は欠失してもよい ) で表される、 TRF 1の DNA結合領域を含む TRF 1断片  (C) a TRF1 fragment containing the DNA binding region of TRF1, represented by the amino acid sequence of SEQ ID NO: 5 (however, the first methionine residue may be deleted)
(D)配列番号 7のアミノ酸配列(伹し、第 1番目のメチォニン残基は欠失してもよい ) で表される、 TRF 2の DNA結合領域を含む TRF 2断片  (D) a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 (the first methionine residue may be deleted)
(4) グァニン一四重らせん構造をとる DNAが、配列番号 1〜4のいずれかの塩基 配列を有する (1) 〜 (3) のいずれかに記載の複合体。  (4) The complex according to any one of (1) to (3), wherein the DNA having a guanine quadruplex structure has any one of the nucleotide sequences of SEQ ID NOs: 1 to 4.
(5) テロメァタンパク質又はその DNA結合領域を含むテロメァタンパク質断片が TRF 1又はその DNA結合領域を含む TRF 1断片であり、グァニン一四重らせん構 造をとる DNAが逆平行鎖のグァニン一四重らせん構造をとる (1) 〜 (4) のいずれ かに記載の複合体。  (5) The telomere protein or a telomere protein fragment containing the DNA binding region thereof is TRF1 or a TRF1 fragment containing the DNA binding region thereof, and the DNA having a guanine quadruplex structure is an antiparallel guanine fragment. The complex according to any one of (1) to (4), which has a quadruple helix structure.
( 6 ) テロメァタンパク質又はその DN A結合領域を含むテロメァタンパク質断片が TRF 2又はその DNA結合領域を含む TRF 2断片であり、グァニン一四重らせん構 造をとる DNAが平行鎖のグァニン一四重らせん構造をとる (1) 〜 (4) のいずれか に記載の複合体。  (6) The telomere protein or a telomere protein fragment containing the DNA binding region thereof is TRF2 or a TRF2 fragment containing the DNA binding region thereof, and the DNA having the guanine quadruple helix structure is composed of parallel guanine DNA. The complex according to any one of (1) to (4), which has a quadruple helix structure.
(7) 下記の(i)〜(iv)の複合体から成る群より選択される (1) 記載の複合体。 (7) The complex according to (1), which is selected from the group consisting of the following complexes (i) to (iv).
(i)配列番号 5のアミノ酸配列で表される、 TRF 1の DNA結合領域を含む TRF 1 断片と、配列番号 4の塩基配列を有し、 グァニン一四重らせん構造をとる DNAとの複 合体 (i) A complex of a TRF1 fragment containing the DNA binding region of TRF1 represented by the amino acid sequence of SEQ ID NO: 5 and a DNA having the nucleotide sequence of SEQ ID NO: 4 and having a guanine quadruplex structure
(ii) 配列番号 7のアミノ酸配列からなる配列で表される、 TRF 2の DNA結合領域 を含む TRF 2断片と、配列番号 1の塩基配列を有し、 グァニン一四重らせん構造をと る DN Aとの複合体 (ii) a TRF2 fragment containing a DNA binding region of TRF2 represented by the sequence consisting of the amino acid sequence of SEQ ID NO: 7, and a guanine quadruple helix having the nucleotide sequence of SEQ ID NO: 1 Complex with DNA
(iii)配列番号 7のアミノ酸配列で表される、 TRF 2の DNA結合領域を含む TRF 2断片と、配列番号 2の塩基配列を有し、 グァニン一四重らせん構造をとる DNAとの 複合体  (iii) A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and DNA having the nucleotide sequence of SEQ ID NO: 2 and having a guanine quadruplex structure
(iv) 配列番号 7のアミノ酸配列で表される、 TRF 2の DNA結合領域を含む TRF 2断片と、配列番号 3の塩基配列を有し、グァニン一四重らせん構造をとる DNAとの 複合体  (iv) A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and a DNA having the nucleotide sequence of SEQ ID NO: 3 and having a guanine quadruplex structure
(iv) 配列番号 7のアミノ酸配列で表される、 TRF 2の DNA結合領域を含む TRF 2断片と、配列番号 4の塩基配列を有し、グァニン一四重らせん構造をとる DNAとの 複合体  (iv) A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and a DNA having the nucleotide sequence of SEQ ID NO: 4 and having a guanine quadruplex structure
(8) 配列番号 1、 2、 3、 4、 13、 14、 15または 16のいずれかの塩基配列 を有し、 グァニン一四重らせん構造をとることができる DNA。  (8) DNA having a base sequence of any one of SEQ ID NOs: 1, 2, 3, 4, 13, 14, 15, and 16, and capable of forming a guanine quadruplex helix structure.
(9) グァニン一四重らせん構造をとっている (8) 記載の DNA。  (9) The DNA according to (8), which has a guanine quadruple helix structure.
(10) グァニン一四重らせんが平行鎖のグァニン一四重らせんである (9)記載の D NA。  (10) The DNA according to (9), wherein the guanine quadruple helix is a parallel-chain guanine quadruple helix.
(11) グァニン一四重らせんが逆平行鎖のグァニン一四重らせんである (9)記載の DNA。 本明細書において、 「グァニン一四重らせん」 (G—四重らせん) とは、 4個のグァニ ン (G)が平面上で水素結合を形成することにより安定化された構造(図 1を参照のこ と) をいう。  (11) The DNA according to (9), wherein the guanine quadruple helix is an antiparallel guanine quadruple helix. As used herein, the term “guanine quadruplex” (G-quadruplex) refers to a structure in which four guanines (G) are stabilized by forming hydrogen bonds on a plane (see FIG. 1). (See reference).
「平行鎖のグァニン一四重らせん」 (平行鎖の G—四重らせん) とは、 4個のグァニ ン (G) の各々の鎖がすべて同じ方向であることをいい (図 5の Dl、 F 2及び A 4を 参照のこと)、 これは、 水素結合を形成している 4個のグァニン (G) がっくる平面を 上から見た時に、糖一リン酸骨格がこの平面の上にくるか、下にくるかがすべて同じで あるという意味である。 ここで、 鎖の方向とは、 糖の 5' 側から 3' 側への向きである。  “A quaternary helix in a parallel chain” (G in a parallel chain—quadruplex helix) means that the chains of each of the four guanines (G) are all in the same direction (Dl, (See F2 and A4) This is because when the plane of four guanines (G) forming hydrogen bonds is viewed from above, the sugar monophosphate skeleton is located on this plane. Come or come down is the same. Here, the direction of the chain is the direction from the 5 'side to the 3' side of the sugar.
「逆平行鎖のグァニン一四重らせん」 (逆平行鎖の G—四重らせん) とは、 平行鎖の G—四重らせん以外の G—四重らせんをいうものとする (図 5の Al、 B l、 C l、 A 2、 B2、 C2、 D2、 E2、 B4、 C 4及び D 4を参照のこと)。 本発明は、 配列番号 1、 2、 3、 4、 13、 14、 15または 16のいずれかの塩基 配列を有し、 グァニン—四重らせん構造をとることができる DNA (以下、 「本発明の DNA」 という) を提供する。 “An antiparallel guanine quadruplex” (antiparallel G—quadruplex) refers to a G—quadruplex other than the parallel strand G—quadruplex (Al in FIG. 5). , Bl, Cl, A2, B2, C2, D2, E2, B4, C4 and D4). The present invention relates to a DNA having a base sequence of any one of SEQ ID NOs: 1, 2, 3, 4, 13, 14, 15, and 16 and capable of forming a guanine-quadruplex structure (hereinafter referred to as “the present invention”). DNA ”).
本発明の DNAは、 1本鎖、 2本鎖、 3本鎖、 4本鎖などいかなる本数の鎖で構成さ れるものであってもよい。  The DNA of the present invention may be composed of any number of strands such as single strand, double strand, triple strand, quadruple strand and the like.
また、 本発明の DN Aは、 天然型 DN Aであっても、 修飾核酸であってもよい。 修飾 核酸としては、 トリエステル結合をもつもの (P. S. Miller, et al. , Biochemistry, 16, 1988-1996 (1977)) , メチルホスホネート結合をもつもの (P. S. Miller, et al. , Biochemistry, 18, 5134-5143 (1979))、 ホスホロチォエート結合をもつもの (F. Eckstein, et al. , Biochemistry, 22, 4546-4550 (1983))、 ホスホロジチォエー卜結 合をもつもの (J. Neielsen, et al. , Tetrahedron Lett., 29, 2911-2914 (1988); W. K. -D. Brill, et al. , J. Am. Chem. Soc. , 111, 2321-2322 (1989))、 ホスホロアミデート結 合をもつもの (B. Froehler, et al. , Nucleic Acids Res., 16, 4831-4839 (1988))、 糖部を修飾したもの (F. Morvan, et al. , Nucleic Acids Res., 16, 833-847 (1988))、 ポリアミド核酸 (P. E. Nielsen, et al. , Science, 254, 1497-1500 (1991))、 インタ 一力レー夕一と複合体化したもの ( . L Letsinger, et al. , J. Am. Chem. Soc. , 108, 7394-7396 (1981))、 細胞膜に親和性の高い分子 (例えば、 ポリ- L-リジンなど) を導入 したもの (M. Lemaitre, et al., Proc. Natl. Acad. Sci. USA, 84, 648-652 (1987); J. P. Leonetti, et al. , Gene, 72, 323-332 (1988)) などを例示することができるが、 これらに限定されるわけではない。  Further, the DNA of the present invention may be a natural DNA or a modified nucleic acid. Modified nucleic acids include those having a triester bond (PS Miller, et al., Biochemistry, 16, 1988-1996 (1977)) and those having a methylphosphonate bond (PS Miller, et al., Biochemistry, 18, 5134). -5143 (1979)), those with phosphorothioate bonds (F. Eckstein, et al., Biochemistry, 22, 4546-4550 (1983)), those with phosphorodithioate bonds (J. Neielsen , et al., Tetrahedron Lett., 29, 2911-2914 (1988); WK-D. Brill, et al., J. Am. Chem. Soc., 111, 2321-2322 (1989)), phosphoramido Those with a date bond (B. Froehler, et al., Nucleic Acids Res., 16, 4831-4839 (1988)) and those with modified sugar moieties (F. Morvan, et al., Nucleic Acids Res., 16, 833-847 (1988)), polyamide nucleic acid (PE Nielsen, et al., Science, 254, 1497-1500 (1991)), complexed with Interichiri Yuichi (.L Letsinger, et. al., J. Am. Chem. Soc., 108, 7394-7396 (1981)) (M. Lemaitre, et al., Proc. Natl. Acad. Sci. USA, 84, 648-652 (1987); JP Leonetti, et al.) , Gene, 72, 323-332 (1988)) and the like, but are not limited thereto.
本発明の DNAは以下のようにして調製することができる。 まず、 配列番号 1、 2、 3、 4、 13、 14、 15または 16のいずれかの塩基配列を有する単鎖 DN A (以下、 「s sDNA」 という) を公知の方法で合成する。例えば、 市販の DNA合成機を用い て合成する。 次いで、 陽イオン (例えば、 NaC 1、 KC 1など) を含む緩衝液を添加 してから、 s s DNAを 80〜95°Cで 5〜20分間加熱し、室温まで冷却する。 さら に、 50〜70でで 10〜30分間加熱をした後、室温まで冷却すると、 G—四重らせ ん構造をとる DNAが生成する。 DNAが G—四重らせん構造をとつているか否かは、 円二色性 (以下、 「CD」 ということもある) スペクトルをとることにより確認するこ とができる。すなわち、 DNAが平行鎖の G—四重らせん構造をとる場合には、 265 nmに正の極大波長及び 245 nmに負の極大波長が表れ、 DN Aが逆平行鎖の G—四 重らせん構造をとる場合には、 295 nmに正の極大波長及び 265 nmに負の極大波 長が表れる。 The DNA of the present invention can be prepared as follows. First, a single-stranded DNA (hereinafter referred to as “ssDNA”) having any one of the nucleotide sequences of SEQ ID NOs: 1, 2, 3, 4, 13, 14, 15 or 16 is synthesized by a known method. For example, synthesis is performed using a commercially available DNA synthesizer. Next, a buffer containing a cation (eg, NaCl, KCl, etc.) is added, and the ssDNA is heated at 80 to 95 ° C for 5 to 20 minutes and cooled to room temperature. After heating at 50 to 70 for 10 to 30 minutes and cooling to room temperature, G-quadruplex DNA is produced. Whether a DNA has a G-quadruplex structure can be confirmed by taking a circular dichroism (hereinafter sometimes referred to as “CD”) spectrum. Can be. In other words, when DNA has a parallel-stranded G-quadruplex structure, a positive maximum wavelength appears at 265 nm and a negative maximum wavelength at 245 nm, and DNA has an antiparallel G-quadruplex structure. , A positive maximum wavelength appears at 295 nm and a negative maximum wavelength appears at 265 nm.
また、 本発明は、 陽イオンの存在下で、 TRF 1若しくは TRF 2のいずれかのテロ メァタンパク質又はその DNA結合領域を含むテロメァタンパク質断片と、グァニン一 四重らせん構造をとる D N Aとが形成する複合体を提供する。  Further, the present invention provides a method for forming a telomere protein fragment containing either a TRF1 or TRF2 or a telomere protein fragment containing the DNA binding region thereof and a DNA having a guanine quadruplex structure in the presence of a cation. A complex is provided.
本発明の複合体を形成する DN Aは、 1本鎖、 2本鎖、 3本鎖、 4本鎖などいかなる 本数の鎖で構成されるものであってもよい。  The DNA forming the complex of the present invention may be composed of any number of chains such as a single strand, a double strand, a triple strand, and a quadruple strand.
また、本発明の複合体を形成する DNAは、 天然型 DNAであっても、修飾核酸であ つてもよい。 修飾核酸としては、 トリエステル結合をもつもの (P.S. Miller, et al. , Biochemistry, 16, 1988 - 1996 (1977))、 メチルホスホネート結合をもつもの (P. S. Miller, et al., Biochemistry, 18, 5134-5143 (1979))、 ホスホロチォエート結合を もつもの (F. Eckstein, et al. , Biochemistry, 22, 4546-4550 (1983)) ホスホロジ チォェ一ト結合をもつもの (J. Neielsen, et al. , Tetrahedron Lett. , 29, 2911-2914 (1988); W. Κ. - D. Brill, et al. , J. Am. Chem. Soc. , 111, 2321-2322 (1989))、 ホス ホロアミデート結合をもつもの (B. Froehler, et al. , Nucleic Acids Res. , 16, 4831-4839 (1988))、 糖部を修飾したもの (F. Morvan, et al. , Nucleic Acids Res. , 16, 833-847 (1988))、 ポリアミド核酸 (P. E. Nielsen, et al. , Science, 254, 1497-1500 (1991))、インタ一カレーターと複合体化したもの(R. L. Letsinger, et al. , J. Am. Chem. Soc., 108, 7394-7396 (1981)), 細胞膜に親和性の高い分子 (例えば、 ポリ - L -リジン など) を導入したもの (M. Lemaitre, et al. , Proc. Natl. Acad. Sci. USA, 84, 648-652 (1987); J. P. Leonetti, et al. , Gene, 72, 323-332 (1988)) などを例示することが できるが、 これらに限定されるわけではない。  The DNA forming the complex of the present invention may be a natural DNA or a modified nucleic acid. Modified nucleic acids include those having a triester bond (PS Miller, et al., Biochemistry, 16, 1988-1996 (1977)) and those having a methylphosphonate bond (PS Miller, et al., Biochemistry, 18, 5134). -5143 (1979)), with phosphorothioate linkage (F. Eckstein, et al., Biochemistry, 22, 4546-4550 (1983)) with phosphorodithioate linkage (J. Neielsen, et al. , Tetrahedron Lett., 29, 2911-2914 (1988); W. Κ.-D. Brill, et al., J. Am. Chem. Soc., 111, 2321-2322 (1989)), Phosphoramidate binding (B. Froehler, et al., Nucleic Acids Res., 16, 4831-4839 (1988)) and modified sugar (F. Morvan, et al., Nucleic Acids Res., 16, 833) -847 (1988)), polyamide nucleic acid (PE Nielsen, et al., Science, 254, 1497-1500 (1991)), complexed with an intercalator (RL Letsinger, et al., J. Am. Chem. Soc., 108, 7394-7396 (1981)), high affinity for cell membranes Introduced a molecule (for example, poly-L-lysine, etc.) (M. Lemaitre, et al., Proc. Natl. Acad. Sci. USA, 84, 648-652 (1987); JP Leonetti, et al., Gene, 72, 323-332 (1988)) and the like, but are not limited thereto.
本発明の複合体を形成する TRF 1及び TRF 2は、 哺乳類(例えば、 ヒト、 マウス 、 サルなど)、 鳥類などいかなる動物由来のものであってもよい。  TRF1 and TRF2 forming the complex of the present invention may be derived from any animal such as mammals (eg, human, mouse, monkey, etc.), birds, and the like.
また、 本発明の複合体を形成する TRF 1、 TRF 2及びそれらの断片は、 野生型の ものであっても、 変異体であってもよい。野生型 TRF 1としては、配列番号 6のアミ ノ酸配列を有するものを例示することができる。野生型 TRF 1の断片としては、配列 番号 5のアミノ酸配列を有するものを例示することができる。野生型 TRF 2としては 、配列番号 8のアミノ酸配列を有するものを例示することができる。野生型 TRF2の 断片としては、配列番号 7のアミノ酸配列を有するものを例示することができる。 TR F 1、 TRF 2又はそれらの断片の変異体としては、配列番号 5〜 8のいずれかのアミ ノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸 配列からなり、かつ TRF1、 TRF 2またはそれらの断片の生物学的活性を有するぺ プチド又は夕ンパク質を例示することができる。 Further, TRF1, TRF2 and their fragments that form the complex of the present invention may be wild-type or mutant. Examples of the wild-type TRF1 include those having the amino acid sequence of SEQ ID NO: 6. As a fragment of wild-type TRF 1, the sequence One having the amino acid sequence of No. 5 can be exemplified. Examples of the wild-type TRF2 include those having the amino acid sequence of SEQ ID NO: 8. Examples of fragments of wild-type TRF2 include those having the amino acid sequence of SEQ ID NO: 7. A mutant of TRF1, TRF2 or a fragment thereof comprises an amino acid sequence in which one or several amino acids have been deleted, substituted or added in any of the amino acid sequences of SEQ ID NOS: 5 to 8, In addition, peptides or proteins having the biological activity of TRF1, TRF2 or a fragment thereof can be exemplified.
グァニン一四重らせん構造をとる D N Aは、上述の方法により調製することができる  DNA having a guanine quadruplex structure can be prepared by the method described above.
TRF 1若しくは TRF 2のいずれかのテロメァタンパク質又はその DN A結合領 域を含むテロメァタンパク質断片は、公知の遺伝子工学的手法で調製することができる 。例えば、 TRF 1若しくは TRF 2のいずれかのテロメァタンパク質又はその DN A 結合領域を含むテロメァタンパク質断片をコードする DN Aを公知の方法で調製する か、 あるいは保存機関から入手し、 この DNAをプライマーで増幅した後、 プラスミド に組み込み、宿主細胞で発現させる。発現した目的のテロメァタンパク質又はその DN A結合領域を含むテロメァタンパク質断片を公知の方法により精製する。このようにし て得られたテロメァタンパク質又はその DN A結合領域を含むテロメァタンパク質断 片と上記のグァニン一四重らせん構造をとる DNAとを、 DNAのグァニン一四重らせ ん構造が保たれる条件下で(例えば、 グァニン一四重らせん構造をとる DNAを調製し た際に用いた緩衝液中で)混合することにより、本発明の複合体が形成される。複合体 の形成は Biacore (Biamolecular Interaction Analysis Core technology)装置 (Biacore 社) により確認することができる。例えば、 DNAが平行鎖のグァニン—四重らせん構 造をとる場合には、テロメァタンパク質又はその DN A結合領域を含むテロメァタンパ ク質断片をセンサーチップ上に固定した後に、 このセンサーチップ上で、上記のタンパ ク質またはその断片をグァニン—四重らせん構造をとる DN Aと接触させるとよい。 D N Aが逆平行鎖のグァニン—四重らせん構造をとる場合には、グァニン一四重らせん構 造をとる DNAをセンサーチップ上に固定した後に、 このセンサーチップ上で、上記の DN Aをテロメァタンパク質又はその DN A結合領域を含むテロメァタンパク質断片 と接触させてもよい。 2分子間の結合、解離に伴うセンサ一チップ表面での微量な質量 変化を SPR (Surface £lasfflon £esonaiice)シグナルとして検出し、 このシグナルの経時変 化を Sensorgramと呼ぶグラフとして表示させ、これを解析ソフトで解析することにより 、 KD値を求めることができる。 KD値が、 1 0— 4以下、 好ましくは 1 0— 5以下、 より 好ましくは 1 0— 6以下であれば、 タンパク質と D NAが特異的な結合をしている、 す なわち、 複合体を形成していると言える。 The telomere protein of either TRF 1 or TRF 2 or a telomere protein fragment containing the DNA binding region thereof can be prepared by a known genetic engineering technique. For example, a DNA encoding a telomere protein of either TRF 1 or TRF 2 or a telomere protein fragment containing the DNA binding region thereof is prepared by a known method, or obtained from a preservation institution, and this DNA is obtained. After amplification with primers, incorporate into plasmid and express in host cells. The expressed telomere protein or a telomere protein fragment containing the DNA binding region thereof is purified by a known method. The guanine quadruplex structure of the DNA preserves the telomere protein fragment obtained in this manner or the telomere protein fragment containing the DNA binding region and the DNA having the guanine quadruplex structure. The complex of the present invention is formed by mixing under dripping conditions (for example, in a buffer used when preparing DNA having a guanine quadruplex structure). Complex formation can be confirmed using a Biacore (Biamolecular Interaction Analysis Core technology) device (Biacore). For example, when the DNA adopts a parallel-chain guanine-quadruplex structure, the telomere protein or the telomere protein fragment containing the DNA binding region is immobilized on the sensor chip, and then the telomere protein is ligated on the sensor chip. The above-mentioned protein or a fragment thereof may be contacted with DNA having a guanine-quadruplex structure. When the DNA has an antiparallel guanine-quadruplex structure, the DNA having the guanine quadruplex structure is immobilized on a sensor chip, and then the DNA is telomerized on the sensor chip. The protein or a telomere protein fragment containing the DNA binding region thereof may be contacted. A small amount of mass on the sensor-chip surface due to binding and dissociation between two molecules The change detected as SPR (Surface £ lasfflon £ esonaiice) signal, the time change of this signal is displayed as a graph called a Sensorgram, by analyzing this in analysis software, it is possible to determine the K D values. K D values are 1 0 4 or less, preferably 1 0 5 below, if more preferably 1 0 6 or less, protein D NA is the specific binding, ie, the composite It can be said that it forms a body.
テロメァは老化や癌化の制御に関与していると考えられているので、本発明の D N A や複合体を利用して、老化や癌化のメカニズムの解析、制癌剤などの薬の設計をするこ とが可能となる。 本明細書は、本願の優先権の基礎である日本国特許出願(すなわち、特願 2003-32233 号) の明細書および/または図面に記載される内容を包含する。 図面の簡単な説明  Since telomeres are thought to be involved in the control of aging and canceration, use of the DNA and complex of the present invention to analyze the mechanism of aging and canceration and to design drugs such as anticancer drugs. It becomes possible. This description includes part or all of the contents as disclosed in the description and / or drawings of a Japanese patent application (ie, Japanese Patent Application No. 2003-32233), which is a priority document of the present application. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 G -四重らせん]) NA構造 (G-Quadruplex, G - Quartet)を示す。  Figure 1 shows a G-quadruplex]) NA structure (G-Quadruplex, G-Quartet).
連続した Guanine- rich (G- r ich)な一本鎖 DNAによって形成される G-四重らせん DNA 構造体である。 M+は一価の陽イオン (例えば、 Li+, K+, Na+, N¾+など) を表す。 Ca2+, Mg2+ などの二価の陽イオンは、構造の安定化に関与することもある。構造を形成する際に配 位する溶液中の一価の陽イオン(M+)によって Guanine 塩基の立体配置が異なり、 平行 (paral lel)構造と逆平行(ant i - paral lel)構造に大別される。 これらの構造違いは、 CD スぺクトルの吸収の様子によって、 区別することができる [図 10]。 It is a G-quadruplex DNA structure formed by continuous Guanine-rich (G-rich) single-stranded DNA. M + represents a monovalent cation (eg, Li + , K +, Na +, N¾ +, etc.). Divalent cations such as Ca 2+ and Mg 2+ may be involved in the stabilization of the structure. The configuration of Guanine bases differs depending on the monovalent cation (M +) in the solution that coordinates to form the structure, and is roughly classified into a parallel (paral lel) structure and an antiparallel (anti-paral lel) structure. You. These structural differences can be distinguished by the absorption of the CD spectrum [Figure 10].
図 2は、 哺乳類におけるテロメァ制御モデルを示す。  Figure 2 shows a telomere control model in mammals.
hTRFlに Tankyraseおよび TIN2が結合し、テロメァ長の調節を行う。 Map 1は、画 2 を介してテロメァに局在してテロメァ長の調節を行う。  Tankyrase and TIN2 bind to hTRFl and regulate telomere length. Map 1 controls telomere length by localizing to telomere via image 2.
図 3は、 哺乳類のテロメァ DNAのメカニズムを示す。  Figure 3 shows the mechanism of mammalian telomere DNA.
哺乳類のテロメァは、 線状染色体末端に存在し、 その 3 ' 末端には一本鎖突出で終わ る二本鎖 TTAGGG繰り返し配列が存在する。 テロメァ末端機能の維持と保護のため t - loop構造が形成されると示唆されている。  Mammalian telomeres are located at the ends of linear chromosomes, and at the 3 'end there are double-stranded TTAGGG repeats ending in single-stranded overhangs. It has been suggested that a t-loop structure is formed to maintain and protect telomere terminal function.
図 4は、 テロメァタンパク質の機能マップとアミノ酸配列比較を示す。 .  FIG. 4 shows a functional map of the telomere protein and an amino acid sequence comparison. .
テロメァタンパク質 (liTRF 1, hTRF2)は、 機能ドメインとしてともに中央にはホモダイ マーを形成する二量体形成ドメイン(TRF homology domain)があり、 C 末端には二本鎖 テ nメァ DNAを特異的に認識する DNA結合ドメイン (磨 A- find ing Domain: DBD)が存在 する。 両者の大きな違いは、 N末端にそれぞれ酸性ドメインと塩基性ドメインを持つこ と。 この部分の機能は不明で、 TRF2 は塩基性ドメインを失うとテロメァ機能が不活性 化し、 細胞死を招く。 The telomeric proteins (liTRF1, hTRF2) are homozygous in the center as both functional domains. There is a dimer formation domain (TRF homology domain) that forms a mer, and a DNA-binding domain (PolyA-finding Domain: DBD) that specifically recognizes double-stranded DNA is present at the C-terminus. . The major difference between the two is that they have an acidic domain and a basic domain at the N-terminus, respectively. The function of this part is unknown, and loss of the basic domain of TRF2 inactivates telomere function, leading to cell death.
DNA結合ドメインのアミノ酸配列を比較するとテロメァタンパク質 MRF1 および RF2は、 核内の原ガン遺伝子産物である Mybタンパク質の Rl, R2, R3と大きな相同 性を持つ。 =次元構造は、 三つのひへリックスをもち、 疎水性アミノ酸は、 ほぼ完全に 保存されている。また、 hTRFl- DBDと hTRF2- DBDのァミン酸配列相同性は約 58%である。 図 5は、 様々な G—四重らせん構造を示す。  Comparing the amino acid sequences of the DNA binding domains, the telomeric proteins MRF1 and RF2 have great homology to the nuclear proto-oncogene product Myb protein R1, R2, and R3. = The dimensional structure has three helices, and the hydrophobic amino acids are almost completely conserved. In addition, the homology between the humic acid sequences of hTRF1-DBD and hTRF2-DBD is about 58%. FIG. 5 shows various G-quadruplex structures.
図 6は、テロメァタンパク質 hTRFl- DBDおよび M F2-DBDの精製方法の流れと電気泳動 図を示す。  FIG. 6 shows a flow and an electrophoretic diagram of the purification method of the telomeric proteins hTRF1-DBD and MF2-DBD.
hTRF l-DBD (N末端でメチォニン残基 (Met)を持つアミノ酸 371-439 (配列番号 5 ) ; 70aa)発現部分をインサートした pET13a を形質転換させた E. coli BL2 UDE3)株 [Novagen]で大量発現させた。 また、 hTRF2- DBD (N末端で Me t 残基を持つアミノ酸 437- 500aa (配列番号 7 ) ; 64aa)は、発現部分を含む pET23bを導入した ゾ/ ' BL21 (DE3) 株 [Novagen]で大量発現させた。 ともに大腸菌を回収後、超音波破砕機でタンパク質を 溶出させ、 リン酸セルロースカラム(P 11)クロマトグラフィー、 ゲルろ過クロマトダラ フィ一によつてそれぞれシングルバンドのテロメァタンパク質を単離できた。  hTRF l-DBD (amino acids 371-439 (SEQ ID NO: 5) having a methionine residue (Met) at the N-terminus; 70aa) in an E. coli BL2 UDE3) strain (Novagen) transformed with pET13a into which an expression portion was inserted It was expressed in large quantities. Moreover, hTRF2-DBD (amino acids 437-500aa (SEQ ID NO: 7) having a Met residue at the N-terminus; 64aa) is abundant in the zo / 'BL21 (DE3) strain [Novagen] into which pET23b containing the expressed portion has been introduced. Was expressed. In both cases, after recovering the E. coli, the protein was eluted with an ultrasonic crusher, and single-band telomere proteins could be isolated by cellulose phosphate column (P11) chromatography and gel filtration chromatography.
図 7は、 N末端 His- tag融合 + 10aa延長を示す。  FIG. 7 shows the N-terminal His-tag fusion + 10 aa extension.
Nde I -BaniH Iサイトを持つ N末端 Hi s- tag融合 RF2- DBDのィンサートを設計した。 ベクターには pET28aを用いることにした。 The insert of RF2-DBD fused with N-terminal His tag with Nde I -BaniHI site was designed. PET28a was used as the vector.
図 8は、 Hi s-tag融合 hTRF2- DBDのアミノ酸配列を示す。  FIG. 8 shows the amino acid sequence of the His-tag fused hTRF2-DBD.
ライゲーシヨン反応して構築した Hi s- tag融合タンパク質発現プラスミドが予定通 り組み込まれたかシークェンスで確認した。 その結果、 N末端 Hi s- tag融合 hTRF2- DBD および C末端 Hi s- tag融合 hTRF2- DBDのいずれも発現系が作成されていた。  The sequence confirmed whether the His-tag fusion protein expression plasmid constructed by the ligation reaction was integrated as planned. As a result, expression systems for both the N-terminal His-tag fused hTRF2-DBD and the C-terminal His-tag fused hTRF2-DBD were created.
図 9は、 His- tag融合 RF2-DBDの最終段階を示す。  FIG. 9 shows the final stage of His-tag fusion RF2-DBD.
Tr ic ine SDS電気泳動での hTRF2- DBDと Hi s- tag融合 RF2- DBDとの精 比較。 CBB 染色によりバンドを検出。 ゲルろ過後の濃縮サンプルである。 6 xHi s- tagの付加で分 子量が増加した。 各タンパク質の分子量は以下の通りである。 Close comparison of hTRF2-DBD and His-tag fused RF2-DBD by Tricine SDS electrophoresis. Band detected by CBB staining. It is a concentrated sample after gel filtration. 6 Addition of xHis-tag Child volume increased. The molecular weight of each protein is as follows.
hT F2-DBD: 7539. 65 Da hT F2-DBD: 7539. 65 Da
N末端 His- tag融合 hTRF2- DBD: 9702. 97Da  N-terminal His-tag fusion hTRF2-DBD: 9702. 97Da
C末端 His-tag融合 hTRFH)BD: 9259. 49Da  C-terminal His-tag fusion hTRFH) BD: 9259.49Da
'図 1 0は、 テロメァタンパク質最小認識配列である trl2 +: 5 ' -TTAGGGTTAGGG-3 ' ( 配列番号 1 ) を用いた CDスぺクトルによる平行 G-四重らせん DNAと逆平行 G -四重らせん DNAとの判別を示す。  'Figure 10 shows parallel G-quadruplex DNA and anti-parallel G-quadruplex DNA by CD spectrum using trl2 +: 5'-TTAGGGTTAGGG-3' (SEQ ID NO: 1), which is the minimum recognition sequence for telomere protein. Shows discrimination from heavy helical DNA.
(a)溶液中に K+を含むとき、 265nmに正の極大と 245nmに負の極大を持つ CDスぺクトル が観察され、 Na +を含むとき、 295MIに正の極大と 265nmに負の極大を持つ CDスぺクトル が観察される。 溶液中に Na+を含む tr24 +の逆平行 G-四重らせん DNAでも同様のスぺク トルが観察された。 (b)—価の陽イオンを含まないときの CDスぺクトルの比較(左)と trl2 +に相補的な trl2—の K+, Na +存在下の CDスぺクトル比較 (右)。  (a) When K + is contained in the solution, a CD spectrum having a positive maximum at 265 nm and a negative maximum at 245 nm is observed.When Na + is contained, a positive maximum at 295 MI and a negative maximum at 265 nm are observed. A CD spectrum is observed. Similar spectra were observed with tr24 + antiparallel G-quadruplex DNA containing Na + in the solution. (B) Comparison of CD spectrum without valence cations (left) and comparison of CD spectrum of trl2—complementary to trl2 + in the presence of K + and Na + (right).
図 1 1は、 trl2 -, trl2+, tr8+, trl2+の丽 Rスペクトル (1次元スペクトル) を示す 図 1 2は、 trl2+と TRF2- DBDとが形成する複合体の NMRスペクトル及び trl2+と TRF1- DBDとが形成する複合体の NMRスペクトル (1次元スペクトル) を示す。  Fig. 11 shows the 丽 R spectrum (one-dimensional spectrum) of trl2-, trl2 +, tr8 +, and trl2 +. Fig. 12 shows the NMR spectrum of the complex formed by trl2 + and TRF2-DBD. 1 shows an NMR spectrum (one-dimensional spectrum) of a complex formed by.
図 1 3は、 trl2+と TRF卜 DBDとが形成する複合体の NMRスぺクトル(2次元スぺクトル ) を示す。  FIG. 13 shows an NMR spectrum (two-dimensional spectrum) of a complex formed by trl2 + and TRF DBD.
図 1 4は、 trl2+と TRF2- DBDとが形成する複合体の NMRスぺクトル(2次元スぺクトル ) を示す。  FIG. 14 shows an NMR spectrum (two-dimensional spectrum) of a complex formed by trl2 + and TRF2-DBD.
図 1 5は、 trl2+と TRF2- DBDとの相互作用部位の予測を示す。 発明を実施するための最良の形態  FIG. 15 shows the prediction of the interaction site between trl2 + and TRF2-DBD. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例によって具体的に説明する。 なお、 これらの実施例は、 本発明 を説明するためのものであって、 本発明の範囲を限定するものではない。  Hereinafter, the present invention will be described specifically with reference to Examples. These examples are for explaining the present invention, but do not limit the scope of the present invention.
[実施例 1 ] hTRFl- DBDおよび MRF2- DBDの発現と精製 [Example 1] Expression and purification of hTRFl-DBD and MRF2-DBD
テロメァタンパク質の C末端にある DNA結合ドメイン(iiTRF 1- DBDおよび RF2- DBD) のみをそれぞれ大腸菌大量発現系から発現させた [図 4]。 hTRFl-DBDは、発現用 R coH \ (DE3) LysS株から pET13aプラスミドを取り出し、 E coli BL21 (DE3)株に形質転換して大量発現させた。 Only the DNA-binding domains (iiTRF1-DBD and RF2-DBD) at the C-terminus of the telomere protein were respectively expressed from the Escherichia coli large expression system [Fig. 4]. hTRFl-DBD was obtained by extracting the pET13a plasmid from the RcoH \ (DE3) LysS strain for expression and transforming it into E. coli BL21 (DE3) strain to express it in large quantities.
また、 RF2- DBDは、 その発現用プラスミド pET23bを導入した ϋ // .BL2 UDE3)株 で大量発現させた。 ともに大腸菌を回収後、超音波破砕機でタンパク質を溶出させ、 リ ン酸セルロースカラムクロマトグラフィー、ゲルろ過クロマトグラフィーによってそれ ぞれの目的夕ンパク質を単離した。  RF2-DBD was also expressed in large amounts in the ϋ / .BL2UDE3) strain into which the expression plasmid pET23b was introduced. In each case, after recovering the E. coli, the protein was eluted with an ultrasonic crusher, and the target protein was isolated by cellulose phosphate column chromatography and gel filtration chromatography.
次に本研究で行ったそれぞれの詳細な方法について述べた。 実験方法  Next, we described each detailed method used in this study. experimental method
1. 1 hTRFl-DBDの発現  1.1 Expression of hTRFl-DBD
1) hTRFl- DBDの発現系の変更  1) Change of expression system of hTRFl-DBD
ゲンプリッジ大学 MR C研究所の Rhodes博士から TRF卜 DBD (Nucleic Ac ids Research, 1998, Vol, 26, No. 7, pp. 1731- 1740、 N 末端でメチォニン残基 (Met)を持つアミノ酸 371-439 (配列番号 5 ) ; 70aa) を組み込んだ pET13A (Gerchman, S. E. , Graz iano, V. and Ramakr ishnan, V. (1994) . Protein Express ion Puri f icat. 5, 242- 251. )を分与して もらい、 これを ゾ / BL2UDE3)株に導入して、 hTRF2- DBDを発現させた。 Dr. Rhodes of MR C Laboratory at Gempridge University TRF DBD (Nucleic Acids Research, 1998, Vol. 26, No. 7, pp. 1731-1740, amino acid 371-439 with methionine residue (Met) at N-terminus) (SEQ ID NO: 5); pET13A (Gerchman, SE, Graz iano, V. and Ramakr ishnan, V. (1994) .Protein Express ion Purificat. 5, 242-251. This was introduced into the zo / BL2UDE3) strain to express hTRF2-DBD.
① hTRF卜 DBD発現用 E. coli BL21 (DE3) pLysS株の培養  ① Culture of E. coli BL21 (DE3) pLysS for hTRF DBD expression
初めにきれいな 2本の試験管に LB培地 10mlそれぞれ調整し、オートクレーブ(SANYO 社製 MLS- 300、 T0MY社製 ES- 315)により滅菌処理を行った [120°C, 15〜20分]。 Clean Bench内で培地を 40〜60°C以下に冷ましてから、 ここに無菌的に抗生物質である 50 /i g/mlカナマシンと 25 g/mlクロラムフエ二コールを加え、 さらに一 8(TCのディープフ リ一ザ一(朝日ライフサイエンス社製 ULT790- 3J- A30)で保存した hTRFlの DNA結合ドメ インの配列をコードする部分をインサートした pET13a を形質転換した R coli BL21 (DE3) pLysS株 (Novagen社製)を適量に植菌した。 この試験管を air bath内で 37°C 12時間以上振騰させた。 その後、 吸光度計 (Beckman社製 DU640)で波長 600nmの吸光度 (0. D600)が 1. 0以上なつたところで大腸菌を含む培地を回収し、 遠心(5000 X g, 2分)に よって 1. 5mlのエツペンに集菌させた。 このとき、上精とペレットに分離するが、 目的 の hTRFl- DBDを含むペレツト(大腸菌)のみを回収した。 First, LB medium (10 ml) was prepared in each of two clean test tubes, and sterilized by an autoclave (SANLS MLS-300, T0MY ES-315) [120 ° C, 15 to 20 minutes]. After cooling the medium to below 40-60 ° C in the Clean Bench, aseptically add the antibiotics 50 / ig / ml kana machine and 25 g / ml chloramphenicol, and add 1-8 (TC deep An R coli BL21 (DE3) pLysS strain (Novagen, Inc.) transformed with pET13a into which a portion coding for the sequence of the DNA binding domain of hTRFl stored in a DNA polymerase (Asahi Life Science ULT790-3J-A30) was inserted. Ltd.) were inoculated in an appropriate amount. the test tube was shaken 37 ° C 12 hours or more in the air bath bath. Thereafter, absorbance at a wavelength of 600nm with absorption spectrometer (Beckman Co. DU640) (0. D 600) is At the point of 1.0 or more, the medium containing E. coli was collected and collected by centrifugation (5000 X g, 2 minutes) in a 1.5 ml eppen. Only the pellet (Escherichia coli) containing the hTRF1-DBD was recovered.
② hTRFl- DBD発現用プラスミド pET13aの回収 大腸菌からのプラスミド溶出 ·回収には、 Wizard Plus Minipreps DNA Purification systemkit (Promega社製)を用いた。 あらかじめ滅菌水を用いて培地を取り除いたペレ ットに kit試薬の Cell Resuspention溶液 を添加し、 DNA · RNA分解酵素阻害反 応させ、 次に Cell lysis溶液 200/ lで細胞膜を溶解させた。 溶出させた大腸菌内の核 酸とタンパク質 ·不純物等を Neutral izat ion溶液 400 l加えることで分離した。 これ を lOOOOXgの遠心して核酸を含む上清のみミニカラムを用いて pET13aプラスミドだけ 溶出させた。 この時、 大腸菌株が End A+株であったため、 40%イソプロパノール /4.2M 塩酸グァニジン溶液 2mlを加えることでその酵素を不活性化させた。 ② Recovery of plasmid pET13a for expression of hTRFl-DBD For plasmid elution and recovery from E. coli, a Wizard Plus Minipreps DNA Purification system kit (Promega) was used. To the pellet from which the medium had been removed using sterile water in advance, the Cell Resuspention solution of the kit reagent was added, and the DNA / RNA degrading enzyme inhibition reaction was performed. Then, the cell membrane was dissolved with 200 / l of Cell lysis solution. The eluted nucleic acid, protein, impurities, etc. in E. coli were separated by adding 400 l of neutralization solution. This was centrifuged at IOOOOXg, and only the pET13a plasmid was eluted using a mini-column containing only the supernatant containing nucleic acids. At this time, since the E. coli strain was End A + strain, the enzyme was inactivated by adding 2 ml of a 40% isopropanol / 4.2 M guanidine hydrochloride solution.
③ hTRFl_DBD発現用 Ε· coli BL21 (DE3)へ形質転換と発現確認 ③ For expression of hTRFl_DBD Ε · Transform into BL21 (DE3) and confirm expression
pET13aプラスミド 1〜2 1 と ゾゾ' BL21 (DE3)株の competent cell 60 l を混ぜ 合わせ、正確に氷上で冷やしながら 30分静置した後、 42°Cのヒートショック(約 45秒) を与え、 2分程度氷上に再び安置させることで目的の大腸菌に形質転換させた。 これに あらかじめ 37°Cで温めて解凍して置いた S0C培地約 500 1を添加して、それを 37°Cの 恒温槽内で 1時間以上培養させた。 S0C培地内で増えた大腸菌を次に先に 37°Cで温めて おいた LBプレート(カナマイシン,クロラムフエ二コール耐性)に植菌し、 37 で一昼夜、 コロニー形成されるまで安置した。  Combine pET13a plasmids 1-21 with 60 l of the competent cell of the ZOZO'BL21 (DE3) strain, allow to stand still for 30 minutes while cooling accurately on ice, and give a heat shock at 42 ° C (about 45 seconds). E. coli was transformed by resting on ice for about 2 minutes. To this was added about 500 S0C medium, which had been pre-warmed and thawed at 37 ° C, and incubated for 1 hour or more in a thermostat at 37 ° C. The Escherichia coli grown in the S0C medium was then inoculated on an LB plate (kanamycin, chloramphenicol-resistant) previously warmed at 37 ° C., and kept at 37 for 24 hours until colony formation.
次に LB培地 100mlを調整し、 オートクレープ滅菌した後、 そこから無菌的に二本の 試験管に LB培地を 5mlとり、 形成したコロニーのうち 1つだけを無菌的に植菌した。 そこに抗生物質 [25 g/ mlクロラムフエニコ一ル, 50 g/mlカナマイシン]を加え、 4〜5時間 37°Cで前培養した。 0, D圆 =0.5あたりで一部グリセロールストツクをつくり — 80°Cで保存した。 残りの培養液は、 すべて 0.D画の各段階(0.4, 0.6, 0.8)で IPTGを 投与して hTRFl- DBDの発現確認に用いた。  Next, 100 ml of LB medium was prepared, and after autoclaving, 5 ml of LB medium was aseptically taken into two test tubes, and only one of the formed colonies was aseptically inoculated. An antibiotic [25 g / ml chloramphenicol, 50 g / ml kanamycin] was added thereto, and precultured at 37 ° C for 4 to 5 hours. Some glycerol stocks were made around 0, D 圆 = 0.5 — stored at 80 ° C. All of the remaining cultures were injected with IPTG at each step (0.4, 0.6, 0.8) of the 0.D fraction and used to confirm the expression of hTRFl-DBD.
2) hTRF卜 DBD発現大腸菌の大量培養 2) Large scale cultivation of hTRF DBD expressing E. coli
1)により hTRFl- DBDを発現させるプラスミド pET13aを形質転換した  The plasmid pET13a expressing hTRFl-DBD was transformed by 1).
①前培養 ① Preculture
初めにきれいな 300mlの三角フラスコに LB培地約 20〜30ml を調整し、 オートクレ ーブにより滅菌処理を行った [120°C, 15〜20分]。 Clean Bench内で培地を 40〜6(TC以 下に冷ましてから、 ここに無菌的に抗生物質である 50 g/ml カナマシ: と 25 g/ml クロラムフエ二コールを加えた。さらに _80°Cのディ一プフリ一ザ一から先に作成した hTRF卜 DBDの発現プラスミド PET 13aを形質転換した colimi (DE3)株 (Novagen社製) を適量に植菌した。 この三角フラスコを air bath内で 37°C 12時間以上振透させた。 そ の後、吸光度計で波長 600nmの 0. D6Q()が 1. 0以上なつたところで大腸菌を含む培地をす ベて本培養に移した。 First, about 20-30 ml of LB medium was prepared in a clean 300 ml Erlenmeyer flask, and sterilized by an autoclave [120 ° C, 15-20 minutes]. The medium was cooled to 40-6 (TC or lower) in the Clean Bench, and then the antibiotics 50 g / ml Kanamashi: and 25 g / ml chloramphenicol were added aseptically. Created first from the display A colimi (DE3) strain (Novagen) transformed with hTRF DBD expression plasmid PET 13a was inoculated in an appropriate amount. The Erlenmeyer flask was shaken in an air bath at 37 ° C for 12 hours or more. After that, when the OD 6Q () at a wavelength of 600 nm reached 1.0 or more with an absorptiometer, all the medium containing E. coli was transferred to main culture.
②本培養  ② Main culture
大腸菌大量培養用のジャーファメンター(いわしや ADM社製 AC- D- 3)に 3Lの LB培地 を調整し、 ォ一トクレーブで滅菌した。 滅菌処理後、 抗生物質 50 / g/mlカナマシンと 25 g/ml クロラムフエ二コールを無菌的に添加し、 さらに消泡剤となる界面活性剤ァ デカノールを 2〜3滴加え、 温度 37°C、 air 2L/分、 回転数 200rpmでインキュベートし ておいた。 前培養の大腸菌植菌後、 温度 37 C、 air 5L/分、 回転数 800〜1000rpmで培 養した。 吸光度計で波長 600nm の 0. D6()()が 0. 6〜0. 7 で i sopropyl-卜 thio - /3 -D-garactopyranos ide (IPTG)を添加して温度 20 程度まで下げて hT Fl- DBDを発現誘 導させた。 その後、 0D,がプラトーに達したところで、 大腸菌回収用緩衝液 (50 リン 酸カリウム緩衝液 [pH8. 0], lOOmM NaCl, ImMエチレンジァミン四酢酸塩 (EDTA) )を用い て大腸菌を回収した。 回収には、 遠心機 (Beckman社製 Avant i JA25, HITACHI社製 himac CR 26H)を用いて 4°C、 9000- 12000 X g、 20分で遠心して大腸菌を回収後、 発現量の目安 のため湿重量を測定してから一 80°Cのディープフリーザーに保存した。 Tr ic ine SDS電 気泳動で TRF1- DBDの発現を確認した。 A 3 L LB medium was prepared in a jar fermenter (AC-D-3, manufactured by Iwashiya ADM) for mass cultivation of Escherichia coli, and sterilized in an autoclave. After sterilization, the antibiotic 50 / g / ml kana machine and 25 g / ml chloramphenicol are added aseptically, and a few drops of decanol, a surfactant that serves as an antifoaming agent, are added at a temperature of 37 ° C. Incubated at 2 L / min air at 200 rpm. After inoculation of E. coli in the preculture, the cells were cultured at a temperature of 37 C, air at 5 L / min, and a rotation speed of 800 to 1000 rpm. 0. D 6 wavelengths 600nm absorbance meter () () is from 0.6 to 0 7 i Sopropyl- Bok thio -. / 3 -D-garactopyranos ide hT down to a temperature of about 20 by the addition of (IPTG) Expression of Fl-DBD was induced. After that, when 0D reached the plateau, E. coli was recovered using an E. coli recovery buffer (50 potassium phosphate buffer [pH 8.0], 100 mM NaCl, ImM ethylenediaminetetraacetate (EDTA)). For recovery, use a centrifuge (Avanti JA25 manufactured by Beckman, himac CR 26H manufactured by HITACHI) at 4 ° C, 9000-12000 Xg for 20 minutes to collect Escherichia coli. The wet weight was measured and stored in a deep freezer at 180 ° C. TRF1-DBD expression was confirmed by Tricine SDS electrophoresis.
1. MRF1-DBDの精製 1. Purification of MRF1-DBD
大腸菌を回収後、 超音波破砕機で hTRF卜 DBD を溶出させ、 リン酸セルロースカラム クロマトグラフィー、 HPLC (High performance l iquid chromatography)を用いたゲルろ 過クロマトグラフィー [HiLoad™26/60 Superdex™30 prep grade]およびフエ二ルセファ ロースカラム [HiLoad™26/10 Phenyl Sepharose High Performance]疎水性クロマトグ ラフィ一にて得た。  After recovering the E. coli, the hTRF DBD is eluted with an ultrasonic crusher, and gel filtration chromatography using cellulose phosphate column chromatography and HPLC (High performance liquid chromatography) [HiLoad ™ 26/60 Superdex ™ 30 prep. grade] and Phenyl Sepharose column [HiLoad ™ 26/10 Phenyl Sepharose High Performance] obtained by hydrophobic chromatography.
1) 超音波破碎(Son i cat ion) 1) Ultrasonic crushing (Son i cat ion)
一 80でのディ一プフリーザーで凍結保存してある lysateを室温で穏やかに解凍させ、 そこに protease阻害剤の EDTA-iree 1粒と lOmM phenylmethylsul fonyl f luoride (PMSF) lml/met anolを加え超音波破砕機 (BRANSON社製 S0NIFIER450)で菌体破砕 、 hTRFl- DBD を溶出させた。 破砕機の設定は、 Time: Hold, Duty cycle (%) : constant, Output control: 20〜30で、 サンプル温度が 4°C以上にならないように操作を行った。 I 3度 30 分再び一 80°Cのディープフリーザーで凍結させることによって温度制限を維持し、 効率よく菌体破砕を行った。 溶出確認は Tric ine SDS電気泳動で行った。 Gently thaw the lysate frozen and stored in a deep freezer at room temperature at room temperature, and add 1 protease inhibitor EDTA-iree and lOmM phenylmethylsul fonyl fluoride (PMSF) lml / metanol to the mixture. The cells were disrupted with a sonicator (S0NIFIER450 manufactured by BRANSON) to elute hTRFl-DBD. Crusher settings are: Time: Hold, Duty cycle (%): constant, Output control: The operation was performed at 20 to 30 so that the sample temperature did not exceed 4 ° C. I was frozen again in a deep freezer at 180 ° C for 3 minutes and 30 minutes to maintain the temperature limit and to disrupt the cells efficiently. The elution was confirmed by Tricine SDS electrophoresis.
2) 遠心分画法  2) Centrifugal fractionation
菌体破砕後、 大腸菌サンプル中の不溶性分画を取り除く目的で、 62000 X g, 4°Cで 90 分遠心を行った。 これによつて hTRFl- DBDを含む上清を回収した。  After crushing the cells, centrifugation was performed at 62,000 X g at 4 ° C for 90 minutes to remove the insoluble fraction in the E. coli sample. Thus, the supernatant containing hTRF1-DBD was recovered.
3) 陽イオン交換クロマトグラフィー  3) Cation exchange chromatography
[原理]イオン交換ク口マトグラフィ一とは、分子の静電的性質の差を利用して分離する 方法である。 タンパク質には電荷の総和が 0になる pi (等電点)があり、 これより高い pHでは陰イオンへ、 低い pHでは陽イオンとして挙動する。 この性質を利用してイオン 交換樹脂に結合させたり、 溶離させたりして精製する方法である。  [Principle] Ion-exchange chromatography is a method of separating molecules using the difference in electrostatic properties of molecules. Proteins have a pi (isoelectric point) where the sum of the charges is zero, and behaves as an anion at higher pH and as a cation at lower pH. Using this property, it is a method of purifying by binding or eluting to an ion exchange resin.
[操作] 2)で回収した上清をリン酸セルロース樹脂 [Whatman社製 P11]を充填したカラム にアプライした。 カラムは、 約 20gの P11樹脂をとり、 0. 5M NaOHと 0. 5M HC1 とを交 互に加えて洗浄してから用いていた。 初めに P11樹脂に 0. 5M NaOH を適量加え、 二分 攪拌後、三分間放置することによって樹脂を静沈させ、上清のみをデカンテーシヨンし、 Mi l l iQによる洗浄の繰り返しで ρΗ<11 にした。 次に 0. 5M HC1 を添加することで Na+ がすべて H+に陽イオン交換され、 これも最終的に pH>3になるように Mi l l iQで洗浄し た。  [Operation] The supernatant collected in 2) was applied to a column filled with a cellulose phosphate resin [P11 manufactured by Whatman]. The column used about 20 g of P11 resin, washed with 0.5 M NaOH and 0.5 M HCl alternately added. First, add an appropriate amount of 0.5M NaOH to the P11 resin, stir for 2 minutes, allow the resin to settle by allowing it to stand for 3 minutes, decant only the supernatant, and reduce the ρΗ <11 by repeated washing with MilliQ. did. Next, 0.5M HC1 was added to cation-exchange all Na + to H +, which was also washed with MilliQ so that the pH finally reached> 3.
陽イオン交換された樹脂を専用のカラムに充填してから一昼夜かけて平衡化緩衝液 で置換した。 ここにサンプル上清をアプライし、すべてのサンプルをアプライ後、 平衡 化緩衝液で一度洗浄した。 洗浄終了後、 NaCl濃度勾配 300mM〜1100niのリニアグラジ ェント法を用いて、サンプルを溶出させた。溶出液はフラクションコレクターを用いて、 フラクションチューブに 80滴/本(約 4ml)の割合で回収した。 この時、 サンプルの溶出 速度を約 50ml/hで行った。 '  After the cation-exchanged resin was packed in a dedicated column, it was replaced with the equilibration buffer overnight. Here, the sample supernatant was applied, and after all the samples were applied, the sample was washed once with an equilibration buffer. After the completion of the washing, the sample was eluted using a linear gradient method with a NaCl concentration gradient of 300 mM to 1100 ni. The eluate was collected in a fraction tube at a rate of 80 drops / tube (about 4 ml) using a fraction collector. At this time, the elution rate of the sample was set at about 50 ml / h. '
Tricine SDS電気泳動にてアプライ後サンプル、 洗浄後 (wash)サンプル、 フラクショ ンサンプルを流し、 hTRFl-DBDのバンドが見られるサンプルを回収した。  A sample after application, a sample after washing (wash), and a fraction sample were flowed by Tricine SDS electrophoresis, and a sample showing hTRFl-DBD band was collected.
4) 濃縮  4) Concentration
次の操作で分解の能をあげるため、フラクションチューブに回収したサンプルをセン トリプレップ [Amicon社製 Centriprep3:容量 15ml, 分画分子量 3000]、 セントリコン [Amicon社製 Centr icon3:容量 2ml, 分画分子量 3000]を用いて行った。 あらかじめ防 腐剤としてグリセロールがフィルターにくっついているため、 Mi l l iQ で洗浄してから 用いた。 遠心(4 °C, 8000 X g)で濃縮した。 In order to improve the degradability by the following procedure, the sample collected in the fraction tube was centriprep [Amicon Centriprep3: 15 ml, molecular weight cut off 3000], Centricon [Amicon Centr icon3: volume 2 ml, molecular weight cut off 3000]. Glycerol was previously attached to the filter as a preservative, so it was washed with MilliQ before use. It was concentrated by centrifugation (4 ° C, 8000 X g).
5) ゲルろ過クロマトグラフィー(Gel- f i l trat ion Chromatography)  5) Gel filtration chromatography (Gel-fil trat ion Chromatography)
[原理]カラムの中にはたくさんの孔のぁいたゲルが詰められており、そこにタンパク質 を流すと小さいタンパク質は大きいタンパク質に比べて通過する孔の量が多いため、結 果的に長い通路を通ることになる。大きいタンパク質はこの逆となる。 このようにタン パク質の大きさと形で分離できる 「ふるい現象」 を用いて分離ができる。  [Principle] The column is packed with a gel with many pores, and when a protein is flowed through the column, a small protein passes through a larger amount of pores than a large protein, resulting in a long passage. Will pass through. Larger proteins do the opposite. In this way, separation can be performed using the “sieving phenomenon”, which can separate proteins according to their size and shape.
[操作]濃縮サンプルを HPLC (High performance l i uid chromatography)で、 ゲルろ過 (HiLoadTM26/60 SuperdexTM30 prep grade)クロマトグラフィーによって精製した (50mM リン酸カリゥム緩衝液 [ρΗ8· 5], 1M Ml)。 hTRF l-DBDを Flow lml/minで 150分間溶離 させた。溶出させたサンプルから Tr ic ine SDS電気泳動により目的タンパク質を回収し た。  [Operation] The concentrated sample was purified by gel filtration (HiLoadTM26 / 60 SuperdexTM30 prep grade) by HPLC (High performance liquid chromatography) (50 mM potassium phosphate buffer [ρΗ8.5], 1 M Ml). The hTRF l-DBD was eluted with Flow lml / min for 150 minutes. The target protein was recovered from the eluted sample by Tricine SDS electrophoresis.
6) 疎水性ク口マトグラフィー(Hydrphobic Chromatography)  6) Hydrophobic Chromatography
5)の段階で夾雑物が取り除けないときに、 フエ二ルセファロースカラム When contaminants cannot be removed in step 5), use a Phenyl Sepharose column.
(HiLoadTM26/10 Phenyl Sepharose High Performance)を用いて疎水性クロマトグラフ ィ一を行った (Buf fer A; 50mM リン酸カリゥム緩衝液 [pH8. 0], 1M 麵4) 2S04, 0. 05ηιΜ アジ化ナトリゥム(NaN3), Buf fer Β ; 50ιιιΜリン酸カリゥム緩衝液 [pH8. 0] , 0. 05mM NaN3)。 (HiLoadTM26 / 10 Phenyl Sepharose High Performance ) was hydrophobic chromatographic I scratch using (Buf fer A; 50mM phosphate Kariumu buffer [. PH8 0], 1M noodles 4) 2 S0 4, 0. 05ηιΜ azide Sodium bromide (NaN 3 ), Buf ferΒ; 50ι potassium phosphate buffer [pH 8.0], 0.05 mM NaN 3 ).
Flow 2〜3ml/minで HPLCに添加後約 25分でスル一してくる。  It flows through in about 25 minutes after addition to HPLC at a flow of 2-3 ml / min.
7) 最終サンプルの調整  7) Final sample adjustment
Tr ic ine SDS電気泳動で hTRFl- DBDが単離したことを確認した。 セントリブレップ' セントリコンにより濃縮し、 50mMリン酸カリウム緩衝液 [pH7. 0]、 lOOmM NaClの緩衝液 にサンプルを可溶させた状態で凍結乾燥し、 一 20°Cで保存した。  HTRFl-DBD was confirmed to be isolated by Tricine SDS electrophoresis. The sample was concentrated with CentriBrep 'Centricon, lyophilized in a state where the sample was dissolved in a 50 mM potassium phosphate buffer [pH 7.0], 100 mM NaCl buffer, and stored at 120 ° C.
1. 3 hTRF2-DBD発現大腸菌の大量培養 1.3 Mass cultivation of hTRF2-DBD expressing E. coli
ロックフェラー大学の de Lange 博士から TRF2 遺伝子の全長クローン (Nature Genet ics, Vol. 17, pp. 231-235. ) を分与してもらい、 このクローンから DNA結合ドメ イン領域をコードする部分を切り出し、 これを pET23bプラスミド (Novagen) に組み込 み、 WRF2-DBD (N末端でメチォニン残基 (Met)を持つアミノ酸 437- 500aa (配列番号); 64aa)発現用プラスミド pET23bとした。 これを ^ゾ / BL21 (DE3)株 [Novagen社製]に導 入して、 hTRF2-DBDを大量発現させた。 3Lの LB培地(抗生物質アンピシリン 0. 6g)を用 いて、 37°Cで培養し、 isopropyl-l-t io- j3 -D-garactopyranos ide (IPTG)を添加するこ とで発現誘導させた。 A full-length clone of the TRF2 gene (Nature Genetics, Vol. 17, pp. 231-235.) Was donated by Dr. Lange at Rockefeller University, and the portion encoding the DNA binding domain region was cut out from this clone. This was incorporated into a pET23b plasmid (Novagen) to give a plasmid pET23b for expressing WRF2-DBD (amino acids 437-500aa (SEQ ID NO :) having a methionine residue (Met) at the N-terminus; 64aa). This was introduced to ^ ZO / BL21 (DE3) [Novagen] To express a large amount of hTRF2-DBD. The cells were cultured at 37 ° C. using 3 L of LB medium (0.6 g of the antibiotic ampicillin), and the expression was induced by adding isopropyl-ltio-j3-D-garactopyranoside (IPTG).
1) 前培養  1) Preculture
初めにきれいな 300mlの三角フラスコに LB培地約 20〜30ml を調整し、 ォ一トクレ ーブにより滅菌処理を行った [120°C, 15〜20分]。 Clean Bench内で培地を 40〜60°C以 下に冷ましてから、 ここに無菌的に抗生物質である 100 g/mlアンピシリンを加えた。 さらに一 80°Cのディープフリーザーから先に作成した RF2-DBD の発現プラスミド pET23bを形質転換した^ coli BL21 (DE3)株を適量に植菌した。この三角フラスコを a i r bath内で 37"C 12時間以上振騰させた。 その後、 吸光度計で波長' 600nmの 0. D謹が 1. 0 以上なつたところで大腸菌を含む培地をすベて本培養に移した。  First, about 20 to 30 ml of LB medium was prepared in a clean 300 ml Erlenmeyer flask, and sterilized by an autoclave [120 ° C, 15 to 20 minutes]. After the medium was cooled to 40 to 60 ° C or lower in the Clean Bench, 100 g / ml ampicillin, an antibiotic, was aseptically added thereto. Further, an ^ -coli BL21 (DE3) strain transformed with the RF2-DBD expression plasmid pET23b previously prepared from a deep freezer at 180 ° C was inoculated in an appropriate amount. The Erlenmeyer flask was shaken in an air bath at 37 "C for 12 hours or more. Then, when the OD at a wavelength of 600 nm reached 1.0 or more with an absorptiometer, the entire culture containing E. coli was fully cultured. Moved to
2) 本培養  2) Main culture
大腸菌大量培養用のジャーファメン夕一に 3Lの LB培地を調整し、ォ一トクレーブで 滅菌した。滅菌処理後、 抗生物質である 100 z g/mlアンピシリンを無菌的に添加し、 さ らに消泡剤となる界面活性剤アデ力ノールを 2〜3滴加え、 温度 37°C、 air 2L/分、 回 転数 200rpmでインキュベートしておいた。前培養の大腸菌植菌後、 温度 37°C、 ai r 5L/ 分、回転数 800〜1000rpmで培養した。吸光度計で波長 600nmの 0. DMQが 0. 6〜0. 7で IPTG を添加して温度 20°C程度まで下げて WRF2-DBDを発現誘導させた。 その後、 O. D6QDがプ ラトーに達したところで、 大腸菌回収用緩衝液(50 リン酸カリウム緩衝液 [pH7. 0], lOOmM NaCl, ImMEDTA)を用いて大腸菌を回収した。 回収には、 遠心機を用いて 4°C、 9000-12000 X g, 20分で遠心して大腸菌を回収後、 発現量の目安のため湿重量を測定し てから— 80°Cのディープフリーザーに保存した。 Three liters of LB medium was prepared in a jar ferment for large-scale cultivation of Escherichia coli, and sterilized in an autoclave. After sterilization, aseptically add 100 zg / ml ampicillin as an antibiotic, and add 2-3 drops of surfactant Adekinol, a defoaming agent, at a temperature of 37 ° C and air at 2 L / min. The plate was incubated at 200 rpm. After inoculation of pre-cultured E. coli, the cells were cultured at a temperature of 37 ° C, at an air rate of 5 L / min, and at a rotation speed of 800 to 1000 rpm. 0. D MQ wavelength 600nm has IPTG was added to express induce WRF2-DBD down to a temperature 20 ° about C at 0.6 to 0.7 absorbance meter. Thereafter, when the OD 6QD reached the plateau, E. coli was recovered using an E. coli recovery buffer (50 potassium phosphate buffer [pH 7.0], 100 mM NaCl, ImMEDTA). For recovery, E. coli was recovered by centrifugation at 9000-12000 X g for 20 minutes in a centrifuge at 4 ° C, and the wet weight was measured to estimate the expression level. saved.
Tric ine SDS電気泳動で TRF2- DBDの発現を確認した。 Expression of TRF2-DBD was confirmed by Tricine SDS electrophoresis.
1. 4 hT F2-DBDの精製 1.4 Purification of hT F2-DBD
大腸菌を回収後、 超音波破砕機で MRF2-DBD を溶出させ、 リン酸セルロースカラム クロマトグラフィー、 HPLC を用いたゲルろ過クロマトグラフィーおよびフエ二ルセフ ァロースカラム疎水性クロマトグラフィ一にて得た。  After recovering the Escherichia coli, MRF2-DBD was eluted with an ultrasonic crusher and obtained by cellulose phosphate column chromatography, gel filtration chromatography using HPLC, and hydrophobic chromatography on a Phenyl Sepharose column.
1) 超音波破碎 (Sonicat ion) 1) Ultrasonic crushing (Sonicat ion)
一 80°Cのディープフリーザーで凍結保存してある lysateを室温で穏やかに解凍させ、 そこに protease阻害剤の EDTA- free 1粒と lOniPMSF lml/methanolを加え、 超音波破 砕機で菌体破砕し、 hTRF2- DBD を溶出させた。 破砕機の設定は、 Time: Hold, Duty cycle (%) : cons tant, Output control: 20〜30で、 サンプル温度が 4°C以上にならな いように操作を行った。 2, 3度 30分再び _80°Cのディープフリーザーで凍結させるこ とによって温度制限を維持し、 効率よく菌体破砕を行った。 溶出した RF2-DBD を Tric ine SDS電気泳動で確認した。 (1) Gently thaw lysate frozen in a deep freezer at 80 ° C at room temperature. To this was added 1 EDTA-free protease inhibitor and lOniPMSF lml / methanol, and the cells were disrupted with an ultrasonic disrupter to elute hTRF2-DBD. The setting of the crusher was as follows: Time: Hold, Duty cycle (%): constant, Output control: 20 to 30, and the operation was performed so that the sample temperature did not exceed 4 ° C. The temperature limit was maintained by freezing again in a deep freezer at _80 ° C for a few degrees for 30 minutes to efficiently disrupt the cells. The eluted RF2-DBD was confirmed by Tricine SDS electrophoresis.
2) 遠心分画法  2) Centrifugal fractionation
菌体破砕後、 大腸菌サンプル中の不溶性分画を取り除く目的で、 62000 X g, 4°Cで 90 分遠心を行った。 これによつて hTRF2- DBDを含む上清を回収した。  After crushing the cells, centrifugation was performed at 62,000 X g at 4 ° C for 90 minutes to remove the insoluble fraction in the E. coli sample. Thus, the supernatant containing hTRF2-DBD was recovered.
3) 陽イオン交換クロマトグラフィー  3) Cation exchange chromatography
2)で回収した上清をリン酸セルロース樹脂 (P11)を充填したカラムにアプライした。 陽ィォン交換された樹脂を専用のカラムに充填してから一昼夜かけて平衡化緩衝液で 置換した。 ここにサンプル上清をアプライし、 すべてのサンプルをアプライ後、 平衡化 緩衝液で一度洗浄した。 洗浄終了後、 NaCl濃度勾配 300mM〜1100mMのリニアグラジェ ント法を用いて、 サンプルを溶出させた。 溶出液はフラクションコレクターを用いて、 フラクションチューブに 80滴/本 (約 4ml)の割合で回収した。 この時、 サンプルの溶出 速度を約 50ffll/hで行った。  The supernatant collected in 2) was applied to a column filled with a cellulose phosphate resin (P11). The resin subjected to the ion exchange was packed in a dedicated column, and was replaced with the equilibration buffer overnight. Here, the sample supernatant was applied, and after all the samples were applied, the sample was washed once with an equilibration buffer. After washing, the sample was eluted using a linear gradient method with a NaCl concentration gradient of 300 mM to 1100 mM. The eluate was collected in a fraction tube at a rate of 80 drops / tube (about 4 ml) using a fraction collector. At this time, the elution rate of the sample was set at about 50 ffll / h.
Tric ine SDS電気泳動にてアプライ後サンプル、 洗浄後 (wash)サンプル、 フラクショ ンサンプルを流し、 RF2- DBDのバンドが見られるサンプルを回収した。  A sample after application, a sample after washing (wash), and a fraction sample were flowed by Tricine SDS electrophoresis, and a sample in which an RF2-DBD band was observed was collected.
4) 濃縮  4) Concentration
次の操作で分解の能をあげるため、フラクションチューブに回収したサンプルをセン トリプレップ [Amicon社製 Centriprep3:容量 15ml, 分画分子量 3000]、 セントリコン [Amicon社製 Centr icon3:容量 2ml, 分画分子量 3000]を用いて行った。 あらかじめ防 腐剤としてグリセロールがフィルターにくっついているため、 Mi l l iQ で洗浄してから 用いた。 遠心(4 °C, 8000 X g)で濃縮した。  In order to improve the decomposition performance by the following operation, the sample collected in the fraction tube was centriprep [Cenriprep3 by Amicon: capacity 15 ml, molecular weight cut-off 3000], Centricon [Centricon3 by Amicon: capacity 2 ml, molecular weight cut-off 3000] ]. Glycerol was pre-attached to the filter as a preservative, so it was washed with MilliQ before use. It was concentrated by centrifugation (4 ° C, 8000 X g).
5) ゲルろ過クロマトグラフィー(Ge卜 f i l trat ion Chrom tography)  5) Gel filtration chromatography (Ge fi l trat ion Chrom tography)
濃縮サンプルを HPLCで、 ゲルろ過クロマトグラフィーによって精製した(50 リン 酸力リゥム緩衝液 [pH7. 0] , 1M NaCl)。 h謂 -DBDを Flow 2ml/minで 70〜'75分間で溶 離させた。 溶出確認は Tric ine SDS電気泳動で行った。 6) 最終サンプルの調整 The concentrated sample was purified by HPLC and gel filtration chromatography (50 phosphate buffer solution [pH 7.0], 1M NaCl). h-DBD was dissolved at a flow rate of 2 ml / min for 70 to 75 minutes. The elution was confirmed by Tricine SDS electrophoresis. 6) Final sample adjustment
Tricine SDS電気泳動で hTRF2- DBDが単離したことを確認した。 セントリブレップ, セントリコンにより濃縮し、 50mMリン酸カリウム緩衝液 [pH7.0]、 lOOmMNaClの緩衝液 にサンプルを可溶させた状態で凍結乾燥し、 一 20°Cで保存した。  Tricine SDS electrophoresis confirmed that hTRF2-DBD was isolated. The sample was concentrated with CentriBrep and Centricon, lyophilized with the sample dissolved in a 50 mM potassium phosphate buffer [pH 7.0], 100 mM NaCl buffer, and stored at 120 ° C.
*濃度検定  * Concentration test
紫外線吸収を利用してテロメァタンパク質の濃度決定を行った。 Lambert- Beer の法 則にしたがってモル濃度を求めた。 タンパク質は、 280nmにおいて Y (チロシン)と W (ト リブトフアン)の側鎖による吸収を検出する。この吸収量は Y、 Wの含量に依存している。 モル吸光度係数 £ 2 を求める。 The concentration of telomere protein was determined using ultraviolet absorption. The molarity was determined according to Lambert-Beer's law. The protein detects the absorption by the side chains of Y (tyrosine) and W (tritophan) at 280 nm. This absorption depends on the content of Y and W. Determine the molar extinction coefficient £ 2 .
蛋白質の最大吸光度波長: 280 nm Maximum absorbance wavelength of protein: 280 nm
£ 280=Trp数 X £Try+Tyr数 X £Tyr+Phe数 X ερ^ £ 280 = Trp number X £ T ry + Tyr number X £ T yr + Phe number X ερ ^
εχΓρ=5500, εΤγΓ=1340, ephe=190 εχ Γρ = 5500, ε ΤγΓ = 1340, eph e = 190
Lambert-Beerの法則: Abs= ε ■ C · 1 Lambert-Beer's law: Abs = ε ■ C · 1
Absorbance (OD: Optical density), ε モル吸光度係数(1/mol/cm) , C:モル濃度 (mol/1), 1:セル幅 (cm)  Absorbance (OD: Optical density), ε molar absorbance coefficient (1 / mol / cm), C: molar concentration (mol / 1), 1: cell width (cm)
hTRFl-DBD, MRF2-DBDのモル吸光係数 Molar extinction coefficient of hTRFl-DBD, MRF2-DBD
ε 280=4X 5500 + 2X 1340 + IX 190=24870=2.5Χ1θ4 ε 280 = 4X 5500 + 2X 1340 + IX 190 = 24870 = 2.5Χ1θ4
また、 εΤΓΡ:5500, £Tyr= 1340とすれば、 Also, if εΤΓΡ: 5500 , £ Ty r = 1340,
ε 280 = 4 Χ 5500 + 2Χ 1340=24680=2.5Χ1θ4 ε 280 = 4 Χ 5500 + 2 Χ 1340 = 24680 = 2.5Χ1θ4
1.5実験試薬 1.5 Experimental reagents
表 Η Table Η
LB培地組成(3L)  LB medium composition (3L)
tryptone Peptone 30g、 yeast Extract 15g、  tryptone Peptone 30g, yeast extract 15g,
NaCl 30g、 IN NaOH 3ml、 MilliQ 3L  NaCl 30g, IN NaOH 3ml, MilliQ 3L
オートクレーブ滅菌  Autoclave sterilization
M9培地 (3D  M9 medium (3D
A: Na2HP04 38.2g、 KH2P04 9.0g、 NaCl 1.5g、 A: Na 2 HP0 4 38.2g, KH 2 P04 9.0g, NaCl 1.5g,
15NH4C1 (15Nラベル) 4.5g、 MilliQ 3L (オートクレープ滅菌) ; 4.5 g of 15 NH 4 C1 (15N label), MilliQ 3L (autoclave sterilization);
B: 1M Mg04 6.0ml (ォートクレーブ滅菌) C: 1M CaCl2 300 1 (オートクレープ滅菌) D: C6H1206 lOg (フィルター滅菌) 表卜 2 B: 1M Mg0 4 6.0ml (autoclave sterilization) C: 1M CaCl 2 300 1 (autoclave sterilization) D: C 6 H 12 0 6 lOg ( filter sterilized) Table Bok 2
3 X変性剤の組成  3 Composition of X modifier
6%SDS、 24%GlyseroK 12% 2-mercapto et anoL 0.3M Tris-HCl (pH6.8)、 0.15% Bromophenol Blue 表卜 3  6% SDS, 24% GlyseroK 12% 2-mercapto et anoL 0.3M Tris-HCl (pH6.8), 0.15% Bromophenol Blue Table 3
Tricine SDS-PAGEの組成  Composition of Tricine SDS-PAGE
Separating gel Separating gel
46.5 : 3.0 ァクリルアミド溶液 1. lml gel buffer 3.15ml 46.5: 3.0 acrylamide solution 1.lml gel buffer 3.15ml
MilliQ 0.35ml MilliQ 0.35ml
Glycerol 1.7g  Glycerol 1.7g
10%APS 35 xl  10% APS 35 xl
TEMED 3.75 l  TEMED 3.75 l
Stacking gel  Stacking gel
48 : 1.5 ァクリルアミド溶液 0.225ml gel buffer 0.875ml 48: 1.5 acrylamide solution 0.225ml gel buffer 0.875ml
MilliQ 0.8ml MilliQ 0.8ml
10%APS 37.5/il 10% APS 37.5 / il
TEMED 3· 5 xl TEMED 3.5xl
Spacer gel  Spacer gel
48 : 1.5 アクリルアミド溶液 0.45ml Gel buffer 1.125ml 48: 1.5 Acrylamide solution 0.45ml Gel buffer 1.125ml
MilliQ 0.675mlMilliQ 0.675ml
10 PS 25 1 10 PS 25 1
TEMED 2.5 zl 46.5: 3.0アクリルアミド溶液…アクリルアミド 6.5%、 BIS 0.8% 48: 1.5アクリルアミド溶液…アクリルアミド 48、 BIS 1.5% ゲル緩衝液 ·'·2Μ Tris-HCl (pH8.45)、 0.3¾SDS 表 H TEMED 2.5 zl 46.5: 3.0 acrylamide solution: acrylamide 6.5%, BIS 0.8% 48: 1.5 acrylamide solution: acrylamide 48, BIS 1.5% gel buffer · '· 2 · Tris-HCl (pH8.45), 0.3¾SDS Table H
Tricine SDS電気泳動用緩衝液  Tricine SDS electrophoresis buffer
内液 (Cathode) : MilliQ 900ml、 1M Tricine (pH8.25) 99ml, Internal solution (Cathode): MilliQ 900ml, 1M Tricine (pH8.25) 99ml,
Tris 11.97g、 10¾SDS 9.99ml  Tris 11.97g, 10¾SDS 9.99ml
外液 (Anode) : MilliQ 810ml, 2M Tris(pH8.9) 90ml 表卜 5 External solution (Anode): MilliQ 810ml, 2M Tris (pH8.9) 90ml Table 5
クマシ一 ·ブリリアント ·ブル一染色(CBB染色)液の組成 Composition of Kumasi-Brilliant-Bul-Stain (CBB stain) solution
2.5g/l Coomassie Brilliant Blue, 45%MethanoL 10%酢酸 表卜 6 2.5g / l Coomassie Brilliant Blue, 45% MethanoL 10% acetic acid
CBB染色の脱色液の組成  Composition of decolorizing solution for CBB staining
5¾MethanoK 7.5%酢酸 表 1-7 5¾MethanoK 7.5% acetic acid Table 1-7
Wizard Plus Minipreps DNA Purification system kit (Promega社製) アルカリ溶菌法を用いた DNA抽出キット  Wizard Plus Minipreps DNA Purification system kit (Promega) DNA extraction kit using alkaline lysis method
Cell Resuspension溶液 Cell Resuspension solution
50mM Tris-HCl [pH7.5]  50mM Tris-HCl [pH7.5]
10ni EDTA  10ni EDTA
100Ai /ml RNase A  100Ai / ml RNase A
Cell Lysis溶液 Cell Lysis solution
0. M NaOH  0. M NaOH
1% SDS  1% SDS
Neutral izat ion 1. 3 M potass ium acetate [pH4. 8] Neutral izat ion 1.3 M potassium acetate [pH4.8]
40%isopropanol/4. 2M guanidine HC1 40% isopropanol / 4.2M guanidine HC1
Guanidine hydrochloride 66. 9g I 4. 2M HC1で溶解 実験結果  Guanidine hydrochloride 66.9g I4.2 Dissolution with 2M HC1 Experimental results
1. 6 hTRFl-DBDの発現  1.6 Expression of hTRFl-DBD
1) hTRF卜 DBDの発現系の変更  1) Change of expression system of hTRF DBD
① MRF卜 DBD発現用 E. coli BL21 (DE3) pLysS株の培養  ① Culture of E. coli BL21 (DE3) pLysS strain for expression of MRF-DBD
大腸菌に特徴的な粘性があり、 取り扱いにくく回収量に問題があった。 また、 菌体自 体が古くなつたためか発現量が少なかった。  Escherichia coli has a characteristic viscosity, which makes it difficult to handle and has a problem with the amount recovered. The expression level was low, probably because the cells themselves were old.
② hTRFl- DBD発現用プラスミド pET13aの回収  ② Recovery of plasmid pET13a for expression of hTRFl-DBD
ペレツトを十分 Cel l lys is溶液で溶解しないと回収できるプラスミド量が減ること が分かった。 Neutral izat ion溶液による中和反応で時間を置くことでプラスミド回収 量が増加した。 大腸菌株が持つエンドヌクレア一ゼを発現(EndA+)するため、 これを 40%イソプロパノール /4. 2M塩酸グァニジン溶液でしっかりと失活させないとプラス ミド回収量が減少した。  It was found that the amount of plasmid that can be recovered is reduced unless the pellet is sufficiently dissolved in the cell lysis solution. The amount of plasmid recovered was increased by allowing time for the neutralization reaction with the neutralization solution. In order to express the endonuclease (EndA +) of the E. coli strain, the amount of recovered plasmid was reduced unless it was thoroughly inactivated with a 40% isopropanol / 4.2M guanidine hydrochloride solution.
③ hTRFl- DBD発現用 E. coli BL21 (DE3)へ形質転換と発現確認  ③ Transform to E. coli BL21 (DE3) for hTRFl-DBD expression and confirm expression
形質転換反応には、正確な時間を計りながら行った。比較的にスムーズに形質転換さ れた。  Transformation reactions were performed with accurate timing. Transformation was relatively smooth.
2) hTRF卜 DBD発現大腸菌の大量培養  2) Large scale cultivation of hTRF DBD expressing E. coli
培養はすべて無菌的に行った。 0. D600 = 0. 6時に IPTGを投与したことで RF卜 DBDの 発現が増加した。 この時、 37°C培養から 20〜25 付近まで低温に下げ、 穏やかに培養 した。 こうすることで 37°Cの一定温度培養より hTRFl- DBDが可溶性画分に移動した。 All cultures were performed aseptically. The administration of IPTG at 0.6 D 600 = 0.6 increased the expression of RFD DBD. At this time, the temperature was lowered from 37 ° C culture to around 20-25, and cultivated gently. In this way, hTRFl-DBD was transferred to the soluble fraction from the constant temperature culture at 37 ° C.
£ coli BL21 (DE3) pLysS株より coli BL21 (DE3)株での hTRFl-DBD発現量が大きく 増加した。 また、 大腸菌が扱いやすくなつたため、 ロスが少なくなつた。  The expression level of hTRFl-DBD in coli BL21 (DE3) was significantly higher than that in pLysS strain. In addition, E. coli has become easier to handle, so losses have been reduced.
1. 7 hTRFl-DBDの精製  1.7 Purification of hTRFl-DBD
hT F2-DBD よりも精製が複雑になった。 特に夾雑物の存在が問題で、 pH を中性付近 (pH8. 0以下)にすると MRF卜 DBDを共沈させ、陽イオン交換ク口マトダラ: ィ一やゲル ろ過クロマトグラフィーによってもすべて夾雑物が何らかの相互作用をしていて取り 除くことが困難であった。ゲルろ過クロマトグラフィーの回数を増やしたり、溶出速度 を下げたり、疎水性クロマトグラフィーを行ったりすることで hTRFl- DBDが単離できた。 Purification was more complicated than hT F2-DBD. In particular, the presence of contaminants is a problem. When the pH is set to around neutral (pH 8.0 or lower), MRF DBD is co-precipitated, and all contaminants are removed by cation-exchange clotting matella and gel filtration chromatography. Some interaction It was difficult to remove. HTRFl-DBD could be isolated by increasing the number of gel filtration chromatography, decreasing the elution rate, or performing hydrophobic chromatography.
E. coll BL21 (DE3) pLysS株より coli BL21 (DE3)株での hTRFl- DBD発現量が大きく 増加したことで、 最終回収量も増加した。  E. coll BL21 (DE3) The amount of hTRFl-DBD expression in the coli BL21 (DE3) strain was significantly greater than in the pLysS strain, resulting in an increase in the final recovery.
1. 8 hTRF2-DBD発現大腸菌の大量培養  1.8 Mass culture of E. coli expressing hTRF2-DBD
培養はすべて無菌的に行った。 0. D600=0. 6時に IPTGを投与したことで hTRF2- DBDの 発現がスムーズに促された。 この時、 37°C培養から 30°C付近まで温度を下げて培養し た。 RF2- DBDはほぼすベて可溶性画分に確認できた。 発現量が多い割には、 湿重量は 12g程度であった。 All cultures were performed aseptically. Administration of IPTG at 0.6 at D 600 = 0.6 promoted hTRF2-DBD expression smoothly. At this time, the temperature was lowered from 37 ° C culture to around 30 ° C and cultured. Almost all of the RF2-DBD was found in the soluble fraction. Despite the large amount of expression, the wet weight was about 12 g.
1. 9 hTRF2-DBDの精製 1. 9 Purification of hTRF2-DBD
RF2- DBDは、 hTRF卜 DBDに比べ、 発現量がかなり多かった。 このため電気泳動時に は、濃度が濃いため数百倍に希釈してアプライした。 リン酸セルロースカラムによる陽 イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィ一で完全に MRF2- DBDは単 離できた。  The expression level of RF2-DBD was much higher than that of hTRF-DBD. Therefore, during electrophoresis, the concentration was so high that it was diluted several hundred times and applied. MRF2-DBD was completely isolated by cation exchange chromatography and gel filtration chromatography using a cellulose phosphate column.
以上の実験操作の流れと得られた M1F1- DBD (請 =8578. 89 Da) 及び hTRF2-DBD (MW=7539. 65 Da) の電気泳動図を図 6に示す。  FIG. 6 shows the flow of the above experimental operation and the electropherograms of M1F1-DBD (8578.89 Da) and hTRF2-DBD (MW = 7539.65 Da) obtained.
[実施例 2 ] hTRFl-DBD, MRF2- DBDと G-四重らせん DNA (G-Quadru lex, G- Quartet)と の相互作用の解析 [Example 2] Analysis of interaction between hTRFl-DBD, MRF2-DBD and G-quadruplex DNA (G-Quadrulex, G-Quartet)
実験方法 experimental method
2. 1 His- tag融合 hTRF2- DBDの調整  2.1 Adjustment of His-tag fusion hTRF2-DBD
G -四重らせん DNAと hTRF2- DBDとの相互作用は、 DNA側を固定化させて Biacoreで測 定するとベースラインが安定せず、解離定数 (KD)を算出することができなかった。また、 先に固定化した G-四重らせん DNAの構造自体が常に維持されているのか問題であった。 そのため、 タンパク質側を固定化させて相互作用を測定することを考え、 hTRF2- DBDの N末端とそれとは反対の C末端にそれぞれ 10 アミノ酸残基を余分に付加させた 6 X His- tag融合タンパク質発現系をまず作成した。 G - interaction with quadruple helix DNA and HTRF2- DBD, when by immobilized DNA side measured at Biacore without baseline stabilized, it was not possible to calculate the dissociation constant (K D). It was also a question of whether the structure of the previously immobilized G-quadruplex DNA itself was always maintained. Therefore, considering the measurement of the interaction by immobilizing the protein side, a 6 X His-tag fusion protein with an extra 10 amino acid residues added to the N-terminus of hTRF2-DBD and the C-terminus opposite to it, respectively An expression system was first created.
1) His- tag融合 tiTRF2- DBDの発現系作成 .  1) Creation of expression system for His-tag fusion tiTRF2-DBD.
① hT F2- DBD発現用 E. coli BL21 (DE3)株の培養 初めにきれいな 本の試験管に LB培地 10mlをそれぞれ調整し、 オートクレープに より滅菌した [120 , 15〜20分]。 滅菌処理後、 (:^&118611(:11内で培地を40~60^以下 に冷ましてから、 ここに無菌的に抗生物質である 100 g/mlアンピシリンを加え、 さら に一 80°Cのディープフリーザーで保存した RF2- DBDアミノ酸配列(配列番号 5)をコ ードした pET23bを形質転換した W//BL21 (DE3)株を適量に植菌した。 この試験管を air bat 内で 37°C12時間以上振騰した。 その後、 吸光度で 0. D6QQが 1.0以上なつたと ころで大腸菌を含む培地を回収し、 遠心(5000Xg, 2分)によって 1.5ml のエツペンに 集菌させた。 このとき、 上精とペレットに分離するが、 目的の hTRF2- DBDを含むペレツ 卜(大腸菌)のみを回収した。 ① Culture of E. coli BL21 (DE3) for hT F2-DBD expression First, 10 ml of LB medium was prepared in a clean test tube and sterilized by autoclaving [120, 15 to 20 minutes]. After sterilization, cool the culture medium to 40 ~ 60 or less in (: ^ & 118611 (: 11), aseptically add 100 g / ml ampicillin as an antibiotic, and further deepen at 180 ° C. The W // BL21 (DE3) strain transformed with pET23b encoding the RF2-DBD amino acid sequence (SEQ ID NO: 5) stored in a freezer was inoculated in an appropriate amount. After that, the medium containing E. coli was collected when the absorbance reached 0. D 6QQ of 1.0 or more, and the cells were collected by centrifugation (5000 xg, 2 minutes) in a 1.5 ml eppen. The supernatant was separated into a pellet and only the pellet (E. coli) containing the target hTRF2-DBD was recovered.
② hTRF2- DBD発現用プラスミド pET23bの回収  ② Recovery of plasmid pET23b for expression of hTRF2-DBD
大腸菌からのプラスミド溶出 ·回収には、 Wizard Plus Minipreps DNA Purification systemkit (Promega社製)を用いた。 あらかじめ滅菌水を用いて培地を取り除いたペレ ットに]{^試薬の06111^8115 61^1011溶液400 1を添加し、 DNA · RNA分解酵素阻害反 応させ、 次に Cell lysis溶液 400^1で細胞膜を溶解させた。 溶出させた大腸菌内の核 酸とタンパク質 ·不純物等を Neutralization溶液 800 1加えることで分離した。 これ を lOOOOXgの遠心して核酸を含む上清のみミニカラムを用いて pET13aプラスミドだけ 溶出させた。 この時、 大腸菌株が End A+株であったため、 40%イソプロパノ一ル /42M 塩酸グァニジン溶液 2mlを加えることでその酵素を不活性化させた。  For plasmid elution and recovery from E. coli, a Wizard Plus Minipreps DNA Purification system kit (Promega) was used. To the pellet from which the medium has been removed using sterile water in advance, add {1} 06111 ^ 8115 61 ^ 1011 solution 400 1 of the reagent, and react with the DNA / RNA degrading enzyme. To dissolve the cell membrane. The eluted nucleic acid, protein, impurities, etc. in E. coli were separated by adding 800 1 Neutralization solution. This was centrifuged at IOOOOXg, and only the pET13a plasmid was eluted using a mini-column containing only the supernatant containing nucleic acids. At this time, since the E. coli strain was End A + strain, the enzyme was inactivated by adding 2 ml of a 40% isopropanol / 42M guanidine hydrochloride solution.
③ His- tag融合 hTRF2- DBD発現部分 (ィンサート)の増幅  ③ Amplification of His-tag fusion hTRF2-DBD expression part (Insert)
ベックス社より目的の制限酵素サイトのプライマーとなる ssDNAを購入した。 N末端 His- tag用に Nde I -BamH Iサイトを付加させるプライマーを設計した。プライマー設計 の条件として、 N末端の His- tagから 10アミノ酸延長した部分に RF2-DBDをコード する DNAがくるようにし、 5' -primerと 3' -primerの変性温度 (Tm値)をほぼ同じにす るような 30〜40塩基配列 DNAとした。  The ssDNA used as a primer for the target restriction enzyme site was purchased from Vex. Primers were designed to add an NdeI-BamHI site for the N-terminal His-tag. As a condition for primer design, the DNA encoding RF2-DBD should be placed 10 amino acids from the N-terminal His-tag, and the denaturation temperatures (Tm values) of 5'-primer and 3'-primer are almost the same. A 30 to 40 base sequence DNA was used.
5' - primer ·· N末端 His- tag用 5' プライマー 5'-primer5 'primer for N-terminal His-tag
5, -CGCATATGGAAGACAGTACAACCAATATAACAAAAAAGCAG-3 ' (配列番号 9 ) 5, -CGCATATGGAAGACAGTACAACCAATATAACAAAAAAGCAG-3 '(SEQ ID NO: 9)
3' - primer: N末端 His- tag用 3' プライマー 3'-primer: 3 'primer for N-terminal His-tag
5 ' -GATGGATCCTCAGTTCATGCCAAGTCTTTTCATG-3 ' (配列番号 10) 5'-GATGGATCCTCAGTTCATGCCAAGTCTTTTCATG-3 '(SEQ ID NO: 10)
また、 C末端 His-tag用に Ndel- Sal Iサイトを付加させるプライマーを設計した。 プ W In addition, a primer for adding a Ndel-Sal I site for the C-terminal His-tag was designed. Step W
ライマ一設計の条件として、 hTRF2- DBDをコードする DNAから C末端へ 9アミノ酸延長 した部分に His- tagがくるようにし、 5' -primerと 3' -primerの変性温度 (Tm値)をほ ぼ同じにするような 30〜40塩基配列 DNAとした。 As a condition for the primer design, the denaturation temperature (Tm value) of 5'-primer and 3'-primer should be set so that the His-tag comes to the 9 amino acid extension from the DNA encoding hTRF2-DBD to the C-terminus. A 30 to 40 base sequence DNA was used to make the DNA identical.
5' - primer: C末端 His - tag用 5, プライマ一 5'-primer: For C-terminal His-tag 5, Primer
5 ' -CGCATATGGMGACAGTACAACCAATATAACAMAAAGCAG-3, (配列番号 1 1 )  5'-CGCATATGGMGACAGTACAACCAATATAACAMAAAGCAG-3, (SEQ ID NO: 11)
3' - primer: C末端 His- tag用 3' プライマー  3'-primer: 3 'primer for C-terminal His-tag
5' -GATGTCGACGTTCATGCCAAGTCTTTTCATGGTC-3' (配列番号 12)  5'-GATGTCGACGTTCATGCCAAGTCTTTTCATGGTC-3 '(SEQ ID NO: 12)
これらを PCR法 [PERKIN ELMER社製 GeneAmp PCR System2400]で目的のインサート部分 を増幅させた。  These were used to amplify the target insert by PCR (GeneAmp PCR System2400, manufactured by PERKIN ELMER).
④ hTRF2- DBD発現部分 (ィンサート)の制限酵素サイト処理  処理 Treatment of hTRF2-DBD expression part (Insert) with restriction enzyme site
③で増幅させた制限酵素サイトを Nde I、 BamH Iを用いて制限酵素処理した。制限酵 素活性 buffer には、 H buffer (500 mM Tris-HCl, pH7.5, 100 mM MgCl2, 10 mM Dithiothreitol, 1 M NaCl)を用いた。 37°Cの恒温槽に一昼夜(10時間以上)を放置して 反応させた。 The restriction enzyme site amplified in (3) was treated with Nde I and BamHI. As the restriction enzyme activity buffer, H buffer (500 mM Tris-HCl, pH 7.5, 100 mM MgCl 2 , 10 mM Dithiothreitol, 1 M NaCl) was used. The reaction was allowed to occur overnight (over 10 hours) in a thermostat at 37 ° C.
⑤ His- tag融合タンパク質発現用ベクターの調整  調整 Preparation of expression vector for His-tag fusion protein
N末端 His- tag用 hTRF2- DBD発現用に pET28a [Nde I -BamH I ] [図 7]をべクタ一として 制限酵素処理した。 また、 C末端 His- tag用 hTRF2- DBD発現用には pET21a[NdeI_BamH I] [図 8]をベクターとして制限酵素処理した。 両方とも Promega社から購入したもの を用いた。 制限酵素活性 bufferには Hbuffer(500 mMTris_HCl, pH7.5, 100mMMgCl2, 10 mM Dithiothreitol, 1 M NaCl)を用いた。 37°Cの恒温槽に一昼夜(10時間以上)を放 置して反応させた。 PET28a [NdeI-BamHI] [Fig. 7] was treated with a restriction enzyme as a vector for expression of hTRF2-DBD for N-terminal His-tag. Also, for expression of hTRF2-DBD for C-terminal His-tag, pET21a [NdeI_BamHI] [FIG. 8] was used as a vector for restriction enzyme treatment. Both were purchased from Promega. Hbuffer (500 mM Tris_HCl, pH 7.5, 100 mM gCl 2 , 10 mM Dithiothreitol, 1 M NaCl) was used as the restriction enzyme activity buffer. The reaction was allowed to occur overnight (over 10 hours) in a thermostat at 37 ° C.
⑥ァガロース電気泳動とゲル消化  Pagarose electrophoresis and gel digestion
制限酵素処理 (④、 ⑤)後、 それぞれのインサートとベクターを 2%ァガロース電気泳 動によって目的 DNAを回収した(100V, ∞ 。 染色にはェチジゥムブロマイド染色を用 いて、 紫外線イルミネーターで検出した。  After restriction enzyme treatment (④, ⑤), each insert and vector were subjected to 2% agarose electrophoresis to recover the target DNA (100 V, 。. Using ethidium bromide staining for staining with an ultraviolet illuminator. Detected.
ァガロースゲルからゲルから目的バンドだけを切り離し、 ゲル消化液をァガロース ゲル lmgあたり 1 1だけ加え、 60〜65 でよく溶解させた。これをミニカラムに移し、 DNAだけをフィル夕一に吸着させ、エタノール沈殿による洗浄を三回以上罈り返して遠 心し、 蒸留滅菌水で目的 DNAを溶出させた。 ⑦ライゲーシヨン反応 Only the target band was separated from the agarose gel, and the gel digestion solution was added at only 11 per mg of agarose gel and dissolved well at 60-65. This was transferred to a mini column, and only the DNA was adsorbed on the filter overnight. Washing with ethanol precipitation was repeated at least three times and centrifuged, and the target DNA was eluted with distilled sterilized water. ⑦ Ligation reaction
回収したベクタ一とインサートをインサート側の濃度を多くして、 インサート :ベ クタ一 =7~10 : 1 の割合で混ぜ、 ライゲーシヨン反応液 (東洋紡社製)を等量添加し、 16°Cで 1時間以上ィンキュベートした。  Increase the concentration of the recovered vector and insert on the insert side, insert: vector: mix at a ratio of 7 to 10: 1, add an equal volume of ligation reaction solution (manufactured by Toyobo Co., Ltd.), and heat at 16 ° C. Incubated for over 1 hour.
⑧ His - tag融合 hTRF2-DBD 発現用 R coli BL2卜 codonPlus (DE3) -RIL 株へ形質転換 (Transformat ion)と発現確認  R Transformation of R-coliPlus (DE3) -RIL strain for expression of His-tag fusion hTRF2-DBD for expression of RTR
N 末端 His- tag 融合 hTRF2- DBD 発現用 pET28a プラスミド 1〜2 1 と R coli BL21- codonPlus (DE3) - RIL株の co即 etent cel l 20 1 を混ぜ合わせ、 正確に氷上で冷 やしながら 30分静置した後、 42°Cのヒートショック(約 45秒)を与え、 2分程度氷上に 再び安置させることで目的の大腸菌に形質転換させた。 これにあらかじめ 37°Cで温め て解凍して置いた S0C培地約 500 1を添加して、それを 37°Cの恒温槽内で 1時間以上 培養させた。 S0C培地内で増えた大腸菌を次に先に 37°Cで温めておいた LBプレート(50 g/mlカナマイシンを含む)に植菌し、 37°Cで一昼夜、 コロニーが形成されるまで安置 した。 同様に C 末端 His-tag 融合 hTRF2-DBD 発現プラスミ ド pET21a も BL2卜 codonPlus (DE3) _RIL株に形質転換させた。 ただし、 LBプレートは、 lOO g/ml 7 ンピシリンを添加したものを用いた。  Mix pET28a plasmid 1-21 for N-terminal His-tag fusion hTRF2-DBD expression with R coli BL21- codonPlus (DE3)-co-immediate etent cel l 201 of RIL strain, and cool accurately on ice 30 After leaving still for a minute, a heat shock of about 42 ° C (approximately 45 seconds) was given, and the cells were again placed on ice for about 2 minutes to transform the target Escherichia coli. To this was added about 500 S0C medium, which had been pre-warmed and thawed at 37 ° C, and incubated in a thermostat at 37 ° C for 1 hour or more. The Escherichia coli grown in the S0C medium was then inoculated on an LB plate (containing 50 g / ml kanamycin) that had been previously warmed at 37 ° C and left overnight at 37 ° C until colonies formed. . Similarly, the C-terminal His-tag-fused hTRF2-DBD expression plasmid pET21a was also transformed into BL2 codonPlus (DE3) _RIL strain. However, the LB plate used was supplemented with 100 g / ml 7 ampicillin.
次に LB培地 100mlを調整し、 オートクレープ滅菌した後、 そこから無菌的にそれぞ れニ本の試験管に LB培地を 5mlとり、 形成したコロニーのうち 1つだけを無菌的に植 菌した。そこに抗生物質である 50 g/mlカナマイジン 末端 His - tag用は 100 x g / ml アンピシリン)を加え、 4〜5時間 37°Cで前培養した。 0. D6m)=0. 5あたりで一部グリセ ロールストックをつくり一 で保存した。 残りの培養液は、 すべて 0. D6Mの各段階 (0. 6, 0. 8)で IPTGを投与してそれぞれの Hi s - tag融合 hTRF2_DBDの発現確認に用いた。 2) N末端 His- tag融合 hTRF2- DBDの培養 Next, 100 ml of LB medium was prepared and sterilized by autoclaving, and then 5 ml of LB medium was aseptically taken from each of the two test tubes, and only one of the formed colonies was aseptically inoculated. . An antibiotic 50 g / ml kanamidine for terminal His-tag was added at 100 xg / ml ampicillin), and precultured at 37 ° C for 4 to 5 hours. A part of the glycerol stock was prepared around 0.5 (D. 6m) = 0.5 and stored together. The remaining culture, each stage all 0. D 6M (0. 6, 0. 8) each Hi s by administering IPTG at - used for expression confirmation of tag fusion HTRF2_DBD. 2) Culture of N-terminal His-tag fusion hTRF2-DBD
Biacore による相互作用測定の際の固定化リガンドとして His- tag融合 MRF2- DBD を使うために LB培地 400ml程度の培養を行った。 培養と精製は、 N末端 His- tag融合 MRF2-DBDと C末端 His- tag融合 MRF2- DBDをそれぞれ別の LB培地で同時に行った。 ①前培養  In order to use His-tag fusion MRF2-DBD as an immobilized ligand for the interaction measurement by Biacore, cultivation of about 400 ml of LB medium was performed. Culture and purification were carried out simultaneously on different LB media for N-terminal His-tag fused MRF2-DBD and C-terminal His-tag fused MRF2-DBD, respectively. ① Preculture
初めにきれいな試験管に LB培地約 10ml を調整し、 オートクレープにより滅菌処理 を行った [120°C, 15〜20分]。 Clean Bench内で培地を 40〜60°C以下に冷ましてから、 ここに無菌的に抗生物質である 50 g/mlカナマイシンを加えた。 さらに— 80°Cのディ ープフリーザーから先に作成した N末端 His- tag融合 tiTRF2- DBD の発現プラスミド pET28aを形質転換した E. coli BL21 (DE3)株 _RIL (Novagen社製)を適量に植菌した。 こ の試験管を air bath内で 37°C 12時間以上振騰させた。 その後、 吸光度計で波長 600nm の 0. D画が L 0以上なつたところで大腸菌を含む培地をすベて本培養に移した。 First, about 10 ml of LB medium was prepared in a clean test tube, and sterilized by autoclave [120 ° C, 15 to 20 minutes]. Cool the medium to below 40-60 ° C in the Clean Bench, To this, 50 g / ml kanamycin as an antibiotic was added aseptically. In addition, an appropriate amount of E. coli BL21 (DE3) strain _RIL (Novagen) transformed with the N-terminal His-tag fusion tiTRF2-DBD expression plasmid pET28a was prepared from a deep freezer at -80 ° C. . The test tube was shaken in an air bath at 37 ° C for 12 hours or more. After that, when the 0.D fraction at a wavelength of 600 nm reached L0 or more with an absorptiometer, all of the medium containing E. coli was transferred to main culture.
②本培養 ② Main culture
きれいな 1L三角フラスコに LB 培地 400ml を調整し、 オートクレーブで滅菌した [121°C, 15〜20分]。 滅菌処理後、 あらかじめ抗生物質である 50 g/ml カナマイシン を無菌的に添加し、さらに消泡剤となる界面活性剤アデ力ノールを 1滴加え、温度 37°C でインキュベートしておいた。 前培養の大腸菌を植菌した後、 温度 37°Cで振騰培養し た。 吸光度計で波長 600服の 0. D細が 0. 6〜0. 7で 96mgの IPTGを添加して温度 25°C程 度まで下げて N末端 His- tag融合 RF2- DBDの発現誘導させた。その後、 0D删がブラト —に達したところで、 大腸菌回収用緩衝液 (50mMリン酸カリウム緩衝液 [pH7. 4] , 150mM NaCl, ImM EDTA)を用いて大腸菌を回収した。回収には、遠心機を使い、 4。C、 9000-12000 X g、 20 分で遠心して大腸菌を回収後、 発現量の目安のため湿重量を測定してから一 80°Cのディープフリーザーに保存した。 最後に Tricine SDS電気泳動で N末端 Hi s- tag 融合 hTRF2- DBDの発現を確認した。  400ml of LB medium was prepared in a clean 1L Erlenmeyer flask and sterilized in an autoclave [121 ° C, 15-20 minutes]. After sterilization, 50 g / ml kanamycin, an antibiotic, was aseptically added, and a drop of the surfactant Adekinol, a defoaming agent, was added to the plate and incubated at 37 ° C. After inoculation of pre-cultured E. coli, the cells were shake-cultured at a temperature of 37 ° C. 96 mg of IPTG was added at a wavelength of 0.6 to 0.7 using an absorbance meter at a wavelength of 0.6 to 0.7, and the temperature was lowered to about 25 ° C to induce the expression of N-terminal His-tag fusion RF2-DBD. . After that, when 0D 删 reached a plateau, E. coli was recovered using E. coli recovery buffer (50 mM potassium phosphate buffer [pH 7.4], 150 mM NaCl, ImM EDTA). Use a centrifuge for recovery. C, and centrifuged at 9000-12000 X g for 20 minutes to collect E. coli. After measuring the wet weight for estimation of the expression level, the cells were stored in a deep freezer at 180 ° C. Finally, the expression of N-terminal His-tag fused hTRF2-DBD was confirmed by Tricine SDS electrophoresis.
3) N末端 His- tag融合 RF2-DBDの精製 3) N-terminal His-tag fusion RF2-DBD purification
大腸菌を回収後、.超音波破砕機で His- tag融合 RF2- DBDを溶出させ、 リン酸セル ロースカラムクロマトグラフィー、 HPLC を用いたゲルろ過クロマトグラフィー [HiLoad™26/60 Superdex™30 prep grade]にて得た。 '  After recovering Escherichia coli, His-tag fusion RF2-DBD is eluted with an ultrasonic crusher, and gel filtration chromatography using cellulose phosphate column chromatography and HPLC [HiLoad ™ 26/60 Superdex ™ 30 prep grade] Was obtained. '
①超音波破砕 (Sonicat ion)  ① Ultrasonic crushing (Sonicat ion)
一 80°Cのディープフリーザーで凍結保存してある lysateを室温で穏やかに解凍させ、 そこに protease阻害剤の EDTA- f ree 1粒と lOmM PMSF 1ml /メタノールを加え超音波破 砕機で菌体破砕し、 N末端 His- tag融合 1F2- DBD溶出させた。破砕機の設定は、 Time: Hold, Duty cycle ( ) : cons tant, Output control: 20〜30で、 サンプル温度が 4。C以 上にならないように操作を行った。 2, 3度 30分再び一 80 のディープフリーザーで凍 結させることによって温度制限を維持し、 効率よく菌体破砕を行った。  (1) Gently thaw the lysate frozen in a deep freezer at 80 ° C at room temperature, add 1 protease inhibitor EDTA-free and 1 ml of lOmM PMSF / methanol, and disrupt the cells with an ultrasonic disrupter. Then, N-terminal His-tag fusion 1F2-DBD was eluted. Crusher settings are: Time: Hold, Duty cycle (): constant, Output control: 20-30, sample temperature 4 The operation was performed so that it did not exceed C or higher. The temperature was maintained by freezing again in a deep freezer at 180 degrees for two or three degrees for 30 minutes to efficiently disrupt the cells.
②遠心分画法 菌体破砕後、 大腸菌サンプル中の不溶性分画を取り除く目的で、 62000X g, 4°Cで 90 分遠心を行った。 これによつて N末端 His-tag融合 hTRF2- DBDを含む上清を回収した。② Centrifugal fractionation After disruption of the cells, centrifugation was performed at 62000 × g, 4 ° C. for 90 minutes to remove the insoluble fraction in the E. coli sample. Thereby, the supernatant containing the N-terminal His-tag-fused hTRF2-DBD was recovered.
③陽イオン交換クロマトグラフィー ③ Cation exchange chromatography
ストックとして 4°C保存しておいた樹脂を専用のカラムに充填してから一昼夜かけ て平衡化緩衝液 (50mMリン酸カリウム緩衝液 [pH7. 4] , ΙΟΟπιΜ NaCl, ImM EDTA)で置換し た。 ここに、 ②で回収した上清をリン酸セルロース樹脂 (P11)を充填したカラムにアブ ライし、 すべてのサンプルをアプライ後、 平衡化緩衝液で一度洗浄した。 洗浄終了後、 NaCl濃度 200、 300、 400、 500、 600 の緩衝液を用いた Step- by- Step法によりサンプ ルを溶出させた。 サンプルは、 それぞれ 50mlのコニカルチューブに回収した。  The resin stored at 4 ° C as stock was packed in a special column, and was replaced overnight with an equilibration buffer (50 mM potassium phosphate buffer [pH 7.4], ΙΟΟπιΜ NaCl, ImM EDTA). . Here, the supernatant collected in (2) was applied to a column filled with cellulose phosphate resin (P11), and all samples were applied and washed once with an equilibration buffer. After washing, the sample was eluted by the step-by-step method using NaCl concentrations of 200, 300, 400, 500, and 600. Each sample was collected in a 50 ml conical tube.
Tricine SDS電気泳動にてアプライ後サンプル、 洗浄後 (wash)サンプル、 フラクショ ンサンプルを流し、 N末端 H i S- 1 ag融合 hTRF 2- DBDのバンドが見られるサンプルを回収 した。  After Tricine SDS electrophoresis, a sample after application, a sample after washing (wash), and a fraction sample were flowed, and a sample in which a band of NTR-His-1ag-fused hTRF2-DBD was observed was collected.
④濃縮  ④ Concentration
⑤の操作で分解能をあげるため、フラクションチューブに回収したサンプルをセント リプレツプ [Amkon社製 Centr iprep3:容量 15ml, 分画分子量 3000]、 セントリコン [Amicon社製 Centricon3:容量 2ml, 分画分子量 3000]を用いて行った。 あらかじめ防 腐剤としてグリセロールがフィルターにくっついているため、 Mi l l iQ で洗浄してから 用いた。 遠心(4で, 8000 X g)で濃縮した。  In order to increase the resolution by the operation of ⑤, the sample collected in the fraction tube was centriprep [Amkon Centr iprep3: volume 15 ml, molecular weight cut off 3000], Centricon [Amicon Centricon3: volume 2 ml, molecular weight cut off 3000] It was carried out using. Glycerol was pre-attached to the filter as a preservative, so it was washed with MilliQ before use. It was concentrated by centrifugation (4, 8000 X g).
⑤ゲルろ過クロマトグラフィー (Ge卜 f i l trat ion Chromatography)  ⑤Gel filtration chromatography (Ge filtration Chromatography)
濃縮サンプルを HPLCで、 ゲルろ過 (HiLoadTM26/60 SuperdexTM30 prep grade)クロ マトグラフィ一によつて精製した(lOmMHEPES緩衝液 [pH7. 4] , lOOmM NaCl, lmM EDTA)。 N末端 His- tag融合 RF2- DBDを Flow 2ml/minで 100分間溶離させた [図 9]。  The concentrated sample was purified by gel filtration (HiLoadTM26 / 60 SuperdexTM30 prep grade) chromatography (10 mM HOPES buffer [pH 7.4], 100 mM NaCl, lmM EDTA). The N-terminal His-tag fusion RF2-DBD was eluted at a flow rate of 2 ml / min for 100 minutes [Fig. 9].
4) C末端 His- tag融合 hTRF2- DBDの培養 4) Cultivation of C-terminal His-tag fusion hTRF2-DBD
①前培養 ① Preculture
初めにきれいな試験管に LB培地約 10ml を調整し、 オートクレープにより滅菌処理 を行った [120Τ, 15〜20分]。 Clean Benc 内で培地を 40〜60t:以下に冷ましてから、 ここに無菌的に抗生物質である 100 /i g/mlアンピシリンを加えた。さらに一 80°Cのディ ープフリーザーから先に作成した C 末端 His- tag融合 hTRF2- DBD の発 ¾iプラスミド pET21aを形質転換した : ' BL21 (DE3)株- RILを適量に植菌した。 この試験管を air bath内で 37°C 12時間以上振縢させた。 その後、 吸光度計で波長 600nmの 0. D6QDが 1· 0 以上なつたところで大腸菌を含む培地をすベて本培養に移した。 First, about 10 ml of LB medium was prepared in a clean test tube, and sterilized by autoclave [120Τ, 15 to 20 minutes]. After the medium was cooled to 40-60 t: or less in Clean Benc, the antibiotic 100 / ig / ml ampicillin was aseptically added thereto. Further, the plasmid pET21a, which generated the C-terminal His-tag fusion hTRF2-DBD previously prepared from a deep freezer at 180 ° C., was transformed: 'BL21 (DE3) strain-RIL was inoculated in an appropriate amount. Air this test tube Shake in a bath at 37 ° C for 12 hours or more. After that, when the 0.6D of 0.6D at 600 nm reached 1.0 or more with an absorptiometer, all of the medium containing E. coli was transferred to main culture.
②本培養 ② Main culture
きれいな 1L三角フラスコに LB 培地 400ml を調整し、 オートクレープで滅菌した [12TC, 15〜20分]。 滅菌処理後、 あらかじめ抗生物質である 100 / g/mlアンピシリン を無菌的に添加し、さらに消泡剤となる界面活性剤アデ力ノールを 1滴加え、温度 37°C でインキュベートしておいた。 前培養の大腸菌を植菌した後、 温度 37°Cで振騰培養し た。 吸光度計で波長 600nmの 0. D6Mが 0. 6〜0. 7で 96mgの IPTGを添加して温度 25°C程 度まで下げて C末端 Hi s- tag融合 WRF2- DBDを発現誘導させた。その後、 0D咖がブラ卜 —に達したところで、 大腸菌回収用緩衝液(50mMリン酸カリウム緩衝液 [pH7. 4], 150mM NaCl, ImM EDTA)を用いて大腸菌を回収した。回収には、遠心機を使い、 4°C、 9000-12000 X g、 20 分で遠心して大腸菌を回収後、 発現量の目安のため湿重量を測定してから一 80°Cのディープフリーザーに保存した。 最後に Tric ine SDS電気泳動で C末端 Hi s- tag 融合 hTRF2- DBDの発現を確認した。 400ml of LB medium was prepared in a clean 1L Erlenmeyer flask and sterilized by autoclaving [12TC, 15-20 minutes]. After sterilization, 100 / g / ml ampicillin, an antibiotic, was added aseptically beforehand, and a drop of the surfactant Adekinol, a defoaming agent, was added, followed by incubation at 37 ° C. After inoculation of pre-cultured E. coli, the cells were shake-cultured at a temperature of 37 ° C. Photometer 0. D 6M wavelength 600nm is 0.5 at 6-0. Seven by the addition of IPTG 96mg to express induce C-terminal Hi s-tag fusion WRF2- DBD down to a temperature 25 ° C extent in . After that, when 0D 咖 reached the plate, E. coli was recovered using E. coli recovery buffer (50 mM potassium phosphate buffer [pH 7.4], 150 mM NaCl, ImM EDTA). For recovery, use a centrifuge to centrifuge at 9000-12000 X g for 20 minutes at 4 ° C to collect the E. coli, measure the wet weight to estimate the expression level, and place in a deep freezer at 180 ° C. saved. Finally, expression of hTRF2-DBD fused with C-terminal His-tag was confirmed by Tricine SDS electrophoresis.
5) C末端 His- tag融合 RF2- DBDの精製 5) Purification of C-terminal His-tag fusion RF2-DBD
N末端 His- tag融合 RF2- DBDの精製と同様に、 大腸菌を回収後、 超音波破砕機で C 末端 Hi s- tag融合 RF2-DBDを溶出させ、リン酸セルロースカラムクロマトグラフィー、 HPLCを用いたゲルろ過クロマトグラフィ一にて得た。  As in the purification of the N-terminal His-tag fusion RF2-DBD, after recovering the E. coli, the C-terminal His-tag fusion RF2-DBD was eluted with an ultrasonic crusher, and the cellulose phosphate column chromatography and HPLC were used. Obtained by gel filtration chromatography.
①超音波破砕 (Son i cat ion)  ① Ultrasonic crushing (Son i cat ion)
— 80°Cのディープフリーザーで凍結保存してある lysateを室温で穏やかに解凍させ、 そこに protease阻害剤の EDTA- free 1粒と lOmM PMSF 1ml /メタノールを加え超音波破 砕機で菌体破碎し、 C末端 His- tag融合 hTRF2- DBD溶出させた。破砕機の設定は、 Time: Hold, Duty cycle (%) : constant, Output cont rol: 20〜30で、 サンプル温度が 4°C以 上にならないように操作を行った。 2, 3度 30分再び一 80°Cのディープフリーザ一で凍 結させることによって温度制限を維持し、 効率よく菌体破砕を行つた。  — Gently thaw the lysate frozen in a deep freezer at 80 ° C at room temperature, add 1 protease inhibitor EDTA-free and 1 ml of lOmM PMSF / methanol and disrupt the cells with an ultrasonic disrupter. The C-terminal His-tag fusion hTRF2-DBD was eluted. The setting of the crusher was as follows: Time: Hold, Duty cycle (%): constant, Output control: 20 to 30, and operation was performed so that the sample temperature did not exceed 4 ° C. The temperature was maintained by freezing again in a deep freezer at 180 ° C for a few degrees for 30 minutes to efficiently disrupt the cells.
②遠心分画法  ② Centrifugal fractionation
菌体破砕後、 大腸菌サンプル中の不溶性分画を取り除く目的で、 62000 X g, 4°Cで 90 分遠心を行った。 これによつて C末端 His- tag融合 hTRF2-DBDを含む上堉を回収した。 ③陽イオン交換クロマトグラフィー After crushing the cells, centrifugation was performed at 62,000 X g at 4 ° C for 90 minutes to remove the insoluble fraction in the E. coli sample. As a result, the supernatant containing the C-terminal His-tag fusion hTRF2-DBD was recovered. ③ Cation exchange chromatography
ストックとして 4°C保存しておいた樹脂を専用のカラムに充填してから一昼夜かけ て平衡化緩衝液(50 リン酸カリウム緩衝液 [PH7. 0], lOOmM NaCl, ImM EDTA)で置換し た。 ここに、 ②で回収した上清をリン酸セルロース樹脂 (P11)を充填したカラムにアブ ライし、 すべてのサンプルをアプライ後、 平衡化緩衝液で一度洗浄した。 洗浄終了後、 NaCl濃度 200、 300、 400、 500、 600mMの緩衝液を用いた Step- by- Step法によりサンプ ルを溶出させた。 サンプルは、 それぞれ 50mlのコニカルチューブに回収した。  The resin stored at 4 ° C as stock was packed in a special column, and was replaced overnight with an equilibration buffer (50 potassium phosphate buffer [PH7.0], lOOmM NaCl, ImM EDTA). . Here, the supernatant collected in (2) was applied to a column filled with cellulose phosphate resin (P11), and all samples were applied and washed once with an equilibration buffer. After the washing was completed, the sample was eluted by a step-by-step method using a buffer solution having a NaCl concentration of 200, 300, 400, 500, or 600 mM. Each sample was collected in a 50 ml conical tube.
Tric ine SDS電気泳動にてアプライ後サンプル、 洗浄後 (wash)サンプル、 フラクショ ンサンプルを流し、 C末端 H i s- 1 ag融合 hTRF2- DBDのバンドが見られるサンプルを回収 した。  A sample after application, a sample after washing (wash), and a fraction sample were flowed by Tricine SDS electrophoresis, and a sample in which a C-terminal His-1ag-fused hTRF2-DBD band was observed was collected.
④濃縮 ,  ④Concentration,
⑤の操作で分解能をあげるため、フラクションチューブに回収したサンプルをセント リブレップ [Amicon社製 Centriprep3:容量 15ml, 分画分子量 3000]、 セントリコン [Amicon社製 Centricon3:容量 2ml, 分画分子量 3000]を用いて行った。 あらかじめ防 腐剤としてグリセロールがフィル夕一にくつついているため、 Mi l l iQで洗浄してから 用いた。 遠心(4 , 8000 x g)で濃縮した。  In order to increase the resolution by the operation of ⑤, use the sample collected in the fraction tube with Centriprep [Amicon Centriprep3: 15 ml, molecular weight cut off 3000], Centricon [Amicon Centricon3: 2 ml, molecular weight cut off 3000] I went. Glycerol was used as a preservative beforehand, so it was washed with MilliQ before use. The mixture was concentrated by centrifugation (4, 8000 × g).
⑤ゲルろ過クロマトグラフィー (Ge卜 f i l trat ion Chromatography)  ⑤Gel filtration chromatography (Ge filtration Chromatography)
濃縮サンプルを HPLCで、 ゲルろ過クロマトグラフィーによって精製した(1 OmMHEPES 緩衝液 [PH7. 4] , lOOinM NaCl, ImM EDTA) 0 C末端 His- tag融合 hTRF2- DBDを Flow 2ml/min で 100分間溶離させた [図 9]。 The concentrated sample was purified by HPLC and gel filtration chromatography (1 OmMHEPES buffer [PH7.4], lOOinM NaCl, ImM EDTA) 0 C-terminal His-tag fusion hTRF2-DBD was eluted with Flow 2 ml / min for 100 min. [Figure 9].
2. 円二色性(CD)スぺクトル測定による G-四重らせん DNA構造の確認  2. Confirmation of G-quadruplex DNA structure by circular dichroism (CD) spectrum measurement
Biacoreにアプライする際にサンプルの状態を把握しておくことは重要である。特に It is important to know the state of the sample when applying to Biacore. In particular
G-四重らせん DNAに関しては、 DMの溶けている緩衝液により形成している構造が異な るため、 相互作用を測定するにはこれを統一しておかなければならない問題があった。 それを容易に確認するのに CD測定を行った。 G-quadruplex DNA has a different structure depending on the buffer in which DM is dissolved, and therefore, there has been a problem that it has to be unified to measure the interaction. A CD measurement was made to confirm this easily.
1) G-四重らせん DNAの作成  1) Preparation of G-quadruplex DNA
購入した ssDNA (ベックス社)を 94°C 10分、 室温まで穏やかに冷却した後、 再び 60 The purchased ssDNA (Vex) was gently cooled to room temperature at 94 ° C for 10 minutes, and then
15分アニーリングし直して G-四重らせん DNAを作成した。平行構造の G-四重らせん DNA を作成するために K+緩衝液(10 HEPES [pH7. 4] , 100mM KC1)を調整し、 ァニーリング した。 また、 逆平行構造の G-四重らせん DNA を作成するために Na +緩衝液 (lOmMHEPES [pH7.4], lOOmM NaCl)を調整し、 アニーリングした。 pH調整には、 各緩衝 液の陽イオンに合わせた塩基 (KOH, NaOH)を用いて行つた。 G-quadruplex DNA was prepared by annealing again for 15 minutes. Adjustment of K + buffer (10 HEPES [pH 7.4], 100 mM KC1) to create G-quadruplex DNA with parallel structure, annealing did. In addition, in order to prepare antiparallel G-quadruplex DNA, Na + buffer solution (lOmMHEPES [pH7.4], lOOmM NaCl) was prepared and annealed. The pH was adjusted using a base (KOH, NaOH) adjusted to the cation of each buffer solution.
形成させた G-四重らせん DNAは、 Biacoreでの相互作用測定用に二本鎖テロメァ DNA 最小認識塩基配列を持つ tr 12 +、 その二倍の配列として tr24 +、 T- T-Aloopが形成で きない tr8 +、そしてすでに構造が分かっている tr22 +を用いた。その配列は、 tr8+: 5' -TAGGGTTA-3' (配列番号 13)、 trl2+: 5' -TTAGGGTTAGGG-3 ' (配列番号 1)、 tr22+: 5' -AGGG (TTAGGG) 3-3' (配列番号 3)、 tr24+: 5, - (TTAGGG) 4-3 ' (配列番 号 4) で平行と逆平行構造両方の作成を試みた。 また、 CDスペクトルから安定な G -四 重らせん DNA 構造を形成しやすい配列があるか検討するため、 5' G-trl2+ : 5' -GTTAGGGTTAGG-3' (配列番号 14)、 dsDNA で用いた trl3 +と 5' C-trl3+ : 5' -GTTAGGGTTAGGG-3' (配列番号 2) と 5' - CTTAGGGTTAGGG- 3' (配列番号 15)、 また、.その二倍の配列である tr26+: 5' - (TTAGGG) JT-3' (配列番号 16)、 さらに trl3 +の 5' 側にテロメァ配列と無関係の塩基を付加させた 5' C-trl7+ : 5' -CATCATTAGGGTTAGGG-3' (配列番号 17) で G-四重らせん DNAを形成させ CD測定 を行った。 The formed G-quadruplex DNA forms tr12 +, which has the minimum recognition base sequence of double-stranded telomere DNA, and tr24 +, TT-Aloop, which is twice the sequence, to measure the interaction with Biacore. Tr8 +, which cannot be used, and tr22 +, whose structure is already known, were used. The sequence, tr8 +: 5 '-TAGGGTTA- 3' ( SEQ ID NO: 13), trl2 +: 5 '-TTAGGGTTAGGG-3' ( SEQ ID NO: 1), tr22 +: 5 ' -AGGG (TTAGGG) 3 -3' ( SEQ ID NO: 3), tr24 +: 5,-(TTAGGG) 4 -3 '(sequence number 4) We tried to make both parallel and antiparallel structures. In addition, in order to examine whether there is a sequence that easily forms a stable G-quadruplex DNA structure from the CD spectrum, 5 'G-trl2 +: 5'-GTTAGGGTTAGG-3' (SEQ ID NO: 14), trl3 used in dsDNA + And 5 'C-trl3 +: 5'-GTTAGGGTTAGGG-3' (SEQ ID NO: 2) and 5'-CTTAGGGTTAGGG-3 '(SEQ ID NO: 15), and double its sequence tr26 +: 5'- ( TTAGGG) JT-3 '(SEQ ID NO: 16) and 5' C-trl7 + with a nucleotide unrelated to the telomeric sequence added to the 5 'side of trl3 +: 5'-CATCATTAGGGTTAGGG-3' (SEQ ID NO: 17) and G -CD measurement was performed by forming quadruplex DNA.
2) CDスペクトル測定による構造確認  2) Structural confirmation by CD spectrum measurement
測定には、 日本分光社製の測定器 J- 720型を用いて行い、ベースライン測定および標 準測定のプログラムを用いて CD スペクトルを測定した。 測定条件は、 設定温度 25°C (298K)、測定波長190〜320 (220〜32011111で表示)、分解能 0. lnm、波長掃引速度 20nm/min、 積算回数 4回、 レスポンス lsec、 バンド幅 L0nm、 感度 50mdegとした。  The measurement was performed using a measuring instrument J-720 manufactured by JASCO Corporation, and the CD spectrum was measured using a program for baseline measurement and standard measurement. The measurement conditions are: set temperature 25 ° C (298K), measurement wavelength 190 to 320 (displayed as 220 to 32011111), resolution 0. lnm, wavelength sweep speed 20nm / min, integration frequency 4 times, response lsec, bandwidth L0nm Sensitivity was set to 50mdeg.
2.3 Biacoreによる hTRFl-DBD, hT F2-DBDと G -四重らせん DNAとの相互作用測定 センサーチップ上の Au表面にあらかじめ carboxymethyldextranがコ一ティングさ れていて、 そこに NTA[N- (5- amino- l-carboxypentyl) iminodiacetic acid)]が共有結合 で固定化されている。ここに 緩衝液をキレー卜させ、それを介して特異的に His- tag 融合夕ンパク質を固定化した。 . 2.3 Measurement of interaction between hTRFl-DBD and hTF2-DBD and G-quadruplex DNA by BiacoreCarboxymethyldextran is coated in advance on the Au surface on the sensor chip, and NTA [N- (5- amino-l-carboxypentyl) iminodiacetic acid)] is covalently immobilized. Here, the buffer was chelated, and the His-tag fusion protein was immobilized specifically through the buffer. .
1) Running bufferの調整 1) Adjusting the running buffer
Runninig bufferには、 Biacoreの標準緩衝液である HBS- EPから 3 EDTAの濃度を 50 M程度まで希釈した eluent bufferをフィル夕一ろ過、 脱気をして用いた。 測定の 際に緩衝液を置き換えて、 その条件下での解離定数 KD値を導いた。 As the Runninig buffer, an eluent buffer prepared by diluting the concentration of 3 EDTA to about 50 M from HBS-EP, which is a standard buffer of Biacore, was used after filtration and deaeration. Measuring When the buffer was replaced, the dissociation constant K D under that condition was derived.
2) リガンドの調整  2) Adjustment of ligand
本実験では、 6 XHi s- tag融合 hTRF2- DBDのタンパク側を固定化した。 この原理は、 Niカラムクロマトグラフィー精製の原理と同じく、 チップ上の NTAがキレート剤とし て働き、 Niを介して Hi s- tag融合タンパク質が特異的に結合する原理を利用している。 Hi s- tag融合タンパク質を精製時の緩衝液から Running buf ferに置換して固定化操作 に用いた。 アプライ時には、 マニュアルインジェクションを用いた。  In this experiment, the protein side of the 6XHis-tag fused hTRF2-DBD was immobilized. This principle, like the principle of Ni column chromatography purification, utilizes the principle that the NTA on the chip acts as a chelating agent and the His-tag fusion protein specifically binds via Ni. The His-tag fusion protein was replaced with running buf fer from the purification buffer and used for the immobilization procedure. At the time of application, manual injection was used.
3) アナライ卜の調整  3) Analytical adjustment
アナライト濃度は、 アナライトの分子量や af f ini tyの強さに依存するため、 適度に 調整する方が良いがタンパク質- G-四重らせん DNAの相互作用は弱いので lOOuMのス卜 ックを Running緩衝液で調整した。  The analyte concentration depends on the molecular weight of the analyte and the strength of the affinity, so it is better to adjust it appropriately.However, since the interaction between protein and G-quadruplex DNA is weak, the lOOuM Was adjusted with Running buffer.
4) センサ一チップ選択 4) Sensor one chip selection
RF2- DBDと G-四重らせん DNAとの相互作用は、 dsDNAのときに比べ、 相互作用が弱 いため、 SA chi を用いた相互作用実験では解離定数 KD値を導ける Sensorgramが得ら れなかった。 そのため、 タンパク質側を固定化する方法で NTA chipを選択した。 チッ プの保存には、 浸潤法を用いて 4°Cに保存した。 Interaction between RF2- DBD and G- quadruplex helical DNA, compared to the case of dsDNA, fried interaction weak, Sensorgram that Michibikeru the dissociation constant K D values in the interaction experiments using SA chi is not obtained, et al. Was. Therefore, NTA chip was selected by immobilizing the protein side. The chips were stored at 4 ° C using the infiltration method.
5) NTA chipの固定  5) Fixing NTA chip
初めに操作 Pr imeを三度行った。これによつて HBS-EP緩衝液で置換,安定化した後、 Eluent buf ferに置換'安定化した。その後、流速 20 1/minで 500 M程度の Ni buf fer をアプライすることでセンサーチップ上の NATに Niがキレートされ、 これが安定化す るまで静置した。安定化したところで 6塩基の His t id ineをもつ His- tag融合夕ンパク 質 RF2- DBDをアプライしてセンサーチップ上に固定化させた。 この時、マニュアルィ ンジェクシヨンを用いて適量固定化させた。相互作用測定ベースラインとして安定化す るまで放置し、 タンパク質- DNA相互作用測定を行った。 アナライトとしてあらかじめ CD測定により構造が判明している G-四重らせん DNAをアプライした。  First, the operation Prime was performed three times. After replacement with HBS-EP buffer and stabilization, substitution with Eluent buf fer was performed and stabilized. Then, Ni buf fer of about 500 M was applied at a flow rate of 20 1 / min to chelate the Ni on the NAT on the sensor chip and allowed to stand until it stabilized. After stabilization, a His-tag fusion protein RF2-DBD having 6 bases Histine was applied and immobilized on the sensor chip. At this time, an appropriate amount was immobilized using a manual injection. The protein was allowed to stabilize as an interaction measurement baseline, and protein-DNA interaction was measured. G-quadruplex DNA whose structure was previously determined by CD measurement was applied as an analyte.
6) Sensorgramの解析 (KD値の決定) 6) Sensorgram analysis (K D value determination)
得られた Sensorgramから、 非線形最小二乗法を用いた B iacore付属の解析ソフト (BIAevalut ion vers ion 3)でフィッティングを行い、 それぞれの緩衝液の条件における KD値を求めた。 2.4実験試薬 From the resulting Sensorgram, performs fitting with analysis software B Iacore accessory using nonlinear least-squares method (BIAevalut ion vers ion 3), was determined K D values in the condition of each buffer. 2.4 Experimental reagents
表 2 - 1 Table 2-1
制限酵素処理 Restriction enzyme treatment
制限酵素反応条件 Restriction enzyme reaction conditions
10 X活性 buffer 10 X activity buffer
制限酵素処理 DNA  Restriction enzyme treated DNA
滅菌蒸留水 * 0^1にメスアップ後、 37°Cで 8〜10時間インキュベート Sterile distilled water * After increasing the volume to 0 ^ 1, incubate at 37 ° C for 8-10 hours
*滅菌蒸留水は、 Mil 1 iQをオートクレーブにより滅菌処理して用いた。 表 2 - 2 * Sterile distilled water was used by sterilizing Mil 1 iQ with an autoclave. Table 2-2
KOD-Plus-DNA Polymeraseによる DNA増幅  DNA amplification with KOD-Plus-DNA Polymerase
Figure imgf000034_0002
表 2 - 3
Figure imgf000034_0002
Table 2-3
シークェンスサンプルの調整 Adjusting sequence samples
Figure imgf000034_0001
表 2 - 4
Figure imgf000034_0001
Table 2-4
Eluent Buf fer: NTA chip固定化時の標準緩衝液  Eluent Buf fer: Standard buffer for immobilizing NTA chip
逆平行 G -四重らせん DNA用 Anti-parallel G-quadruplex DNA
lOmM HEPES [ρΗ7· 4]、 150ni NaCK 50 M EDTA, 0. 005%Tween20  lOmM HEPES [ρΗ7.4], 150ni NaCK 50 M EDTA, 0.005% Tween20
平行 G -四重らせん DNA用 For parallel G-quadruplex DNA
lOmM HEPES [pH7. 4]、 150raM KC1、 50 EDTA, 0. 005%Tween20 表 2- 5  lOmM HEPES [pH 7.4], 150raM KC1, 50 EDTA, 0.005% Tween20 Table 2-5
Ni溶液 [Eluent Bufferに溶解] : His- tag融合タンパク質結合用緩衝液  Ni solution [dissolved in Eluent Buffer]: Buffer for binding His-tag fusion protein
逆平行 G-四重らせん DNA用 For antiparallel G-quadruplex DNA
Eluent buf fer, 500 M NiCl2 Eluent buf fer, 500 M NiCl 2
平行 G -四重らせん DNA用 For parallel G-quadruplex DNA
Eluent buf fer, 500 M NiCl2 表 2-6 Eluent buf fer, 500 M NiCl 2 Table 2-6
Regenerat ion溶液: His- tag融合タンパク質再生用緩衝液  Regeneration solution: His-tag fusion protein regeneration buffer
逆平行 G-四重らせん DNA用 ※ !!調整→ 1M NaOH For antiparallel G-quadruplex DNA ※ !! Adjustment → 1M NaOH
lOmM HEPES [pH7. 4]、 150mM NaCK 350mM EDTA, 0. 005%Tween20  lOmM HEPES [pH 7.4], 150 mM NaCK 350 mM EDTA, 0.005% Tween20
平行 G -四重らせん DNA用 ※!)!!調整→1M 0H 表 2 - 7 For parallel G-quadruplex DNA ※! ) !! Adjustment → 1M 0H Table 2-7
Dispensor Buf fer:不要な金属イオンの除去およびセンサーチップの安定化緩衝液 逆平行 G-四重らせん DNA用  Dispensor Buf fer: Buffer for removing unwanted metal ions and stabilizing the sensor chip For antiparallel G-quadruplex DNA
HBS-EP  HBS-EP
平行 G -四重らせん DNA用 For parallel G-quadruplex DNA
HBP-EP 表 2-8 .  HBP-EP Table 2-8.
相互作用 ·解離定数測定用緩衝液 逆平行 G-四重らせん DNA用 Interaction ・ Dissociation constant measurement buffer For antiparallel G-quadruplex DNA
lOmM HEPES [pH7. 4]、 150mM NaCL 0. 005%Tween20  lOmM HEPES [pH 7.4], 150 mM NaCL 0.005% Tween20
平行 G-四重らせん DNA用 For parallel G-quadruplex DNA
. lOni HEPES [pH7. 4]、 150mM KCK 0. 005%Tween20 実験結果  lOni HEPES [pH 7.4], 150mM KCK 0.005% Tween20 Experimental result
His- tag融合タンパク質を固定化させて B i acoreで相互作用を測定することができ た。 固定化した RF2-DBDは、 N末端とそれとは反対の C末端にそれぞれ 10アミノ酸 残基を余分に付加させた 6 xHi s- tag融合タンパク質でどちらを用いても相互作用には 差はなかった。  The interaction could be measured by Biacore with the His-tag fusion protein immobilized. The immobilized RF2-DBD was a 6 x His-tag fusion protein with an extra 10 amino acid residues added to the N-terminus and the opposite C-terminus, and there was no difference in the interaction using either. .
2. 5 Hi s-tag融合 RF2-DBDの調整  2.5 Adjustment of His-tag fusion RF2-DBD
MRF2 - DBD発現系大腸菌からのプラスミドを回収したが、回収量が予想以上より得ら れなかった。そのため、ベックス社から MRF2- DBDのィンサート制限酵素サイトを付加 したプライマーを購入して PCR法で増幅させた。そのときの温度条件は、用いたプライ マーの変性温度によって合わせた。 増幅させた制限酵素サイ卜を Nde I、 BamH Iを用い て制限酵素処理できた。 また、 同様にして、 N末端 Hi s-tag用 hTRF2- DBD発現用に pET28a [Nde I -BamH I ]を、 C末端 Hi s-tag用丽2-画発現用には pET21a [Nde I -BamH I ]をベクターとして制限酵素処理できた。 これらを 2%ァガロース電気泳動で目的バン ドを回収して、 ゲル消化した。染色にはェチジゥムブ口マイド染色を用いて、紫外線ィ ルミネーターで検出した。 これらをライゲーシヨン反応させてどちらも R coli BL21-codonPlus (DE3) -RIL株に形質転換させることができた。  The plasmid was recovered from Escherichia coli expressing MRF2-DBD, but the recovered amount was less than expected. For this reason, primers to which the insert restriction enzyme site of MRF2-DBD was added were purchased from Vex and amplified by the PCR method. The temperature conditions at that time were adjusted according to the denaturation temperature of the used primer. The amplified restriction enzyme sites could be treated with Nde I and BamHI. Similarly, pET28a [Nde I -BamH I] for expression of hTRF2-DBD for N-terminal His-tag, and pET21a [Nde I -BamH I for expression of 丽 2-fraction for C-terminal His-tag I] was used as a vector for restriction enzyme treatment. The target band was recovered by 2% agarose electrophoresis and subjected to gel digestion. Staining was carried out with ethidium mouth-mide staining using an ultraviolet illuminator. These were subjected to a ligation reaction, and both were able to be transformed into R coli BL21-codonPlus (DE3) -RIL strain.
培養と精製には、 N末端 Hi s- tag融合 hTRF2-DBDと C末端 Hi s - tag融合 hT F2-DBD をそれぞれ別の LB培地で同時に行った。 タンパク質の発現は、 いずれも O. D6D()=0. 6〜 0. 7で IPTGを添加するのが最適であった。 IPTG添加、 温度を 25 に下げて培養したこ とで融合タンパク質の可溶性化を促した。 Hi s- tag融合 RF2- DBDは、 超音波破碎で溶 出させ、 リン酸セルロースカラムクロマトグラフィー、ゲルろ過クロマトグラフィーを 用いて精製した。 この時、 リン酸セルロースカラムグラフィ一での溶出塩濃度は、 Hi s - tagをタンパク質に融合させたことで 400ffiM程度に上昇した。回収したタンパク質 は、 室温で取り扱っても溶解度に問題はなく、 400ml 培養で N 末端 Hi s- tag 融合 MRF2-DBDは、約 450 /iM/lmlであり、 C末端 His- tag融合 hTRF2- DBDは、約 200 Μ/1Κ1 であった。結果として Ν末端 His- tag融合タンパク質のほうが C末端 His- tag融合タン パク質より多く発現しており回収できた。 For culture and purification, N-terminal His-tag-fused hTRF2-DBD and C-terminal His-tag-fused hTF2-DBD were simultaneously used in separate LB media. Regarding protein expression, it was most appropriate to add IPTG at O.D 6D () = 0.6 to 0.7. The addition of IPTG and the culture at a reduced temperature of 25 promoted the solubilization of the fusion protein. His-tag fused RF2-DBD was eluted by sonication and purified using cellulose phosphate column chromatography and gel filtration chromatography. At this time, the eluted salt concentration in the cellulose phosphate columnography was increased to about 400 ffiM by fusing His-tag to the protein. The recovered protein has no problem in solubility even if it is handled at room temperature. N-terminal His-tag fusion in 400 ml culture The MRF2-DBD was about 450 / iM / lml, and the C-terminal His-tag fused hTRF2-DBD was about 200 200 / 1Κ1. As a result, the Ν-terminal His-tag fusion protein expressed more than the C-terminal His-tag fusion protein and could be recovered.
2. 6 円二色性 (CD)スぺクトル測定による G -四重らせん DNA構造の確認  2.6 Confirmation of G-quadruplex DNA structure by circular dichroism (CD) spectrum measurement
G -四重らせん DNAに関しては、 DNAの溶けている緩衝液により形成している構造が異 なるため、 CD測定により構造確認した。 購入した ssDNAを 94°C 10分、 室温まで穏やか に冷却した後、 再び 60°C 15分アニーリングし直して G-四重らせん DNAを作成した。 本 実験での G-四重らせん DNA構造のァニ -リングは、 この温度で統一して行った。 形成し た G-四重らせん DNAは、 日本分光社製の測定器 J- 720型を用いて行った。  As for the G-quadruplex DNA, the structure formed differs depending on the buffer in which the DNA is dissolved, so the structure was confirmed by CD measurement. The purchased ssDNA was gently cooled to room temperature at 94 ° C for 10 minutes, and then reannealed at 60 ° C for 15 minutes to produce G-quadruplex DNA. The annealing of the G-quadruplex DNA structure in this experiment was uniformly performed at this temperature. The formed G-quadruplex DNA was measured using a measuring instrument J-720 manufactured by JASCO Corporation.
その結果、 ヒ卜のテロメァ配列による G-四重らせん DNAには、 ① K+存在下で平行 G- 四重らせん DNAを形成し、 一方で Na+存在下で逆平行 G-四重らせん DNAを形成するこ と [図 10]、 ②ァ二一リングに用いた一価の陽イオンを含む塩の濃度に依存して形成さ れる構造が安定化すること、 また、 ③ァ二-リング後、 低温下で時間を置いて熟成させ ることで形成した構造が安定化すること、 さらに④ァ二-リング時の ssDNAの濃度によ つて形成される構造が決まり、 それは特に長いテロメァ DNA配列でァニ-リングした後 によく観察されたこと、 最後に⑤二価の陽イオン Ca2+や Mg2+の共存で逆平行構造が不安 定化すること、ただし、 この時逆平行構造から平行構造に変化するなどの現象は見られ なかったなどの性質があることが CDスぺクトルの結果から判明した。 As a result, G-quadruplex DNA from human telomere sequence: ① formed parallel G-quadruplex DNA in the presence of K +, while formed antiparallel G-quadruplex DNA in the presence of Na +. [Fig. 10], ② Stabilization of the formed structure depending on the concentration of the monovalent cation-containing salt used in the ring, and ③ Low temperature after the ring The structure formed by aging under a certain time is stabilized, and the concentration of ssDNA at the time of cycling determines the structure formed, which is particularly the case with long telomere DNA sequences. -What was often observed after ringing, and finally, the antiparallel structure was destabilized by the coexistence of the divalent cations Ca 2+ and Mg 2+. Is there any property such as no change or other phenomenon seen as a result of the CD spectrum? Found was.
2. 7 Biacoreによる hTRFl- DBD、 TRF2-DBDと G-四重らせん DNAとの相互作用測定 センサーチップ上の Au表面にあらかじめ carboxymethyldextranがコーティングさ れていて、 そこに共有結合している NTAへ Ni緩衝液をキレートさせ、 これを介して特 異的に His- tag融合タンパク質を固定化した。 2.7 Interaction measurement of hTRFl-DBD and TRF2-DBD with G-quadruplex DNA using Biacore Ni-to-NTA covalently bonded to carboxymethyldextran previously coated on Au surface on sensor chip The buffer was chelated, via which the His-tag fusion protein was specifically immobilized.
Running buf ferによる G-四重らせん DNA構造の崩壊がないかあらかじめ CDスぺク トルをとり、 確認後にアプライサンプルとして用いた。  A CD spectrum was taken in advance to confirm that the G-quadruplex DNA structure was not disrupted by running buf fer, and used as an applied sample after confirmation.
本実験では、 6 XHis- tag融合 RF2- DBDのタンパク側をマニュアルインジェクショ ンで固定化した。アナライ卜のアプライ時までにベースラインは容易に安定化した。 し かし、 アナライト添加後のベースラインは測定のたびに不安定になるため、 Biacoreの 流速を下げることでこの問題を解決した。添加したアナライト濃度は、アナライトの分 子量や ai i ini tyの強さから予測し、夕ンパク質- G-四重らせん DNAの相互作用は試験的 測定を行って弱いことが分っていたので /M単位で行った。 その結果、 値を導ける位 の相互作用を測定できた。 In this experiment, the protein side of the 6XHis-tag fusion RF2-DBD was immobilized by manual injection. The baseline was easily stabilized by the time of analysis application. However, the baseline after addition of the analyte became unstable with each measurement, and this problem was solved by lowering the flow rate of Biacore. The concentration of the added analyte is predicted from the molecular weight of the analyte and the strength of the analyte, and the interaction of protein-G-quadruplex DNA is experimental. Since it was found that the measurement was weak, the measurement was performed in units of / M. As a result, we were able to measure the interaction that led to the value.
得られた Sensorgramから、 非線形最小二乗法を用いた Biacore付属の解析ソフト (BIAevalution version 3)でフィッティングを行い、 それぞれの緩衝液の条件における I(D値を求めた。 From the obtained Sensorgram, fitting was performed with the analysis software (BIAevalution version 3) attached to Biacore using the nonlinear least squares method, and the I ( D value under each buffer condition was determined.
求めた KD値から hTRF2-DBDは、 sstrl2 +の逆平行 G-四重らせん DNAよりも平行 G -四 重らせん DNAと強く相互作用することが分かった。 また、 sstr22 +の逆平行 G -四重ら せん DNAよりも sstr24 +の逆平行 G-四重らせん DNAと強く相互作用することがわかつ た。 この sstr24+ 逆平行 G-四重らせん DNA構造は、 hTRF卜 DBDとも強い相互作用して いる様子が観測された。 そのため、 hTRFHDBDに関しては、 SA chipを用いて解離定数 (KD)を導くことができた [表 3]。 しかし、 MRF2- DBDに関しては結合が不安定であるこ と、ベースラインが安定化しないことからタンパク質を固定化する方法によって測定す ることを試みた。 結果を表 4に示す。 HTRF2-DBD from K D values obtained are parallel G than antiparallel G- quadruplex helix DNA of sstrl2 + - it was found to strongly interact with quadruple helix DNA. In addition, it was found that sstr24 + interacts more strongly with antiparallel G-quadruplex DNA than sstr22 + antiparallel G-quadruplex DNA. This sstr24 + antiparallel G-quadruplex DNA structure was observed to interact strongly with hTRF DBD. Therefore, for hTRFHDBD, the dissociation constant (K D ) could be derived using the SA chip [Table 3]. However, as for MRF2-DBD, the binding was unstable, and the baseline was not stabilized. Table 4 shows the results.
表 3 Table 3
テロメァタンパク質 TRF2-DBD と G-四重らせん DNA との相互作用測定 の結果と解離定数 KD Results of measurement of interaction between telomeric protein TRF2-DBD and G-quadruplex DNA and dissociation constant K D
ssDNA G- quadmplex構造 ■¾αί辰 J¾t KD(M) ka(1/Ms) kd (1/s) KD(M) ka (1/Ms) kd (1/s) tr8+ parallel 150mMKCI no data no data no data 8.19X10"4 4.67 x102 5.32 X 10"2 tr12+ parallel 150mMKCI no data no data no data 2.45X 10—5 30.6 X104 7.49X10一1 ssDNA G-quadmplex structure¾αα dragon J¾t K D (M) ka (1 / Ms) kd (1 / s) K D (M) ka (1 / Ms) kd (1 / s) tr8 + parallel 150mMKCI no data no data no data 8.19X10 "4 4.67 x10 2 5.32 X 10" 2 tr12 + parallel 150mMKCI no data no data no data 2.45X 10- 5 30.6 X10 4 7.49X10 one 1
75m KCI no data no data no data 7.53x10一6 3.79 X 103 2.85X 10—2 anti-parallel 150mMNaCI no data no data no data 2.23X10一3 3.97 X 102 8.88x10一1 75m KCI no data no data no data 7.53x10 one 6 3.79 X 10 3 2.85X 10- 2 anti-parallel 150mMNaCI no data no data no data 2.23X10 one 3 3.97 X 10 2 8.88x10 one 1
75mMNaCI no data no data no data 4.72 X 10"4 1.00 X 103 4.72X 10— 1 tr22+ antト parallel 150m NaCI no data no data no data 2.35x10一4 2.10 X103 4.93X 10— 1 tr24+ anti-parallel 150mMNaCI 4.27 X 10"8 2.62 X 105 1.12X 10 7.56X10一5 9.90 x 103 7.48X10一1 lOOmMNaCI 5.03 X 10"8 6.52 X104 3.28X10一3 4.06 X 10"6 3.08 X 103 1.25 X 10"2 75mMNaCI no data no data no data 4.72 X 10 "4 1.00 X 10 3 4.72X 10- 1 tr22 + ant door parallel 150m NaCI no data no data no data 2.35x10 one 4 2.10 X10 3 4.93X 10- 1 tr24 + anti-parallel 150mMNaCI 4.27 X 10 " 8 2.62 X 10 5 1.12X 10 7.56X10 1 5 9.90 x 10 3 7.48X10 1 lOOmMNaCI 5.03 X 10" 8 6.52 X10 4 3.28X10 1 3 4.06 X 10 " 6 3.08 X 10 3 1.25 X 10" Two
表 4 Table 4
Biacore によるテロメァタンパク質と G-四重らせん DNA との解離定数 (KD) Dissociation constant (K D ) between telomere protein and G-quadruplex DNA by Biacore
TRF2-DBDと G-四重らせん DMAとの相互作用 Interaction between TRF2-DBD and G-quadruplex DMA
Figure imgf000039_0001
Figure imgf000039_0001
Figure imgf000039_0002
Figure imgf000039_0002
*平行構造には KCIを用いた。  * KCI was used for the parallel structure.
* *75mMNaCI (平行構造には KCI)を running bufferで用いた。  * * 75 mM NaCI (KCI for parallel structure) was used in the running buffer.
* * * Biacoreの測定で SA chipを用いた。  *** The SA chip was used for Biacore measurement.
考察 Consideration
真核生物のテロメァ末端にあるテロメァ DNAは、 in / で 4本鎖からなる四重ら せん構造を作ることができ [図 1]、 これがテロメァ末端の構造に関わっていると考えら れている。 そして、 これまでにいくつかの種のテロメァ配列で/ ? 実験により G - 四重らせん DNA構造が作成され、 X線構造解析や NMR構造解析されている。 これまでに もう一つのテロメァ末端構造と考えられている t- loop構造の研究分野とは異なる分野 として G-四重らせん DNA構造は研究されてきた。しかも、ヒトのテロメァ配列は TTAGGG のリピート配列であり、 アデニン(A)を含むため、 この G-四重らせん DNA構造に関して は、 これまでにあまり報告されていない。  Telomere DNA at the telomere end of eukaryotes can form a quadruplex consisting of four strands in /, [Figure 1], which is thought to be involved in the structure of the telomere end. . So far, G-quadruplex DNA structures have been created by telomere sequences of several species, and X-ray structure analysis and NMR structure analysis have been performed. The G-quadruplex DNA structure has been studied as a different field from the t-loop structure, which is considered to be another telomeric terminal structure. Moreover, since the human telomere sequence is a repeat sequence of TTAGGG and contains adenine (A), there have been few reports on this G-quadruplex DNA structure.
昨年、 ヒ卜のテロメァ配列で初めて既に報告されている逆平行 G-四重らせん DNA構 造とは根本的に異なった paral lel (平行) G-四重らせん DNA構造が報告された。 この構 造は、 4つの連続したヒトテロメァ DNAリピー卜配列を使って、細胞内濃度に近い K+濃 度で成長させた四重鎖の結晶構造であり、 Κ+ は結晶構造内に認められる。 この分子内 四重鎖における DNAの折りたたみおよび外観は、 先の Na+ を含む逆平行 G-四重らせん DNA構造とは根本的に異なっている。 4本の DNA鎖はいずれも平行関係にあり、 これら を架橋している 3 つのトリヌクレオチドループが四重鎖コアの外側にプロペラ状に配 置されている。 各 TTA架橋トリヌクレオチドループ (T- T- A loop)内のアデニン残基は、 内側に戻って 2残基のチミン間に挿入されている。 このような DNA構造は、テロメァの 折りたたみと解きほぐしが簡単に行われることを示している。 本発明者らの研究室で、 この平行 G-四重らせん DNAとテロメァタンパク質である hTRF2- DBDが相互作用してい ることを NMRによって観測した。 正確に述べると、 この G-四重らせん DNA構造は、 論 文で報告された ssDNA配列: 5 ' -TAGGGTTAGGGT-3 ' (配列番号 1 8 )とは一残基だけ 5 ' 側にずれた ssDNA配列: 5 ' -TTAGGGTTAGGG-3 ' (配列番号 1 ) により形成されたもの であるが、連続したグァニン塩基は保存されており、同じテロメァ配列を用いているた め、 この ssDNAにより形成される G-四重らせん DNAは論文の構造とほぼ同じ構造であ ることが考えられる。 この配列による差は、 形成される G-四重らせん DNA構造の形成 されやすさに関係していることが考えられる。 これらの考察から、 本研究では hTRF2-DBDと相互作用した G-四重らせん DNAを形成する ssDNAを用いて相互作用実験す ることを行った。 NMR による相互作用の実験も行っており、 本研究の中心としては、 dsDNAとの相互作用測定や t-loop構造形成などとテロメァタンパク質の機能に関係し て G-四重らせん DNAの存在が議論できるよう、 MRF2- DBDとの相互作用を Biacoreで測 定することを試みている。 Last year, a paral lel G-quadruplex DNA structure was reported that was fundamentally different from the antiparallel G-quadruplex DNA structure already reported for the first time in human telomere sequences. This structure is a quadruplex crystal structure grown at a K + concentration close to the intracellular concentration using four consecutive human telomeric DNA repeat sequences, and Κ + is found in the crystal structure. In this molecule The folding and appearance of DNA in quadruplexes is fundamentally different from the antiparallel G-quadruplex DNA structure containing Na +. All four DNA strands are in a parallel relationship, and three trinucleotide loops bridging them are arranged like a propeller outside the quadruplex core. An adenine residue in each TTA-bridged trinucleotide loop (T-T-A loop) is inserted back between two residues of thymine. Such a DNA structure indicates that telomeres can be easily folded and unraveled. In the laboratory of the present inventors, it was observed by NMR that the parallel G-quadruplex DNA interacted with the telomeric protein, hTRF2-DBD. To be precise, this G-quadruplex DNA structure has the same ssDNA sequence as that reported in the paper: 5'-TAGGGTTAGGGT-3 '(SEQ ID NO: 18). Sequence: formed by 5'-TTAGGGTTAGGG-3 '(SEQ ID NO: 1), but since consecutive guanine bases are conserved and the same telomere sequence is used, G formed by this ssDNA -It is considered that the quadruplex DNA has almost the same structure as the paper. This sequence difference may be related to the susceptibility of the G-quadruplex DNA structure to be formed. From these considerations, in this study, we conducted an interaction experiment using ssDNA that forms G-quadruplex DNA that interacted with hTRF2-DBD. We are also conducting experiments on interaction by NMR, and the main focus of this research is the presence of G-quadruplex DNA related to the measurement of dsDNA interaction and t-loop structure formation and the function of telomere proteins. As can be discussed, we are trying to measure the interaction with MRF2-DBD with Biacore.
初めに G-四重らせん DNAを形成させることを試みた。 過去の研究から G -四重らせん DNAを形成させるには、 一価の金属陽イオンが必要であることが分かっている。 実際に この構造がどんな性質を持つのか条件検討するところから始めた。構造確認には、 日本 分光社製の測定器 J- 720型で測定した CDスぺクトルを用いた。 円二色性 (CD)分光によ るスぺクトルは、 これまでの G-四重らせん DNA構造で構造検討に最も使われている。 その理由としては、 G-四重らせん DNAの特徴による。 G -四重らせん DNAは、 4本の G-r ich ストランド(部分)が形成する DNA鎖の向きの組み合わせによって大きく構造が大別さ れる。 CDスペクトルがよく用いられるのは、 そのとき生じる CDの吸収波長が特徴的に 二パターン観察され、 これによつて容易に構造確認できるからである。 平行構造では、 265nmに正の極大と 245nmに負の極大を持つ CDスぺクトルが観察され、 逆に逆平行構 造では 295nmに正の極大と 265胆に負の極大を持つ CDスぺクトルが観察される [図 10]。 この性質は、 主に研究の進んだ Saccharomyces Cerevis iae のテロメァ配列(G!— 3)、 Oxytrich のテロメァ配列(G4T4)や Tetrahymena themophi laのテロメァ配列(G4T2)によ る G -四重らせん DNAで観察されている。 また、 ヒトのテロメァ配列 (TTAGGG)でもこれ が研究されており、 本研究でもこれを確認した。 さらに本研究では、 CD スペクトルが 特異的な吸収を持つときの条件をもっと明確にするため、 ssDNAの可溶化した緩衝液に 注目した。 この手段にも CDスペクトルを用いた。 その結果、 緩衝液中に K+のみが存在 するときに、 G-四重らせん DNAは平行構造を形成して、 265nmに正の極大と 245nmに負 の極大を持つ CDスぺクトルが観察され、 また一方で Na+が存在するときに G-四重らせ ん DNAが逆平行構造を形成して、 295腹に正の極大と 265nmに負の極大を持つ CDスぺ クトルが観察されることが分かった [図 10]。 この結果は、 以前の研究で報告されてい るヒトのテロメァ配列 sstr24+ (5 ' -TTAGGGTTAGGGTTAGGGTTAGGG-3 ' ) (配列番号 4 ) の構造研究と同じ結果となった。 しかし、 これらを比較して一つ大きく異なった点があ る。 それは、 K+のみ緩衝液でアニーリングしたときの CDスペクトルが明確に異なるこ とである。 本研究でもこの結果を確認するために sstr24+で G-四重らせん DNAをァニ 一リングしたがやはり報告通りの結果となった。これは、 sstr24 +が K+の存在下では、 一つの安定な G-四重らせん DNAを形成することができないことを示唆している。 その CDスぺクトルの吸収位置から考察してどうやら sstr24 +は、 この条件下では逆平行構 造と平行構造、そして、わずかなマイナー構造が混在している状況であると考えられる。 一方で sstrl2 +は、 この条件下で完全な平行構造のみが作成した [図 10]。 そこで本研 究では、 テロメァ DNA配列の長さが関係して形成される G-四重らせん DNAの安定性が 変わってくるのか確認した。 この測定には、 逆平行構造が決定されていて sstr24 +よ り 2塩基少ない sstr22+ (5 ' -AGGGTTAGGGTTAGGGTTAGGG-3 ' ) (配列番号 3 ) と逆に 2 塩基多い sstr26+ (5 ' -TTAGGGTTAGGGTTAGGGTTAGGGTT-3 ' ) (配列番号 1 6 )を用いた。 その結果、 sstr26 +で最も平行構造の量が多い CD スペクトルを示した。 また、 逆に sstr22 +は Na+存在下でのァニーリングで最も存在量の多い逆平行構造を形成してお り、その構造は大変安定な構造を形成しているようである。そのため以前に報告された sstr22 +の逆平行 G-四重らせん DNAは、 その長さに関係せず匪 Rで構造解析できたの かもしれない。 これらをまとめるとやはり、 テロメァ DNAの長さにより形成される G- 四重らせん DNAの構造は制限されてしまうことが分かった。つまり、 平行構造は、 テロ メ 7 DNAの長さに依存して形成されにくくなり、いったん形成しても構造が解離しやす くほどけやすい構造であることが考えられた。一方で逆平行構造は常に形成しやすい構 造であり、 その構造自体安定であることが分かった。逆平行構造に関しては、 ヒ卜のテ ロメァ DNA配列でもかなり研究されており、 その構造 ·性質が分かっている。 また、 K +存在下で形成されてしまう sstr24 +の逆平行構造は、 Na+存在下のそれよりも熱変性 温度が高く安定であることも議論されている。その他、本研究ではテロメァ配列の比較 的 短 レ tr8 + (5 ' -TAGGGTTA-3 ' ) ( 配 列 番 号 1 3 ) 、 5, G-trl2 + (5, -GTTAGGGTTAGG-3 ' ) (配列番号 1 4 )、 trl3 + (5 ' -GTTAGGGTTAGGG-3 ' ) (配列番 号 2 )や 5, C-trl3+ (5 ' -CTTAGGGTTAGGG-3 ' ) (配列番号 1 5 )、 さらに trl3 +の 5 ' 側 に テ ロ メ ァ 配 列 と 無 関 係 の 塩基 を 付 力 Π さ せ た 5 ' C-trl7 + (5 ' -CATCATTAGGGTTAGGG-3 ' ) (配列番号 1 7 ) で G-四重らせん DNAを形成させ CD測 定を行ったがこの長さのテロメァ配列では、 ほぼ同じスぺクトルが観測された。 First, we attempted to form G-quadruplex DNA. Previous studies have shown that a monovalent metal cation is required to form G-quadruplex DNA. We started by examining what kind of properties this structure actually has. For the structure confirmation, a CD spectrum measured with a measuring instrument J-720 manufactured by JASCO Corporation was used. The spectrum obtained by circular dichroism (CD) spectroscopy is the most widely used G-quadruplex DNA structure for structural studies. This is due to the characteristics of G-quadruplex DNA. The structure of G-quadruplex DNA is broadly classified according to the combination of the orientations of the DNA strands formed by the four Rich strands (parts). The reason why the CD spectrum is often used is that the absorption wavelength of the CD generated at that time is characteristically observed in two patterns, whereby the structure can be easily confirmed. In the parallel structure, a CD spectrum having a positive maximum at 265 nm and a negative maximum at 245 nm was observed. In the structure, a CD spectrum with a positive maximum at 295 nm and a negative maximum at 265 nm is observed [Figure 10]. This property is mainly Teromea array of Saccharomyces Cerevis iae advanced the study (G -! 3), that by the Teromea array of Oxytrich (G 4 T 4) and Tetrahymena themophi Teromea array of la (G 4 T 2) G -Observed in quadruplex DNA. This has also been studied in the human telomere sequence (TTAGGG), which was confirmed in this study. Furthermore, in this study, we focused on ssDNA solubilized buffers to further clarify the conditions under which the CD spectrum had a specific absorption. The CD spectrum was also used for this measure. As a result, when only K + was present in the buffer, the G-quadruplex DNA formed a parallel structure, and a CD spectrum having a positive maximum at 265 nm and a negative maximum at 245 nm was observed. On the other hand, when Na + is present, the G-quadruplex DNA forms an antiparallel structure, and a CD spectrum with a positive maximum at 295 and a negative maximum at 265 nm is observed. I understand [Fig. 10]. This result was the same as the structure of human telomere sequence sstr24 + (5′-TTAGGGTTAGGGTTAGGGTTAGGG-3 ′) (SEQ ID NO: 4) reported in a previous study. However, there is one major difference from these comparisons. That is, the CD spectrum when annealing with K + only buffer is clearly different. In this study, we also performed G-quadruplex DNA annealing with sstr24 + to confirm this result, but the result was as reported. This suggests that sstr24 + cannot form a single stable G-quadruplex DNA in the presence of K +. Considering the absorption position of the CD spectrum, it is apparent that sstr24 + is a state in which antiparallel structure, parallel structure, and slight minor structure coexist under this condition. On the other hand, sstrl2 +, on the other hand, produced only a perfectly parallel structure under these conditions [Figure 10]. In this study, we investigated whether the stability of the G-quadruplex DNA formed depends on the length of the telomere DNA sequence. In this measurement, the antiparallel structure was determined and sstr22 + (5'-AGGGTTAGGGTTAGGGTTAGGG-3 ') (SEQ ID NO: 3) two bases less than sstr24 + and sstr26 + (5'-TTAGGGTTAGGGTTAGGGTTAGGGTT-3' ) (SEQ ID NO: 16) was used. As a result, sstr26 + showed a CD spectrum having the largest amount of parallel structures. Conversely, sstr22 + forms the most abundant anti-parallel structure upon annealing in the presence of Na +, and the structure seems to form a very stable structure. Therefore, the previously reported sstr22 + antiparallel G-quadruplex DNA may have been structurally analyzed by bandits R regardless of its length. To summarize these, G- formed by the length of telomere DNA The structure of the quadruplex DNA was found to be restricted. In other words, it was considered that the parallel structure was difficult to be formed depending on the length of the telomeric 7 DNA, and that once formed, the structure was easily dissociated and easily unraveled. On the other hand, it was found that the antiparallel structure is always easy to form and that the structure itself is stable. The antiparallel structure has been extensively studied in human telomeric DNA sequences, and its structure and properties are known. It is also argued that the antiparallel structure of sstr24 + formed in the presence of K + has a higher heat denaturation temperature and is more stable than that in the presence of Na +. In addition, in this study, the comparatively short telomeric sequences tr8 + (5'-TAGGGTTA-3 ') (SEQ ID NO: 13), 5, G-trl2 + (5, -GTTAGGGTTAGG-3') (SEQ ID NO: 1 4), trl3 + (5'-GTTAGGGTTAGGG-3 ') (SEQ ID NO: 2) and 5, C-trl3 + (5'-CTTAGGGTTAGGG-3') (SEQ ID NO: 15), and further on the 5 'side of trl3 + 5 'C-trl7 + (5'-CATCATTAGGGTTAGGG-3') (SEQ ID NO: 17) (SEQ ID NO: 17), which forms a G-quadruplex DNA with a nucleotide sequence that has no relation to the telomeric sequence CD measurement was performed, but almost the same spectrum was observed in the telomere sequence of this length.
テロメァ DNAは核内にあり、 その環境下には Na+や K+以外に二価の金属陽イオンも 当然存在している。 これに関して研究された論文も報告されている。 これに用いたテロ メァ配列は酵母のものだが、 Ca2+や Mg2+が平行 G-四重らせん DNAを安定化させたり、 逆平行構造から平行構造に形成させ直したりすることを報告した。そのため、本研究で も Ca2+を含む緩衝液や Mg2+を含む緩衝液を調整し、 アニーリングしてみた。 しかし、 ヒトのテロメァ配列ではそのような目立った CDスぺクトル変化は見られず、 ただ逆平 行 G-四重らせん DNA構造を不安定化させた。 Telomere DNA is in the nucleus, and in its environment there are naturally divalent metal cations in addition to Na + and K +. Research papers on this have been reported. The telomere sequence used was that of yeast, but it was reported that Ca 2+ and Mg 2+ stabilize parallel G-quadruplex DNA and revert from antiparallel to parallel. . Therefore, in this study, the buffer containing Ca 2+ and the buffer containing Mg 2+ were prepared and annealed. However, the human telomeric sequence did not show such noticeable CD spectral changes, but only destabilized the reverse-parallel G-quadruplex DNA structure.
NMRで MRF2-DBD と相互作用したのを確認したのは、 sstrl2 +の平行 G-四重らせん DNA構造である [図 10]。 しかし、 この二倍長の sstr24 +では平行構造の G-四重らせん DNAだけを形成することができなかった。 そこで、 ssDNAのアニーリング時の濃度依存 を検討してみた。 ssDNAの濃度は、 dsDNAのアニーリングでも重要である。 濃いほうが dsDNAは形成されやすいのである。そこで平行構造が最も確認できた ss tr26 +と sstrl2 +の二倍長の sstr24+を用いて条件検討した。 その結果、 濃度が高いほど平行構造を 形成しやすいことが分かった。特に sstr26 +に関しては ssDNA濃度で約 500 M程度で ほぼ完全な平行構造を確認できた。 しかし、 sstr24 +では、 完全な平行構 31だけが形成 しなかった。 そのため、 本研究での Biacoreでの相互作用測定では逆平行構造の G -四 重らせん DNAを用いていた。また、 NMRで相互作用が見られた sstrl2 +に関しては平行 構造のみ形成させることができるのでこれを用いて相互作用測定した。 NMR confirmed the interaction of MRF2-DBD with the sstrl2 + parallel G-quadruplex DNA structure [Figure 10]. However, this double-length sstr24 + was unable to form only a parallel structure of G-quadruplex DNA. Therefore, the concentration dependence of ssDNA during annealing was examined. The concentration of ssDNA is also important in annealing dsDNA. The darker the dsDNA is formed. Therefore, the condition was examined using sstr24 +, which is twice as long as sstr26 + and sstrl2 +, where the parallel structure was most confirmed. As a result, it was found that the higher the concentration, the easier it is to form a parallel structure. In particular, for sstr26 +, almost perfect parallel structure was confirmed at about 500 M at ssDNA concentration. However, with sstr24 +, only perfect parallel structures 31 did not form. Therefore, in the measurement of the interaction with Biacore in this study, the antiparallel G- Heavy helical DNA was used. For sstrl2 +, for which an interaction was observed by NMR, only a parallel structure can be formed, and the interaction was measured using this.
Biacore測定では、 いくつか工夫したところがあり、 G-四重らせん DNA-テロメァ夕 ンパク質の相互作用を測定する方法を決定するのに時間をかなり費やした。その原因は、 実際に hTRFl-DBD, T F2-DBDを用いて G-四重らせん DNAと相互作用させたのだが、 NMR で得られたような相互作用が測定できなかったためである。 hTRF卜 DBDとの相互作用は、 Biacore内で測定することができないくらいァグリゲーシヨンを生じ、 RF2-DBDに関 しては、 相互作用が弱すぎて確認できなかった。 G-四重らせん DNA をピオチン化して SA chipに固定化させたのだが、 これがピオチン化 ssDNAだけで構成させる方法しかな いため、 G-四重らせん DNAが平行構造を形成しているのか不明であり、 また、 タンパク 質が認識する部分が固定化により障害されている可能性を考えさせた。そのため対策と してテロメァタンパク質を固定化することを考えた。  In the Biacore assay, there have been some refinements and considerable time has been spent deciding how to measure the G-quadruplex DNA-telomere protein interaction. The reason is that hTRFl-DBD and TF2-DBD were used to interact with G-quadruplex DNA, but the interaction as obtained by NMR could not be measured. Interaction with hTRF DBD resulted in aggregation that could not be measured in Biacore, and RF2-DBD could not be confirmed because the interaction was too weak. G-quadruplex helix DNA was biotinylated and immobilized on the SA chip.However, this is the only method that consists of biotinylated ssDNA alone, so it is not clear whether G-quadruplex helix DNA forms a parallel structure. Yes, and suggested that the portion recognized by the protein may be impaired by immobilization. Therefore, we considered fixing telomere protein as a countermeasure.
本研究で行った方法は、 His- tag融合タンパク質発現系を作成し、 これを精製、 そし て NTA chipを用いて Niを介したタンパク質固定を行った。 この発現系の構築は、 比較 的にスムーズにできた。 ただ実験途中に、 一つ問題があり、 hTRF2- DBD部分の制限酵素 処理後の濃度が思ったより回収することができなかった。そのため、 プライマーを購入 し、 PCR法によって増幅させた。 これによつて、 RF2- DBD 部分が回収でき、 容易に His- tag融合 hTRF2- DBD発現系を作ることができた。  The method used in this study created a His-tag fusion protein expression system, purified it, and immobilized the protein via Ni using an NTA chip. The construction of this expression system was relatively smooth. However, there was one problem during the experiment, and the concentration of hTRF2-DBD after restriction enzyme treatment could not be recovered as expected. Therefore, primers were purchased and amplified by the PCR method. As a result, the RF2-DBD portion could be recovered, and the His-tag-fused hTRF2-DBD expression system could be easily constructed.
His- tag融合 hTRF2- DBD発現系を作成後、 実際に発現、 精製した。 結果、 発現量 ·回 収量のいずれも N末端 His-tag融合タンパク質の方が多かった [図 9]。 精製には、 主に 陽イオン交換クロマトグラフィーとゲルろ過クロマトグラフィーを用いた。陽イオン交 換樹脂であるリン酸セルロースを用いたカラム精製では、樹脂とタンパク質溶液を混合 して目的タンパク質を溶出させるバッチ法を用いて溶出塩濃度を決定した。その濃度は、 N末端 His-tag用で 300mM以上、 C末端 His- tag用で 400mM以上とした。 これにより通 常の hTRF2- DBD精製と同様にほとんどの夾雑物が取り除けた。最終的にこれを濃縮して、 ゲルろ過カラムで精製し、最終サンプルとすることができた。 この一部を Biacore用に Running緩衝液交換して固定化に用いた。  After creating the His-tag fusion hTRF2-DBD expression system, it was actually expressed and purified. As a result, the N-terminal His-tag fusion protein was higher in both expression level and recovery [Figure 9]. For purification, cation exchange chromatography and gel filtration chromatography were mainly used. In column purification using cellulose phosphate, a cation exchange resin, the elution salt concentration was determined using a batch method in which the resin and protein solution were mixed and the target protein was eluted. The concentration was 300 mM or more for N-terminal His-tag and 400 mM or more for C-terminal His-tag. As a result, most of the contaminants were removed in the same manner as in normal hTRF2-DBD purification. Finally, this was concentrated and purified with a gel filtration column to obtain a final sample. A part of this was exchanged for running buffer for Biacore and used for immobilization.
Biacoreによる相互作用の結果について考察する。 Biacore装置による相互作用測定 の結果、 ss trl2 +では、平行構造との相互作用の方が、 逆平行構造との相互作用よりも 約二桁強いことが確認された [表 3, 4]。 また、 sstr24+に関しては、 逆平行構造と hTRFl-DBDが MRF2- DBDよりも特異的に相互作用していることが示唆された。 このよう に Biacoreでも NMRでの相互作用実験と同様に sstrl2+と hTRF2- DBDが相互作用して いることが確認された。また、同時に sstr8 +の平行 G-四重らせん DNA構造との相互作 用結果から、 ヒトのテロメァ配列が ssDNAで G-四重らせん DNAを形成する時、 その構 造がトリヌクレオチドループである T-T- A loopを持つと相互作用するという可能性を 予測させた。 しかし、それでは、長い ssDNA (tr22+, tr24+)が形成する G -四重らせん DNA も逆平行ながら TTA - loop を持っため相互作用することになる。 しかし、 結果的に sstr24+の方がテロメァタンパク質と相互作用しやすかつた。この理由としては、 sstr22 +の方が sstr24 +よりも形成した逆平行 G -四重らせん DNA構造が安定であるため、 hTRF2-DBDは相互作用せず、一方で sstr24 +はその構造の不安定さ、および若干の配列 の長さによって hTRF2_DBDとの相互作用に違いが現れたのではないと考えられる。つま り'、 構造が不安定だからこそ逆平行構造が解離し、 RF2 - DBDが結合するのに都合の良 い構造を形成さえたのではないかと考えられる。 しかし、 CDスペクトルによる G-四重 らせん DNA構造の確認、 Biacoreによる相互作用の強さからでは、 詳細に相互作用する メカニズムを解明するのは困難であると思われる。 The results of the interaction with Biacore are discussed. As a result of the interaction measurement using the Biacore device, in the ss trl2 +, the interaction with the parallel structure is more significant than the interaction with the antiparallel structure. It was confirmed that it was about two orders of magnitude stronger [Tables 3 and 4]. For sstr24 +, it was suggested that the antiparallel structure and hTRFl-DBD interact more specifically than MRF2-DBD. As described above, it was confirmed that sstrl2 + and hTRF2-DBD interacted with Biacore as in the interaction experiment with NMR. At the same time, based on the result of interaction with the parallel G-quadruplex DNA structure of sstr8 +, when the human telomere sequence forms a G-quadruplex DNA with ssDNA, the structure is a trinucleotide loop. -Predicted the possibility of interacting with A loop. However, in that case, G-quadruplex DNA formed by long ssDNA (tr22 +, tr24 +) also interacts with TTA-loop while being antiparallel. However, as a result, sstr24 + was more likely to interact with telomere proteins. The reason for this is that hTRF2-DBD does not interact, whereas sstr24 + is unstable because sstr22 + has a more stable antiparallel G-quadruplex DNA structure than sstr24 +. It is considered that the differences in the interaction with hTRF2_DBD did not appear depending on the length and the length of some sequences. In other words, it is thought that the antiparallel structure was dissociated because of the unstable structure, and a structure that was convenient for the RF2-DBD coupling was formed. However, from the confirmation of the G-quadruplex DNA structure by CD spectrum and the strength of the interaction by Biacore, it seems difficult to elucidate the mechanism of the interaction in detail.
本研究で確かに言えることは、 sstrl2 +の形成する平行 G -四重らせん DNAが、 その 逆平行 G-四重らせん DNAより強く hTRF2- DBDと相互作用していることである。 また、 s s t r 24 +の逆平行 G-四重らせん DNAは、 hTRF2- DBDと相互作用していることが確認され、 これは hTRFl- DBD との相互作用もしていることが分かった。 今後は、 His- tag融合 hTRFl-DBDの発現系を作成して、 Biacoreで G-四重らせん DNAとの相互作用を確認した いと考えている。  What we can certainly say in this study is that the parallel G-quadruplex DNA formed by sstrl2 + interacts with hTRF2-DBD more strongly than its antiparallel G-quadruplex DNA. In addition, it was confirmed that the antiparallel G-quadruplex DNA of sstr24 + interacted with hTRF2-DBD, which was also found to interact with hTRF1-DBD. In the future, we would like to create an expression system for His-tag fusion hTRFl-DBD and confirm its interaction with G-quadruplex DNA on Biacore.
[実施例 3 ] テロメァタンパク質 TRF2と DNAの複合体の N M Rによる解析 [Example 3] Analysis of complex of telomeric protein TRF2 and DNA by NMR
麗 R測定用試料の調製 Preparation of sample for R measurement
3. 1 DNAの調製 3.1 DNA preparation
非標識の DNAは株式会社 BEXから購入したものを用レ 13C/15N標識の DNAは日本酸素株 式会社から購入したものを用いた。 実験に用いた DNAは trl2+の他に、 比較サンプルと して TAGGGTTA (配列番号 1 3 ) の 8merの配列 (以下 tr8+)、 CCCTAACCCTAA (配列番号 1 9 ) の 12merの配列 (tr l2+に相補な配列;以下 t r l2- ) を用いた。 また、 Paral l el 構造の K+に対する依存性を調べるために、 trl2+の緩衝液条件を変えて Na+を用いた緩 衝液中のサンプルを作成した。 Of non-labeled DNA is Yore 13 C / 15 N labeling of DNA which have been purchased from the Corporation BEX used was purchased from Nippon Sanso Co., Ltd.. In addition to trl2 +, the DNA used in the experiment was, as a comparative sample, the 8-mer sequence of TAGGGTTA (SEQ ID NO: 13) (hereinafter tr8 +), CCCTAACCCTAA (SEQ ID NO: The 12-mer sequence of 19) (a sequence complementary to trl2 +; hereinafter trl2-) was used. In addition, in order to examine the dependence of the Parallel structure on K + , samples in a buffer solution using Na + were prepared by changing the buffer conditions of trl2 +.
《アニーリング》 << Annealing >>
1本鎖の状態で凍結乾燥され送られてきたそれぞれの DNAは、 50mM KPB (pH6. 8)、 75mM KC1溶液 20 □ で溶かした後、マイクロチューブに入れてパラフィルムをまいて完全に 密封した。 ここで、 K+依存性を調べるための Na+を用いた緩衝液中のサンプルには、 凍 結乾燥された DNAを 50mM NaPB (pH6. 8)、 75niM NaCl溶液 20 O で溶かした。 これらを アニーリングするために、 恒温槽 (SIBATA社製 BUCHI461Water Bath) の中に浮かばせ て 9 0 DC、 10分間の加熱をした後、恒温糟の電源を切ってそのまま温度が室温 (約 25°C) に下がるまで放置した。 さらに 65 、 20分間の加熱をした後、 恒温糟の電源を切って そのまま温度が室温に下がるまで放置した。 Each DNA, which was lyophilized and sent in a single-stranded state, was dissolved in 50 mM KPB (pH 6.8) and 20 mM 75 mM KC1 solution, then placed in a microtube, covered with parafilm, and completely sealed. . Here, the freeze-dried DNA was dissolved in 50 mM NaPB (pH 6.8) and 75 niM NaCl solution in 20 O in the sample in the buffer using Na + to examine the K + dependency. To anneal them after the heating of 9 0 D C, 10 min floated in a constant temperature bath (SIBATA Co. BUCHI461Water Bath), as the temperature is room temperature (about 25 ° off the power to the thermostatic dregs C). After heating for 65 or 20 minutes, the thermostat was turned off and left as it was until the temperature dropped to room temperature.
<緩衝液交換》 <Buffer exchange>
購入した DNAに含まれる溶媒から、 目的の溶媒 (50mM KPB (pH6. 8)、 75mM KC1溶液も しくは 50mM NaPB (pH6. 8)、 75mM NaC l溶液に完全に交換させるために、 微量透析装置を 用いて各緩衝液へ緩衝液交換を行つた。  To completely replace the solvent contained in the purchased DNA with the target solvent (50 mM KPB (pH 6.8), 75 mM KC1 solution, or 50 mM NaPB (pH 6.8), 75 mM NaCl solution) Buffer exchange was performed for each buffer using.
《pH調製》 《PH adjustment》
サンプルの pHを NMR測定のために、 pHメータ一 (RADIOMETER社製 PHM93) を用いて NaOHと HC1により H6. 800に調整した。  The pH of the sample was adjusted to H.800 with NaOH and HC1 using a pH meter (PHM93, manufactured by RADIOMETER) for NMR measurement.
《濃度検定》 《Concentration test》
UVを用いてサンプルの吸光度の測定を行った。 吸光度は 260nmの波長で測定した。 ここで G- Quadrupl exは特殊な構造を形成することから、濃度検定用のサンプルには 8M Ureaを加え、 煮沸することによって完全に 1本鎖にしてから濃度検定を行った。 また テロメァ配列は TGリッチなので、 通常の吸光係数では誤差が出る恐れがあるため、 配 列 に よ っ て 計 算 し た オ リ ゴパ ラ メ 一 夕 一 を 用 い た ( 参 照 : t tp ://genset. bioweb. ne. j p/)。 下記の式に代入してサンプルの濃度を求めた。  The absorbance of the sample was measured using UV. Absorbance was measured at a wavelength of 260 nm. Here, since G-Quadrupl ex forms a special structure, 8 M Urea was added to the sample for concentration test, and the sample was completely boiled by boiling to conduct the concentration test. In addition, since the telomere sequence is TG-rich, an error may occur with a normal extinction coefficient. Therefore, the oligoparameter calculated by the sequence was used (see: ttp: // genset. bioweb. ne. jp /). The concentration of the sample was determined by substituting into the following equation.
<trl2+>  <trl2 +>
DNAの濃度 .  DNA concentration.
= 260腹の吸光度 X希釈 (倍) X 1本鎖の係数/分子量 (1本鎖) 吸光係数は 29. 7、 分子量は 3756. 5である。 = Absorbance of 260 belly X dilution (times) X single strand coefficient / molecular weight (single strand) The extinction coefficient is 29.7 and the molecular weight is 376.5.
計算により、 DNAの濃度は約 5. 05mMであった。 '  By calculation, the concentration of DNA was approximately 5.05 mM. '
<tr8+>  <tr8 +>
DNAの濃度  DNA concentration
= 260nmの吸光度 x希釈 (倍) X 1本鎖の係数/分子量 (1本鎖)  = Absorbance at 260nm x Dilution (times) X Coefficient of single strand / Molecular weight (Single strand)
吸光係数は 28. 48、 分子量は 2464. 7である。  The extinction coefficient is 28.48 and the molecular weight is 2464.7.
計算により、 DNAの濃度は約 9. 7mMであった。  By calculation, the concentration of DNA was about 9.7 mM.
<trl2->  <trl2->
DNAの濃度  DNA concentration
= 260nmの吸光度 x希釈 (倍) X 1本鎖の係数/分子量 (1本鎖)  = Absorbance at 260nm x Dilution (times) X Coefficient of single strand / Molecular weight (Single strand)
吸光係数は 31. 83、 分子量は 3534. 36である。  The extinction coefficient is 31.83 and the molecular weight is 3534.36.
計算により、 DNAの濃度は約 7. 9mMであった。  By calculation, the concentration of DNA was approximately 7.9 mM.
3. 2 タンパク質の調製 3.2 Preparation of protein
非標識 · 15N標識された hTRF2 DNA結合ドメイン(以下 DBD)は実施例 1で調製したもの を用いた。 また、 相互作用の比較に用いた非標識 · ¾標識された RF卜 DBDも実施例 1で調製したものを用いた。 Unlabeled · 15 N-labeled hTRF2 DNA binding domain (hereinafter DBD) was used as prepared in Example 1. Unlabeled and unlabeled RFD DBDs used in the comparison of interaction were also prepared in Example 1.
《緩衝液交換》 << buffer exchange >>
各タンパク質は目的の溶媒 (50mM KPB (pH6. 8) , 75mM KC1 溶液もしくは 50mM NaPB (pH6. 8)、 75mM NaCl 溶液) に交換させるために、 微量透析装置を用いて各緩衝液 へ緩衝液交換を行った。  Buffer exchange to each buffer using a microdialyzer to exchange each protein for the target solvent (50 mM KPB (pH 6.8), 75 mM KC1 solution or 50 mM NaPB (pH 6.8), 75 mM NaCl solution) Was done.
《pH調製》 《PH adjustment》
サンプルの pHを NMR測定のために、 pHメーター (RADIOMETER社製 PHM93) を用いて NaOHと HC1により pH6. 800に調整した。  The pH of the sample was adjusted to pH 6.800 with NaOH and HC1 using a pH meter (PHM93, manufactured by RADIOMETER) for NMR measurement.
《濃度検定》 《Concentration test》
UVを用いてサンプルの吸光度の測定を行った。 吸光度は 280nmの波長で測定した。 下記の式に代入してサンプルの濃度を求めた。  The absorbance of the sample was measured using UV. Absorbance was measured at a wavelength of 280 nm. The concentration of the sample was determined by substituting into the following equation.
サンプルの濃度 =280nmの吸光度 X希釈 (倍) /分子吸光係数  Sample concentration = absorbance at 280 nm X dilution (times) / molecular extinction coefficient
hTRFl-DBDと hTRF2- DBDの両方とも Trpが 4つ、 Tyrが 2つあるので分子吸光係数は 24. 68 である。 計算により、 非標識 hTRFl-DBDの濃度は約 0. 8mM、 15N標識 hTRF l-DBDは約 1. 7 、 非標識 MRF2- DBDは約 4. 8 、 15N標識 hTRF2- DBDは 7. OmMであった。 Since both hTRFl-DBD and hTRF2-DBD have four Trps and two Tyrs, the molecular extinction coefficient is 24.68. By calculation, the concentration of unlabeled hTRFl-DBD is about 0.8 mM, about 15 N-labeled hTRFl-DBD is about 1.7, about unlabeled MRF2-DBD is about 4.8, and about 15 N-labeled hTRF2-DBD is 7.OmM Met.
3. 3 複合体試料の調製 3.3 Preparation of complex sample
hTRF2-DBDと tr l2+の複合体の NMR測定に用いたサンプルは、 hTRF2-DBDと tr l 2+を 1 : 1 の濃度で混合したものを用いた。滴定実験ではタンパク質に DNAを徐々に加える方法と、 DNAにタンパク質を徐々に加える方法の両方を用いた。 As a sample used for NMR measurement of the complex of hTRF2-DBD and trl2 +, a mixture of hTRF2-DBD and trl2 + at a concentration of 1: 1 was used. In the titration experiments, both the method of gradually adding DNA to protein and the method of gradually adding protein to DNA were used.
円二色性 (C D) 測定 Circular dichroism (C D) measurement
各 DNAの構造を調べるために、 CDを用いた測定を行った。 In order to examine the structure of each DNA, measurement using CD was performed.
ぐ CDの原理 > The principle of CD>
直線偏光は左円偏光と右円偏光からなる。左および右円偏光が光学活性な分子と異な つた相互作用をすることにより生じる現象に円二色性(CD)がある。 DNAの構造は 200nM 〜320nmの遠紫外部波長領域にいくつかの電子遷移を持っているが、 これらは DNAの状 態によって異なる。 その結果、 この波長領域で観測される CDスぺクトルは DNAの 1本 鎖 · 2本鎖 · G- Quadruplexなどの構造によって異なる。 特に CDは異なった 1次構造を 区別するという面での感度のよさから、タンパク質や核酸の 2次構造の研究に頻繁に用 いられる。  Linearly polarized light consists of left circularly polarized light and right circularly polarized light. Circular dichroism (CD) is a phenomenon that occurs when left and right circularly polarized light interact differently with optically active molecules. The structure of DNA has several electronic transitions in the far ultraviolet wavelength region from 200 nM to 320 nm, which vary depending on the state of the DNA. As a result, the CD spectrum observed in this wavelength range differs depending on the structure of single-stranded DNA, double-stranded DNA, and G-quadruplex. In particular, CD is frequently used to study the secondary structure of proteins and nucleic acids because of its sensitivity in distinguishing different primary structures.
CDによる 2次構造研究の長所は、 その容易さと低濃度で測定が可能なことにある。 通常の紫外吸収スぺクトルを測定するのと同程度かそれ以下の濃度の溶液で測定は行 われ、 しかも測定時間は比較的短い。 CD測定は分子全体の平均的な性質を見るため、 その精度は X線構造解析や NMR測定分光学には及ばないが、その特徴からタンパク質や 核酸の立体構造研究法の中で確固たる地位を確立している。  The advantages of secondary structure studies with CDs are their ease and the ability to measure at low concentrations. The measurement is performed with a solution having a concentration similar to or lower than that of a normal UV absorption spectrum, and the measurement time is relatively short. Since the CD measurement refers to the average properties of the entire molecule, its accuracy is not as good as X-ray structure analysis or NMR measurement spectroscopy, but its characteristics have established a firm position in the three-dimensional structure studies of proteins and nucleic acids. are doing.
現在までに G-Quar tet構造に特徴的な波形として確立しているのは、 Ant i- Paral le l 構造では 295nmに正の極大、 265nmに負の極大を持つ波形、また Paral le i構造では 265nm に正の極大、 245ηπιに負の極大を持つ波形である。  The waveforms that have been established as characteristic of the G-Quartet structure to date are that the Ant i-Paral le l structure has a positive maximum at 295 nm, the waveform has a negative maximum at 265 nm, and the Paral le i structure The waveform has a positive maximum at 265 nm and a negative maximum at 245ηπι.
測定に用いたサンプルは、  The sample used for the measurement is
1 . tr l2+ (50mM KPB (pH6. 8)、 75mM KC1)  1.tr l2 + (50mM KPB (pH6.8), 75mM KC1)
2 · tr l2+ (50inM NaPB (pH6. 8)、 75mM Ml)  2 tr l2 + (50inM NaPB (pH6.8), 75mM Ml)
3 . t r8+ (50mM KPB (pH6. 8) , 75ni KC1)  3.t r8 + (50mM KPB (pH6.8), 75ni KC1)
4 . tr l2- (5(kM KPB (pH6. 8)、 75mM KC1) 1に関してはアニーリング前後で波形の違いを調べるため、 アニーリング前後のサン プルを用意した。 2〜4はァニーリング後のサンプルを用いた。 4.tr l2- (5 (kM KPB (pH 6.8), 75 mM KC1) For sample 1, samples before and after annealing were prepared to examine the difference in waveform before and after annealing. Samples 2 to 4 after annealing were used.
測定は、 日本分光社製の測定器; ί-720型を用いて行い、付属の標準測定プログラムを 使用した。測定条件は、角型の石英セル(1匪)、測定温度 293K、測定波長 220〜320nm、 分解能 0. lnni、波長掃引速度 20mn/min、積算回数 4回、レスポンス lsec、パンド幅 1. 0胆、 感度 lOmdegとした。  The measurement was performed using a measuring instrument manufactured by JASCO Corporation; Model ί-720, and the attached standard measurement program was used. Measurement conditions were a square quartz cell (1 band), measurement temperature 293K, measurement wavelength 220-320nm, resolution 0. lnni, wavelength sweep speed 20mn / min, number of integrations 4 times, response lsec, band width 1.0 bold. The sensitivity was set to lOmdeg.
丽 R測定 丽 R measurement
3. 4 tΓl2+のNMR測定  3.4 NMR measurement of tΓl2 +
《2次元丽 R測定》 《2D 丽 R measurement》
trl2+単独での構造解析に向けて NMR測定を行った。 NMR measurements were performed for structural analysis of trl2 + alone.
<測定条件 > <Measurement conditions>
使用サンプル · · ·非標識 trl2+、 13C/15N標識 trl2+ Using sample, and non-labeled trl2 +, 13 C / 15 N labeled TRL2 +
分光計 ' · · Brueker社製 AVA CE- 500MHz (cryo- probe)  Spectrometer '' Brueker AVA CE-500MHz (cryo-probe)
Brueker社製 AVANCE-800MHz  AVANCE-800MHz manufactured by Brueker
溶媒 · · · 50mM KPB (pH6. 8)、 75ni KC1 (10%D20、 90¾ H20中) The solvent · · · 50mM KPB (pH6. 8), 75ni KC1 (10% D 2 0, in 90¾ H 2 0)
5(M KPB (pH6. 8)、 75mM KC1 (100%D20中) 5 (M KPB (pH6. 8 ), 75mM KC1 ( in 100% D 2 0)
※100%D20中のサンプルは、ノイズになる ¾0のシグナルを消去するために 使用した。 ※ 100% sample in D 2 0 was used to erase the signal of ¾0 become noise.
サンプル濃度' · · 500 ^ Μ〜1πιΜ  Sample concentration '500 · ~ 1πιΜ
温度 · · · 293Κ  Temperature 293Κ
測定 · · · 2D 'H/13C CT-HSQC Measurement2D 'H / 13 C CT-HSQC
2D HCCH-C0SY  2D HCCH-C0SY
2D HCCCH-C0SY  2D HCCCH-C0SY
2D HCCCCH-C0SY  2D HCCCCH-C0SY
2D HCCCCCH-C0SY  2D HCCCCCH-C0SY
2D HCN  2D HCN
2D HCNCH  2D HCNCH
2D N0ESY  2D N0ESY
3. 5 trl2+と hTRF2- DBDの複合体の NMR測定 《滴定実験》 3.5 NMR measurement of complex of trl2 + and hTRF2-DBD 《Titration experiment》
MRF2-DBD単独と hTRF2- DBD · DNA複合体のシグナル変化を観測するために、 滴定実験 を行った。  Titration experiments were performed to observe changes in the signals of MRF2-DBD alone and the hTRF2-DBD / DNA complex.
ぐ測定条件 > Measuring conditions>
使用サンプル · · ·非標識 trl2+、 非標識 tr8+、 非標識 trl2 - 非標識 hTRF2_DBD、 15N標識 M F2-DBD Samples used unlabeled trl2 +, unlabeled tr8 +, unlabeled trl2-unlabeled hTRF2_DBD, 15 N-labeled M F2-DBD
非標識 RF 1_DBD、 15N標識 hTRF 1- DBD Unlabeled RF 1_DBD, 15 N-labeled HTRF 1-DBD
分光計' · · Brueker社製 AVANCE- 500MHz (cryo- probe)  Spectrometer '· Brueker AVANCE- 500MHz (cryo-probe)
溶媒 · · · 50mM KPB (pH6.8)、 75mM Cl (10%D20、 90% H20中) The solvent · · · 50mM KPB (pH6.8) , 75mM Cl (10% D 2 0, in 90% H 2 0)
50mM NaPB (pH6.8)、 75mM NaCl (10%D20、 90% H20中) 50mM NaPB (pH6.8), 75mM NaCl (10% D 2 0, in 90% H 2 0)
サンプル濃度… 100 M〜200 M  Sample concentration: 100 M to 200 M
混合比率, · 'タンパク質: DNA=1:0, 1:0.25, 1:0.5, 1:0.75, 1:1, 1:1.25, 1:1.5,  Mixing ratio, · 'Protein: DNA = 1: 0, 1: 0.25, 1: 0.5, 1: 0.75, 1: 1, 1: 1.25, 1: 1.5,
1:1.75, 1:2  1: 1.75, 1: 2
DNA:タンパク質 =1:0, 1:0.25, 1:0.5, 1:0.75, 1:1, 1:1.25, 1:1.5,  DNA: protein = 1: 0, 1: 0.25, 1: 0.5, 1: 0.75, 1: 1, 1: 1.25, 1: 1.5,
1:1.75, 1:2  1: 1.75, 1: 2
※丄次元の測定では DNAのシグナル変化を観測するため DNAの濃度を 一定にして非標識 DNAに非標識タンパク質を混合し、 1次元の測定 ではタンパク質のシグナル変化を観測するためタンパク質の濃度を 一定にし、 15N標識夕ンパク質に非標識 DNAを混合して実験を行つた。 温度 · · · 293K * In the two-dimensional measurement, the unlabeled protein is mixed with the unlabeled DNA at a constant DNA concentration to observe the change in the DNA signal, and in the one-dimensional measurement, the protein concentration is constant to observe the protein signal change. The experiment was performed by mixing unlabeled DNA with 15 N-labeled protein. Temperature 293K
測定 · · · ID 1H  MeasurementID 1H
2D ]H/15N HSQC 2D ] H / 15 N HSQC
<構造解析に向けての NMR測定》 <NMR measurement for structural analysis>
hTRF2-DBDと DNAの複合体の相互作用部位の決定に向けて NMR測定を行つた。 NMR measurements were performed to determine the interaction site of the hTRF2-DBD-DNA complex.
<測定条件 > <Measurement conditions>
使用サンプル · · · 13C/15N標識 trl2+、 非標識 hTRF2- DBD Using sample · · · 13 C / 15 N labeled TRL2 +, unlabeled HTRF2- DBD
分光計 · · 'Brueker社製 AVANCE_500MHz (cryo- probe)  'Brueker AVANCE_500MHz (cryo-probe)
溶媒 · · · 50mM KPB (pH6.8)、 75mM KCl (10%D20、 90% H20中) 50謹 KPB (pH6.8)、 75mM KC1 (100%D20中) The solvent · · · 50mM KPB (pH6.8) , 75mM KCl (10% D 2 0, in 90% H 2 0) 50謹KPB (pH6.8), 75mM KC1 (in 100% D 2 0)
サンプル濃度 · · ' 500 M  Sample concentration · · '500 M
混合比率 · · - trl2l: TRF2-DBD=l:K 1:2  -Rl2l: TRF2-DBD = l: K 1: 2
※この実験における混合比率は、 どの割合で trl2+が複合体を形成す るのかわからないため、 初めに滴定実験の結果から変化がみられな くなつた trl2+:hTRF2- DBD=1:1で行い、次に trl2+が全て複合体に なるように 1:2の比率で測定を行った。  * The mixing ratio in this experiment was trl2 +: hTRF2-DBD = 1: 1, where no change was observed from the results of the titration experiment, since it was not clear at what ratio trl2 + formed a complex. Next, measurement was performed at a ratio of 1: 2 so that all trl2 + became a complex.
温度 · · · 293K  Temperature 293K
測定 · · · 2D ¾/13C CT-HSQC Measurement2D ¾ / 13 C CT-HSQC
2D !H/15N HSQC 2D ! H / 15 N HSQC
DNAの構造解析 DNA structural analysis
t r 12 +単独での解析は未だ完了していないが、 NMRの研究からは KC 1中では 2量体 からなる平行構造の 4重らせんである。本研究で行つた DNAの解析方法について簡単に 説明する。  Analysis of tr 12 + alone has not been completed yet, but NMR studies show that KC 1 has a quadruple parallel structure consisting of dimers. We briefly describe the DNA analysis method used in this study.
《DNA自残基の W13C CT-HSQC, HCnCH- COSYシグナルの分類》 《Classification of W 13 C CT-HSQC, HC n CH-COSY signal of DNA residue》
初めにシグナルの分類、つまりどのシグナルがどの残基のものであるかの分類を行つ た (ただし、 どのシグナルが何番目の残基かは不明である)。 !H/13C CT- HSQCの H側 1 〜7ppm、 C側 35〜90ppmを見ると、 DNA自残基のシグナルが観測された。 HCCH- C0SY、 HCCCH-COSY, HCCCCH-COSY, HCCCCCH-COSYはどの測定も との相関が観測されるため、 同じ塩基の .のシグナルは同じ ppmであるはずである。よって、 H の卯 mから塩基の 分類ができた。さらに、 HCCH- COSYでは ¾,,2..の Cのシグナルが観測でき、 W C CT-HSQC の ,,2"の範囲と比較することによって Ή/ CT- HSQCの ¾. ,2"のシグナルの分類がで きた。 HCCCH- C0SY、 HCCCCH-COSY, HCCCCCH-COSYに関しても同様の方法で分類すること ができた。 First, we classified the signals, that is, which signal belongs to which residue (however, it is unknown which signal is in which residue). ! H- 13 C CT- HSQC H-side 1-7 ppm and C-side 35-90 ppm, a signal of the DNA's own residue was observed. For HCCH-C0SY, HCCCH-COSY, HCCCCH-COSY and HCCCCCH-COSY, the correlation with any measurement is observed, so the signal of the same base should be the same ppm. Therefore, the bases could be classified from the H m. Furthermore, HCCH- the COZY ¾ ,, 2 .. C signals can be observed in, "¾ of Ή / CT- HSQC by comparing the range of., 2" ,, 2 WC CT-HSQC of signals Classification has come out. HCCCH-C0SY, HCCCCH-COSY, and HCCCCCH-COSY could be classified in the same way.
《HCNCH、 HCN、 塩基の Ή/' CT-HSQCシグナルの分類》  《Classification of N / 'CT-HSQC signal of HCNCH, HCN, base》
HCNCHに関してシグナルの分類を行った。この測定では塩基の 6/8Hと の相関が観 測できるので、 'H/13C CT-HSQC と比較してシグナルを分類することができた。 The signal was classified for HCNCH. Since this measurement can observations correlation with 6 / 8H bases, it was possible to classify the signal as compared to the 'H / 13 C CT-HSQC .
次に HCNのシグナルの分類を行った。 /3- D-リポース側の HCNシグナルで ΗΓと塩基 の 1/9Nの相関が観測され、 'H/13C CT- HSQCと比較してシグナルを分類することができ た。 塩基側の HCNシグナルでは塩基の 6/8Hと塩基の 1/9Nの相関が観測され、 ]3 _D -リ ポース側の HCNシグナルの塩基の 1/9Nと比較することによってシグナルを分類するこ とができた。 Next, HCN signals were classified. The HCN signal on the / 3-D-report side shows a correlation between Η Γ and 1 / 9N of the base, and the signal can be classified by comparing with 'H / 13 C CT-HSQC. Was. In the base side HCN signal, a correlation of 6 / 8H of the base and 1 / 9N of the base was observed, and the signal was classified by comparing with 1 / 9N of the base of the HCN signal on the 3_D-report side. Was completed.
さらに塩基の 6/8Hと Cの相関が観測される 1 H/13C CT- HSQCにおいては、 HCNCHもし くは塩基側の HCNの 6/8Hと比較することによってシグナルを分類することができた。 <自残基 N0Eの分類と帰属》 In a further 1 H / 13 C CT- HSQC correlation of 6 / 8H and C bases it is observed, HCNCH if Ku was able to classify the signal by comparing the 6 / 8H of HCN base side . <Classification and attribution of own residue N0E>
N0ESYシグナルにおいて、 1. 0〜6. 5ppmには DNA自残基との N0E、 6. 5〜8. 4ppmには塩 基の 6/8Hとの N0Eが観測される範囲が観測される。 よって、 X軸方向の 6. 5〜8. 4ppm、 y軸方向の 1. 0〜6. 5ppmの範囲の N0Eを帰属することによって塩基の 6/8Hと DNA自残 基の N0Eを明らかにすることにした。 まずは 6/8H (X軸側) の塩基の分類を 6/8Hと C の相関が観測される Ή/ CT-HSQCと比較して行い、次に DNA自残基の ΐ/ CT-HSQC で分類した自残基の ΗΓ、 Η2,,2..、 ¾,、 Η4.、 Η5,, .の Ηシグナルと比較して分類した。 ほとんどのシグナルが分類できたら、自残基以外に観測されているシグナルがどの残基 のものなのかを同定していくことによって構造的に近い残基を決定していった。その結 果ほとんどのシグナルについて同定でき、連続帰属を行うことによってどのシグナルが どの残基のものかを同定することができた。 さらに 'H/13C CT-HSQC HCCH-COSY, HCCCH-COSY, HCGCCH-COSY, HCCCCCH-COSY についても残基の帰属を行うことができた。 また、 チミン残基の / CT- HSQC上の CH3についても帰属を行った。 In the N0ESY signal, the range in which N0E with the DNA's own residue is observed in 1.0 to 6.5 ppm, and the range in which N0E with 6 / 8H of the base is observed in 6.5 to 8.4 ppm. Therefore, by assigning N0E in the range of 6.5 to 8.4 ppm in the X-axis direction and 1.0 to 6.5 ppm in the y-axis direction, 6 / 8H of the base and N0E of the DNA self-residue should be clarified. I made it. First, the 6 / 8H (X-axis side) bases were classified by comparing / 8 / CT-HSQC, where the correlation between 6 / 8H and C was observed, and then by 分類 / CT-HSQC of the DNA's own residue. Eta gamma of the self residues, Η 2 ,, 2 .., ¾ ,, Η 4., was classified in comparison with Eta 5 ,,. of Eta signal. Once most of the signals could be classified, structurally similar residues were determined by identifying which residues were observed other than the own residue. As a result, most of the signals could be identified, and it was possible to identify which signal belongs to which residue by performing sequential assignment. Furthermore, residue assignment could be performed for 'H / 13 C CT-HSQC HCCH-COSY, HCCCH-COSY, HCGCCH-COSY, HCCCCCH-COSY. In addition, the assignment was performed for CH 3 on the thymine residue / CT-HSQC.
《化学シフト表》 《Chemical shift table》
上に述べた解析結果から、 観測出来たシグナルについての化学シフト表を作成した (表 5 )。 結果  From the analysis results described above, a chemical shift table for the observed signals was created (Table 5). Result
3. 6 CD測定 .  3.6 CD measurement.
<trl2+アニーリング前後の比較》  <Comparison before and after trl2 + annealing>
trl2+のアニーリング前とァニーリング後の CDスぺクトルを比較すると、ァニ一リン グ前の極大は 275nm付近、 極小は 250nm付近であり、 ァニーリング後の極大は 265nm 付近、 極小は 245nm付近であった。 このことから、 アニーリング前と後の trl2+の構造 は明らかに異なっており、 アニーリング後の trl2+の CD スペクトルは Paral lel G- uadru lexに 徴的な波形を示した。つまり tr 12+は Paral lel G- Quadruplex構造を 形成していることが示唆された。 Comparing the CD spectra before and after annealing of trl2 +, the maximum before annealing was around 275 nm, the minimum was around 250 nm, the maximum after annealing was around 265 nm, and the minimum was around 245 nm. . From this, the structure of trl2 + before and after annealing is clearly different, and the CD spectrum of trl2 + after annealing is G-uadru lex showed a characteristic waveform. In other words, it was suggested that tr 12+ forms a parallel G-quadruplex structure.
《trl2+、 trl2 -、 tr8+の比較》 《Comparison of trl2 +, trl2-, tr8 +》
trl2+、 trl2-、 tr8+ (全てアニーリング後)の CDスペクトルを比較すると、 trl2+の極 大は 265nm付近、 極小は 245nm付近、 tr 12-の極大は 275nm付近、 極小は 250nm付近、 tr8+の極大は 265胆付近、 極小は 245腿付近であった。 このことから、 trl2+と tr8+の CDスぺクトルは Paral lel G-Quadruplexに特徴的な波形を示すが、 trl2-は異なる波形 を示した。つまり trl2+と tr8+は Paral lel G_Quadruplex構造を形成しているが、 trl2- は trl2+や tr8+とは異なる構造であることが示唆された。  Comparing the CD spectra of trl2 +, trl2- and tr8 + (all after annealing), the maximum of trl2 + is around 265 nm, the minimum is around 245 nm, the maximum of tr12- is around 275 nm, the minimum is around 250 nm, and the maximum of tr8 + is 265 The area around the gall and the minimum were around 245 thighs. From this, the CD spectra of trl2 + and tr8 + showed waveforms characteristic of Paralel G-Quadruplex, but trl2- showed different waveforms. In other words, it was suggested that trl2 + and tr8 + form a Paralel G_Quadruplex structure, but trl2- is a different structure from trl2 + and tr8 +.
《trl2+の K+ · Na+依存性》 《Kl + Na + dependence of trl2 +》
K+存在下の trl2+と Na+存在下の trl2+ (全てァニーリング後) の CDスぺクトルを比 較すると、 K+存在下の trl2+の極大は 265nm付近、極小は 245nm付近、 Na+存在下の trl2+ の極大は 295nmと 250腹付近、 極小は 265nm付近であった。 このことから、 K+存在下の trl2+の CDスペクトルは Paral lel G - Quadruplexに特徴的な波形を示し、 Na+存在下の trl2+の CDスぺクトルは Ant i- Paral lel G-auadruplexに特徴的な波形を示した。また、 ここではデータをのせていないが、 K と Na が含まれる緩衝液についても Paral lel G-auadruple に特徴的な波形を示した。 つまり、 K+存在下の trl2+は Paral lel G-auadruple 構造を形成し、 Na+だけが存在する条件下では trl2+は Ant i-Paral lel G-Quadruplex構造を形成するということが示唆された。 以下、 Paral lel G-Quadruplex 構造を形成する trl2+は trl2+、 Ant i-Paral lel G-Quadru lex構造を形成する trl2+は trl2+ (ant i)と示す。 Comparing the CD spectra of trl2 + in the presence of K + and trl2 + in the presence of Na + (all after annealing), the maximum of trl2 + in the presence of K + is around 265 nm, the minimum is around 245 nm, and the maximum of trl2 + in the presence of Na + Was at 295 nm and around 250 belly, and the minimum was around 265 nm. From this, the CD spectrum of trl2 + in the presence of K + shows a waveform characteristic of Paralel G-Quadruplex, and the CD spectrum of trl2 + in the presence of Na + shows the waveform characteristic of Ant i-Parallel G-auadruplex. showed that. Although no data is shown here, the buffer containing K and Na also showed the characteristic waveform of Paralel G-auadruple. In other words, it was suggested that trl2 + in the presence of K + forms a Paral lel G-auadruple structure, and that trl2 + forms an Ant i-Parallel G-Quadruplex structure in the presence of only Na + . Hereinafter, trl2 + forming the Paral lel G-Quadruplex structure is referred to as trl2 +, and trl2 + forming the Ant i-Paral lel G-Quadrulex structure is referred to as trl2 + (ant i).
3. 7 t r 12+の NMR測定 ·構造解析 3.7 NMR measurement of 7 tr 12 + Structural analysis
trl2+の NMR測定の結果 ·残基の帰属は表 5に示したとおりである。 表 5 Results of NMR measurement of trl2 + • The residue assignments are as shown in Table 5. Table 5
Figure imgf000053_0001
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0002
trl2+の化学シフト表  trl2 + chemical shift table
3. 8 hTRF-DBDと DNAの NMR測定 3.8 NMR measurement of hTRF-DBD and DNA
《trl2- trl2+ trl2+ (ant i)、 tr8+の 1次元 NMR測定》  << 1D NMR measurement of trl2- trl2 + trl2 + (ant i), tr8 + >>
trl2- trl2 trl2+ (ant i) , tr8+の 1次元スペクトルを比較すると、 trl2-のスぺク トルは構造をとっていないときに特徴的な全体的にシャ一プなシグナルであり、グァニ ンのィミノプロトンに特徴的な 10 12ppm付近のシグナルも観測されなかった。 一方、 trl2+ trl2+ (ant i) , tr8+のスペクトルは、 構造をとつているときに特徴的な全体的に ブロードしたシグナルであり、 グァニンのィミノプロトンも観測された。 しかしィミノ プロトンのシグナルに関してこれら 3つのシグナルには違いがあり、 trl2+では大きな 3本のシグナルのうち真ん中が 2本に分かれているが、 tr8+は真ん中のシグナルははつ きりとは分かれておらず、 trl2+ (ant i)では他にもいくつかのマイナーなシグナルが観 測された(図 11)。 よって、 trl2_、 trl2+、 trl2+ (ant i)、 tr8+はそれぞれ異なる構造を 形成することが示唆された。 Comparing the one-dimensional spectra of trl2- trl2 trl2 + (ant i) and tr8 +, the trl2- spectrum is a characteristically sharp signal when unstructured, and No signal around 10 12 ppm characteristic of imino protons was observed. On the other hand, the spectra of trl2 + trl2 + (ant i) and tr8 + were characteristically broad signals when the structure was adopted, and the imino proton of guanine was also observed. But imino There is a difference between these three signals in terms of the proton signal.In trl2 +, the middle of the three large signals is split into two, while in tr8 +, the middle signal is not separated and trl2 + In (ant i), several other minor signals were observed (Fig. 11). Therefore, it was suggested that trl2_, trl2 +, trl2 + (anti), and tr8 + form different structures.
<DNA: hTRF-DBD滴定実験》 <DNA: hTRF-DBD titration experiment>
<tr l2 : TRFl-DBDと trl2+ :hTRF2-DBDの 1次元スぺクトル〉  <tr l2: One-dimensional spectrum of TRFl-DBD and trl2 +: hTRF2-DBD>
trl2+ :hTRF2-DBDの滴定実験では、 DNAに RF2- DBDを加えていくと DNA由来のスぺ クトルが大きく変化していき、 スペクトルが分かれていくのが観測された。 一方、 trl2+ : hTRFl-DBDの滴定実験では、 DNAに hTRFl- DBDを加えていくと全体的にシグナル がブロードしてしまレ 、最終的にはサンプルチューブ内でサンプルが変性して白濁して いるのが目で確認でき、さらに NMRシグナルにおいても DNA由来のシグナルが確認でき なくなってしまった(図 12)。 これはおそらく非特異的な結合によるものだと考えられ る。これらのことから、 trl 2+と RF2- DBDを混合すると何らかの構造変化が起こるが、 t r 12+と hTRF 1-DBDを混合しても特異的な結合は起こらないと考えられる。  In the titration experiment of trl2 +: hTRF2-DBD, it was observed that the spectrum derived from DNA changed greatly as RF2-DBD was added to DNA, and the spectrum was separated. On the other hand, in the trl2 +: hTRFl-DBD titration experiment, as hTRFl-DBD was added to DNA, the signal broadened as a whole, and eventually the sample was denatured and became cloudy in the sample tube. This was visually confirmed, and the signal derived from DNA could not be confirmed in the NMR signal (Fig. 12). This is probably due to non-specific binding. These results suggest that mixing trl 2+ and RF2-DBD causes some structural changes, but mixing tr 12+ and hTRF 1-DBD does not result in specific binding.
<hTRFl-DBD : trl2+の 2次元スぺクトル > <hTRFl-DBD: trl2 + 2D spectrum>
hTRFl- DBDに trl2+を加えていくと、 K374、 Ε386、 画 sc (側鎖) のシグナルが消失 していった (図 13)。 しかし、 tr l2+を加えるにつれてサンプルチューブ内のサンプル は変性していくのが確認でき、'このシグナルの変化が特異的な結合によるものかは不明 である。  When trl2 + was added to hTRFl-DBD, the signals of K374, Ε386, and the sc (side chain) disappeared (Fig. 13). However, the sample in the sample tube was confirmed to be denatured as trl2 + was added, and it is unclear whether this signal change was due to specific binding.
ぐ hTRF2- DBD : trl2+の 2次元スぺクトル〉 HTRF2- DBD: trl2 + 2D spectrum>
MRF2- DBDに trl2+を加えていくと、 Y462, Q463、 Y465、 G466、 G468、 翻、 W470、 A471、 A472、 1473、 S474、 K475、 N476 の連続したアミノ酸のシグナルが消失したりシ フトしたりと大きく変化していた (図 14)。 このことから RF2-DBDと trl2+を混合す ると hTRF2- DBDの 462番目のバリン〜 476番目のァスパラギンが何らかの構造変化を起 こすのではないかと考えられる。  When trl2 + is added to MRF2-DBD, the consecutive amino acid signals of Y462, Q463, Y465, G466, G468, W470, A471, A472, 1473, S474, K475, and N476 disappear or shift. (Fig. 14). This suggests that mixing RF2-DBD with trl2 + may cause some structural change in hTRF2-DBD from 462th valine to 476th asparagine.
<MRF2- DBD : tr8+の 2次元スぺクトル > <MRF2- DBD: 2D spectrum of tr8 +>
hTRF2-DBDに tr8+を加えていってもシグナルの変化は観測されなかった d hTRF2-DBD to be carried out by the addition of tr8 + changes in the signal was observed d
く hTRF2- DBD : trl2-の 2次元スぺクトル > M F2-DBDに trl2-を加えていってもシグナルの変化は観測されなかった。 HTRF2- DBD: trl2- 2D spectrum> No signal change was observed even when trl2- was added to MF2-DBD.
<hTRF2-DBD:trl2l (anti)の 2次元スぺクトル〉 <2D spectrum of hTRF2-DBD: trl2l (anti)>
MRF2-DBDに trl2+ (anti)を加えていってもシグナルの変化は観測されなかった。 3.9 hTRF2-DBDと tr 12+の複合体の NMR測定  No signal change was observed even when trl2 + (anti) was added to MRF2-DBD. 3.9 NMR measurement of complex of hTRF2-DBD and tr 12+
trl2+と RF2- DBDの複合体の DNA側のシグナル(塩基の 6/8H_6/8C、 3- D-リポース の Η,·、 チミンの CH3の Ή/ CT-HSQCシグナル) をみると、 グァニンのシグナルが消 失 ·シフトしているのが確認でき、 チミンの C¾も全体的にシフトしているが特に 7番 目のチミンが大きくシフトしているのが確認できた。これは trl2+:MRF2- DBDが 1: 1、 1:2の割合でも同じであった。 trl2+: RF2- DBD =1:1と 1: 2でのシグナルを比較する と、 1:2のほうが多少ではあるがマイナーなシグナルが減少していた。 これらのことか ら trl2+と RF2- DBDを混合すると tr 12+のグァニンや 7番目のチミンに構造変化が起 こることが示唆された。 しかし、 マイナーなシグナルが非常に多いため、 さらなる測定 条件の検討が必要である。 考察 TRL2 + and RF2- DBD complex of DNA side signal (base 6 / 8H_6 / 8C, 3- D- ribose of Η, ·, Ή / CT- HSQC signal CH 3 thymine) Looking at, for Guanin It was confirmed that the signal was lost and shifted, and that the C の of thymine was also shifted overall, but that the seventh thymine was shifted significantly. This was the same for trl2 +: MRF2-DBD in the ratio of 1: 1 and 1: 2. Comparing the signals at trl2 +: RF2- DBD = 1: 1 and 1: 2, the signal signal at 1: 2 was slightly less, but the minor signal decreased. These results suggest that mixing trl2 + and RF2-DBD causes structural changes in tr12 + guanine and seventh thymine. However, the number of minor signals is so large that further measurement conditions need to be considered. Consideration
本研究において、 tr 12+は K+存在下で Parallel G- auadrupklex構造を形成し、 この 構造が RF2- DBDと特異的に相互作用することが示唆された。これは trl2+ (anti)、 tr8+、 trl2-には見られない相互作用であり、 Parallel G-Quadruplex構造を形成する trl2+ の特徴的な構造によるものであると考えられる。 多くの構造的な種類が存在する G-Quadruplex において、 ほとんどの種類が Anti- Parallel G-Quadruplex であり、 Parallel G- Qiiadruplexを形成するには 2本の DNAからなる 1種類の構造と 4本の DNA からなる 1種類の構造の 2種類だけである (図 5参照)。 本研究で用いた trl2+は、 デ —夕は示していないが超遠心測定の結果からおそらく 2本の DNAから形成されることが 示唆された。 また、 2002年に Natureに発表された論文では、 TAGGGTTAGGGT (配列番号 18)の 12merの DNAが TTAループを形成する 2量体の Paral lei G_Quadruplexを形成 することが示されている。現在行っている N0E解析においても TTAループが予測される 結果が示されている。 これらのことから、 trl2+は 2量体で Parallel G-Quadruplexを 形成し、 この構造が RF2- DBDと何らかの相互作用をしていると考えられる。滴定実験 の結果から hTRF2_DBDの相互作用部位は 2番目のヘリックス周辺である V462〜N476と 特定できた。これをタンパク質の構造での部位を確認するために、マッピングを行った。 F2- DBDの構造を現在解析中であり、 DBDと hTRF卜 DBDの構造はほぼ同じとい うことがわかっているので、 MRF2- DBD上でのアミノ酸を WRF卜 DBDに置き換えてマツ ピングを行った(図 15)。 trl2+の相互作用部位の特定は現在行っている途中であるが、 おそらくグァニンと 7番目のチミンが関係しているのではないかと考えられ、今後さら なる測定が必要である。 In this study, tr 12+ forms a Parallel G-auadrupklex structure in the presence of K +, suggesting that this structure interacts specifically with RF2-DBD. This is an interaction that is not seen in trl2 + (anti), tr8 +, and trl2-, and is thought to be due to the characteristic structure of trl2 + that forms the Parallel G-Quadruplex structure. In a G-Quadruplex in which there are many structural types, most are Anti-Parallel G-Quadruplexes.To form a Parallel G-Qiiadruplex, one structure consisting of two DNAs and four There are only two types of one structure consisting of DNA (see Figure 5). The trl2 + used in this study was not shown in the data, but the results of ultracentrifugation suggested that it was probably formed from two pieces of DNA. In a paper published in Nature in 2002, it was shown that a 12-mer DNA of TAGGGTTAGGGT (SEQ ID NO: 18) forms a dimeric Paral lei G_Quadruplex that forms a TTA loop. The results show that the current N0E analysis also predicts a TTA loop. These results suggest that trl2 + forms a Parallel G-Quadruplex in the dimer, and this structure has some interaction with RF2-DBD. From the results of the titration experiments, the interaction site of hTRF2_DBD was V462-N476 around the second helix. I was able to identify. This was mapped to confirm the site in the protein structure. The structure of F2-DBD is currently being analyzed, and it is known that the structures of DBD and hTRF DBD are almost the same.Therefore, mapping was performed by replacing the amino acid on MRF2-DBD with WRF DBD. (Figure 15). Although the site of the trl2 + interaction is currently being determined, it is likely that guanine and the 7th thymine are involved, and further measurements are needed in the future.
また、 hTRF卜 DBJ)と hTRF2- DBDは非常に相同性が高く、 構造もほとんど同じにもか かわらず、 trl2+と相互作用するのが明らかなのは hTRF2 - DBDだけである。 これについ ては明らかではないが、わずかなアミノ酸配列や構造の違いによるのではないかと考え ている。  Also, hTRF DBJ) and hTRF2-DBD have very high homology, and although their structures are almost the same, only hTRF2-DBD is known to interact with trl2 +. Although this is not clear, we believe that it may be due to slight differences in amino acid sequence and structure.
G-quadruplexが生体内に存在するのか、 どのような役割を持つのかは現在のところ わかっていない。 しかし、 G- QMdruplex を利用した研究は行われており、 最近の論文 では HIV 阻害剤としての開発が進んでいることが発表されている。 本研究では G-Quadrupl ex とタンパク質の複合体の構造解析を行っているが、 さらに詳細な三次元 構造を解明する予定である。 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細 書にとり入れるものとする。 産業上の利用可能性  It is unknown at present whether the G-quadruplex exists in the body or what role it plays. However, studies using G-QMdruplex have been conducted, and recent papers indicate that the development of HIV inhibitors is progressing. In this study, we are conducting structural analysis of the complex of G-Quadrupl ex and protein, but we plan to elucidate a more detailed three-dimensional structure. All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial applicability
本発明により、 テロメァタンパク質 (T R F 1、 T R F 2 ) と複合体を形成すること ができる G—四重らせん D NAが提供された。 また、本発明により、 テロメァタンパク 質 (T R F 1、 T R F 2 ) と G—四重らせん D NAとの複合体が提供された。 テロメァ は老化や癌化の制御に関与していると考えられているので、本発明の D N A及び複合体 を利用して、老化や癌化のメカニズムの解析、制癌剤などの薬の設計をすることが可能 となる。 配列表フリーテキスト  According to the present invention, a G-quadruplex DNA capable of forming a complex with a telomere protein (TRF1, TRF2) has been provided. Further, according to the present invention, a complex of a telomere protein (TRF1, TRF2) and a G-quadruplex DNA is provided. Since telomeres are thought to be involved in the control of aging and canceration, use the DNA and complex of the present invention to analyze the mechanisms of aging and canceration and to design drugs such as anticancer drugs. Is possible. Sequence listing free text
配列番号 1は、 trl2+の塩基配列を示す, 配列番号 2は、 tr 13+の塩基配列を示す。 SEQ ID NO: 1 shows the nucleotide sequence of trl2 +, SEQ ID NO: 2 shows the nucleotide sequence of tr13 +.
配列番号 3は、 tr22+の塩基配列を示す。 SEQ ID NO: 3 shows the nucleotide sequence of tr22 +.
配列番号 4は、 tr24+の塩基配列を示す。 SEQ ID NO: 4 shows the nucleotide sequence of tr24 +.
配列番号 5は、 TRF1-DBDのアミノ酸配列を示す。 SEQ ID NO: 5 shows the amino acid sequence of TRF1-DBD.
配列番号 6は、 TRF1の全長のアミノ酸配列を示す。 SEQ ID NO: 6 shows the full length amino acid sequence of TRF1.
配列番号 7は、 TRF2- DBDのアミノ酸配列を示す。 SEQ ID NO: 7 shows the amino acid sequence of TRF2-DBD.
配列番号 8は、 TRF2の全長のアミノ酸配列を示す。 SEQ ID NO: 8 shows the full length amino acid sequence of TRF2.
配列番号 9は、 N末端 His- tag用 5 ' プライマーの塩基配列を示す。 配列番号 1 0は、 N末端 His- tag用 3 ' プライマーの塩基配列を示す。 配列番号 1 1は、 C末端 His- tag用 5 ' プライマーの塩基配列を示す。 配列番号 1 2は、 C末端 His-tag用 3 ' プライマーの塩基配列を示す。 配列番号 1 3は、 tr8+の塩基配列を示す。 SEQ ID NO: 9 shows the nucleotide sequence of 5 'primer for N-terminal His-tag. SEQ ID NO: 10 shows the nucleotide sequence of a 3 ′ primer for N-terminal His-tag. SEQ ID NO: 11 shows the base sequence of the 5 'primer for C-terminal His-tag. SEQ ID NO: 12 shows the nucleotide sequence of the 3 ′ primer for C-terminal His-tag. SEQ ID NO: 13 shows the nucleotide sequence of tr8 +.
配列番号 1 4は、 5 ' - G-trl2+の塩基配列を示す。 SEQ ID NO: 14 shows the nucleotide sequence of 5′-G-trl2 +.
配列番号 1 5は、 5, - C-trl3+の塩基配列を示す。 SEQ ID NO: 15 shows the nucleotide sequence of 5, -C-trl3 +.
配列番号 1 6は、 tr26+の塩基配列を示す。 SEQ ID NO: 16 shows the nucleotide sequence of tr26 +.
配列番号 1 7は、 5, - C-trl7+の塩基配列を示す。 SEQ ID NO: 17 shows the nucleotide sequence of 5, -C-trl7 +.
配列番号 1 8は、 Natureの論文で報告された ssDNAの塩基配列を示す。 配列番号 1 9は、 trl2-の塩基配列を示す。 SEQ ID NO: 18 shows the nucleotide sequence of ssDNA reported in Nature's paper. SEQ ID NO: 19 shows the nucleotide sequence of trl2-.

Claims

1. 陽イオンの存在下で、 1. in the presence of a cation,
TRF 1若しくは TRF 2のいずれかのテロメァタンパク質又はその DN A結合領域 を含むテロメァタンパク質断片と、  A telomeric protein of either TRF 1 or TRF 2 or a telomeric protein fragment comprising the DNA binding region thereof;
グァニン—四重らせん構造をとる DNAとが形成する複合体。 Guanine—a complex formed with DNA that has a quadruple helix structure.
2. 陽イオンが、ナトリウムイオンまたはカリウムイオンである請求項 1記載の複合 体。 請  2. The complex according to claim 1, wherein the cation is a sodium ion or a potassium ion. Contract
3. テロメァタンパク質又はその D N A結合領域を含むテロメァタンパク質断片が、 下記の (A) 〜 (D) のタンパク質及びタンパク質断片から成る群より選択される請求 項 1記載の複合体。  3. The complex according to claim 1, wherein the telomere protein or a telomere protein fragment containing the DNA binding region thereof is selected from the group consisting of the following proteins (A) to (D) and protein fragments.
(A) 配列番号 6のアミノ酸配列で表される TRF囲1  (A) TRF box 1 represented by the amino acid sequence of SEQ ID NO: 6
(B) 配列番号 8のアミノ酸配列で表される TRF 2  (B) TRF 2 represented by the amino acid sequence of SEQ ID NO: 8.
(C)配列番号 5のアミノ酸配列(但し、 第 1番目のメチォニン残基は欠失してもよい ) で表される、 TRF 1の DNA結合領域を含む TRF 1断片  (C) a TRF1 fragment containing the DNA binding region of TRF1, represented by the amino acid sequence of SEQ ID NO: 5 (however, the first methionine residue may be deleted)
(D)配列番号 7のアミノ酸配列(但し、 第 1番目のメチォニン残基は欠失してもよい ) で表される、 TRF 2の DNA結合領域を含む TRF 2断片  (D) a TRF2 fragment containing a DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 (the first methionine residue may be deleted)
4. グァニン—四重らせん構造をとる DNAが、配列番号 1〜4のいずれかの塩基配 列を有する請求項 1〜 3のいずれかに記載の複合体。  4. The complex according to any one of claims 1 to 3, wherein the DNA having a guanine-quadruplex structure has any one of the nucleotide sequences of SEQ ID NOs: 1 to 4.
5. テロメァタンパク質又はその DN A結合領域を含むテロメァタンパク質断片が T RF 1又はその DNA結合領域を含む TRF 1断片であり、グァニン—四重らせん構造 をとる D N Aが逆平行鎖のグァニン—四重らせん構造をとる請求項 1〜 4のいずれか に記載の複合体。  5. The telomere protein or a telomere protein fragment containing the DNA binding region thereof is TRF1 or a TRF1 fragment containing the DNA binding region thereof, and guanine—DNA having a quadruplex structure is an antiparallel guanine— The complex according to any one of claims 1 to 4, which has a quadruple helix structure.
6. テロメァタンパク質又はその DN A結合領域を含むテロメァタンパク質断片が T RF 2又はその DNA結合領域を含む TRF 2断片であり、グァニン—四重らせん構造 をとる D N Aが平行鎖のグァニン一四重らせん構造をとる請求項 1〜 4のいずれかに 記載の複合体。  6. The telomere protein or a telomere protein fragment containing the DNA binding region thereof is TRF2 or a TRF2 fragment containing the DNA binding region thereof, and guanine—a DNA having a quadruple helix structure is composed of parallel guanine-14. The complex according to any one of claims 1 to 4, which has a heavy helical structure.
7. 下記の(i)〜(iv)の複合体から成る群より選択される請求項 1記載 複合体。 (i)配列番号 5のアミノ酸配列で表される、 TRF 1の DNA結合領域を含む TRF 1 断片と、配列番号 4の塩基配列を有し、グァニン一四重らせん構造をとる DNAとの複 合体 7. The complex according to claim 1, wherein the complex is selected from the group consisting of the following complexes (i) to (iv). (i) represented by the amino acid sequence of SEQ ID NO: 5, including TRF 1 DNA-binding region A complex of a fragment and a DNA having the nucleotide sequence of SEQ ID NO: 4 and having a guanine quadruplex structure
(ii) 配列番号 7のアミノ酸配列からなる配列で表される、 TRF 2の DNA結合領域 を含む TRF 2断片と、配列番号 1の塩基配列を有し、 グァニン一四重らせん構造をと る DNAとの複合体  (ii) a TRF2 fragment containing the DNA binding region of TRF2 represented by the sequence consisting of the amino acid sequence of SEQ ID NO: 7, and a DNA having the nucleotide sequence of SEQ ID NO: 1 and having a guanine quadruplex structure Complex with
(iii)配列番号 7のアミノ酸配列で表される、 TRF 2の DNA結合領域を含む TRF 2断片と、配列番号 2の塩基配列を有し、グァニン一四重らせん構造をとる DNAとの 複合体  (iii) A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and DNA having the nucleotide sequence of SEQ ID NO: 2 and having a guanine quadruplex structure
(iv) 配列番号 7のアミノ酸配列で表される、 TRF 2の DNA結合領域を含む TRF 2断片と、配列番号 3の塩基配列を有し、グァニン一四重らせん構造をとる DNAとの 複合体  (iv) A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and a DNA having the nucleotide sequence of SEQ ID NO: 3 and having a guanine quadruplex structure
(iv) 配列番号 7のアミノ酸配列で表される、 TRF 2の DNA結合領域を含む TRF 2断片と、配列番号 4の塩基配列を有し、グァニン一四重らせん構造をとる DNAとの 複合体  (iv) A complex of a TRF2 fragment containing the DNA binding region of TRF2 represented by the amino acid sequence of SEQ ID NO: 7 and a DNA having the nucleotide sequence of SEQ ID NO: 4 and having a guanine quadruplex structure
8. 配列番号 1、 2、 3、 4、 13、 14、 15または 16のいずれかの塩基配列を 有し、 グァニン一四重らせん構造をとることができる DNA。  8. DNA having a base sequence of any one of SEQ ID NOs: 1, 2, 3, 4, 13, 14, 15 and 16, and capable of forming a guanine quadruplex structure.
9. グァニン一四重らせん構造をとっている請求項 8記載の DNA。  9. The DNA according to claim 8, wherein the DNA has a guanine quadruplex structure.
10. グァニン一四重らせんが平行鎖のグァニン—四重らせんである請求項 9記載の D NA。  10. The DNA of claim 9, wherein the guanine quadruplex is a parallel chain guanine-quadruplex.
11. グァニン一四重らせんが逆平行鎖のグァニン—四重らせんである請求項 9記載の DNA。  11. The DNA of claim 9, wherein the guanine quadruplex is an antiparallel guanine-quadruplex.
PCT/JP2004/001220 2003-02-10 2004-02-05 Complex of telomere protein with guanine-quadruplex dna WO2004069868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003032233 2003-02-10
JP2003-032233 2003-02-10

Publications (1)

Publication Number Publication Date
WO2004069868A1 true WO2004069868A1 (en) 2004-08-19

Family

ID=32844333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001220 WO2004069868A1 (en) 2003-02-10 2004-02-05 Complex of telomere protein with guanine-quadruplex dna

Country Status (1)

Country Link
WO (1) WO2004069868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145556B2 (en) 2001-10-29 2006-12-05 Anoto Ab Method and device for decoding a position-coding pattern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135087A (en) * 2001-11-05 2003-05-13 Yoshifumi Nishimura Use of three-dimensional structure of complex of telomere dna and human trf1

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135087A (en) * 2001-11-05 2003-05-13 Yoshifumi Nishimura Use of three-dimensional structure of complex of telomere dna and human trf1

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NISHIKAWA T. ET AL: "Solution structure of a telomeric DNA complex of human TRF1", STRUCTURE, vol. 9, December 2001 (2001-12-01), pages 1237 - 1251, XP002979538 *
NISHIKAWA T. ET AL: "Structure of the DNA-binding domain of human telomeric protein, TRF1 and its interaction with telomeric DNA", NUCLEIC ACIDS RES., no. 1, 2001, pages 273 - 274, XP002979537 *
PARKINSON G.N. ET AL: "Crystal structure of parallel quadruplexes from human telomeric DNA", NATURE, vol. 417, no. 6891, 20 June 2002 (2002-06-20), pages 876 - 880, XP002979541 *
PHAN A.T. ET AL: "Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix", NUCLEIC ACIDS RES., vol. 30, no. 21, 2002, pages 4618 - 4625, XP002979540 *
REN J. ET AL: "Tiny telomere DNA", NUCLEIC ACIDS RESEARCH, vol. 30, no. 11, 2002, pages 2307 - 2315, XP002979539 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145556B2 (en) 2001-10-29 2006-12-05 Anoto Ab Method and device for decoding a position-coding pattern

Similar Documents

Publication Publication Date Title
EP2875152B1 (en) Enzyme construct
Kim et al. Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions: mapping the τ binding domain of the DNA polymerase III α subunit
MX2007013757A (en) Sequence enabled reassembly (seer) - a novel method for visualizing specific dna sequences.
CN117700500A (en) Mutant CSGG wells
Tadokoro et al. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities
Ramírez et al. Single molecule force spectroscopy reveals the effect of BiP chaperone on protein folding
Kyrieleis et al. Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex
Yang et al. Domain structure of gpNu1, a phage lambda DNA packaging protein
Subramanyam et al. Expression, purification, and biochemical evaluation of human RAD51 protein
Ronning et al. The carboxy‐terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA
Xiang et al. Expression, purification, and functional characterization of a stable helicase domain from a tomato mosaic virus replication protein
WO2004069868A1 (en) Complex of telomere protein with guanine-quadruplex dna
Das et al. Structural biophysics of the NusB: NusE antitermination complex
Plaks et al. Lipoic acid ligase-promoted bioorthogonal protein modification and immobilization
Ryan et al. A dual affinity-tag strategy for the expression and purification of human linker histone H1. 4 in Escherichia coli
Maier et al. Mixed reconstitution of mutated subunits of HIV‐1 reverse transcriptase coexpressed in Escherichia coli–two tags tie it up
Abrosimova et al. The role of cysteine residues in the interaction of nicking endonuclease BspD6I with DNA
McCord et al. Purification of recombinant Rous sarcoma virus integrase possessing physical and catalytic properties similar to virion-derived integrase
Wu et al. Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast
Pelletier et al. Isolation of RNA binding proteins involved in insertion/deletion editing
US20090111968A1 (en) Self-assembled proteins and related methods and protein structures
Kondabagil et al. Designing a nine cysteine-less DNA packaging motor from bacteriophage T4 reveals new insights into ATPase structure and function
Ghosh Structural studies on RNA helicase associated with AU-Rich element (RHAU) and DExD-box helicase 21 (DDX21)
Maddi et al. Optimization strategies for expression and purification of soluble N-terminal domain of human centriolar protein SAS-6 in Escherichia coli
Thanbichler et al. Purification and characterization of hexahistidine-tagged elongation factor SelB

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase