WO2004053547A1 - Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part - Google Patents

Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part Download PDF

Info

Publication number
WO2004053547A1
WO2004053547A1 PCT/JP2003/015938 JP0315938W WO2004053547A1 WO 2004053547 A1 WO2004053547 A1 WO 2004053547A1 JP 0315938 W JP0315938 W JP 0315938W WO 2004053547 A1 WO2004053547 A1 WO 2004053547A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
optical
coreless
coreless fiber
Prior art date
Application number
PCT/JP2003/015938
Other languages
French (fr)
Japanese (ja)
Other versions
WO2004053547A6 (en
Inventor
Kiyoshi Morita
Tetsuo Takano
Yoshiatsu Yokoo
Original Assignee
Hoya Corp
Kiyoshi Morita
Tetsuo Takano
Yoshiatsu Yokoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Kiyoshi Morita, Tetsuo Takano, Yoshiatsu Yokoo filed Critical Hoya Corp
Priority to AU2003289054A priority Critical patent/AU2003289054A1/en
Priority to JP2004558485A priority patent/JP3949137B2/en
Publication of WO2004053547A6 publication Critical patent/WO2004053547A6/en
Publication of WO2004053547A1 publication Critical patent/WO2004053547A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/327Optical coupling means having lens focusing means positioned between opposed fibre ends with angled interfaces to reduce reflections

Definitions

  • the present invention relates to an optical fiber terminal used for optical communication and the like, a method of manufacturing the same, and an optical coupler and an optical component using the optical fiber terminal.
  • a lens is installed near the light-emitting end of the optical fiber as an optical coupling method that has a small loss and allows various optical elements to be installed therebetween.
  • a method is generally used in which a light beam emitted from an optical fiber is converted into a parallel light beam, and a similar optical system is assembled on the light receiving side to couple the light to a regenerated optical fiber.
  • An element having a function of converting a light beam emitted from an optical fiber into a parallel light beam is generally called a fiber collimator, and the combination of the optical fiber and the lens is one type of a fiber collimator.
  • Optical coupling loss and reflection loss are generally used as indices indicating the performance of this type of fiber collimator.
  • the optical coupling loss reflects the luminous flux quality of the parallel luminous flux, and affects the numerical aperture (hereinafter abbreviated as NA) of the optical fiber used, the exit end face shape, aberration at the exit end face, lens performance, and the like. Is done.
  • the reflected light represented by the reflection loss as an index causes a loss of output energy at the output end of the optical fiber or an effect of impairing the stable operation of the light source.
  • the effect is one of the major problems in the optical communication field.
  • a distributed feedback laser has been generally used as a light source.
  • This type of laser light source is characterized in that laser oscillation tends to be unstable due to so-called return light that travels backward in the optical fiber and reaches the light source, and as a result, output power fluctuates easily.
  • an increase in the reflected light in other words, a small return loss means that the return light is large, and increases the fluctuation of the output power.
  • the end face reflection loss shown in the following equation (1) is 50 dB The above is required.
  • End face reflection loss -1 0 X 1 og (IR / I0) (1) where IR is the amount of reflected light, and 10 is the amount of incident light.
  • a method for obtaining the reflection loss a method is used in which the end face of the optical fiber is inclined with respect to the optical axis.
  • An optical fiber end of this type is obtained by inserting an optical fiber into a glass capillary and polishing the end face of the glass with an angle of about 4 ° to 8 °.
  • the reflected light at the end face is attenuated in a clad mode, so that a large reflection loss can be obtained.
  • a reflection loss of 60 dB or more can be obtained by combining with the AR coating on the surface. Can be.
  • This method has been the mainstream method because it is an extremely simple method.
  • GRIN Lens refractive index distribution lens
  • Pitch lens length
  • a GRIN (GRIN) Lens
  • the refractive index distribution lens (GRIN Lens) 1102 has a lens length of about 0.23 Pitch, and it has an arrangement that allows flexibility in adjusting the position of the light source. I have.
  • the optical path when the collimated light with this configuration is combined is shown in (c).
  • the light emitted from the optical fiber terminal 1103 is inclined by about 3.8 ° and enters the gradient index lens 1104 due to the influence of the beveled end surface described above. Offset by ⁇ 1 from axis.
  • the angle with respect to the GRIN lens 110 4 Therefore, the outgoing beam has a certain angle (0) with respect to the optical axis of the outgoing light from the optical fiber end 1103. Therefore, in this collimator combination, optical coupling cannot be performed unless the original optical axis is shifted by ⁇ 2 in order to match the optical axes. It is for this reason that position adjustment is difficult when performing optical coupling with a conventional collimator.
  • FIG. 17 (a) and (b) show an example of the structure of this collimator and the state in which light is transmitted.
  • reference numeral 1201 denotes an optical fiber (SMF)
  • reference numeral 122 denotes a coreless fiber
  • reference numeral 124 denotes a graded index (GI) fiber
  • reference numeral 120 denotes a fiber.
  • 4C indicates an emission end
  • 1207 indicates a beamwest diameter
  • 1208 indicates reflected light from an end face
  • 1211 indicates a beamwest distance.
  • this structure is an optical fiber end structure having a light condensing function, and the beam West distance of light from the outgoing end 1204C is 1 2 1 1 It is described that the optical fiber end structure is capable of variably setting a desired value and a beamwest diameter of 127, respectively, that is, independently and variably setting them.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-281054
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-43073
  • the present inventors fabricated and evaluated an optical fiber terminal with a coreless fiber using a standard fiber having an outer diameter of 125 ⁇ , and as a result, showed that the reflection loss was 60 dB or more.
  • the coupling efficiency greatly depends on the coreless fiber length.When the coreless fiber length is 1 mm or more, the coupling efficiency dramatically increases. I found it to get worse.
  • the end face reflected light 128 at the emission end 124C is focused back to the same position as the light emission position.
  • AR coating it is conceivable to apply AR coating to the emitting end 1204C.
  • the end face reflected light 128 of about 42 dB returns, and the reflection of 50 dB or more, which is generally required, is required. Loss cannot be realized.
  • the present invention has been made in view of the above circumstances, and has a practical optical fiber terminal capable of sufficiently satisfying the specifications of the reflection loss and the coupling efficiency required for ordinary optical components, and an optical terminal using the same. It is an object of the present invention to provide a component and an optical coupler, and to provide a manufacturing method capable of easily manufacturing the optical fiber terminal.
  • the optical fiber terminal according to the first aspect of the present invention includes a core made of a material having substantially the same uniform refractive index as the core, on an end face of an optical fiber having a core at the center and a cladding at the outer periphery thereof.
  • the beam diameter when the light transmitted through the core of the optical fiber spreads inside the coreless fiber and exits from the other end surface of the coreless fiber is the coreless fiber.
  • the feature is that the optical path length of the coreless fiber is set to be within the outer diameter of the coreless fiber.
  • the optical fiber terminal according to the second aspect of the present invention is the optical fiber terminal according to the first aspect, wherein an optical path length of the coreless fiber is less than 1 mm. Even if the length of the coreless fiber is limited within this range, a return loss of 50 dB or more can be easily ensured after the AR coating. Therefore, there is no problem in practical use. In addition, features such as no misalignment and easy assembly adjustment are not affected at all by limiting the length of the coreless fiber to less than 1 mm.
  • An optical fiber terminal is characterized in that, in the first or second aspect, the outer diameter of the optical fiber is different from the outer diameter of the coreless fiber. As long as the fusion does not hinder, even if the diameter of the coreless fiber is different from the diameter of the optical fiber, the same performance as the inventions of claims 1 and 2 can be obtained.
  • this optical fiber terminal since there is a diameter difference between the optical fiber and the coreless fiber, the position of the fusion point can be easily recognized, and there is an advantage that the length of the coreless fiber can be easily adjusted.
  • the optical fiber terminal according to claim 4 is the optical fiber terminal according to claim 1 or 2.
  • the optical fiber and the coreless fiber have substantially the same outer diameter, and the central axis of the optical fiber and the central axis of the coreless fiber are shifted from each other and joined. I do. As long as the fusion does not hinder, even if the center axis of the optical fiber and the center axis of the coreless fiber are different, the same performance as the inventions of claims 1 and 2 can be obtained.
  • the fusion point between the optical fiber and the coreless fiber is Due to the step, the position of the fusion point can be easily recognized, and the length of the coreless fiber can be easily adjusted.
  • the optical fiber terminal of the invention according to claim 5 is the optical fiber terminal according to any one of claims 1 to 4, wherein the other end surface of the coreless fiber is perpendicular to an optical axis of the optical fiber. It is characterized by being formed in That is, the angle of the incident and outgoing end of the light is 0 ° within the processing tolerance range with respect to the plane perpendicular to the axis of the light emitted from the fiber. Therefore, the light emitted from the optical fiber always coincides with the optical axis, which enables optical coupling on a straight groove, which has been impossible by the displacement of the light beam due to the oblique end surface.
  • the invention set forth in claim 6 is characterized in that, in any one of claims 1 to 5, an antireflection film is provided on the other end surface of the coreless fiber.
  • An invention according to claim 7 is an optical coupler including the optical fiber terminal according to any one of claims 1 to 6,
  • At least one or more selected from an aspherical lens, a spherical lens, a spherical lens, or a drum lens is arranged on the other end side of the coreless fiber on the optical axis of the optical fiber. It is a coupler.
  • the drum lens is, for example, a spherical lens having a cylindrical shape by centering the periphery of a spherical lens by grinding or polishing.
  • the combination of the optical fiber terminal and the collimator lens enables optical coupling using collimated light.
  • a combination of an optical fiber terminal and a finite system lens is possible.
  • a fiber end with a lens makes it possible to achieve optical coupling with a low or lower coupling loss than a collimator fabricated using a normal optical fiber end.
  • the arrangement of the lens does not reduce the reflection loss of the entire system.
  • the beam diameter can be expanded within the range of glass cavities in mm or the outer diameter of the lens, so that the propagation distance can be increased.
  • An optical component according to claim 8 is a combination of the optical fiber terminal according to any one of claims 1 to 6 and an optical element having an optical multiplexing / demultiplexing function.
  • optical coupling using collimated light is realized by using the above-mentioned optical fiber terminal, and a dielectric multilayer filter having a characteristic of reflecting only a specific wavelength and transmitting other wavelengths is inserted in the meantime.
  • a function of multiplexing / demultiplexing light can be provided.
  • the use of the above-mentioned optical fiber terminal enables optical coupling between a pair of collimators on a common V-groove formed on the substrate, thereby reducing the number of components and greatly simplifying the process. Is possible.
  • the invention according to claim 9 is the method for manufacturing an optical fiber terminal according to any one of claims 1 to 6, wherein a first step of coupling the optical fiber and the coreless fiber is provided. And a second step of polishing the other end face of the coreless fiber to adjust the length of the coreless fiber to a desired value.
  • the reflection loss of the bonded body of the optical fiber and the coreless fiber is provided.
  • the feature is to adjust the length of the coreless fiber to a desired value while measuring the amount. That is, in the present invention, in the second step of defining the length of the coreless fiber to be bonded to the optical fiber, the coreless fiber is ground and polished while monitoring the reflection loss of the fused optical fiber terminal.
  • the core fiber can be adjusted to a desired length without directly observing the optical fiber and the coreless fiber.
  • the coreless fiber length since there is a one-to-one relationship between the coreless fiber length and the return loss, by measuring the return loss on the finish polished surface of the optical fiber end with the core fiber being manufactured. It is possible to define the coreless fiber length with an accuracy of 1 jm. As a result, even when it is difficult to observe the fusion point between the optical fiber and the coreless fiber with an optical microscope, the fusion point can be reliably detected, and accurate adjustment of the length of the coreless fiber is expected. it can.
  • the invention according to claim 10 is the method for producing an optical fiber terminal according to claim 3, wherein a first step of joining the optical fiber and the coreless fiber having different diameters, A second step of detecting a joining point between the optical fiber and the coreless fiber, and a third step of cutting the coreless fiber at a designated position set with reference to the joining point, wherein the second step
  • the step is characterized in that the joining point is detected using an optical microscope and a defocused microscope image.
  • the invention according to claim 11 is the method for manufacturing an optical fiber terminal according to claim 4, wherein the optical fibers having substantially the same diameter and the respective central axes of the coreless fibers are mutually aligned.
  • a first step of shifting and joining a second step of detecting a joining point between the optical fiber and the coreless fiber, and cutting the core fiber at a designated position set with reference to the joining point
  • a third step wherein in the second step, an optical microscope is used, and the junction is detected by a defocused microscope image.
  • the length of the coreless fiber in the optical fiber terminal according to the present invention must be accurately formed.
  • the diameter of the optical fiber to be joined and the coreless fiber are made different from each other, and in the invention of claim 11, the optical fiber to be joined and the coreless fiber are By displacing the center axes of the fibers with each other, it is possible to detect the joint point between the optical fiber and the coreless fiber, and cut the coreless fiber at a specified position set based on this joint point.
  • the detection of the connection point is performed by observing the connection point in a state of a deformed force using a general microscope.
  • a microscope By observing the junction with a microscope in a defocused state, it is possible to determine the junction even if the outer diameter of the optical fiber and the coreless fiber is as small as several ⁇ m. This is because it has been found for the first time by the present inventor.
  • the joint point between the optical fiber and the coreless fiber is determined by observing (in a focused state) with a microscope, the difference in outer diameter is large in the method according to the conventional technology. In this case, it can be discriminated, but as the outer diameter difference becomes smaller, it becomes gradually more difficult. When the outer diameter difference becomes about several ⁇ m, it is found that it is impossible to determine at all.
  • FIG. 1 is a schematic sectional view of an optical fiber terminal according to an embodiment of the present invention, in which (a) is a configuration diagram of the optical fiber terminal according to the first embodiment, and (b) is an optical fiber terminal according to the second embodiment.
  • FIG. 3C is a configuration diagram illustrating a state in the middle of manufacturing
  • FIG. 4C is a configuration diagram of the optical fiber terminal of the first embodiment of the second embodiment.
  • FIG. 2 is a characteristic diagram showing a relationship between a coreless fiber length and an output beam diameter.
  • FIG. 3 is a characteristic diagram showing a relationship between a coreless fiber length and a reflection loss.
  • FIG. 4 is a process chart showing a procedure for manufacturing an optical fiber terminal.
  • Fig. 5 shows the observation image when the fusion point of the optical fiber and the coreless fiber was observed with an optical microscope.
  • (A) is an observation image in focus
  • (b) is a deliberate out-of-focus image. It is a figure which shows the observation image in the state (defocused state) which carried out, respectively.
  • FIG. 6 is an explanatory diagram of a method for manufacturing an optical fiber terminal according to the present invention.
  • FIG. 7 is an explanatory diagram in the case of measuring the reflection loss of the optical fiber terminal of the present invention.
  • FIG. 8 is an explanatory diagram in the case of measuring the coupling loss of the optical fiber terminal of the present invention.
  • FIG. 9 is a configuration diagram of an optical multiplexer / demultiplexer to which the optical fiber terminal according to the present invention is applied, (a) is a plan view, and (b) is a side view.
  • FIG. 10 is an explanatory diagram of a problem in an optical fiber terminal in which a coreless fiber is joined to an end face of the optical fiber.
  • FIG. 11 is an explanatory diagram of a problem in the conventional optical coupling.
  • FIG. 12 is a characteristic diagram showing the relationship between the coreless fiber length and the return loss.
  • FIG. 13 is a characteristic diagram showing the relationship between the coreless fiber length and the coupling loss.
  • FIG. 14 is a schematic sectional view of an optical fiber terminal according to a different embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of a method of manufacturing the optical fiber terminal shown in FIG.
  • FIG. 16 is an explanatory diagram of a configuration of a collimator including an optical terminal and a collimating lens according to the present invention.
  • FIG. 17 is an explanatory diagram of a configuration of a collimator using a GI fiber according to a conventional technique.
  • Fig. 1 (a) is a configuration diagram of an optical fiber terminal according to the first embodiment, (b) is a configuration diagram showing a state in the process of manufacturing the optical fiber terminal of the second embodiment, and (c) is a second embodiment. 1 is a configuration diagram of an optical fiber terminal.
  • the optical fiber terminal shown in Fig. 1 (a) is a single-ended cylindrical fiber with a standard outer diameter of 125 ⁇ m having a core 101a at the center and a cladding 101b at the outer periphery.
  • SMF mode optical fiber
  • CLF coreless fiber
  • the other end face 102b of the coreless fin 102 is illuminated with the light of the optical fin 101. It is polished at 0 ° to the plane perpendicular to the axis.
  • setting the length of the coreless fin 102 to less than 1 mm is an indispensable condition for an optical fiber terminal for performing optical coupling.
  • the light transmitted through the core 101a of the optical fiber 101 spreads within the coreless fiber 102 and the coreless fiber 102
  • the beam diameter when emitted from the other end face 102 b to the outside is within the outer diameter of the coreless fiber 102.
  • the light emitted from the core 101a propagates while diffusing through the coreless fiber 102, so that the diameter of the beam emitted from the other end face 102b of the coreless fiber 102 increases. . Since the reflection loss can be increased according to the length of the coreless fiber 102, there is no need to make the exit surface oblique, and as a result, the exit beam goes straight.
  • the length L of the coreless fiber 102 is set to an appropriate value as described above, the output beam diameter is within the outer diameter of the coreless fiber 102, so it is completely equivalent to a normal optical fiber Optical coupling can be performed. Therefore, the straightness of the output beam is superior to that of the conventional optical fiber terminal having a beveled end face. In addition, it is possible to obtain the reflection loss and the coupling loss of the practically required levels. Also, by using this optical fiber terminal, the optical coupling between the collimators can be performed in a straight line, so that the position adjustment becomes easy.
  • an optical fiber 101 and a coreless fiber 102 are prepared, and the coatings of both are removed to a length that allows sufficient fusion.
  • the coreless fiber 102 is cut at a position of 2 mm from the coating removal position of the coreless fiber 102 using a fiber cleaver to form a fused end face.
  • the fusion end face is similarly made on the optical fiber 101 side.
  • both are installed in a standard single-core fiber splicer, and fusion is performed under appropriate conditions. Normally, the end faces of the fusion-spliced parts are integrated, so that the fusion point cannot be recognized from the appearance or observation with a microscope.
  • the fusion point can be accurately determined.
  • the coreless fiber 102 should be determined using the coreless fiber coating removal position as a guide. ,.
  • the reflection loss As shown in Fig. 12, AR coating It was confirmed that the reflection loss in the case of no more than 37 dB. However, the return loss value for the length O mm (without coreless fiber) is set to 14.7 dB. Therefore, it can be seen that when the AR coating is applied, all the samples have a reflection loss of 50 dB or more.
  • reference numeral 800 denotes an LD light source
  • reference numeral 800 denotes a patch cord
  • reference numeral 803 denotes an optical fiber terminal
  • reference numeral 804 denotes an optical stage
  • reference numeral 805 denotes a collimating lens
  • reference numeral 806 denotes a collimating lens.
  • the detector and 807 are connectors. Light emitted from the LD light source 801 enters the other optical fiber terminal 803 from one optical fiber terminal 803 via the collimating lenses 805, 805, and is detected by the detector 800. Received at 6.
  • the coupling loss value was 1 dB or more in all samples.
  • this coupling loss is a very large value for an optical fiber terminal part, and the collimator currently required cannot be manufactured as it is. I found out.
  • the cause was considered as follows. That is, as shown in FIG. 10, when light is emitted from the core 1001a of the optical fin 1001, the beam 1003 is spread by diffraction, so that the beam depends on the propagation distance. The diameter r expands. In an optical fiber terminal with a coreless fiber, the beam diameter r at the emission end face depends on the length of the coreless fiber. Therefore, if the length of the coreless fiber 100 exceeds a certain length, the beam diameter r exceeds the optical fiber diameter R. It was thought that diffraction and the like would occur, and that the uniformity of the emitted light would be lost and the coupling loss would increase.
  • the result Figure 2 shows. From the relationship shown in Fig. 2, when the length of the coreless fiber is determined, the maximum outer diameter of the optical fiber that ideally enables lossless optical coupling is also determined. Now, the beam diameter is defined as the length at which the light intensity is 1 / e 2 with respect to the distribution center (hereinafter, the beam diameter is assumed to be based on this definition). At this time, the output beam diameter has already exceeded the standard fiber outer diameter of 125 ⁇ . This is considered to be the cause of the large coupling loss in the optical fiber terminal with coreless fiber fabricated as described above.
  • the inventors of the present invention have conducted intensive studies and, as a result, have come to find a solution to all the problems that have arisen in producing the above-described optical fiber terminal. The details will be described below.
  • Fig. 4 shows the flow of a typical optical fiber terminal fabrication method.
  • the left diagram (A) is a flowchart
  • the right diagram (B) is a diagram schematically showing the contents of each step (a) to (d) in the flowchart.
  • SMF optical fiber
  • CPF coreless fiber
  • Splicing of optical fibers is not necessarily limited to fusion, but fusion is easily performed with a commercially available fusion device and is the most excellent means of connection performance and reliability. Connection is used.
  • a standard optical fiber 402 with an outer diameter of 125 ⁇ with a connector at one end and an arbitrary length is prepared.
  • the film is removed to the extent that the end can be fused (fiber coating 401), and cut using a fiber cleaver to produce a connection end surface.
  • a coreless fiber 403 having an outer diameter of 122 ⁇ is prepared by an arbitrary length, and the film is removed and the end face is similarly removed.
  • the outer diameter of the coreless fiber 400 As a method for reducing the outer diameter of the coreless fiber 400 from the standard diameter, chemical etching can be used. Alternatively, when the coreless fiber 403 is manufactured, the outer diameter may be manufactured.
  • the optical fiber 402 and the coreless fiber 403 are installed in a standard single-core optical fiber fusion splicer, and the outer diameter standard alignment is used to determine the outer diameter standard between ordinary quartz glass single mode fibers.
  • the fusing operation is performed under the fusing conditions.
  • Fig. 1 (b) shows a state in which the two (optical fiber and coreless fiber) are connected.
  • the difference between the outer diameters is exaggerated, but it is difficult to see the difference with an outer diameter difference of about 3 ⁇ m.
  • the joints maintain the same strength as normal fusion of same diameter fibres.
  • a step of cutting the coreless fiber 403 at a predetermined position is performed. This step is divided into (a) a step of accurately determining a fusion point, and (b) a step of cutting the coreless fiber 403 at a position of an accurate length from the fusion point.
  • This step is divided into (a) a step of accurately determining a fusion point, and (b) a step of cutting the coreless fiber 403 at a position of an accurate length from the fusion point.
  • a fiber core can be directly observed by using a DCM optical system, it is possible in principle to determine the fusion point based on the presence or absence of a core.
  • this method requires a high-precision stage, a CCD camera and a laser light source, and is a very expensive system.
  • the provision of the diameter difference makes it easy to determine the fusion point according to the method described below, and determines the coreless fiber length with an accuracy of 10 ⁇ m at any length. It is possible to cut it. The details are described below.
  • the step of judging the fusion point and the step of cutting at the designated length are performed as follows.
  • a commercially available ultrasonic fiber cleaver having a fiber cleaver blade 604, a uniaxial stage with a micrometer capable of chucking an SMF (optical fiber terminal) 601 with a coreless fiber Prepare 606, and set the fiber cleaver under the objective lens 603 of the stereomicroscope to observe the cutting point.
  • An observation magnification of about 10 to 20 is sufficient.
  • optical fiber end (SMF with coreless fiber) 601 fused with the above-mentioned optical fiber and coreless fiber so that the fusion point comes near the fiber cleaner blade 604.
  • the fiber end 601 is semi-fixed on the V groove 605, and one end of the optical fiber end 601 is chucked to the uniaxial stage 606 with a micrometer using the fiber chuck 602. With micrometer When the stage 606 is sent, the optical fiber terminal 601 being chucked moves by the amount indicated by the scale on the fiber fixing V-groove 605 of the fiber cleaver. .
  • the optical fin (SMF) and the coreless fiber have a very small difference in diameter, but with the difference in diameter used in the present embodiment, the image focus is normally adjusted. Even if the magnified image is observed, the fusion point (arrow position) cannot be recognized, as shown in Fig. 5 (a).
  • the left side is the optical fiber (SMF) 402
  • the right side is the coreless fin (CLF) 403
  • the joining point cannot be confirmed.
  • a distorted portion 502 appears in the defocused microscope image. Is done.
  • the strained portion 502 coincides with the fusion point between the coreless fins 403 and the optical fiber (SMF) 402. This distortion was not observed when the diameters of the two coincided with each other, and shifted slightly from the image focal position only when a diameter difference of about 2 m (about 1.6% of the diameter) was given. It was confirmed that it was clearly observed at the image position.
  • the direction of shifting may be either the near side or the far side.
  • 504 in FIG. 5 shows a cutter cutting blade for reference.
  • the fusion point found by this method is moved to the uniaxial stage with a micrometer 606, and is placed at the tip of the cutting blade 604 of the fiber cleaver. With this as the origin, the uniaxial stage with a micrometer 606 is sent again by the required length of the coreless fiber, and the coreless fiber is cut at the point where the feed has been completed and cut. In this way, an optical fiber terminal 601 in which a coreless fiber of a desired length is fused to the tip of the optical fiber (SMF) is completed.
  • the length of the coreless fiber portion can be controlled with an accuracy of 10 / zm.
  • an optical fiber terminal having a coreless fiber length of 100 ⁇ m was manufactured in consideration of the grinding amount in advance.
  • the step of bonding the glass cavities in (d) will be described.
  • the function as an optical fiber is sufficient at the end of the above work.However, when performing an optical evaluation or mounting on an optical component, the optical fiber terminal is often fixed to a glass gallery 406 and used. Done.
  • this optical fiber terminal (SMF with coreless fiber) 40 is identical to this optical fiber terminal (SMF with coreless fiber) 40
  • the optical polishing step (e) of the end face of the optical fiber is performed as follows.
  • Optical polishing is performed to obtain good and stable optical performance.
  • Optical polishing can be easily performed by using a commercially available optical fiber end-face polishing machine. For polishing, fix the glass / scraper 406 to a polishing jig, and rough / primary / secondary polishing
  • the end face is ground by this polishing, and the length of the coreless fiber at the tip of the glass cavities 406, that is, the ends of the optical fiber terminals 407 is shortened. Even if the polishing time is fixed, the actual amount of grinding is often not constant due to the difference in the load pressure applied to the polishing surface or the difference in the condition of the polishing sheet. It is difficult to specify the amount of grinding only by the above.
  • the following method is adopted in such a case.
  • the relationship between the length of the coreless fiber and the return loss is experimentally obtained.
  • the length of the coreless fiber and the return loss correspond one-to-one. Therefore, at the stage where the final polishing in the polishing process is completed, as shown in Fig. 7, the connector 704 is connected to the patch code 702 of the reflection loss measuring device 701, and the measurement sample (here, optical fiber) By monitoring the reflection loss of the emitting end face of the terminal 703), the length of the coreless fiber can be accurately known.
  • the length can be easily known accurately by monitoring the return loss. Since the amount of grinding can be finely adjusted by using the monitored values as a guide, an optical fiber terminal with a coreless fiber whose length is controlled with high accuracy of ⁇ can be manufactured.
  • data that grinding was performed about 600 m by one polishing operation was separately obtained, so that an optical fiber terminal having a core fiber length of 100 m was used.
  • tip polishing operation an optical fiber terminal having a coreless fiber length of about 400 ⁇ m can be obtained.
  • the tip of the cavity is polished while measuring the return loss, and the polishing is terminated when the measured return loss reaches the target value [(f) of the flow in FIG. 4].
  • the above manufacturing method is an example, and the procedure and method are not limited to this.
  • the core fiber length shown in this table is the length determined from the return loss before AR coating.
  • Return loss is the measured value obtained by measuring with a return loss measuring device after AR coating.
  • SMF single mode optical fiber
  • the coupling loss was measured.
  • the above-mentioned manufacturing method can easily manufacture an optical fiber terminal satisfying the target specification and of a practical level.
  • the collimated beam's linearity was also demonstrated because the optical coupling can be performed without changing the optical stage even when the samples are exchanged during coupling loss measurement.
  • the length of the coreless fiber may be appropriately adjusted in accordance with the required specification of the return loss within a range that satisfies the conditions described in claim 1.
  • the end face angle of the coreless fiber is 0 ° in order to provide linearity of the light beam.However, a slight angle within the tolerance range of the polishing process poses a serious problem in practice. Absent.
  • the preferred calculation range for the length of the coreless fiber is approximately 900 ⁇ for the longer one. This is because when the beam diameter intensity of light is defined as the length of the l Z e 2 in pairs to the distribution center, the beam at the output end The length is approximately i 20 m, which is almost equal to the outer diameter of the standard fiber. However, the longer the coreless fiber is, the larger the loss may be when passing through the glass medium, and if the end face of the optical fiber is chipped, it becomes a factor of beam scattering, so the longer fiber is preferable.
  • the range is determined to be 900 / im or less, more preferably 50 5 ⁇ or less. On the other hand, the shorter usable limit length is 300 ⁇ m.
  • the return loss obtained at the end face without AR coating should be 23 dB or more. It is the required length.
  • AR coating does not always provide an ideal return loss of 27 dB.
  • the shorter range is preferably 300 ⁇ or more. From the above, the most preferable length of the coreless fiber for use is 3 ⁇ or more and less than 50 ⁇ .
  • the preferred range when the outer diameter of the coreless fiber is different from that of the optical fiber is as follows.
  • the outer diameter there are two ways: making the fiber thicker and smaller than the standard fiber.
  • an optical fiber terminal is generally inserted into a commercially available glass cabinet, fixed, and used. Therefore, when used within the range of commercial standard products, it is advantageous to make the coreless fiber to be connected thin.
  • the main purpose of changing the diameter is to easily observe the fusion point after fusion, and to make it easier to observe the distortion at the fusion point described above, reduce the diameter by at least 2 m or more. There is a need.
  • the coreless A preferable range for the diameter difference of the eyepiece is appropriately smaller than the optical fiber (SMF) by about 2 to 10 ⁇ m.
  • the diameter of the coreless fiber and the diameter of the optical fiber (SMF) are determined in order to easily and accurately grasp the fusion point between the coreless fiber and the optical fiber. He gave a different example.
  • the center axes of the optical fiber (SMF) and the coreless fiber are shifted instead of using different diameters. May be joined together. In this way, the same effect as changing the diameter of the two can be obtained by intentionally generating the step, so that the defocused microscopic image can be obtained by using an optical microscope.
  • the fusion point can be determined very easily. Therefore, an optical fiber terminal according to a third embodiment of the present invention, which has a configuration in which the optical fiber (SMF) and the coreless fiber are bonded with the central axes shifted, will be described with reference to the drawings.
  • the axis deviation is ⁇ ! About 5 ⁇ is preferable. If the deviation is 1 ⁇ m or more, it is easy to determine the junction point.If the deviation is 5 ⁇ m or less, the relative displacement of the beam emission position does not increase, so the attenuation is out of expectation. And the possibility of affecting the strength of the joint is eliminated.
  • FIG. 14 shows an optical fiber terminal according to a third embodiment of the present invention
  • FIG. 15 shows an outline of the manufacturing process.
  • an optical fiber terminal 1200 of the third embodiment has an optical fiber having a central core 120 la and an outer peripheral cladding 120 b.
  • the end face of the fiber (SMF) 1201 is made of a material having substantially the same uniform refractive index as the core 1 201a and having an outer diameter of Coreless fin (CLF) 122, which is almost the same as optical fin (SMF), is arranged and fused. What is important here is that the relative center positions of the optical fiber (SMF) 1201 and the coreless fiber 122 are shifted.
  • the fiber diameter of the optical fiber used is not particularly limited, but here, as a specific example, the optical fiber (SMF) 122 (1 210 1 a, 120) 1b) and the coreless fiber 1 202 will each have a standard outer diameter of 125 m. '
  • an optical fiber (SMF) 1201 having a standard outer diameter of 125 ⁇ is prepared.
  • an optical fiber (SMF) 1201 having a connector at one end is prepared for an arbitrary length in order to easily perform a measurement operation to be performed later.
  • the other end of the optical fiber (SMF) 121 is stripped of the coating to the extent that it can be fused, and cut using a fiber talper to make a connection end face.
  • a coreless fiber 122 of the same diameter and having a diameter of 125 / z m is prepared for an arbitrary length, and the coating is removed and the end face is cut in the same manner.
  • the end face of the optical fiber (SMF) 1201 and the end face of the coreless fiber 122 are opposed to each other, and the standard single-core optical fiber fusion is performed. Once installed, perform the outer diameter center alignment once.
  • the outer diameter reference alignment is completed, as shown in Fig. 15 (b), shift the center position of the 1.5 ⁇ coreless fiber optic aperturer.
  • the outer diameter reference fusion conditions of ordinary quartz glass single mode fibers by setting the optical fiber fusion splicer TYPE-85SE manufactured by Sumitomo Electric Industries, Ltd. Fiber type: SM FIBER STD, alignment method: Outer diameter Outer diameter: Same conditions
  • the coreless fiber and the coreless fiber are integrated, and the joint strength is adjusted by adjusting the center of the optical fiber by aligning the outer diameter of the same diameter fiber or by aligning the core. It is equivalent to the fusion performed.
  • the small step caused by this relative deviation produces the same effect as the step generated at the fusion point between the optical fibers with different diameters as described above. Can be applied. Therefore, the step of determining the fusion point and the step of cutting the coreless fiber at the specified length can be performed in exactly the same manner as the fusion of optical fibers having different diameters described above. Optical fiber terminations with similar effects, performance and features can be made.
  • an optical multiplexer / demultiplexer having four input / output ports was manufactured using one wavelength selection filter as shown in FIG.
  • Fig. 9 (a) is a schematic diagram of the optical multiplexing / demultiplexing module viewed from above. The optical paths in the module are shown by thin lines in the figure.
  • a wavelength selection filter 904 a correction glass substrate 905, and a reflection mirror 906 are arranged on a glass substrate 901 and a V-groove 903 provided in the glass substrate 901
  • the collimator 902 is located at the bottom.
  • the wavelength-division multiplexed light input from “In” is split into transmitted light and reflected light by the wavelength selection filter 904, and output to “Drop Port” and “0 ut Port”, respectively. You. Further, the externally inserted light is incident from “Add Port J”, passes through the wavelength selection filter 904, and is multiplexed into “Out Port J.”
  • the collimator 90 used here No. 2 is manufactured by bonding the above-mentioned optical fiber end and the aspherical lens in the same glass tube.
  • each collimator 902 is fixed on a V-groove 903 on a glass substrate 901, especially the “In” The meter 902 and the “Drop Port” collimator 902 are on a straight V-groove 903.
  • the optical axis shift occurs, and it is impossible to use the V-groove 903 as a guide groove for the optical axis.
  • the axis of the collimator 902 used does not occur at all, so if there is no optical element such as a wavelength selection filter 904 between the collimators 902, there is almost no positional adjustment and light Coupling becomes possible.
  • the glass substrate (wavelength selection filter 904) enters obliquely between the collimator lights, the light will be displaced parallel to the original optical axis depending on the thickness of the glass substrate. As shown in the figure, this deviation does not pose a major problem because the original optical axis is maintained by using a similar glass substrate (a glass substrate for correction 905) to maintain the original optical axis. Therefore, in this configuration, all optical paths can be adjusted only by adjusting the angles of the reflection mirrors 906 on both sides of the wavelength selection filter 904. As described above, by using the optical fiber terminal of the present invention, the V-groove 903 serves as a guide groove for the collimator light. Integration is technically possible. Furthermore, assembling can be simplified and adjustment time can be reduced.
  • optical fiber terminal according to the present invention and the optical component using the optical fiber terminal have been described above. Further, the combination of the optical fiber terminal and the collimator lens according to the present invention enables optical coupling using collimated light. Further, the optical fiber terminal according to the present invention and a finite system Optical coupling is also possible by combination with a lens. Thus, by combining the optical fiber terminal according to the present invention and the lens, it is possible to achieve optical coupling having a low coupling loss equal to or less than that of a collimator manufactured using a normal optical fiber terminal. Become. Therefore, the configuration will be described below with reference to the drawings for a fourth embodiment.
  • FIG. 16 is an explanatory diagram of a configuration of a collimator including an optical terminal and a collimating lens according to the present invention.
  • reference numeral 1201 denotes an optical fiber (SMF)
  • reference numeral 122 denotes a coreless fiber
  • reference numeral 123 denotes an optical fiber (SMF) and a coreless fiber.
  • 2 shows an optical fiber terminal having the following.
  • Reference numeral 125 denotes a collimating lens
  • reference numeral 125 denotes a cavity such as glass.
  • reference numeral 1209 denotes end face reflected light
  • reference numeral 1 210 denotes collimated light.
  • the light emitted from the optical fiber terminal 123 having the optical fiber (SMF) 1201 and the coreless fin 122 according to the present invention has a collimating lens 12 2 After passing through 05, the collimated light becomes 1 210. At this time, the end face reflected light from the collimating lens lens 125 becomes all scattered light, and the light does not return to the light emitting position of the optical fiber terminal 123. As a result, there is an advantage that the arrangement of the collimating lens 125 does not reduce the reflection loss of the entire system.
  • the beam diameter of the collimated light 1210 can be widened within the range of a mm or a lens outer diameter, so that the propagation distance can be increased.
  • optical component that can be manufactured using the optical fiber terminal according to the present invention
  • other examples include a collimator array, 2 r> ortmod u 1 e (eg, gain equalizer), isolators, optical switches, optical rangefinders, wavelength meters, interferometers, etc.
  • the present invention by setting the outgoing beam diameter within the outer diameter of the coreless fiber, it is possible to perform the same optical coupling as a normal optical fiber. As a result, it is possible to provide a practical optical fiber terminal having excellent straightness of the output beam and having a level of reflection loss and coupling loss required by ordinary optical components. Components and optical couplers can be provided.

Abstract

There is provided a practical optical fiber terminal capable of sufficiently satisfying the specifications of reflection loss and coupling efficiency normally required in optical parts. The optical fiber terminal has an optical fiber (101) having a core (101a) at the center and a clad (101b) around its external circumference. The optical fiber has an end surface attached to one end surface of a coreless fiber (102, 103) made from a material having a refraction factor substantially identical to the core and uniform. When the light propagating in the core of the optical fiber spreads in the coreless fiber and goes outside from the other end surface of the coreless fiber, the beam diameter is adjusted to be within the coreless fiber external diameter by setting the coreless fiber optical path length to be below 1 mm and the other end surface of the coreless fiber (102, 103) vertical to optical axis of the optical fiber (101).

Description

明 細 書 光ファイバ端末とその製造方法並びに光結合器及び光部品  Description Optical fiber terminal, method for manufacturing the same, optical coupler, and optical component
技術分野 Technical field
本発明は、 光通信等に用いられる光ファイバ端末とその製造方法並び にその光フアイバ端末を用いた光結合器及び光部品に関する。  The present invention relates to an optical fiber terminal used for optical communication and the like, a method of manufacturing the same, and an optical coupler and an optical component using the optical fiber terminal.
背景技術 Background art
光通信の発達に伴って、 利用する光デバイスや光学部品の小型化が望 まれている。 光ファイバ間で光結合を行う方法のうち、 損失が少なく且 つその間に様々な光学素子を設置することができるような光結合方法と して、 光ファイバの光束出射端近傍にレンズを設置して、 光ファイバか ら出射される光束を平行光束と し、 受光側も同様の光学系を組んで、 再 ぴ光ファイバに光を結合させるという方法が一般的に利用されている。 光ファイバから出射された光束を平行光束とする機能を有する素子は一 般にフアイバコリメータと称せられており、 前述した光ファィバと レン ズの組み合わせはフアイバコリメータの一つの形式である。  With the development of optical communication, miniaturization of optical devices and optical components to be used is desired. Among the methods of performing optical coupling between optical fibers, a lens is installed near the light-emitting end of the optical fiber as an optical coupling method that has a small loss and allows various optical elements to be installed therebetween. In general, a method is generally used in which a light beam emitted from an optical fiber is converted into a parallel light beam, and a similar optical system is assembled on the light receiving side to couple the light to a regenerated optical fiber. An element having a function of converting a light beam emitted from an optical fiber into a parallel light beam is generally called a fiber collimator, and the combination of the optical fiber and the lens is one type of a fiber collimator.
この形式のファイバコ リメータの性能を表す指標と して、 一般的に光 結合損失と反射損失が用いられる。 光結合損失は、 平行光束の光束品質 を反映するものであり、 使用する光ファイバの開口数 (以下、 N Aと略 記する) 、 出射端面形状、 出射端面における収差、 レンズ性能、 等に影 響される。  Optical coupling loss and reflection loss are generally used as indices indicating the performance of this type of fiber collimator. The optical coupling loss reflects the luminous flux quality of the parallel luminous flux, and affects the numerical aperture (hereinafter abbreviated as NA) of the optical fiber used, the exit end face shape, aberration at the exit end face, lens performance, and the like. Is done.
一方、 反射損失を指標と して表される反射光は、 光ファイバ出射端に おける出射エネルギの損失、 あるいは、 光源の安定動作を損なう という 影響をもたらす。 これら反射光の影響のうち、 特に、 光源の安定動作に 及ぼす影響が、 光通信分野においては重大問題の一つになっている。 近年、 光通信分野では、 光源と して、 分布帰還型レーザが一般的に用 いられている。 この種のレーザ光源は、 光ファイバ内を逆行し光源まで 到達する所謂戻り光により、 レーザ発振が不安定になり易く、 結果と し て、 出力パワーの変動が生じ易いという特徴がある。 即ち、 反射光の増 大、 言い換えると、 反射損失が小さい場合は、 戻り光が大きいことを意 味し、 出力パワーの変動を増大させることになる。 On the other hand, the reflected light represented by the reflection loss as an index causes a loss of output energy at the output end of the optical fiber or an effect of impairing the stable operation of the light source. Among the effects of these reflected lights, especially for the stable operation of the light source The effect is one of the major problems in the optical communication field. In recent years, in the field of optical communication, a distributed feedback laser has been generally used as a light source. This type of laser light source is characterized in that laser oscillation tends to be unstable due to so-called return light that travels backward in the optical fiber and reaches the light source, and as a result, output power fluctuates easily. In other words, an increase in the reflected light, in other words, a small return loss means that the return light is large, and increases the fluctuation of the output power.
—般的に、 ファイバコ リメータにおいて、 前述したレーザ光源の出力 変動を無視できる程度の大きさに抑制するためには、 次の ( 1 ) 式に示 す端面反射損失と して、 5 0 d B以上が要求されている。  —Generally, in a fiber collimator, in order to suppress the output fluctuation of the laser light source to a negligible level, the end face reflection loss shown in the following equation (1) is 50 dB The above is required.
端面反射損失 =ー 1 0 X 1 o g ( I R / I 0 ) … ( 1 ) 伹し、 I R は反射光量、 1 0 は入射光量を示す。  End face reflection loss = -1 0 X 1 og (IR / I0) (1) where IR is the amount of reflected light, and 10 is the amount of incident light.
現状で反射損失を得るための方法と して、 光ファイバ端面を光軸に対 し斜めにする方法が用いられている。 このタイプの光ファイバ端末は、 光ファイバをガラスキヤビラリ に挿入して、 キヤビラリ ごと端面に 4 ° 〜8 ° 程度の角度を付けて平面研磨することで得られる。 これにより、 端面における反射光はクラッ ドモード (c l ad mode ) となって減衰する ため、 反射損失を大きく とることができ、 更に表面の A Rコーティング と合わせて、 反射損失 6 0 d B以上を得ることができる。 この方法は極 めて簡便な方法であるため、 これまで主流の方式であった。  At present, as a method for obtaining the reflection loss, a method is used in which the end face of the optical fiber is inclined with respect to the optical axis. An optical fiber end of this type is obtained by inserting an optical fiber into a glass capillary and polishing the end face of the glass with an angle of about 4 ° to 8 °. As a result, the reflected light at the end face is attenuated in a clad mode, so that a large reflection loss can be obtained. Further, a reflection loss of 60 dB or more can be obtained by combining with the AR coating on the surface. Can be. This method has been the mainstream method because it is an extremely simple method.
ところで、 このような斜端面を持つ光ファイバ端末を用いたコリメ一 タを光部品内で利用する場合には、 特に留意しなければならない点があ る。 この点について第 1 1図を参照しながら説明する。  By the way, when a collimator using an optical fiber terminal having such a beveled end face is used in an optical component, special attention must be paid. This point will be described with reference to FIG.
ファイバコリメータのコリメートレンズと してよく用いられる屈折率 分布レンズ ( GRIN Lens )は、 結像状態がレンズ長 ( Pi tch) に依存す るので、 0 . 2 5 P i tchの場合は、 ( a )のよ うに屈折率分布レンズ( GRIN Lens ) 1 1 0 1の端面に光源を置く と、 もう一方の端面からコリメート 光が出射する。 実際には ( b ) のよ う に屈折率分布レンズ (GRIN Lens) 1 1 0 2のレンズ長を 0. 2 3 Pitch程度と しており、 光源の位置調整 に自由度をもたせる配置になっている。 In a refractive index distribution lens (GRIN Lens), which is often used as a collimator lens of a fiber collimator, since the imaging state depends on the lens length (Pitch), in the case of 0.25 Pitch, (a ) (GRIN) Lens) When a light source is placed on the end face of 1101, collimated light is emitted from the other end face. Actually, as shown in (b), the refractive index distribution lens (GRIN Lens) 1102 has a lens length of about 0.23 Pitch, and it has an arrangement that allows flexibility in adjusting the position of the light source. I have.
この構成によるコリ メ一ト光を結合させた場合の光路を ( c ) に示す。 前述した斜端面の影響で、 光ファイバ端末 1 1 0 3からの出射光は、 約 3. 8° 傾いて屈折率分布レンズ 1 1 0 4に入射するので、 光ファイバ 端末 1 1 0 3の光軸から δ 1だけずれる。また、屈折率分布レンズ(GRIN Lens) 1 1 0 4の端面は光フアイバ端末 1 1 0 3の端面と同様に傾いて いるので、 屈折率分布レンズ (GRIN Lens) 1 1 0 4に対して角度をもつ て入射することから、 出射ビームは光ファイバ端末 1 1 0 3からの出射 光の光軸に対してある角度 ( 0 ) を持つことになる。 従って、 このコリ メータの組み合わせでは、 光軸を一致させるためには、 元の光軸に対し て、 δ 2だけずらさなければ光結合は行えない。 従来のコリメータで光 結合を行う場合に位置調整が困難であつたのは、 この理由による。  The optical path when the collimated light with this configuration is combined is shown in (c). The light emitted from the optical fiber terminal 1103 is inclined by about 3.8 ° and enters the gradient index lens 1104 due to the influence of the beveled end surface described above. Offset by δ1 from axis. Also, since the end face of the GRIN lens 110 4 is inclined similarly to the end face of the optical fiber terminal 110 3, the angle with respect to the GRIN lens 110 4 Therefore, the outgoing beam has a certain angle (0) with respect to the optical axis of the outgoing light from the optical fiber end 1103. Therefore, in this collimator combination, optical coupling cannot be performed unless the original optical axis is shifted by δ2 in order to match the optical axes. It is for this reason that position adjustment is difficult when performing optical coupling with a conventional collimator.
上記のような光路ずれをなくすためには、 光ファイバ端末及びレンズ 端面を全て光軸に対して垂直にすればよレ、。 しかしこの場合、 端面反射 は全て戻り光と して反映されてしまうことになる。 ガラス端面と空気の 屈折率差で生じる反射損失は 1 4. 7 d Bであり、 これに良好な ARコ 一ティング (Rく 0. 2 % : 2 7 d B ) を施したと しても、 端面での反 射損失は約 4 2 d Bであり、 5 0 d B以上という上記の要求仕様は達成 できないことになる。  In order to eliminate the optical path shift as described above, all the optical fiber ends and the lens end faces should be perpendicular to the optical axis. However, in this case, all end face reflections will be reflected as return light. The reflection loss caused by the refractive index difference between the glass end surface and air is 14.7 dB, and even if good AR coating (R 0.2%: 27 dB) is applied to this. However, the reflection loss at the end face is about 42 dB, and the above-mentioned required specification of 50 dB or more cannot be achieved.
このような問題を解決する手段と して、 従来、 光ファイバ端面にコア レスフアイバを融着し、コア レスフアイバ内での光束の拡散作用により、 必要な反射減衰量を得る構造が知られている (特許文献 1参照) 。 この 構造は、 出射光束径を広げることで、 反射光と光ファイバ端におけるモ 一ドフィールド径 (約 1 0 μ m) との重なり積分を減少させることによ つて、 反射損失を増大させるという原理を利用している。 この構造によ れば、 光ファイバ端面を 0° 〜6 ° と して、 コアレスファイバ部分の長 さを 1〜 4 mmと した場合、 ARコートと合わせて 6 0 d B以上の反射 損失を得ることができるといわれている。 As a means for solving such a problem, there has been known a structure in which a coreless fiber is fused to an end face of an optical fiber and a required return loss is obtained by diffusing a light beam in the coreless fiber ( See Patent Document 1). This structure increases the diameter of the emitted light beam so that the reflected light and It uses the principle of increasing the return loss by reducing the overlap integral with a single defield diameter (about 10 μm). According to this structure, when the end face of the optical fiber is set to 0 ° to 6 ° and the length of the coreless fiber is set to 1 to 4 mm, a reflection loss of 60 dB or more is obtained in combination with the AR coat. It is said that you can do it.
また、 光ファイバ端面を光軸に対して垂直にしたコリメータの構成と して、 グレーデッ ドインデックス (GI) ファイバを利用する構造が提案 されている (特許文献 2参照) 。 このコ リ メータの構造例および光を通 過させた状態を第 1 7図 ( a ) ( b ) に示す。 まず、 第 1 7図 ( a ) ( b ) において、 符号 1 2 0 1は光ファイノ ( SMF) 、 1 2 0 2はコアレス ファイバ、 1 2 0 4はグレーデッ ドインデックス (GI) ファイバ、 1 2 0 4 Cは出射端、 1 2 0 7はビームウェス ト径、 1 2 0 8は端面反射光、 1 2 1 1はビームウェス ト距離を示している。 第 1 7図 ( a ) に示すよ うに、 当該構造は、 集光機能を有する光ファイバ端部構造であって、 出 射端 1 2 0 4 Cからの光のビームウェス ト距離 1 2 1 1 とビームウェス ト径 1 2 0 7 とをそれぞれ所望の値、 即ち、 それらを互いに独立して可 変設定できる光ファイバ端部構造である旨記載されている。  In addition, a structure using a graded index (GI) fiber has been proposed as a configuration of a collimator having an optical fiber end face perpendicular to the optical axis (see Patent Document 2). Figures 17 (a) and 17 (b) show an example of the structure of this collimator and the state in which light is transmitted. First, in Fig. 17 (a) and (b), reference numeral 1201 denotes an optical fiber (SMF), reference numeral 122 denotes a coreless fiber, reference numeral 124 denotes a graded index (GI) fiber, and reference numeral 120 denotes a fiber. 4C indicates an emission end, 1207 indicates a beamwest diameter, 1208 indicates reflected light from an end face, and 1211 indicates a beamwest distance. As shown in Fig. 17 (a), this structure is an optical fiber end structure having a light condensing function, and the beam West distance of light from the outgoing end 1204C is 1 2 1 1 It is described that the optical fiber end structure is capable of variably setting a desired value and a beamwest diameter of 127, respectively, that is, independently and variably setting them.
特許文献 1 : 特開平 7 - 2 8 1 0 5 4号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 7-281054
特許文献 2 : 特開 2 0 0 3— 4 3 7 2 7 0号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-43073
発明の開示 Disclosure of the invention
しかし、 本発明者らが、 外径 1 2 5 μ πιの標準ファイバを用いてコア レスファイバ付き光ファイバ端末を作製し、 評価した結果、 反射損失は 6 0 d B以上を示したが、 光ファイバの前にレンズを置いて、 一対のコ リ メータの結合効率を調べた結果、 結合効率はコアレスファイバ長に大 きく依存し、 コアレスファイバ長が 1 mm以上では、 結合効率が劇的に 悪化することを見い出した。 However, the present inventors fabricated and evaluated an optical fiber terminal with a coreless fiber using a standard fiber having an outer diameter of 125 μπι, and as a result, showed that the reflection loss was 60 dB or more. As a result of investigating the coupling efficiency of a pair of collimators by placing a lens in front of the fiber, the coupling efficiency greatly depends on the coreless fiber length.When the coreless fiber length is 1 mm or more, the coupling efficiency dramatically increases. I found it to get worse.
また、 1 m m未満で所望の長さをもつコアレスフアイバが接続された 光ファイバ端末を作製する場合、 コアレスファイバの長さを正確に制御 することは、 非常に困難が伴うことがわかった。  It was also found that it is extremely difficult to accurately control the length of the coreless fiber when fabricating an optical fiber terminal connected to a coreless fiber having a desired length of less than 1 mm.
また、 第 1 7図 ( a ) を用いて説明した、 光ファイバ (S M F ) 1 2 0 1 、 コア レスファイ ノ 1 2 0 2そして GIファイ ノ 1 2 0 4を有する構 成のコリメータでは、 第 1 7図 ( b ) に示すように、 出射端 1 2 0 4 C における端面反射光 1 2 0 8が、 光出射位置と同じ位置に集束して戻つ てきてしまう。 ここで、 当該端面反射光 1 2 0 8を低減するために、 出 射端 1 2 0 4 Cへ ARコーティングを施すことが考えられる。 しかし、 現 状の ARコーティング膜の実力では、 前述のように ARコーティングを施し ても約 4 2 d Bの端面反射光 1 2 0 8が戻ってきてしまい、 一般に要求 されている 50dB以上の反射損失を実現することが出来ない。  Further, in the collimator having a configuration including the optical fiber (SMF) 1201, the coreless fiber 122, and the GI fiber 122 described with reference to FIG. 7 As shown in FIG. 7 (b), the end face reflected light 128 at the emission end 124C is focused back to the same position as the light emission position. Here, in order to reduce the end face reflected light 128, it is conceivable to apply AR coating to the emitting end 1204C. However, with the current capability of the AR coating film, even if the AR coating is applied as described above, the end face reflected light 128 of about 42 dB returns, and the reflection of 50 dB or more, which is generally required, is required. Loss cannot be realized.
本発明は、 上記事情を考慮してなされたもので、 通常の光部品で要求 される反射損失及び結合効率の仕様を十分に満たすことのできる、 実用 的な光ファイバ端末並びにそれを用いた光部品及び光結合器を提供する こと、 また、 前記光ファイバ端末を容易に作製するこ とのできる作製方 法を提供することを目的とする。  The present invention has been made in view of the above circumstances, and has a practical optical fiber terminal capable of sufficiently satisfying the specifications of the reflection loss and the coupling efficiency required for ordinary optical components, and an optical terminal using the same. It is an object of the present invention to provide a component and an optical coupler, and to provide a manufacturing method capable of easily manufacturing the optical fiber terminal.
請求の範囲第 1項の発明の光フアイバ端末は、 中心部のコア及びその 外周部のクラッ ドを有する光ファイバの端面に、 前記コアと略同一で均 一な屈折率を有する材料よりなるコア レスフアイバの一端面を接合して なる光ファイバ端末において、 前記光ファイバのコアを伝送してきた光 が前記コアレスフアイバ内で拡がり コアレスフアイパの他端面から外部 へ出射すると きのビーム径が、 コアレスファイバの外径以内となるよう に、 コアレスファイバの光路長を設定したことを特徴と している。 出射 ビーム径をコアレスフアイバの外径以内とすることで、 通常の光フアイ バと全く同等の光結合を行うことができる。 この結果、 出射ビームの直 進性が優れ、 かつ実用上要求されるレベルの反射損失及び結合効率を得 ることができる。 The optical fiber terminal according to the first aspect of the present invention includes a core made of a material having substantially the same uniform refractive index as the core, on an end face of an optical fiber having a core at the center and a cladding at the outer periphery thereof. In an optical fiber terminal in which one end surface of a fiberless fiber is joined, the beam diameter when the light transmitted through the core of the optical fiber spreads inside the coreless fiber and exits from the other end surface of the coreless fiber is the coreless fiber. The feature is that the optical path length of the coreless fiber is set to be within the outer diameter of the coreless fiber. By setting the output beam diameter within the outer diameter of the coreless fiber, the It is possible to perform optical coupling exactly the same as the optical coupling. As a result, the straightness of the emitted beam is excellent, and the levels of reflection loss and coupling efficiency required for practical use can be obtained.
請求の範囲第 2項の発明の光ファイバ端末は、 請求の範囲第 1項にお いて、 前記コアレスファイバの光路長が 1 m m未満であることを特徴と している。 この範囲内にコアレスファイバの長さを制限した場合でも、 A Rコーティングを施した後で、 反射損失は 5 0 d B以上を容易に確保 することができる。 従って、 実用上は問題はない。 また、 軸ずれが無く、 組み立て調整が容易などの特徴は、 コアレスファイバの長さを l m m未 満に制限することにより、 何ら影響を受けるものではない。  The optical fiber terminal according to the second aspect of the present invention is the optical fiber terminal according to the first aspect, wherein an optical path length of the coreless fiber is less than 1 mm. Even if the length of the coreless fiber is limited within this range, a return loss of 50 dB or more can be easily ensured after the AR coating. Therefore, there is no problem in practical use. In addition, features such as no misalignment and easy assembly adjustment are not affected at all by limiting the length of the coreless fiber to less than 1 mm.
請求の範囲第 3項の発明の光フアイバ端末は、 請求の範囲第 1項また は第 2項において、 光ファイバの外径とコアレスファイバの外径が異な ることを特徴と している。 融着に支障がない範囲であれば、 コアレスフ アイバの径が光ファイバの径と異なっても、 請求の範囲第 1項、 第 2項 の発明と全く同様の性能が得られる。 また、 この光ファイバ端末では、 光ファイバとコアレスファイバの径差があることにより、 融着点の位置 認識が容易にでき、 コアレスファイバの長さ調整を容易にする利点もあ る。  An optical fiber terminal according to the third aspect of the invention is characterized in that, in the first or second aspect, the outer diameter of the optical fiber is different from the outer diameter of the coreless fiber. As long as the fusion does not hinder, even if the diameter of the coreless fiber is different from the diameter of the optical fiber, the same performance as the inventions of claims 1 and 2 can be obtained. In addition, in this optical fiber terminal, since there is a diameter difference between the optical fiber and the coreless fiber, the position of the fusion point can be easily recognized, and there is an advantage that the length of the coreless fiber can be easily adjusted.
請求の範囲第 4項の発明の光フアイバ端末は、 請求の範囲第 1項また は第 2項記載の光ファイバ端末において  The optical fiber terminal according to claim 4 is the optical fiber terminal according to claim 1 or 2.
前記光ファイバと前記コアレスファイバとは、 概同径の外径を有し、 前記光ファイバの中心軸と、 前記コアレスファイバの中心軸とが、 互 いにずれて接合していることを特徴とする。 融着に支障がない範囲であ れば、 光ファイバの中心軸とコアレスファイバの中心軸が異なっても、 請求の範囲第 1項、 第 2項の発明と全く同様の性能が得られる。 また、 この光ファイバ端末では、 光ファイバとコアレスファイバとの融着点に 段差があることにより、 融着点の位置認識が容易にでき、 コアレスフ ァ ィバの長さ調整を容易にする利点がある。 The optical fiber and the coreless fiber have substantially the same outer diameter, and the central axis of the optical fiber and the central axis of the coreless fiber are shifted from each other and joined. I do. As long as the fusion does not hinder, even if the center axis of the optical fiber and the center axis of the coreless fiber are different, the same performance as the inventions of claims 1 and 2 can be obtained. In this optical fiber terminal, the fusion point between the optical fiber and the coreless fiber is Due to the step, the position of the fusion point can be easily recognized, and the length of the coreless fiber can be easily adjusted.
請求の範囲第 5項の発明の光ファイバ端末は、 請求の範囲第 1項〜第 4項のいずれかにおいて、 前記コアレスファイバの他端面が前記光ファ ィバの光軸に対して垂直な面に形成されていることを特徴と している。 即ち、 光の入出斜端角度が、 ファイバから出射する光の軸に垂直な面に 対して、 加工公差範囲内で 0 ° となっている。 従って、 光ファイバから の出射光は光軸と常に一致し、 これによ り、 これまで斜端面による光束 の位置ずれで不可能であった 1直線の溝上での光結合が可能となる。 請求の範囲第 6項の発明は、 請求の範囲第 1項〜第 5項のいずれかに おいて、 前記コアレスファイバの他端面に反射防止膜を設けたことを特 徴と している。 このよ うにコアレスファイバの他端面 (光ファイバとの 接合側と反対側の端面) に使用目的波長に応じた反射防止膜 (A R コー ティング)' を施すことにより、 直接戻り光の低減、 他光素子との光干渉 や、 ゴース トなどを防ぎ、 良好な光結合特性を得ることができるように なる。  The optical fiber terminal of the invention according to claim 5 is the optical fiber terminal according to any one of claims 1 to 4, wherein the other end surface of the coreless fiber is perpendicular to an optical axis of the optical fiber. It is characterized by being formed in That is, the angle of the incident and outgoing end of the light is 0 ° within the processing tolerance range with respect to the plane perpendicular to the axis of the light emitted from the fiber. Therefore, the light emitted from the optical fiber always coincides with the optical axis, which enables optical coupling on a straight groove, which has been impossible by the displacement of the light beam due to the oblique end surface. The invention set forth in claim 6 is characterized in that, in any one of claims 1 to 5, an antireflection film is provided on the other end surface of the coreless fiber. By applying an anti-reflection film (AR coating) 'according to the intended wavelength on the other end surface of the coreless fiber (the end surface opposite to the joint side with the optical fiber), reduction of direct return light and other light Optical interference with the element, ghost, and the like are prevented, and good optical coupling characteristics can be obtained.
請求の範囲第 7項の発明は、 請求の範囲第 1項〜第 6項のいずれかに 記載の光フアイバ端末を含む光結合器において、  An invention according to claim 7 is an optical coupler including the optical fiber terminal according to any one of claims 1 to 6,
前記光ファィパの光軸上で前記コアレスファィパの他端面側に、 非球 面レンズ、 球面レンズ、 球レンズ、 もしく は ドラムレンズから選択され る少なく とも 1個以上を配置したことを特徴とする光結合器である。 ド ラムレンズとは、 例えば球レンズの周辺部を研削あるいは研磨等により 芯取り し、 寸胴の球面レンズと したものである。  At least one or more selected from an aspherical lens, a spherical lens, a spherical lens, or a drum lens is arranged on the other end side of the coreless fiber on the optical axis of the optical fiber. It is a coupler. The drum lens is, for example, a spherical lens having a cylindrical shape by centering the periphery of a spherical lens by grinding or polishing.
例えば、 上記の光ファイバ端末とコリメータレンズとの組み合わせに より、 コリメータ光を用いた光結合が可能になる。 また、 光ファイバ端 末と有限系のレンズとの組み合わせも可能である。 このように光フアイ バ端末と レンズを組み合わせることで、 通常の光ファイバ端末を用いて 作製したコ リ メータと同等ないしはそれ以下の低結合損失を有する光結 合が可能となる。 For example, the combination of the optical fiber terminal and the collimator lens enables optical coupling using collimated light. Also, a combination of an optical fiber terminal and a finite system lens is possible. Like this Combining a fiber end with a lens makes it possible to achieve optical coupling with a low or lower coupling loss than a collimator fabricated using a normal optical fiber end.
さらに前記光ファイバ端末と前記コリメータレンズとの組み合わせに より、 第 1 7図に示したように、 レンズからの端面反射はすべて拡散光 となり、 光出射位置に光が戻ることはない。 そのため、 レンズを配置す ることで系全体の反射損失を低下させることはない、 という利点を有す る。 またビーム径は mm単位のガラスキヤビラリないしはレンズ外径の範 囲まで広げることが出来るので、 伝播距離を大きく取ることが可能であ る。  Further, due to the combination of the optical fiber end and the collimator lens, as shown in FIG. 17, all the end face reflections from the lens become diffused light, and the light does not return to the light emitting position. Therefore, there is an advantage that the arrangement of the lens does not reduce the reflection loss of the entire system. Also, the beam diameter can be expanded within the range of glass cavities in mm or the outer diameter of the lens, so that the propagation distance can be increased.
請求の範囲第 8項の発明の光部品は、 請求の範囲第 1項〜第 6項のい ずれかに記載の光ファイバ端末と光の合分波機能を有する光学素子とを 組み合わせたことを特徴としている。 例えば、 上記光ファイバ端末を用 いてコリメー ト光による光結合を実現し、 その間に特定の波長のみを反 射しそれ以外の波長を透過する特性を持つ誘電体多層膜フィルタを挿入 することで、 光の合分波機能を持たせることができる。 この場合、 上記 の光フアイバ端末を用いることにより、 基板上に作製された共通の V溝 上にて一対のコリメータ同士で光結合が可能となるため、 部品点数の削 減、 工程の大幅な簡易化が可能となる。  An optical component according to claim 8 is a combination of the optical fiber terminal according to any one of claims 1 to 6 and an optical element having an optical multiplexing / demultiplexing function. Features. For example, optical coupling using collimated light is realized by using the above-mentioned optical fiber terminal, and a dielectric multilayer filter having a characteristic of reflecting only a specific wavelength and transmitting other wavelengths is inserted in the meantime. A function of multiplexing / demultiplexing light can be provided. In this case, the use of the above-mentioned optical fiber terminal enables optical coupling between a pair of collimators on a common V-groove formed on the substrate, thereby reducing the number of components and greatly simplifying the process. Is possible.
請求の範囲第 9項の発明は、 請求の範囲第 1項〜第 6項のいずれかに 記載の光ファイバ端末の作製方法であって、 前記光ファイバとコアレス ファイバとを結合する第 1の工程と、 コアレスフアイバの他端面を研磨 しコアレスファイバの長さを所望の値に調整する第 2の工程とを備え、 前記第 2の工程では、 光ファイバとコアレスフアイパの接合体の反射損 失量を測定しつつ、 コアレスファイバの長さを所望の値に調整すること を特徴と している。 即ち、 本発明では、 光ファイバに接合するコアレスファイバの長さを 規定する第 2の工程において、 融着後の光ファィバ端末の反射損失をモ ニタしながら、 コアレスファイバを研削及ぴ研磨することにより、 光フ アイバ及びコアレスフアイバを直接観察することなく、 所望の長さにコ ア レスファイバを調整することができる。 この場合、 コアレスファイバ 長と反射損失の間には 1対 1の関係が成り立っているので、 作製中のコ ァレスファイバ付光ファイバ端末の仕上げ研磨面における反射損失を測 定することによ り、 1 j mの精度でコアレスフアイバ長を規定すること が可能となる。 この結果、 光ファイバとコアレスファイバの融着点を光 学顕微鏡で観察しにくい場合にも、 当該融着点を確実に検知することが でき、 コアレスファイバの長さ調整の正確を期することができる。 The invention according to claim 9 is the method for manufacturing an optical fiber terminal according to any one of claims 1 to 6, wherein a first step of coupling the optical fiber and the coreless fiber is provided. And a second step of polishing the other end face of the coreless fiber to adjust the length of the coreless fiber to a desired value. In the second step, the reflection loss of the bonded body of the optical fiber and the coreless fiber is provided. The feature is to adjust the length of the coreless fiber to a desired value while measuring the amount. That is, in the present invention, in the second step of defining the length of the coreless fiber to be bonded to the optical fiber, the coreless fiber is ground and polished while monitoring the reflection loss of the fused optical fiber terminal. Accordingly, the core fiber can be adjusted to a desired length without directly observing the optical fiber and the coreless fiber. In this case, since there is a one-to-one relationship between the coreless fiber length and the return loss, by measuring the return loss on the finish polished surface of the optical fiber end with the core fiber being manufactured. It is possible to define the coreless fiber length with an accuracy of 1 jm. As a result, even when it is difficult to observe the fusion point between the optical fiber and the coreless fiber with an optical microscope, the fusion point can be reliably detected, and accurate adjustment of the length of the coreless fiber is expected. it can.
請求の範囲第 1 0項の発明は、 請求の範囲第 3項記載の光ファイバ端 末の作製方法であって、 径の異なる前記光フアイバとコアレスファイバ とを接合する第 1の工程と、 前記光ファイバとコアレスファイバとの接 合点を検知する第 2 の工程と、 前記接合点を基準にして設定した指定位 置にてコア レスファイバを切断する第 3 の工程とを備え、 前記第 2のェ 程では、 光学顕微鏡を用い且つデフォーカスされた顕微鏡像により前記 接合点を検知することを特徴と している。  The invention according to claim 10 is the method for producing an optical fiber terminal according to claim 3, wherein a first step of joining the optical fiber and the coreless fiber having different diameters, A second step of detecting a joining point between the optical fiber and the coreless fiber, and a third step of cutting the coreless fiber at a designated position set with reference to the joining point, wherein the second step The step is characterized in that the joining point is detected using an optical microscope and a defocused microscope image.
請求の範囲第 1 1項の発明は、 請求の範囲第 4項記載の光ファイバ端 末の作製方法であって、 概同径である前記光ファイバとコアレスフアイ バのそれぞれの中心軸とを互いにずらして接合する第 1の工程と、 前記 光ファイバとコアレスファイバとの接合点を検知する第 2の工程と、 前 記接合点を基準にして設定した指定位置にてコァレスファイバを切断す る第 3の工程とを備え、 前記第 2の工程では光学顕微鏡を用い、 且つデ フォーカスされた顕微鏡像により前記接合点を検知することを特徴とし ている。 本発明に係る光フアイバ端末におけるコアレスファイバの長さは、 正 確に形成しなければならない。 このため、 請求の範囲第 1 0項の発明で は、 接合する光ファイバとコアレスファイバとの径を異ならしめること によって、 また、 請求の範囲第 1 1項の発明では、 接合する光ファイバ と コアレスファイバとの中心軸を互いにずらすことによって、 それぞれ 光ファイバとコアレスファイバとの接合点を検知可能にし、 この接合点 を基準にして設定した指定位置にてコアレスフアイバを切断すること と した。 The invention according to claim 11 is the method for manufacturing an optical fiber terminal according to claim 4, wherein the optical fibers having substantially the same diameter and the respective central axes of the coreless fibers are mutually aligned. A first step of shifting and joining, a second step of detecting a joining point between the optical fiber and the coreless fiber, and cutting the core fiber at a designated position set with reference to the joining point A third step, wherein in the second step, an optical microscope is used, and the junction is detected by a defocused microscope image. The length of the coreless fiber in the optical fiber terminal according to the present invention must be accurately formed. Therefore, in the invention of claim 10, the diameter of the optical fiber to be joined and the coreless fiber are made different from each other, and in the invention of claim 11, the optical fiber to be joined and the coreless fiber are By displacing the center axes of the fibers with each other, it is possible to detect the joint point between the optical fiber and the coreless fiber, and cut the coreless fiber at a specified position set based on this joint point.
この場合、 前記接合点の検知を、 一般的な顕微鏡を用いてデフォー力 ス状態で接合点を観察することによ り行う。 デフォーカス状態の顕微鏡 で接合点を観察することによ り、 光ファイバと コアレスファイバとの外 径が、 数 μ mオーダーという非常に小さなものと しても接合点を判別で きるこ とが、 本願発明者によってはじめて見いだされたからである。 す なわち、 本発明者の研究によれば、 光ファイバとコアレスファイバとの 接合点を顕微鏡で観察 (フォーカス状態で) して判別する場合、 従来の 技術に係る方法では、 外径差が大きい場合には判別できるが、 外径差が 小さく なるにしたがって次第に困難になり、 外径差が数 μ m程度になる と、 全く判別が不可能であることがわかった。  In this case, the detection of the connection point is performed by observing the connection point in a state of a deformed force using a general microscope. By observing the junction with a microscope in a defocused state, it is possible to determine the junction even if the outer diameter of the optical fiber and the coreless fiber is as small as several μm. This is because it has been found for the first time by the present inventor. In other words, according to the research of the present inventors, when the joint point between the optical fiber and the coreless fiber is determined by observing (in a focused state) with a microscope, the difference in outer diameter is large in the method according to the conventional technology. In this case, it can be discriminated, but as the outer diameter difference becomes smaller, it becomes gradually more difficult. When the outer diameter difference becomes about several μm, it is found that it is impossible to determine at all.
と ころが、 この研究の過程で、 外径差が数 μ mの接合点を、 本発明者 が偶然にデフォーカス状態で観察したところ、 この接合点を判別可能で あることを発見した。 このよ うに、 デフォーカスされた顕微鏡像を利用 するこ とによ り、融着後の融着点を非常に簡便に識別することができる。 これによ り、 光フアイバの外径とほとんど同じ外径を有すると ともに所 望のコアレスファイバ長を持った光フアイバ端末を容易に作製すること が可能になる。 さらに、 この方法を用いることによ り、 正確に融着点を 認識することができるので、 この融着点を原点と して、 コアレスフアイ バの切断箇所を決めることができ、 その箇所で切断することにより、 1 0 β mの精度でコアレスファイバの長さを調整することができる。 図面の簡単な説明 However, in the course of this research, the inventor accidentally observed a joint having an outer diameter difference of several μm in a defocused state, and found that this joint could be distinguished. Thus, by using the defocused microscope image, the fusion point after fusion can be identified very easily. This makes it possible to easily produce an optical fiber terminal having an outer diameter almost equal to the outer diameter of the optical fiber and having a desired coreless fiber length. Furthermore, by using this method, the fusion point can be accurately recognized. You can determine the cut portion of the bar, by cutting at that point, it is possible to adjust the length of the coreless fiber with a precision of 1 0 beta m. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態の光ファイバ端末の概略断面図であり、 ( a ) は第 1実施形態の光ファイバ端末の構成図、 ( b ) は第 2実施形 態の光ファイバ端末の作製途中の状態を示す構成図、 ( c ) は第 2実施 形態の第 1実施形態の光ファイバ端末の構成図である。  FIG. 1 is a schematic sectional view of an optical fiber terminal according to an embodiment of the present invention, in which (a) is a configuration diagram of the optical fiber terminal according to the first embodiment, and (b) is an optical fiber terminal according to the second embodiment. FIG. 3C is a configuration diagram illustrating a state in the middle of manufacturing, and FIG. 4C is a configuration diagram of the optical fiber terminal of the first embodiment of the second embodiment.
第 2図は、 コアレスファイバ長と出射ビーム径の関係を示す特性図で ある。  FIG. 2 is a characteristic diagram showing a relationship between a coreless fiber length and an output beam diameter.
第 3図は、コアレスファイバ長と反射損失の関係を示す特性図である。 第 4図は、 光ファイバ端末の作製手順を示す工程図である。  FIG. 3 is a characteristic diagram showing a relationship between a coreless fiber length and a reflection loss. FIG. 4 is a process chart showing a procedure for manufacturing an optical fiber terminal.
第 5図は、 光学顕微鏡により光ファイバとコアレスフアイバの融着点 を観察した際の観察像を示し、 ( a ) はピン トが合った状態での観察像、 ( b ) はピントを敢えて外した状態 (デフォーカスされた状態) での観 察像をそれぞれ示す図である。  Fig. 5 shows the observation image when the fusion point of the optical fiber and the coreless fiber was observed with an optical microscope. (A) is an observation image in focus, and (b) is a deliberate out-of-focus image. It is a figure which shows the observation image in the state (defocused state) which carried out, respectively.
第 6図は、 本発明の光ファイバ端末の作製方法の説明図である。  FIG. 6 is an explanatory diagram of a method for manufacturing an optical fiber terminal according to the present invention.
第 7図は、 本発明の光ファイバ端末の反射損失を測定する場合の説明 図である。  FIG. 7 is an explanatory diagram in the case of measuring the reflection loss of the optical fiber terminal of the present invention.
第 8図は、 本発明の光ファイバ端末の結合損失を測定する場合の説明 図である。  FIG. 8 is an explanatory diagram in the case of measuring the coupling loss of the optical fiber terminal of the present invention.
第 9図は、本発明の光ファイバ端末を適用した光合分波器の構成図で、 ( a ) は平面図、 ( b ) は側面図である。  FIG. 9 is a configuration diagram of an optical multiplexer / demultiplexer to which the optical fiber terminal according to the present invention is applied, (a) is a plan view, and (b) is a side view.
第 1 0図は、 光ファイバの端面にコアレスファイバを接合した光ファ ィバ端末における問題点の説明図である。  FIG. 10 is an explanatory diagram of a problem in an optical fiber terminal in which a coreless fiber is joined to an end face of the optical fiber.
第 1 1図は、 従来の光結合における問題点の説明図である。 第 1 2図は、 コアレスファイバ長と反射損失の関係を示す特性図であ る。 FIG. 11 is an explanatory diagram of a problem in the conventional optical coupling. FIG. 12 is a characteristic diagram showing the relationship between the coreless fiber length and the return loss.
第 1 3図は、 コア レスファイバ長と結合損失の関係を示す特性図であ る。  FIG. 13 is a characteristic diagram showing the relationship between the coreless fiber length and the coupling loss.
第 1 4図は、 本発明の異なる実施形態の光ファイバ端末の概略断面図 である。  FIG. 14 is a schematic sectional view of an optical fiber terminal according to a different embodiment of the present invention.
第 1 5図は、 第 1 4図に示される光ファイバ端末の製造方法の説明図 である。  FIG. 15 is an explanatory diagram of a method of manufacturing the optical fiber terminal shown in FIG.
第 1 6図は、 本発明に係る光端末とコリメートレンズとによるコリメ ータの構成の説明図である。  FIG. 16 is an explanatory diagram of a configuration of a collimator including an optical terminal and a collimating lens according to the present invention.
第 1 7図は、 従来の技術に係る GIフアイバを利用するコリメータの構 成の説明図である。  FIG. 17 is an explanatory diagram of a configuration of a collimator using a GI fiber according to a conventional technique.
1 0 1 光ファイ ノく  1 0 1 Optical fiber
1 0 1 a コア  1 0 1a core
1 0 1 b クラッ ド  1 0 1 b Cloud
1 0 2 コ ア レスファイ ノ  1 0 2 Core ResPhino
1 0 2 a 一端面  1 0 2 a One end face
1 0 2 b 他端面  1 0 2 b Other end
1 0 3 コ ア レスファイ ノく  1 0 3 Core ResFin
1 0 3 a 一端面  1 0 3 a One end face
1 0 3 b 他端面  1 0 3 b Other end
4 0 1 フアイバ被覆  4 0 1 Fiber coating
4 0 2 光ファイバ  4 0 2 Optical fiber
4 0 3 コ ア レスファイ ノく  4 0 3
4 0 4 対物レンズ  4 0 4 Objective lens
4 0 5 ファイバカ ツタ刃 4 0 6 ガラスキヤビラ リ 4 0 5 Fiber cutter blade 4 0 6 Glass drill
4 0 7 光フアイバ端末  4 0 7 Optical fiber terminal
5 0 2 歪み箇所  5 0 2 Distorted point
5 0 4 ファイバカツタ刃  5 0 4 Fiber cutter blade
6 0 1 光フアイバ端末  6 0 1 Optical fiber terminal
6 0 2 ファイバチャック  6 0 2 Fiber chuck
6 0 3 対物レンズ  6 0 3 Objective lens
6 0 4 フアイパク リーバの刃 6 0 4 Huai Park Lever Blade
6 0 5 フアイパ固定用 V溝 6 0 5 V-groove for fixing the fiber
6 0 6 マイク 口メータ付き一軸ステ 6 0 6 Microphone
7 0 1 反射損失測定器 7 0 1 Return loss measuring instrument
7 0 2 パッチコード  7 0 2 Patch cord
7 0 3 光フアイバ端末  7 0 3 Optical fiber terminal
7 0 4 コネクタ  7 0 4 Connector
8 0 1 LD光源  8 0 1 LD light source
8 0 2 パツチコード  8 0 2 Patch code
8 0 3 光ファイバ端末  8 0 3 Optical fiber terminal
8 0 4 光学ステージ  8 0 4 Optical stage
8 0 5 コ リ メー トレンズ  8 0 5 Collimate lens
8 0 6 検出器  8 0 6 Detector
8 0 7 コネクタ  8 0 7 Connector
9 0 1 ガラス基板  9 0 1 Glass substrate
9 0 2 コ リ メータ  9 0 2 collimator
9 0 3 V溝  9 0 3 V groove
9 0 4 波長選択フィルタ  9 0 4 Wavelength selection filter
9 0 5 捕正用ガラス基板 9 0 6 反射ミラー 9 0 5 Glass substrate for collection 9 0 6 Reflecting mirror
1 0 0 1 光ファイバ ( SMF)  1001 Optical fiber (SMF)
1 0 0 1 a コア  1 0 0 1a core
1 0 0 2 コア レスファイノ  1 0 0 2 Coreless Phino
1 0 0 3 ビーム  1 0 0 3 Beam
1 1 0 1 屈折率分布レンズ(GRIN lens)  1 1 0 1 GRIN lens
1 1 0 2 屈折率分布レンズ(GRIN lens)  1 1 0 2 GRIN lens
1 1 0 3 光フアイバ端末  1 1 0 3 Optical fiber terminal
1 1 0 4 屈折率分布レンズ(GRIN lens)  1 1 0 4 GRIN lens
1 2 0 0 光フアイバ端末  1 2 0 0 Optical fiber terminal
1 2 0 1 光ファイバ ( SMF)  1 2 0 1 Optical fiber (SMF)
1 2 0 1 a コア  1 2 0 1a core
1 2 0 1 b クラッ ド  1 2 0 1 b Cloud
1 2 0 2 コア レスフ ァイバ  1 2 0 2 Coreless fiber
1 2 0 3 光ファイバ端末  1 2 0 3 Optical fiber terminal
1 2 0 4 GIファイバ  1 2 4 4 GI fiber
1 2 0 4 C 射出端  1 2 0 4 C Injection end
1 2 0 5 コ リ メー ト レンズ  1 2 0 5 Collimate lens
1 2 0 6 キヤ ビラ リ  1 2 0 6 Key Villa
1 2 0 7 ビームウェス ト径  1 2 0 7 Beam West Diameter
1 2 0 8 端面反射光  1 2 0 8 Edge reflected light
1 2 0 9 端面反射光  1 2 0 9 Edge reflected light
1 2 1 0 コリメート光  1 2 1 0 Collimated light
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態図面に基づいて説明する。 第 1図 ( a ) は第 1実施形態の光ファイバ端末の構成図、 ( b ) は第 2実施形態の光ファイバ端末の作製途中の状態を示す構成図、 ( c ) は 同第 2実施形態の光ファィバ端末の構成図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 1 (a) is a configuration diagram of an optical fiber terminal according to the first embodiment, (b) is a configuration diagram showing a state in the process of manufacturing the optical fiber terminal of the second embodiment, and (c) is a second embodiment. 1 is a configuration diagram of an optical fiber terminal.
第 1図 ( a ) の光ファイバ端末は、 中心部のコア 1 0 1 a及びその外 周部のクラッ ド 1 0 1 bを有する 1 2 5 μ mの標準外径の任意長さのシ ンダルモード光ファイ ノく ( SMF) 1 0 1の端面に、 前記コア 1 0 1 a と略同一の均一な屈折率を有する材料よりなるコアレスファイバ (C L F ) 1 0 2の一端面 1 0 2 aを融着接合し、 そのコアレスファイ ノく 1 0 2の長さを l mm未満に設定した上で、 コア レスファイ ノ 1 0 2の他端 面 1 0 2 bを、 光ファイ ノ 1 0 1の光軸と垂直な面に対して 0 ° に研 肖 ij ·研磨したものである。  The optical fiber terminal shown in Fig. 1 (a) is a single-ended cylindrical fiber with a standard outer diameter of 125 μm having a core 101a at the center and a cladding 101b at the outer periphery. On one end face of the mode optical fiber (SMF) 101, one end face 102a of a coreless fiber (CLF) 102 made of a material having substantially the same uniform refractive index as the core 101a is attached. After welding and setting the length of the coreless fin 102 to less than l mm, the other end face 102b of the coreless fin 102 is illuminated with the light of the optical fin 101. It is polished at 0 ° to the plane perpendicular to the axis.
こ こで、 コア レスファイ ノく 1 0 2の長さを 1 mm未満に設定すること は、 光結合を行う ことを目的と した光ファィバ端末と しての必須条件で ある。このようにコアレスファイバ 1 0 2の長さを規定することにより、 光ファイ ノく 1 0 1のコア 1 0 1 aを伝送してきた光がコアレスファイバ 1 0 2内で拡がり コアレスファイバ 1 0 2の他端面 1 0 2 bから外部へ 出射するときのビーム径が、コアレスファイバ 1 0 2の外径以内となる。  Here, setting the length of the coreless fin 102 to less than 1 mm is an indispensable condition for an optical fiber terminal for performing optical coupling. By defining the length of the coreless fiber 102 in this manner, the light transmitted through the core 101a of the optical fiber 101 spreads within the coreless fiber 102 and the coreless fiber 102 The beam diameter when emitted from the other end face 102 b to the outside is within the outer diameter of the coreless fiber 102.
この光ファイバ端末では、 コア 1 0 1 aから出射した光がコアレスフ アイバ 1 0 2中を拡散しながら伝搬するので、 コアレスファイバ 1 0 2 の他端面 1 0 2 bからの出射ビーム径が拡大する。 コアレスファイバ 1 0 2の長さに応じて反射損失を大きく とることができるので、 出射面を 斜めにする必要がなく、 その結果、 出射ビームは直進する。 前記のよう にコアレスファイ ノく 1 0 2の長さ Lを適切な値に設定することにより、 出射ビーム径がコア レスファイバ 1 0 2の外径以内となるので、 通常の 光ファイバと全く 同等の光結合を行う ことができる。 従って、 従来の斜 め端面を持つ光ファイバ端末に比べて、 出射ビームの直進性に優れ、 か つ実用上要求されるレベルの反射損失及ぴ結合損失を得ることができる。 また、 この光ファイバ端末を使用することにより、 コリ メータ同士の光 結合を、 直線上で行うことが可能となるので、 位置調整が容易となる。 In this optical fiber terminal, the light emitted from the core 101a propagates while diffusing through the coreless fiber 102, so that the diameter of the beam emitted from the other end face 102b of the coreless fiber 102 increases. . Since the reflection loss can be increased according to the length of the coreless fiber 102, there is no need to make the exit surface oblique, and as a result, the exit beam goes straight. By setting the length L of the coreless fiber 102 to an appropriate value as described above, the output beam diameter is within the outer diameter of the coreless fiber 102, so it is completely equivalent to a normal optical fiber Optical coupling can be performed. Therefore, the straightness of the output beam is superior to that of the conventional optical fiber terminal having a beveled end face. In addition, it is possible to obtain the reflection loss and the coupling loss of the practically required levels. Also, by using this optical fiber terminal, the optical coupling between the collimators can be performed in a straight line, so that the position adjustment becomes easy.
このよ うな構造の光ファィバ端末を得るには、 まず、 光ファイバ 1 0 1 とコア レスファイバ 1 0 2を用意し、 両者の皮膜を融着が十分可能な 長さに除去しておく。 続いて、 コアレスファイバ 1 0 2の皮膜除去位置 から 2 O mmの位置で、 ファイバク リ ーバを用いてコアレスファイバ 1 0 2を切断し、 融着端面を作る。 光ファイバ 1 0 1側も同様に融着端面 を作る。 そして、 両者を標準的な単芯ファイバ接続用融着器に設置して、 適切な条件下で融着作業を行う。 通常、 融着接続された両者の端面は一 体化するので、 外観や顕微鏡などの観察では、 融着点を認めるこ とはで きない。  In order to obtain an optical fiber terminal having such a structure, first, an optical fiber 101 and a coreless fiber 102 are prepared, and the coatings of both are removed to a length that allows sufficient fusion. Subsequently, the coreless fiber 102 is cut at a position of 2 mm from the coating removal position of the coreless fiber 102 using a fiber cleaver to form a fused end face. The fusion end face is similarly made on the optical fiber 101 side. Then, both are installed in a standard single-core fiber splicer, and fusion is performed under appropriate conditions. Normally, the end faces of the fusion-spliced parts are integrated, so that the fusion point cannot be recognized from the appearance or observation with a microscope.
例えば、 Direct Core Monitoring法 (D CM法) などのよ うに、 ファ ィバコァを直接見ることができれば、 融着点を正確に決めることができ る。 しかし、 コアレスファイバの長さをおおよそミ リ単位程度で決めれ ば良い場合には、 コアレスフアイバの皮膜除去位置をガイ ドと して用い て、 コアレスファイ ノ 1 0 2の長さを決めればょレ、。  For example, if the fiber core can be viewed directly, as in the case of the Direct Core Monitoring method (DCM method), the fusion point can be accurately determined. However, if it is sufficient to determine the length of the coreless fiber on the order of millimeters, the coreless fiber 102 should be determined using the coreless fiber coating removal position as a guide. ,.
次にコアレスファイ ノ 1 0 2の長さを l mm未満にするこ との意義に ついて説明する。 こ こでは、 比較検討するために、 コアレスファイバ 1 0 2の皮膜除去位置からそれぞれ 1 9 mm、 1 8 mm、 1 7 m m、 1 6 mmの位置でコアレスファイバ 1 0 2を切断することにより、 コアレス ファイ ノく 1 0 2の長さ力 S l mm、 2 mm、 3 mm、 4 mmとなったコア レスファイバ付き光ファイバ端末のサンプルを作製した。 端面角度は全 サンプルともほぼ 0° である。 これら 4本のサンプルの光学特性を評価 したところ、 以下の結果が得られた。  Next, the significance of reducing the length of the coreless fin 102 to less than l mm will be described. Here, for comparison, by cutting the coreless fiber 102 at positions 19 mm, 18 mm, 17 mm, and 16 mm from the coating removal position of the coreless fiber 102, respectively, Samples of coreless fiber-coupled optical fiber terminals with core lengths of 102 mm, 2 mm, 3 mm, and 4 mm were prepared. The end face angle is almost 0 ° for all samples. When the optical characteristics of these four samples were evaluated, the following results were obtained.
まず、 反射損失については第 1 2図に示すように、 ARコーティング 無しでの反射損失が 3 7 d B以上になることが確認された。 但し、 長さ O mm (コアレスファイバ無しの場合) の反射損失値は 1 4. 7 d Bと してある。 従って、 ARコーティングを施した場合、 全てのサンプルで、 5 0 d B以上の反射損失が得られることが分かる。 First, as for the reflection loss, as shown in Fig. 12, AR coating It was confirmed that the reflection loss in the case of no more than 37 dB. However, the return loss value for the length O mm (without coreless fiber) is set to 14.7 dB. Therefore, it can be seen that when the AR coating is applied, all the samples have a reflection loss of 50 dB or more.
次に、 第 8図に示すように、 コリメートレンズを用いて一対のコアレ スファイバ付き光ファイバ端末の結合損失量を測定した。 第 8図におい て、 8 0 1は L D光源、 8 0 2はパッチコード、 8 0 3は光ファイバ端 末、 8 0 4は光学ステージ、 8 0 5はコ リ メー ト レンズ、 8 0 6は検出 器、 8 0 7はコネクタである。 L D光源 8 0 1から発せられた光は、 一 方の光ファイバ端末 8 0 3からコリメー トレンズ 8 0 5、 8 0 5を介し て他方の光ファイバ端末 8 0 3に入射し、検出器 8 0 6にて受光される。  Next, as shown in FIG. 8, the amount of coupling loss of a pair of optical fibers with a coreless fiber was measured using a collimating lens. In FIG. 8, reference numeral 800 denotes an LD light source, reference numeral 800 denotes a patch cord, reference numeral 803 denotes an optical fiber terminal, reference numeral 804 denotes an optical stage, reference numeral 805 denotes a collimating lens, and reference numeral 806 denotes a collimating lens. The detector and 807 are connectors. Light emitted from the LD light source 801 enters the other optical fiber terminal 803 from one optical fiber terminal 803 via the collimating lenses 805, 805, and is detected by the detector 800. Received at 6.
このよ うな構成にて結合損失量を測定した結果、 第 1 3図に示すよう に、 全てのサンプルで、 結合損失値が 1 d B以上となつ 。 光ファイバ 端面に ARコーティングを施していないことを考えても、 この結合損失 は光ファイバ端末部品と しては非常に大きな値であり、 このままでは現 在要求されているコリメータを作製することができないことが分かった。  As a result of measuring the amount of coupling loss in such a configuration, as shown in FIG. 13, the coupling loss value was 1 dB or more in all samples. Considering that the AR coating is not applied to the end face of the optical fiber, this coupling loss is a very large value for an optical fiber terminal part, and the collimator currently required cannot be manufactured as it is. I found out.
この原因を以下のように考察した。 即ち、 第 1 0図に示すように、 光 ファイ ノく 1 0 0 1のコア 1 0 0 1 aから光が出射すると、 ビーム 1 0 0 3は回折により拡がるため、伝搬距離に依存してビーム径 rは拡大する。 コアレスファイバ付き光ファイバ端末では、 出射端面のビーム径 rはコ ア レスファイ ノく 1 0 0 2の長さに依存することになる。 そのため、 コア レスファイ ノく 1 0 0 2の長さがある長さを超えてしまう と、 ビーム径 r が光ファイバ径 Rを超えてしまうようになり、 そのために、 光の漏洩や 光ファイバの縁による回折等が発生し、 出射光の均一性が失われて結合 損失が増大するのではないかと考えた。  The cause was considered as follows. That is, as shown in FIG. 10, when light is emitted from the core 1001a of the optical fin 1001, the beam 1003 is spread by diffraction, so that the beam depends on the propagation distance. The diameter r expands. In an optical fiber terminal with a coreless fiber, the beam diameter r at the emission end face depends on the length of the coreless fiber. Therefore, if the length of the coreless fiber 100 exceeds a certain length, the beam diameter r exceeds the optical fiber diameter R. It was thought that diffraction and the like would occur, and that the uniformity of the emitted light would be lost and the coupling loss would increase.
そこで、 コアレスファイバ長と出射ビーム径の関係を調べた。 結果を 第 2図に示す。 この第 2図に示す関係から、 コアレスファイバの長さを 決めれば、 同時に、 理想的には損失のない光結合を可能にする最大の光 ファイバ外径が決まる。 いま、 ビーム径を、 光の強度が分布中心に対し て 1 / e 2 となる長さと して定義する (以下、 ビーム径はこの定義に従 う ものとする) と、 コアレスファイバ長 l mmの時、 既に出射ビーム径 は標準フアイバ外径である 1 2 5 μ ιηを超えてしまっている。 これが、 前述のよ うに作製したコアレスファイバ付き光フアイバ端末で、 結合損 失が大きくなつた原因であると考えられる。 Therefore, the relationship between the coreless fiber length and the output beam diameter was examined. The result Figure 2 shows. From the relationship shown in Fig. 2, when the length of the coreless fiber is determined, the maximum outer diameter of the optical fiber that ideally enables lossless optical coupling is also determined. Now, the beam diameter is defined as the length at which the light intensity is 1 / e 2 with respect to the distribution center (hereinafter, the beam diameter is assumed to be based on this definition). At this time, the output beam diameter has already exceeded the standard fiber outer diameter of 125 μιη. This is considered to be the cause of the large coupling loss in the optical fiber terminal with coreless fiber fabricated as described above.
従って、 第 1図 ( a ) の構造を持つ光ファイバ端末において、 光ファ ィバ外径をある値に固定する仮定の下では、 反射損失と結合損失を両立 させるには、 コアレスファイバの長さを制限する必要があることが分か る。 以上のことから、 第 1図 ( a ) の構造をもち、 且つ、 反射損失と結 合損失を両立させる性能をもつ光ファイバ端末を作製するためには、 標 準外径 ( 1 2 5 μ πι) の光ファイバ 1 0 1 を用いるとすると、 コアレス ファイバ 1 0 2の長さが 1 mm未満でなければならないことを発見する に至った。  Therefore, under the assumption that the outer diameter of the optical fiber is fixed to a certain value in the optical fiber terminal having the structure of Fig. You need to limit the From the above, in order to fabricate an optical fiber terminal having the structure shown in Fig. 1 (a) and having both the reflection loss and the coupling loss, the standard outer diameter (125 μπι ), We have found that the length of the coreless fiber 102 must be less than 1 mm.
ところが、 実際にこの光ファイバ端末を作製する場合、 このような短 い長さのコアレスファイバ 1 0 2を付加した構造を作る必要があるため 作製作業がかなり難しくなることが判明した。  However, it has been found that when actually manufacturing this optical fiber terminal, it is necessary to make a structure to which such a short coreless fiber 102 is added, so that the manufacturing operation becomes considerably difficult.
そこで、 本発明者らは鋭意研究の結果、 上記のような光ファイバ端末 を作製する上で発生した全ての課題に対する解決方法を見い出すに至つ た。 以下にその内容について説明する。  The inventors of the present invention have conducted intensive studies and, as a result, have come to find a solution to all the problems that have arisen in producing the above-described optical fiber terminal. The details will be described below.
代表的な光ファイバ端末の作製方法のフローを第 4図に示す。 左の図 ( A) はフローチャート、 右の図 (B ) はフローチャートの中の各工程 ( a ) 〜 ( d ) の内容を模式的に示す図である。 このフローでは、 まず、 ( a ) 光ファイバ ( S M F ) 4 0 2 とコアレスファイバ (C L F) 4 0 3 との融着接続工程を実施する。 光ファイバ同士の接続は必ずしも融着 に限らないが、 市販の融着器で容易に融着作業が可能であり、 また接続 性能及び信頼性に最も優れた手段であることから、 ここでは融着接続を 用いている。 接続に当たっては、後で行う測定作業を簡便に行うために、 —方の端にコネクタがついた外径 1 2 5 μ πιの標準的な光ファイバ 4 0 2を任意長さだけ用意し、 他端を融着可能な範囲で皮膜除去し (フアイ バ被覆 4 0 1 ) 、 ファイバク リーバを用いて切断して、 接続端面を作製 する。 次に、 外径 1 2 2 μ πιのコア レスファイバ 4 0 3を任意長さだけ 用意し、 同様に皮膜除去と端面切除を行う。 Fig. 4 shows the flow of a typical optical fiber terminal fabrication method. The left diagram (A) is a flowchart, and the right diagram (B) is a diagram schematically showing the contents of each step (a) to (d) in the flowchart. In this flow, first, (a) an optical fiber (SMF) 402 and a coreless fiber (CLF) 402 Perform the fusion splicing process with 3. Splicing of optical fibers is not necessarily limited to fusion, but fusion is easily performed with a commercially available fusion device and is the most excellent means of connection performance and reliability. Connection is used. When connecting, in order to simplify the measurement work to be performed later, prepare a standard optical fiber 402 with an outer diameter of 125 μππι with a connector at one end and an arbitrary length. The film is removed to the extent that the end can be fused (fiber coating 401), and cut using a fiber cleaver to produce a connection end surface. Next, a coreless fiber 403 having an outer diameter of 122 μπι is prepared by an arbitrary length, and the film is removed and the end face is similarly removed.
コアレスファイバ 4 0 3 の外径を標準径から細くする方法と しては、 化学エッチングが利用できる。 あるいは、 コアレスファイバ 4 0 3の作 製時に、 この外径で作製してもよい。 これら光ファイバ 4 0 2 とコアレ スファイバ 4 0 3を標準的な単芯用光ファイバ融着器に設置し、 外径基 準調芯により、 通常の石英ガラスシングルモードフアイパ同士の外径基 準融着条件で融着作業を行う。  As a method for reducing the outer diameter of the coreless fiber 400 from the standard diameter, chemical etching can be used. Alternatively, when the coreless fiber 403 is manufactured, the outer diameter may be manufactured. The optical fiber 402 and the coreless fiber 403 are installed in a standard single-core optical fiber fusion splicer, and the outer diameter standard alignment is used to determine the outer diameter standard between ordinary quartz glass single mode fibers. The fusing operation is performed under the fusing conditions.
第 1図 ( b ) はこの両者 (光ファイバとコアレスファイバ) を接続し た状態を示したものである。 図では両者の外径差を誇張して描いている が、 実は 3 μ m程度の外径差では、 その差を見ることは難しい。 接合点 は、 通常の同径フアイパ同士の融着と同等の強度を保っている。  Fig. 1 (b) shows a state in which the two (optical fiber and coreless fiber) are connected. In the figure, the difference between the outer diameters is exaggerated, but it is difficult to see the difference with an outer diameter difference of about 3 μm. The joints maintain the same strength as normal fusion of same diameter fibres.
このよ う に融着したら、 次に所定位置でコアレスファイバ 4 0 3を切 断する工程を実施する。 この工程は、 ( a ) 融着点を正確に判定するェ 程と、 ( b ) その融着点から正確な長さの位置でコアレスファイバ 4 0 3を切断する工程とに分けられる。 ほぼ同じ屈折率の材料同士を融着接 続すると、 両者に区別がつかなくなるので、 その融着点の認識を光学的 に行う ことは非常に難しい。おおよその長さでの切断が許されるならば、 先の例に記載したように皮膜除去点などを基準に測長することが可能だ 力 1 m m未満の短い長さで 1 0 μ m程度の正確な測長が必要な場合に はこの方法は不十分である。 After such fusion, a step of cutting the coreless fiber 403 at a predetermined position is performed. This step is divided into (a) a step of accurately determining a fusion point, and (b) a step of cutting the coreless fiber 403 at a position of an accurate length from the fusion point. When materials having substantially the same refractive index are fused and connected, it is very difficult to optically recognize the fusion point because the two cannot be distinguished. If cutting at an approximate length is permitted, it is possible to measure the length based on the film removal point etc. as described in the previous example This method is inadequate when an accurate length measurement of about 10 μm is required for a short length of force less than 1 mm.
D C M法の光学系を組んでファイバコァを直接観測できれば、 コアの 有無によ り融着点を判定することは原理的に可能である。 しかしこの方 法は、 精度の高いステージや C C Dカメ ラおよびレーザ光源などを必要 と し、 非常に高価なシステムとなってしま う。 また、 このよ うな光学系 とファイバカツタとを組み合わせることも困難を伴い、 更に、 拡大倍率 が大きいと、 コアレスフアイバ長が長い場合に切断点が視野外となって しま う不具合も生じる可能性がある。  If a fiber core can be directly observed by using a DCM optical system, it is possible in principle to determine the fusion point based on the presence or absence of a core. However, this method requires a high-precision stage, a CCD camera and a laser light source, and is a very expensive system. In addition, it is difficult to combine such an optical system with a fiber cutter.Furthermore, if the magnification is large, there is a possibility that the cutting point may be out of the field of view when the coreless fiber length is long. is there.
これらの問題点を避ける上で、 前記のよ うに光ファイバとコアレスフ アイバの外径差を設けたことが役立つ。 つま り、 径差を設けたことで、 次述の方法によれば、 融着点の判定が簡単にできるよ うになり、 任意の 長さで 1 0 μ mの精度でコアレスフアイバ長を決めて切断することが可 能となるのである。 以下にその内容を述べる。  In order to avoid these problems, it is useful to provide the outer diameter difference between the optical fiber and the coreless fiber as described above. In other words, the provision of the diameter difference makes it easy to determine the fusion point according to the method described below, and determines the coreless fiber length with an accuracy of 10 μm at any length. It is possible to cut it. The details are described below.
融着点を判定する工程、 及び、 指定長さで切断する工程は、 それぞれ 以下のよ うに行う。 第 6図に示すよ うに、 ファイバク リーバの刃 6 0 4 を有する市販の超音波式フアイバク リーバ、 コア レスファイバ付き S M F (光フアイバ端末) 6 0 1 をチャックすることができるマイクロメ一 タ付き一軸ステージ 6 0 6を用意し、 切断点観察のため、 ファイバク リ ーバを実体顕微鏡の対物レンズ 6 0 3下に設置する。 観察倍率は 1 0倍 から 2 0倍程度で十分である。  The step of judging the fusion point and the step of cutting at the designated length are performed as follows. As shown in Fig. 6, a commercially available ultrasonic fiber cleaver having a fiber cleaver blade 604, a uniaxial stage with a micrometer capable of chucking an SMF (optical fiber terminal) 601 with a coreless fiber Prepare 606, and set the fiber cleaver under the objective lens 603 of the stereomicroscope to observe the cutting point. An observation magnification of about 10 to 20 is sufficient.
前出の光ファイバとコアレスファイバを融着した光ファイバ端末 (コ ア レスファイバ付き S M F ) 6 0 1 を、 ファイバク リ ーバの刃 6 0 4 の 近辺に融着点が来るよ うにファイバ固定用 V溝 6 0 5上に半固定し、 光 ファイバ端末 6 0 1 の一端をマイクロメータ付き一軸ステージ 6 0 6に ファイバチャック 6 0 2を用いてチヤッキングする。 マイクロメータで ステージ 6 0 6を送ると、チャックされている光フアイバ端末 6 0 1は、 目盛りで示された移動量だけ、 ファイバク リ ーバのファイバ固定用 V溝 6 0 5の上を移動することになる。 Fix the optical fiber end (SMF with coreless fiber) 601 fused with the above-mentioned optical fiber and coreless fiber so that the fusion point comes near the fiber cleaner blade 604. The fiber end 601 is semi-fixed on the V groove 605, and one end of the optical fiber end 601 is chucked to the uniaxial stage 606 with a micrometer using the fiber chuck 602. With micrometer When the stage 606 is sent, the optical fiber terminal 601 being chucked moves by the amount indicated by the scale on the fiber fixing V-groove 605 of the fiber cleaver. .
ところで、 上述したように光ファイ ノ ( SMF) とコアレスファイバ とはごくわずか径に差を付けてあるが、 本実施形態で使用している程度 の径の差分では、 普通に像焦点を合わせて拡大像の観察を行っても、 第 5図 ( a ) に示すように、 融着点 (矢印位置) を認識することができな レヽ。 図において、 左側が光ファイバ ( S M F ) 4 0 2、 右側がコアレス ファイ ノ (C L F) 4 0 3であり、 接合点が確認できない。 しかし、 像 焦点が合っている状態から、わずかに焦点をずらしていく と、第 5図( b ) に示すよ うに、 デフォーカスされた顕微鏡像の中に、 歪んで見える箇所 5 0 2が観測される。 この歪み箇所 5 0 2は、 コアレスファイ ノく 4 0 3 と光ファイバ ( SMF) 4 0 2 との融着点と一致する。 両者の径が一致 している場合は、 この歪みは観測されず、 2 m程度 (径に対して 1 . 6 %程度) 以上径差を付けた場合にのみ、 像焦点位置からわずかにずれ た像位置で明瞭に観測されることが確認された。 ずらす方向は近接側、 遠方側どちらでもよい。 なお、 第 5図の中の 5 0 4は参考のためにカツ タの切断刃を示している。  By the way, as described above, the optical fin (SMF) and the coreless fiber have a very small difference in diameter, but with the difference in diameter used in the present embodiment, the image focus is normally adjusted. Even if the magnified image is observed, the fusion point (arrow position) cannot be recognized, as shown in Fig. 5 (a). In the figure, the left side is the optical fiber (SMF) 402, and the right side is the coreless fin (CLF) 403, and the joining point cannot be confirmed. However, when the image is in focus and slightly defocused, as shown in Fig. 5 (b), a distorted portion 502 appears in the defocused microscope image. Is done. The strained portion 502 coincides with the fusion point between the coreless fins 403 and the optical fiber (SMF) 402. This distortion was not observed when the diameters of the two coincided with each other, and shifted slightly from the image focal position only when a diameter difference of about 2 m (about 1.6% of the diameter) was given. It was confirmed that it was clearly observed at the image position. The direction of shifting may be either the near side or the far side. In addition, 504 in FIG. 5 shows a cutter cutting blade for reference.
第 6図に戻る。 この方法で見つけた融着点を、 マイクロメータ付き一 軸ステージ 6 0 6を移動させ、 ファイバク リーバの切断刃 6 0 4の先端 地点に置く。 これを原点と して、 再び必要なコア レスファイバの長さ分 だけマイクロメータ付き一軸ステージ 6 0 6を送り、 送り終わった点で 固定しコアレスファイバを切断する。 このようにして、 光ファイ ノく ( S M F ) の先端に所望の長さのコアレスファイバが融着された光ファイバ 端末 6 0 1ができあがる。 この方法によれば、 コアレスファイバ部分は 1 0 /z mの精度で長さを制御することができる。 なお、 本実施例では、 以降の工程で、 先端を研削 Z研磨するので、 あ らかじめ研削量を見込んで、 コアレスファイバの長さが 1 0 0 0 μ mの 光ファイバ端末を作製した。 Return to FIG. The fusion point found by this method is moved to the uniaxial stage with a micrometer 606, and is placed at the tip of the cutting blade 604 of the fiber cleaver. With this as the origin, the uniaxial stage with a micrometer 606 is sent again by the required length of the coreless fiber, and the coreless fiber is cut at the point where the feed has been completed and cut. In this way, an optical fiber terminal 601 in which a coreless fiber of a desired length is fused to the tip of the optical fiber (SMF) is completed. According to this method, the length of the coreless fiber portion can be controlled with an accuracy of 10 / zm. In this example, since the tip is ground and Z-polished in the subsequent steps, an optical fiber terminal having a coreless fiber length of 100 μm was manufactured in consideration of the grinding amount in advance.
次に、 第 4図に戻って ( d ) のガラスキヤビラリの接着工程を説明す る。 光ファイバと しての機能は、 上記作業終了時点で十分だが、 光学評 価を行う場合、 あるいは光学部品に搭載する場合、 光ファイバ端末をガ ラスキヤビラリ 4 0 6に固定して使用することが多く行われる。  Next, returning to FIG. 4, the step of bonding the glass cavities in (d) will be described. The function as an optical fiber is sufficient at the end of the above work.However, when performing an optical evaluation or mounting on an optical component, the optical fiber terminal is often fixed to a glass gallery 406 and used. Done.
本例では、 この光ファイバ端末 (コアレスファイバ付き S M F ) 4 0 In this example, this optical fiber terminal (SMF with coreless fiber) 40
7を、 外径 φ 1 . 8 mmZ内径 1 2 6 μ πιΖ長さ 6 mmのガラスキヤピ ラリ 4 0 6に挿入し、挿入時に UV接着剤を塗布させた後、硬化させて、 光ファイバ端末 4 0 7 とガラスキヤビラリ 4 0 6を固定した。固定の際、 キヤビラリ 4 0 6 と光ファイバ端末 4 0 7 との両端面が一致するように 固定することが望ましい。 コアレスファイ ノ 4 0 3の径は 1 2 2 μ ιηで あるので、 キヤビラリ 4 0 6 との内径差は 4 μ πι生じるが、 この程度の 径差では、 光ファイバ端末 4 0 7、 キヤビラリ 4 0 6間の偏心や接着剤 層の増大分はほとんど無視できるので、 実用上何ら不具合は生じない。 接着剤は熱硬化型接着剤を用いてもよい。 7 into an outer diameter φ 1.8 mmZ inner diameter 1 2 6 μππΖ 6 mm long glass capillary 40 6, apply a UV adhesive at the time of insertion, cure it, and 7 and glass cavities 406 were fixed. At the time of fixing, it is desirable to fix the cable 406 so that both end faces of the optical fiber terminal 407 coincide with each other. Since the diameter of the coreless fin 400 is 122 μιη, there is a difference of 4 μπι in the inner diameter from the capillary 406, but with such a diameter difference, the optical fiber terminal 407 and the capillary Since the eccentricity between 6 and the increase in the adhesive layer are almost negligible, there is no practical problem. As the adhesive, a thermosetting adhesive may be used.
次に ( e ) の光ファイバ端面の光学研磨工程を以下のように行う。 光 学研磨は、 良好で安定した光学性能を得るために行う。 市販の光フアイ バ用端面研磨機を使用すれば、 光学研磨は容易にできる。 研磨は、 ガラ スキヤビラリ 4 0 6を研磨治具に固定し、 粗削り / 1次研磨/ 2次研磨 Next, the optical polishing step (e) of the end face of the optical fiber is performed as follows. Optical polishing is performed to obtain good and stable optical performance. Optical polishing can be easily performed by using a commercially available optical fiber end-face polishing machine. For polishing, fix the glass / scraper 406 to a polishing jig, and rough / primary / secondary polishing
_ 仕上げ研磨の順に行う。 _ Finish polishing in order.
当然この研磨により、 端面は研削され、 ガラスキヤビラリ 4 0 6、 即 ち光ファイバ端末 4 0 7の先端のコアレスファイバの長さは短くなる。 研磨面にかかる負荷圧力の違いや研磨シートの状態の違い等により、 研 磨時間を固定しても、 実際の研削量は一定しないことが多く、 研磨時間 のみで、 研削量を規定することは難しい。 Naturally, the end face is ground by this polishing, and the length of the coreless fiber at the tip of the glass cavities 406, that is, the ends of the optical fiber terminals 407 is shortened. Even if the polishing time is fixed, the actual amount of grinding is often not constant due to the difference in the load pressure applied to the polishing surface or the difference in the condition of the polishing sheet. It is difficult to specify the amount of grinding only by the above.
また、 接着剤がファイバ周囲に付着していると、 前述のデフォーカス顕 微鏡像による観察でも、 微妙な歪みを認めることができなく なり、 融着 点を正確に認識できなく なる場合がある。 Also, if the adhesive adheres to the periphery of the fiber, fine distortion cannot be recognized even in the above-described observation using a defocus microscope image, and the fusion point may not be accurately recognized.
そこで、 そのよ うな場合には次の方法を採用する。 この方法では、 予 め第 3図に示すよ うに、 コアレスファイバの長さ と反射損失との関係を 実験的に得ておく。 コアレスフ ァイバの長さと反射損失は一対一で対応 している。 そこで、 研磨工程における仕上げ研磨が終了した段階で、 第 7図のよ うに、 コネクタ 7 0 4を反射損失測定器 7 0 1のパッチコ ード 7 0 2に接続し、 測定サンプル (ここでは光フアイバ端末 7 0 3 ) の出 射端面の反射損失をモニタすることで、 コアレスファイバ長を正確に知 ることができる。  Therefore, the following method is adopted in such a case. In this method, as shown in Fig. 3, the relationship between the length of the coreless fiber and the return loss is experimentally obtained. The length of the coreless fiber and the return loss correspond one-to-one. Therefore, at the stage where the final polishing in the polishing process is completed, as shown in Fig. 7, the connector 704 is connected to the patch code 702 of the reflection loss measuring device 701, and the measurement sample (here, optical fiber) By monitoring the reflection loss of the emitting end face of the terminal 703), the length of the coreless fiber can be accurately known.
従って、 コアレスフ ァイバの長さを直接観察しなく ても、 反射損失を モニタすることで、 容易にその長さを正確に知るこ とができる。 研削量 はモニタ数値をガイ ドにして微調整が可能であるから、 長さを Ι μ πιと いう高い精度で制御されたコアレスファイバ付き光フアイバ端末を作製 することができる。 本実施例では、 1回の研磨作業で、 約 6 0 0 m程 度研削されるというデータが別途得られていたので、 1 0 0 0 mのコ ア レスファイバ長を有した光ファイバ端末は、 上記の先端研磨作業によ り、 約 4 0 0 μ mのコアレスファイバ長を有する光ファイバ端末と して 得られる。 このよ うに、 反射損失を測定しながらキヤビラ リ の先端を研 磨し、 反射損失測定値が目標値に達したら研磨を終了する 〔第 4図のフ ローの ( f ) 〕 。  Therefore, without directly observing the length of the coreless fiber, the length can be easily known accurately by monitoring the return loss. Since the amount of grinding can be finely adjusted by using the monitored values as a guide, an optical fiber terminal with a coreless fiber whose length is controlled with high accuracy of Ιμπι can be manufactured. In the present embodiment, data that grinding was performed about 600 m by one polishing operation was separately obtained, so that an optical fiber terminal having a core fiber length of 100 m was used. By the above-mentioned tip polishing operation, an optical fiber terminal having a coreless fiber length of about 400 μm can be obtained. As described above, the tip of the cavity is polished while measuring the return loss, and the polishing is terminated when the measured return loss reaches the target value [(f) of the flow in FIG. 4].
そして、 最後に以上の工程で作製した光ファィバ端末のコア レスファ ィバの端面に反射防止膜を形成することによ り、 端面反射や、 干渉、 あ るいはゴース トなどを抑えた光ファイバ端末を得ることができる 〔第 4 図のフローの ( g ) 〕 。 Finally, by forming an anti-reflection film on the end face of the coreless fiber of the optical fiber terminal manufactured in the above process, the end face reflection, interference, or ghost is suppressed. [4th (G) of the flow of the figure].
以上の作業により、 高い反射損失と低い結合損失を両立し、 且つ光軸 ずれが発生せず、 光部品に搭載可能な性能を有する光ファイバ端末の作 製が完了する。  Through the above operations, the fabrication of an optical fiber terminal that achieves both high reflection loss and low coupling loss, does not cause optical axis misalignment, and can be mounted on optical components is completed.
なお、 当然であるが、 上記の作製方法は一例であって、 手順や方法な どは、 これに限るものではない。  Needless to say, the above manufacturing method is an example, and the procedure and method are not limited to this.
上述した作製方法にて、 下表のような光ファイバ端末サンプルを 3本 作製し、 サンプル名をそれぞれ SampleA〜Cとする。 この表に記したコ ア レスファイバ長は、 ARコ ーティング前の反射損失から求めた長さで ある。 反射損失は、 ARコーティング後に反射損失測定器で測定するこ とで得られた実測値である。 比較のため、 端面 0° 且つ ARコ ーティ ン グ付きで市販されている SMF (シングルモード光ファイバ) を用意し、 これを Sample Dと した。  Three optical fiber end samples as shown in the table below are manufactured by the above manufacturing method, and the sample names are SampleA to C, respectively. The core fiber length shown in this table is the length determined from the return loss before AR coating. Return loss is the measured value obtained by measuring with a return loss measuring device after AR coating. For comparison, a commercially available SMF (single mode optical fiber) with a 0 ° end face and an AR coating was prepared and used as Sample D.
【表 1 】  【table 1 】
Figure imgf000026_0001
Figure imgf000026_0001
SampleAを出射ファイバと して、 その他のサンプルを受光ファイバと し、 第 8図に示したように、 両者の間に非球面コリメートレンズ ( F = 3、 N A= 0. 2 2 ) をおく ことにより、 結合損失を測定した。 光源と して、 ぇ = 1 . 5 5 / mの L D光源、 及び、 同波長域に十分な感度を持 つ光検出器を用いて、 コ リメートレンズ間距離を 1 0 0 m mと し、 光結 合損失量の測定を行った。 その結果を表 2に示す。 Sample A is the output fiber, the other samples are the receiving fibers, and an aspherical collimating lens (F = 3, NA = 0.22) is placed between them as shown in Fig. 8. The coupling loss was measured. As the light source, an LD light source with ぇ = 1.55 / m and sufficient sensitivity in the same wavelength range Using a photodetector, the distance between the collimating lenses was set to 100 mm, and the optical coupling loss was measured. The results are shown in Table 2.
【表 2 】 [Table 2]
Figure imgf000027_0001
上の表に示した通り、 コアレスファイバ付き光ファイバ端末同士の組 合わせにより、 約 0 . 2 d Bの結合損失を得ることが可能であることが 実証できた。 これは、 通常の光ファイバ端末 (Sarap l e D ) と同様ないし はそれ以上の性能である。
Figure imgf000027_0001
As shown in the table above, it was demonstrated that a combination of optical fiber terminals with coreless fibers can achieve a coupling loss of about 0.2 dB. This performance is similar to or better than that of a normal optical fiber terminal (Saraple D).
以上のように、 上記の作製方法によれば、 目標仕様を満たし、 実用可 能なレベルの光ファィバ端末を容易に作製することができることが実証 できた。 また、 コ リメー トビームの直線性は、 結合損失測定の際に、 サ ンプルを入れ替えても、 光学ステージをほとんど動かすことなく、 光結 合を行うことができることからも、 実証できた。  As described above, it has been proved that the above-mentioned manufacturing method can easily manufacture an optical fiber terminal satisfying the target specification and of a practical level. The collimated beam's linearity was also demonstrated because the optical coupling can be performed without changing the optical stage even when the samples are exchanged during coupling loss measurement.
なお、 コアレスファイバの長さは、 請求の範囲第 1項に記載した条件 を満たす範囲で、反射損失の要求仕様に合わせて適当に調整すればよレ、。 また、 コア レスファイバの端面角度は、 光線の直線性を持たせるために は 0 ° であることが理想的であるが、 研磨工程の公差範囲で若干の角度 が付く ことは実用上大きな問題はない。  The length of the coreless fiber may be appropriately adjusted in accordance with the required specification of the return loss within a range that satisfies the conditions described in claim 1. Ideally, the end face angle of the coreless fiber is 0 ° in order to provide linearity of the light beam.However, a slight angle within the tolerance range of the polishing process poses a serious problem in practice. Absent.
コアレスファイバの長さについての計算上の好ましい範囲は、 長い方 では略 9 0 0 μ πιである。 これは、 ビーム径を光の強度が分布中心に対 して l Z e 2 となる長さと して定義した場合に、 出射端におけるビーム 径がほぼ i 2 0 mとなって、 標準ファイバの外径とほぼ等しくなる長 さである。 しかし、 コアレスファイバが長いほど、 ガラス媒質中を透過 する際に損失が大きくなる可能性があり、 また、 光ファイバ端面の欠け が生じた場合、 ビームの散乱要因となるので、 長い方での好ましい範囲 は 9 0 0 /i m以下で、 より好ましく は 5 0 Ο μ πι以下と判断される。 一方、 短い方の使用限界長は 3 0 0 μ mである。 これは、 A Rコーテ ィング後に光ファイバ端末単体で反射損失 5 0 d Bを達成するために、 A Rコ一ティング無しの状態の端面で得られる反射損失値を 2 3 d B以 上とするために必要な長さである。 伹し、 A Rコーティングにより常に 理想的な反射減衰量 2 7 d Bが得られるとは限らない。 実験的には A R コ ーティング無しで 2 5 d B以上となれば、 ほぼ間違いなく 5 0 d B以 上を得ることができるので、 短い方の好ましい範囲は、 3 0 0 μ πι以上 である。 以上のことから、 使用上最も好ましいコアレスファイバの長さ は 3 Ο Ο μ πι以上で 5 0 Ο μ πι未満である。 The preferred calculation range for the length of the coreless fiber is approximately 900 μπι for the longer one. This is because when the beam diameter intensity of light is defined as the length of the l Z e 2 in pairs to the distribution center, the beam at the output end The length is approximately i 20 m, which is almost equal to the outer diameter of the standard fiber. However, the longer the coreless fiber is, the larger the loss may be when passing through the glass medium, and if the end face of the optical fiber is chipped, it becomes a factor of beam scattering, so the longer fiber is preferable. The range is determined to be 900 / im or less, more preferably 50 5μπι or less. On the other hand, the shorter usable limit length is 300 μm. This is because in order to achieve a return loss of 50 dB with the optical fiber terminal alone after AR coating, the return loss obtained at the end face without AR coating should be 23 dB or more. It is the required length. However, AR coating does not always provide an ideal return loss of 27 dB. Experimentally, if it is 25 dB or more without AR coating, it is almost certain that 50 dB or more can be obtained. Therefore, the shorter range is preferably 300 μπι or more. From the above, the most preferable length of the coreless fiber for use is 3Ομππι or more and less than 50Ομππι.
また、 光ファイバに対してコアレスファイバの外径を異ならせる場合 の好ましい範囲は次の通りである。 外径を変える場合、 標準ファイバよ り太くする方法と細くする方法とがある。 通常、 光ファイバ端末は、 巿 販のガラスキヤビラリに挿入し、固定して使用することが一般的である。 従って、 市販規格品の範囲内で使用する場合、 接続するコアレスフアイ バは細く した方が有利である。 径を変える主目的は、 融着後の融着点を 容易に観察するためであり、 前述した融着点における歪みの観察を容易 にするためには、 少なく とも径にして 2 m以上細くする必要がある。 歪み点は径差が大きいほど明瞭となるが、 径差が大きすぎると、 キヤピ ラリに固定する際に、 キヤビラリ内径に対して偏心が生じやすくなるこ と、 キヤビラリ との固定で使用する接着剤の量が必然的に多くなること 等から、 耐候性が劣化する可能性がある。 従って、 接合するコアレスフ アイパの径差として好ましい範囲は、 光ファイバ (SMF) に対して 2 〜 1 0 μ m程度細いことが適当である。 The preferred range when the outer diameter of the coreless fiber is different from that of the optical fiber is as follows. When changing the outer diameter, there are two ways: making the fiber thicker and smaller than the standard fiber. In general, an optical fiber terminal is generally inserted into a commercially available glass cabinet, fixed, and used. Therefore, when used within the range of commercial standard products, it is advantageous to make the coreless fiber to be connected thin. The main purpose of changing the diameter is to easily observe the fusion point after fusion, and to make it easier to observe the distortion at the fusion point described above, reduce the diameter by at least 2 m or more. There is a need. The strain point becomes clearer as the diameter difference is larger, but if the diameter difference is too large, eccentricity is likely to occur with respect to the inner diameter of the capillary when fixing to the capillary, and the adhesive used for fixing to the capillary The weather resistance may be degraded due to the inevitable increase in the amount of carbon. Therefore, the coreless A preferable range for the diameter difference of the eyepiece is appropriately smaller than the optical fiber (SMF) by about 2 to 10 μm.
以上、 本発明に係る第 1実施形態および第 2実施形態の光ファィパ端 末について説明した。 これら第 1実施形態および第 2実施形態において は、 コア レスファイバと光ファイバとの融着点を容易且つ正確に把握す るため、 コ アレスファイバの径と光ファイ ノ ( SMF) の径とを異なら しめた例を掲げた。 そして、 本発明は、 コアレスファイバと光ファイバ との融着点を容易且つ正確に把握するため、 両者の径を異ならしめるか わりに、 光ファイ ノく ( SMF) とコアレスファイバとの中心軸をずらし て接合するようにしてもよい。 このよ うに、 段差を故意に発生させるこ とで、 前記に示した両者の径を変えることと同様の効果を得ることが出 来るので、 光学顕微鏡を用いて、 デフォーカスされた顕微鏡像によ り、 融着点を極めて容易に判定することができる。 そこで、 この光ファイバ (SMF) とコアレスファイバとの中心軸をずらして接合する構成を有 する、 本発明に係る第 3実施形態の光ファイバ端末について、 図面を参 照しながら説明する。 なお、 この場合軸のずれ量は、 Ιμπ!〜 5μΐη程度が 好ましい。 ずれ量が 1μ m以上であれば、 接合点の判別が容易になり、 ず れ量が 5 μ m以下であれば、 ビーム出射位置の相対位置ずれが大きくなら ないので、 減衰量が見込みから外れたり、 接合点の強度に影響する可能 性が無くなるためである。  The optical fiber terminals of the first and second embodiments according to the present invention have been described above. In the first and second embodiments, the diameter of the coreless fiber and the diameter of the optical fiber (SMF) are determined in order to easily and accurately grasp the fusion point between the coreless fiber and the optical fiber. He gave a different example. In addition, according to the present invention, in order to easily and accurately grasp the fusion point between the coreless fiber and the optical fiber, the center axes of the optical fiber (SMF) and the coreless fiber are shifted instead of using different diameters. May be joined together. In this way, the same effect as changing the diameter of the two can be obtained by intentionally generating the step, so that the defocused microscopic image can be obtained by using an optical microscope. Thus, the fusion point can be determined very easily. Therefore, an optical fiber terminal according to a third embodiment of the present invention, which has a configuration in which the optical fiber (SMF) and the coreless fiber are bonded with the central axes shifted, will be described with reference to the drawings. In this case, the axis deviation is Ιμπ! About 5 μΐη is preferable. If the deviation is 1 μm or more, it is easy to determine the junction point.If the deviation is 5 μm or less, the relative displacement of the beam emission position does not increase, so the attenuation is out of expectation. And the possibility of affecting the strength of the joint is eliminated.
第 1 4図は、 本発明に係る第 3実施形態の光ファイバ端末を示し、 第 1 5図は、 その製造工程の概略を示す。  FIG. 14 shows an optical fiber terminal according to a third embodiment of the present invention, and FIG. 15 shows an outline of the manufacturing process.
まず、 第 1 4図に示されるように、 第 3実施形態の光ファィバ端末 1 2 0 0は、中心部のコア 1 2 0 l aおよびその外周部のクラッ ド 1 2 0 1 bをそれぞれ有する光ファイバ (SMF) 1 2 0 1の端面に、 前記コア 1 2 0 1 a と略同一で均一な屈折率を有する材料よりなり、 かつ外径が 光ファイ ノ ( SMF) と略同一であるコ アレスファイ ノく (C L F) 1 2 0 2を配置し、 融着接合したものである。 ここで重要なことは、 光ファ イ ノく ( SMF) 1 2 0 1 とコアレスファイバ 1 2 0 2 との相対的な中心 位置をずらしてあることである。 First, as shown in FIG. 14, an optical fiber terminal 1200 of the third embodiment has an optical fiber having a central core 120 la and an outer peripheral cladding 120 b. The end face of the fiber (SMF) 1201 is made of a material having substantially the same uniform refractive index as the core 1 201a and having an outer diameter of Coreless fin (CLF) 122, which is almost the same as optical fin (SMF), is arranged and fused. What is important here is that the relative center positions of the optical fiber (SMF) 1201 and the coreless fiber 122 are shifted.
次に、 第 1 5図を参照しながら、 第 1 4図に示した光フアイバ端末の 製造方法の一例を説明する。 なお、 用いる光ファイバのファイバ径につ いては特に制限されるものではないが、 ここでは具体的な例と して、 光 ファイバ ( S M F ) 1 2 0 1 ( 1 2 0 1 a , 1 2 0 1 b ) とコアレスフ アイバ 1 2 0 2 とが、 それぞれ 1 2 5 mの標準外径である場合につい て述べる。 '  Next, an example of a method for manufacturing the optical fiber terminal shown in FIG. 14 will be described with reference to FIG. The fiber diameter of the optical fiber used is not particularly limited, but here, as a specific example, the optical fiber (SMF) 122 (1 210 1 a, 120) 1b) and the coreless fiber 1 202 will each have a standard outer diameter of 125 m. '
この光ファイバ端末 1 2 0 0を製造する場合、 まず、 1 2 5 μ πιの標 準外径の光フアイバ ( S MF ) 1 2 0 1を用意する。 ここでは、 後に行 う測定作業を簡便に行うため、 一方の端部にコネクタがついた光フアイ バ ( SMF) 1 2 0 1を任意長さだけ用意する。 光ファイバ ( SMF) 1 2 0 1の他方の端部は融着可能な範囲で皮膜を除去し、 ファイバタ リ ーパを用いて切断して、 接続端面を作っておく。 次に同径の 1 2 5 /z m のコアレスファイバ 1 2 0 2を任意長さだけ用意し、 同様に皮膜除去と 端面切断を行う。  When manufacturing the optical fiber terminal 1200, first, an optical fiber (SMF) 1201 having a standard outer diameter of 125 μπι is prepared. Here, an optical fiber (SMF) 1201 having a connector at one end is prepared for an arbitrary length in order to easily perform a measurement operation to be performed later. The other end of the optical fiber (SMF) 121 is stripped of the coating to the extent that it can be fused, and cut using a fiber talper to make a connection end face. Next, a coreless fiber 122 of the same diameter and having a diameter of 125 / z m is prepared for an arbitrary length, and the coating is removed and the end face is cut in the same manner.
次に、 第 1 5図 ( a ) に示すよ うに、 光ファイバ ( SMF) 1 2 0 1 の端面とコアレスファイバ 1 2 0 2の端面を対向させて、 標準的な単芯 用光ファイバ融着器に設置し、 一度、 外径基準調心を行う。 外径基準調 心が完了したら、 第 1 5図 (b ) に示すように、 1. 5 μ πιコアレスフ アイパの中心位置をずらす。 そして第 1 5図 ( c ) に示すよ うに、 通常 の石英ガラスシングルモー ドファイバ同士の外径基準融着条件 (住友電 気工業株式会社製光ファイバ融着接続機 TYPE- 85SEにおける条件設定で、 ファイバ種類 : SM FIBER STD、 調芯方法 : 外径 外形 : 同一の条件) で融着作業を行い、 接合する。 この融着作業により、 外見上光ファイバNext, as shown in Fig. 15 (a), the end face of the optical fiber (SMF) 1201 and the end face of the coreless fiber 122 are opposed to each other, and the standard single-core optical fiber fusion is performed. Once installed, perform the outer diameter center alignment once. When the outer diameter reference alignment is completed, as shown in Fig. 15 (b), shift the center position of the 1.5 µπ coreless fiber optic aperturer. Then, as shown in Fig. 15 (c), the outer diameter reference fusion conditions of ordinary quartz glass single mode fibers (by setting the optical fiber fusion splicer TYPE-85SE manufactured by Sumitomo Electric Industries, Ltd. Fiber type: SM FIBER STD, alignment method: Outer diameter Outer diameter: Same conditions) Perform the fusion work and join. By this fusion work, optical fiber
( S MF) 1 2 0 1 とコアレスファイ ノく 1 2 0 2は一体化し、 接合点の 強度も、 通常の同径ファイバを外径調心、 もしくはコア調心によって光 ファイバの中心を合わせて行った融着と同等となる。 (SMF) The coreless fiber and the coreless fiber are integrated, and the joint strength is adjusted by adjusting the center of the optical fiber by aligning the outer diameter of the same diameter fiber or by aligning the core. It is equivalent to the fusion performed.
この相対的なズレによって生じた微小な段差は、 前述の径が異なった 光ファイバ同士の融着点で発生した段差と同様な効果を発生させるので、 融着点の判定について、 全く同等の作業を応用することが出来る。 した がって、 融着点を判定する工程、 およびコアレスファイバを指定長さで 切断する工程について、 上述した異なる径を有する光ファィパ同士の融 着の場合とまったく同じ工程を経ることができるので、 同様の効果、 性 能および特徴をもつ光ファイバ端末を、 作製することが出来る。  The small step caused by this relative deviation produces the same effect as the step generated at the fusion point between the optical fibers with different diameters as described above. Can be applied. Therefore, the step of determining the fusion point and the step of cutting the coreless fiber at the specified length can be performed in exactly the same manner as the fusion of optical fibers having different diameters described above. Optical fiber terminations with similar effects, performance and features can be made.
この光フアイバ端末を使用した光部品の実施形態について以下に述べ る。 ここでは、 第 9図のような 1枚の波長選択フィルタを用いて、 4つ の入出力用ポートを持つ光合分波器を作製した。  An embodiment of an optical component using the optical fiber terminal will be described below. Here, an optical multiplexer / demultiplexer having four input / output ports was manufactured using one wavelength selection filter as shown in FIG.
第 9図 ( a ) は上面から見た光合分波モジュールの概略図である。 モ ジュール中の光路は図中に細線で示してある。 このモジュールは、 ガラ ス基板 9 0 1上に、 波長選択フィルタ 9 0 4、補正用ガラス基板 9 0 5、 反射ミラー 9 0 6を配置し、 ガラス基板 9 0 1に設けた V溝 9 0 3にコ リメータ 9 0 2を配置している。  Fig. 9 (a) is a schematic diagram of the optical multiplexing / demultiplexing module viewed from above. The optical paths in the module are shown by thin lines in the figure. In this module, a wavelength selection filter 904, a correction glass substrate 905, and a reflection mirror 906 are arranged on a glass substrate 901 and a V-groove 903 provided in the glass substrate 901 The collimator 902 is located at the bottom.
「 I n」 から入射された波長多重光は、 波長選択フィルタ 9 0 4によ り、 透過光と反射光に分波され、 それぞれ 「D r o p P o r t」 と 「0 u t P o r t」 に出力される。 また、外部挿入光は 「A d d P o r t J から入射し、 波長選択フィルタ 9 0 4を通過して、 「O u t P o r t J へと合波される仕組みである。 ここで用いたコリメータ 9 0 2は、 前述 した光ファイバ端末と非球面レンズとを同一のガラス管内に接着して作 製したものである。 機能と しては、 通常の A D Mと変わらないが、 各々のコ リ メータ 9 0 2はガラス基板 9 0 1上の V溝 9 0 3上に固定されており、 特に 「 I n」 のコ リ メータ 9 0 2 と 「D r o p P o r t」 のコ リ メータ 9 0 2は一 直線上の V溝 9 0 3上にある。 従来方式のコリ メータでは、 光軸ずれが 発生するため、 V溝 9 0 3を光軸のガイ ド溝と して使用することが不可 能であつたが、 本実施の形態の光ファィバ端末を用いたコ リ メータ 9 0 2は、 全く軸ずれが起きないため、 コ リ メータ 9 0 2間に波長選択フィ ルタ 9 0 4などの光学素子が入らない状態では、 ほとんど位置調整無し で、 光結合が可能となる。 The wavelength-division multiplexed light input from “In” is split into transmitted light and reflected light by the wavelength selection filter 904, and output to “Drop Port” and “0 ut Port”, respectively. You. Further, the externally inserted light is incident from “Add Port J”, passes through the wavelength selection filter 904, and is multiplexed into “Out Port J.” The collimator 90 used here No. 2 is manufactured by bonding the above-mentioned optical fiber end and the aspherical lens in the same glass tube. The function is the same as that of a normal ADM, but each collimator 902 is fixed on a V-groove 903 on a glass substrate 901, especially the “In” The meter 902 and the “Drop Port” collimator 902 are on a straight V-groove 903. In the conventional collimator, the optical axis shift occurs, and it is impossible to use the V-groove 903 as a guide groove for the optical axis. The axis of the collimator 902 used does not occur at all, so if there is no optical element such as a wavelength selection filter 904 between the collimators 902, there is almost no positional adjustment and light Coupling becomes possible.
コ リ メータ光の間にガラス基板 (波長選択フィルタ 9 0 4 ) が斜めに 入ると、 光はガラス基板の厚みに依存して、 元の光軸と平行に位置ずれ が発生する。 このずれは、 図に示したよ うに、 同様のガラス基板 (捕正 用のガラス基板 9 0 5 ) を用いて補正することで、 元の光軸は維持され るので、 大きな問題とはならない。 従って、 この構成では、 波長選択フ ィルタ 9 0 4の両脇にある反射ミ ラー 9 0 6の角度を調整するだけで、 全ての光路を調整することができることになる。 このよ うに、 本発明の 光ファイバ端末を使用することで、 V溝 9 0 3がコ リ メータ光のガイ ド 溝となるので、 これまで実現不可能だった同一基板上でのコ リ メータの 集積が技術的に可能となる。 更に、 組み立てが簡単にできることになり、 調整時間も短縮できる。  If the glass substrate (wavelength selection filter 904) enters obliquely between the collimator lights, the light will be displaced parallel to the original optical axis depending on the thickness of the glass substrate. As shown in the figure, this deviation does not pose a major problem because the original optical axis is maintained by using a similar glass substrate (a glass substrate for correction 905) to maintain the original optical axis. Therefore, in this configuration, all optical paths can be adjusted only by adjusting the angles of the reflection mirrors 906 on both sides of the wavelength selection filter 904. As described above, by using the optical fiber terminal of the present invention, the V-groove 903 serves as a guide groove for the collimator light. Integration is technically possible. Furthermore, assembling can be simplified and adjustment time can be reduced.
なお、 コ リ メータ 9 0 2に用いた非球面レンズのかわり に、 球面レン ズ、 球レンズ、 ドラムレンズを用いても同様な結果が得られた。  Similar results were obtained by using a spherical lens, a spherical lens, and a drum lens instead of the aspheric lens used for the collimator 902.
以上、 本発明に係る光ファイバ端末と、 当該光ファイバ端末を用いた 光部品の実施形態について説明した。 さ らに、 本発明に係る光ファイバ 端末とコ リ メータレンズとの組み合わせによ り、 コ リ メータ光を用いた 光結合が可能になる。 また、 本発明に係る光ファイバ端末と有限系のレ ンズとの組み合わせによっても光結合が可能になる。 このよ うに本発明 に係る光ファイバ端末と レンズとを組み合わせるこ とで、 通常の光ファ ィパ端末を用いて作製したコ リ メータと同等ないしはそれ以下の低結合 損失を有する光結合が可能となる。 そこで当該構成について、 以下、 第 4の実施形態について図面を参照しながら説明する。 The embodiments of the optical fiber terminal according to the present invention and the optical component using the optical fiber terminal have been described above. Further, the combination of the optical fiber terminal and the collimator lens according to the present invention enables optical coupling using collimated light. Further, the optical fiber terminal according to the present invention and a finite system Optical coupling is also possible by combination with a lens. Thus, by combining the optical fiber terminal according to the present invention and the lens, it is possible to achieve optical coupling having a low coupling loss equal to or less than that of a collimator manufactured using a normal optical fiber terminal. Become. Therefore, the configuration will be described below with reference to the drawings for a fourth embodiment.
第 1 6図は本発明に係る光端末とコ リ メー ト レンズとによるコ リ メ一 タの構成の説明図である。 第 1 6図において、 符号 1 2 0 1 は光フアイ バ ( S MF) を示し、 符号 1 2 0 2はコアレスファイバを示し、 符号 1 2 0 3は光ファイ ノく ( SMF) とコアレスファイバとを有する光ファィ バ端末を示している。 符号 1 2 0 5はコ リ メー ト レンズを示し、 符号 1 2 0 6はガラス等のキヤビラ リ を示している。 また、 符号 1 2 0 9は端 面反射光を示し、 符号 1 2 1 0はコ リ メー ト光を示す。  FIG. 16 is an explanatory diagram of a configuration of a collimator including an optical terminal and a collimating lens according to the present invention. In FIG. 16, reference numeral 1201 denotes an optical fiber (SMF), reference numeral 122 denotes a coreless fiber, and reference numeral 123 denotes an optical fiber (SMF) and a coreless fiber. 2 shows an optical fiber terminal having the following. Reference numeral 125 denotes a collimating lens, and reference numeral 125 denotes a cavity such as glass. Further, reference numeral 1209 denotes end face reflected light, and reference numeral 1 210 denotes collimated light.
光ファイ ノ ( S MF) 1 2 0 1 とコアレスファイ ノ 1 2 0 2 とを有す る本発明に係る光ファィバ端末 1 2 0 3から放出された光は、 コ リ メ一 ト レンズ 1 2 0 5を通過してコ リ メー ト光 1 2 1 0 となる。 このとき、 コ リ メー ト レンズレンズ 1 2 0 5からの端面反射光 1 2 0 9はすべて拡 散光となり、 光ファイバ端末 1 2 0 3の光出射位置に光が戻ることはな レ、。 この結果、 コ リ メー ト レンズ 1 2 0 5を配置することで系全体の反 射損失を低下させることはない、 という利点を発揮する。 またコ リ メ一 ト光 1 2 1 0のビーム径は mm単位のキヤビラ リ ないしはレンズ外径の範 囲まで広げることが出来るので、 伝播距離を大きく取ることが可能とな る。  The light emitted from the optical fiber terminal 123 having the optical fiber (SMF) 1201 and the coreless fin 122 according to the present invention has a collimating lens 12 2 After passing through 05, the collimated light becomes 1 210. At this time, the end face reflected light from the collimating lens lens 125 becomes all scattered light, and the light does not return to the light emitting position of the optical fiber terminal 123. As a result, there is an advantage that the arrangement of the collimating lens 125 does not reduce the reflection loss of the entire system. In addition, the beam diameter of the collimated light 1210 can be widened within the range of a mm or a lens outer diameter, so that the propagation distance can be increased.
当該第 4の実施の形態に係る光ファイバ端末とコ リ メータ レンズとの 組み合わせを、 上述した光部品に適用することは、 好ましい構成である。  It is a preferable configuration to apply the combination of the optical fiber terminal and the collimator lens according to the fourth embodiment to the above-described optical component.
また、 本発明に係る光ファイバ端末を用いて作製し得る光部品のバリ エ ーシヨ ンと しては、 その他にコ リ メータアレイ、 2 r> o r t m o d u 1 e (例 : 利得等価器) 、 アイ ソ レータ、 光スィ ッチ、 光測距計、 波 長計、 干渉計などがある。 Further, as the variations of the optical component that can be manufactured using the optical fiber terminal according to the present invention, other examples include a collimator array, 2 r> ortmod u 1 e (eg, gain equalizer), isolators, optical switches, optical rangefinders, wavelength meters, interferometers, etc.
産業上の利用可能性 Industrial applicability
以上説明したよ うに、 本発明によれば、 出射ビーム径をコアレスファ ィバの外径以内とすることで、 通常の光ファイバと全く同等の光結合を 行う ことができる。 この結果、 出射ビームの直進性が優れ、 かつ通常の 光部品で要求されレベルの反射損失及び結合損失を有する実用的な光フ ァィバ端末を提供することができ、 当該光ファイバ端末を用いた光部品 及び光結合器を提供することができる。  As described above, according to the present invention, by setting the outgoing beam diameter within the outer diameter of the coreless fiber, it is possible to perform the same optical coupling as a normal optical fiber. As a result, it is possible to provide a practical optical fiber terminal having excellent straightness of the output beam and having a level of reflection loss and coupling loss required by ordinary optical components. Components and optical couplers can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 中心部のコア及びその外周部のクラッ ドを有する光ファイバの端 面に、 前記コアと略同一で均一な屈折率を有する材料よりなるコアレス フアイバの一端面を接合してなる光ファィパ端末において、 1. An optical fiber terminal formed by joining one end face of a coreless fiber made of a material having substantially the same uniform refractive index as the core to the end face of an optical fiber having a core at the center and a cladding at the outer periphery thereof. At
前記光ファイバのコアを伝送してきた光が前記コアレスファイバ内で 拡がり コアレスフアイバの他端面から外部へ出射すると きのビーム径力 コアレスファイバの外径以内となるように、 コアレスファイバの光路長 を設定したことを特徴とする光ファイバ端末。  The beam diameter force when the light transmitted through the core of the optical fiber spreads inside the coreless fiber and exits from the other end face of the coreless fiber is set to be within the outer diameter of the coreless fiber. An optical fiber terminal characterized in that:
2 . 前記コアレスファイバの光路長が 1 m m未満であることを特徴と する請求の範囲第 1項記載の光ファイバ端末。 2. The optical fiber terminal according to claim 1, wherein an optical path length of the coreless fiber is less than 1 mm.
3 . 前記光フアイバの外径と前記コアレスフアイバの外径が異なるこ とを特徴とする請求の範囲第 1項または第 2項記載の光ファイバ端末。 3. The optical fiber terminal according to claim 1, wherein an outer diameter of the optical fiber is different from an outer diameter of the coreless fiber.
4 . 請求の範囲第 1項または第 2項記載の光ファィバ端末において 前記光ファイバと前記コアレスファイバとは、 概同径の外径を有し、 前記光ファイバの中心軸と、 前記コア レスファイバの中心軸とが、 互 いにずれて接合していることを特徴とする光ファイバ端末。 4. The optical fiber terminal according to claim 1 or 2, wherein the optical fiber and the coreless fiber have substantially the same outer diameter, a central axis of the optical fiber, and the coreless fiber. An optical fiber terminal characterized in that the center axis of the optical fiber is shifted from the center axis.
5 . 前記コアレスフアイバの他端面が前記光ファィバの光軸に対して 垂直な面に形成されていることを特徴とする請求の範囲第 1項〜第 4項 のいずれかに記載の光ファイバ端末。  5. The optical fiber terminal according to any one of claims 1 to 4, wherein the other end surface of the coreless fiber is formed on a surface perpendicular to an optical axis of the optical fiber. .
6 . 前記コアレスファイバの他端面に反射防止膜を設けたことを特徴 とする請求の範囲第 1項〜第 5項のいずれかに記載の光ファィパ端末。  6. The optical fiber terminal according to any one of claims 1 to 5, wherein an antireflection film is provided on the other end surface of the coreless fiber.
7 . 請求の範囲第 1項〜第 6項のいずれかに記載の光ファィバ端末を 含む光結合器において、 7. An optical coupler including the optical fiber terminal according to any one of claims 1 to 6,
前記光ファイバの光軸上で前記コアレスファイバの他端面側に、 非球 面レンズ、 球面レンズ、 球レンズ、 も しく は ドラム レンズから選択され る少なく とも 1個以上を配置したことを特徴とする光結合器。 On the other end side of the coreless fiber on the optical axis of the optical fiber, a non-spherical lens, a spherical lens, a spherical lens, or a drum lens is selected. An optical coupler comprising at least one or more optical couplers.
8 . 請求の範囲第 1項〜第 6項のいずれかに記載の光ファイバ端末と 光の合分波機能を有する光学素子とを組み合わせたことを特徴とする光 部品。  8. An optical component, comprising a combination of the optical fiber terminal according to any one of claims 1 to 6 and an optical element having a light multiplexing / demultiplexing function.
9 . 請求の範囲第 1項〜第 6項のいずれかに記載の光ファィバ端末の 作製方法であって、 前記光ファイバとコア レスファイバとを結合する第 1 の工程と、  9. The method for manufacturing an optical fiber terminal according to any one of claims 1 to 6, wherein: a first step of coupling the optical fiber and the coreless fiber;
コアレス フ ァイバの他端面を研磨しコアレスファイバの長さを所望の 値に調整する第 2 の工程とを備え、  A second step of polishing the other end face of the coreless fiber to adjust the length of the coreless fiber to a desired value,
前記第 2の工程では、 光ファイバとコアレスファイバの接合体の反射 損失量を測定しつつ、 コアレスファイバの長さを所望の値に調整するこ とを特徴とする光ファイバ端末の作製方法。  In the second step, a method of manufacturing an optical fiber terminal, comprising adjusting a length of a coreless fiber to a desired value while measuring a reflection loss amount of a joined body of an optical fiber and a coreless fiber.
1 0 . 請求の範囲第 3項記載の光ファイバ端末の作製方法であって、 径の異なる前記光ファイバとコアレスファイバとを接合する第 1の工程 と、  10. The method for producing an optical fiber terminal according to claim 3, wherein a first step of joining the optical fiber and the coreless fiber having different diameters,
前記光ファィバとコアレスファイバとの接合点を検知する第 2の工程 と、 前記接合点を基準にして設定した指定位置にてコア レスファイバを 切断する第 3 の工程とを備え、  A second step of detecting a joint point between the optical fiber and the coreless fiber, and a third step of cutting the coreless fiber at a designated position set based on the joint point,
前記第 2の工程では、 光学顕微鏡を用い且つデフォーカスされた顕微 鏡像により前記接合点を検知することを特徴とする光フアイパ端末の作 製方法。  In the second step, a method of manufacturing an optical fiber terminal is characterized in that the junction is detected by using an optical microscope and a defocused microscope image.
1 1 . 請求の範囲第 4項記載の光ファイバ端末の作製方法であって、 概同径である前記光ファイバとコア レスフ ァイバのそれぞれの中心軸 を、 互いにずらして接合する第 1 の工程と、  11. The method for manufacturing an optical fiber terminal according to claim 4, wherein a first step of joining the central axes of the optical fiber and the coreless fiber having substantially the same diameter so as to be shifted from each other. ,
前記光ファイバとコアレスファイバとの接合点を検知する第 2 の工程 と、 O 2004/053547 前記接合点を基準にして設定した指定位置にてコア レスファイバを切 断する第 3の工程とを備え、 A second step of detecting a junction between the optical fiber and the coreless fiber; O 2004/053547 and a third step of cutting the coreless fiber at a designated position set based on the junction point,
前記第 2の工程では、 光学顕微鏡を用い、 且つデフォーカスされた顕 微鏡像により前記接合点を検知することを特徴とする光フアイパ端末の 作製方法。  In the second step, a method for manufacturing an optical fiber terminal, wherein an optical microscope is used and the junction is detected by a defocused microscope image.
PCT/JP2003/015938 2002-12-12 2003-12-12 Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part WO2004053547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289054A AU2003289054A1 (en) 2002-12-12 2003-12-12 Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part
JP2004558485A JP3949137B2 (en) 2002-12-12 2003-12-12 Optical fiber terminal, manufacturing method thereof, optical coupler and optical component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002360318 2002-12-12
JP2002-360318 2002-12-12

Publications (2)

Publication Number Publication Date
WO2004053547A6 WO2004053547A6 (en) 2004-06-24
WO2004053547A1 true WO2004053547A1 (en) 2004-06-24

Family

ID=32500981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015938 WO2004053547A1 (en) 2002-12-12 2003-12-12 Optical fiber terminal, manufacturing method thereof, optical coupler, and optical part

Country Status (3)

Country Link
JP (1) JP3949137B2 (en)
AU (1) AU2003289054A1 (en)
WO (1) WO2004053547A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035430A1 (en) * 2006-09-21 2008-03-27 Hoya Corporation Optical module
JP2009210623A (en) * 2008-02-29 2009-09-17 Kyocera Corp Optical composite module and optical transmitter/receiver
JP2013020027A (en) * 2011-07-08 2013-01-31 Fujitsu Ltd Optical transmission line and method of manufacturing the same
JP2013097164A (en) * 2011-10-31 2013-05-20 Ricoh Opt Ind Co Ltd Optical component
WO2019003979A1 (en) * 2017-06-26 2019-01-03 東洋製罐グループホールディングス株式会社 Method for manufacturing lensed optical fiber and cutting device
EP3338124A4 (en) * 2015-08-20 2019-04-24 Commscope Technologies LLC Ferrule assembly with sacrificial optical fiber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095519A (en) * 1990-11-30 1992-03-10 At&T Bell Laboratories Apparatus and method for producing an in-line optical fiber attenuator
JPH0634837A (en) * 1992-07-15 1994-02-10 Sumitomo Electric Ind Ltd Optical component
US5325456A (en) * 1992-02-12 1994-06-28 E.I. Du Pont De Nemours And Company Optical isolator in an optical fiber feedthrough
US5384874A (en) * 1992-06-24 1995-01-24 Sumitomo Electric Industries, Ltd. Optical fiber rod lens device and method of making same
JPH07281054A (en) * 1994-04-07 1995-10-27 Namiki Precision Jewel Co Ltd Optical fiber terminal
JPH10142446A (en) * 1996-11-08 1998-05-29 Mitsubishi Cable Ind Ltd Optical fiber with lens
US6014483A (en) * 1996-08-21 2000-01-11 France Telecom Method of fabricating a collective optical coupling device and device obtained by such a method
WO2000075700A1 (en) * 1999-06-09 2000-12-14 France Telecom Method for collective production of microlenses at the tip of an optical fibre assembly such as a fibre tape
JP2003043270A (en) * 2001-08-03 2003-02-13 Japan Aviation Electronics Industry Ltd End structure of optical fiber, and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095519A (en) * 1990-11-30 1992-03-10 At&T Bell Laboratories Apparatus and method for producing an in-line optical fiber attenuator
US5325456A (en) * 1992-02-12 1994-06-28 E.I. Du Pont De Nemours And Company Optical isolator in an optical fiber feedthrough
US5384874A (en) * 1992-06-24 1995-01-24 Sumitomo Electric Industries, Ltd. Optical fiber rod lens device and method of making same
JPH0634837A (en) * 1992-07-15 1994-02-10 Sumitomo Electric Ind Ltd Optical component
JPH07281054A (en) * 1994-04-07 1995-10-27 Namiki Precision Jewel Co Ltd Optical fiber terminal
US6014483A (en) * 1996-08-21 2000-01-11 France Telecom Method of fabricating a collective optical coupling device and device obtained by such a method
JPH10142446A (en) * 1996-11-08 1998-05-29 Mitsubishi Cable Ind Ltd Optical fiber with lens
WO2000075700A1 (en) * 1999-06-09 2000-12-14 France Telecom Method for collective production of microlenses at the tip of an optical fibre assembly such as a fibre tape
JP2003043270A (en) * 2001-08-03 2003-02-13 Japan Aviation Electronics Industry Ltd End structure of optical fiber, and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035430A1 (en) * 2006-09-21 2008-03-27 Hoya Corporation Optical module
JP2009210623A (en) * 2008-02-29 2009-09-17 Kyocera Corp Optical composite module and optical transmitter/receiver
JP2013020027A (en) * 2011-07-08 2013-01-31 Fujitsu Ltd Optical transmission line and method of manufacturing the same
JP2013097164A (en) * 2011-10-31 2013-05-20 Ricoh Opt Ind Co Ltd Optical component
EP3338124A4 (en) * 2015-08-20 2019-04-24 Commscope Technologies LLC Ferrule assembly with sacrificial optical fiber
US10488598B2 (en) 2015-08-20 2019-11-26 Commscope Technologies Llc Ferrule assembly with beam expansion section and sacrificial optical fiber
WO2019003979A1 (en) * 2017-06-26 2019-01-03 東洋製罐グループホールディングス株式会社 Method for manufacturing lensed optical fiber and cutting device
JP2019008162A (en) * 2017-06-26 2019-01-17 東洋製罐グループホールディングス株式会社 Manufacturing method of optical fiber having lens, and cutting device
CN112748498A (en) * 2017-06-26 2021-05-04 东洋制罐集团控股株式会社 Cutting device
US11092749B2 (en) 2017-06-26 2021-08-17 Toyo Seikan Group Holdings, Ltd. Method for manufacturing lensed optical fiber by fusing a GRIN lens at a tip of an optical fiber and cutting the GRIN lens followed by repeating the fusing and cutting steps
US11314020B2 (en) 2017-06-26 2022-04-26 Toyo Seikan Group Holdings, Ltd. Method for manufacturing lensed optical fiber and cutting device
JP7110553B2 (en) 2017-06-26 2022-08-02 東洋製罐グループホールディングス株式会社 Method for manufacturing optical fiber with lens, and cutting device

Also Published As

Publication number Publication date
JPWO2004053547A1 (en) 2006-04-13
JP3949137B2 (en) 2007-07-25
AU2003289054A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
US7474822B2 (en) Optical fiber collimator
US7400799B2 (en) Optical device and fabrication method and apparatus for the same
JP3615735B2 (en) Manufacture of collimators using optical fibers welded and connected to optical elements of considerable cross section
JP3124465B2 (en) Optical coupler
TWI410688B (en) Optical component and lens assembly
KR20030027781A (en) Aspherical rod lens and method of manufacturing aspherical rod lens
JP2004537065A (en) Expanded beam connector system
JP2004126586A (en) Symmetric bi-aspheric lens for use in optical fiber collimator assembly
WO2006080143A1 (en) Optical power monitor and its manufacturing method
TWI329209B (en) Optical collimator structure
GB2139377A (en) Optical connectors
JP2017040917A (en) Expanded beam connector with discrete alignment assembly
JP3949137B2 (en) Optical fiber terminal, manufacturing method thereof, optical coupler and optical component
US11086085B2 (en) Optical connector for connecting multicore optical fiber to single core optical fibers using intermediate optical waveguide array
JP2003195012A (en) Aspherical rod lens and its manufacturing method
JP2004126563A (en) Lens integrated-type optical fiber and manufacturing method therefor
JPWO2004053547A6 (en) Optical fiber terminal, manufacturing method thereof, optical coupler and optical component
JP2004302292A (en) Optical fiber terminal, its manufacturing method and optical coupler, and optical component
US11927805B2 (en) Optical fiber connection structure
JP2021527242A (en) Fiber Optic Connector with Lens with Feedback Mirror Assembly
JPH0815564A (en) Optical fiber connecting system and its connecting module
JP2009092940A (en) Optical power monitor and manufacturing method thereof
Nauriyal et al. Packaging Integrated Photonic Devices to Increase Scalability Using Laser Fusion Splicing
JP2006011119A (en) Optical component, wavelength multiplexer/demultiplexer, and method of manufacturing optical component
Nauriyal et al. Low-loss, Single-shot Fiber-Array to Chip Attach Using Laser Fusion Splicing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004558485

Country of ref document: JP

122 Ep: pct application non-entry in european phase