WO2004068059A1 - Impact-resistant fiber reinforced composite material - Google Patents

Impact-resistant fiber reinforced composite material Download PDF

Info

Publication number
WO2004068059A1
WO2004068059A1 PCT/JP2004/000727 JP2004000727W WO2004068059A1 WO 2004068059 A1 WO2004068059 A1 WO 2004068059A1 JP 2004000727 W JP2004000727 W JP 2004000727W WO 2004068059 A1 WO2004068059 A1 WO 2004068059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
impact
reinforced composite
composite material
proof
Prior art date
Application number
PCT/JP2004/000727
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Murakami
Kunio Nishi
Masahiro Mitsufuji
Shinkichi Murakami
Toshikazu Takeda
Takaharu Ichiryu
Yukihiro Nomura
Original Assignee
Nippon Steel Composite Corporation
Kinboshi Inc.
Toyobo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Composite Corporation, Kinboshi Inc., Toyobo Co.,Ltd. filed Critical Nippon Steel Composite Corporation
Priority to JP2005504717A priority Critical patent/JPWO2004068059A1/en
Publication of WO2004068059A1 publication Critical patent/WO2004068059A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/24Resistant to mechanical stress, e.g. pierce-proof
    • A41D31/245Resistant to mechanical stress, e.g. pierce-proof using layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Definitions

  • the present invention generally relates to a composite material, and particularly to a blade material for a cutting tool and an excellent heat resistance for protecting a human body from a high-speed flying object such as a bullet or a shard, a blade-proof vest, a bullet-proof vest, a bullet-proof hermet, Clothing and materials that protect part or the whole of the body from blades, ⁇ maru, etc., and portable protective equipment such as batons, sticks, sticks, and shields, as well as vehicles, boats, aircrafts, etc.
  • the present invention relates to an impact-resistant fiber-reinforced composite material that can suitably produce a protective material, a bulletproof plate, and the like used for such applications. Background art
  • metals such as special steel and titanium have been mainly used as heat-resistant protective materials such as blade-proof vests, water-resistant vests, bullet-proof helmets, and bullet-proof plates.
  • heat-resistant protective materials such as blade-proof vests, water-resistant vests, bullet-proof helmets, and bullet-proof plates.
  • metal-based materials are heavy and pose problems in wearability, handling, and operability.
  • the protective material disclosed in Japanese Patent Application Laid-Open No. Hei 8-189977 uses butadiene / acrylonitrile having a vinyl ester terminal and a side chain in a resin component, using a piper ester resin as a resin.
  • Elastomer of polymer Is added in an amount of 20 to 80% by weight.
  • the protective material disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-189797 has the features that it is lightweight, and has excellent ballistic resistance (heat resistance) and excellent blade resistance.
  • the present inventors have further conducted a number of research experiments in order to provide an impact-resistant fiber-reinforced composite material which is lightweight and has high durability (high heat resistance) and excellent blade resistance. .
  • a resin that is, an ionomer resin in which the molecules of an ethylene-methacrylic acid copolymer are crosslinked with metal ions as a matrix resin impregnated in high-strength fibers
  • this resin is identified as a specific resin. It has been found that when impregnated into high-strength fibers at a high ratio, the weight, the blade resistance and the heat resistance can be significantly improved.
  • the present invention is based on such novel findings of the present inventors, and is a further improvement and development of the protective material disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-189797. is there.
  • an object of the present invention is to provide a blade-proof vest, bullet-proof vest, and bullet-proof helmet that are excellent in blade-resistant performance against a blade and heat-resistant performance for protecting a human body and the like from high-speed flying objects such as bullets and fragments.
  • the present invention has a tensile strength of 17 cN / dteX or more and a tensile modulus.
  • a high impact fiber reinforced composite material having a fiber sheet formed of high-strength fibers of 450 cN / dtex or more, and a matrix resin,
  • An impact-resistant fiber reinforced material comprising, as the matrix resin, an ionomer resin obtained by cross-linking a molecule of an ethylene-methacrylic acid copolymer with metal ions, in an amount of 3 to 100% by weight based on the fiber. It is a composite material.
  • the ionomer resin has a specific gravity of 0.93 to 0.97 and a flexural modulus of 100 to 330 MPa.
  • a method of impregnating the fiber sheet with the ionomer resin As a method of impregnating the fiber sheet with the ionomer resin, a method of laminating an ionomer film and heat-pressing, a method of heat-pressing pellets or powder, and a method of diving into an ionomer dispersion can be adopted.
  • the fiber sheet is formed by laminating one or more layers of a woven fabric, a knitted fabric or a nonwoven fabric alone or in combination, or has a high strength. It is formed by laminating fiber layers in which fibers are arranged in one direction so that the orientation angles of the fibers are different from each other, or by combining these various fabrics and unidirectionally arranged fiber layers.
  • the high-strength fiber is an aramide fiber, a polyarylate fiber, a polyethylene fiber, a polyvinyl alcohol fiber, a benzazole fiber, a carbon fiber, and a high-strength glass fiber alone or A plurality of fibers are used in combination.
  • FIG. 1 is a cross-sectional configuration view of an example of an impact-resistant fiber-reinforced composite material according to the present invention.
  • FIG. 2 is a perspective view showing one configuration example of the fiber sheet.
  • FIG. 3 is a perspective view showing another configuration example of the fiber sheet.
  • FIG. 1 shows a cross-sectional configuration of an example of an impact-resistant fiber-reinforced composite material according to the present invention.
  • the impact-resistant fiber-reinforced composite material 1 has a fiber sheet 2 formed of high-strength fibers, and a resin impregnated in the fiber sheet 2, that is, a matrix resin 3.
  • the fiber sheet 2 may be a woven or knitted fabric 2a (FIG. 2 (A)) or a non-woven fabric (FIG. 2 (B)).
  • the fabric 2b as shown in FIG.
  • the weight per unit area of the fabrics 2 a and 2 b is not limited, but is usually 30 to 500 gZm 2 .
  • the fiber sheet 2 is formed by laminating one or more layers of such a cloth 2a or 2b, that is, a woven cloth, a knitted cloth, a nonwoven cloth, or the like, or a different kind of cloth. Alternatively, one or more layers can be formed by combining them. Alternatively, as shown in FIGS.
  • a fiber formed by arranging high-strength fibers f in one direction can be used.
  • a plurality of layers for example, a fiber layer laminate (fiber layers 2a, 2b, 2c) in which three or more layers are stacked (FIG. 3 (A)).
  • each of the fiber layers 2a, 2b, and 2c is preferably formed of a fiber of each of the fiber layers 2a, 2b, and 2c so that a network structure is formed in each of the fiber layer laminates.
  • the fiber layer laminate does not have the three-layer structure described above, but has a fiber layer 2a having an orientation angle aa of 90 ° and an orientation angle b of 0. °
  • Fiber layer laminate fiber Weir layers 2a and 2b
  • two or more fiber layer laminates (2a, 2b) composed of these two layers can be used.
  • the fiber f forming the fiber sheet 2 has a tensile strength of at least 17 cN Zd tex and a tensile modulus of 450 to ensure blade resistance, heat resistance (ballistic resistance) and lightness.
  • c It must be a high-strength fiber of N / dtex or more.
  • high-strength fibers polyethylene fibers having a high-strength and high-modulus described in JP-A-8-189797 can be used.
  • high-strength fibers aramide fibers
  • an ionomer resin obtained by crosslinking the molecules of an ethylene-methacrylic acid copolymer with metal ions is used.
  • the ionomer resin has a structure in which the side chain of a carboxylic acid group is present in the molecular chain of polyethylene, and a part of this carboxylic acid group is crosslinked between molecular chains by a metal cation (Na + or Zn +). It has excellent toughness, elasticity and flexibility, and has extremely good impact resistance.
  • the ionomer resin used in the present invention has a specific gravity of 0.93 to 0.97 and a flexural modulus of 100 to 330 MPa.
  • such an ionomer resin is contained as a matrix resin 3 in a high-strength fiber 3, that is, in an amount of 3 to 100% by weight based on the fiber sheet 2, so that the blade resistance and the heat resistance are excellent, and the impact resistance is high.
  • the composite fiber-reinforced composite material 1 can be provided.
  • the amount of the matrix resin exceeds 100% by weight, a composite having excellent blade-resistant and heat-resistant performance as compared with the protective material described in JP-A-8-189977 is mentioned. If the content is less than 3% by weight, the resin 3 is not filled between the fibers of the fiber sheet 2 and the rigidity and shape retention deteriorate rapidly.
  • the impact-resistant fiber-reinforced composite material 1 of the present embodiment can be produced by any method, but usually, a fiber sheet 2 having the above configuration is impregnated with a matrix resin 3 to produce a pre-preda sheet. Then, a desired number of such pre-preda sheets are laminated, heated and pressed in a mold and shaped into a predetermined shape, whereby a protective product using the impact-resistant fiber-reinforced composite material 1 is obtained.
  • Other manufacturing methods include laminating the ionomer film and heat-pressing it, or, for example, applying a powdered ionomer resin such as pellets or powder and then melting it by heat-pressing. It is also possible to use a method of impregnating, or a method of preparing a liquid in which an ionomer is dispersed, diving the fiber sheet into the liquid, and subsequently performing a drying step.
  • the prepreg sheet as the impact-resistant fiber-reinforced composite material 1 can be formed into a plate shape such as a protection plate, or can be formed into a protection helmet or the like. Also, when the required number of prepred sheets are stacked and sewn, or when the required number of prepred sheets and the fiber sheet 2 are stacked and sewn, a flexible blade-proof vest and bulletproof zipper are manufactured. can do.
  • the high-strength fiber f Since the fiber sheet 2 has a structure impregnated with an ionomer resin having excellent toughness, elasticity and flexibility and having extremely good impact resistance, that is, an impregnated structure, the fiber sheet 2 is externally added to the composite material 1.
  • the impact of a high-speed projectile such as a bullet or a fragment is sufficiently absorbed by the ionomer resin 3 and the fiber sheet 2 made of high-strength fiber. It will have blade-resistant performance.
  • the impact-resistant fiber-reinforced composite material 1 of the present invention is lightweight, and is excellent in wearability, handleability, and operability.
  • the fiber sheet material composed of the sheet impregnated with the ionomer resin has excellent shock absorbing ability and can prevent appropriate deformation due to impact.
  • the ionomer component contains metal ions, it has a high affinity for metal bullets, and therefore has a large interaction with metal bullets when exposed, which makes the head of the metal bullet very difficult. It is considered that the effect of improving the impact resistance and the deformation resistance of the ionomer-impregnated fiber sheet is exhibited.
  • the ionomer-impregnated fiber sheet also has excellent properties as a fireproof material.
  • An ionomer film having excellent impact resistance and abrasion resistance is a material frequently used in golf pole applications. Therefore, in the case of the ionomer-impregnated fiber sheet, the impact resistance and the abrasion resistance of the ionomer itself are lower than that of cutting tools. It is thought that the ionomer integrates the fiber bundle of the fiber sheet as an adhesive and disperses the stress, and also contributes to the excellent performance as a blade-proof material. .
  • An ionomer resin Mitsubishi Chemical Co., Ltd., trade name “Yachiimiran”
  • the reinforced fiber was impregnated with 60% by weight to prepare a prepredder.
  • the matrix resin 3 was obtained by dissolving an elastomer of a butadiene Z acrylonitrile copolymer having a vinyl group in a terminal chain which cures at 120 ° (5 minutes, 40% by weight in a vinyl ester resin. Except for the above, Comparative Examples 1, 2, and 3 were molded in the same manner as in Examples 1 to 3 above.
  • the blade performance was evaluated by placing urethane with a thickness of 40 mm on the back of the material to be tested, applying a load to an ice pick and a butterfly knife, dropping the knife vertically, and evaluating the performance based on the penetration depth of the cutting edge.
  • the ice pick used was a single-pilot, 148 mm long nail series manufactured by Takakusan Co., Ltd.
  • the butterfly knife used was STO Butterfly Series SK-49W manufactured by Seto Die & Hammer Co., Ltd., 70 mm in blade length.
  • the impact energy was generated by the method shown in Table 1 below.
  • Tables 2 and 3 show the results of evaluating the blade resistance performance of each sample.
  • the horizontal axis indicates energy
  • the vertical axis indicates materials to be inspected
  • the numbers in the table indicate the penetration depth (mm).
  • Examples 1 to 3 show that the penetration depth is small, and that the blade resistance is high with respect to the butterfly knife.
  • Table 4 shows the results of evaluating the impact resistance performance of each sample.
  • Examples 1 to 3 show a small amount of dents and high impact resistance.
  • the impact-resistant fiber-reinforced composite material of the present invention has a fiber sheet formed of high-strength fibers having a tensile strength of 17 c NZd tex or more and a tensile modulus of 450 c NZd tex or more,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

Impact-resistant fiber reinforced composite material (1) comprising fiber sheet (2), the fiber sheet (2) composed of high strength fibers (f) of 17 cN/dtex or greater tensile strength and 450 cN/dtex or greater tensile elasticity, and matrix resin (3), wherein as the matrix resin (3), an ionomer resin comprising an ethylene/methacrylic acid copolymer whose molecules are crosslinked with each other by metal ions is contained in an amount of 3 to 100 wt.% based on the fiber (f). This impact-resistant fiber reinforced composite material excels in blade-proof performance against cutting tools and bullet-proof performance for protecting human, etc. from high-speed flying objects, such as bullets and fragments. Further, this impact-resistant fiber reinforced composite material can be commendably formed into lightweight clothing and tool materials for protecting part or the entirety of human body from cutting tools and bullets, such as stab-proof vest, bullet-proof vest, bullet-proof helmet and stab-proof gloves, and formed into portable protective tools, such as police baton, nightstick, thrust fork and shield, and protective materials, bullet-proof plates, etc. for use in vehicles, boats, aircrafts, helicopters, etc.

Description

明 細 書 耐衝撃性繊維強化複合材 技術分野  Description Impact resistant fiber reinforced composites Technical field
本発明は、 一般には複合材料に関し、 特に、 刃物に対する耐刃性能及 び弾丸や破片などの高速飛翔体から人体などを保護するための耐弹性能 に優れ、 防刃チョッキ、 防弾チョッキ、 防弾へルメット、 防刃手袋など 身体の一部及び全体を刃物、 弹丸から守護する衣料、 具材、 また、 警棒、 警杖、 刺股、 盾など携帯用防護用具、 更には、 車両、 舟艇、 航空機、 へ リコプ夕一などに用いる防護材、 防弾板などを好適に作製することので きる耐衝撃性繊維強化複合材に関するものである。 背景技術  The present invention generally relates to a composite material, and particularly to a blade material for a cutting tool and an excellent heat resistance for protecting a human body from a high-speed flying object such as a bullet or a shard, a blade-proof vest, a bullet-proof vest, a bullet-proof hermet, Clothing and materials that protect part or the whole of the body from blades, 弹 maru, etc., and portable protective equipment such as batons, sticks, sticks, and shields, as well as vehicles, boats, aircrafts, etc. The present invention relates to an impact-resistant fiber-reinforced composite material that can suitably produce a protective material, a bulletproof plate, and the like used for such applications. Background art
従来、 防刃チョッキ、 防弹チョッキ、 防弾へルメット、 防弾板など耐 弹用の防護材料としては、 特殊鋼、 チタンなどの金属が主として使用さ れている。 しかし、 金属を使用した材料では、 重量が重くなり、 着用性、 取扱性、 操作性において問題が生じる。  Conventionally, metals such as special steel and titanium have been mainly used as heat-resistant protective materials such as blade-proof vests, water-resistant vests, bullet-proof helmets, and bullet-proof plates. However, metal-based materials are heavy and pose problems in wearability, handling, and operability.
そこで、 現在、 繊維強化複合材が注目を浴びている。 例えば、 特開平 Therefore, fiber-reinforced composite materials are currently receiving attention. For example,
8 - 1 8 9 7 9 7号公報では、 少なくとも 1 7 c N Z d t e xの引張強 度と、 少なくとも 4 5 0 c N / d t e x以上の引張弾性率の高強度高弹 性率ポリエチレン繊維を有する布帛と、 樹脂からなる防護材料が提案さ れている。 In the publication No. 8-1897977, a fabric having a high strength and high modulus polyethylene fiber having a tensile strength of at least 17 c NZ dtex and a tensile modulus of at least 450 cN / dtex or more is disclosed. A protective material made of resin has been proposed.
この特開平 8 - 1 8 9 7 9 7号公報に開示される防護材料は、 特に、 樹脂として、 ピエルエステル樹脂を使用し、 樹脂成分中に末端及び側鎖 にビニル基を有するブタジエン/ァクリロニトリル共重合体のエラスト マーを 2 0〜 8 0重量%添加されていることを特徴としている。 The protective material disclosed in Japanese Patent Application Laid-Open No. Hei 8-189977, in particular, uses butadiene / acrylonitrile having a vinyl ester terminal and a side chain in a resin component, using a piper ester resin as a resin. Elastomer of polymer Is added in an amount of 20 to 80% by weight.
上記特開平 8 - 1 8 9 7 9 7号公報に開示される防護材料は、 軽量で 且つ高い弾道抵抗性 (耐弹性能) 及び耐刃性能に優れているという特長 を有している。  The protective material disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-189797 has the features that it is lightweight, and has excellent ballistic resistance (heat resistance) and excellent blade resistance.
本願発明者らは、 更に、 軽量で、 且つ、 高い弹道抵坊性 (耐弹性能) 及び耐刃性能に優れている耐衝撃性繊維強化複合材を提供するべく、 多 くの研究実験を行った。  The present inventors have further conducted a number of research experiments in order to provide an impact-resistant fiber-reinforced composite material which is lightweight and has high durability (high heat resistance) and excellent blade resistance. .
その結果、 特に、 樹脂、 即ち、 高強度繊維に含浸するマトリックス榭 脂として、 エチレン一メ夕クリル酸共重合体の分子間を金属イオンで架 橋したアイオノマー樹脂を使用し、 この樹脂を特定の割合で高強度繊維 に含浸させた場合に、 軽量化、 耐刃性能及び耐弹性能を大幅に改善し得 ることを見出した。  As a result, in particular, as a resin, that is, an ionomer resin in which the molecules of an ethylene-methacrylic acid copolymer are crosslinked with metal ions as a matrix resin impregnated in high-strength fibers, this resin is identified as a specific resin. It has been found that when impregnated into high-strength fibers at a high ratio, the weight, the blade resistance and the heat resistance can be significantly improved.
本発明は、 本発明者らの斯かる新規な知見に基づくものであり、 上記 特開平 8 - 1 8 9 7 9 7号公報に開示される防護材料を更に改良し、 発 展させたものである。  The present invention is based on such novel findings of the present inventors, and is a further improvement and development of the protective material disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-189797. is there.
つまり、 本発明の目的は、 刃物に対する耐刃性能及び弾丸や破片など の高速飛翔体から人体などを保護するための耐弹性能に優れ、 且つ、 軽 量の、 防刃チョッキ、 防弾チョッキ、 防弾へルメット、 防刃手袋など身 体の一部及び全体を刃物、 弾丸から守護する衣料、 具材、 また、 警棒、 警杖、 刺股、 盾など携帯用防護用具、 更には、 車両、 舟艇、 航空機、 へ リコプ夕一などに用いる防護材、 防弾板などを好適に作製することので きる耐衝撃性繊維強化複合材を提供することである。 発明の開示  In other words, an object of the present invention is to provide a blade-proof vest, bullet-proof vest, and bullet-proof helmet that are excellent in blade-resistant performance against a blade and heat-resistant performance for protecting a human body and the like from high-speed flying objects such as bullets and fragments. , Clothing and materials that protect part and all of the body from knives and bullets, such as gloves, and gloves, as well as portable protective equipment such as batons, wands, staples, shields, and vehicles, boats, aircraft, and helicopters. It is an object of the present invention to provide an impact-resistant fiber reinforced composite material that can suitably produce a protective material, a bulletproof plate, and the like used in the evening and the like. Disclosure of the invention
上記目的は本発明に係る耐衝撃性繊維強化複合材にて達成される。 要 約すれば、 本発明は、 引張強度が 1 7 c N / d t e X以上、 引張弾性率 が 4 5 0 c N / d t e x以上の高強度繊維にて形成される繊維シ一トと、 マトリックス樹脂とを有する耐衝撃性繊維強化複合材において、 The above objects are achieved by the impact-resistant fiber-reinforced composite material according to the present invention. In summary, the present invention has a tensile strength of 17 cN / dteX or more and a tensile modulus. In a high impact fiber reinforced composite material having a fiber sheet formed of high-strength fibers of 450 cN / dtex or more, and a matrix resin,
前記マトリックス樹脂として、 エチレン—メタクリル酸共重合体の分 子間を金属イオンで架橋したアイオノマー樹脂を、 前記繊維に対して 3 〜1 0 0重量%含有することを特徴とする耐衝撃性繊維強化複合材であ る。  An impact-resistant fiber reinforced material comprising, as the matrix resin, an ionomer resin obtained by cross-linking a molecule of an ethylene-methacrylic acid copolymer with metal ions, in an amount of 3 to 100% by weight based on the fiber. It is a composite material.
本発明の一実施態様によると、 前記アイオノマー樹脂は、 比重が 0 . 9 3〜0 . 9 7で、 曲げ弾性率が 1 0 0〜3 3 0 M P aである。  According to one embodiment of the present invention, the ionomer resin has a specific gravity of 0.93 to 0.97 and a flexural modulus of 100 to 330 MPa.
アイオノマ一樹脂を繊維シートに含浸させる方法としては、 アイオノ マ一フィルムをラミネートし、 加熱圧着させる方法、 ペレット若しくは パウダ一を加熱圧着させる方法、 アイオノマ一分散液にディッビングす る方法を採用し得る。  As a method of impregnating the fiber sheet with the ionomer resin, a method of laminating an ionomer film and heat-pressing, a method of heat-pressing pellets or powder, and a method of diving into an ionomer dispersion can be adopted.
本発明の他の実施態様によると、 前記繊維シートは、 織布、 編布若し くは不織布とされる布帛を単独で或いは組み合わせて 1層以上積層して 形成されるか、 又は、 高強度繊維を一方向に配列した繊維層を繊維の配 向角度が互いに異なるように積層して形成されるか、 又は、 これら各種 の布帛及び一方向配列繊維層を組み合わせて形成される。  According to another embodiment of the present invention, the fiber sheet is formed by laminating one or more layers of a woven fabric, a knitted fabric or a nonwoven fabric alone or in combination, or has a high strength. It is formed by laminating fiber layers in which fibers are arranged in one direction so that the orientation angles of the fibers are different from each other, or by combining these various fabrics and unidirectionally arranged fiber layers.
本発明の他の実施態様によると、 前記高強度繊維は、 ァラミド繊維、 ポリアリレート繊維、 ポリエチレン繊維、 ポリビニルアルコール繊維、 ベンズァゾール繊維、 炭素繊維、 及び高強度ガラス繊維を、 単独で、 或 いは、 複数種の繊維を組み合わせて使用する。 図面の簡単な説明  According to another embodiment of the present invention, the high-strength fiber is an aramide fiber, a polyarylate fiber, a polyethylene fiber, a polyvinyl alcohol fiber, a benzazole fiber, a carbon fiber, and a high-strength glass fiber alone or A plurality of fibers are used in combination. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る耐衝撃性繊維強化複合材のー実施例の断面構成 図である。  FIG. 1 is a cross-sectional configuration view of an example of an impact-resistant fiber-reinforced composite material according to the present invention.
図 2は、 繊維シートの一構成例を示す斜視図である。 図 3は、 繊維シートの他の構成例を示す斜視図である。 発明を実施するための最良の形態 FIG. 2 is a perspective view showing one configuration example of the fiber sheet. FIG. 3 is a perspective view showing another configuration example of the fiber sheet. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る耐衝撃性繊維強化複合材を更に詳しく説明する。 図 1に、 本発明に係る耐衝撃性繊維強化複合材のー実施例の断面構成 を示す。 本実施例にて、 耐衝撃性繊維強化複合材 1は、 高強度繊維 に て形成される繊維シート 2と、 この繊維シート 2に含浸された樹脂、 即 ち、 マトリックス樹脂 3とを有する。  Hereinafter, the impact-resistant fiber-reinforced composite material according to the present invention will be described in more detail. FIG. 1 shows a cross-sectional configuration of an example of an impact-resistant fiber-reinforced composite material according to the present invention. In this embodiment, the impact-resistant fiber-reinforced composite material 1 has a fiber sheet 2 formed of high-strength fibers, and a resin impregnated in the fiber sheet 2, that is, a matrix resin 3.
前記繊維シート 2は、 図 2 (A)、 (B) に一例を示すように、 織布、 編布などの布帛 2 a (図 2 (A))、 或いは、 不織布 (図 2 (B)) のよう な布帛 2 bとすることができる。 布帛 2 a、 2 bにおける目付量は、 限 定されるものではないが、 通常、 3 0〜 5 0 0 gZm2とされる。 また、 繊維シート 2は、 このような布帛 2 a或いは 2 bを、 即ち、 織布、 編布 若しくは不織布などとされる布帛を単独で 1層以上積層して、 又は、 異 なる種類の布帛を組み合わせて 1層以上積層して形成することができる 又、 別法として、 図 3 (A)、 (B) に一例を示すように、 高強度繊維 f を一方向に配列して形成される繊維層を複数層、 例えば、 3層以上積 層した繊維層積層体(繊維層 2 a、 2 b、 2 c ) とすることもできる (図 3 (A))。 このとき、 各繊維層 2 a、 2 b、 2 cは、 好ましくは、 各繊 維層積層体にて網目構造が形成されるように、 各繊維層 2 a、 2 b、 2 cの繊維の配向角度 a、 b , ひ cが互いに異なる角度とされる。 一 例を挙げれば、 例えば、 配向角度 a a = + 3 0〜6 5 ° 、 o; b = 0 ° 、 o; c =— 3 0〜6 5 ° とされる。 As shown in FIGS. 2 (A) and 2 (B), the fiber sheet 2 may be a woven or knitted fabric 2a (FIG. 2 (A)) or a non-woven fabric (FIG. 2 (B)). The fabric 2b as shown in FIG. The weight per unit area of the fabrics 2 a and 2 b is not limited, but is usually 30 to 500 gZm 2 . In addition, the fiber sheet 2 is formed by laminating one or more layers of such a cloth 2a or 2b, that is, a woven cloth, a knitted cloth, a nonwoven cloth, or the like, or a different kind of cloth. Alternatively, one or more layers can be formed by combining them. Alternatively, as shown in FIGS. 3A and 3B, a fiber formed by arranging high-strength fibers f in one direction can be used. A plurality of layers, for example, a fiber layer laminate (fiber layers 2a, 2b, 2c) in which three or more layers are stacked (FIG. 3 (A)). At this time, each of the fiber layers 2a, 2b, and 2c is preferably formed of a fiber of each of the fiber layers 2a, 2b, and 2c so that a network structure is formed in each of the fiber layer laminates. The orientation angles a, b, and c are different from each other. For example, the orientation angles are aa = + 30 to 65 °, o; b = 0 °, o; c = —30 to 65 °.
又、 図 3 (B) に示すように、 繊維層積層体は、 上記 3層構成とする のではなく、 配向角度 a aが 9 0 ° とされる繊維層 2 aと、 配向角度ひ bが 0 ° とされる繊維層 2 bとを積層した 2層構成の繊維層積層体 (繊 維層 2 a、 2 b) とすることもできる。 更に、 この 2層からなる繊維層 積層体 (2 a、 2 b) を 2枚以上積層して使用することも可能である。 更には、 図 2に示す各種の布帛と、 図 3に示す一方向配列繊維層を組 み合わせて形成することも可能である。 Also, as shown in FIG. 3 (B), the fiber layer laminate does not have the three-layer structure described above, but has a fiber layer 2a having an orientation angle aa of 90 ° and an orientation angle b of 0. ° Fiber layer laminate (fiber Weir layers 2a and 2b) can also be used. Further, two or more fiber layer laminates (2a, 2b) composed of these two layers can be used. Furthermore, it is also possible to form by combining various fabrics shown in FIG. 2 with the unidirectionally arranged fiber layers shown in FIG.
本発明によれば、 繊維シート 2を形成する繊維 f は、 耐刃性能、 耐弹 性能 (弾道抵抗性) 及び軽量性を確保するために、 引張強度が 17 cN Zd t e x以上、 引張弾性率が 450 c N/d t e x以上の高強度繊維 であることが必要である。  According to the present invention, the fiber f forming the fiber sheet 2 has a tensile strength of at least 17 cN Zd tex and a tensile modulus of 450 to ensure blade resistance, heat resistance (ballistic resistance) and lightness. c It must be a high-strength fiber of N / dtex or more.
斯かる高強度繊維としては、 上記特開平 8 - 1 89797号公報に記 載する高強度高弾性率のポリエチレン繊維を使用することができ、 その 他にも、 高強度繊維としては、 ァラミド繊維、 ポリアリレート繊維、 ポ リビニルアルコール繊維、 ベンズァゾール繊維などの高強度有機繊維、 及び、 炭素繊維、 高強度ガラス繊維などの高強度無機繊維を、 単独で、 或いは、 複数種の繊維を組み合わせて使用することができる。  As such high-strength fibers, polyethylene fibers having a high-strength and high-modulus described in JP-A-8-189797 can be used. In addition, as high-strength fibers, aramide fibers, Use high-strength organic fibers, such as polyarylate fibers, polyvinyl alcohol fibers, and benzazole fibers, and high-strength inorganic fibers, such as carbon fibers and high-strength glass fibers, alone or in combination. be able to.
マトリックス榭脂 3として、 エチレン—メ夕クリル酸共重合体の分子 間を金属イオンで架橋したアイオノマー樹脂が使用される。  As the matrix resin 3, an ionomer resin obtained by crosslinking the molecules of an ethylene-methacrylic acid copolymer with metal ions is used.
つまり、 アイオノマ一樹脂は、 ポリエチレンの分子鎖にカルボン酸基 の側鎖があり、 このカルボン酸基の一部が金属陽イオン (Na+或いは Z n + +) によって分子鎖間で架橋された構造を有し、 強靱性、 弾力性、 屈曲性に優れ、 極めて良好な耐衝撃特性を有している。  In other words, the ionomer resin has a structure in which the side chain of a carboxylic acid group is present in the molecular chain of polyethylene, and a part of this carboxylic acid group is crosslinked between molecular chains by a metal cation (Na + or Zn +). It has excellent toughness, elasticity and flexibility, and has extremely good impact resistance.
通常、 本発明に使用されるアイオノマー樹脂は、 比重が 0. 93〜0. 97で、 曲げ弾性率が 100〜330MP aである。  Usually, the ionomer resin used in the present invention has a specific gravity of 0.93 to 0.97 and a flexural modulus of 100 to 330 MPa.
本発明によれば、 このようなアイオノマー樹脂をマトリックス樹脂 3 として、 高強度繊維 ί、 即ち、 繊維シート 2に対して 3〜 100重量% 含有させることにより、 耐刃、 耐弹性能に優れ、 耐衝撃性繊維強化複合 材 1を提供することができる。 マトリックス樹脂量が、 1 0 0重量%を越ぇると、 上記特開平 8— 1 8 9 7 9 7号公報に記載するような防護材料と比較して、 耐刃、 耐弹性 能に優れた複合材が得られなくなり、 また、 3重量%未満では、 繊維シ —ト 2の各繊維 ί間に樹脂 3が充填されなくなり、 剛性及び保形性が急 激に悪化する。 According to the present invention, such an ionomer resin is contained as a matrix resin 3 in a high-strength fiber 3, that is, in an amount of 3 to 100% by weight based on the fiber sheet 2, so that the blade resistance and the heat resistance are excellent, and the impact resistance is high. The composite fiber-reinforced composite material 1 can be provided. When the amount of the matrix resin exceeds 100% by weight, a composite having excellent blade-resistant and heat-resistant performance as compared with the protective material described in JP-A-8-189977 is mentioned. If the content is less than 3% by weight, the resin 3 is not filled between the fibers of the fiber sheet 2 and the rigidity and shape retention deteriorate rapidly.
本実施例の耐衝撃性繊維強化複合材 1は、 任意の方法にて作製するこ とができるが、 通常、 上記構成の繊維シート 2にマ卜リックス樹脂 3を 含浸させてプリプレダシートを作製し、 このプリプレダシートを所望枚 数積層して、 金型にて加熱加圧して所定形状に賦形することにより、 耐 衝撃性繊維強化複合材 1を利用した防護製品が得られる。  The impact-resistant fiber-reinforced composite material 1 of the present embodiment can be produced by any method, but usually, a fiber sheet 2 having the above configuration is impregnated with a matrix resin 3 to produce a pre-preda sheet. Then, a desired number of such pre-preda sheets are laminated, heated and pressed in a mold and shaped into a predetermined shape, whereby a protective product using the impact-resistant fiber-reinforced composite material 1 is obtained.
また、 それ以外の作製方法としては、 アイオノマ一フィルムをラミネ ートし、 加熱圧着させる方法、 また、 例えばペレット若しくはパウダー とされる粉体状ののアイオノマー樹脂を付着後、 加熱圧着などにより溶 融含浸させる方法、 更には、 アイオノマーを分散させた液を調製し、 そ こへ前記繊維シートをディッビングし、 引き続き乾燥工程により作製す る方法などを用いることも可能である。  Other manufacturing methods include laminating the ionomer film and heat-pressing it, or, for example, applying a powdered ionomer resin such as pellets or powder and then melting it by heat-pressing. It is also possible to use a method of impregnating, or a method of preparing a liquid in which an ionomer is dispersed, diving the fiber sheet into the liquid, and subsequently performing a drying step.
また、 このプリプレダシートを所要枚数積層し縫合した場合、或いは、 このプリプレダシートと繊維シ一ト 2を所要枚数積層し縫合した場合は、 柔軟性のある防護製品が得られる。  In addition, when the required number of the prepred sheets are laminated and sewn, or when the required number of the prepred sheets and the fiber sheets 2 are laminated and sewn, a flexible protective product can be obtained.
つまり、 耐衝撃性繊維強化複合材 1としてのプリプレダシートは、 防 弹板のような板形状に成形することもできるし、 又、 防弹ヘルメットな どに成形することもできる。 また、 このプリプレダシートを所要枚数積 層し縫合した場合、 或いは、 このプリプレダシートと繊維シート 2を所 要枚数積層し縫合した場合は、 柔軟性のある防刃チョッキ、 防弾チヨッ キを作製することができる。  That is, the prepreg sheet as the impact-resistant fiber-reinforced composite material 1 can be formed into a plate shape such as a protection plate, or can be formed into a protection helmet or the like. Also, when the required number of prepred sheets are stacked and sewn, or when the required number of prepred sheets and the fiber sheet 2 are stacked and sewn, a flexible blade-proof vest and bulletproof zipper are manufactured. can do.
本発明の耐衝撃性繊維強化複合材 1によれば、 高強度繊維 f からなる 繊維シート 2が、 強靱性、 弾力性、 屈曲性に優れ、 極めて良好な耐衝擊 特性を有したアイオノマー樹脂により被覆、 即ち、 含浸された構造とさ れるので、 外部より複合材 1に加えられた、 例えば、 弾丸や破片などの 高速飛翔体による衝撃が、 アイオノマー樹脂 3、 及び、 高強度繊維 か らなる繊維シート 2により十分に吸収され、 弾丸に対する優れた耐弹性 能、 及び、 刃物に対する優れた耐刃性能を有することとなる。 しかも、 本発明の耐衝撃性繊維強化複合材 1は、 軽量であり、 着用性、 取扱性、 操作性において優れている。 According to the impact-resistant fiber-reinforced composite material 1 of the present invention, the high-strength fiber f Since the fiber sheet 2 has a structure impregnated with an ionomer resin having excellent toughness, elasticity and flexibility and having extremely good impact resistance, that is, an impregnated structure, the fiber sheet 2 is externally added to the composite material 1. For example, the impact of a high-speed projectile such as a bullet or a fragment is sufficiently absorbed by the ionomer resin 3 and the fiber sheet 2 made of high-strength fiber. It will have blade-resistant performance. Moreover, the impact-resistant fiber-reinforced composite material 1 of the present invention is lightweight, and is excellent in wearability, handleability, and operability.
本発明の効果に関しては、 以下の理由が考えられる。  Regarding the effects of the present invention, the following reasons are considered.
つまり、 アイオノマー樹脂が含浸されていない場合、 飛翔体などから 衝撃を受けた場合、 その衝撃部位に存在する繊維束とその近傍の繊維束 のみが、 エネルギーを吸収する傾向にある。 一方、 アイオノマー樹脂が 含浸されている場合、 アイオノマー樹脂は、 耐衝撃性に優れ且つ接着性 に優れているため繊維束が適度に一体化されており、 そのために、 衝撃 部位のみならず、周辺の繊維束まで含めてエネルギー吸収が可能になる。 そのために、 アイオノマー樹脂を含浸されたシートからなる繊維シート 材は、 優れた衝撃吸収能力を有すると共に、 衝撃による適度の変形を防 ぐことが可能となっているものと考えられる。 また、 アイオノマ一成分 中には金属イオンが含有されているために金属弾との親和力が高く、 そ のために、 被弹時に金属弾との相互作用が大きく、 金属弾の頭部を大変 形させる効果が大きく、 アイオノマー含浸繊維シートの耐衝撃性と耐変 形性能を向上させる効果が発現しているものと考えられる。  In other words, when the ionomer resin is not impregnated, or when impact is received from a projectile or the like, only the fiber bundle existing at the impact site and the fiber bundle in the vicinity thereof tend to absorb energy. On the other hand, when the ionomer resin is impregnated, the ionomer resin has excellent impact resistance and excellent adhesiveness, so that the fiber bundle is appropriately integrated. Energy absorption including the fiber bundle is possible. Therefore, it is considered that the fiber sheet material composed of the sheet impregnated with the ionomer resin has excellent shock absorbing ability and can prevent appropriate deformation due to impact. In addition, since the ionomer component contains metal ions, it has a high affinity for metal bullets, and therefore has a large interaction with metal bullets when exposed, which makes the head of the metal bullet very difficult. It is considered that the effect of improving the impact resistance and the deformation resistance of the ionomer-impregnated fiber sheet is exhibited.
アイオノマ一含浸繊維シートは、 防 ¾材料としても優れた特性を有し ている。 耐衝撃性と耐擦過性に優れるアイオノマーフィルムは、 ゴルフ ポール用途で多用される材料である。 したがって、 アイオノマー含浸繊 維シートの場合、 アイオノマー自体の耐衝撃性と耐擦過性が、 刃物など の鋭利なものに対する強靱性に有益に寄与し、 またアイオノマーが接着 材として繊維シートの繊維束を一体化させ応力を分散させることも防刃 材料として優れた性能に寄与しているものと考えられる。 The ionomer-impregnated fiber sheet also has excellent properties as a fireproof material. An ionomer film having excellent impact resistance and abrasion resistance is a material frequently used in golf pole applications. Therefore, in the case of the ionomer-impregnated fiber sheet, the impact resistance and the abrasion resistance of the ionomer itself are lower than that of cutting tools. It is thought that the ionomer integrates the fiber bundle of the fiber sheet as an adhesive and disperses the stress, and also contributes to the excellent performance as a blade-proof material. .
次に、 本発明の耐衝撃性繊維強化複合材 1を実施例に即して更に説明 する。  Next, the impact-resistant fiber-reinforced composite material 1 of the present invention will be further described with reference to examples.
実施例 1、 2、 3  Examples 1, 2, 3
引張強度 3 7 c N / d t e x、 引張弾性率 1 1 5 0 c N / d t e xの P B O繊維 (東洋紡績株式会社、 商品名 「ザィロン」) を用いて、 目付け 1 3 5 g Zm 2の平織物を製造し、 これを繊維シート 2として使用した。 この繊維シート 2に、 マトリックス樹脂 3として、 エチレン一メタク リル酸共重合体の分子間を金属イオンで架橋したアイオノマー樹脂 (三 井 -デュポンポリケミカル株式会社製、 商品名 「八イミラン」) を、 前記 強化繊維に対して 6 0重量%含浸させ、 プリプレダを作製した。 Tensile strength 3 7 c N / dtex, a tensile modulus of elasticity 1 1 5 0 PBO fiber of c N / dtex by using a (Toyobo Co., Ltd., trade name "Zairon"), a plain weave fabric having a basis weight of 1 3 5 g Zm 2 It was manufactured and used as a fiber sheet 2. An ionomer resin (Mitsui-Dupont Polychemical Co., Ltd., trade name “Yachiimiran”), in which the molecules of an ethylene-methacrylic acid copolymer are crosslinked with metal ions, is used as the matrix resin 3 in the fiber sheet 2. The reinforced fiber was impregnated with 60% by weight to prepare a prepredder.
次いで、 このプリプレダ 1 0枚と繊維シート 2を 4 0枚積層し、 合計 5 0枚縫合し、 実施例 1とした。 また、 このプリプレダ 2 0枚と繊維シ ート 2を 3 0枚積層し、 合計 5 0枚縫合し、 実施例 2とした。 また、 こ のプリプレダ 3 0枚と繊維シート 2を 2 0枚積層し、合計 5 0枚縫合し、 実施例 3とした。  Next, 10 sheets of the pre-preda and 40 sheets of the fiber sheet 2 were laminated, and a total of 50 sheets were stitched. Further, 20 sheets of the pre-preda and 30 sheets of the fiber sheet 2 were laminated, and a total of 50 sheets were stitched. Also, 30 sheets of the pre-preda and 20 fiber sheets 2 were laminated, and a total of 50 sheets were stitched to obtain a third embodiment.
比較例 1、 2、 3、 4  Comparative Examples 1, 2, 3, 4
マトリックス樹脂 3として、 1 2 0 ° ( 、 5分で硬化する末端鎖にビニ ル基を有するブタジエン Zァクリロニトリル共重合体のエラストマ一を ビニルエステル樹脂中に 4 0重量%溶解させたものを使用した以外は、 上記実施例 1〜 3と同様にして比較例 1、 2、 3を成形した。  The matrix resin 3 was obtained by dissolving an elastomer of a butadiene Z acrylonitrile copolymer having a vinyl group in a terminal chain which cures at 120 ° (5 minutes, 40% by weight in a vinyl ester resin. Except for the above, Comparative Examples 1, 2, and 3 were molded in the same manner as in Examples 1 to 3 above.
また、 繊維シート 2を 5 0枚積層し、 縫合して比較例 4を作製した。 上記実施例 1〜 3及び比較例 1〜 4のサンプルについて、 耐刃性能、 耐衝撃性能の評価を行った。 (耐刃性能評価) Further, 50 fiber sheets 2 were laminated and sewn to prepare Comparative Example 4. The samples of Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated for blade resistance and impact resistance. (Evaluation of blade performance)
耐刃性能評価は、 被試験資材め裏に厚み 40 mmのウレタンを置き、 アイスピック、 バタフライナイフに加重を掛け、 垂直落下させ、 刃先の 貫通深さによって性能評価を行った。 アイスピックは、 高久産擊 (株) 製パイロッ トシリーズ 1本爪、 爪長 148mmを使用した。 バタフライ ナイフは、 (株)瀬戸金型刃物工業製 S E TOバタフライシリーズ SK— 49W、 刃渡り 7 0mmを使用した。 また、 衝撃エネルギーの発生方法 は、 以下の表 1に示す方法で行った。  The blade performance was evaluated by placing urethane with a thickness of 40 mm on the back of the material to be tested, applying a load to an ice pick and a butterfly knife, dropping the knife vertically, and evaluating the performance based on the penetration depth of the cutting edge. The ice pick used was a single-pilot, 148 mm long nail series manufactured by Takakusan Co., Ltd. The butterfly knife used was STO Butterfly Series SK-49W manufactured by Seto Die & Hammer Co., Ltd., 70 mm in blade length. The impact energy was generated by the method shown in Table 1 below.
【表 1】 エネルギー量 刃物を含む落下物重量 被試験資材から刃先までの距離 [Table 1] Energy amount Weight of falling object including blade Distance from material under test to blade edge
20 J 2. 5 kg 82 cm 20 J 2.5 kg 82 cm
30 J 3. 0 k g 1 03 cm  30 J 3.0 kg 103 cm
40 J 4. 0 kg 1 03 cm  40 J 4.0 kg 103 cm
50 J 5. 0 kg 1 03 cm  50 J 5.0 kg 103 cm
表 2及び表 3に、 各サンプルの耐刃性能を評価した結果を示す。 表 2 及び表 3にて、 横軸はエネルギー量、 縦軸に被検査資材、 表.中の数字は 貫通深さ (mm) を示す。 Tables 2 and 3 show the results of evaluating the blade resistance performance of each sample. In Tables 2 and 3, the horizontal axis indicates energy, the vertical axis indicates materials to be inspected, and the numbers in the table indicate the penetration depth (mm).
【表 2】 アイスピックによる性能試験  [Table 2] Performance test using an ice pick
20 J 30 J 40 J 50 J  20 J 30 J 40 J 50 J
実施例 Ί 0 0 4 8  Example Ί 0 0 4 8
実施例 2 0 0 0 3  Example 2 0 0 0 3
実施例 3 0 0 0 0  Example 3 0 0 0 0
比較例 1 4 1 9 39 >40  Comparative Example 1 4 1 9 39> 40
比較例 2 5 1 8 40 >40  Comparative Example 2 5 1 8 40> 40
比較例 3 2 20 35 >40  Comparative Example 3 2 20 35> 40
比較例 4 4 20 38 >40 実施例 1〜 3は貫通深さが少なく、 アイスピックに対し耐刃性能が高 いことを示している。 Comparative Example 4 4 20 38> 40 Examples 1 to 3 show that the penetration depth is small and the blade resistance to ice picks is high.
【表 3】  [Table 3]
バタフライナイフによる性能試験 Performance test with butterfly knife
20 J 30 J 40 J 50 J  20 J 30 J 40 J 50 J
実施例 1 0 0 8 1 2  Example 1 0 0 8 1 2
実施例 2 0 0 0 7  Example 2 0 0 0 7
実施例 3 0 0 0 0  Example 3 0 0 0 0
比較例 1 1 2 30 >40 >40  Comparative Example 1 1 2 30> 40> 40
比較例 2 1 0 35 >40 >40  Comparative Example 2 1 0 35> 40> 40
比較例 3 1 4 26 >40 >40  Comparative Example 3 1 4 26> 40> 40
比較例 4 Ί 5 31 >40 >40  Comparative Example 4 Ί 5 31> 40> 40
実施例 1〜 3は貫通深さが少なく、 バタフライナイフに対し耐刃性能 が高いことを示している。 Examples 1 to 3 show that the penetration depth is small, and that the blade resistance is high with respect to the butterfly knife.
(耐衝撃性能評価)  (Impact resistance evaluation)
耐衝撃性能評価は、 被試験資材の裏に 1 0 0mm厚の粘土を置き、 4 4口径の発射装置から 1 5. 6 gの重さの弹丸を上記サンプルに対し、 5mの距離から直角に発射し、 弾丸の速度を測定し、 衝撃のエネルギー 量を計算し、 それに対する被試験資材の粘土方向への凹み量を測定し、 耐衝撃性能を評価した。  To evaluate the impact resistance, place a 100 mm thick clay on the back of the material to be tested, and place a 弹 circle weighing 15.6 g from a 44 caliber launcher at right angles to the above sample from a distance of 5 m from the above sample. After firing, the velocity of the bullet was measured, the amount of energy of impact was calculated, and the amount of dent of the test material in the direction of the clay was measured to evaluate the impact resistance.
表 4に、 各サンプルの耐衝撃性能を評価した結果を示す。 【表 4】 耐衝撃性能試験 Table 4 shows the results of evaluating the impact resistance performance of each sample. [Table 4] Impact resistance test
エネルギー量 ( J ) 凹み量 (mm)  Energy (J) Depression (mm)
実施例 1 520 3 1  Example 1 520 3 1
実施例 2 1 51 0 25  Example 2 1 51 0 25
実施例 3 1 523 1 3  Example 3 1 523 1 3
比較例 1 1 5 1 1 48  Comparative Example 1 1 5 1 1 48
比較例 2 1 530 46  Comparative Example 2 1 530 46
比較例 3 1 51 8 49  Comparative Example 3 1 51 8 49
比較例 4 1 520 46  Comparative Example 4 1 520 46
実施例 1 ~ 3は凹み量が少なく、耐衝撃性能が高いことを示している 産業上の利用可能性 Examples 1 to 3 show a small amount of dents and high impact resistance.
以上説明したように、 本発明の耐衝撃性繊維強化複合材は、 引張強度 が 1 7 c NZd t e x以上、 引張弾性率が 450 c NZd t e x以上の 高強度繊維にて形成される繊維シートと、 マトリックス樹脂とを有する 耐衝撃性繊維強化複合材において、 マトリックス樹脂として、 エチレン ーメタクリル酸共重合体の分子間を金属イオンで架橋したアイオノマ一 樹脂を、強化繊維に対して 3〜100重量%含有する構成とされるので、 刃物に対する耐刃性能及び弹丸ゃ破片などの高速飛翔体から人体などを 保護するための耐弹性能に優れ、 且つ、 軽量の、 防刃チョッキ、 防弹チ ョツキ、 防弾へルメット、 防刃手袋など身体の一部及び全体を刃物、 弹 丸から守護する衣料、 具材、 また、 警棒、 警杖、 刺股、 盾など携帯用防 護用具、 更には、 車両、 舟艇、 航空機、 ヘリコプターなどに用いる防護 材、 防弾板などを好適に作製することができる。  As described above, the impact-resistant fiber-reinforced composite material of the present invention has a fiber sheet formed of high-strength fibers having a tensile strength of 17 c NZd tex or more and a tensile modulus of 450 c NZd tex or more, An impact-resistant fiber-reinforced composite material having a matrix resin, wherein the matrix resin contains, as a matrix resin, an ionomer resin in which the molecules of an ethylene-methacrylic acid copolymer are cross-linked with metal ions in an amount of 3 to 100% by weight based on the reinforcing fibers. Because of its configuration, it has excellent blade resistance against blades and resistance against high-speed flying objects such as round shards, etc., and is lightweight. Clothing and materials that protect part and all of the body from knives and 丸 such as blade gloves, portable protective equipment such as batons, sticks, sticks, shields, and vehicles and boats Aircraft, armor used in helicopters, can be suitably prepared and bulletproof plate.

Claims

請求の範囲 The scope of the claims
1. 引張強度が 17 c NZd t e x以上、 引張弾性率が 450 c NZ d t e x以上の高強度繊維にて形成される繊維シー卜と、 マトリックス樹 脂とを有する耐衝撃性繊維強化複合材において、 1. In an impact-resistant fiber-reinforced composite material having a fiber sheet formed of high-strength fiber having a tensile strength of 17 c NZd tex or more and a tensile modulus of 450 c NZ d tex or more, and a matrix resin,
前記マトリックス樹脂として、 エチレンーメタクリル酸共重合体の分 子間を金属イオンで架橋したアイオノマー樹脂を、 前記繊維に対して 3 〜100重量%含有することを特徴とする耐衝撃性繊維強化複合材。 An impact-resistant fiber-reinforced composite material comprising, as the matrix resin, an ionomer resin obtained by cross-linking a molecule of an ethylene-methacrylic acid copolymer with metal ions in an amount of 3 to 100% by weight based on the fiber. .
2. 前記アイオノマ一樹脂は、 比重が 0. 93〜0. 97で、 曲げ弹性 率が 1 00〜 330 MP aであることを特徴とする請求項 1の耐衝撃性 繊維強化複合材。 2. The impact resistant fiber reinforced composite material according to claim 1, wherein the ionomer resin has a specific gravity of 0.93 to 0.97 and a flexural modulus of 100 to 330 MPa.
3. 前記繊維シートは、 織布、 編布若しくは不織布とされる布帛を単独 で或いは組み合わせて 1層以上積層して形成されるか、 又は、 高強度繊 維を一方向に配列した繊維層を繊維の配向角度が互いに異なるように積 層して形成されるか、 又は、 これら各種の布帛及び一方向配列繊維層を 組み合わせて形成されることを特徴とする請求項 1又は 2の耐衝撃性繊 維強化複合材。  3. The fiber sheet is formed by laminating one or more layers of a woven fabric, a knitted fabric or a nonwoven fabric alone or in combination, or a fiber layer in which high-strength fibers are arranged in one direction. 3. The impact resistance according to claim 1, wherein the fibers are formed by laminating so that the orientation angles of the fibers are different from each other, or are formed by combining these various fabrics and unidirectionally arranged fiber layers. Fiber reinforced composite.
4. 前記高強度繊維は、 ァラミ ド繊維、 ポリアリレート繊維、 ポリェチ レン繊維、 ポリビニルアルコール繊維、 ベンズァゾール繊維、 炭素繊維、 及び高強度ガラス繊維を、 単独で、 或いは、 複数種の繊維を組み合わせ て使用することを特徴とする請求項 1、 2又は 3の耐衝撃性繊維強化複 合材。  4. As the high-strength fiber, use is made of aramid fiber, polyarylate fiber, polyethylene fiber, polyvinyl alcohol fiber, benzazole fiber, carbon fiber, and high-strength glass fiber alone or in combination of plural kinds of fibers. The impact-resistant fiber-reinforced composite material according to claim 1, 2, or 3.
PCT/JP2004/000727 2003-01-30 2004-01-28 Impact-resistant fiber reinforced composite material WO2004068059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504717A JPWO2004068059A1 (en) 2003-01-30 2004-01-28 Impact resistant fiber reinforced composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-022789 2003-01-30
JP2003022789 2003-01-30

Publications (1)

Publication Number Publication Date
WO2004068059A1 true WO2004068059A1 (en) 2004-08-12

Family

ID=32820701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000727 WO2004068059A1 (en) 2003-01-30 2004-01-28 Impact-resistant fiber reinforced composite material

Country Status (2)

Country Link
JP (1) JPWO2004068059A1 (en)
WO (1) WO2004068059A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254718A (en) * 2006-02-21 2007-10-04 Toray Ind Inc Thermoplastic resin composite, and composite structure thereof as well as monolithically molded article by using it
JP2009530140A (en) * 2006-03-21 2009-08-27 ディーエスエム アイピー アセッツ ビー.ブイ. Manufacturing method of shaped part and shaped part obtained by said method
EP2129826A1 (en) * 2007-03-26 2009-12-09 Barrday, Inc. Coated multi-threat materials and methods for fabricating the same
JP2010265588A (en) * 2009-05-12 2010-11-25 Hitachi Zosen Corp Explosion-proof sheet
CN102776658A (en) * 2012-08-21 2012-11-14 宜兴市华恒高性能纤维织造有限公司 Aramid fiber and glass fiber mixedly woven cloth
JP2016053470A (en) * 2010-04-19 2016-04-14 ハネウェル・インターナショナル・インコーポレーテッド Enhanced ballistic performance of polymer fibers
WO2018194287A1 (en) * 2017-04-18 2018-10-25 (주)엘지하우시스 Vehicle back beam and vehicle including same
CN109099769A (en) * 2017-06-20 2018-12-28 南京新莱尔材料科技有限公司 A kind of anti-stab ballistic protective clothing of high-strength light and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185003A (en) * 2012-03-06 2013-09-19 Toyobo Co Ltd Fiber-reinforced composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732944A (en) * 1984-08-17 1988-03-22 Advanced Glass Systems, Inc. Ionomer resin films
US4879165A (en) * 1988-06-20 1989-11-07 Smith W Novis Lightweight armor
JPH07243796A (en) * 1994-02-23 1995-09-19 Dan Eric Shock absorption fender
JPH08189797A (en) * 1995-01-13 1996-07-23 Toyobo Co Ltd Protective material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732944A (en) * 1984-08-17 1988-03-22 Advanced Glass Systems, Inc. Ionomer resin films
US4879165A (en) * 1988-06-20 1989-11-07 Smith W Novis Lightweight armor
JPH07243796A (en) * 1994-02-23 1995-09-19 Dan Eric Shock absorption fender
JPH08189797A (en) * 1995-01-13 1996-07-23 Toyobo Co Ltd Protective material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254718A (en) * 2006-02-21 2007-10-04 Toray Ind Inc Thermoplastic resin composite, and composite structure thereof as well as monolithically molded article by using it
JP2009530140A (en) * 2006-03-21 2009-08-27 ディーエスエム アイピー アセッツ ビー.ブイ. Manufacturing method of shaped part and shaped part obtained by said method
EP2129826A1 (en) * 2007-03-26 2009-12-09 Barrday, Inc. Coated multi-threat materials and methods for fabricating the same
EP2129826A4 (en) * 2007-03-26 2013-08-28 Barrday Inc Coated multi-threat materials and methods for fabricating the same
JP2010265588A (en) * 2009-05-12 2010-11-25 Hitachi Zosen Corp Explosion-proof sheet
JP2016053470A (en) * 2010-04-19 2016-04-14 ハネウェル・インターナショナル・インコーポレーテッド Enhanced ballistic performance of polymer fibers
CN102776658A (en) * 2012-08-21 2012-11-14 宜兴市华恒高性能纤维织造有限公司 Aramid fiber and glass fiber mixedly woven cloth
WO2018194287A1 (en) * 2017-04-18 2018-10-25 (주)엘지하우시스 Vehicle back beam and vehicle including same
US11878642B2 (en) 2017-04-18 2024-01-23 Lg Hausys, Ltd. Vehicle back beam and vehicle including same
CN109099769A (en) * 2017-06-20 2018-12-28 南京新莱尔材料科技有限公司 A kind of anti-stab ballistic protective clothing of high-strength light and its manufacturing method

Also Published As

Publication number Publication date
JPWO2004068059A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US6825137B2 (en) Lightweight ballistic resistant rigid structural panel
US8616113B2 (en) Encapsulated ballistic protection system
US7762175B1 (en) Spaced lightweight composite armor
JP4945442B2 (en) Flexible elastic assembly
US20120186433A1 (en) Protective shield material
EP3294542B1 (en) Ballistic and stab resistant composite
CA2664153A1 (en) High performance same fiber composite hybrids by varying resin content only
JP2009534231A (en) Composite, its production method and use
JP2011501088A (en) Helmet containing polyethylene fiber
JP2008546565A (en) Composite materials for piercing, ice pick and armor applications
CA2391505C (en) Protective material
WO2004068059A1 (en) Impact-resistant fiber reinforced composite material
WO1991006823A2 (en) Ceramic armor reinforced with high-strength fibers and ballistic resistant articles formed from said armor
US20160209179A1 (en) Ballistic resistant article and method of producing same
Scott New ballistic products and technologies
KR102272250B1 (en) Protecti ve unit for bulletproof vest with improved flexibility and method for manufac turing the protective unit
Jassem et al. Numerical and Experimental Study of Multi-Layer Armors for Personal Protection
CA2200250A1 (en) Protective material
CN114957989A (en) Bulletproof composite material and preparation method thereof
Mohsen et al. Mechanical and ballistic properties of high strength armor materials
JPH10281697A (en) Bulletproof vest
WO2017192293A1 (en) Light weight coated fabrics as trauma reducing body armor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005504717

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase